
VxWorks

KERNEL API REFERENCE
Volume 2: Routines

®

6.6

VxWorks Kernel API Reference, 6.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Kernel API Reference, Volume 2: Routines, 6.6

15 Nov 07
Part #: DOC-16102-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

The VxWorks Kernel API Reference is a two-volume set that provides reference
entries describing the facilities available in the VxWorks kernel. For reference
entries that describe facilities for VxWorks process-based application
development, see the VxWorks Application API Reference. For reference entries that
describe VxWorks drivers, see the VxWorks Drivers API Reference.

Volume 1: Libraries

Volume 1 provides reference entries for each of the VxWorks kernel libraries,
arranged alphabetically. Each entry lists the routines found in the library,
including a one-line synopsis of each and a general description of their use.

Individual reference entries for each of the available functions in these libraries is
provided in Volume 2.

Volume 2: Routines

Volume 2 (this book) provides reference entries for each of the routines found in
the VxWorks kernel libraries documented in Volume 1.

VxWorks Kernel API Reference, 6.6

iv

1

Volume 2
Routines

CPToUtf16() – Convert a Unicode codepoint to a UTF-16 encoding 41
CPToUtf8() – Convert a Unicode codepoint to a UTF-8 encoding 41
CPUSET_ATOMICCLR() – atomically clear a CPU from a CPU set 42
CPUSET_ATOMICCOPY() – atomically copy a CPU set value 42
CPUSET_ATOMICSET() – atomically set a CPU in a CPU set 43
CPUSET_CLR() – clear a CPU from a CPU set 44
CPUSET_ISSET() – determine if a CPU is set in a CPU set 44
CPUSET_ISZERO() – determine if all CPUs are cleared from a CPU set 45
CPUSET_SET() – set a CPU in a CPU set 45
CPUSET_SETALL() – set all CPUs in a CPU set 46
CPUSET_SETALL_BUT_SELF() – set all CPUs except self in CPU set 46
CPUSET_ZERO() – clear all CPUs from a CPU set 47
Sysctl() – get or set values for kernel state variables from the C shell 48
VX_MEM_BARRIER_R() – Read Memory Barrier 49
VX_MEM_BARRIER_RW() – Read/Write Memory Barrier 50
VX_MEM_BARRIER_W() – Write memory barrier 51
a0() – return the contents of register a0 (also a1 - a7) (MC680x0) 51
access() – determine accessibility of a file 52
acosf() – compute an arc cosine (ANSI) 53
adrSpaceInfoGet() – get status of the address space library 53
adrSpacePageUnmap() – unmap a set of virtual pages 54
adrSpaceRAMAddToPool() – add specified memory block to RAM pool 55
adrSpaceRAMReserve() – reserve memory from the RAM pool 56
adrSpaceShow() – display information about address spaces managed by adrSpaceLib 57
adrSpaceVirtReserve() – reserve memory from the virtual space 58
aimCacheInit() – initialize cache aim with supplied parameters 59
aimFppLibInit() – Initialize the AIM FPU library 59
aimMmuLibInit() – initialize the AIM 60
aioShow() – show AIO requests 60
aioSysInit() – initialize the AIO system driver 61

VxWorks Kernel API Reference, 6.6

2

aio_cancel() – cancel an asynchronous I/O request (POSIX) 61
aio_error() – retrieve error status of asynchronous I/O operation (POSIX) 62
aio_fsync() – asynchronous file synchronization (POSIX) 63
aio_read() – initiate an asynchronous read (POSIX) 63
aio_return() – retrieve return status of asynchronous I/O operation (POSIX) 64
aio_suspend() – wait for asynchronous I/O request(s) (POSIX) 65
aio_write() – initiate an asynchronous write (POSIX) 65
alarm() – set an alarm clock for delivery of a signal 66
anRegister() – register with the VxBus subsystem 67
asinf() – compute an arc sine (ANSI) 67
atan2f() – compute the arc tangent of y/x (ANSI) 67
atanf() – compute an arc tangent (ANSI) 68
atapiParamsPrint() – Print the drive parameters. 68
attrib() – modify MS-DOS file attributes on a file or directory 69
b() – set or display breakpoints 70
bcmp() – compare one buffer to another 71
bcopy() – copy one buffer to another 71
bcopyBytes() – copy one buffer to another one byte at a time 72
bcopyLongs() – copy one buffer to another one long word at a time 72
bcopyWords() – copy one buffer to another one word at a time 73
bd() – delete a breakpoint 73
bdall() – delete all breakpoints 74
bfStrSearch() – Search using the Brute Force algorithm 75
bfill() – fill a buffer with a specified character 75
bfillBytes() – fill buffer with a specified character one byte at a time 76
bh() – set a hardware breakpoint 76
binvert() – invert the order of bytes in a buffer 77
bmsStrSearch() – Search using the Boyer-Moore-Sunday (Quick Search) algorithm 77
bmtPhyRegister() – register with the VxBus subsystem 78
bootBpAnchorExtract() – extract a backplane address from a device field 79
bootChange() – change the boot line 79
bootLeaseExtract() – extract the lease information from an Internet address 80
bootNetmaskExtract() – extract the net mask field from an Internet address 81
bootParamsPrompt() – prompt for boot line parameters 82
bootParamsShow() – display boot line parameters 82
bootStringToStruct() – interpret the boot parameters from the boot line 83
bootStringToStructAdd() – interpret the boot parameters from the boot line 83
bootStructToString() – construct a boot line 84
bswap() – swap buffers 84
bzero() – zero out a buffer 85
c() – continue from a breakpoint 85
cacheArchClearEntry() – clear an entry from a cache (68K, x86) 86
cacheArchLibInit() – initialize the cache library 87
cacheAuLibInit() – initialize the Au cache library 88
cacheClear() – clear all or some entries from a cache 89

2 Routines

3

2

cacheDisable() – disable the specified cache 89
cacheDmaFree() – free the buffer acquired with cacheDmaMalloc() 90
cacheDmaMalloc() – allocate a cache-safe buffer for DMA devices and drivers 90
cacheDrvFlush() – flush the data cache for drivers 91
cacheDrvInvalidate() – invalidate data cache for drivers 91
cacheDrvPhysToVirt() – translate a physical address for drivers 92
cacheDrvVirtToPhys() – translate a virtual address for drivers 92
cacheEnable() – enable the specified cache 93
cacheFlush() – flush all or some of a specified cache 93
cacheForeignClear() – clear foreign data from selected cache 94
cacheForeignFlush() – flush foreign data from selected cache 94
cacheForeignInvalidate() – invalidate foreign data from selected cache 95
cacheInvalidate() – invalidate all or some of a specified cache 95
cacheLibInit() – initialize the cache library for a processor architecture 96
cacheLock() – lock all or part of a specified cache 96
cachePipeFlush() – flush processor write buffers to memory 97
cacheR10kLibInit() – initialize the R10000 cache library 97
cacheR4kLibInit() – initialize the R4000 cache library 98
cacheR5kLibInit() – initialize the R5000 cache library 99
cacheR7kLibInit() – initialize the R7000 cache library 99
cacheSh7750LibInit() – initialize the SH7750 cache library 100
cacheStoreBufDisable() – disable the store buffer (MC68060 only) 102
cacheStoreBufEnable() – enable the store buffer (MC68060 only) 102
cacheTextLocalUpdate() – synchronize the caches on local cpu only 102
cacheTextUpdate() – synchronize the instruction and data caches 103
cacheTx49LibInit() – initialize the Tx49 cache library 103
cacheUnlock() – unlock all or part of a specified cache 104
calloc() – allocate space for an array (ANSI) 105
cbioBlkCopy() – block to block (sector to sector) transfer routine 105
cbioBlkRW() – transfer blocks to or from memory 106
cbioBytesRW() – transfer bytes to or from memory 106
cbioDevCreate() – Initialize a CBIO device (Generic) 107
cbioDevVerify() – verify CBIO_DEV_ID 108
cbioIoctl() – perform ioctl operation on device 108
cbioLibInit() – Initialize CBIO Library 109
cbioLock() – obtain CBIO device semaphore. 110
cbioModeGet() – return the mode setting for CBIO device 110
cbioModeSet() – set mode for CBIO device 111
cbioParamsGet() – fill in CBIO_PARAMS structure with CBIO device parameters 111
cbioRdyChgdGet() – determine ready status of CBIO device 112
cbioRdyChgdSet() – force a change in ready status of CBIO device 113
cbioShow() – print information about a CBIO device 113
cbioUnlock() – release CBIO device semaphore. 114
cbioWrapBlkDev() – create CBIO wrapper atop a BLK_DEV device 114
cbrt() – compute a cube root 115

VxWorks Kernel API Reference, 6.6

4

cbrtf() – compute a cube root 115
cd() – change the default directory 116
cdromFsDevCreate() – create a CD-ROM filesystem (cdromFs) I/O device. 117
cdromFsDevDelete() – delete a CD-ROM filesystem (cdromFs) I/O device 118
cdromFsInit() – initialize the VxWorks CD-ROM file system 118
cdromFsVersionDisplay() – display the cdromFs version number 119
cdromFsVersionNumGet() – return the cdromFs version number 119
cdromFsVolConfigShow() – show the volume configuration information 119
ceilf() – compute the smallest integer greater than or equal to a specified value (ANSI) 120
cfree() – free a block of memory from the system memory partition (kernel heap) 120
checkStack() – print a summary of each task's stack usage 121
chkdsk() – perform consistency checking on a MS-DOS file system 122
chmod() – change the permission mode of a file 123
clock_getres() – get the clock resolution (POSIX) 125
clock_gettime() – get the current time of the clock (POSIX) 125
clock_nanosleep() – high resolution sleep with specifiable clock 126
clock_setres() – set the clock resolution 127
clock_settime() – set the clock to a specified time (POSIX) 127
close() – close a file 128
closedir() – close a directory (POSIX) 128
cnsAppRegister() – Registers an application with the CNS library. 129
cnsClose() – Close or create and open named communication medium for read/write. 130
cnsCompLibInit() – Initialize the CNS COMP library. 130
cnsDefaultMediaTypeSet() – Set the default media type. 131
cnsLibInit() – Initialize the CNS library. 132
cnsMediaRegister() – Registers a communication media with the CNS. 132
cnsMediaTypeRemove() – Remove a media type from an application's media list. 133
cnsMediumTypeNext() – Return the name of the media type next in the list. 134
cnsMsgEncode() – Encode a message as understood by CNS. 134
cnsOpen() – Open or create and open named communication medium for read/write. 136
cnsRead() – Read from a communication medium. 136
cnsWrite() – Write to a communication medium. 137
commit() – commit current transaction to disk. 138
copy() – copy in (or stdin) to out (or stdout) 139
copyStreams() – copy from/to specified streams 140
coreDumpClose() – close a core dump 140
coreDumpCopy() – copy a core dump to the given path 141
coreDumpCreateHookAdd() – add a routine to be called at every core dump create 141
coreDumpCreateHookDelete() – delete a previously added core dump create routine 142
coreDumpDevFormat() – format the core dump device 142
coreDumpDevShow() – display information on core dump device 143
coreDumpInfoGet() – get information on a core dump 143
coreDumpIsAvailable() – is a core dump available for retrieval 145
coreDumpMemDump() – dump an area of memory in VxWorks core dump 145
coreDumpMemFilterAdd() – add a memory region filter 146

2 Routines

5

2

coreDumpMemFilterDelete() – delete a memory region filter 147
coreDumpNextGet() – get the next core dump on device 147
coreDumpOpen() – open an existing core dump for retrieval 148
coreDumpRead() – read from a core file 148
coreDumpShow() – display information on core dumps 149
coreDumpUsrGenerate() – generate a user (on-demand) core dump 150
cosf() – compute a cosine (ANSI) 151
coshf() – compute a hyperbolic cosine (ANSI) 151
cp() – copy file into other file/directory. 152
cplusCallNewHandler() – call the allocation failure handler (C++) 152
cplusCtors() – call static constructors (C++) 153
cplusCtorsLink() – call all linked static constructors (C++) 154
cplusDemanglerSet() – change C++ demangling mode (C++) 154
cplusDemanglerStyleSet() – change C++ demangling style (C++) 155
cplusDtors() – call static destructors (C++) 155
cplusDtorsLink() – call all linked static destructors (C++) 156
cplusLibInit() – initialize the C++ library (C++) 157
cplusXtorGet() – get the c++ Xtors strategy 157
cplusXtorSet() – change C++ static constructor calling strategy (C++) 158
cpsr() – return the contents of the current processor status register (ARM) 158
cpuPwrMgrEnable() – Set the CPU light power management to ON/OFF 159
cpuPwrMgrIsEnabled() – Get the CPU power management status 160
creat() – create a file 160
cret() – continue until the current subroutine returns 161
d() – display memory 162
d0() – return the contents of register d0 (also d1 - d7) (MC680x0) 162
dbgBpTypeBind() – bind a breakpoint handler to a breakpoint type (MIPS R3000, R4000, R4650) 163
dbgHelp() – display debugging help menu 163
dbgInit() – initialize the shell debugging package 164
dcacheDevCreate() – Create a disk cache 165
dcacheDevDisable() – Disable the disk cache for this device 165
dcacheDevEnable() – Reenable the disk cache 166
dcacheDevMemResize() – set a new size to a disk cache device 166
dcacheDevTune() – modify tunable disk cache parameters 167
dcacheHashTest() – test hash table integrity 168
dcacheShow() – print information about disk cache 169
devs() – list all system-known devices 169
dirList() – list contents of a directory (multi-purpose) 170
diskFormat() – format a disk with dosFs 170
diskInit() – initialize a file system on a block device 171
dosFsCacheCreate() – create cache for a DosFS volume 171
dosFsCacheDelete() – delete the disk cache for a dosFs volume 172
dosFsCacheInfo() – retrieve a cache's settings 172
dosFsCacheLibInit() – initialize dosFsCache library. 173
dosFsCacheOptionsGet() – get this dosFs volume's disk cache options 174

VxWorks Kernel API Reference, 6.6

6

dosFsCacheOptionsSet() – set this dosFs volume's disk cache options 174
dosFsCacheShow() – show information regarding a dosFs volume's cache 175
dosFsCacheTune() – tune a cache's settings 175
dosFsChkDsk() – make volume integrity checking. 176
dosFsClose() – close a dosFs file 176
dosFsDefaultCacheSizeSet() – set the default disk cache size 177
dosFsDefaultDataCacheSizeGet() – get the default data cache size 177
dosFsDefaultDirCacheSizeGet() – get the default directory cache size 178
dosFsDefaultFatCacheSizeGet() – get the default FAT cache size 178
dosFsDevCreate() – create file system device. 178
dosFsDevDelete() – delete a dosFs volume 180
dosFsDiskProbe() – probe if a device contains a valid dosFs 180
dosFsFdFree() – free a file descriptor 181
dosFsFdGet() – get an available file descriptor 181
dosFsFmtLibInit() – initialize the MS-DOS formatting library 182
dosFsFmtTest() – UNITEST CODE 182
dosFsHdlrInstall() – install handler. 183
dosFsIoctl() – do device specific control function 183
dosFsLastAccessDateEnable() – enable last access date updating for this volume 184
dosFsLibInit() – prepare to use the dosFs library 185
dosFsMonitorDevCreate() – create a dosFs volume through the fs monitor 185
dosFsOpen() – open a file on a dosFs volume 186
dosFsShow() – display dosFs volume configuration data. 186
dosFsVolDescGet() – convert a device name into a DOS volume descriptor pointer. 187
dosFsVolFormat() – format an MS-DOS compatible volume 188
dosFsVolFormatFd() – format an MS-DOS compatible volume via an opened FD 189
dosFsVolIsFat12() – determine if a MSDOS volume is FAT12 or FAT16 190
dosFsVolUnmount() – unmount a dosFs volume 192
dosFsVolumeOptionsGet() – get this volume's disk options 193
dosFsVolumeOptionsSet() – set this volume's disk options 193
dosFsXbdBlkCopy() – copy blocks on the underlying XBD block device. 194
dosFsXbdBlkRead() – read blocks from the underlying XBD block device. 195
dosFsXbdBlkWrite() – write blocks to the underlying XBD block device. 195
dosFsXbdBytesRW() – read/write bytes to/from the underlying XBD block device. 196
dosFsXbdIoctl() – Misc control operations 196
dosPathParse() – parse a full pathname into an array of names. 197
dosSetVolCaseSens() – set case sensitivity of volume 198
dosfsDiskFormat() – format a disk with dosFs 198
dosfsDiskToHost16() – convert uint16_t from on-disk to host format 199
dosfsDiskToHost32() – convert uint32_t from on-disk to host format 199
dosfsHostToDisk16() – convert uint16_t from host to on-disk format 200
dosfsHostToDisk32() – convert uint32_t from host to on-disk format 200
dpartDevCreate() – Initialize a partitioned disk 201
dpartPartGet() – retrieve handle for a partition 202
dshmMuxHwAddrToOff() – translate a local address to a shared memory offset 202

2 Routines

7

2

dshmMuxHwGet() – obtain an hardware registration handle based on name 203
dshmMuxHwLocalAddrGet() – obtain address of the local node 203
dshmMuxHwNodesNumGet() – obtain the maximum number of nodes on a hardware bus 204
dshmMuxHwOffToAddr() – translate a shared memory offset to a local address 204
dshmMuxHwRegister() – register a hardware bus with the MUX 205
dshmMuxHwTasClearGet() – obtain the TAS clear routine on this bus 205
dshmMuxHwTasGet() – obtain the test-and-set routine on this bus 206
dshmMuxLibInit() – initialize the DSHM MUX 206
dshmMuxMemAlloc() – allocate shared memory from a specific hardware 207
dshmMuxMemFree() – free allocated shared memory from a specific hardware 208
dshmMuxMsgRecv() – receive a message 208
dshmMuxMsgSend() – transmit a message 209
dshmMuxSvcNodeJoin() – signal services that a node has joined the system 209
dshmMuxSvcNodeLeave() – signal services that a node has left the system 210
dshmMuxSvcObjGet() – retrieve a service object and protect it against deletion 210
dshmMuxSvcObjRelease() – allows modifications to be made on a service object 211
dshmMuxSvcRegister() – register a service with the MUX 211
dshmMuxSvcWithdraw() – remove service from MUX 212
dshmMuxWidtdrawComplete() – signal service has finished withdrawing 212
dsiDataPoolShow() – display DSI's data pool statistics 213
dsiSysPoolShow() – display DSI's system pool statistics 213
e() – set or display eventpoints (WindView) 214
edi() – return the contents of register edi (also esi - eax) (x86) 215
edi() – return the contents of register edi (also esi - eax) (x86/SimNT) 215
edrBootCountGet() – returns the current boot count 216
edrBootShow() – show all stored boot type ED&R records 216
edrClear() – a synonym for edrErrorLogClear 217
edrErrLogAttach() – attach to an existing log 217
edrErrLogClear() – clear the log's contents 217
edrErrLogCreate() – create a new log 218
edrErrLogIterCreate() – create an iterator for traversing the log 219
edrErrLogIterNext() – returns the next committed node 219
edrErrLogMaxNodeCount() – return the maximum number of nodes in the log 220
edrErrLogNodeAlloc() – allocate a node from the error log 220
edrErrLogNodeCommit() – commits a previously allocated node 221
edrErrLogNodeCount() – return the number of committed nodes in the log 221
edrErrorInject() – injects an error into the ED&R subsystem 222
edrErrorInjectHookAdd() – adds a hook which gets called on error-injection 223
edrErrorInjectHookDelete() – removes an existing error-inject hook 224
edrErrorInjectPrePostHookAdd() – adds a hook which gets called before and after error-injection 225
edrErrorInjectPrePostHookDelete() – removes the existing pre/post hook 226
edrErrorInjectTextHookAdd() – adds a hook which gets called on record creation 226
edrErrorInjectTextHookDelete() – removes the existing text writing hook 227
edrErrorLogClear() – clears the ED&R error log 227
edrErrorRecordCount() – returns the number of error-records in the log 228

VxWorks Kernel API Reference, 6.6

8

edrErrorRecordDecode() – decode one error-record 228
edrFatalShow() – show all stored fatal type ED&R records 229
edrFlagsGet() – return the ED&R flags which are currently set 229
edrHelp() – prints helpful information on ED&R 230
edrHookShow() – show the list of installed ED&R hook routines 230
edrInfoShow() – show all stored info type ED&R records 230
edrInitShow() – show all stored init type ED&R records 231
edrInjectHookShow() – show the list of error injection hook routines 231
edrInjectPrePostHookShow() – show the list of pre/post injection hook routines 232
edrInjectTextHookShow() – show the list of text injection hook routines 232
edrIntShow() – show all stored interrupt type ED&R records 233
edrIsDebugMode() – is the ED&R debug mode flag set? 233
edrKernelShow() – show all stored kernel type ED&R records 233
edrLibInit() – initializes edrLib 234
edrRebootShow() – show all stored reboot type ED&R records 235
edrRtpShow() – show all stored rtp type ED&R records 235
edrShow() – displays the ED&R error log to stdout 236
edrSystemDebugModeGet() – indicates if the system is in debug mode 236
edrSystemDebugModeInit() – initialise the system mode debug flag 237
edrSystemDebugModeSet() – modifies the system debug mode flag 237
edrUserShow() – show all stored user type ED&R records 238
eflags() – return the contents of the status register (x86) 238
eflags() – return the contents of the status register (x86/SimNT) 239
elPciRegister() – register with the VxBus subsystem 239
eneRegister() – register with the VxBus subsystem 239
envGet() – return a pointer to the environment of a task 240
envLibInit() – initialize environment variable facility 240
envPrivateCreate() – create a private environment 241
envPrivateDestroy() – destroy a private environment 242
envShow() – display the environment for a task 242
errnoGet() – get the error status value of the calling task 243
errnoOfTaskGet() – get the error status value of a specified task 243
errnoOfTaskSet() – set the error status value of a specified task 244
errnoSet() – set the error status value of the calling task 244
etsecRegister() – register with the VxBus subsystem 245
eventClear() – Clear the calling task's events register 245
eventReceive() – Wait for event(s) 245
eventSend() – Send event(s) 247
excConnect() – connect a C routine to an exception vector (PowerPC) 248
excCrtConnect() – connect a C routine to a critical exception vector (PowerPC 403) 249
excHookAdd() – specify a routine to be called with exceptions 250
excInit() – initialize the exception handling package 251
excIntConnect() – connect a C routine to an asynchronous exception vector (PowerPC, ARM) 251
excIntCrtConnect() – connect a C routine to a critical interrupt vector (PowerPC 403) 252
excJobAdd() – request a task-level function call from interrupt level 253

2 Routines

9

2

excVecGet() – get a CPU exception vector (PowerPC, ARM) 253
excVecInit() – initialize the exception/interrupt vectors 254
excVecSet() – set a CPU exception vector (PowerPC, ARM) 255
exit() – exit a task (ANSI) 256
expf() – compute an exponential value (ANSI) 256
fabsf() – compute an absolute value (ANSI) 257
fastStrSearch() – Search by optimally choosing the search algorithm 257
fccRegister() – register with the VxBus subsystem 258
fchmod() – change the permission mode of a file 258
fcntl() – perform control functions over open files 259
fdatasync() – synchronize a file data 260
fdprintf() – write a formatted string to a file descriptor 261
fecRegister() – register with the VxBus subsystem 261
feiRegister() – register with the VxBus subsystem 262
ffsLsb() – find least significant bit set 262
ffsMsb() – find most significant bit set 262
fileUploadPathClose() – close the event-destination file 263
fioBaseLibInit() – initialize the formatted I/O support library 263
fioFormatV() – convert a format string 264
fioLibInit() – initialize the formatted I/O support library 265
fioRdString() – read a string from a file 265
fioRead() – read a buffer 266
floorf() – compute the largest integer less than or equal to a specified value (ANSI) 266
fmodf() – compute the remainder of x/y (ANSI) 267
formatTrans() – Format a transaction disk. 267
fpathconf() – determine the current value of a configurable limit 268
fppInit() – initialize floating-point coprocessor support 269
fppProbe() – probe for the presence of a floating-point coprocessor 269
fppRestore() – restore the floating-point coprocessor context 270
fppSave() – save the floating-point coprocessor context 271
fppShowInit() – initialize the floating-point show facility 273
fppTaskRegsGet() – Gets FPU context for a task 273
fppTaskRegsGet() – get the floating-point registers from a task TCB 274
fppTaskRegsSet() – Sets FPU context for a task 274
fppTaskRegsSet() – set the floating-point registers of a task 275
fppTaskRegsShow() – print the contents of a task's floating-point registers 275
free() – free a block of memory from the system memory partition (ANSI) 276
fsEventUtilInit() – Initialize the file system event utlility library 276
fsMonitorInit() – Initialize the fsMonitor 277
fsPathAddedEventRaise() – Raise a "path added" event 277
fsPathAddedEventSetup() – Setup to wait for a path 278
fsWaitForPath() – wait for a path 278
fsmGetDriver() – Get the XBD name of a mapping based on the path 279
fsmGetVolume() – get the pathname based on an XBD name mapping 279
fsmNameInstall() – Add a mapping between an XBD name and a pathname 280

VxWorks Kernel API Reference, 6.6

10

fsmNameMap() – map an XBD name to a Core I/O path 280
fsmNameUninstall() – remove an XBD name to pathname mapping 281
fsmProbeInstall() – install F/S probe and instantiator functions 281
fsmProbeUninstall() – remove a file system probe 282
fsmUnmountHookAdd() – Add an unmount hook function 283
fsmUnmountHookDelete() – Remove an unmount hook function 283
fsmUnmountHookRun() – Runs the unmount hook functions 284
fstat() – get file status information (POSIX) 284
fstatfs() – get file status information (POSIX) 285
fsync() – synchronize a file 286
ftruncate() – truncate a file (POSIX) 286
g0() – return the contents of register g0 (also g1-g7) (SimSolaris) 287
geiRegister() – register with the VxBus subsystem 287
getOptServ() – parse parameter string into argc, argv format 288
getenv() – get an environment variable (ANSI) 288
getopt() – parse argc/argv argument vector (POSIX) 289
getoptInit() – initialize the getopt state structure 290
getopt_r() – parse argc/argv argument vector (POSIX) 291
h() – display or set the size of shell history 292
hashFuncIterScale() – iterative scaling hashing function for strings 293
hashFuncModulo() – hashing function using remainder technique 293
hashFuncMultiply() – multiplicative hashing function 294
hashKeyCmp() – compare keys as 32 bit identifiers 294
hashKeyStrCmp() – compare keys based on strings they point to 295
hashTblCreate() – create a hash table 295
hashTblDelete() – delete a hash table 296
hashTblDestroy() – destroy a hash table 297
hashTblEach() – call a routine for each node in a hash table 297
hashTblFind() – find a hash node that matches the specified key 298
hashTblInit() – initialize a hash table 298
hashTblPut() – put a hash node into the specified hash table 299
hashTblRemove() – remove a hash node from a hash table 300
hashTblTerminate() – terminate a hash table 300
help() – print a synopsis of selected routines 301
histLoad() – load history into the current shell session interpreter(s) 302
histSave() – save history of the current shell session interpreter(s) 302
hookAddToHead() – add a hook routine at the start of a hook table 303
hookAddToTail() – add a hook routine to the end of a hook table 304
hookDelete() – delete a hook from a hook table 304
hookFind() – Search a hook table for a given hook 305
hookShow() – show the hooks in the given hook table 305
hrfsAdvFormat() – format the HRFS file system using advanced options 306
hrfsAdvFormatFd() – format the HRFS file system using advanced options via a file descriptor 307
hrfsAscTime() – convert "broken-down" HRFS time to string 308
hrfsChkDsk() – check the HRFS file system 308

2 Routines

11

2

hrfsDevCreate() – create an HRFS device 309
hrfsDiskFormat() – format a disk with HRFS 310
hrfsFormat() – format the HRFS file system via a path 310
hrfsFormatFd() – format the HRFS file system via a file descriptor 311
hrfsFormatLibInit() – prepare to use the HRFS formatter 312
hrfsTimeCondense() – condense time in HRFS_TM to time in msec 313
hrfsTimeGet() – return # of milliseconds since midnight Jan 1, 1970 313
hrfsTimeSplit() – split time in msec into HRFS_TM format 313
hrfsUpgrade() – upgrade the HRFS file system to the latest version 314
i() – print a summary of each task's TCB 315
i0() – return the contents of register i0 (also i1-i7) (SimSolaris) 316
i8042vxbRegister() – register i8042vxb driver 316
ichAtaBlkRW() – read or write sectors to a ATA/IDE disk. 317
ichAtaCmd() – issue a RegisterFile command to ATA/ATAPI device. 317
ichAtaConfig() – configure an ATA drive (hard disk or cdrom drive) 321
ichAtaConfigInit() – intialize the hard disk driver 322
ichAtaCtrlReset() – reset the specified ATA/IDE disk controller 322
ichAtaDevCreate() – create a device for a ATA/IDE disk 323
ichAtaDevIdentify() – identify device 324
ichAtaDmaRW() – read/write a number of sectors on the current track in DMA mode 324
ichAtaDmaToggle() – turn on or off an individual controllers dma support 325
ichAtaDrv() – Initialize the ATA driver 325
ichAtaDumptest() – a quick test of the dump functionality for ATA driver 326
ichAtaInit() – initialize ATA device. 327
ichAtaParamRead() – Read drive parameters 327
ichAtaPiInit() – init a ATAPI CD-ROM disk controller 328
ichAtaRW() – read/write a data from/to required sector. 328
ichAtaRawio() – do raw I/O access 329
ichAtaShow() – show the ATA/IDE disk parameters 329
ichAtaShowInit() – initialize the ATA/IDE disk driver show routine 330
ichAtaStatusChk() – Check status of drive and compare to requested status. 330
ichAtaXbdDevCreate() – create an XBD device for a ATA/IDE disk 331
ichAtaXbdRawio() – do raw I/O access 331
ichAtapiBytesPerSectorGet() – get the number of Bytes per sector. 332
ichAtapiBytesPerTrackGet() – get the number of Bytes per track. 332
ichAtapiCtrlMediumRemoval() – Issues PREVENT/ALLOW MEDIUM REMOVAL packet command 333
ichAtapiCurrentCylinderCountGet() – get logical number of cylinders in the drive. 333
ichAtapiCurrentHeadCountGet() – get the number of read/write heads in the drive. 334
ichAtapiCurrentMDmaModeGet() – get the enabled Multi word DMA mode. 334
ichAtapiCurrentPioModeGet() – get the enabled PIO mode. 335
ichAtapiCurrentRwModeGet() – get the current Data transfer mode. 335
ichAtapiCurrentSDmaModeGet() – get the enabled Single word DMA mode. 336
ichAtapiCurrentUDmaModeGet() – get the enabled Ultra DMA mode. 336
ichAtapiCylinderCountGet() – get the number of cylinders in the drive. 337
ichAtapiDriveSerialNumberGet() – get the drive serial number. 338

VxWorks Kernel API Reference, 6.6

12

ichAtapiDriveTypeGet() – get the drive type. 338
ichAtapiFeatureEnabledGet() – get the enabled features. 339
ichAtapiFeatureSupportedGet() – get the features supported by the drive. 340
ichAtapiFirmwareRevisionGet() – get the firm ware revision of the drive. 340
ichAtapiHeadCountGet() – get the number heads in the drive. 341
ichAtapiInit() – init ATAPI CD-ROM disk controller 341
ichAtapiIoctl() – Control the drive. 342
ichAtapiMaxMDmaModeGet() – get the Maximum Multi word DMA mode the drive supports. 346
ichAtapiMaxPioModeGet() – get the Maximum PIO mode that drive can support. 347
ichAtapiMaxSDmaModeGet() – get the Maximum Single word DMA mode the drive supports 347
ichAtapiMaxUDmaModeGet() – get the Maximum Ultra DMA mode the drive can support. 348
ichAtapiModelNumberGet() – get the model number of the drive. 349
ichAtapiPktCmd() – execute an ATAPI command with error processing 349
ichAtapiPktCmdSend() – Issue a Packet command. 350
ichAtapiRead10() – read one or more blocks from an ATAPI Device. 350
ichAtapiReadCapacity() – issue a READ CD-ROM CAPACITY command to a ATAPI device 351
ichAtapiReadTocPmaAtip() – issue a READ TOC command to a ATAPI device 351
ichAtapiRemovMediaStatusNotifyVerGet() – get the Media Stat Notification Version. 352
ichAtapiScan() – issue SCAN packet command to ATAPI drive. 352
ichAtapiSeek() – issues a SEEK packet command to drive. 353
ichAtapiSetCDSpeed() – issue SET CD SPEED packet command to ATAPI drive. 353
ichAtapiStartStopUnit() – Issues START STOP UNIT packet command 354
ichAtapiStopPlayScan() – issue STOP PLAY/SCAN packet command to ATAPI drive. 354
ichAtapiTestUnitRdy() – issue a TEST UNIT READY command to a ATAPI drive 355
ichAtapiVersionNumberGet() – get the ATA/ATAPI version number of the drive. 355
index() – find the first occurrence of a character in a string 356
infinity() – return a very large double 357
infinityf() – return a very large float 357
inflate() – inflate compressed code 358
intCRGet() – read the contents of the cause register (MIPS) 358
intCRSet() – write the contents of the cause register (MIPS) 359
intConnect() – connect a C routine to a hardware interrupt 359
intContext() – determine if executing in interrupt context 362
intCount() – get the current interrupt nesting depth 363
intCpuLock() – lock out interrupts on local CPU 363
intCpuUnlock() – cancel local CPU interrupt lock 364
intDisable() – disable corresponding interrupt bits (MIPS, PowerPC, ARM) 364
intDisconnect() – disconnect a C routine from a hardware interrupt 365
intEnable() – enable corresponding interrupt bits (MIPS, PowerPC, ARM) 366
intHandlerCreate() – construct an interrupt handler for a C routine (MC680x0, x86, MIPS, SimSolaris) 366
intHandlerCreateI86() – construct an interrupt handler for a C routine (x86) 367
intLevelSet() – set the interrupt level (MC680X0, x86, ARM, SimSolaris, SimNT and SH) 368
intLock() – lock out interrupts 369
intLockLevelGet() – get the current interrupt lock-out level (MC680x0, x86, ARM, SH, SimSolaris, SimNT)

371

2 Routines

13

2

intLockLevelSet() – set the current interrupt lock-out level (MC680x0, x86, ARM, SH, SimSolaris, SimNT)
372

intSRGet() – read the contents of the status register (MIPS) 372
intSRSet() – update the contents of the status register (MIPS) 373
intStackEnable() – enable or disable the interrupt stack usage (x86) 373
intUninitVecSet() – set the uninitialized vector handler (ARM) 374
intUnlock() – cancel interrupt locks 374
intVecBaseGet() – get the vector (trap) base address (MC680x0, x86, MIPS, ARM, SimSolaris, SimNT) 375
intVecBaseSet() – set the vector (trap) base address (MC680x0, x86, MIPS, ARM, SimSolaris, SimNT) 375
intVecGet() – get an interrupt vector (MC680x0, x86, MIPS, SH, SimSolaris, SimNT) 376
intVecGet2() – get a CPU vector, gate type(int/trap), and gate selector (x86) 377
intVecSet() – set a CPU vector (trap) (MC680x0, x86, MIPS, SH, SimSolaris, SimNT) 378
intVecSet2() – set a CPU vector, gate type(int/trap), and selector (x86) 382
intVecTableWriteProtect() – write-protect exception vector table (MC680x0, x86, ARM, SimSolaris, SimNT)

382
ioGlobalStdGet() – get the file descriptor for global input/output/error 383
ioGlobalStdSet() – set file descriptor for global input/output/error 383
ioHelp() – print a synopsis of I/O utility functions 384
ioTaskStdGet() – get the file descriptor for task standard input/output/error 384
ioTaskStdSet() – set the file descriptor for task standard input/output/error 385
ioctl() – perform an I/O control function 386
iosDevAdd() – add a device to the kernel I/O system 387
iosDevDelDrv() – invoke device delete driver if reference counter reaches 0. 387
iosDevDelete() – delete a device from the kernel I/O system 388
iosDevFind() – find an I/O device in the kernel device list 389
iosDevShow() – display the list of devices in the system 390
iosDrvInstall() – install a kernel I/O driver 390
iosDrvRemove() – remove a kernel I/O driver 391
iosDrvShow() – display a list of system drivers 392
iosFdEntryGet() – get an unused FD_ENTRY from the pool 392
iosFdEntryReturn() – return an FD_ENTRY to the pool 392
iosFdMaxFiles() – return maximum files for current RTP 393
iosFdShow() – display a list of file descriptor names in the system 393
iosInit() – initialize the kernel I/O system 394
iosRtpFdShow() – show the per-RTP fd table 394
iosShowInit() – initialize the I/O system show facility 395
irint() – convert a double-precision value to an integer 395
irintf() – convert a single-precision value to an integer 396
iround() – round a number to the nearest integer 396
iroundf() – round a number to the nearest integer 397
isatty() – return whether the underlying driver is a tty device 397
isrCreate() – create an ISR object 398
isrDelete() – delete an ISR object 399
isrIdSelf() – get the ISR ID of the currently running ISR 400
isrInfoGet() – get information about an ISR object 400

VxWorks Kernel API Reference, 6.6

14

isrInvoke() – invoke the handler routine of an ISR object 401
isrShow() – show information about an ISR object 402
kernelCpuEnable() – enable a CPU 403
kernelInit() – initialize the kernel 403
kernelIsCpuIdle() – determine whether the specified CPU is idle 404
kernelIsSystemIdle() – determine whether all enabled processors are idle 405
kernelRoundRobinInstall() – install VxWorks Round Robin implementation 405
kernelTimeSlice() – enable round-robin selection 406
kernelVersion() – return the WIND kernel revision string 407
kill() – send a signal to a task (POSIX) 407
l() – disassemble and display a specified number of instructions 408
l0() – return the contents of register l0 (also l1-l7) (SimSolaris) 409
ld() – load an object module into memory 409
ledClose() – discard the line-editor ID 410
ledControl() – change the line-editor ID parameters 411
ledLibInit() – initialize the line editing facilities 411
ledOpen() – create a new line-editor ID 412
ledRead() – read a line with line-editing 412
link() – link a file 413
lio_listio() – initiate a list of asynchronous I/O requests (POSIX) 413
lkAddr() – list symbols whose values are near a specified value 414
lkup() – list symbols 415
ll() – generate a long listing of directory contents 415
llr() – do a long listing of directory and all its subdirectories contents 416
lnPciRegister() – register with the VxBus subsystem 417
loadModule() – load an object module into memory 417
loadModuleAt() – load an object module into memory 418
log10f() – compute a base-10 logarithm (ANSI) 423
log2() – compute a base-2 logarithm 424
log2f() – compute a base-2 logarithm 424
logFdAdd() – add a logging file descriptor 425
logFdDelete() – delete a logging file descriptor 425
logFdSet() – set the primary logging file descriptor 426
logInit() – initialize message logging library 426
logMsg() – log a formatted error message 427
logTask() – message-logging support task 428
logf() – compute a natural logarithm (ANSI) 428
loginDefaultEncrypt() – default password encryption routine 429
loginEncryptInstall() – install an encryption routine 429
loginInit() – initialize the login table 430
loginPrompt() – display a login prompt and validate a user entry 431
loginStringSet() – change the login string 431
loginUserAdd() – add a user to the login table 432
loginUserDelete() – delete a user entry from the login table 433
loginUserShow() – display the user login table 434

2 Routines

15

2

loginUserVerify() – verify a user name and password in the login table 434
logout() – log out of the VxWorks system 435
ls() – generate a brief listing of a directory 435
lseek() – set a file read/write pointer 436
lsr() – list the contents of a directory and any of its subdirectories 437
lstAdd() – add a node to the end of a list 437
lstConcat() – concatenate two lists 438
lstCount() – report the number of nodes in a list 438
lstDelete() – delete a specified node from a list 439
lstExtract() – extract a sublist from a list 439
lstFind() – find a node in a list 440
lstFirst() – find first node in list 440
lstFree() – free up a list 441
lstGet() – delete and return the first node from a list 441
lstInit() – initialize a list descriptor 442
lstInsert() – insert a node in a list after a specified node 442
lstLast() – find the last node in a list 443
lstNStep() – find a list node nStep steps away from a specified node 443
lstNext() – find the next node in a list 444
lstNth() – find the Nth node in a list 444
lstPrevious() – find the previous node in a list 445
m() – modify memory 445
m6845vxbRegister() – register m6845vxb driver 446
m85xxCCSRRegister() – register m85xxLAWBAR driver 446
mRegs() – modify registers 447
mach() – return the contents of system register mach (also macl, pr) (SH) 448
malloc() – allocate a block of memory from the system memory partition (ANSI) 448
memAddToPool() – add memory to the system memory partition 449
memDevCreate() – create a memory device 449
memDevCreateDir() – create a memory device for multiple files 451
memDevDelete() – delete a memory device 451
memDrv() – install a memory driver 452
memEdrBlockMark() – mark or unmark selected blocks 452
memEdrBlockShow() – print memory block information 453
memEdrFreeQueueFlush() – flush the free queue 454
memEdrPartShow() – show partition information in the kernel 454
memEdrRtpBlockMark() – mark or unmark selected allocated blocks in an RTP 455
memEdrRtpBlockShow() – print memory block information of an RTP 455
memEdrRtpPartShow() – show partition information of an RTP 456
memFindMax() – find the largest free block in the system memory partition (kernel heap) 457
memInfoGet() – get heap information 457
memOptionsGet() – get the options of the system memory partition (kernel heap) 458
memOptionsSet() – set the options for the system memory partition (kernel heap) 458
memPartAddToPool() – add memory to a memory partition 459
memPartAlignedAlloc() – allocate aligned memory from a partition 460

VxWorks Kernel API Reference, 6.6

16

memPartAlloc() – allocate a block of memory from a partition 460
memPartCreate() – create a memory partition 461
memPartDelete() – delete a partition and free associated memory 462
memPartFindMax() – find the size of the largest available free block 462
memPartFree() – free a block of memory in a partition 463
memPartInfoGet() – get partition information 464
memPartOptionsGet() – get the options of a memory partition 464
memPartOptionsSet() – set the options for a memory partition 465
memPartRealloc() – reallocate a block of memory in a specified partition 466
memPartShow() – show blocks and statistics for a given memory partition 466
memPartSmCreate() – create a shared memory partition (VxMP Option) 467
memShow() – show blocks and statistics for the current heap partition 468
memShowInit() – initialize the memory partition show facility 471
memalign() – allocate aligned memory from system memory partition (kernel heap) 471
miiBusCreate() – create an miiBus attached to a parent bridge 472
miiBusDelete() – delete an miiBus and all its child devices 473
miiBusGet() – get the miiBus that goes with a given VxBus instance 473
miiBusListAdd() – Add a PHY to the MII monitor list 474
miiBusListDel() – Remove a PHY to the MII monitor list 474
miiBusMediaAdd() – add an entry to an miiBus's media list 475
miiBusMediaDefaultSet() – set the default media for an miiBus 475
miiBusMediaDel() – delete an entry to an miiBus's media list 476
miiBusMediaListGet() – obtain a pointer to the bus's media list 476
miiBusMediaUpdate() – invoke a PHY's parent's media update callback 477
miiBusModeGet() – get the current media mode and link status 477
miiBusModeSet() – set the current media mode 478
miiBusRead() – read a PHY register 478
miiBusRegister() – register with the vxBus subsystem 479
miiBusWrite() – write value to a PHY register 479
mkdir() – make a directory 480
mlock() – lock specified pages into memory (POSIX) 480
mlockall() – lock all pages used by a process into memory (POSIX) 481
mmapShow() – show information about memory mapped objects in the system 481
mmuPhysToVirt() – translate a physical address to a virtual address (ARM) 483
mmuPro32LibInit() – initialize module 483
mmuPro32Page0UnMap() – unmap the page zero for NULL pointer detection 484
mmuPro36LibInit() – initialize module 484
mmuPro36Page0UnMap() – unmap the page zero for NULL pointer detection 485
mmuPro36PageMap() – map 36bit physical memory page to virtual memory page 485
mmuPro36Translate() – translate a virtual address to a 36bit physical address 486
mmuShLibInit() – Initialize the SH MMU library. 486
mmuVirtToPhys() – translate a virtual address to a physical address (ARM) 487
moduleCheck() – verify checksums on all modules loaded in the system 488
moduleCreate() – create and initialize a module 489
moduleCreateHookAdd() – add a routine to be called when a module is added 489

2 Routines

17

2

moduleCreateHookDelete() – delete a previously added module create hook routine 490
moduleDelete() – delete module ID information 490
moduleFindByGroup() – find a module by group number 491
moduleFindByName() – find a module by name 492
moduleFindByNameAndPath() – find a module by filename and path 492
moduleFlagsGet() – get the flags associated with a module ID 493
moduleIdListGet() – get a list of loaded modules 493
moduleInfoGet() – get information about an object module 494
moduleNameGet() – get the name associated with a module ID 494
moduleSegFirst() – find the first segment in a module 495
moduleSegGet() – get (delete and return) the first segment from a module 495
moduleSegNext() – find the next segment in a module 496
moduleShow() – show information about loaded modules 497
mountdInit() – initialize the mount daemon 498
mqPxDescObjIdGet() – returns the OBJ_ID associated with a mqd_t descriptor 499
mqPxLibInit() – initialize the POSIX message queue library 500
mqPxShow() – display message queue internals 500
mqPxShowInit() – initialize the POSIX message queue show facility 501
mq_close() – close a message queue (POSIX) 501
mq_getattr() – get message queue attributes (POSIX) 502
mq_notify() – notify a task that a message is available on a queue (POSIX) 503
mq_open() – open a message queue (POSIX) 504
mq_receive() – receive a message from a message queue (POSIX) 506
mq_send() – send a message to a message queue (POSIX) 507
mq_setattr() – set message queue attributes (POSIX) 508
mq_unlink() – remove a message queue (POSIX) 509
msgQClose() – close a named message queue 510
msgQCreate() – create and initialize a message queue 511
msgQDelete() – delete a message queue 512
msgQEvStart() – start the event notification process for a message queue 513
msgQEvStop() – stop the event notification process for a message queue 514
msgQInfoGet() – get information about a message queue 515
msgQInitialize() – initialize a pre-allocated message queue 517
msgQNumMsgs() – get the number of messages queued to a message queue 518
msgQOpen() – open a message queue 519
msgQOpenInit() – initialize the message queue open facility 521
msgQReceive() – receive a message from a message queue 521
msgQSend() – send a message to a message queue 523
msgQShow() – show information about a message queue 524
msgQShowInit() – initialize the message queue show facility 525
msgQSmCreate() – create and initialize a shared memory message queue (VxMP Option) 526
msgQUnlink() – unlink a named message queue 527
munlock() – unlock specified pages (POSIX) 528
munlockall() – unlock all pages used by a process (POSIX) 528
mv() – mv file into other directory. 529

VxWorks Kernel API Reference, 6.6

18

nanosleep() – suspend the current task until the time interval elapses (POSIX) 530
netHelp() – print a synopsis of network routines 530
nfsAuthUnixGet() – get the NFS UNIX authentication parameters 531
nfsAuthUnixPrompt() – modify the NFS UNIX authentication parameters 532
nfsAuthUnixSet() – set the NFS UNIX authentication parameters 533
nfsAuthUnixShow() – display the NFS UNIX authentication parameters 533
nfsChkFilePerms() – check the NFS file permissions with a given permission. 534
nfsDevInfoGet() – read configuration information from the requested device 534
nfsDevListGet() – create list of all the NFS devices in the system 535
nfsDevShow() – display the mounted NFS devices 535
nfsDrvNumGet() – Get driver number of NFS device 536
nfsErrnoSet() – set NFS status 536
nfsExport() – specify a file system to be NFS exported 537
nfsExportShow() – display the exported file systems of a remote host 538
nfsHelp() – display the NFS help menu 538
nfsIdSet() – set the ID number of the NFS UNIX authentication parameters 539
nfsMntDump() – display all NFS file systems mounted on a particular host 540
nfsMount() – mount an NFS file system 540
nfsMountAll() – mount all file systems exported by a specified host 541
nfsStatusGet() – Get the statistics of the NFS server 542
nfsUnexport() – remove a file system from the list of exported file systems 542
nfsUnmount() – unmount an NFS device 543
nfsdHashTableParamsSet() – sets up the parameters for the NFS hash table 543
nfsdInit() – initialize the NFS server 544
nfsdStatusShow() – show the status of the NFS server 545
nicRegister() – register with the VxBus subsystem 546
npc() – return the contents of the next program counter (SimSolaris) 546
nseRegister() – register with the VxBus subsystem 547
nvRamSegDefGet() – get segment allocation from BSP 547
o0() – return the contents of register o0 (also o1-o7) (SimSolaris) 548
objClassTypeGet() – get an object's class type 549
objContextGet() – return the object's context value 549
objContextSet() – set the object's context value 550
objHandleShow() – show information on the object referenced by an object handle 550
objHandleTblShow() – show information on an RTP's handle table 551
objNameGet() – get an object's name 551
objNameLenGet() – get an object's name length 552
objNameToId() – find object with matching name string and type 552
objOwnerGet() – return the object's owner 554
objOwnerSet() – change the object's owner 554
objShow() – show information on an object 555
objShowAll() – show all information on an object 555
open() – open a file 557
opendir() – open a directory for searching (POSIX) 559
operator_delete() – default run-time support for memory deallocation (C++) 560

2 Routines

19

2

operator_new() – default run-time support for operator new (C++) 560
operator_new() – default run-time support for operator new (nothrow) (C++) 561
operator_new() – run-time support for operator new with placement (C++) 561
oprintf() – write a formatted string to an output function 562
partLibCreate() – partition a device 563
passFsDevInit() – associate a device with passFs file system functions 563
passFsInit() – prepare to use the passFs library 564
pathconf() – determine the current value of a configurable limit 564
pause() – suspend the task until delivery of a signal (POSIX) 565
pc() – return the contents of the program counter 565
pcConDevBind() – bind keyboard or VGA device with console 566
pcConDevCreate() – create a device for the on-board ports 566
pcConDrv() – initialize the console driver 567
pentiumBtc() – execute atomic compare-and-exchange instruction to clear a bit 567
pentiumBts() – execute atomic compare-and-exchange instruction to set a bit 568
pentiumCr4Get() – get contents of CR4 register 568
pentiumCr4Set() – sets specified value to the CR4 register 568
pentiumMcaEnable() – enable/disable the MCA (Machine Check Architecture) 569
pentiumMcaShow() – show MCA (Machine Check Architecture) registers 569
pentiumMsrGet() – get the contents of the specified MSR (Model Specific Register) 570
pentiumMsrInit() – initialize all the MSRs (Model Specific Register) 570
pentiumMsrSet() – set a value to the specified MSR (Model Specific Registers) 571
pentiumMsrShow() – show all the MSR (Model Specific Register) 571
pentiumMtrrDisable() – disable MTRR (Memory Type Range Register) 572
pentiumMtrrEnable() – enable MTRR (Memory Type Range Register) 572
pentiumMtrrGet() – get MTRRs to a specified MTRR table 572
pentiumMtrrSet() – set MTRRs from specified MTRR table with WRMSR instruction. 573
pentiumP5PmcGet() – get the contents of P5 PMC0 and PMC1 573
pentiumP5PmcGet0() – get the contents of P5 PMC0 574
pentiumP5PmcGet1() – get the contents of P5 PMC1 574
pentiumP5PmcReset() – reset both PMC0 and PMC1 575
pentiumP5PmcReset0() – reset PMC0 575
pentiumP5PmcReset1() – reset PMC1 575
pentiumP5PmcStart0() – start PMC0 576
pentiumP5PmcStart1() – start PMC1 576
pentiumP5PmcStop() – stop both P5 PMC0 and PMC1 577
pentiumP5PmcStop0() – stop P5 PMC0 577
pentiumP5PmcStop1() – stop P5 PMC1 577
pentiumP6PmcGet() – get the contents of PMC0 and PMC1 578
pentiumP6PmcGet0() – get the contents of PMC0 578
pentiumP6PmcGet1() – get the contents of PMC1 579
pentiumP6PmcReset() – reset both PMC0 and PMC1 579
pentiumP6PmcReset0() – reset PMC0 579
pentiumP6PmcReset1() – reset PMC1 580
pentiumP6PmcStart() – start both PMC0 and PMC1 580

VxWorks Kernel API Reference, 6.6

20

pentiumP6PmcStop() – stop both PMC0 and PMC1 581
pentiumP6PmcStop1() – stop PMC1 581
pentiumPmcGet() – get the contents of PMC0 and PMC1 581
pentiumPmcGet0() – get the contents of PMC0 582
pentiumPmcGet1() – get the contents of PMC1 582
pentiumPmcReset() – reset both PMC0 and PMC1 583
pentiumPmcReset0() – reset PMC0 583
pentiumPmcReset1() – reset PMC1 583
pentiumPmcShow() – show PMCs (Performance Monitoring Counters) 584
pentiumPmcStart() – start both PMC0 and PMC1 584
pentiumPmcStart0() – start PMC0 585
pentiumPmcStart1() – start PMC1 585
pentiumPmcStop() – stop both PMC0 and PMC1 585
pentiumPmcStop0() – stop PMC0 586
pentiumPmcStop1() – stop PMC1 586
pentiumSerialize() – execute a serializing instruction CPUID 587
pentiumTlbFlush() – flush TLBs (Translation Lookaside Buffers) 587
pentiumTscGet32() – get the lower half of the 64Bit TSC (Timestamp Counter) 588
pentiumTscGet64() – get 64Bit TSC (Timestamp Counter) 588
pentiumTscReset() – reset the TSC (Timestamp Counter) 588
period() – spawn a task to call a function periodically 589
periodRun() – call a function periodically 590
philDemo() – entry point for VxWorks/SMP Dijkstra's dining philosophers demo 590
pipeDevCreate() – create a pipe device 591
pipeDevDelete() – delete a pipe device 591
pipeDrv() – initialize the pipe driver 592
pmFreeSpace() – returns the amount of free space left in the PM arena 593
pmInvalidate() – invalidates the entire PM arena 593
pmRegionAddr() – returns the address of a persistent heap region 594
pmRegionClose() – closes a region making it inaccessible to clients 594
pmRegionCreate() – creates a persistent heap region 595
pmRegionOpen() – opens an existing persistent heap region 595
pmRegionProtect() – makes a PM region read-only 596
pmRegionSize() – return the size of a persistent heap region 596
pmShow() – shows the created persistent heap segments 597
pmValidate() – validates a PM arena 597
poolBlockAdd() – add an item block to the pool 598
poolCreate() – create a pool 598
poolDelete() – delete a pool 599
poolFreeCount() – return number of free items in pool 600
poolIncrementGet() – get the increment value used to grow the pool 600
poolIncrementSet() – set the increment value used to grow the pool 601
poolItemGet() – get next free item from pool and return a pointer to it 601
poolItemReturn() – return an item to the pool 602
poolShow() – display pool information 603

2 Routines

21

2

poolTotalCount() – return total number of items in pool 604
poolUnusedBlocksFree() – free blocks that have all items unused 604
powf() – compute the value of a number raised to a specified power (ANSI) 605
primesCompute() – entry point for the VxWorks SMP prime number computation demo 606
printErr() – write a formatted string to the standard error stream 606
printErrno() – print the definition of a specified error status value 607
printLogo() – print the VxWorks logo 607
printf() – write a formatted string to the standard output stream (ANSI) 608
proofUtf8() – Determine if a string represents a valid UTF-8 character 612
proofUtf8String() – determine if a string is valid UTF-8 612
psr() – return the contents of the processor status register (SimSolaris) 613
psrShow() – display the meaning of a specified PSR value, symbolically (ARM) 613
pthread_attr_destroy() – destroy a thread attributes object (POSIX) 614
pthread_attr_getdetachstate() – get value of detachstate attribute from thread attributes object (POSIX) 614
pthread_attr_getinheritsched() – get current value if inheritsched attribute in thread attributes object (POSIX)

615
pthread_attr_getname() – get name of thread attribute object 615
pthread_attr_getopt() – get options from thread attribute object 616
pthread_attr_getschedparam() – get value of schedparam attribute from thread attributes object (POSIX)

616
pthread_attr_getschedpolicy() – get schedpolicy attribute from thread attributes object (POSIX) 617
pthread_attr_getscope() – get contention scope from thread attributes (POSIX) 617
pthread_attr_getstackaddr() – get value of stackaddr attribute from thread attributes object (POSIX) 618
pthread_attr_getstacksize() – get stack value of stacksize attribute from thread attributes object (POSIX) 618
pthread_attr_init() – initialize thread attributes object (POSIX) 619
pthread_attr_setdetachstate() – set detachstate attribute in thread attributes object (POSIX) 620
pthread_attr_setinheritsched() – set inheritsched attribute in thread attribute object (POSIX) 621
pthread_attr_setname() – set name in thread attribute object 621
pthread_attr_setopt() – set options in thread attribute object 622
pthread_attr_setschedparam() – set schedparam attribute in thread attributes object (POSIX) 622
pthread_attr_setschedpolicy() – set schedpolicy attribute in thread attributes object (POSIX) 623
pthread_attr_setscope() – set contention scope for thread attributes (POSIX) 624
pthread_attr_setstackaddr() – set stackaddr attribute in thread attributes object (POSIX) 624
pthread_attr_setstacksize() – set stacksize attribute in thread attributes object (POSIX) 625
pthread_cancel() – cancel execution of a thread (POSIX) 626
pthread_cleanup_pop() – pop a cleanup routine off the top of the stack (POSIX) 626
pthread_cleanup_push() – pushes a routine onto the cleanup stack (POSIX) 627
pthread_cond_broadcast() – unblock all threads waiting on a condition (POSIX) 628
pthread_cond_destroy() – destroy a condition variable (POSIX) 628
pthread_cond_init() – initialize condition variable (POSIX) 629
pthread_cond_signal() – unblock a thread waiting on a condition (POSIX) 629
pthread_cond_timedwait() – wait for a condition variable with a timeout (POSIX) 630
pthread_cond_wait() – wait for a condition variable (POSIX) 631
pthread_condattr_destroy() – destroy a condition attributes object (POSIX) 632
pthread_condattr_init() – initialize a condition attribute object (POSIX) 632

VxWorks Kernel API Reference, 6.6

22

pthread_create() – create a thread (POSIX) 633
pthread_detach() – dynamically detach a thread (POSIX) 633
pthread_equal() – compare thread IDs (POSIX) 634
pthread_exit() – terminate a thread (POSIX) 634
pthread_getschedparam() – get value of schedparam attribute from a thread (POSIX) 635
pthread_getspecific() – get thread specific data (POSIX) 636
pthread_join() – wait for a thread to terminate (POSIX) 636
pthread_key_create() – create a thread specific data key (POSIX) 637
pthread_key_delete() – delete a thread specific data key (POSIX) 638
pthread_kill() – send a signal to a thread (POSIX) 638
pthread_mutex_destroy() – destroy a mutex (POSIX) 639
pthread_mutex_getprioceiling() – get the value of the prioceiling attribute of a mutex (POSIX) 639
pthread_mutex_init() – initialize mutex from attributes object (POSIX) 640
pthread_mutex_lock() – lock a mutex (POSIX) 641
pthread_mutex_setprioceiling() – dynamically set the prioceiling attribute of a mutex (POSIX) 641
pthread_mutex_trylock() – lock mutex if it is available (POSIX) 642
pthread_mutex_unlock() – unlock a mutex (POSIX) 643
pthread_mutexattr_destroy() – destroy mutex attributes object (POSIX) 643
pthread_mutexattr_getprioceiling() – get the current value of the prioceiling attribute in a mutex attributes

object (POSIX) 644
pthread_mutexattr_getprotocol() – get value of protocol in mutex attributes object (POSIX) 644
pthread_mutexattr_init() – initialize mutex attributes object (POSIX) 645
pthread_mutexattr_setprioceiling() – set prioceiling attribute in mutex attributes object (POSIX) 645
pthread_mutexattr_setprotocol() – set protocol attribute in mutex attribute object (POSIX) 646
pthread_once() – dynamic package initialization (POSIX) 647
pthread_self() – get the calling thread's ID (POSIX) 648
pthread_setcancelstate() – set cancellation state for calling thread (POSIX) 648
pthread_setcanceltype() – set cancellation type for calling thread (POSIX) 649
pthread_setschedparam() – dynamically set schedparam attribute for a thread (POSIX) 649
pthread_setspecific() – set thread specific data (POSIX) 650
pthread_sigmask() – change and/or examine calling thread's signal mask (POSIX) 650
pthread_testcancel() – create a cancellation point in the calling thread (POSIX) 651
ptyDevCreate() – create a pseudo terminal 652
ptyDevRemove() – destroy a pseudo terminal 652
ptyDrv() – initialize the pseudo-terminal driver 653
putenv() – set an environment variable 653
pwd() – print the current default directory 654
quiccEngineDrvCtrlShow() – place holder just prints out control structure ptr 654
quiccEngineRegister() – register quiccEngine driver 655
r0() – return the contents of register r0 (also r1 - r14) (ARM) 655
r0() – return the contents of general register r0 (also r1-`r15') (SH) 656
raise() – send a signal to the caller's task 656
ramDevCreate() – create a RAM disk device 657
ramDiskDevCreate() – Initialize a RAM Disk device 658
ramDrv() – prepare a RAM disk driver for use (optional) 659

2 Routines

23

2

rawFsDevInit() – associate a block device with raw volume functions 660
rawFsInit() – prepare to use the raw volume library 660
rawPerfDemo() – entry point for the VxWorks/SMP raw performance demo 661
read() – read bytes from a file or device 661
readdir() – read one entry from a directory (POSIX) 662
readdir_r() – read one entry from a directory (POSIX) 663
realloc() – reallocate a block of memory (ANSI) 664
reboot() – reset network devices and transfer control to boot ROMs 665
rebootHookAdd() – add a routine to be called at reboot 665
reld() – reload an object module (shell command) 666
rename() – change the name of a file 667
repeat() – spawn a task to call a function repeatedly 668
repeatRun() – call a function repeatedly 668
rewinddir() – reset position to the start of a directory (POSIX) 669
rindex() – find the last occurrence of a character in a string 670
rm() – remove a file 670
rmdir() – remove a directory 671
rngBufGet() – get characters from a ring buffer 671
rngBufPut() – put bytes into a ring buffer 672
rngCreate() – create an empty ring buffer 672
rngDelete() – delete a ring buffer 673
rngFlush() – make a ring buffer empty 673
rngFreeBytes() – determine the number of free bytes in a ring buffer 674
rngIsEmpty() – test if a ring buffer is empty 674
rngIsFull() – test if a ring buffer is full (no more room) 674
rngMoveAhead() – advance a ring pointer by n bytes 675
rngNBytes() – determine the number of bytes in a ring buffer 675
rngPutAhead() – put a byte ahead in a ring buffer without moving ring pointers 676
romStart() – generic ROM initialization 676
round() – round a number to the nearest integer 677
roundf() – round a number to the nearest integer 677
rtgRegister() – register with the VxBus subsystem 678
rtlRegister() – register with the VxBus subsystem 678
rtpDelete() – terminates a real time process (RTP) 679
rtpDeleteHookAdd() – add a routine to be called when RTPs are deleted 680
rtpDeleteHookDelete() – delete a previously added RTP delete hook routine 681
rtpHelp() – print a synopsis of RTP-related shell commands 681
rtpHookShow() – display all installed RTP hooks 682
rtpInfoGet() – Get specific information on an RTP 683
rtpInitCompleteHookAdd() – Add routine to be called after RTP init-complete. 684
rtpInitCompleteHookDelete() – delete a previously added RTP init-complete hook 685
rtpKill() – send a signal to a RTP 685
rtpLkAddr() – list symbols in an RTP whose values are near a specified value 686
rtpLkup() – list symbols from an RTP's symbol table 686
rtpMemShow() – display memory context information for real time proceses 687

VxWorks Kernel API Reference, 6.6

24

rtpPostCreateHookAdd() – add a routine to be called just after RTP creation. 690
rtpPostCreateHookDelete() – delete a previously added RTP post-create hook. 691
rtpPreCreateHookAdd() – add a routine to be called before RTP creation. 691
rtpPreCreateHookDelete() – delete a previously added RTP pre-create hook. 692
rtpShlShow() – Display shared library information for an RTP 692
rtpShow() – display information for real time proceses 693
rtpSigqueue() – send a queued signal to a RTP 696
rtpSp() – launch a RTP with default options. 697
rtpSpawn() – spawns a new Real Time Process (RTP) in the system 698
rtpSymTblIdGet() – Get the symbol table ID of an RTP 702
rtpSymsAdd() – add symbols from an executable file to a RTP symbol table 703
rtpSymsOverride() – override the RTP symbol registration policy 704
rtpSymsRemove() – remove symbols from a RTP symbol table 705
rtpTaskKill() – send a signal to a task 705
rtpTaskSigqueue() – send a queued signal to a task 706
rtpi() – display all tasks within an RTP 706
s() – single-step a task 707
salCall() – invoke a socket-based server 708
salCreate() – create a named socket-based server 708
salDelete() – delete a named socket-based server 710
salNameFind() – find services with the specified name 711
salOpen() – establish communication with a named socket-based server 712
salRemove() – Remove service from SNS by name 713
salRun() – activate a socket-based server 714
salServerRtnSet() – configures the processing routine with the SAL server 715
salSocketFind() – find sockets for a named socket-based server 715
sbeRegister() – register with the VxBus subsystem 717
scMemValEnable() – enable or disable pointer/buffer validation in system calls 717
scMemValidate() – validate an address range passed to a system call routine 718
sched_get_priority_max() – get the maximum priority (POSIX) 719
sched_get_priority_min() – get the minimum priority (POSIX) 720
sched_getparam() – get the scheduling parameters for a specified task (POSIX) 720
sched_getscheduler() – get the current scheduling policy (POSIX) 721
sched_rr_get_interval() – get the current time slice (POSIX) 721
sched_setparam() – set a task's priority (POSIX) 722
sched_setscheduler() – set scheduling policy and scheduling parameters (POSIX) 723
sched_yield() – relinquish the CPU (POSIX) 723
scsi2IfInit() – initialize the SCSI-2 interface to scsiLib 724
scsiAutoConfig() – configure all devices connected to a SCSI controller 724
scsiBlkDevCreate() – define a logical partition on a SCSI block device 725
scsiBlkDevInit() – initialize fields in a SCSI logical partition 725
scsiBlkDevShow() – show the BLK_DEV structures on a specified physical device 726
scsiBusReset() – pulse the reset signal on the SCSI bus 726
scsiCacheSnoopDisable() – inform SCSI that hardware snooping of caches is disabled 727
scsiCacheSnoopEnable() – inform SCSI that hardware snooping of caches is enabled 727

2 Routines

25

2

scsiCacheSynchronize() – synchronize the caches for data coherency 728
scsiErase() – issue an ERASE command to a SCSI device 729
scsiFormatUnit() – issue a FORMAT_UNIT command to a SCSI device 729
scsiIdentMsgBuild() – build an identification message 730
scsiIdentMsgParse() – parse an identification message 731
scsiInquiry() – issue an INQUIRY command to a SCSI device 731
scsiIoctl() – perform a device-specific I/O control function 732
scsiLoadUnit() – issue a LOAD/UNLOAD command to a SCSI device 732
scsiMgrBusReset() – handle a controller-bus reset event 733
scsiMgrCtrlEvent() – send an event to the SCSI controller state machine 733
scsiMgrEventNotify() – notify the SCSI manager of a SCSI (controller) event 734
scsiMgrShow() – show status information for the SCSI manager 735
scsiMgrThreadEvent() – send an event to the thread state machine 735
scsiModeSelect() – issue a MODE_SELECT command to a SCSI device 736
scsiModeSense() – issue a MODE_SENSE command to a SCSI device 737
scsiMsgInComplete() – handle a complete SCSI message received from the target 737
scsiMsgOutComplete() – perform post-processing after a SCSI message is sent 738
scsiMsgOutReject() – perform post-processing when an outgoing message is rejected 738
scsiPhysDevCreate() – create a SCSI physical device structure 739
scsiPhysDevDelete() – delete a SCSI physical-device structure 740
scsiPhysDevIdGet() – return a pointer to a SCSI_PHYS_DEV structure 740
scsiPhysDevShow() – show status information for a physical device 741
scsiRdSecs() – read sector(s) from a SCSI block device 741
scsiRdTape() – read bytes or blocks from a SCSI tape device 742
scsiReadCapacity() – issue a READ_CAPACITY command to a SCSI device 742
scsiRelease() – issue a RELEASE command to a SCSI device 743
scsiReleaseUnit() – issue a RELEASE UNIT command to a SCSI device 743
scsiReqSense() – issue a REQUEST_SENSE command to a SCSI device and read results 743
scsiReserve() – issue a RESERVE command to a SCSI device 744
scsiReserveUnit() – issue a RESERVE UNIT command to a SCSI device 744
scsiRewind() – issue a REWIND command to a SCSI device 745
scsiSeqDevCreate() – create a SCSI sequential device 745
scsiSeqIoctl() – perform an I/O control function for sequential access devices 746
scsiSeqReadBlockLimits() – issue a READ_BLOCK_LIMITS command to a SCSI device 747
scsiSeqStatusCheck() – detect a change in media 747
scsiShow() – list the physical devices attached to a SCSI controller 748
scsiSpace() – move the tape on a specified physical SCSI device 748
scsiStartStopUnit() – issue a START_STOP_UNIT command to a SCSI device 749
scsiSyncXferNegotiate() – initiate or continue negotiating transfer parameters 749
scsiTapeModeSelect() – issue a MODE_SELECT command to a SCSI tape device 750
scsiTapeModeSense() – issue a MODE_SENSE command to a SCSI tape device 751
scsiTargetOptionsGet() – get options for one or all SCSI targets 751
scsiTargetOptionsSet() – set options for one or all SCSI targets 752
scsiTargetOptionsShow() – display options for specified SCSI target 753
scsiTestUnitRdy() – issue a TEST_UNIT_READY command to a SCSI device 753

VxWorks Kernel API Reference, 6.6

26

scsiThreadInit() – perform generic SCSI thread initialization 754
scsiWideXferNegotiate() – initiate or continue negotiating wide parameters 754
scsiWrtFileMarks() – write file marks to a SCSI sequential device 755
scsiWrtSecs() – write sector(s) to a SCSI block device 755
scsiWrtTape() – write data to a SCSI tape device 756
sdCreate() – create a new shared data region 757
sdCreateHookAdd() – add a hook routine to be called at Shared Data creation 759
sdCreateHookDelete() – delete a Shared Data creation hook routine 760
sdDelete() – delete a shared data region 760
sdDeleteHookAdd() – add a hook routine to be called at Shared Data deletion 761
sdDeleteHookDelete() – delete a Shared Data deletion hook routine 761
sdGenericHookAdd() – add a hook routine to be called before Shared Data routine 762
sdGenericHookDelete() – delete a Shared Data generic hook routine 763
sdInfoGet() – get specific information about a Shared Data Region 764
sdMap() – map a shared data region into an application or the kernel 765
sdOpen() – open a shared data region for use 766
sdProtect() – change the protection attributes of a mapped SD 768
sdShow() – display information for shared data regions 770
sdUnmap() – unmap a shared data region from an application or the kernel 772
selNodeAdd() – add a wake-up node to a select() wake-up list 772
selNodeDelete() – find and delete a node from a select() wake-up list 773
selWakeup() – wake up a task pended in select() 773
selWakeupAll() – wake up all tasks in a select() wake-up list 774
selWakeupListInit() – initialize a select() wake-up list 774
selWakeupListLen() – get the number of nodes in a select() wake-up list 775
selWakeupListTerm() – terminate a select() wake-up list 775
selWakeupType() – get the type of a select() wake-up node 776
select() – pend on a set of file descriptors 776
selectInit() – initialize the select facility 778
semBCreate() – create and initialize a binary semaphore 778
semBInitialize() – initialize a pre-allocated binary semaphore. 779
semBSmCreate() – create and initialize a shared memory binary semaphore (VxMP Option) 780
semCCreate() – create and initialize a counting semaphore 781
semCInitialize() – initialize a pre-allocated counting semaphore. 782
semCSmCreate() – create and initialize a shared memory counting semaphore (VxMP Option) 783
semClose() – close a named semaphore 784
semDelete() – delete a semaphore 785
semEvStart() – start the event notification process for a semaphore 786
semEvStop() – stop the event notification process for a semaphore 788
semExchange() – atomically give and take a pair of semaphores 788
semFlush() – unblock every task pended on a semaphore 790
semGive() – give a semaphore 791
semInfo() – get information about tasks blocked on a semaphore 792
semInfoGet() – get information about a semaphore 792
semMCreate() – create and initialize a mutual-exclusion semaphore 794

2 Routines

27

2

semMGiveForce() – give a mutual-exclusion semaphore without restrictions 795
semMInitialize() – initialize a pre-allocated mutex semaphore. 796
semOpen() – open a named semaphore 797
semOpenInit() – initialize the semaphore open facility 799
semPxLibInit() – initialize POSIX semaphore support 799
semPxShow() – display semaphore internals 800
semPxShowInit() – initialize the POSIX semaphore show facility 800
semRTake() – take a semaphore as a reader 801
semRWCreate() – create and initialize a reader/writer semaphore 802
semRWGiveForce() – give a reader/writer semaphore without restrictions 803
semRWInitialize() – initialize a pre-allocated read/write semaphore. 804
semShow() – show information about a semaphore 805
semTake() – take a semaphore 806
semUnlink() – unlink a named semaphore 807
semWTake() – take a semaphore in write mode 808
sem_close() – close a named semaphore (POSIX) 809
sem_destroy() – destroy an unnamed semaphore (POSIX) 810
sem_getvalue() – get the value of a semaphore (POSIX) 810
sem_init() – initialize an unnamed semaphore (POSIX) 811
sem_open() – initialize/open a named semaphore (POSIX) 812
sem_post() – unlock (give) a semaphore (POSIX) 813
sem_timedwait() – lock (take) a semaphore with a timeout (POSIX) 814
sem_trywait() – lock (take) a semaphore, returning error if unavailable (POSIX) 815
sem_unlink() – remove a named semaphore (POSIX) 816
sem_wait() – lock (take) a semaphore, blocking if not available (POSIX) 817
set_new_handler() – set new_handler to user-defined function (C++) 817
set_terminate() – set terminate to user-defined function (C++) 818
shConfig() – display or set the shell configuration 818
shellAbort() – abort a shell session 819
shellCmdAdd() – add a shell command 819
shellCmdAliasAdd() – add an alias string 821
shellCmdAliasArrayAdd() – add an array of alias strings 822
shellCmdAliasDelete() – delete an alias 822
shellCmdArrayAdd() – add an array of shell commands 823
shellCmdExec() – execute a shell command 823
shellCmdMemRegister() – register a buffer against the command interpreter 824
shellCmdMemUnregister() – unregister a buffer 825
shellCmdPreParseAdd() – define a command to be pre-parsed 825
shellCmdSymTabIdGet() – get symbol table Id of a shell session 826
shellCmdTopicAdd() – add a shell command topic 827
shellCompatibleCheck() – check the compatibility mode of the shell 827
shellConfigDefaultGet() – get default shell configuration 828
shellConfigDefaultSet() – set default shell configuration 828
shellConfigDefaultValueGet() – get a default configuration variable value 829
shellConfigDefaultValueSet() – set a default configuration variable value 829

VxWorks Kernel API Reference, 6.6

28

shellConfigDefaultValueUnset() – unset a default configuration variable value 830
shellConfigGet() – get the shell configuration 830
shellConfigSet() – set shell configuration 831
shellConfigValueGet() – get a shell configuration variable value 831
shellConfigValueSet() – set a shell configuration variable value 832
shellConfigValueUnset() – unset a shell configuration variable value 833
shellDataAdd() – add user data to a specified shell 833
shellDataFirst() – get the first user data that matchs a key 834
shellDataFromNameAdd() – add user data to a specified shell 835
shellDataFromNameGet() – get user data from a specified shell 835
shellDataGet() – get user data from a specified shell 836
shellDataNext() – get the next user data that matchs a key 837
shellDataRemove() – remove user data from a specified shell 837
shellErrnoGet() – get the shell session errno 838
shellErrnoSet() – set the shell session errno 838
shellFirst() – get the first shell session 839
shellFromNameGet() – get a shell session Id from a task name 839
shellFromTaskGet() – get a shell session Id from its task Id 839
shellGenericInit() – start a shell session 840
shellHistory() – display or set the size of the shell history (vxWorks 5.5 compatibility) 841
shellIdVerify() – verify the validity of a shell session Id 842
shellInterpByNameFind() – Find an interpreter based on its name 842
shellInterpCtxGet() – get the interpreter context 843
shellInterpDefaultNameGet() – get the name of the default interpreter 843
shellInterpEvaluate() – interpret a string by an interpreter 844
shellInterpNameGet() – get the name of the current interpreter 844
shellInterpRegister() – register a new interpreter 845
shellLock() – lock access to the shell (vxWorks 5.5 compatibility) 847
shellNext() – get the next shell session 848
shellPromptFmtDftSet() – set the default prompt format string 848
shellPromptFmtSet() – set the current prompt format string 849
shellPromptFmtStrAdd() – add a new prompt format string 850
shellPromptSet() – change the shell prompt (vxWorks 5.5 compatibility) 850
shellResourceReleaseHookAdd() – add a resource-releasing hook to the shell 851
shellRestart() – restart a shell session 852
shellScriptAbort() – signal the shell to stop processing a script (vxWorks 5.5 compatibility) 852
shellTaskGet() – get the task Id of a shell session 853
shellTaskIdDefault() – set the default task for a given shell session 853
shellTerminate() – terminate a shell task 854
shlShow() – display information for shared libraries 855
shlSymsAdd() – add symbols from a shared object file to a RTP symbol table 856
shlSymsRemove() – remove shared library symbols from a RTP symbol table 857
show() – print information on a specified object 858
sigInit() – initialize the signal facilities 858
sigaction() – examine and/or specify the action associated with a signal (POSIX) 859

2 Routines

29

2

sigaddset() – add a signal to a signal set (POSIX) 859
sigblock() – add to a set of blocked signals 860
sigdelset() – delete a signal from a signal set (POSIX) 860
sigemptyset() – initialize a signal set with no signals included (POSIX) 861
sigfillset() – initialize a signal set with all signals included (POSIX) 861
sigismember() – test to see if a signal is in a signal set (POSIX) 861
signal() – specify the handler associated with a signal 862
sigpending() – retrieve the set of pending signals blocked from delivery (POSIX) 863
sigprocmask() – examine and/or change the signal mask (POSIX) 863
sigqueue() – send a queued signal to a task 864
sigqueueInit() – initialize the queued signal facilities 864
sigsetmask() – set the signal mask 865
sigsuspend() – suspend the task until delivery of a signal (POSIX) 865
sigtimedwait() – wait for a signal 866
sigvec() – install a signal handler 867
sigwait() – wait for a signal to be delivered (POSIX) 868
sigwaitinfo() – wait for real-time signals 868
sil31xxBIST() – Controller Built-In Self Test... 869
sil31xxBISTShow() – Show the results of the power-on BIST 869
sil31xxDiskPresent() – Return OK if disk exists. 870
sil31xxDrvVxbInit() – Initialize the driver. 870
sil31xxIsr() – Interrupt service routine. 871
sil31xxRegisterPortCallback() – register the port call back for a PHYRdyChg 871
sil31xxSectorRW() – read a single sector 872
sil31xxXbdCreate() – Create an XBD for the specified port. 872
sil31xxXbdDelete() – Delete an XBD for a specified port 873
sincos() – compute both a sine and cosine 873
sincosf() – compute both a sine and cosine 874
sinf() – compute a sine (ANSI) 874
sinhf() – compute a hyperbolic sine (ANSI) 875
sleep() – delay for a specified amount of time 875
smMemAddToPool() – add memory to shared memory system partition (VxMP Option) 876
smMemCalloc() – allocate memory for array from shared memory system partition (VxMP Option) 876
smMemFindMax() – find largest free block in shared memory system partition (VxMP Option) 877
smMemFree() – free a shared memory system partition block of memory (VxMP Option) 877
smMemMalloc() – allocate block of memory from shared memory system partition (VxMP Option) 878
smMemOptionsSet() – set debug options for shared memory system partition (VxMP Option) 879
smMemRealloc() – reallocate block of memory from shared memory system partition (VxMP Option) 879
smMemShow() – show the shared memory system partition blocks and statistics (VxMP Option) 880
smNameAdd() – add a name to the shared memory name database (VxMP Option) 881
smNameFind() – look up a shared memory object by name (VxMP Option) 882
smNameFindByValue() – look up a shared memory object by value (VxMP Option) 883
smNameRemove() – remove an object from the shared memory objects name database (VxMP Option) 884
smNameShow() – show the contents of the shared memory objects name database (VxMP Option) 884
smObjAttach() – attach the calling CPU to the shared memory objects facility (VxMP Option) 885

VxWorks Kernel API Reference, 6.6

30

smObjGlobalToLocal() – convert a global address to a local address (VxMP Option) 886
smObjInit() – initialize a shared memory objects descriptor (VxMP Option) 887
smObjLibInit() – install the shared memory objects facility (VxMP Option) 888
smObjLocalToGlobal() – convert a local address to a global address (VxMP Option) 889
smObjSetup() – initialize the shared memory objects facility (VxMP Option) 889
smObjShow() – display the current status of shared memory objects (VxMP Option) 890
smObjTimeoutLogEnable() – control logging of failed attempts to take a spin-lock (VxMP Option) 891
smeRegister() – register with the VxBus subsystem 892
smpLockDemo() – smpLockDemo entry point (shell command) 892
snprintf() – write a formatted string to a buffer, not exceeding buffer size (ANSI) 893
snsShow() – show information about services in the SNS directory 893
so() – single-step, but step over a subroutine 895
sp() – spawn a task with default parameters 895
spinLockIsrGive() – release an ISR-callable spinlock 896
spinLockIsrHeld() – is an ISR-callable spinlock held by the current CPU? 897
spinLockIsrInit() – initialize an ISR-callable spinlock 898
spinLockIsrTake() – take an ISR-callable spinlock 898
spinLockTaskInit() – initialize a task-only spinlock 901
spinLockTaskTake() – take a task-only spinlock 902
sprintf() – write a formatted string to a buffer (ANSI) 903
spy() – begin periodic task activity reports 903
spyClkStart() – start collecting task activity data 904
spyClkStop() – stop collecting task activity data 904
spyHelp() – display task monitoring help menu 905
spyLibInit() – initialize task cpu utilization tool package 905
spyReport() – display task activity data 906
spyStop() – stop spying and reporting 906
spyTask() – run periodic task activity reports 906
sqrtf() – compute a non-negative square root (ANSI) 907
sr() – return the contents of the status register (SH) 907
sr() – return the contents of control register sr (also gbr, vbr) (SH) 908
sscanf() – read and convert characters from an ASCII string (ANSI) 908
ssiDbInit() – Initialize SSI database. 912
ssiShow() – Display SSI information 913
ssmCompInfoGet() – Get component information. 913
ssmCompRegister() – Register a component with SSI Manager. 914
startupScriptFieldSplit() – Split the startup script field of the bootline 917
stat() – get file status information using a pathname (POSIX) 917
statfs() – get file status information using a pathname (POSIX) 918
strFree() – free shell strings 919
swab() – swap bytes 919
symAdd() – create and add a symbol to a symbol table, including a group number 920
symByValueAndTypeFind() – look up a symbol by value and type 921
symByValueFind() – look up a symbol by value 922
symEach() – call a routine to examine each entry in a symbol table 922

2 Routines

31

2

symFindByName() – look up a symbol by name 923
symFindByNameAndType() – look up a symbol by name and type 924
symFindByValue() – look up a symbol by value 925
symFindByValueAndType() – look up a symbol by value and type 926
symLibInit() – initialize the symbol table library 927
symRemove() – remove a symbol from a symbol table 927
symShow() – show the symbols of specified symbol table with matching substring 928
symShowInit() – initialize symbol table show routine 929
symTblCreate() – create a symbol table 929
symTblDelete() – delete a symbol table 930
sysAuxClkConnect() – connect a routine to the auxiliary clock interrupt 930
sysAuxClkDisable() – turn off auxiliary clock interrupts 931
sysAuxClkEnable() – turn on auxiliary clock interrupts 931
sysAuxClkRateGet() – get the auxiliary clock rate 932
sysAuxClkRateSet() – set the auxiliary clock rate 932
sysBspRev() – return the BSP version and revision number 933
sysBusIntAck() – acknowledge a bus interrupt 933
sysBusIntGen() – generate a bus interrupt 934
sysBusTas() – test and set a location across the bus 935
sysBusToLocalAdrs() – convert a bus address to a local address 935
sysClkConnect() – connect a routine to the system clock interrupt 936
sysClkDisable() – turn off system clock interrupts 936
sysClkEnable() – turn on system clock interrupts 937
sysClkRateGet() – get the system clock rate 937
sysClkRateSet() – set the system clock rate 938
sysHwInit() – initialize the system hardware 939
sysIntDisable() – disable a bus interrupt level 939
sysIntEnable() – enable a bus interrupt level 940
sysLocalToBusAdrs() – convert a local address to a bus address 940
sysMailboxConnect() – connect a routine to the mailbox interrupt 941
sysMailboxEnable() – enable the mailbox interrupt 941
sysMemTop() – get the address of the top of logical memory 942
sysModel() – return the model name of the CPU board 942
sysNanoDelay() – delay for specified number of nanoseconds 943
sysNetMacNVRamAddrGet() – get network MAC address from NVRAM 943
sysNvRamGet() – get the contents of non-volatile RAM 944
sysNvRamSet() – write to non-volatile RAM 945
sysPhysMemTop() – get the address of the top of memory 946
sysProcNumGet() – get the processor number 946
sysProcNumSet() – set the processor number 947
sysScsiBusReset() – assert the RST line on the SCSI bus (Western Digital WD33C93 only) 947
sysScsiConfig() – system SCSI configuration 948
sysScsiInit() – initialize an on-board SCSI port 949
sysSerialChanGet() – get the SIO_CHAN device associated with a serial channel 950
sysSerialHwInit() – initialize the BSP serial devices to a quiesent state 950

VxWorks Kernel API Reference, 6.6

32

sysSerialHwInit2() – connect BSP serial device interrupts 951
sysSerialReset() – reset all SIO devices to a quiet state 951
sysToMonitor() – transfer control to the ROM monitor 952
syscallDispatch() – dispatch a system call request to its system call handler 952
syscallEntryHookAdd() – add a routine to be called on each system call entry 953
syscallEntryHookDelete() – delete a previously added entry hook 954
syscallExitHookAdd() – add a routine to be called on each system call exit 954
syscallExitHookDelete() – delete a previously added exit hook 955
syscallGroupRegister() – register a system call group with the SCI 956
syscallHookShow() – display all installed system call infrastructure hooks 957
syscallMonitor() – monitor system call activity 957
syscallRegisterHookAdd() – add hook for system call group registration requests 958
syscallRegisterHookDelete() – delete a previously added registration hook. 959
syscallShow() – show registered System Call Groups, or a specific group 959
sysctl() – get or set the the values of objects in the sysctl tree 961
sysctl_add_oid() – add a parameter into the sysctl tree during run-time 963
sysctl_remove_oid() – remove dynamically created sysctl trees 967
sysctlbyname() – get or set the values of objects in the sysctl tree by name 968
sysctlnametomib() – return the numeric representation of sysctl object 969
tanf() – compute a tangent (ANSI) 970
tanhf() – compute a hyperbolic tangent (ANSI) 970
tarArchive() – archive named file/dir onto tape in tar format 971
tarExtract() – extract all files from a tar formatted tape 972
tarToc() – display all contents of a tar formatted tape 973
taskActivate() – activate a task that has been initialized 973
taskClose() – close a task 974
taskCpuAffinityGet() – get the CPU affinity of a task 975
taskCpuAffinitySet() – set the CPU affinity of a task 976
taskCpuLock() – disable local CPU task rescheduling 978
taskCpuUnlock() – enable local CPU task rescheduling 979
taskCreate() – allocate and initialize a task without activation 979
taskCreateHookAdd() – add a routine to be called at every task create 980
taskCreateHookDelete() – delete a previously added task create routine 981
taskCreateHookShow() – show the list of task create routines 981
taskDelay() – delay a task from executing 982
taskDelete() – delete a task 983
taskDeleteForce() – delete a task without restriction 983
taskDeleteHookAdd() – add a routine to be called at every task delete 984
taskDeleteHookDelete() – delete a previously added task delete routine 985
taskDeleteHookShow() – show the list of task delete routines 985
taskExit() – exit a task 986
taskHookShowInit() – initialize the task hook show facility 986
taskIdDefault() – set the default task ID 987
taskIdListGet() – get a list of active task IDs 987
taskIdSelf() – get the task ID of a running task 988

2 Routines

33

2

taskIdVerify() – verify the existence of a task 989
taskInfoGet() – get information about a task 989
taskInit() – initialize a task with a stack at a specified address 990
taskInitExcStk() – initialize a task with stacks at specified addresses 992
taskIsPended() – check if a task is pended 994
taskIsReady() – check if a task is ready to run 995
taskIsStopped() – check if a task is stopped by the debugger 995
taskIsSuspended() – check if a task is suspended 996
taskKill() – send a signal to a task 996
taskLock() – disable task rescheduling 997
taskName() – get the name associated with a task ID 998
taskNameToId() – look up the task ID associated with a task name 998
taskOpen() – open a task 999
taskOpenInit() – initialize the task open facility 1002
taskOptionsGet() – examine task options 1003
taskOptionsSet() – change task options 1003
taskPriNormalGet() – get the normal priority of the task 1004
taskPriorityGet() – examine the priority of a task 1005
taskPrioritySet() – change the priority of a task 1005
taskRaise() – send a signal to the caller's task 1006
taskRegsGet() – get a task's registers from the TCB 1006
taskRegsSet() – set a task's registers 1007
taskRegsShow() – display the contents of a task's registers 1008
taskRestart() – restart a task 1008
taskResume() – resume a task 1009
taskRotate() – rotate ready queue for a given task priority 1010
taskSRInit() – initialize the default task status register (MIPS) 1011
taskSRSet() – set the task status register (MC680x0, MIPS, x86) 1011
taskSafe() – make the calling task safe from deletion 1012
taskShow() – display task information from TCBs 1012
taskShowInit() – initialize the task show routine facility 1016
taskSigqueue() – send a queued signal to a task 1016
taskSpareFieldGet() – get the spare field of a TCB 1017
taskSpareFieldSet() – set the spare field of a TCB 1017
taskSpareNumAllot() – Allocate the first available spare field in the TCB 1018
taskSpawn() – spawn a task 1019
taskStackAllot() – allot memory from a task's exception stack 1021
taskStatusString() – get a task's status as a string 1022
taskSuspend() – suspend a task 1023
taskSwitchHookAdd() – add a routine to be called at every task switch 1024
taskSwitchHookDelete() – delete a previously added task switch routine 1025
taskSwitchHookShow() – show the list of task switch routines 1025
taskTcb() – get the task control block for a task ID 1025
taskUnlink() – unlink a task 1026
taskUnlock() – enable task rescheduling 1027

VxWorks Kernel API Reference, 6.6

34

taskUnsafe() – make the calling task unsafe from deletion 1027
taskVarAdd() – add a task variable to a task 1028
taskVarDelete() – remove a task variable from a task 1029
taskVarGet() – get the value of a task variable 1030
taskVarInfo() – get a list of task variables of a task 1031
taskVarInit() – initialize the task variables facility 1031
taskVarSet() – set the value of a task variable 1032
td() – delete a task 1033
tffsDevCreate() – create a TrueFFS block device suitable for use with dosFs 1033
tffsDevFormat() – format a flash device for use with TrueFFS 1034
tffsDevOptionsSet() – set TrueFFS volume options 1034
tffsDrv() – initialize the TrueFFS system 1035
tffsDrvOptionsSet() – set TrueFFS volume options 1035
tffsRawio() – low level I/O access to flash components 1036
ti() – print complete information from a task's TCB 1038
tick64Get() – get the value of the kernel's tick counter as a 64 bit value 1039
tick64Set() – set the value of the kernel's tick counter in 64 bits 1039
tickAnnounce() – announce a clock tick to the kernel 1040
tickAnnounceHookAdd() – add a hook routine to be called at each tick interrupt 1040
tickGet() – get the value of the kernel's tick counter 1041
tickSet() – set the value of the kernel's tick counter 1042
timerOpenInit() – initialize the timer open facility 1042
timerShowInit() – initialize the timer show routine facility 1043
timer_cancel() – cancel a timer 1043
timer_close() – close a named timer 1044
timer_connect() – connect a user routine to the timer signal 1044
timer_create() – allocate a timer using the specified clock for a timing base (POSIX) 1045
timer_delete() – remove a previously created timer (POSIX) 1046
timer_getoverrun() – return the timer expiration overrun (POSIX) 1046
timer_gettime() – get the remaining time before expiration and the reload value (POSIX) 1047
timer_modify() – modify a timer 1047
timer_open() – open a timer 1048
timer_settime() – set the time until the next expiration and arm timer (POSIX) 1050
timer_show() – show information on a specified timer 1051
timer_unlink() – unlink a named timer 1052
timex() – time a single execution of a function or functions 1052
timexClear() – clear the list of function calls to be timed 1053
timexFunc() – specify functions to be timed 1054
timexHelp() – display synopsis of execution timer facilities 1054
timexInit() – include the execution timer library 1055
timexN() – time repeated executions of a function or group of functions 1055
timexPost() – specify functions to be called after timing 1056
timexPre() – specify functions to be called prior to timing 1057
timexShow() – display the list of function calls to be timed 1057
tlsTaskInit() – Thread Local Storage init routine 1058

2 Routines

35

2

tr() – resume a task 1058
traceTmrResolutionGet() – get resolution of timestamp source, in nanoseconds 1059
transCommit() – externally-callable function to do a commit 1059
transDevCreate() – create a transactional XBD. 1060
trgAdd() – add a new trigger to the trigger list 1060
trgChainSet() – chains two triggers 1062
trgDelete() – delete a trigger from the trigger list 1062
trgDisable() – turn a trigger off 1063
trgEnable() – enable a trigger 1063
trgEvent() – trigger a user-defined event 1064
trgLibInit() – initialize the triggering library 1064
trgOff() – set triggering off 1065
trgOn() – set triggering on 1065
trgReset() – Reset a trigger in the trigger list 1066
trgShow() – show trigger information 1066
trgShowInit() – initialize the trigger show facility 1067
trgWorkQReset() – Resets the trigger work queue task and queue 1067
trunc() – truncate to integer 1068
truncf() – truncate to integer 1068
ts() – suspend a task 1069
tsecRegister() – register with the VxBus subsystem 1069
tt() – display a stack trace of a task 1070
ttyDevCreate() – create a VxWorks device for a serial channel 1071
ttyDrv() – initialize the tty driver 1071
tw() – print info about the object the given task is pending on 1072
tyAbortFuncSet() – set the abort function 1072
tyAbortGet() – get the abort character 1073
tyAbortSet() – change the abort character 1073
tyBackspaceSet() – change the backspace character 1074
tyDeleteLineSet() – change the line-delete character 1074
tyDevInit() – initialize the tty device descriptor 1075
tyDevRemove() – remove the tty device descriptor 1076
tyDevTerminate() – terminate the tty device descriptor 1076
tyEOFGet() – get the current end-of-file character 1077
tyEOFSet() – change the end-of-file character 1077
tyIRd() – interrupt-level input 1078
tyITx() – interrupt-level output 1078
tyIoctl() – handle device control requests 1079
tyLibInit() – initialize the tty library 1079
tyMonitorTrapSet() – change the trap-to-monitor character 1080
tyRead() – do a task-level read for a tty device 1081
tyWrite() – do a task-level write for a tty device 1081
tyXoffHookSet() – install a hardware flow control function 1082
unixDiskDevCreate() – create a UNIX disk device 1082
unixDiskInit() – initialize a dosFs disk on top of UNIX 1083

VxWorks Kernel API Reference, 6.6

36

unixDrv() – install UNIX disk driver 1084
unld() – unload an object module by specifying a file name or module ID (shell command) 1084
unldByGroup() – unload an object module by specifying a group number 1085
unldByModuleId() – unload an object module by specifying a module ID 1086
unldByNameAndPath() – unload an object module by specifying a name and path 1087
unlink() – unlink a file 1088
unstatShow() – display all AF_LOCAL sockets 1088
usrClock() – user-defined system clock interrupt routine 1089
usrFdiskPartCreate() – create an FDISK-like partition table on a disk 1090
usrFdiskPartRead() – read an FDISK-style partition table 1091
usrFdiskPartShow() – parse and display partition data 1092
usrFormatTrans() – Perform a low-level trans XBD format operation 1092
usrIdeConfig() – mount a DOS file system from an IDE hard disk 1093
usrInit() – user-defined system initialization routine 1094
usrRoot() – the root task 1094
usrScsiConfig() – configure SCSI peripherals 1095
usrTransCommit() – Set a transaction point on a trans XBD 1096
usrTransCommitFd() – set a transaction point using a file descriptor 1096
uswab() – swap bytes with buffers that are not necessarily aligned 1097
utf16ToCP() – Convert a UTF-16 encoded Unicode character to a codepoint. 1097
utf16ToUtf8String() – Convert a UTF-16 string to a UTF-8 String 1098
utf16ToUtf8StringBOM() – Convert UTF-16 to UTF-8 based on a Byte Order Mark 1098
utf8ToCP() – Convert a UTF-8 encoded Unicode character to the Unicode codepoint. 1099
utf8ToUtf16String() – convert a UTF-8 string to a UTF-16 string 1099
utf8ToUtf16StringBOM() – Convert UTF-8 to UTF16 with a Byte Order Mark 1100
utfLibInit() – initialize the UTF library 1101
utflen16() – Return the number of 16-bit words used by a UTF-16 encoding. 1101
utflen8() – return the encoding length of a NULL terminated UTF-8 string 1101
utime() – update time on a file 1102
valloc() – allocate memory on a page boundary from the kernel heap 1102
version() – print VxWorks version information 1103
vfdprintf() – write a string formatted with a variable argument list to a file descriptor 1104
virtualDiskClose() – close a virtual disk block device. 1104
virtualDiskCreate() – create a virtual disk device. 1105
virtualDiskInit() – install the virtual disk driver 1105
vmArch32LibInit() – initialize the arch specific unbundled VM library (VxVMI Option) 1106
vmArch32Map() – map 32bit physical space into 32bit virtual space (VxVMI Option) 1106
vmArch32Translate() – translate a 32bit virtual address to a 32bit physical address (VxVMI Option) 1107
vmArch36LibInit() – initialize the arch specific unbundled VM library (VxVMI Option) 1108
vmArch36Map() – map 36bit physical space into 32bit virtual space (VxVMI Option) 1108
vmArch36Translate() – translate a 32bit virtual address to a 36bit physical address (VxVMI Option) 1109
vmAttrShow() – display the text representation of a MMU attribute value 1110
vmBaseArch32LibInit() – initialize the arch specific bundled VM library 1110
vmBaseArch32Map() – map 32bit physical to the 32bit virtual memory 1111
vmBaseArch32Translate() – translate a 32bit virtual address to a 32bit physical address 1111

2 Routines

37

2

vmBaseArch36LibInit() – initialize the arch specific bundled VM library 1112
vmBaseArch36Map() – map 36bit physical to the 32bit virtual memory 1112
vmBaseArch36Translate() – translate a 32bit virtual address to a 36bit physical address 1113
vmBaseGlobalMapInit() – initialize global mapping (obsolete) 1113
vmBasePageSizeGet() – return the MMU page size (obsolete) 1114
vmBaseStateSet() – change the state of a block of virtual memory (obsolete) 1114
vmContextShow() – display the translation table for a context 1115
vmGlobalMapInit() – initialize global mapping 1116
vmMap() – map physical space into virtual space 1117
vmPageLock() – lock the pages. 1118
vmPageMap() – map physical space into virtual space 1119
vmPageOptimize() – Optimize the address range if possible. 1120
vmPageSizeGet() – return the page size 1121
vmPageUnlock() – unlock the pages. 1121
vmPhysTranslate() – translate a physical address to a virtual address 1122
vmStateGet() – get the state of a page of virtual memory 1122
vmStateSet() – change the state of a block of virtual memory 1123
vmTextProtect() – write-protect kernel text segment 1125
vmTranslate() – translate a virtual address to a physical address 1125
voprintf() – write a formatted string to an output function 1126
vprintf() – write a string formatted with a variable argument list to standard output (ANSI) 1127
vrfsDevCreate() – Instantiate the VRFS 1127
vrfsInit() – Initialize the Virtual Root File System Library 1128
vsnprintf() – write a string formatted with a variable argument list to a buffer, not exceeding buffer size

(ANSI) 1128
vsprintf() – write a string formatted with a variable argument list to a buffer (ANSI) 1129
vxAtomicAdd() – atomically add a value to a memory location 1129
vxAtomicAnd() – atomically perform a bitwise AND on a memory location 1130
vxAtomicClear() – atomically clear a memory location 1130
vxAtomicDec() – atomically decrement a memory location 1131
vxAtomicGet() – atomically get a memory location 1132
vxAtomicInc() – atomically increment a memory location 1132
vxAtomicNand() – atomically perform a bitwise NAND on a memory location 1133
vxAtomicOr() – atomically perform a bitwise OR on memory location 1133
vxAtomicSet() – atomically set a memory location 1134
vxAtomicSub() – atomically subtract a value from a memory location 1134
vxAtomicXor() – atomically perform a bitwise XOR on a memory location 1135
vxCas() – atomically compare-and-swap the contents of a memory location 1135
vxCpuConfiguredGet() – get the number of configured CPUs in the system 1136
vxCpuEnabledGet() – get a set of running CPUs 1136
vxCpuIndexGet() – get the index of the calling CPU 1138
vxCr0Get() – get a content of the Control Register 0 (x86) 1138
vxCr0Set() – set a value to the Control Register 0 (x86) 1139
vxCr2Get() – get a content of the Control Register 2 (x86) 1139
vxCr2Set() – set a value to the Control Register 2 (x86) 1140

VxWorks Kernel API Reference, 6.6

38

vxCr3Get() – get a content of the Control Register 3 (x86) 1140
vxCr3Set() – set a value to the Control Register 3 (x86) 1140
vxCr4Get() – get a content of the Control Register 4 (x86) 1141
vxCr4Set() – set a value to the Control Register 4 (x86) 1141
vxDrGet() – get a content of the Debug Register 0 to 7 (x86) 1142
vxDrSet() – set a value to the Debug Register 0 to 7 (x86) 1142
vxEflagsGet() – get a content of the EFLAGS register (x86) 1143
vxEflagsSet() – set a value to the EFLAGS register (x86) 1143
vxGdtrGet() – get a content of the Global Descriptor Table Register (x86) 1144
vxIdtrGet() – get a content of the Interrupt Descriptor Table Register (x86) 1144
vxLdtrGet() – get a content of the Local Descriptor Table Register (x86) 1144
vxMemArchProbe() – architecture specific part of vxMemProbe 1145
vxMemProbe() – probe an address for a bus error 1145
vxMemProbe() – probe an address for a bus error 1146
vxMemProbeInit() – add vxMemProbeTrap exception handler to exc handler chain 1148
vxPowerDown() – place the processor in reduced-power mode (PowerPC, SH) 1148
vxPowerModeGet() – get the power management mode (PowerPC, SH, x86) 1148
vxPowerModeSet() – set the power management mode (PowerPC, SH, x86) 1149
vxSSDisable() – disable the superscalar dispatch (MC68060) 1150
vxSSEnable() – enable the superscalar dispatch (MC68060) 1151
vxTas() – C-callable atomic test-and-set primitive 1151
vxTssGet() – get a content of the TASK register (x86) 1152
vxTssSet() – set a value to the TASK register (x86) 1152
vxbFileNvRamGet() – get the contents of non-volatile RAM 1153
vxbFileNvRamRegister() – register vxbFileNvRam driver 1154
vxbFileNvRamSet() – write to non-volatile RAM 1154
vxbFileNvRampDrvCtrlShow() – show pDrvCtrl for template controller 1155
vxbIntelIchStorageRegister() – register driver with vxbus 1155
vxbNonVolGet() – get the contents of non-volatile RAM 1156
vxbNonVolLibInit() – Non Volatile RAM library initialization 1156
vxbNonVolSet() – write to non-volatile memory 1157
vxbSI31xxStorageRegister() – register driver with vxbus 1157
vxsimHostCpuVarsInit() – intialize per cpu variable pointers 1158
vxsimHostDllLoad() – load the given Dll to VxSim. 1158
vxsimHostMmuCurrentSet() – set current translation table mapping 1159
vxsimHostMmuProtect() – set/clear protection on mmu pages 1159
vxsimHostProcAddrGet() – return the address of a host API 1160
vxsimHostProcCall() – call a host routine 1160
vxsimHostSioBaudRateSet() – set SIO device transfert rate 1161
vxsimHostSioClose() – close SIO device 1161
vxsimHostSioIntVecGet() – get SIO device interrupt vector 1162
vxsimHostSioModeSet() – set SIO device mode (poll/interrupt) 1162
vxsimHostSioOpen() – open SIO device 1163
vxsimHostSioRead() – read SIO device into buffer 1163
vxsimHostSioWrite() – write buffer to SIO device 1164

2 Routines

39

2

w() – print a summary of each task's pending information, task by task 1164
wdCancel() – cancel a currently counting watchdog 1165
wdCreate() – create a watchdog timer 1165
wdDelete() – delete a watchdog timer 1166
wdInitialize() – initialize a pre-allocated watchdog. 1166
wdShow() – show information about a watchdog 1167
wdShowInit() – initialize the watchdog show facility 1168
wdStart() – start a watchdog timer 1168
wdbMdlSymSyncLibInit() – initialize modules and symbols synchronization library 1169
wdbSystemSuspend() – suspend the system 1169
wdbUserEvtLibInit() – include the WDB user event library 1170
wdbUserEvtPost() – post a user event string to host tools 1171
wim() – return the contents of the window invalid mask register (SimSolaris) 1172
windPwrDownRtnSet() – register a BSP power-down function 1172
windPwrModeGet() – Get the current power mode 1173
windPwrModeSet() – Set the BSP power mode 1174
windPwrUpRtnSet() – register a BSP power-up function 1174
write() – write bytes to a file 1175
wvAllObjsSet() – set instrumented state for all objects and classes 1176
wvCurrentLogGet() – return a pointer to the currently active System Viewer log 1177
wvCurrentLogListGet() – return a pointer to the System Viewer log list 1177
wvCurrentLogListSet() – set the current log list 1177
wvCurrentLogSet() – select a System Viewer log as currently active 1178
wvEdrInst() – instrument ED&R Events 1178
wvEvent() – log a user-defined event 1179
wvEventInst() – instrument VxWorks Events 1179
wvEvtClassClear() – clear the specified class of events from those being logged 1180
wvEvtClassClearAll() – clear all classes of events from those logged 1181
wvEvtClassGet() – get the current set of classes being logged 1181
wvEvtClassSet() – set the class of events to log 1181
wvEvtLogStart() – start logging events to the buffer 1182
wvEvtLogStop() – stop logging events to the buffer 1182
wvFileUploadPathCreate() – create a file for depositing event data 1183
wvFileUploadPathLibInit() – initialize the wvFileUploadPathLib library 1183
wvFileUploadPathWrite() – write to the event-destination file 1184
wvLibInit() – initialize wvLib - first step 1184
wvLibInit2() – initialize wvLib - final step 1184
wvLogCountGet() – return the number of logs in the curent log list 1185
wvLogCreate() – Create a System Viewer log 1185
wvLogDelete() – Delete a System Viewer log 1186
wvLogFirstGet() – return a pointer to the first log in the System Viewer log list 1186
wvLogListCreate() – create a list to hold System Viewer logs 1187
wvLogListDelete() – delete a System Viewer log list 1187
wvLogNextGet() – return a pointer to the next log in the System Viewer log list 1188
wvObjInst() – instrument objects 1188

VxWorks Kernel API Reference, 6.6

40

wvObjInstModeSet() – set object instrumentation on/off 1189
wvPartitionGet() – determine partition in use for System Viewer logging 1190
wvPartitionSet() – specify a partition for use by System Viewer logging 1190
wvRBuffMgrPrioritySet() – set the priority of the System Viewer rBuff manager 1191
wvSalInst() – instrument SAL 1191
wvSigInst() – instrument signals 1192
wvSockUploadPathClose() – close the socket upload path 1193
wvSockUploadPathCreate() – establish an upload path to the host using a socket 1193
wvSockUploadPathLibInit() – initialize wvSockUploadPathLib library 1194
wvSockUploadPathWrite() – write to the socket upload path 1194
wvTmrRegister() – register a timestamp timer 1195
wvTsfsUploadPathClose() – close the TSFS-socket upload path 1196
wvTsfsUploadPathCreate() – open an upload path to the host using a TSFS socket 1196
wvTsfsUploadPathLibInit() – initialize wvTsfsUploadPathLib library 1197
wvTsfsUploadPathWrite() – write to the TSFS upload path 1197
wvUploadStart() – start upload of events to the host 1198
wvUploadStop() – stop upload of events to host 1198
wvUploadTaskConfig() – set priority and stacksize of tWVUpload task 1199
xattrib() – modify MS-DOS file attributes of many files 1199
xbdBlkDevCreate() – create an XBD block device wrapper 1200
xbdBlkDevCreateSync() – synchronously create an XBD block device wrapper 1201
xbdBlkDevDelete() – deletes an XBD block device wrapper 1201
xbdBlkDevLibInit() – initialize the XBD block device wrapper 1202
xbdCbioDevCreate() – create an XBD CBIO device wrapper 1202
xbdCbioDevDelete() – deletes an XBD CBIO device wrapper 1203
xbdCbioLibInit() – initialize the XBD block device wrapper 1203
xbdCreatePartition() – partition an XBD device 1204
xbdRamDiskDevCreate() – create an XBD ram disk 1205
xbdRamDiskDevDelete() – XBD Ram Disk Deletion routine 1205
xbdTransDevCreate() – create a transactional XBD. 1206
xbdTransInit() – initialize the transactional XBD subsystem. 1206
xcopy() – copy a hierarchy of files with wildcards 1206
xdelete() – delete a hierarchy of files with wildcards 1207
y() – return the contents of the y register (SimSolaris) 1208
ykRegister() – register with the VxBus subsystem 1208
ynRegister() – register with the VxBus subsystem 1208

2 Routines
CPToUtf8()

41

2

CPToUtf16()

NAME CPToUtf16() – Convert a Unicode codepoint to a UTF-16 encoding

SYNOPSIS int CPToUtf16
 (
 const unsigned long codePoint,
 unsigned short * utf16,
 const int length, /* Length is in 16-bit words */
 const int littleEndian
)

DESCRIPTION This routine converts an unsigned long representing the value of a Unicode codepoint to the
UTF-16 encoding.

RETURNS If positive, the return value indicates the number of words used to encode this codepoint. If
non-positive, the return value of UC_FORMAT indicates that the value to be converted is not
a legitimate Unicode codepoint. A return value of UC_BUFFER indicates that the output
string is of insufficient length to hold the converted character.

ERRNO Not Available

SEE ALSO utfLib

CPToUtf8()

NAME CPToUtf8() – Convert a Unicode codepoint to a UTF-8 encoding

SYNOPSIS int CPToUtf8
 (
 const unsigned long codePoint,
 unsigned char * utf8,
 const int length
)

DESCRIPTION This routine converts an unsigned long representing the value of a Unicode codepoint to the
UTF-8 encoding.

RETURNS If positive, the return value indicates the number of bytes used to encode this codepoint. If
non-positive, the return value of UC_FORMAT indicates that the value to be converted is not
a legitimate Unicode codepoint. A return value of UC_BUFFER indicates that the output
string is of insufficient length to hold the converted character.

VxWorks Kernel API Reference, 6.6
CPUSET_ATOMICCLR()

42

ERRNO Not Available

SEE ALSO utfLib

CPUSET_ATOMICCLR()

NAME CPUSET_ATOMICCLR() – atomically clear a CPU from a CPU set

SYNOPSIS CPUSET_ATOMICCLR
 (
 cpuset /* CPU set to operate on */
 n /* index of CPU to clear */
)

DESCRIPTION This macro atomically clears CPU index n from the cpuset variable. The status of other CPU
indices in the set, whether set or cleared, is not a affected by this action. This action is the
reverse of what CPUSET_ATOMICSET does. Atomic clearing of a CPU in a set is necessary
when the set is likely to be manipulated by more than one task or ISR.

While this macro does not enforce any restrictions, it is expected that cpuset is always a
cpuset_t type variable and the CPU index is always an unsigned integer between 0 and the
number of CPUs either enabled or configured in the system. APIs that expect a cpuset_t
variable as an argument describe the restrictions that apply.

RETURNS N/A

ERRNO N/A

SEE ALSO cpuset, CPUSET_CLR, CPUSET_ATOMICSET

CPUSET_ATOMICCOPY()

NAME CPUSET_ATOMICCOPY() – atomically copy a CPU set value

SYNOPSIS CPUSET_ATOMICCLR
 (
 cpusetDst, /* cpuset to copy to */
 cpusetSrc /* cpuset to copy from */
)

2 Routines
CPUSET_ATOMICSET()

43

2

DESCRIPTION This macro atomically copies the bit sets from cpusetSrc cpuset and stores the copy in the
cpusetDst variable.

While this macro does not enforce any restrictions, it is expected that cpusetSrc and
cpusetDst are cpuset_t type variables. APIs that expect a cpuset_t variable as an argument
describe the restrictions that apply.

RETURNS N/A

ERRNO N/A

SEE ALSO cpuset

CPUSET_ATOMICSET()

NAME CPUSET_ATOMICSET() – atomically set a CPU in a CPU set

SYNOPSIS CPUSET_ATOMICSET
 (
 cpuset /* CPU set to operate on */
 n /* index of CPU to set */
)

DESCRIPTION This macro atomically sets CPU index n in the cpuset variable. It is the atomic version of
CPUSET_SET. The status of other CPU indices in the set, whether set or cleared, is not
affected by this action. For example, to set CPU0 and CPU1 in a set, this macro needs to be
used twice specifying n=0 and then n=1. Atomic setting of a CPU in a set is necessary when
the set is likely to be manipulated by more than one task or ISR.

While this macro does not enforce any restrictions, it is expected that cpuset is always a
cpuset_t type variable and the CPU index is always an unsigned integer between 0 and the
number of CPUs either enabled or configured in the system. APIs that expect a cpuset_t
variable as an argument describe the restrictions that apply.

RETURNS N/A

ERRNO N/A

SEE ALSO cpuset, CPUSET_SET, CPUSET_ATOMICCLR

VxWorks Kernel API Reference, 6.6
CPUSET_CLR()

44

CPUSET_CLR()

NAME CPUSET_CLR() – clear a CPU from a CPU set

SYNOPSIS CPUSET_CLR
 (
 cpuset /* CPU set to operate on */
 n /* index of CPU to clear */
)

DESCRIPTION This macro clears CPU index n in the cpuset variable. The status of other CPU indices in the
set, whether set or cleared, is not affected by this action. This action is the reverse of what
CPUSET_SET does.

While this macro does not enforce any restrictions, it is expected that cpuset is always a
cpuset_t type variable and the CPU index is an unsigned integer between 0 and the number
of CPUs either enabled or configured in the system. APIs that expect a cpuset_t variable as
an argument describe the restrictions that apply.

RETURNS N/A

ERRNO N/A

SEE ALSO cpuset, CPUSET_ZERO, CPUSET_ISZERO, CPUSET_SET, vxCpuConfiguredGet()

CPUSET_ISSET()

NAME CPUSET_ISSET() – determine if a CPU is set in a CPU set

SYNOPSIS CPUSET_ISSET
 (
 cpuset /* CPU set to operate on */
 n /* index of CPU to query */
)

DESCRIPTION This macro resolves to TRUE if the index of CPU n is set in cpuset. Otherwise it returns
FALSE.

While this macro does not enforce any restrictions, it is expected that cpuset is always a
cpuset_t type variable.

RETURNS Macro resolves to TRUE or FALSE.

2 Routines
CPUSET_SET()

45

2

ERRNO N/A

SEE ALSO cpuset, CPUSET_SET, CPUSET_SETALL, CPUSET_SETALL_BUT_SELF

CPUSET_ISZERO()

NAME CPUSET_ISZERO() – determine if all CPUs are cleared from a CPU set

SYNOPSIS CPUSET_ISZERO
 (
 cpuset /* CPU set to operate on */
)

DESCRIPTION This macro returns TRUE if variable cpuset is empty of CPU indices. Otherwise it returns
FALSE.

While this macro does not enforce any restrictions, it is expected that cpuset is always a
cpuset_t type variable.

RETURNS Macro resolves to TRUE or FALSE.

ERRNO N/A

SEE ALSO cpuset, CPUSET_ZERO

CPUSET_SET()

NAME CPUSET_SET() – set a CPU in a CPU set

SYNOPSIS CPUSET_SET
 (
 cpuset, /* CPU set to operate on */
 n /* index of CPU to set */
)

DESCRIPTION This macro sets CPU index n in the cpuset variable. The status of other CPU indices in the
set, whether set or cleared, is not affected by this action. For example, to set CPU0 and
CPU1 in a set, this macro needs to be used twice specifying n=0 and then n=1.

While this macro does not enforce any restrictions, it is expected that cpuset is always a
cpuset_t type variable and the CPU index is an unsigned integer between 0 and the number

VxWorks Kernel API Reference, 6.6
CPUSET_SETALL()

46

of CPUs either enabled or configured in the system. APIs that expect a cpuset_t variable as
an argument describe the restrictions that apply.

RETURNS N/A

ERRNO N/A

SEE ALSO cpuset, CPUSET_SETALL, CPUSET_SETALL_BUT_SELF, CPUSET_ISSET

CPUSET_SETALL()

NAME CPUSET_SETALL() – set all CPUs in a CPU set

SYNOPSIS CPUSET_SETALL
 (
 cpuset /* CPU set to operate on */
)

DESCRIPTION This macro sets the cpuset variable with the index of every CPU that is configured in the
system.

While this macro does not enforce any restrictions, it is expected that cpuset is always a
cpuset_t type variable.

RETURNS N/A

ERRNO N/A

SEE ALSO cpuset, CPUSET_SET, CPUSET_SETALL_BUT_SELF, CPUSET_ISSET,
vxCpuConfiguredGet()

CPUSET_SETALL_BUT_SELF()

NAME CPUSET_SETALL_BUT_SELF() – set all CPUs except self in CPU set

SYNOPSIS CPUSET_SETALL_BUT_SELF
 (
 cpuset /* CPU set to operate on */
)

2 Routines
CPUSET_ZERO()

47

2

DESCRIPTION This macro sets the cpuset variable with the index of every CPU that is configured in the
system excluding the index of the CPU that is calling this macro. Users must be aware that
after a cpuset_t variable is set using this macro, the CPU index of the calling CPU, the one
that is excluded from the cpuset, may no longer be the correct one when the variable is
subsequently used, because a scheduling event may have taken the CPU away from the
caller of the macro. The following scenario describes how this can take place:

- Task 1, running on CPU0, sets myCpuSet using CPUSET_SETALL_BUT_SELF. This
causes myCpuSet to be set with the index of every configured CPU except CPU0.

- An interrupt occurs and causes a scheduling event that makes Task 2 run on CPU0,
effectively making Task 1 wait for a CPU to become available.

- Another scheduling event occurs freeing CPU1 allowing Task 1 to resume execution.
At this point the excluded index in myCpuSet is that of CPU0, not that of CPU1, which
is the CPU on which task1 now runs.

Conceptually this is the same issue as explained in the reference entry for
vxCpuIndexGet(). One solution to this problem is for a task to use taskCpuLock() to
prevent it from migrating to another CPU while is makes use of a cpuset that has been set
with CPUSET_SETALL_BUT_SELF. This issue does not exist for ISRs since these never
migrate from one CPU to another while they are executing.

While this macro does not enforce any restrictions, it is expected that cpuset is always a
cpuset_t type variable.

RETURNS N/A

ERRNO N/A

SEE ALSO cpuset, CPUSET_SET, CPUSET_SETALL, CPUSET_ISSET, vxCpuIndexGet(),
vxCpuConfiguredGet()

CPUSET_ZERO()

NAME CPUSET_ZERO() – clear all CPUs from a CPU set

SYNOPSIS CPUSET_ZERO
 (
 cpuset /* CPU set to operate on */
)

DESCRIPTION This macro clears all CPU indices from the cpuset variable. This action is the reverse of what
CPUSET_SETALL does.

VxWorks Kernel API Reference, 6.6
Sysctl()

48

While this macro does not enforce any restrictions, it is expected that cpuset is always a
cpuset_t type variable.

RETURNS N/A

ERRNO N/A

SEE ALSO cpuset, CPUSET_CLR, CPUSET_ISZERO, CPUSET_SETALL

Sysctl()

NAME Sysctl() – get or set values for kernel state variables from the C shell

SYNOPSIS STATUS Sysctl
 (
 char *cmd
)

DESCRIPTION Sysctl is a C shell utility that can be used to get or set the values of various run-time
parameters in the system. The underlying calls for this utility are the same as for sysctl and
sysctlbyname. Sysctl can be used to get or set simple INTEGER type variables. It does not
have the ability to retrive complex data such as structures and executing procedures.
Structures such as "icmp stats" are displayed as hex dumps. To configure these complex
variables, one must use either "sysctl" or "sysctlbyname".

USAGE To get the value of a variable, use
Sysctl ("net.inet.ip.forwarding")

To set the value of a variable, use
Sysctl ("net.inet.ip.forwarding=0")

To get a listing of all the variables registered in the system,
Sysctl ("-A")

Options: -A Equivalent to -o -a (for compatibility).

-a List all the currently available non-opaque values. This option
is ignored if one or more variable names are specified on the
command line.

2 Routines
VX_MEM_BARRIER_R()

49

2

-b Force the value of the variable(s) to be output in raw, binary
format. No names are printed and no terminating newlines are
output. This is mostly useful with a single variable.

-e Separate the name and the value of the variable(s) with =.
This is useful for producing output which can be fed back to the
sysctl utility. This option is ignored if either -N or -n is
specified, or a variable is being set.

-N Show only variable names, not their values.

-n Show only variable values, not their names.

-o Show opaque variables (which are normally suppressed). The format
and length are printed, as well as a hex dump of the first
sixteen bytes of the value.

-X Equivalent to -x -a (for compatibility).

-x As -o, but prints a hex dump of the entire value instead of just
the first few bytes.

RETURNS OK upon success or ERROR if an error occurred

ERRNO N/A

SEE ALSO sysctl

VX_MEM_BARRIER_R()

NAME VX_MEM_BARRIER_R() – Read Memory Barrier

SYNOPSIS void VX_MEM_BARRIER_R
 (
 void
)

DESCRIPTION This routine is the read memory barrier that guarantees all load memory operations before
the read memory barrier has occurred before any subsequent load operations after the read
barrier.

VxWorks Kernel API Reference, 6.6
VX_MEM_BARRIER_RW()

50

A read barrier does not necessarily have the same effect for store operations; hence a read
memory barrier should not be used to ensure ordering of store operations.

Generally, a read memory barrier is paired with a write memory barrier in a multicore
system to ensure proper interactions between CPUs. Here is an example of read and write
barrier used in a system to ensure proper reading and writing of memory.

Example:

CPU 1 CPU 2
aa = value1
VX_MEM_BARRIER_W()
bb = value2
 cc = aa
 VX_MEM_BARRIER_R()
 dd = bb

In the above example, the write of aa must be enforced before CPU 2 can load the value
value1 of aa. Otherwise, the wrong value of aa might be loaded. The read barrier is
necessary to ensure that the read of aa is performed before performing the read of bb.

RETURNS N/A

ERRNOS N/A

SEE ALSO vxAtomicLib

VX_MEM_BARRIER_RW()

NAME VX_MEM_BARRIER_RW() – Read/Write Memory Barrier

SYNOPSIS void VX_MEM_BARRIER_RW
 (
 void
)

DESCRIPTION This routine provides the read/write memory barrier. A read/write memory barrier is a
general barrier that enforces ordering for both reads and writes. Hence, this read/write
memory barrier can be used as a substitution for both read and write barriers.

RETURNS N/A

ERRNOS N/A

SEE ALSO vxAtomicLib

2 Routines
a0()

51

2

VX_MEM_BARRIER_W()

NAME VX_MEM_BARRIER_W() – Write memory barrier

SYNOPSIS void VX_MEM_BARRIER_W
 (
 void
)

DESCRIPTION This routine is the write memory barrier that guarantees all store memory operations before
the write barrier has occurred before any subsequent store operations after the barrier.

A write barrier does not necessarily have the same effect for load operations; hence a write
memory barrier should not be used to ensure ordering of load operations.

This routine is essential to ensure proper accesses to memory that are shared between CPUs
in an SMP system since this enforces the ordering of memory accesses.

RETURNS N/A

ERRNOS N/A

SEE ALSO vxAtomicLib

a0()

NAME a0() – return the contents of register a0 (also a1 - a7) (MC680x0)

SYNOPSIS int a0
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of register a0 from the TCB of a specified task. If taskId
is omitted or zero, the last task referenced is assumed.

Similar routines are provided for all address registers (a0 - a7): a0() - a7().

The stack pointer is accessed via a7().

RETURNS The contents of register a0 (or the requested register).

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
access()

52

SEE ALSO dbgArchLib, the VxWorks programmer guides.

access()

NAME access() – determine accessibility of a file

SYNOPSIS int access
 (
 const char *path, /* path of the file */
 int amode /* access mode to query */
)

DESCRIPTION The access() function checks the file named by the pathname pointed to by the path
argument for accessibility according to the bit pattern contained in amode, This allows a
process, RTP to verify that it has permission to access this file.

The value of amode is either the bitwise inclusive OR of the access permissions to be checked
(R_OK, W_OK, X_OK) or the existence test, F_OK.

If any access permissions are to be checked, each will be checked individually. If the process
has appropriate privileges, it may indicate success even if none of the related permission
bits is set.

These constants are defined in unistd.h as follows:

R_OK
Test for read permission.

W_OK
Test for write permission.

X_OK
Test for execute or search permission.

F_OK
Check existence of file

RETURNS If the requested access is permitted, access() succeeds and returns OK, 0. Otherwise,
ERROR, -1 is returned and errno is set to indicate the error.

ERRNO ENOENT
Either path is an empty string or NULL pointer.

ELOOP
Circular symbolic link of path, or too many links.

EMFILE
Maximum number of files already open.

2 Routines
adrSpaceInfoGet()

53

2

S_iosLib_DEVICE_NOT_FOUND (ENODEV)
No valid device name found in path.

others
Other errors reported by device driver of path.

SEE ALSO fsPxLib

acosf()

NAME acosf() – compute an arc cosine (ANSI)

SYNOPSIS float acosf
 (
 float x /* number between -1 and 1 */
)

DESCRIPTION This routine computes the arc cosine of x in single precision. If x is the cosine of an angle T,
this function returns T.

RETURNS The single-precision arc cosine of x in the range 0 to pi radians.

ERRNO Not Available

SEE ALSO mathALib

adrSpaceInfoGet()

NAME adrSpaceInfoGet() – get status of the address space library

SYNOPSIS STATUS adrSpaceInfoGet
 (
 ADR_SPACE_INFO * pInfo /* address space info pointer */
)

DESCRIPTION This routine initializes an ADR_SPACE_INFO structure parameter, pInfo, with the current
state of the address space library.

The following information is returned:

VxWorks Kernel API Reference, 6.6
adrSpacePageUnmap()

54

physAllocUnit
allocation unit (page) size in physical space.

physTotalPages
total system RAM pages.

physFreePages
unmapped system RAM pages.

physMaxSize
largest unmapped system RAM block.

kernelAllocUnit
allocation unit (page) size in kernel region.

kernelTotalPages
total pages in the kernel region .

kernelFreePages
unmapped pages in the kernel region.

kernelMaxSize
largest unmapped block in kernel region.

userAllocUnit
allocation unit (page) size in user region.

userTotalPages
total pages in the user region.

userFreePages
unmapped pages in the user region.

userMaxSize
largest unmapped block in user region.

RETURNS OK, or ERROR in case of failure.

ERRNO Not Available

SEE ALSO adrSpaceLib, adrSpaceShow

adrSpacePageUnmap()

NAME adrSpacePageUnmap() – unmap a set of virtual pages

SYNOPSIS STATUS adrSpacePageUnmap

2 Routines
adrSpaceRAMAddToPool()

55

2

 (
 VM_CONTEXT_ID vmContext, /* VM context ID */
 VIRT_ADDR virtAdr, /* base virtual address */
 UINT numPages, /* pages to unmap */
 UINT options /* unmap options */
)

DESCRIPTION This routine unmaps numVirtPages virtual pages, starting at virtAdr. The associated physical
pages are returned to the physical page pool while the virtual pages remain allocated.

RETURNS OK on success, and ERROR otherwise.

ERRNOS The routine may set the following errnos:

S_adrSpaceLib_SIZE_IS_INVALID
The numPages parameter is 0.

S_adrSpaceLib_PARAMETER_NOT_ALIGNED
The parameter virtAdr is not aligned on a page boundary.

S_pgMgrLib_VIRT_ADDR_OUT_OF_RANGE
The specified virtual address range, starting at virtAdr, and of size numVirtPages is not
in the range of the RTP's virtual region.

SEE ALSO adrSpaceLib, pgMgrPageMap(), pgMgrPageFree().

adrSpaceRAMAddToPool()

NAME adrSpaceRAMAddToPool() – add specified memory block to RAM pool

SYNOPSIS STATUS adrSpaceRAMAddToPool
 (
 PHYS_ADDR startAddr, /* start adress of RAM memory block */
 UINT ramSize /* in bytes */
)

DESCRIPTION This routine adds the specified RAM to the system global RAM page pool. The address
range of the RAM must not partially or fully be part of the physical page pool, and must not
be mapped.

The length and start address are expected to be MMU page aligned. The smallest amount
of space that can be added is one page.

RETURNS OK on success and ERROR otherwise.

ERRNO Possible errnos generated by this routine include:

VxWorks Kernel API Reference, 6.6
adrSpaceRAMReserve()

56

S_adrSpaceLib_SIZE_IS_INVALID
ramSize is less than a page.

S_adrSpaceLib_PARAMETER_NOT_ALIGNED
start or end address is not page size aligned.

S_adrSpaceLib_PHYSICAL_OVERLAP
block overlaps with memory already in the RAM pool

S_adrSpaceLib_ADDRESS_OUT_OF_RANGE
address out of 4GBytes range.

SEE ALSO adrSpaceLib, adrSpaceShow

adrSpaceRAMReserve()

NAME adrSpaceRAMReserve() – reserve memory from the RAM pool

SYNOPSIS PHYS_ADDR adrSpaceRAMReserve
 (
 PHYS_ADDR startAddr, /* start adress of RAM memory block */
 UINT ramSize /* in bytes */
)

DESCRIPTION This routine reserves memory from the system global RAM page pool. If the startAddr
parameter is NONE, the pages will be allocated from the free pages available in the RAM
pool. If the startAddr parameter is not NONE this routine will attempt to get the pages at
that address. If the pages are not available, the routine fails.

The length and start address are expected to be MMU page aligned. The smallest amount
of space that can be reserved is one page.

RETURNS physical address on success, NONE otherwise.

ERRNO Possible errnos generated by this routine include:

S_adrSpaceLib_SIZE_IS_INVALID
ramSize is less than a page.

S_adrSpaceLib_PARAMETER_NOT_ALIGNED
start or end address is not page size aligned.

SEE ALSO adrSpaceLib, adrSpaceShow

2 Routines
adrSpaceShow()

57

2

adrSpaceShow()

NAME adrSpaceShow() – display information about address spaces managed by adrSpaceLib

SYNOPSIS STATUS adrSpaceShow
 (
 UINT level /* verbosity level: 0 = summary, 1 = details */
)

DESCRIPTION This routine displays information about various address space regions managed by the
address space library, adrSpaceLib. When the parameter, level, is not 0, more detailed
information is displayed.

The information is displayed under the following headings:

RAM Physical Address Space Info
Displays information about the physical address space of the system RAM.

User Region Info
Displays information about the user virtual address space for the creation of RTP's,
shared libraries and shared data regions.

Kernel Region Info
Displays information about the kernel virtual space, including memory-mapped IO
space.

EXAMPLE -> adrSpaceShow 1

RAM Physical Address Space Info:

 Allocation unit size: 0x1000
 Total number of units: 131072 (536870912 bytes)
 Number of allocated units: 96127 (393736192 bytes)
 Largest contiguous free block: 143134720
 Number of free units: 34945 (143134720 bytes)
 1 block(s) of 0x08881000 bytes (0x1777f000-0x1fffffff)

User Region (RTP/SL/SD) Virtual Space Info:

 Allocation unit size: 0x1000
 Total number of units: 720896 (2952790016 bytes)
 Number of allocated units: 0 (0 bytes)
 Largest contiguous free block: 1610612736
 Number of free units: 720896 (2952790016 bytes)
 1 block(s) of 0x50000000 bytes (0x90000000-0xdfffffff)
 1 block(s) of 0x60000000 bytes (0x20000000-0x7fffffff)

Kernel Region Virtual Space Info:

 Allocation unit size: 0x1000
 Number reserved of units: 327680 (1342177280 bytes)
 1 block(s) of 0x20000000 bytes (0x00000000-0x1fffffff)

VxWorks Kernel API Reference, 6.6
adrSpaceVirtReserve()

58

 1 block(s) of 0x10000000 bytes (0x80000000-0x8fffffff)
value = 0 = 0x0

RETURNS OK, always

ERRNO Not Available

SEE ALSO adrSpaceShow, adrSpaceLib

adrSpaceVirtReserve()

NAME adrSpaceVirtReserve() – reserve memory from the virtual space

SYNOPSIS VIRT_ADDR adrSpaceVirtReserve
 (
 VIRT_ADDR startAddr, /* start adress of virtual memory block */
 UINT numPages /* in bytes */
)

DESCRIPTION This routine reserves virtual memory pages from the user region. If the startAddr parameter
is NONE, the pages will be allocated from the free pages available in the region. If the
startAddr parameter is not NONE this routine will attempt to get the pages at that address.
If the pages are not available, the routine fails.

The length and start address are expected to be MMU page aligned. The smallest amount
of space that can be reserved is one page.

RETURNS virtual address on success, NONE otherwise.

ERRNO Possible errnos generated by this routine include:

S_adrSpaceLib_SIZE_IS_INVALID
ramSize is less than a page.

S_adrSpaceLib_PARAMETER_NOT_ALIGNED
start or end address is not page size aligned.

SEE ALSO adrSpaceLib, adrSpaceShow

2 Routines
aimFppLibInit()

59

2

aimCacheInit()

NAME aimCacheInit() – initialize cache aim with supplied parameters

SYNOPSIS STATUS aimCacheInit
 (
 CACHECONFIG * cacheConfig
)

DESCRIPTION This routine is called by the bsp from an architecture-specific initialization routine. It
collects attribute information for all caches and publishes the attributes. It decides which
AIM functions are to be called from the VxWorks API. It calculates maximum indices,
counts, rounding factors, and so on, and creates local copies specific to the AIM routines in
use.

RETURNS ERROR if an invalid cache operation is requested, otherwise OK.

ERRNO N/A

SEE ALSO aimCacheLib

aimFppLibInit()

NAME aimFppLibInit() – Initialize the AIM FPU library

SYNOPSIS void aimFppLibInit
 (
 void
)

DESCRIPTION Initialize the AIM FPU library.

RETURNS N/A

ERRNO

SEE ALSO aimFppLib

VxWorks Kernel API Reference, 6.6
aimMmuLibInit()

60

aimMmuLibInit()

NAME aimMmuLibInit() – initialize the AIM

SYNOPSIS STATUS aimMmuLibInit (void)

DESCRIPTION aimMmuLibInit() performs AIM-specific initialization of the MMU subsystem.

If _WRS_NONGLOBAL_NULL_PAGE is defined, the null page pte entries are forced to be
non-global. This avoids a potential conflict within the MMU between a virtual address that
is (non-globally) mapped in one vm context, then accessed in a different vm context that
does not have the address mapped.

RETURNS OK, or ERROR if any problems are encountered during init.

ERRNO

SEE ALSO aimMmuLib

aioShow()

NAME aioShow() – show AIO requests

SYNOPSIS STATUS aioShow
 (
 int drvNum /* drv num to show (IGNORED) */
)

DESCRIPTION This routine displays the outstanding AIO requests.

CAVEAT The drvNum parameter is not used.

RETURNS OK, always.

ERRNO N/A.

SEE ALSO aioPxShow

2 Routines
aio_cancel()

61

2

aioSysInit()

NAME aioSysInit() – initialize the AIO system driver

SYNOPSIS STATUS aioSysInit
 (
 int numTasks, /* number of system tasks */
 int taskPrio, /* AIO task priority */
 int taskStackSize /* AIO task stack size */
)

DESCRIPTION This routine initializes the AIO system driver. It should be called once after the AIO library
has been initialized. It spawns numTasks system I/O tasks to be executed at taskPrio priority
level, with a stack size of taskStackSize. It also starts the wait task and sets the system driver
as the default driver for AIO. If numTasks, taskPrio, or taskStackSize is 0, a default value
(AIO_IO_TASKS_DFLT, AIO_IO_PRIO_DFLT, or AIO_IO_STACK_DFLT, respectively) is
used.

RETURNS OK if successful, otherwise ERROR.

ERRNO N/A.

SEE ALSO aioSysDrv

aio_cancel()

NAME aio_cancel() – cancel an asynchronous I/O request (POSIX)

SYNOPSIS int aio_cancel
 (
 int fildes, /* file descriptor */
 struct aiocb * pAiocb /* AIO control block */
)

DESCRIPTION This routine attempts to cancel one or more asynchronous I/O request(s) currently
outstanding against the file descriptor fildes. pAiocb points to the asynchronous I/O control
block for a particular request to be cancelled. If pAiocb is NULL, all outstanding cancelable
asynchronous I/O requests associated with fildes are cancelled.

Normal signal delivery occurs for AIO operations that are successfully cancelled. If there
are requests that cannot be cancelled, then the normal asynchronous completion process
takes place for those requests when they complete.

VxWorks Kernel API Reference, 6.6
aio_error()

62

Operations that are cancelled successfully have a return status of -1 and an error status of
ECANCELED.

RETURNS AIO_CANCELED if requested operations were cancelled,
AIO_NOTCANCELED if at least one operation could not be cancelled,
AIO_ALLDONE if all operations have already completed, or
ERROR if an error occurred.

ERRNO EBADF
Invalid, or closed file descriptor.

SEE ALSO aioPxLib, aio_return(), aio_error()

aio_error()

NAME aio_error() – retrieve error status of asynchronous I/O operation (POSIX)

SYNOPSIS int aio_error
 (
 const struct aiocb * pAiocb /* AIO control block */
)

DESCRIPTION This routine returns the error status associated with the I/O operation specified by pAiocb.
If the operation is not yet completed, the error status will be EINPROGRESS.

RETURNS EINPROGRESS if the AIO operation has not yet completed,
OK if the AIO operation completed successfully,
the error status if the AIO operation failed,
otherwise ERROR.

ERRNO EINVAL

SEE ALSO aioPxLib

2 Routines
aio_read()

63

2

aio_fsync()

NAME aio_fsync() – asynchronous file synchronization (POSIX)

SYNOPSIS int aio_fsync
 (
 int op, /* operation */
 struct aiocb * pAiocb /* AIO control block */
)

DESCRIPTION This routine asynchronously forces all I/O operations associated with the file, indicated by
aio_fildes, queued at the time aio_fsync() is called to the synchronized I/O completion
state. aio_fsync() returns when the synchronization request has be initiated or queued to
the file or device.

The value of op is either O_DSYNC or O_SYNC.

If the call fails, the outstanding I/O operations are not guaranteed to have completed. If it
succeeds, only the I/O that was queued at the time of the call is guaranteed to the relevant
completion state.

The aio_sigevent member of the pAiocb defines an optional signal to be generated on
completion of aio_fsync().

RETURNS OK if queued successfully, otherwise ERROR.

ERRNO EINVAL
EBADF

SEE ALSO aioPxLib, aio_error(), aio_return()

aio_read()

NAME aio_read() – initiate an asynchronous read (POSIX)

SYNOPSIS int aio_read
 (
 struct aiocb * pAiocb /* AIO control block */
)

DESCRIPTION This routine asynchronously reads data based on the following parameters specified by
members of the AIO control structure pAiocb. It reads aio_nbytes bytes of data from the file
aio_fildes into the buffer aio_buf.

VxWorks Kernel API Reference, 6.6
aio_return()

64

The requested operation takes place at the absolute position in the file as specified by
aio_offset.

aio_reqprio can be used to lower the priority of the AIO request; if this parameter is
nonzero, the priority of the AIO request is aio_reqprio lower than the calling task priority.

The call returns when the read request has been initiated or queued to the device.
aio_error() can be used to determine the error status and of the AIO operation. On
completion, aio_return() can be used to determine the return status.

aio_sigevent defines the signal to be generated on completion of the read request. If this
value is zero, no signal is generated.

RETURNS OK if the read queued successfully, otherwise ERROR.

ERRNO EBADF
EINVAL

SEE ALSO aioPxLib, aio_error(), aio_return(), read()

aio_return()

NAME aio_return() – retrieve return status of asynchronous I/O operation (POSIX)

SYNOPSIS ssize_t aio_return
 (
 struct aiocb * pAiocb /* AIO control block */
)

DESCRIPTION This routine returns the return status associated with the I/O operation specified by pAiocb.
The return status for an AIO operation is the value that would be returned by the
corresponding read(), write(), or fsync() call. aio_return() may be called only after the
AIO operation has completed (aio_error() returns a valid error code--not EINPROGRESS).
Furthermore, aio_return() may be called only once; subsequent calls will fail.

RETURNS The return status of the completed AIO request, or ERROR.

ERRNO EINVAL
EINPROGRESS

SEE ALSO aioPxLib

2 Routines
aio_write()

65

2

aio_suspend()

NAME aio_suspend() – wait for asynchronous I/O request(s) (POSIX)

SYNOPSIS int aio_suspend
 (
 const struct aiocb *const list[], /* AIO requests */
 int nEnt, /* number of requests */
 const struct timespec * timeout /* wait timeout */
)

DESCRIPTION This routine suspends the caller until one of the following occurs:

- at least one of the previously submitted asynchronous I/O operations referenced by list
has completed,

- a signal interrupts the function, or

- the time interval specified by timeout has passed (if timeout is not NULL).

RETURNS OK if an AIO request completes, otherwise ERROR.

ERRNO EAGAIN
EINTR

SEE ALSO aioPxLib

aio_write()

NAME aio_write() – initiate an asynchronous write (POSIX)

SYNOPSIS int aio_write
 (
 struct aiocb * pAiocb /* AIO control block */
)

DESCRIPTION This routine asynchronously writes data based on the following parameters specified by
members of the AIO control structure pAiocb. It writes aio_nbytes of data to the file
aio_fildes from the buffer aio_buf.

The requested operation takes place at the absolute position in the file as specified by
aio_offset.

aio_reqprio can be used to lower the priority of the AIO request; if this parameter is
nonzero, the priority of the AIO request is aio_reqprio lower than the calling task priority.

VxWorks Kernel API Reference, 6.6
alarm()

66

The call returns when the write request has been initiated or queued to the device.
aio_error() can be used to determine the error status and of the AIO operation. On
completion, aio_return() can be used to determine the return status.

aio_sigevent defines the signal to be generated on completion of the write request. If this
value is zero, no signal is generated.

RETURNS OK if write queued successfully, otherwise ERROR.

ERRNO EBADF
EINVAL

SEE ALSO aioPxLib, aio_error(), aio_return(), write()

alarm()

NAME alarm() – set an alarm clock for delivery of a signal

SYNOPSIS unsigned int alarm
 (
 unsigned int secs
)

DESCRIPTION This routine arranges for a SIGALRM signal to be delivered to the calling task after secs
seconds.

If secs is zero, no new alarm is scheduled. In all cases, any previously set alarm is cancelled.

RETURNS Time remaining until a previously scheduled alarm was due to be delivered, zero if there
was no previous alarm, or ERROR in case of an error.

ERRNO EINVAL

ENOSYS

EAGAIN

S_memLib_NOT_ENOUGH_MEMORY

SEE ALSO timerLib

2 Routines
atan2f()

67

2

anRegister()

NAME anRegister() – register with the VxBus subsystem

SYNOPSIS void anRegister(void)

DESCRIPTION This routine registers the AN983 driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO an983VxbEnd

asinf()

NAME asinf() – compute an arc sine (ANSI)

SYNOPSIS float asinf
 (
 float x /* number between -1 and 1 */
)

DESCRIPTION This routine computes the arc sine of x in single precision. If x is the sine of an angle T, this
function returns T.

RETURNS The single-precision arc sine of x in the range -pi/2 to pi/2 radians.

ERRNO Not Available

SEE ALSO mathALib

atan2f()

NAME atan2f() – compute the arc tangent of y/x (ANSI)

SYNOPSIS float atan2f
 (
 float y, /* numerator */

VxWorks Kernel API Reference, 6.6
atanf()

68

 float x /* denominator */
)

DESCRIPTION This routine returns the principal value of the arc tangent of y/x in single precision.

RETURNS The single-precision arc tangent of y/x in the range -pi to pi.

ERRNO Not Available

SEE ALSO mathALib

atanf()

NAME atanf() – compute an arc tangent (ANSI)

SYNOPSIS float atanf
 (
 float x /* tangent of an angle */
)

DESCRIPTION This routine computes the arc tangent of x in single precision. If x is the tangent of an angle
T, this function returns T (in radians).

RETURNS The single-precision arc tangent of x in the range -pi/2 to pi/2.

ERRNO Not Available

SEE ALSO mathALib

atapiParamsPrint()

NAME atapiParamsPrint() – Print the drive parameters.

SYNOPSIS void atapiParamsPrint
 (
 int ctrl,
 int drive
)

2 Routines
attrib()

69

2

DESCRIPTION This user callable routine will read the current parameters from the corresponding drive
and will print the specified range of parameters on the console.

RETURNS N/A.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

attrib()

NAME attrib() – modify MS-DOS file attributes on a file or directory

SYNOPSIS STATUS attrib
 (
 const char * fileName, /* file or dir name on which to change flags */
 const char * attr /* flag settings to change */
)

DESCRIPTION This function provides means for the user to modify the attributes of a single file or
directory. There are four attribute flags which may be modified: "Archive", "System",
"Hidden" and "Read-only". Among these flags, only "Read-only" has a meaning in
VxWorks, namely, read-only files can not be modified deleted or renamed.

The attr argument string may contain must start with either "+" or "-", meaning the attribute
flags which will follow should be either set or cleared. After "+" or "-" any of these four letter
will signify their respective attribute flags - "A", "S", "H" and "R".

For example, to write-protect a particular file and flag that it is a system file:

-> attrib("bootrom.sys", "+RS")

RETURNS OK, or ERROR if the file can not be opened.

ERRNO Not Available

SEE ALSO usrFsLib, dosFsLib, the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
b()

70

b()

NAME b() – set or display breakpoints

SYNOPSIS STATUS b
 (
 INSTR * addr, /* breakpoint addr, or 0 to display */
 int taskNameOrId, /* task affected; 0 means all tasks */
 int count, /* number of passes before hit */
 BOOL quiet /* TRUE = don't print debugging info, */
 /* FALSE = print debugging info */
)

DESCRIPTION This routine sets or displays breakpoints. To display the list of currently active breakpoints,
call b() without arguments:

 -> b

The list shows the address, task, context type, action, notification status and pass count of
each breakpoint. Temporary breakpoints inserted by so() and cret() are also indicated.

To set a breakpoint with b(), include the address, which can be specified numerically or
symbolically with an optional offset. The other arguments are optional:

 -> b addr[,task[,count[,quiet]]]

If task is zero or omitted, the breakpoint will apply to all breakable tasks. If count is zero or
omitted, the breakpoint will occur every time it is hit. If count is specified, the break will not
occur until the count +1th time an eligible task hits the breakpoint (i.e., the breakpoint is
ignored the first count times it is hit).

If quiet is specified, debugging information destined for the console will be suppressed
when the breakpoint is hit. This option is included for use by external source code
debuggers that handle the breakpoint user interface themselves.

Individual tasks can be unbreakable, in which case breakpoints that otherwise would apply
to a task are ignored. Tasks can be spawned unbreakable by specifying the task option
VX_UNBREAKABLE. Tasks can also be set unbreakable or breakable by resetting
VX_UNBREAKABLE with the routine taskOptionsSet().

RETURNS OK, or ERROR if addr is illegal or the breakpoint table is full.

ERRNO N/A

SEE ALSO dbgLib, bd(), taskOptionsSet(), VxWorks Kernel Programmer's Guide: Kernel Shell, VxWorks
Command-Line Tools User's Guide 2.2: Host Shell

2 Routines
bcopy()

71

2

bcmp()

NAME bcmp() – compare one buffer to another

SYNOPSIS int bcmp
 (
 FAST char *buf1, /* pointer to first buffer */
 FAST char *buf2, /* pointer to second buffer */
 FAST int nbytes /* number of bytes to compare */
)

DESCRIPTION This routine compares the first nbytes characters of buf1 to buf2.

RETURNS - 0 if the first nbytes of buf1 and buf2 are identical,

- less than 0 if buf1 is less than buf2, or

- greater than 0 if buf1 is greater than buf2.

ERRNO N/A

SEE ALSO bLib

bcopy()

NAME bcopy() – copy one buffer to another

SYNOPSIS void bcopy
 (
 const char *source, /* pointer to source buffer */
 char *destination, /* pointer to destination buffer */
 int nbytes /* number of bytes to copy */
)

DESCRIPTION This routine copies the first nbytes characters from source to destination. Overlapping buffers
are handled correctly. Copying is done in the most efficient way possible, which may
include long-word, or even multiple-long-word moves on some architectures. In general,
the copy will be significantly faster if both buffers are long-word aligned. (For copying that
is restricted to byte, word, or long-word moves, see the manual entries for bcopyBytes(),
bcopyWords(), and bcopyLongs().)

RETURNS N/A

ERRNO N/A

VxWorks Kernel API Reference, 6.6
bcopyBytes()

72

SEE ALSO bLib, bcopyBytes(), bcopyWords(), bcopyLongs()

bcopyBytes()

NAME bcopyBytes() – copy one buffer to another one byte at a time

SYNOPSIS void bcopyBytes
 (
 char *source, /* pointer to source buffer */
 char *destination, /* pointer to destination buffer */
 int nbytes /* number of bytes to copy */
)

DESCRIPTION This routine copies the first nbytes characters from source to destination one byte at a time.
This may be desirable if a buffer can only be accessed with byte instructions, as in certain
byte-wide memory-mapped peripherals.

RETURNS N/A

ERRNO N/A

SEE ALSO bLib, bcopy()

bcopyLongs()

NAME bcopyLongs() – copy one buffer to another one long word at a time

SYNOPSIS void bcopyLongs
 (
 char *source, /* pointer to source buffer */
 char *destination, /* pointer to destination buffer */
 int nlongs /* number of longs to copy */
)

DESCRIPTION This routine copies the first nlongs characters from source to destination one long word at a
time. This may be desirable if a buffer can only be accessed with long instructions, as in
certain long-word-wide memory-mapped peripherals. The source and destination must be
long-aligned.

RETURNS N/A

2 Routines
bd()

73

2

ERRNO N/A

SEE ALSO bLib, bcopy()

bcopyWords()

NAME bcopyWords() – copy one buffer to another one word at a time

SYNOPSIS void bcopyWords
 (
 char *source, /* pointer to source buffer */
 char *destination, /* pointer to destination buffer */
 int nwords /* number of words to copy */
)

DESCRIPTION This routine copies the first nwords words from source to destination one word at a time. This
may be desirable if a buffer can only be accessed with word instructions, as in certain
word-wide memory-mapped peripherals. The source and destination must be
word-aligned.

RETURNS N/A

ERRNO N/A

SEE ALSO bLib, bcopy()

bd()

NAME bd() – delete a breakpoint

SYNOPSIS STATUS bd
 (
 INSTR * addr, /* address of breakpoint to delete */
 int taskNameOrId /* task affected; 0 means all tasks */
)

DESCRIPTION This routine deletes a specified breakpoint, based on its address.

To execute, enter:

 -> bd addr [,task]

VxWorks Kernel API Reference, 6.6
bdall()

74

If task is omitted or zero, the breakpoint will be removed for all tasks. If the breakpoint
applies to all tasks, removing it for only a single task will be ineffective. It must be removed
for all tasks and then set for just those tasks desired. Temporary breakpoints inserted by the
routines so() or cret() can also be deleted.

RETURNS OK, or ERROR if there is no breakpoint at the specified address.

ERRNO N/A

SEE ALSO dbgLib, b(), bdall(), VxWorks Kernel Programmer's Guide: Kernel Shell, VxWorks
Command-Line Tools User's Guide 2.2: Host Shell

bdall()

NAME bdall() – delete all breakpoints

SYNOPSIS STATUS bdall
 (
 int taskNameOrId /* task affected; 0 means all tasks */
)

DESCRIPTION This routine removes all breakpoints.

To execute, enter:

 -> bdall [task]

If task is specified, all breakpoints that apply to that task are removed. If task is omitted, all
breakpoints for all tasks are removed. Temporary breakpoints inserted by so() or cret() are
not deleted; use bd() instead.

RETURNS OK, or ERROR if task cannot be found.

ERRNO N/A

SEE ALSO dbgLib, b(), bd(), VxWorks Kernel Programmer's Guide: Kernel Shell, VxWorks Command-Line
Tools User's Guide 2.2: Host Shell

2 Routines
bfill()

75

2

bfStrSearch()

NAME bfStrSearch() – Search using the Brute Force algorithm

SYNOPSIS char * bfStrSearch
 (
 char * pattern, /* pattern to search for */
 int patternLen, /* length of the pattern */
 char * buffer, /* text buffer to search in */
 int bufferLen, /* length of the text buffer */
 BOOL caseSensitive /* case-sensitive search? */
)

DESCRIPTION The Brute Force algorithm is the simplest string search algorithm. It performs comparisons
between a character in the pattern and a character in the text buffer from left to right. After
each attempt it shifts the pattern by one position to the right.

The Brute Force algorithm requires no pre-processing and no extra space. It has a O(Pattern
Length x Text Buffer Length) worst-case time complexity.

RETURNS A pointer to the located pattern, or a NULL pointer if the pattern is not found

ERRNO Not Available

SEE ALSO strSearchLib

bfill()

NAME bfill() – fill a buffer with a specified character

SYNOPSIS void bfill
 (
 FAST char *buf, /* pointer to buffer */
 int nbytes, /* number of bytes to fill */
 FAST int ch /* char with which to fill buffer */
)

DESCRIPTION This routine fills the first nbytes characters of a buffer with the character ch. Filling is done
in the most efficient way possible, which may be long-word, or even multiple-long-word
stores, on some architectures. In general, the fill will be significantly faster if the buffer is
long-word aligned. (For filling that is restricted to byte stores, see the manual entry for
bfillBytes().)

RETURNS N/A

VxWorks Kernel API Reference, 6.6
bfillBytes()

76

ERRNO N/A

SEE ALSO bLib, bfillBytes()

bfillBytes()

NAME bfillBytes() – fill buffer with a specified character one byte at a time

SYNOPSIS void bfillBytes
 (
 FAST char *buf, /* pointer to buffer */
 int nbytes, /* number of bytes to fill */
 FAST int ch /* char with which to fill buffer */
)

DESCRIPTION This routine fills the first nbytes characters of the specified buffer with the character ch one
byte at a time. This may be desirable if a buffer can only be accessed with byte instructions,
as in certain byte-wide memory-mapped peripherals.

RETURNS N/A

ERRNO N/A

SEE ALSO bLib, bfill()

bh()

NAME bh() – set a hardware breakpoint

SYNOPSIS STATUS bh
 (
 INSTR * addr, /* where to set breakpoint, or */
 /* 0 = display all breakpoints */
 int access, /* access type (arch dependant) */
 int taskNameOrId, /* task affected; 0 means all tasks */
 int count, /* number of passes before hit */
 BOOL quiet /* TRUE = don't print debugging info, */
 /* FALSE = print debugging info */
)

2 Routines
bmsStrSearch()

77

2

DESCRIPTION This routine is used to set a hardware breakpoint. If the architecture allows it, this function
adds the breakpoint to the list of breakpoints and set the hardware breakpoint register(s).
For more information, see the manual entry for b().

NOTE The types of hardware breakpoints vary with the architectures. Generally, a hardware
breakpoint can be a data breakpoint or an instruction breakpoint.

RETURNS OK, or ERROR if addr is illegal or the hardware breakpoint table is full.

ERRNO N/A

SEE ALSO dbgLib, b(), VxWorks Kernel Programmer's Guide: Kernel Shell, VxWorks Command-Line Tools
User's Guide 2.2: Host Shell

binvert()

NAME binvert() – invert the order of bytes in a buffer

SYNOPSIS void binvert
 (
 FAST char * buf, /* pointer to buffer to invert */
 int nbytes /* number of bytes in buffer */
)

DESCRIPTION This routine inverts an entire buffer, byte by byte. For example, the buffer {1, 2, 3, 4, 5}
would become {5, 4, 3, 2, 1}.

RETURNS N/A

ERRNO N/A

SEE ALSO bLib

bmsStrSearch()

NAME bmsStrSearch() – Search using the Boyer-Moore-Sunday (Quick Search) algorithm

SYNOPSIS char * bmsStrSearch
 (
 char * pattern, /* pattern to search for */

VxWorks Kernel API Reference, 6.6
bmtPhyRegister()

78

 int patternLen, /* length of the pattern */
 char * buffer, /* text buffer to search in */
 int bufferLen, /* length of the text buffer */
 BOOL caseSensitive /* case-sensitive search? */
)

DESCRIPTION The Boyer-Moore-Sunday algorithm is a more efficient simplification of the Boyer-Moore
algorithm. It performs comparisons between a character in the pattern and a character in the
text buffer from left to right. After each mismatch it uses bad character heuristic to shift the
pattern to the right. For more details on the algorithm, refer to "A Very Fast Substring Search
Algorithm", Daniel M. Sunday, Communications of the ACM, Vol. 33 No. 8, August 1990,
pp. 132-142.

It has a O(Pattern Length x Text Buffer Length) worst-case time complexity. But empirical
results have shown that this algorithm is one of the fastest in practice.

RETURNS A pointer to the located pattern, or a NULL pointer if the pattern is not found

ERRNO Not Available

SEE ALSO strSearchLib

bmtPhyRegister()

NAME bmtPhyRegister() – register with the VxBus subsystem

SYNOPSIS void bmtPhyRegister(void)

DESCRIPTION This routine registers the BCM52xx driver with VxBus as a child of the MII bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO bcm52xxPhy

2 Routines
bootChange()

79

2

bootBpAnchorExtract()

NAME bootBpAnchorExtract() – extract a backplane address from a device field

SYNOPSIS STATUS bootBpAnchorExtract
 (
 char *string, /* string containing adrs field */
 char **pAnchorAdrs /* pointer where to return anchor address */
)

DESCRIPTION This routine extracts the optional backplane anchor address field from a boot device field.
The anchor can be specified for the backplane driver by appending to the device name (i.e.,
"bp") an equal sign (=) and the address in hexadecimal. For example, the "boot device" field
of the boot parameters could be specified as:

 boot device: bp=800000

In this case, the backplane anchor address would be at address 0x800000, instead of the
default specified in config.h.

This routine picks off the optional trailing anchor address by replacing the equal sign (=) in
the specified string with an EOS and then scanning the remainder as a hex number. This
number, the anchor address, is returned via the pAnchorAdrs pointer.

RETURNS 1 if the anchor address in string is specified correctly,
0 if the anchor address in string is not specified, or

-1 if an invalid anchor address is specified in string.

ERRNO Not Available

SEE ALSO bootParseLib

bootChange()

NAME bootChange() – change the boot line

SYNOPSIS void bootChange (void)

DESCRIPTION This command changes the boot line used in the boot ROMs. This is useful during a remote
login session. After changing the boot parameters, you can reboot the target with the
reboot() command, and then terminate your login (~.) and remotely log in again. As soon
as the system has rebooted, you will be logged in again.

VxWorks Kernel API Reference, 6.6
bootLeaseExtract()

80

This command stores the new boot line in non-volatile RAM, if the target has it.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, the VxWorks programmer guides.

bootLeaseExtract()

NAME bootLeaseExtract() – extract the lease information from an Internet address

SYNOPSIS int bootLeaseExtract
 (
 char *string, /* string containing addr field */
 u_long *pLeaseLen, /* pointer to storage for lease duration */
 u_long *pLeaseStart /* pointer to storage for lease origin */
)

DESCRIPTION This routine extracts the optional lease duration and lease origin fields from an Internet
address field for use with DHCP. The lease duration can be specified by appending a colon
and the lease duration to the netmask field. For example, the "inet on ethernet" field of the
boot parameters could be specified as:

 inet on ethernet: 90.1.0.1:ffff0000:1000

If no netmask is specified, the contents of the field could be:

 inet on ethernet: 90.1.0.1::ffffffff

In the first case, the lease duration for the address is 1000 seconds. The second case indicates
an infinite lease, and does not specify a netmask for the address. At the beginning of the boot
process, the value of the lease duration field is used to specify the requested lease duration.
If the field not included, the value of DHCP_DEFAULT_LEASE is used instead.

The lease origin is specified with the same format as the lease duration, but is added during
the boot process. The presence of the lease origin field distinguishes addresses assigned by
a DHCP server from addresses entered manually. Addresses assigned by a DHCP server
may be replaced if the bootstrap loader uses DHCP to obtain configuration parameters. The
value of the lease origin field at the beginning of the boot process is ignored.

This routine extracts the optional lease duration by replacing the preceding colon in the
specified string with an EOS and then scanning the remainder as a number. The lease
duration and lease origin values are returned via the pLeaseLen and pLeaseStart pointers, if
those parameters are not NULL.

2 Routines
bootNetmaskExtract()

81

2

RETURNS 2 if both lease values are specified correctly in string, or
-2 if one of the two values is specified incorrectly.
If only the lease duration is found, it returns:
1 if the lease duration in string is specified correctly,
0 if the lease duration is not specified in string, or

-1 if an invalid lease duration is specified in string.

ERRNO Not Available

SEE ALSO bootParseLib

bootNetmaskExtract()

NAME bootNetmaskExtract() – extract the net mask field from an Internet address

SYNOPSIS STATUS bootNetmaskExtract
 (
 char *string, /* string containing addr field */
 int *pNetmask /* pointer where to return net mask */
)

DESCRIPTION This routine extracts the optional subnet mask field from an Internet address field. Subnet
masks can be specified for an Internet interface by appending to the Internet address a colon
and the net mask in hexadecimal. For example, the "inet on ethernet" field of the boot
parameters could be specified as:

 inet on ethernet: 90.1.0.1:ffff0000

In this case, the network portion of the address (normally just 90) is extended by the subnet
mask (to 90.1). This routine extracts the optional trailing subnet mask by replacing the colon
in the specified string with an EOS and then scanning the remainder as a hex number. This
number, the net mask, is returned via the pNetmask pointer.

This routine also handles an empty netmask field used as a placeholder for the lease
duration field (see bootLeaseExtract()). In that case, the colon separator is replaced with an
EOS and the value of netmask is set to 0.

RETURNS 1 if the subnet mask in string is specified correctly,
0 if the subnet mask in string is not specified, or

-1 if an invalid subnet mask is specified in string.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
bootParamsPrompt()

82

SEE ALSO bootParseLib

bootParamsPrompt()

NAME bootParamsPrompt() – prompt for boot line parameters

SYNOPSIS void bootParamsPrompt
 (
 char *string /* default boot line */
)

DESCRIPTION This routine displays the current value of each boot parameter and prompts the user for a
new value. Typing a RETURN leaves the parameter unchanged. Typing a period (.) clears
the parameter.

The parameter string holds the initial values. The new boot line is copied over string. If
there are no initial values, string is empty on entry.

RETURNS N/A

ERRNO Not Available

SEE ALSO bootLib

bootParamsShow()

NAME bootParamsShow() – display boot line parameters

SYNOPSIS void bootParamsShow
 (
 char *paramString /* boot parameter string */
)

DESCRIPTION This routine displays the boot parameters in the specified boot string one parameter per
line.

RETURNS N/A

ERRNO Not Available

2 Routines
bootStringToStructAdd()

83

2

SEE ALSO bootLib

bootStringToStruct()

NAME bootStringToStruct() – interpret the boot parameters from the boot line

SYNOPSIS char * bootStringToStruct
 (
 char * bootString, /* boot line to be parsed */
 FAST BOOT_PARAMS * pBootParams /* where to return parsed boot line */
)

DESCRIPTION This routine parses the ASCII string and returns the values into the provided parameters.

For a description of the format of the boot line, see the manual entry for bootLib

RETURNS A pointer to the last character successfully parsed plus one (points to EOS, if OK). The entire
boot line is parsed.

ERRNO Not Available

SEE ALSO bootParseLib

bootStringToStructAdd()

NAME bootStringToStructAdd() – interpret the boot parameters from the boot line

SYNOPSIS char * bootStringToStructAdd
 (
 char * bootString, /* boot line to be parsed */
 FAST BOOT_PARAMS * pBootParams /* where to return parsed boot line */
)

DESCRIPTION This routine parses the ASCII string bootString and returns the values into the provided
parameters pBootParams. The fields of pBootParams may be previously set to default values.

For a description of the format of the boot line, see the manual entry for bootLib

RETURNS A pointer to the last character successfully parsed plus one (points to EOS, if OK). The entire
boot line is parsed.

VxWorks Kernel API Reference, 6.6
bootStructToString()

84

ERRNO Not Available

SEE ALSO bootParseLib

bootStructToString()

NAME bootStructToString() – construct a boot line

SYNOPSIS STATUS bootStructToString
 (
 char *paramString, /* where to return the encoded boot line
*/
 FAST BOOT_PARAMS *pBootParams /* boot line structure to be encoded */
)

DESCRIPTION This routine encodes a boot line using the specified boot parameters.

For a description of the format of the boot line, see the manual entry for bootLib.

RETURNS OK.

ERRNO Not Available

SEE ALSO bootLib

bswap()

NAME bswap() – swap buffers

SYNOPSIS void bswap
 (
 FAST char * buf1, /* pointer to first buffer */
 FAST char * buf2, /* pointer to second buffer */
 FAST int nbytes /* number of bytes to swap */
)

DESCRIPTION This routine exchanges the first nbytes of the two specified buffers.

RETURNS N/A

ERRNO N/A

2 Routines
c()

85

2

SEE ALSO bLib

bzero()

NAME bzero() – zero out a buffer

SYNOPSIS void bzero
 (
 char * buffer, /* buffer to be zeroed */
 int nbytes /* number of bytes in buffer */
)

DESCRIPTION This routine fills the first nbytes characters of the specified buffer with 0.

RETURNS N/A

ERRNO N/A

SEE ALSO bLib

c()

NAME c() – continue from a breakpoint

SYNOPSIS STATUS c
 (
 int taskNameOrId, /* task that should proceed from breakpoint */
 INSTR * addr, /* address to continue at; 0 = next instruction */
 INSTR * addr1 /* address for npc; 0 = instruction next to pc */
)

DESCRIPTION This routine continues the execution of a task that has stopped at a breakpoint.

To execute, enter:

 -> c [task [,addr[,addr1]]]

If task is omitted or zero, the last task referenced is assumed. If addr is non-zero, the program
counter is changed to addr; if addr1 is non-zero, the next program counter is changed to
addr1, and the task is continued.

VxWorks Kernel API Reference, 6.6
cacheArchClearEntry()

86

CAVEAT When a task is continued, c() does not distinguish between a stopped task or a task stopped
by the debugger. Therefore, its use should be restricted to only those tasks being debugged.

NOTE The next program counter, addr1, is currently supported only by SPARC.

RETURNS OK, or ERROR if the specified task does not exist.

ERRNO N/A

SEE ALSO dbgLib, s(), cret(), tr(), VxWorks Kernel Programmer's Guide: Kernel Shell, VxWorks
Command-Line Tools User's Guide 2.2: Host Shell

cacheArchClearEntry()

NAME cacheArchClearEntry() – clear an entry from a cache (68K, x86)

SYNOPSIS STATUS cacheArchClearEntry
 (
 CACHE_TYPE cache, /* cache to clear entry for */
 void * address /* entry to clear */
)

DESCRIPTION This routine clears a specified entry from the specified cache.

For 68040 processors, this routine clears the cache line from the cache in which the cache
entry resides.

For the MC68060 processor, when the instruction cache is cleared (invalidated) the branch
cache is also invalidated by the hardware. One line in the branch cache cannot be
invalidated so each time the branch cache is entirely invalidated.

For 386 family processors do not have a cache, thus it does nothing. The 486, P5(Pentium),
and P6(PentiumPro, II, III) family processors do have a cache but does not support a line by
line cache control, thus it performs WBINVD instruction. The P7(Pentium4) family
processors support the line by line cache control with CLFLUSH instruction, thus flushes
the specified cache line.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

ERRNO Not Available

SEE ALSO cacheArchLib

2 Routines
cacheArchLibInit()

87

2

cacheArchLibInit()

NAME cacheArchLibInit() – initialize the cache library

SYNOPSIS STATUS cacheArchLibInit
 (
 CACHE_MODE instMode, /* instruction cache mode */
 CACHE_MODE dataMode /* data cache mode */
)

DESCRIPTION This routine initializes the cache library for the following processor cache families:
Motorola 68K, Intel x86, PowerPC ARM, and the Solaris and Windows simulators. It
initializes the function pointers and configures the caches to the specified cache modes.

68K PROCESSORS The caching modes vary for members of the 68K processor family:

The write-through, copy-back, serial, non-serial, precise and non precise modes change the
state of the data transparent translation register (DTTR0) CM bits. Only DTTR0 is modified,
since it typically maps DRAM space.

X86 PROCESSORS The caching mode CACHE_WRITETHROUGH is available for the 486 family processors. The
caching mode CACHE_COPYBACK becomes available for the P5(Pentium) family
processors. The caching mode (CACHE_COPYBACK | CACHE_SNOOP_ENABLE) becomes
available for the P6(PentiumPro, II, III) and P7(Pentium4) family processors.

POWER PC PROCESSORS

Modes should be set before caching is enabled. If two contradictory flags are set (for
example, enable/disable), no action is taken for any of the input flags.

68020: CACHE_WRITETHROUGH (instruction cache only)
68030: CACHE_WRITETHROUGH

CACHE_BURST_ENABLE
CACHE_BURST_DISABLE
CACHE_WRITEALLOCATE (data cache only)
CACHE_NO_WRITEALLOCATE (data cache only)

68040: CACHE_WRITETHROUGH
CACHE_COPYBACK (data cache only)
CACHE_INH_SERIAL (data cache only)
CACHE_INH_NONSERIAL (data cache only)
CACHE_BURST_ENABLE (data cache only)
CACHE_NO_WRITEALLOCATE (data cache only)

68060: CACHE_WRITETHROUGH
CACHE_COPYBACK (data cache only)
CACHE_INH_PRECISE (data cache only)
CACHE_INH_IMPRECISE (data cache only)
CACHE_BURST_ENABLE (data cache only)

VxWorks Kernel API Reference, 6.6
cacheAuLibInit()

88

ARM PROCESSORS The caching capabilities and modes vary for members of the ARM processor family. All
caches are provided on-chip, so cache support is mostly an architecture issue, not a BSP
issue. However, the memory map is BSP-specific and some functions need knowledge of the
memory map, so they have to be provided in the BSP.

ARM7TDMI (In ARM or Thumb state)
No cache or MMU at all. Dummy routine provided, so that
INCLUDE_CACHE_SUPPORT can be defined (the default BSP configuration).

ARM710A
Combined instruction and data cache. Actually a write-through cache, but separate
write-buffer effectively makes this a copy-back cache if the write-buffer is enabled. Use
write-through/copy-back argument to decide whether to enable write buffer. Data and
instruction cache modes must be identical.

ARM810
Combined instruction and data cache. Write-through and copy-back cache modes, but
separate write-buffer effectively makes even write-through a copy-back cache as all
writes are buffered, when cache is enabled. Data and instruction cache modes must be
identical.

ARMSA110
Separate instruction and data caches. Write-through and copy-back cache mode for
data, but separate write-buffer effectively makes even write-through a copy-back cache
as all writes are buffered, when cache is enabled.

RETURNS OK

ERRNO Not Available

SEE ALSO cacheArchLib

cacheAuLibInit()

NAME cacheAuLibInit() – initialize the Au cache library

SYNOPSIS STATUS cacheAuLibInit
 (
 CACHE_MODE instMode, /* instruction cache mode */
 CACHE_MODE dataMode, /* data cache mode */
 UINT32 iCacheSize,
 UINT32 iCacheLineSize,
 UINT32 dCacheSize,
 UINT32 dCacheLineSize
)

2 Routines
cacheDisable()

89

2

DESCRIPTION This routine initializes the function pointers for the Au cache library. The board support
package can select this cache library by assigning the function pointer sysCacheLibInit to
cacheAuLibInit().

RETURNS OK.

ERRNO Not Available

SEE ALSO cacheAuLib

cacheClear()

NAME cacheClear() – clear all or some entries from a cache

SYNOPSIS STATUS cacheClear
 (
 CACHE_TYPE cache, /* cache to clear */
 void * address, /* virtual address */
 size_t bytes /* number of bytes to clear */
)

DESCRIPTION This routine flushes and invalidates all or some entries in the specified cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

cacheDisable()

NAME cacheDisable() – disable the specified cache

SYNOPSIS STATUS cacheDisable
 (
 CACHE_TYPE cache /* cache to disable */
)

DESCRIPTION This routine flushes the cache and disables the instruction or data cache.

VxWorks Kernel API Reference, 6.6
cacheDmaFree()

90

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

cacheDmaFree()

NAME cacheDmaFree() – free the buffer acquired with cacheDmaMalloc()

SYNOPSIS STATUS cacheDmaFree
 (
 void * pBuf /* pointer to malloc/free buffer */
)

DESCRIPTION This routine frees the buffer returned by cacheDmaMalloc().

RETURNS OK, or ERROR if the cache control is not supported.

ERRNO N/A

SEE ALSO cacheLib

cacheDmaMalloc()

NAME cacheDmaMalloc() – allocate a cache-safe buffer for DMA devices and drivers

SYNOPSIS void * cacheDmaMalloc
 (
 size_t bytes /* number of bytes to allocate */
)

DESCRIPTION This routine returns a pointer to a section of memory that will not experience any cache
coherency problems. Function pointers in the CACHE_FUNCS structure provide access to
DMA support routines.

RETURNS A pointer to the cache-safe buffer, or NULL.

ERRNO N/A

2 Routines
cacheDrvInvalidate()

91

2

SEE ALSO cacheLib

cacheDrvFlush()

NAME cacheDrvFlush() – flush the data cache for drivers

SYNOPSIS STATUS cacheDrvFlush
 (
 CACHE_FUNCS * pFuncs, /* pointer to CACHE_FUNCS */
 void * address, /* virtual address */
 size_t bytes /* number of bytes to flush */
)

DESCRIPTION This routine flushes the data cache entries using the function pointer from the specified set.

RETURNS OK, or ERROR if the cache control is not supported.

ERRNO N/A

SEE ALSO cacheLib

cacheDrvInvalidate()

NAME cacheDrvInvalidate() – invalidate data cache for drivers

SYNOPSIS STATUS cacheDrvInvalidate
 (
 CACHE_FUNCS * pFuncs, /* pointer to CACHE_FUNCS */
 void * address, /* virtual address */
 size_t bytes /* no. of bytes to invalidate */
)

DESCRIPTION This routine invalidates the data cache entries using the function pointer from the specified
set.

RETURNS OK, or ERROR if the cache control is not supported.

ERRNO N/A

SEE ALSO cacheLib

VxWorks Kernel API Reference, 6.6
cacheDrvPhysToVirt()

92

cacheDrvPhysToVirt()

NAME cacheDrvPhysToVirt() – translate a physical address for drivers

SYNOPSIS void * cacheDrvPhysToVirt
 (
 CACHE_FUNCS * pFuncs, /* pointer to CACHE_FUNCS */
 void * address /* physical address */
)

DESCRIPTION This routine performs a physical-to-virtual address translation using the function pointer
from the specified set.

RETURNS The virtual address that maps to the physical address argument.

ERRNO N/A

SEE ALSO cacheLib

cacheDrvVirtToPhys()

NAME cacheDrvVirtToPhys() – translate a virtual address for drivers

SYNOPSIS void * cacheDrvVirtToPhys
 (
 CACHE_FUNCS * pFuncs, /* pointer to CACHE_FUNCS */
 void * address /* virtual address */
)

DESCRIPTION This routine performs a virtual-to-physical address translation using the function pointer
from the specified set.

RETURNS The physical address translation of a virtual address argument.

ERRNO N/A

SEE ALSO cacheLib

2 Routines
cacheFlush()

93

2

cacheEnable()

NAME cacheEnable() – enable the specified cache

SYNOPSIS STATUS cacheEnable
 (
 CACHE_TYPE cache /* cache to enable */
)

DESCRIPTION This routine invalidates the cache tags and enables the instruction or data cache.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

cacheFlush()

NAME cacheFlush() – flush all or some of a specified cache

SYNOPSIS STATUS cacheFlush
 (
 CACHE_TYPE cache, /* cache to flush */
 void * address, /* virtual address */
 size_t bytes /* number of bytes to flush */
)

DESCRIPTION This routine flushes (writes to memory) all or some of the entries in the specified cache.
Depending on the cache design, this operation may also invalidate the cache tags. For
write-through caches, no work needs to be done since RAM already matches the cached
entries. Note that write buffers on the chip may need to be flushed to complete the flush.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

VxWorks Kernel API Reference, 6.6
cacheForeignClear()

94

cacheForeignClear()

NAME cacheForeignClear() – clear foreign data from selected cache

SYNOPSIS STATUS cacheForeignClear
 (
 CACHE_TYPE cache, /* cache to clear */
 VIRT_ADDR virtAddr, /* virtual address */
 PHYS_ADDR physAddr, /* physical address */
 size_t bytes /* number of bytes to flush */
)

DESCRIPTION This routine performs a clear of the requested area of memory from the cache. Unlike
cacheClear(), this routine does not assume that the provided virtual address is valid within
the current address space. The called routine may clear more data than is requested.

RETURNS OK, or ERROR if the requested cache operation failed.

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

cacheForeignFlush()

NAME cacheForeignFlush() – flush foreign data from selected cache

SYNOPSIS STATUS cacheForeignFlush
 (
 CACHE_TYPE cache, /* cache to flush */
 VIRT_ADDR virtAddr, /* virtual address */
 PHYS_ADDR physAddr, /* physical address */
 size_t bytes /* number of bytes to flush */
)

DESCRIPTION This routine performs a flush of the requested area of memory from the cache. Unlike
cacheFlush(), this routine does not assume that the provided virtual address is valid within
the current address space. This routine may flush more data than is requested, in order to
ensure that the required data has been flushed from the cache.

RETURNS OK, or ERROR if the requested cache operation failed.

2 Routines
cacheInvalidate()

95

2

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

cacheForeignInvalidate()

NAME cacheForeignInvalidate() – invalidate foreign data from selected cache

SYNOPSIS STATUS cacheForeignInvalidate
 (
 CACHE_TYPE cache, /* cache to flush */
 VIRT_ADDR virtAddr, /* virtual address */
 PHYS_ADDR physAddr, /* physical address */
 size_t bytes /* number of bytes to flush */
)

DESCRIPTION This routine performs an invalidate of the requested area of memory from the cache. Unlike
cacheInvalidate(), this routine does not assume that the provided virtual address is valid
within the current address space. Unlike the flush and clear functions, it is a programming
error to invalidate more data from the cache than is requested. For this reason, if the
arhitecture does not provide its own foreign invalidation routine, this function emulates the
operation using cacheClear().

RETURNS OK, or ERROR if the requested cache operation failed.

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

cacheInvalidate()

NAME cacheInvalidate() – invalidate all or some of a specified cache

SYNOPSIS STATUS cacheInvalidate
 (
 CACHE_TYPE cache, /* cache to invalidate */
 void * address, /* virtual address */
 size_t bytes /* number of bytes to invalidate */
)

VxWorks Kernel API Reference, 6.6
cacheLibInit()

96

DESCRIPTION This routine invalidates all or some of the entries in the specified cache. Depending on the
cache design, the invalidation may be similar to the flush, or one may invalidate the tags
directly.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

cacheLibInit()

NAME cacheLibInit() – initialize the cache library for a processor architecture

SYNOPSIS STATUS cacheLibInit
 (
 CACHE_MODE instMode, /* inst cache mode */
 CACHE_MODE dataMode /* data cache mode */
)

DESCRIPTION This routine initializes the function pointers for the appropriate cache library. For
architectures with more than one cache implementation, the board support package must
select the appropriate cache library with sysCacheLibInit. Systems without cache
coherency problems (i.e., bus snooping) should NULLify the flush and invalidate function
pointers in the cacheLib structure to enhance driver and overall system performance. This
can be done in sysHwInit().

RETURNS OK, or ERROR if there is no cache library installed.

ERRNO N/A

SEE ALSO cacheLib

cacheLock()

NAME cacheLock() – lock all or part of a specified cache

SYNOPSIS STATUS cacheLock

2 Routines
cacheR10kLibInit()

97

2

 (
 CACHE_TYPE cache, /* cache to lock */
 void * address, /* virtual address */
 size_t bytes /* number of bytes to lock */
)

DESCRIPTION This routine locks all (global) or some (local) entries in the specified cache. Cache locking is
useful in real-time systems. Not all caches can perform locking.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

cachePipeFlush()

NAME cachePipeFlush() – flush processor write buffers to memory

SYNOPSIS STATUS cachePipeFlush (void)

DESCRIPTION This routine forces the processor output buffers to write their contents to RAM. A cache
flush may have forced its data into the write buffers, then the buffers need to be flushed to
RAM to maintain coherency.

RETURNS OK, or ERROR if the cache control is not supported.

ERRNO N/A

SEE ALSO cacheLib

cacheR10kLibInit()

NAME cacheR10kLibInit() – initialize the R10000 cache library

SYNOPSIS STATUS cacheR10kLibInit
 (
 CACHE_MODE instMode, /* instruction cache mode */
 CACHE_MODE dataMode, /* data cache mode */

VxWorks Kernel API Reference, 6.6
cacheR4kLibInit()

98

 UINT32 iCacheSize,
 UINT32 iCacheLineSize,
 UINT32 dCacheSize,
 UINT32 dCacheLineSize,
 UINT32 sCacheSize,
 UINT32 sCacheLineSize
)

DESCRIPTION This routine initializes the function pointers for the R10000 cache library. The board support
package can select this cache library by assigning the function pointer sysCacheLibInit to
cacheR10kLibInit().

RETURNS OK.

ERRNO Not Available

SEE ALSO cacheR10kLib

cacheR4kLibInit()

NAME cacheR4kLibInit() – initialize the R4000 cache library

SYNOPSIS STATUS cacheR4kLibInit
 (
 CACHE_MODE instMode, /* instruction cache mode */
 CACHE_MODE dataMode, /* data cache mode */
 UINT32 iCacheSize,
 UINT32 iCacheLineSize,
 UINT32 dCacheSize,
 UINT32 dCacheLineSize,
 UINT32 sCacheSize,
 UINT32 sCacheLineSize
)

DESCRIPTION This routine initializes the function pointers for the R4000 cache library. The board support
package can select this cache library by assigning the function pointer sysCacheLibInit to
cacheR4kLibInit().

RETURNS OK.

ERRNO Not Available

SEE ALSO cacheR4kLib

2 Routines
cacheR7kLibInit()

99

2

cacheR5kLibInit()

NAME cacheR5kLibInit() – initialize the R5000 cache library

SYNOPSIS STATUS cacheR5kLibInit
 (
 CACHE_MODE instMode, /* instruction cache mode */
 CACHE_MODE dataMode, /* data cache mode */
 UINT32 iCacheSize,
 UINT32 iCacheLineSize,
 UINT32 dCacheSize,
 UINT32 dCacheLineSize,
 UINT32 sCacheSize,
 UINT32 sCacheLineSize
)

DESCRIPTION This routine initializes the function pointers for the R5000 cache library. The board support
package can select this cache library by assigning the function pointer sysCacheLibInit to
cacheR5kLibInit().

RETURNS OK.

ERRNO Not Available

SEE ALSO cacheR5kLib

cacheR7kLibInit()

NAME cacheR7kLibInit() – initialize the R7000 cache library

SYNOPSIS STATUS cacheR7kLibInit
 (
 CACHE_MODE instMode, /* instruction cache mode */
 CACHE_MODE dataMode, /* data cache mode */
 UINT32 iCacheSize,
 UINT32 iCacheLineSize,
 UINT32 dCacheSize,
 UINT32 dCacheLineSize,
 UINT32 sCacheSize,
 UINT32 sCacheLineSize,
 UINT32 tCacheSize,
 UINT32 tCacheLineSize
)

VxWorks Kernel API Reference, 6.6
cacheSh7750LibInit()

100

DESCRIPTION This routine initializes the function pointers for the R7000 cache library. The board support
package can select this cache library by assigning the function pointer sysCacheLibInit to
cacheR7kLibInit().

RETURNS OK.

ERRNO Not Available

SEE ALSO cacheR7kLib

cacheSh7750LibInit()

NAME cacheSh7750LibInit() – initialize the SH7750 cache library

SYNOPSIS STATUS cacheSh7750LibInit
 (
 CACHE_MODE instMode, /* instruction cache mode */
 CACHE_MODE dataMode /* data cache mode */
)

DESCRIPTION This routine initializes the cache library for the Renesas SH7750 processor. It initializes the
function pointers and configures the caches to the specified cache modes. Modes should be
set before caching is enabled. If two complementary flags are set (enable/disable), no action
is taken for any of the input flags.

The following caching modes are available for the SH7750, SH7750R and SH7770
processors:

SH7750 : CACHE_WRITETHROUGH
CACHE_COPYBACK (copy-back cache for P0/P3, data

cache only)
CACHE_COPYBACK_P1 (copy-back cache for P1, data cache

only)
CACHE_RAM_MODE (use half of cache as RAM, data cache

only)
CACHE_A25_INDEX (use A25 as MSB of cache index)
CACHE_DMA_BYPASS_P0 (allocate DMA buffer to P2, free it to

P0)
CACHE_DMA_BYPASS_P1 (allocate DMA buffer to P2, free it to

P1)
CACHE_DMA_BYPASS_P3 (allocate DMA buffer to P2, free it to

P3)

SH7750R: CACHE_WRITETHROUGH

2 Routines
cacheSh7750LibInit()

101

2

The CACHE_DMA_BYPASS_Px modes allow to allocate "cache-safe" buffers without
MMU. If none of CACHE_DMA_BYPASS_Px modes is specified, cacheDmaMalloc()
returns a cache-safe buffer on logical space, which is created by the MMU. If
CACHE_DMA_BYPASS_P0 is selected, cacheDmaMalloc() returns a cache-safe buffer on P2
space, and cacheDmaFree() releases the buffer to P0 space. Namely, if the system memory
partition is located on P0, cache-safe buffers can be allocated and freed without MMU, by
selecting CACHE_DMA_BYPASS_P0.

RETURNS OK, or ERROR if specified cache mode is invalid.

ERRNO

SEE ALSO cacheSh7750Lib

CACHE_COPYBACK (copy-back cache for P0/P3, data
cache only)

CACHE_COPYBACK_P1 (copy-back cache for P1, data cache
only)

CACHE_RAM_MODE (use half of cache as RAM, data cache
only)

CACHE_2WAY_MODE (use RAM in 2way associ. mode, data
cache only)

CACHE_A25_INDEX (use A25 as MSB of cache index)
CACHE_DMA_BYPASS_P0 (allocate DMA buffer to P2, free it to

P0)
CACHE_DMA_BYPASS_P1 (allocate DMA buffer to P2, free it to

P1)
CACHE_DMA_BYPASS_P3 (allocate DMA buffer to P2, free it to

P3)

SH7770 : CACHE_SH4A_MODE (SH4A cache support)
CACHE_WRITETHROUGH
CACHE_COPYBACK (copy-back cache for P0/P3, data

cache only)
CACHE_COPYBACK_P1 (copy-back cache for P1, data cache

only)
CACHE_2WAY_MODE (use RAM in 2way associ. mode)
CACHE_DMA_BYPASS_P0 (allocate DMA buffer to P2, free it to

P0)
CACHE_DMA_BYPASS_P1 (allocate DMA buffer to P2, free it to

P1)
CACHE_DMA_BYPASS_P3 (allocate DMA buffer to P2, free it to

P3)

VxWorks Kernel API Reference, 6.6
cacheStoreBufDisable()

102

cacheStoreBufDisable()

NAME cacheStoreBufDisable() – disable the store buffer (MC68060 only)

SYNOPSIS void cacheStoreBufDisable (void)

DESCRIPTION This routine resets the ESB bit of the Cache Control Register (CACR) to disable the store
buffer.

RETURNS N/A

ERRNO Not Available

SEE ALSO cacheArchLib

cacheStoreBufEnable()

NAME cacheStoreBufEnable() – enable the store buffer (MC68060 only)

SYNOPSIS void cacheStoreBufEnable (void)

DESCRIPTION This routine sets the ESB bit of the Cache Control Register (CACR) to enable the store buffer.
To maximize performance, the four-entry first-in-first-out (FIFO) store buffer is used to
defer pending writes to writethrough or cache-inhibited imprecise pages.

RETURNS N/A

ERRNO Not Available

SEE ALSO cacheArchLib

cacheTextLocalUpdate()

NAME cacheTextLocalUpdate() – synchronize the caches on local cpu only

SYNOPSIS STATUS cacheTextLocalUpdate
 (
 void * address, /* virtual address */

2 Routines
cacheTx49LibInit()

103

2

 size_t bytes /* number of bytes to sync */
)

DESCRIPTION This routine flushes the data cache, then invalidates the instruction cache. This operation
forces the instruction cache to fetch code that may have been created via the data path. The
operation is limited to the local CPU (i.e., no CPC is performed).

RETURNS OK, or ERROR if the cache control is not supported.

ERRNO N/A

SEE ALSO cacheLib

cacheTextUpdate()

NAME cacheTextUpdate() – synchronize the instruction and data caches

SYNOPSIS STATUS cacheTextUpdate
 (
 void * address, /* virtual address */
 size_t bytes /* number of bytes to sync */
)

DESCRIPTION This routine flushes the data cache, then invalidates the instruction cache. This operation
forces the instruction cache to fetch code that may have been created via the data path.

RETURNS OK, or ERROR if the cache control is not supported.

ERRNO N/A

SEE ALSO cacheLib

cacheTx49LibInit()

NAME cacheTx49LibInit() – initialize the Tx49 cache library

SYNOPSIS STATUS cacheTx49LibInit
 (
 CACHE_MODE instMode, /* instruction cache mode */
 CACHE_MODE dataMode, /* data cache mode */

VxWorks Kernel API Reference, 6.6
cacheUnlock()

104

 UINT32 iCacheSize, /* instruction cache size */
 UINT32 iCacheLineSize, /* instruction cache line size */
 UINT32 dCacheSize, /* data cache size */
 UINT32 dCacheLineSize /* data cache line size */
)

DESCRIPTION This routine initializes the function pointers for the Tx49 cache library. The board support
package can select this cache library by assigning the function pointer sysCacheLibInit to
cacheTx49LibInit().

RETURNS OK.

ERRNO Not Available

SEE ALSO cacheTx49Lib

cacheUnlock()

NAME cacheUnlock() – unlock all or part of a specified cache

SYNOPSIS STATUS cacheUnlock
 (
 CACHE_TYPE cache, /* cache to unlock */
 void * address, /* virtual address */
 size_t bytes /* number of bytes to unlock */
)

DESCRIPTION This routine unlocks all (global) or some (local) entries in the specified cache. Not all caches
can perform unlocking.

RETURNS OK, or ERROR if the cache type is invalid or the cache control is not supported.

ERRNO S_cacheLib_INVALID_CACHE
the cache type specified is invalid.

SEE ALSO cacheLib

2 Routines
cbioBlkCopy()

105

2

calloc()

NAME calloc() – allocate space for an array (ANSI)

SYNOPSIS void * calloc
 (
 size_t elemNum, /* number of elements */
 size_t elemSize /* size of elements */
)

DESCRIPTION This routine allocates a block of memory for an array that contains elemNum elements of size
elemSize. This space is initialized to zeros.

RETURNS A pointer to the block, or NULL if the call fails.

ERRNO Possible errnos generated by this routine include:

S_memLib_NOT_ENOUGH_MEMORY
There is no free block large enough to satisfy the allocation request.

SEE ALSO memPartLib, American National Standard for Information Systems -, Programming Language - C,
ANSI X3.159-1989: General Utilities (stdlib.h)

cbioBlkCopy()

NAME cbioBlkCopy() – block to block (sector to sector) transfer routine

SYNOPSIS STATUS cbioBlkCopy
 (
 CBIO_DEV_ID dev, /* CBIO handle */
 block_t srcBlock, /* source start block */
 block_t dstBlock, /* destination start block */
 block_t numBlocks /* number of blocks to copy */
)

DESCRIPTION This routine verifies the CBIO device is valid and if so calls the devices block to block
transfer routine which makes copies of one or more blocks on the lower layer (hardware,
subordinate CBIO, or BLK_DEV). It is optimized for block to block copies on the
subordinate layer.

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

VxWorks Kernel API Reference, 6.6
cbioBlkRW()

106

RETURNS OK if successful or ERROR if the handle is invalid, or if the CBIO device routine returns
ERROR.

ERRNO Not Available

SEE ALSO cbioLib

cbioBlkRW()

NAME cbioBlkRW() – transfer blocks to or from memory

SYNOPSIS STATUS cbioBlkRW
 (
 CBIO_DEV_ID dev, /* CBIO handle */
 block_t startBlock, /* starting block of transfer */
 block_t numBlocks, /* number of blocks to transfer */
 addr_t buffer, /* address of the memory buffer */
 CBIO_RW rw, /* direction of transfer R/W */
 cookie_t * pCookie /* pointer to cookie */
)

DESCRIPTION This routine verifies the CBIO device is valid and if so calls the devices block transfer
routine. The CBIO device performs block transfers between the device and memory.

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK if successful or ERROR if the handle is invalid, or if the CBIO device routine returns
ERROR.

ERRNO Not Available

SEE ALSO cbioLib

cbioBytesRW()

NAME cbioBytesRW() – transfer bytes to or from memory

SYNOPSIS STATUS cbioBytesRW
 (
 CBIO_DEV_ID dev, /* CBIO handle */

2 Routines
cbioDevCreate()

107

2

 block_t startBlock, /* starting block of the transfer */
 off_t offset, /* offset into block in bytes */
 addr_t buffer, /* address of data buffer */
 size_t nBytes, /* number of bytes to transfer */
 CBIO_RW rw, /* direction of transfer R/W */
 cookie_t * pCookie /* pointer to cookie */
)

DESCRIPTION This routine verifies the CBIO device is valid and if so calls the devices byte transfer routine
which transfers between a user buffer and the lower layer (hardware, subordinate CBIO, or
BLK_DEV). It is optimized for byte transfers.

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK if successful or ERROR if the handle is invalid, or if the CBIO device routine returns
ERROR.

ERRNO Not Available

SEE ALSO cbioLib

cbioDevCreate()

NAME cbioDevCreate() – Initialize a CBIO device (Generic)

SYNOPSIS CBIO_DEV_ID cbioDevCreate
 (
 caddr_t ramAddr, /* where it is in memory (0 = KHEAP_ALLOC) */
 size_t ramSize /* pool size */
)

DESCRIPTION This routine will create an empty CBIO_DEV structure and return a handle to that structure
(CBIO_DEV_ID).

This routine is intended to be used by CBIO modules only. See cbioLibP.h

RETURNS CBIO_DEV_ID or NULL if ERROR.

ERRNO Not Available

SEE ALSO cbioLib

VxWorks Kernel API Reference, 6.6
cbioDevVerify()

108

cbioDevVerify()

NAME cbioDevVerify() – verify CBIO_DEV_ID

SYNOPSIS STATUS cbioDevVerify
 (
 CBIO_DEV_ID device /* CBIO_DEV_ID to be verified */
)

DESCRIPTION The purpose of this function is to determine if the device complies with the CBIO interface.
It can be used to verify a CBIO handle before it is passed to dosFsLib, rawFsLib,
usrFdiskPartLib, or other CBIO modules which expect a valid CBIO interface.

The device handle provided to this function, device is verified to be a CBIO device. If device
is not a CBIO device ERROR is returned with errno set to
S_cbioLib_INVALID_CBIO_DEV_ID

The dcacheCbio and dpartCbio CBIO modules (and dosFsLib) use this function internally,
and therefore this function need not be otherwise invoked when using compliant CBIO
modules.

RETURNS OK or ERROR if not a CBIO device, if passed a NULL address, or if the check could cause an
unaligned access.

ERRNO Not Available

SEE ALSO cbioLib, dosFsLib, dcacheCbio(), dpartCbio()

cbioIoctl()

NAME cbioIoctl() – perform ioctl operation on device

SYNOPSIS STATUS cbioIoctl
 (
 CBIO_DEV_ID dev, /* CBIO handle */
 int command, /* ioctl command to be issued */
 addr_t arg /* arg - specific to ioctl */
)

DESCRIPTION This routine verifies the CBIO device is valid and if so calls the devices I/O control
operation routine.

CBIO modules expect the following ioctl() codes:

2 Routines
cbioLibInit()

109

2

- CBIO_RESET - reset the CBIO device. When the third argument to the ioctl call
accompanying CBIO_RESET is NULL, the code verifies that the disk is inserted and is
ready, after getting it to a known state. When the 3rd argument is a non-zero, it is
assumed to be a BLK_DEV pointer and CBIO_RESET will install a new subordinate
block device. This work is performed at the BLK_DEV to CBIO layer, and all layers
shall account for it. A CBIO_RESET indicates a possible change in device geometry, and
the CBIO_PARAMS members will be reinitialized after a CBIO_RESET.

- CBIO_STATUS_CHK - check device status of CBIO device and lower layer

- CBIO_DEVICE_LOCK - Prevent disk removal

- CBIO_DEVICE_UNLOCK - Allow disk removal

- CBIO_DEVICE_EJECT - Unmount and eject device

- CBIO_CACHE_FLUSH - Flush any dirty cached data

- CBIO_CACHE_INVAL - Flush & Invalidate all cached data

- CBIO_CACHE_NEWBLK - Allocate scratch block

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK if successful or ERROR if the handle is invalid, or if the CBIO device routine returns
ERROR.

ERRNO Not Available

SEE ALSO cbioLib

cbioLibInit()

NAME cbioLibInit() – Initialize CBIO Library

SYNOPSIS STATUS cbioLibInit(void)

DESCRIPTION This function initializes the CBIO library, and will be called when the first CBIO device is
created, hence it does not need to be called during system initialization. It can be called
multiple times, but will do nothing after the first call.

RETURNS OK or ERROR

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
cbioLock()

110

SEE ALSO cbioLib

cbioLock()

NAME cbioLock() – obtain CBIO device semaphore.

SYNOPSIS STATUS cbioLock
 (
 CBIO_DEV_ID dev, /* CBIO handle */
 int timeout /* timeout in ticks */
)

DESCRIPTION If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK or ERROR if the CBIO handle is invalid or semTake fails.

ERRNO Not Available

SEE ALSO cbioLib

cbioModeGet()

NAME cbioModeGet() – return the mode setting for CBIO device

SYNOPSIS int cbioModeGet
 (
 CBIO_DEV_ID dev /* CBIO handle */
)

DESCRIPTION If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID This routine is not protected
by a semaphore.

This routine confirms if the current layer is a CBIO to BLKDEV wrapper or a CBIO to CBIO
layer. Depending on the current layer it either returns the mode from BLK_DEV or calls
cbioModeGet() recursively.

RETURNS O_RDONLY, O_WRONLY, or O_RDWR or ERROR

ERRNO Not Available

2 Routines
cbioParamsGet()

111

2

SEE ALSO cbioLib

cbioModeSet()

NAME cbioModeSet() – set mode for CBIO device

SYNOPSIS STATUS cbioModeSet
 (
 CBIO_DEV_ID dev, /* CBIO handle */
 int mode /* O_RDONLY, O_WRONLY, or O_RDWR */
)

DESCRIPTION Valid modes are O_RDONLY, O_WRONLY, or O_RDWR.

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID This routine is not protected
by a semaphore.

This routine confirms if the current layer is a CBIO to BLKDEV wrapper or a CBIO to CBIO
layer. Depending on the current layer it either sets the mode of the BLK_DEV or calls
cbioModeSet() recursively.

RETURNS OK or ERROR if mode is not set.

ERRNO Not Available

SEE ALSO cbioLib

cbioParamsGet()

NAME cbioParamsGet() – fill in CBIO_PARAMS structure with CBIO device parameters

SYNOPSIS STATUS cbioParamsGet
 (
 CBIO_DEV_ID dev, /* CBIO handle */
 CBIO_PARAMS * pCbioParams /* pointer to CBIO_PARAMS */
)

DESCRIPTION If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

VxWorks Kernel API Reference, 6.6
cbioRdyChgdGet()

112

RETURNS OK or ERROR if the CBIO handle is invalid.

ERRNO Not Available

SEE ALSO cbioLib

cbioRdyChgdGet()

NAME cbioRdyChgdGet() – determine ready status of CBIO device

SYNOPSIS int cbioRdyChgdGet
 (
 CBIO_DEV_ID dev /* CBIO handle */
)

DESCRIPTION For example

 switch (cbioRdyChgdGet (cbioDeviceId))
 {
 case TRUE:
 printf ("Disk changed.\n");
 break;
 case FALSE:
 printf ("Disk has not changed.\n");
 break;
 case ERROR:
 printf ("Not a valid CBIO device.\n");
 break;
 default:
 break;
 }

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID This routine is not protected
by a semaphore.

This routine will check down to the driver layer to see if any lower layer has its ready
changed bit set to TRUE. If so, this routine returns TRUE. If no lower layer has its ready
changed bit set to TRUE, this layer returns FALSE.

RETURNS TRUE if device ready status has changed, else FALSE if the ready status has not changed,
else ERROR if the CBIO_DEV_ID is invalid.

ERRNO Not Available

SEE ALSO cbioLib

2 Routines
cbioShow()

113

2

cbioRdyChgdSet()

NAME cbioRdyChgdSet() – force a change in ready status of CBIO device

SYNOPSIS STATUS cbioRdyChgdSet
 (
 CBIO_DEV_ID dev, /* CBIO handle */
 BOOL status /* TRUE/FALSE */
)

DESCRIPTION Pass TRUE in status to force READY status change.

If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID If status is not passed as TRUE
or FALSE, ERROR is returned. This routine is not protected by a semaphore.

This routine sets readyChanged bit of passed CBIO_DEV.

RETURNS OK or ERROR if the device is invalid or status is not TRUE or FALSE.

ERRNO Not Available

SEE ALSO cbioLib

cbioShow()

NAME cbioShow() – print information about a CBIO device

SYNOPSIS STATUS cbioShow
 (
 CBIO_DEV_ID dev /* CBIO handle */
)

DESCRIPTION This function will display on standard output all information which is generic for all CBIO
devices. See the CBIO modules particular device show routines for displaying
implementation-specific information.

It takes two arguments:

A CBIO_DEV_ID which is the CBIO handle to display or NULL for the most recent device.

RETURNS OK or ERROR if no valid CBIO_DEV is found.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
cbioUnlock()

114

SEE ALSO cbioLib, dcacheShow(), dpartShow()

cbioUnlock()

NAME cbioUnlock() – release CBIO device semaphore.

SYNOPSIS STATUS cbioUnlock
 (
 CBIO_DEV_ID dev /* CBIO handle */
)

DESCRIPTION If the CBIO_DEV_ID passed to this routine is not a valid CBIO handle, ERROR will be
returned with errno set to S_cbioLib_INVALID_CBIO_DEV_ID

RETURNS OK or ERROR if the CBIO handle is invalid or the semGive fails.

ERRNO Not Available

SEE ALSO cbioLib

cbioWrapBlkDev()

NAME cbioWrapBlkDev() – create CBIO wrapper atop a BLK_DEV device

SYNOPSIS CBIO_DEV_ID cbioWrapBlkDev
 (
 BLK_DEV * pDevice /* BLK_DEV * device pointer */
)

DESCRIPTION The purpose of this function is to make a blkIo (BLK_DEV) device comply with the CBIO
interface via a wrapper.

The device handle provided to this function, device is verified to be a blkIo device. A lean
CBIO to BLK_DEV wrapper is then created for a valid blkIo device. The returned
CBIO_DEV_ID device handle may be used with dosFsDevCreate(), dcacheDevCreate(),
and any other routine expecting a valid CBIO_DEV_ID handle.

To verify a blkIo pointer we see that all mandatory functions are not NULL.

Note that if a valid CBIO_DEV_ID is passed to this function, it will simply be returned
without modification.

2 Routines
cbrtf()

115

2

The dosFsLib, dcacheCbio, and dpartCbio CBIO modules use this function internally, and
therefore this function need not be otherwise invoked when using those CBIO modules.

RETURNS a CBIO device pointer, or NULL if not a blkIo device

ERRNO Not Available

SEE ALSO cbioLib, dosFsLib, dcacheCbio(), dpartCbio()

cbrt()

NAME cbrt() – compute a cube root

SYNOPSIS double cbrt
 (
 double x /* value to compute the cube root of */
)

DESCRIPTION This routine returns the cube root of x in double precision.

RETURNS The double-precision cube root of x.

ERRNO Not Available

SEE ALSO mathALib

cbrtf()

NAME cbrtf() – compute a cube root

SYNOPSIS float cbrtf
 (
 float x /* argument */
)

DESCRIPTION This routine returns the cube root of x in single precision.

RETURNS The single-precision cube root of x.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
cd()

116

SEE ALSO mathALib

cd()

NAME cd() – change the default directory

SYNOPSIS STATUS cd
 (
 const char * name /* new directory name */
)

DESCRIPTION This command sets the default directory to name. The default directory is a device name,
optionally followed by a directory local to that device.

NOTE This is a target resident function, which manipulates the target I/O system. It must be
preceded with the @ letter if executed from the Host Shell (windsh), which has a built-in
command of the same name that operates on the Host's I/O system.

To change to a different directory, specify one of the following:

- an entire path name with a device name, possibly followed by a directory name. The
entire path name will be changed.

- a directory name starting with a ~ or / or $. The directory part of the path, immediately
after the device name, will be replaced with the new directory name.

- a directory name to be appended to the current default directory. The directory name
will be appended to the current default directory.

An instance of ".." indicates one level up in the directory tree.

Note that when accessing a remote file system via RSH or FTP, the VxWorks network device
must already have been created using netDevCreate().

WARNING The cd() command does very little checking that name represents a valid path. If the path is
invalid, cd() may return OK, but subsequent calls that depend on the default path will fail.

EXAMPLES The following example changes the directory to device /fd0/:

 -> cd "/fd0/"

This example changes the directory to device wrs: with the local directory ~leslie/target:

 -> cd "wrs:~leslie/target"

After the previous command, the following changes the directory to
wrs:~leslie/target/config:

 -> cd "config"

2 Routines
cdromFsDevCreate()

117

2

After the previous command, the following changes the directory to
wrs:~leslie/target/demo:

 -> cd "../demo"

After the previous command, the following changes the directory to wrs:/etc.

 -> cd "/etc"

Note that ~ can be used only on network devices (RSH or FTP).

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO usrFsLib, pwd(), the VxWorks programmer guides, the, VxWorks Command-Line Tools
User's Guide.

cdromFsDevCreate()

NAME cdromFsDevCreate() – create a CD-ROM filesystem (cdromFs) I/O device.

SYNOPSIS CDROM_VOL_DESC_ID cdromFsDevCreate
 (
 char * devName, /* device name */
 device_t device /* underlying block device handle */
)

DESCRIPTION This routine creates an instance of a cdromFs device in the I/O system. As input, this
function requires an eXtended Block Device (XBD) identifier (device_t) for the CD drive on
which to create a cdromFs I/O device. Thus, xxxXbdDevCreate(), for example, should have
already been called to create the XBD device. Alternatively, xxxBlkDevCreate(), for
example, can be called to create a legacy BLK_DEV driver followed by xbdBlkDevCreate()
to create an XBD wrapper around the BLK_DEV device.

RETURNS CDROM_VOL_DESC_ID, or NULL if error.

ERRNO S_memLib_NOT_ENOUGH_MEMORY

SEE ALSO cdromFsLib, cdromFsInit()

VxWorks Kernel API Reference, 6.6
cdromFsDevDelete()

118

cdromFsDevDelete()

NAME cdromFsDevDelete() – delete a CD-ROM filesystem (cdromFs) I/O device

SYNOPSIS STATUS cdromFsDevDelete
 (
 CDROM_VOL_DESC_ID pVolDesc /* ptr to CDROM_VOL_DESC */
)

DESCRIPTION This routine deletes the specified volume. This involves removing the "device" from the I/O
system, and freeing all resources associated with the volume.

RETURNS OK if specified volume was successfully deleted, otherwise ERROR

ERRNO Not Available

SEE ALSO cdromFsLib, cdromFsInit(), cdromFsDevCreate()

cdromFsInit()

NAME cdromFsInit() – initialize the VxWorks CD-ROM file system

SYNOPSIS STATUS cdromFsInit
 (
 UINT32 commonBufferSize /* common buffer size */
)

DESCRIPTION This routine initializes the VxWorks CD-ROM file system. It is automatically called when
the INCLUDE_CDROMFS component is configured into the system.

RETURNS OK or ERROR, if driver can not be installed.

ERRNO S_iosLib_DRIVER_GLUT

SEE ALSO cdromFsLib, cdromFsDevCreate(), iosLib.h

2 Routines
cdromFsVolConfigShow()

119

2

cdromFsVersionDisplay()

NAME cdromFsVersionDisplay() – display the cdromFs version number

SYNOPSIS void cdromFsVersionDisplay
 (
 int level /* level of display, not used */
)

DESCRIPTION This routine displays the cdromFs version number. This routine has been deprecated.

RETURNS N/A

ERRNO Not Available

SEE ALSO cdromFsLib, cdromFsVersionNumGet(), cdromFsVolConfigShow()

cdromFsVersionNumGet()

NAME cdromFsVersionNumGet() – return the cdromFs version number

SYNOPSIS uint32_t cdromFsVersionNumGet
 (
 void
)

DESCRIPTION This routine returns the cdromFs version number. This routine has been deprecated.

RETURNS the cdromFs version number.

ERRNO Not Available

SEE ALSO cdromFsLib, cdromFsVersionDisplay()

cdromFsVolConfigShow()

NAME cdromFsVolConfigShow() – show the volume configuration information

SYNOPSIS VOID cdromFsVolConfigShow

VxWorks Kernel API Reference, 6.6
ceilf()

120

 (
 void * arg /* device name or CDROM_VOL_DESC * */
)

DESCRIPTION This routine retrieves the volume configuration for the named cdromFsLib device and
prints it to standard output. The information displayed is retrieved from the BLK_DEV
structure for the specified device.

RETURNS N/A

ERRNO Not Available

SEE ALSO cdromFsLib, N/A

ceilf()

NAME ceilf() – compute the smallest integer greater than or equal to a specified value (ANSI)

SYNOPSIS float ceilf
 (
 float v /* value to find the ceiling of */
)

DESCRIPTION This routine returns the smallest integer greater than or equal to v, in single precision.

RETURNS The smallest integral value greater than or equal to v, in single precision.

ERRNO Not Available

SEE ALSO mathALib

cfree()

NAME cfree() – free a block of memory from the system memory partition (kernel heap)

SYNOPSIS STATUS cfree
 (
 char * pBlock /* pointer to block of memory to free */
)

2 Routines
checkStack()

121

2

DESCRIPTION This routine returns to the free memory pool a block of memory previously allocated with
calloc().

It is an error to free a memory block that was not previously allocated.

RETURNS OK, or ERROR if the the block is invalid.

ERRNO Possible errnos generated by this routine include:

S_memLib_BLOCK_ERROR
The block of memory to free is not valid.

SEE ALSO memPartLib

checkStack()

NAME checkStack() – print a summary of each task's stack usage

SYNOPSIS void checkStack
 (
 int taskNameOrId /* task name or task ID; 0 = summarize all */
)

DESCRIPTION This command displays a summary of stack usage for a specified task, or for all tasks if no
argument is given. The summary includes the total stack size (SIZE), the current number of
stack bytes used (CUR), the maximum number of stack bytes used (HIGH), and the number
of bytes never used at the top of the stack (MARGIN = SIZE - HIGH).

Both the execution and the exception stack information are displayed. The exception stack
is used by the task when it gets an exception or by a process task when it enters a system call
and executes kernel code.

For example:

-> checkStack tShell0
 NAME ENTRY TID SIZE CUR HIGH MARGIN
------------ ------------ ---------- ----- ----- ----- ------
tShell0 shellTask 0x60351ba8 77824 6272 14144 63680
(Exception Stack) 12096 0 680 11416
value = 1614093224 = 0x60351ba8

The maximum stack usage is determined by scanning down from the top of the stack for the
first byte whose value is not 0xee. In VxWorks, when a task is spawned, all bytes of a task's
stack are initialized to 0xee. The task's stack will not be filled with 0xee if the task option
VX_NO_STACK_FILL is specified or if the kernel configuration parameter
VX_GLOBAL_NO_STACK_FILL is set to TRUE.

VxWorks Kernel API Reference, 6.6
chkdsk()

122

DEFICIENCIES It is possible for a task to write beyond the end of its stack, but not write into the last part of
its stack. This will not be detected by checkStack().

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, taskSpawn(), the VxWorks programmer guides.

chkdsk()

NAME chkdsk() – perform consistency checking on a MS-DOS file system

SYNOPSIS STATUS chkdsk
 (
 const char * pDevName, /* device name */
 u_int repairLevel, /* how to fix errors */
 u_int verbose /* verbosity level */
)

DESCRIPTION This function invokes the integral consistency checking built into the dosFsLib file system,
via FIOCHKDSK ioctl. During the test, the volume will be un-mounted and re-mounted,
invalidating file descriptors to prevent any application code from accessing the volume
during the test. If the drive was exported, it will need to be re-exported again as its file
descriptors were also invalidated. Furthermore, the test will emit messages describing any
inconsistencies found on the disk, as well as some statistics, depending upon the value of
the verbose argument. Depending upon the value of repairLevel, the inconsistencies will be
repaired, and changes written to disk.

These are the values for repairLevel:

0
Same as DOS_CHK_ONLY (1)

DOS_CHK_ONLY (1)
Only report errors, do not modify disk.

DOS_CHK_REPAIR (2)
Repair any errors found.

These are the values for verbose:

0
similar to DOS_CHK_VERB_1

DOS_CHK_VERB_SILENT (0xff00)
Do not emit any messages, except errors encountered.

2 Routines
chmod()

123

2

DOS_CHK_VERB_1 (0x0100)
Display some volume statistics when done testing, as well as errors encountered during
the test.

DOS_CHK_VERB_2 (0x0200)
In addition to the above option, display path of every file, while it is being checked. This
option may significantly slow down the test process.

Note that the consistency check procedure will unmount the file system, meaning the all
currently open file descriptors will be deemed unusable.

RETURNS OK or ERROR if device can not be checked or could not be repaired.

ERRNO Not Available

SEE ALSO usrFsLib, dosFsLib, the VxWorks programmer guides.

chmod()

NAME chmod() – change the permission mode of a file

SYNOPSIS int chmod
 (
 const char *path, /* path of the file */
 mode_t mode /* mode bits to change */
)

DESCRIPTION The chmod utility changes or assigns the mode of a file. The mode of a file specifies its
permissions and other attributes. Note that this routine receives path of the file whose
mode needs to be changed as the first argument compairing to fchmod routine.

The value of mode is bitwise inclusive OR of the permissions to be assigned

These permission constants are defined in sys/stat.h as follows:

S_IRUSR
Read permission, owner.

S_IWUSR
Write permission, owner.

S_IXUSR
Execute/search permission, owner.

S_IRWXU
Read/write/execute permission, owner.

VxWorks Kernel API Reference, 6.6
chmod()

124

S_IRGRP
Read permission, group.

S_IWGRP
Write permission, group.

S_IXGRP
Execute/search permission, group.

S_IRWXG
Read/write/execute permission, group.

S_IROTH
Read permission, other.

S_IWOTH
Write permission, other.

S_IXOTH
Execute/search permission, other.

S_IRWXO
Read/write/execute permission, other.

RETURNS If it succeeds, returns OK, 0. Otherwise, ERROR, -1 is returned, errno is set to indicate the
error and no change is done to the file.

The following example changes the mode of the file "myFile" to owner
Read/write/execute, group Read and other Read:

 status = chmod ("myFile", S_IRWXU | S_IRGRP | S_IROTH);

ERRNO ENOENT
Either path is an empty string or NULL pointer.

ELOOP
Circular symbolic link of path, or too many links.

EMFILE
Maximum number of files already open.

S_iosLib_DEVICE_NOT_FOUND (ENODEV)
No valid device name found in path.

others
Other errors reported by device driver of path.

SEE ALSO fsPxLib

2 Routines
clock_gettime()

125

2

clock_getres()

NAME clock_getres() – get the clock resolution (POSIX)

SYNOPSIS int clock_getres
 (
 clockid_t clock_id, /* clock ID */
 struct timespec * res /* where to store resolution */
)

DESCRIPTION This routine gets the clock resolution, in nanoseconds, based on the rate returned by
sysClkRateGet(). If res is non-NULL, the resolution is stored in the location pointed to.

RETURNS 0 (OK), or -1 (ERROR) if clock_id is invalid.

ERRNO EINVAL

SEE ALSO clockLib, clock_settime(), sysClkRateGet(), clock_setres()

clock_gettime()

NAME clock_gettime() – get the current time of the clock (POSIX)

SYNOPSIS int clock_gettime
 (
 clockid_t clock_id, /* clock ID */
 struct timespec * tp /* where to store current time */
)

DESCRIPTION This routine gets the current value tp for the clock.

RETURNS 0 (OK), or -1 (ERROR) if clock_id is invalid or tp is NULL.

ERRNO EINVAL
EFAULT

SEE ALSO clockLib

VxWorks Kernel API Reference, 6.6
clock_nanosleep()

126

clock_nanosleep()

NAME clock_nanosleep() – high resolution sleep with specifiable clock

SYNOPSIS int clock_nanosleep
 (
 clockid_t clock_id,
 int flags,
 const struct timespec * rqtp,
 struct timespec * rmtp
)

DESCRIPTION If the flag TIMER_ABSTIME is not set in flags, this function causes the current thread to be
delayed until either the time interval specified by rqtp has elapsed, or a signal is delivered
to the calling thread and its action is to invoke a signal handler, or the process is terminated.
The clock used to measure the time is the clock specified by clock_id.

If the flag TIMER_ABSTIME is set in flags, this function causes the current thread to be
delayed until either the time value of the clock specified by clock_id reaches the absolute
time specified by rqtp, or a signal is delivered to the calling thread whose action is to invoke
a signal handler, or the process is terminated. If at the time of the call, the time value
specified by rqtp is less than or equal to the time value of clock_id, this function returns
immediately without delaying the calling process.

The delay caused by this function may be longer than requested because rqtp is rounded up
to an integer multiple of the timer resolution, or because of the scheduling of other tasks by
the system. Except for the case of being interrupted by a signal, the suspension time for the
relative delay (i.e. if TIMER_ABSTIME is not set) is not less than the time interval rqtp, as
measured by the corresponding clock.

If a signal is caught by the calling task while sleeping for a relative time delay (i.e. flag
TIMER_ABSTIME is not set in the flags argument), and the rmtp argument is non-NULL, the
timespec structure referenced by rmtp is updated to contain the amount of time remaining
in the interval. This is the requested sleep time minus the time actually slept.

This function only supports CLOCK_REALTIME and CLOCK_MONOTONIC clocks.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL
tp is outside the supported range, or the tp nanosecond value is less than 0 or equal to
or greater than 1,000,000,000.

EINTR
The sleep was interrupted by receiving a signal .

ENOTSUP
The clock_id value is not supported.

2 Routines
clock_settime()

127

2

SEE ALSO clockLib, clock_getres()

clock_setres()

NAME clock_setres() – set the clock resolution

SYNOPSIS int clock_setres
 (
 clockid_t clock_id, /* clock ID */
 struct timespec * res /* resolution to be set */
)

DESCRIPTION This routine is obsolete. It will always return OK.

NOTE Non-POSIX.

RETURNS OK always.

ERRNO EINVAL

SEE ALSO clockLib, clock_getres(), sysClkRateSet()

clock_settime()

NAME clock_settime() – set the clock to a specified time (POSIX)

SYNOPSIS int clock_settime
 (
 clockid_t clock_id, /* clock ID */
 const struct timespec * tp /* time to set */
)

DESCRIPTION This routine sets the clock to the value tp, which should be a multiple of the clock resolution.
If tp is not a multiple of the resolution, it is truncated to the next smallest multiple of the
resolution.

RETURNS 0 (OK), or -1 (ERROR) if clock_id is invalid, tp is outside the supported range, or the tp
nanosecond value is less than 0 or equal to or greater than 1,000,000,000.

ERRNO EINVAL

VxWorks Kernel API Reference, 6.6
close()

128

SEE ALSO clockLib, clock_getres()

close()

NAME close() – close a file

SYNOPSIS STATUS close
 (
 int fd /* file descriptor to close */
)

DESCRIPTION This routine closes the specified file and frees the file descriptor. It calls the device driver to
do the work.

RETURNS The status of the driver close routine, or ERROR if the file descriptor is invalid.

ERRNO EBADF
Invalid file descriptor.

Others
Other errors generated by device drivers.

SEE ALSO ioLib

closedir()

NAME closedir() – close a directory (POSIX)

SYNOPSIS STATUS closedir
 (
 DIR *pDir /* pointer to directory descriptor */
)

DESCRIPTION This routine closes a directory which was previously opened using opendir(). The pDir
parameter is the directory descriptor pointer that was returned by opendir().

RETURNS OK or ERROR, the result of the close() command.

ERRNO EBADF
Invalid file descriptor.

2 Routines
cnsAppRegister()

129

2

Others
Other errors generated by device drivers.

SEE ALSO dirLib, opendir(), readdir(), rewinddir()

cnsAppRegister()

NAME cnsAppRegister() – Registers an application with the CNS library.

SYNOPSIS STATUS cnsAppRegister
 (
 char * pName,
 CNS_APP_READ_FUNCPTR readFunc,
 CNS_APP_WRITE_FUNCPTR writeFunc,
 CNS_MEDIATYPE_ADD_FUNCPTR mediaTypeAddFunc,
 CNS_MEDIATYPE_REMOVE_FUNCPTR mediaTypeRmFunc,
 CNS_DATA_PARSE_FUNCPTR dataParse
)

DESCRIPTION This routine registers an application that uses CNS services. The information to be passed
during registration includes the application name and function pointers to access the
application's local objects.

ARGUMENTS pName identifies the application.

readFunc
writeFunc
haveServer - Specifies whether the application implements its own read

server.

mediaTypeAddFunc - Reuired only if haveServer is set to TRUE. It
points to a function to notify the application of the
addition of a new media type.

mediaTypeRmFunc - Reuired only if haveServer is set to TRUE. It points
to a function to notify the application of the
removal of a media type.

RETURNS OK or ERROR if no more media can be added or pAppInfo is NULL or one
or more of the fields of cnsAppInfo_t are NULL.

VxWorks Kernel API Reference, 6.6
cnsClose()

130

ERRNO ERRNO for CNS-internal errors are TBD.

SEE ALSO cnsLib

cnsClose()

NAME cnsClose() – Close or create and open named communication medium for read/write.

SYNOPSIS STATUS cnsClose
 (
 cnsMediaId_t * pMediaId
)

DESCRIPTION This routine closes the named communication medium.

ARGUMENTS pMediaId is a pointer to an instance of the cnsMediaId_t, which
describes the media being closed. pMediaId->connId cannot be 0.

RETURNS OK or ERROR if the named media cannot be closed.

ERRNO cnsClose maintains the ERRNO of the underlying media for media close
errors. ERRNO for CNS-internal errors are TBD.

SEE ALSO cnsLib

cnsCompLibInit()

NAME cnsCompLibInit() – Initialize the CNS COMP library.

SYNOPSIS STATUS cnsCompLibInit
 (
 void
)

DESCRIPTION This routine initializes the CNS COMP library.

2 Routines
cnsDefaultMediaTypeSet()

131

2

ARGUMENTS N/A

RETURNS OK or ERROR if media registration fails.

ERRNO ERRNO for CNS-internal errors are TBD.

SEE ALSO cnsCompLib

cnsDefaultMediaTypeSet()

NAME cnsDefaultMediaTypeSet() – Set the default media type.

SYNOPSIS STATUS cnsDefaultMediaTypeSet
 (
 char * pName
)

DESCRIPTION This routine sets the default media type to that specified by pName. The default media type
is used in cases where channel access routines are called without specifying the media type.

ARGUMENTS pName specifies the media type to which the default is set.

Returns:
ERROR if the specified media type does not exist or OK.

RETURNS Not Available

ERRNO S_cnsLib_MEDIATYPE_INVALID if the specified media type does not exist.
S_cnsLib_GEN_ERROR

SEE ALSO cnsLib

VxWorks Kernel API Reference, 6.6
cnsLibInit()

132

cnsLibInit()

NAME cnsLibInit() – Initialize the CNS library.

SYNOPSIS STATUS cnsLibInit
 (
 ulong_t maxMediaCount
)

DESCRIPTION This routine initializes the CNS library.

ARGUMENTS maxMediaCount, if non-0, specifies the maximum number of media types to
support. If 0, cnsLib uses the default CNS_MAX_MEDIA_TYPES, which is
currently defined in 'cnsCfg.h.

RETURNS OK or ERROR if write error occurs.

ERRNO ERRNO for CNS-internal errors are TBD.

SEE ALSO cnsLib

cnsMediaRegister()

NAME cnsMediaRegister() – Registers a communication media with the CNS.

SYNOPSIS STATUS cnsMediaRegister
 (
 cnsMediaInfo_t * pMediaInfo
)

DESCRIPTION This routine registers a communication media with the CNS. The information to be passed
during registration includes the medium type name and function pointers that are used to
access the communication medium.

ARGUMENTS pMediaInfo is a pointer to an instance of the cnsMediaInfo_t, which
specifies the medium name and the pointers to medium access functions.

2 Routines
cnsMediaTypeRemove()

133

2

RETURNS OK or ERROR if no more media can be added or pMediaInfo is NULL or one
or more of the fields of cnsMediaInfo_t are NULL.

ERRNO ERRNO for CNS-internal errors are TBD.

SEE ALSO cnsLib

cnsMediaTypeRemove()

NAME cnsMediaTypeRemove() – Remove a media type from an application's media list.

DESCRIPTION cnsMediaRegister() calls this routine everytime a new media type is removed to the media
list.

ARGUMENTS pApp, points to an instance of the cnsApp_t structure, which
describes the application.

type identifies the media type being added.

RETURNS OK or ERROR.

ERRNO ERRNO for CNS-internal errors are TBD.

TODO: Must implement this.

STATUS cnsMediaTypeRemove
(
cnsApp_t * pApp,
lont type
)

{ }

SEE ALSO cnsLib

VxWorks Kernel API Reference, 6.6
cnsMediumTypeNext()

134

cnsMediumTypeNext()

NAME cnsMediumTypeNext() – Return the name of the media type next in the list.

SYNOPSIS char * cnsMediumTypeNext
 (
 char * pName
)

DESCRIPTION This routine returns the name pf the media type next to that specified by pName. If pName
is NULL or if pName points to an empty string, the name of the first media type in the list
is returned.

ARGUMENTS pName specifies the name of the media type whose successor in the list
is being sought.

RETURNS NULL if the media type specified by pName is the last in the list;
the name of the media type next to that specified by pName otherwise.

ERRNO Not Available

SEE ALSO cnsLib

cnsMsgEncode()

NAME cnsMsgEncode() – Encode a message as understood by CNS.

SYNOPSIS STATUS cnsMsgEncode
 (
 long type, /* CNS_MSGTYPE_READREQ */
 char * pData,
 char * pFormat,
 ulong_t * pFormatLen
)

DESCRIPTION This routine formats a message ad understood by CNS. A CNS message starts with the
message type and is followed by optional data field which is specific to the message data.

There are five message types: read request messafe, write request message, write with ack
request message, reply OK message, and reply ERROR message.

2 Routines
cnsMsgEncode()

135

2

The request messages (read, write, and wite with ack) are typically sent by clients. The reply
messages are sent by notification processor applications. A read request message is always
followed by a reply message. The reply message starts with a status string (ok or error) and
is followed by associated data.

ARGUMENTS type specifies the message data type. The value of type can be one of
following:

o CNS_REQ_READ - specifies a read request.
o CNS_REQ_WRITE - specifies a write request.
o CNS_REQ_WRITE_WACK - specifies write request with ack back.
o CNS_REPLY_OK - specifes a reply to a successful read request or an

ack to a successful write request.
o CNS_REPLY_ERR - specifies a failed read request or a failed write

request.

pData points to the data associated with the message type.

For read requests, the data consists typically of information of what is
to be read. For example, for CSM, the data consists of the component's
name and the object to be read.

For write requests, the data consists typically of information of what is
to be modified and the modification data.

pformat points to a buffer to contain the formatted data.

pFormatLen specifies the capacity of pFormat during input, and
specifies the actual length of the format when the cnsMsgEncode() returns.

create, if TRUE, specifies that the medium is to be created.

RETURNS OK or ERROR if the named media cannot be opened/created.

ERRNO cnsMsgEncode maintains the ERRNO of the underlying media for media open
errors. ERRNO for CNS-internal errors are TBD.

SEE ALSO cnsLib

VxWorks Kernel API Reference, 6.6
cnsOpen()

136

cnsOpen()

NAME cnsOpen() – Open or create and open named communication medium for read/write.

SYNOPSIS STATUS cnsOpen
 (
 cnsMediaId_t * pMediaId,
 BOOL create,
 long * pConnState
)

DESCRIPTION Depending upon the value of create, this routine opens or creates and then opens the named
communication medium for read/write.

ARGUMENTS pMedia is a pointer to an instance of the cnsMediaId_t, which describes
the media being created/opened. If open/create of the media succeeds,
the mediaId and connId fields are updated to identify the open medium
type and connection ID.

create, if TRUE, specifies that the medium is to be created.

RETURNS OK or ERROR if the named media cannot be opened/created.

ERRNO cnsOpen maintains the ERRNO of the underlying media for media open
errors. ERRNO for CNS-internal errors are TBD.

SEE ALSO cnsLib

cnsRead()

NAME cnsRead() – Read from a communication medium.

SYNOPSIS STATUS cnsRead
 (
 cnsMediaId_t * pMediaId,
 char * pReqInfo,
 char * pBuf,
 ulong_t bufLen,
 ulong_t * pReadBytes
)

2 Routines
cnsWrite()

137

2

DESCRIPTION This routine reads from a communication medium.

ARGUMENTS pMediaId is a pointer to an instance of the cnsMediaId_t,
which describes the media being read from. connId of pMediaId cannot
be 0. If pName is provided, then cnsRead verifies that the name
matches the corresponding mediaId and connId. If they dont match,
ERROR is returned.

pBuf points to a buffer to which the read data is to be copied.

bufLen specifies the capacity of pBuf in bytes.

pReadBytes points to a buffer to which the number of actually read bytes
is to be copied.

RETURNS OK or ERROR if error occured while reading, or if pMediaId->connId is 0
or if pMediaId->pName is not NULL and it is not consistent with the
corresponding pMediaId->connId and pMediaId->mediaId.

ERRNO cnsRead maintains the ERRNO of the underlying media for media read
errors. ERRNO for CNS-internal errors are TBD.

SEE ALSO cnsLib

cnsWrite()

NAME cnsWrite() – Write to a communication medium.

SYNOPSIS STATUS cnsWrite
 (
 cnsMediaId_t * pMediaId,
 char * pReqInfo,
 char * pDataBuf,
 ulong_t bufLen,
 char * pReplyBuf,
 ulong_t * pReplyLen
)

DESCRIPTION This routine writes to a communication medium.

VxWorks Kernel API Reference, 6.6
commit()

138

ARGUMENTS pMediaId is a pointer to an instance of the cnsMediaId_t,
which describes the media being written to. connId of pMediaId cannot
be 0. If pName is provided, then cnsWrite verifies that the name
matches the corresponding mediaId and connId. If they dont match,
ERROR is returned.

pBuf points to a buffer from which the data to be written is to be
copied.

bufLen specifies the capacity of pBuf in bytes.

pReplyLen if greater than 0, it implies that the caller expects an
acknowledgement back. The message type is then set to CNS_REQ_WRITE_WACK.

RETURNS OK or ERROR if error occured while reading, or if pMediaId->connId is 0
or if pMediaId->pName is not NULL and it is not consistent with the
corresponding pMediaId->connId and pMediaId->mediaId.

ERRNO cnsWrite maintains the ERRNO of the underlying media for media write
errors. ERRNO for CNS-internal errors are TBD.

SEE ALSO cnsLib

commit()

NAME commit() – commit current transaction to disk.

SYNOPSIS STATUS commit
 (
 const char * pDevName /* name of the device to commit */
)

DESCRIPTION This command is for transactional based file systems only such as HRFS. It is a shortcut for
the ioctl function FIOCOMMITFS which commits the current transaction to disk to make
changes permanment.

EXAMPLE -> commit "/ata0a" /* commit transaction on "/fd0" */

2 Routines
copy()

139

2

RETURNS OK, or ERROR if the device is not formatted with a file system
that does not support the FIOCOMMITFS ioctl function or pDevName
is not valid.

ERRNO Not Available

SEE ALSO usrFsLib, hrFsLib, VxWorks Kernel Programmer's Guide: Kernel Shell

copy()

NAME copy() – copy in (or stdin) to out (or stdout)

SYNOPSIS STATUS copy
 (
 const char * in, /* name of file to read (if NULL assume stdin) */
 const char * out /* name of file to write (if NULL assume stdout) */
)

DESCRIPTION This command copies from the input file to the output file, until an end-of-file is reached.

EXAMPLES The following example displays the file dog, found on the default file device:

 -> copy <dog

This example copies from the console to the file dog, on device /ct0/, until an EOF (default
^D) is typed:

 -> copy >/ct0/dog

This example copies the file dog, found on the default file device, to device /ct0/:

 -> copy <dog >/ct0/dog

This example makes a conventional copy from the file named file1 to the file named file2:

 -> copy "file1", "file2"

Remember that standard input and output are global; therefore, spawning the first three
constructs will not work as expected.

RETURNS OK, or ERROR if in or out cannot be opened/created, or if there is an error copying from in
to out.

ERRNO Not Available

SEE ALSO usrFsLib, copyStreams(), tyEOFSet(), cp(), xcopy(), the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
copyStreams()

140

copyStreams()

NAME copyStreams() – copy from/to specified streams

SYNOPSIS STATUS copyStreams
 (
 int inFd, /* file descriptor of stream to copy from */
 int outFd /* file descriptor of stream to copy to */
)

DESCRIPTION This command copies from the stream identified by inFd to the stream identified by outFd
until an end of file is reached in inFd. This command is used by copy().

RETURNS OK, or ERROR if there is an error reading from inFd or writing to outFd.

ERRNO Not Available

SEE ALSO usrFsLib, copy(), the VxWorks programmer guides.

coreDumpClose()

NAME coreDumpClose() – close a core dump

SYNOPSIS STATUS coreDumpClose
 (
 CORE_DUMP_ID coreDumpId /* ID returned by coreDumpOpen() */
)

DESCRIPTION This routine frees resources allocated by coreDumpOpen().

RETURNS OK or ERROR if coreDumpId is invalid

ERRNO N/A

SEE ALSO coreDumpUtilLib

2 Routines
coreDumpCreateHookAdd()

141

2

coreDumpCopy()

NAME coreDumpCopy() – copy a core dump to the given path

SYNOPSIS STATUS coreDumpCopy
 (
 UINT32 coreDumpIndex, /* core dump index, or 0 for all */
 char * destPath /* destination path */
)

DESCRIPTION This routine copies the core dump specified by coreDumpIndex to destPath. If coreDumpIndex
is 0, then all the core dumps available on device are copied. If destPath is NULL, then the
destination path is current directory.

coreDumpIndex is the index of the core dump returned by coreDumpNextGet() routine.

RETURNS OK, or ERROR if a core dump index is invalid, or if the copy failed.

ERRNO N/A

SEE ALSO coreDumpUtilLib

coreDumpCreateHookAdd()

NAME coreDumpCreateHookAdd() – add a routine to be called at every core dump create

SYNOPSIS STATUS coreDumpCreateHookAdd
 (
 FUNCPTR createHook /* routine to be called when a core dump is created
*/
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called whenever a core
dump is created. Upon creation, all routines specified by coreDumpCreateHookAdd() will
be called.

The routine should be declared as follows:

 STATUS createHook (void)

RETURNS OK, or ERROR if the table of core dump create routines is full.

ERRNO S_coreDumpLib_CORE_DUMP_HOOK_TABLE_FULL
core dump create hook table is full

VxWorks Kernel API Reference, 6.6
coreDumpCreateHookDelete()

142

SEE ALSO coreDumpHookLib, coreDumpCreateHookDelete()

coreDumpCreateHookDelete()

NAME coreDumpCreateHookDelete() – delete a previously added core dump create routine

SYNOPSIS STATUS coreDumpCreateHookDelete
 (
 FUNCPTR createHook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified routine from the list of routines to be called at each core
dump create.

RETURNS OK, or ERROR if the routine is not in the table of core dump create routines.

ERRNO S_coreDumpLib_CORE_DUMP_HOOK_NOT_FOUND
core dump create hook can not be found

SEE ALSO coreDumpHookLib, coreDumpCreateHookAdd()

coreDumpDevFormat()

NAME coreDumpDevFormat() – format the core dump device

SYNOPSIS STATUS coreDumpDevFormat
 (
 UINT32 coreDumpMax /* Maximum number of core dump on device */
)

DESCRIPTION This routine formats the core dump device. Formatting a core dump device consists of
erasing all the core dumps available on device. If an erase() routine is specified for the core
dump device, then this routine will be called to erase the whole device (useful for flash
devices for example); otherwise the only part of the core dump storage will be erased using
the underlying device write command.

Once the core dump device has been erased, coreDumpDevFormat() reformat it to support
the given number of core dump.

NOTE It is not possible to erase only one core dump from the device, the full device is erased.

2 Routines
coreDumpInfoGet()

143

2

RETURNS OK, or ERROR if the format operation failed.

ERRNO N/A

SEE ALSO coreDumpLib

coreDumpDevShow()

NAME coreDumpDevShow() – display information on core dump device

SYNOPSIS STATUS coreDumpDevShow (void)

DESCRIPTION This routine displays basic information on the core dump device. It displays the current
number of core dumps stored on the device, the maximum number of core dumps that can
be stored on the device. The total size of the core dump device and the free size on this
device.

RETURNS OK, or ERROR.

ERRNO N/A

SEE ALSO coreDumpShow

coreDumpInfoGet()

NAME coreDumpInfoGet() – get information on a core dump

SYNOPSIS CORE_DUMP_INFO * coreDumpInfoGet
 (
 UINT32 coreDumpIndex /* core dump index */
)

DESCRIPTION This routine retrieves information on a given core dump. It allocates a CORE_DUMP_INFO
structure and fills it with the retrieved information, a pointer to this structure is then
returned, and it will be up to the caller to free this structure when the information will have
been consumed.

coreDumpIndex is the index of the core dump returned by coreDumpNextGet() routine.

typedef struct core_dump_info /* core dump information */
 {

VxWorks Kernel API Reference, 6.6
coreDumpInfoGet()

144

 UINT32 coreDumpIndex;/* core dump index */
 BOOL valid; /* core dump validity */
 UINT32 errnoVal; /* core dump errno */
 char name[MAX_CORE_DUMP_LEN];
 /* name of the core dump */
 size_t size; /* size of the core dump */
 CORE_DUMP_TYPE type; /* origin of the core dump */
 int taskId; /* task Id (kernel core dump) */
 char taskName[MAX_CORE_DUMP_TASK_LEN];
 /* name of task */
 UINT32 rtpId; /* process Id (process core dump)
*/
 char rtpName[MAX_CORE_DUMP_RTP_LEN];
 /* path to RTP */
 int excNum; /* exception number (Not valid for
*/
 /* on-demand & Panic core dumps) */
 UINT32 pc; /* exception program counter */
 UINT32 sp; /* exception stack pointer */
 UINT32 fp; /* exception frame pointer */
 time_t time; /* generation calendar time */
 UINT32 ticks; /* VxWorks time stamp */
 CORE_DUMP_CKSUM_STATUS cksumStatus; /* core dump checksum status */
 char infoString[MAX_CORE_DUMP_INFO_LEN];
 /* information string */
 BOOL excIsValid; /* Indicate validity of exception */
 /* information (excNum, pc, sp, fp) */
 } CORE_DUMP_INFO;

The valid bit in CORE_DUMP_INFO structure indicates if the core dump was successfully
written on the storage or if there was an error writing it; if a core dump has been only
partially written (because the storage is too small for example) then it will be marked as
invalid and the size field will represent the size that has been actually written on the storage.
If the core dump is marked as not valid, the errnoVal field contains the errno that has been
set while generating the core dump.

The type field indicates the origin of the core dump. Here are the possible values:

typedef enum /* Core Dump Type */
 {
 CORE_DUMP_USER, /* 0: user coredump (on-demand) */
 CORE_DUMP_KERNEL_INIT, /* 1: fatal error during kernel intialization
*/
 CORE_DUMP_INTERRUPT, /* 2: Obsolete / Kept for backward compat */
 CORE_DUMP_KERNEL_PANIC, /* 3: Obsolete / Kept for backward compat */
 CORE_DUMP_KERNEL_TASK, /* 4: kernel task error */
 CORE_DUMP_RTP, /* 5: process coredump */
 CORE_DUMP_KERNEL /* 6: VxWorks kernel error */
 } CORE_DUMP_TYPE;

The cksumStatus field indicates the status of the core dump checksum. Here are the possible
values:

typedef enum /* Core Dump Checksum Status */
 {
 CORE_DUMP_NO_CKSUM, /* 0: No cksum available (N/A) */

2 Routines
coreDumpMemDump()

145

2

 CORE_DUMP_CKSUM_OK, /* 1: Core dump checksum status OK */
 CORE_DUMP_CKSUM_ERROR /* 2: Core dump checksum status ERROR */
 } CORE_DUMP_CKSUM_STATUS;

If the core dump checksum status is equal to CORE_DUMP_NO_CKSUM, then this means
that the checksum facility was not enabled on the target (CORE_DUMP_CKSUM_ENABLE
parameter of INCLUDE_CORE_DUMP component).

RETURNS A pointer to a CORE_DUMP_INFO structure, or NULL if failed to read core dump
information from the core dump device.

ERRNO N/A

SEE ALSO coreDumpUtilLib

coreDumpIsAvailable()

NAME coreDumpIsAvailable() – is a core dump available for retrieval

SYNOPSIS BOOL coreDumpIsAvailable (void)

DESCRIPTION This routine can be called to determine if at least one core dump is available on core dump
device for retrieval.

RETURNS TRUE if there is at least one core dump available for retrieval or FALSE if there is no core
dump available on device.

ERRNO N/A

SEE ALSO coreDumpUtilLib

coreDumpMemDump()

NAME coreDumpMemDump() – dump an area of memory in VxWorks core dump

SYNOPSIS STATUS coreDumpMemDump
 (
 void * buffer, /* address of memory region to dump */
 size_t size, /* size of memory region to dump */
 void * vaddr /* destination address in core dump */
)

VxWorks Kernel API Reference, 6.6
coreDumpMemFilterAdd()

146

DESCRIPTION This routine can be called by a user to dump an additional area of memory in a core dump.
The area of memory to dump is specified by buffer and size arguments. The vaddr allows to
specify at which address in the core dump, the area of memory must be mapped.

This routine must be called from a VxWorks core dump creation hook.

No verification is done to check that an area of memory is already available in a core dump,
an area of memory can be dumped several times in the core dump.

If a core dump memory filter has been installed and filter the provided memory area or part
of it, the filtered area will not be written in core dump.

RETURNS OK or ERROR if core dump generation has failed

ERRNOS S_coreDumpLib_CORE_DUMP_GENERATE_NOT_RUNNING
This routine is not called from a core dump creation hook

SEE ALSO coreDumpLib

coreDumpMemFilterAdd()

NAME coreDumpMemFilterAdd() – add a memory region filter

SYNOPSIS STATUS coreDumpMemFilterAdd
 (
 void * addr, /* address of memory region to filter */
 size_t size /* size of memory region to filter */
)

DESCRIPTION This routine adds a filter to exclude a memory region from core dump.

RETURNS OK, or ERROR if the maximum number of memory region filter is reached

ERRNO S_coreDumpLib_CORE_DUMP_FILTER_TABLE_FULL
Core dump memory filter table is full

SEE ALSO coreDumpMemFilterLib

2 Routines
coreDumpNextGet()

147

2

coreDumpMemFilterDelete()

NAME coreDumpMemFilterDelete() – delete a memory region filter

SYNOPSIS STATUS coreDumpMemFilterDelete
 (
 void * addr, /* address of memory region to filter */
 size_t size /* size of memory region to filter */
)

DESCRIPTION This routine deletes the core dump memory region filter specified by the addr and size
arguments.

RETURNS OK, or ERROR if the specified filter does not exist.

ERRNO S_coreDumpLib_CORE_DUMP_FILTER_NOT_FOUND
Filter not found in core dump filter table

SEE ALSO coreDumpMemFilterLib

coreDumpNextGet()

NAME coreDumpNextGet() – get the next core dump on device

SYNOPSIS STATUS coreDumpNextGet
 (
 UINT32 currentIdx, /* current core dump index or 0 to */
 /* get first core dump */
 UINT32 * pNextIdx /* where to store next core dump */
 /* index */
)

DESCRIPTION This routine retrieves the index of the next core dump available on the device; this routine
can be used to walk through the core dump list. The first call of this routine must be
performed with currentIdx equal to zero to get the index of the first core dump found on the
device; the returned index is stored at the memory location pointed to by pNextIdx. The
returned index can then be used by other routines like coreDumpOpen(),
coreDumpInfoGet() or by coreDumpNextGet() to get the the index of the following core
dump. If there is no next core dump, the returned index is set to 0.

RETURNS OK or ERROR if there was an error reading the core dump list.

ERRNO N/A

VxWorks Kernel API Reference, 6.6
coreDumpOpen()

148

SEE ALSO coreDumpUtilLib

coreDumpOpen()

NAME coreDumpOpen() – open an existing core dump for retrieval

SYNOPSIS CORE_DUMP_ID coreDumpOpen
 (
 UINT32 coreDumpIndex /* core dump index */
)

DESCRIPTION This routine opens an existing core dump. The core dump content can then be retrieved
using coreDumpRead(). The core dump must then be closed using coreDumpClose().
Some memory is allocated dynamically by coreDumpOpen() routine, it will be freed by
coreDumpClose() routine.

coreDumpIndex is the index of the core dump returned by coreDumpNextGet() routine.

RETURNS A core dump ID, or NULL if open has failed.

ERRNO N/A

SEE ALSO coreDumpUtilLib

coreDumpRead()

NAME coreDumpRead() – read from a core file

SYNOPSIS int coreDumpRead
 (
 CORE_DUMP_ID coreDumpId, /* ID returned by coreDumpOpen() */
 void * buffer, /* where to store read data */
 size_t size /* number of bytes to read */
)

DESCRIPTION This routine reads a number of bytes (less than or equal to size) from the specified core dump
ID and places them in buffer.

RETURNS The number of bytes read (between 1 and size, 0 if end of file), or ERROR if the core dump
ID does not exist, of if there was an error reading the core dump.

2 Routines
coreDumpShow()

149

2

ERRNO N/A

SEE ALSO coreDumpUtilLib

coreDumpShow()

NAME coreDumpShow() – display information on core dumps

SYNOPSIS STATUS coreDumpShow
 (
 UINT32 coreDumpIndex, /* core dump index */
 UINT32 level /* core dump show level */
)

DESCRIPTION This routine displays basic information on the given core dump. If coreDumpIndex is 0, then
it displays basic information on all core dumps available on the core dump device. If level is
1, then detailled information are displayed.

The core dump display contains the following fields:

The following table describes the different core dump types:

The following table describes the different core dump checksum status:

Field Meaning
NAME Core dump name on device
IDX Core dump index for retrieval
VALID Indicate if core dump is valid or not
ERRNO If core dump is not valid, errno set during core dump

generation
SIZE Size of the core dump (compressed size if

compression is enabled)
CKSUM Core dump checksum status
TYPE Type of the core dump
TASK Name of the task at the origin of the core dump

Field Meaning
USER User coredump
KERNEL_INIT Fatal error during kernel intialization
KERNEL_TASK Kernel task error
RTP Process coredump
KERNEL VxWorks kernel error
UNKNOWN Unknown coredump type

Field Meaning
N/A No cksum available

VxWorks Kernel API Reference, 6.6
coreDumpUsrGenerate()

150

EXAMPLE -> coreDumpShow 0,1
NAME IDX VALID ERRNO SIZE CKSUM TYPE TASK
----------- --- ----- ---------- ---------- ----- ------------ ----------
vxcore1.z 1 Y N/A 0x000ef05b OK KERNEL_TASK t1

Core Dump detailled information:

Time: THU JAN 01 00:01:42 1970 (ticks = 6174)
Task: "t1" (0x611e0a20)
Process: "(Kernel)" (0x6017a500)
Description: fatal kernel task-level exception!
Exception number: 0xb
Program counter: 0x6003823e
Stack pointer: 0x604d3da8
Frame pointer: 0x604d3fb0

value = 0 = 0x0

RETURNS OK, or ERROR if the core dump device is not initialized, not formatted, if coreDumpShow()
failed to retrieve information on a core dump, or if the coreDumpIndex is not a valid core
dump index.

ERRNO N/A

SEE ALSO coreDumpShow

coreDumpUsrGenerate()

NAME coreDumpUsrGenerate() – generate a user (on-demand) core dump

SYNOPSIS STATUS coreDumpUsrGenerate (void)

DESCRIPTION This routine generates a user (on-demand) core dump. When this routine is called, the core
dump will be generated, stored on the configured storage and the target will be rebooted.

RETURNS OK or ERROR if core dump generation failed.

ERRNO N/A

SEE ALSO coreDumpLib

OK Core dump checksum status OK
ERROR Core dump checksum status ERROR

Field Meaning

2 Routines
coshf()

151

2

cosf()

NAME cosf() – compute a cosine (ANSI)

SYNOPSIS float cosf
 (
 float x /* angle in radians */
)

DESCRIPTION This routine returns the cosine of x in single precision. The angle x is expressed in radians.

RETURNS The single-precision cosine of x.

ERRNO Not Available

SEE ALSO mathALib

coshf()

NAME coshf() – compute a hyperbolic cosine (ANSI)

SYNOPSIS float coshf
 (
 float x /* value to compute the hyperbolic cosine of */
)

DESCRIPTION This routine returns the hyperbolic cosine of x in single precision.

RETURNS The single-precision hyperbolic cosine of x if the parameter is greater than 1.0, or NaN if the
parameter is less than 1.0.

Special cases:
If x is +INF, -INF, or NaN, coshf() returns x.

ERRNO Not Available

SEE ALSO mathALib

VxWorks Kernel API Reference, 6.6
cp()

152

cp()

NAME cp() – copy file into other file/directory.

SYNOPSIS STATUS cp
 (
 const char * src, /* source file or wildcard pattern */
 const char * dest /* destination file name or directory */
)

DESCRIPTION This command copies from the input file to the output file. If destination name is directory,
a source file is copied into this directory, using the last element of the source file name to be
the name of the destination file.

This function is very similar to copy(), except it is somewhat more similar to the UNIX "cp"
program in its handling of the destination.

src may contain a wildcard pattern, in which case all files matching the pattern will be
copied to the directory specified in dest. This function does not copy directories, and is not
recursive. To copy entire subdirectories recursively, use xcopy().

EXAMPLES -> cp("/sd0/FILE1.DAT","/sd0/dir2/f001.dat")
-> cp("/sd0/dir1/file88","/sd0/dir2")
-> cp("/sd0/*.tmp","/sd0/junkdir")

RETURNS OK or ERROR if destination is not a directory while src is a wildcard pattern, or if any of the
files could not be copied.

ERRNO Not Available

SEE ALSO usrFsLib, xcopy(), the VxWorks programmer guides.

cplusCallNewHandler()

NAME cplusCallNewHandler() – call the allocation failure handler (C++)

SYNOPSIS extern void cplusCallNewHandler (void)

DESCRIPTION This function provides a procedural-interface to the new-handler. It can be used by
user-defined new operators to call the current new-handler. This function is specific to
VxWorks and may not be available in other C++ environments.

RETURNS N/A

2 Routines
cplusCtors()

153

2

ERRNO Not Available

SEE ALSO cplusLib

cplusCtors()

NAME cplusCtors() – call static constructors (C++)

SYNOPSIS extern "C" void cplusCtors
 (
 const char * moduleName /* name of loaded module */
)

DESCRIPTION This function is used to call static constructors under the manual strategy (see
cplusXtorSet()). moduleName is the name of an object module that was "munched" before
loading. If moduleName is 0, then all static constructors, in all modules loaded by the
VxWorks module loader, are called.

EXAMPLES The following example shows how to initialize the static objects in modules called
"applx.out" and "apply.out".

 -> cplusCtors "applx.out"
 value = 0 = 0x0
 -> cplusCtors "apply.out"
 value = 0 = 0x0

The following example shows how to initialize all the static objects that are currently
loaded, with a single invocation of cplusCtors():

 -> cplusCtors
 value = 0 = 0x0

WARNING cplusCtors() should only be called once per module otherwise unpredictable behavior may
result.

RETURNS N/A

ERRNO Not Available

SEE ALSO cplusLib, cplusXtorSet()

VxWorks Kernel API Reference, 6.6
cplusCtorsLink()

154

cplusCtorsLink()

NAME cplusCtorsLink() – call all linked static constructors (C++)

SYNOPSIS extern "C" void cplusCtorsLink (void)

DESCRIPTION This function calls constructors for all of the static objects linked with a VxWorks bootable
image. When creating bootable applications, this function should be called from usrRoot()
to initialize all static objects. Correct operation depends on correctly munching the C++
modules that are linked with VxWorks.

RETURNS N/A

ERRNO Not Available

SEE ALSO cplusLib

cplusDemanglerSet()

NAME cplusDemanglerSet() – change C++ demangling mode (C++)

SYNOPSIS extern "C" void cplusDemanglerSet
 (
 int mode
)

DESCRIPTION This command sets the C++ demangling mode to mode. The default mode is 2.

There are three demangling modes, complete, terse, and off. These modes are represented by
numeric codes:

In complete mode, when C++ function names are printed, the class name (if any) is prefixed
and the function's parameter type list is appended.

In terse mode, only the function name is printed. The class name and parameter type list are
omitted.

In off mode, the function name is not demangled.

Mode Code
off 0
terse 1
complete 2

2 Routines
cplusDtors()

155

2

EXAMPLES The following example shows how one function name would be printed under each
demangling mode:

RETURNS N/A

ERRNO Not Available

SEE ALSO cplusLib

cplusDemanglerStyleSet()

NAME cplusDemanglerStyleSet() – change C++ demangling style (C++)

SYNOPSIS extern "C" void cplusDemanglerStyleSet
 (
 DEMANGLER_STYLE style
)

DESCRIPTION This command sets the C++ demangling mode to style. The available demangler styles are
enumerated in demangler.h. The default demangling style depends on the toolchain used
to build the kernel. For example if the Diab toolchain is used to build the kernel then the
default demangler style is DMGL_STYLE_DIAB.

RETURNS N/A

ERRNO Not Available

SEE ALSO cplusLib

cplusDtors()

NAME cplusDtors() – call static destructors (C++)

SYNOPSIS extern "C" void cplusDtors

Mode Printed symbol
off _member__5classFPFl_PvPFPv_v
terse _member
complete foo::_member(void* (*)(long),void (*)(void*))

VxWorks Kernel API Reference, 6.6
cplusDtorsLink()

156

 (
 const char * moduleName
)

DESCRIPTION This function is used to call static destructors under the manual strategy (see
cplusXtorSet()). moduleName is the name of an object module that was "munched" before
loading. If moduleName is 0, then all static destructors, in all modules loaded by the
VxWorks module loader, are called.

EXAMPLES The following example shows how to destroy the static objects in modules called
"applx.out" and "apply.out":

 -> cplusDtors "applx.out"
 value = 0 = 0x0
 -> cplusDtors "apply.out"
 value = 0 = 0x0

The following example shows how to destroy all the static objects that are currently loaded,
with a single invocation of cplusDtors():

 -> cplusDtors
 value = 0 = 0x0

WARNING cplusDtors() should only be called once per module otherwise unpredictable behavior may
result.

RETURNS N/A

ERRNO Not Available

SEE ALSO cplusLib, cplusXtorSet()

cplusDtorsLink()

NAME cplusDtorsLink() – call all linked static destructors (C++)

SYNOPSIS extern "C" void cplusDtorsLink (void)

DESCRIPTION This function calls destructors for all of the static objects linked with a VxWorks bootable
image. When creating bootable applications, this function should be called during system
shutdown to decommission all static objects. Correct operation depends on correctly
munching the C++ modules that are linked with VxWorks.

RETURNS N/A

2 Routines
cplusXtorGet()

157

2

ERRNO Not Available

SEE ALSO cplusLib

cplusLibInit()

NAME cplusLibInit() – initialize the C++ library (C++)

SYNOPSIS extern "C" STATUS cplusLibInit (void)

DESCRIPTION This routine initializes the C++ library and forces all C++ run-time support to be linked with
the bootable VxWorks image. If the configuration macro INCLUDE_CPLUS is defined,
cplusLibInit() is called automatically from the root task, usrRoot(), in usrConfig.c.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO cplusLib

cplusXtorGet()

NAME cplusXtorGet() – get the c++ Xtors strategy

SYNOPSIS extern "C" int cplusXtorGet (void)

DESCRIPTION This function can be used to retrieve the current value of the C++ Xtors strategy.

RETURNS 1 for automatic or 0 for manual

ERRNO Not Available

SEE ALSO cplusLib, cplusXtorSet()

VxWorks Kernel API Reference, 6.6
cplusXtorSet()

158

cplusXtorSet()

NAME cplusXtorSet() – change C++ static constructor calling strategy (C++)

SYNOPSIS extern "C" void cplusXtorSet
 (
 int strategy
)

DESCRIPTION This command sets the C++ static constructor calling strategy to strategy. The default
strategy is 1.

There are two static constructor calling strategies: automatic and manual. These modes are
represented by numeric codes:

Under the manual strategy, a module's static constructors and destructors are called by
cplusCtors() and cplusDtors(), which are themselves invoked manually.

Under the automatic strategy, a module's static constructors are called as a side-effect of
loading the module using the VxWorks module loader. A module's static destructors are
called as a side-effect of unloading the module.

NOTE The manual strategy is applicable only to modules that are loaded by the VxWorks module
loader. Static constructors and destructors contained by modules linked with the VxWorks
image are called using cplusCtorsLink() and cplusDtorsLink().

RETURNS N/A

ERRNO Not Available

SEE ALSO cplusLib, cplusXtorGet()

cpsr()

NAME cpsr() – return the contents of the current processor status register (ARM)

SYNOPSIS int cpsr
 (
 int taskId /* task ID, 0 means default task */
)

Strategy Code
manual 0
automatic 1

2 Routines
cpuPwrMgrEnable()

159

2

DESCRIPTION This command extracts the contents of the status register from the TCB of a specified task.
If taskId is omitted or zero, the last task referenced is assumed.

RETURNS The contents of the current processor status register.

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

cpuPwrMgrEnable()

NAME cpuPwrMgrEnable() – Set the CPU light power management to ON/OFF

SYNOPSIS STATUS cpuPwrMgrEnable
 (
 BOOL enable
)

DESCRIPTION This routine enables or disables the light CPU power manager based on the enable argument
that is passed. When enable is TRUE the power manager is enabled. When enable is FALSE
the power manager is disable. When it is enabled the power manager puts the CPU in the
C1 state (non-executing state) when the VxWorks kernel becomes idle, that is, when there
are no ISRs to process or tasks to dispatch. The "C1 state" is a term borrowed from the
Advance Configuration and Power Interface (ACPI) specification. When in a
non-executing state the CPU reduces its power consumption. The light power manager is
automatically enabled when the VxWorks kernel boots. Therefore this routine need not be
called unless a kernel application wishes to disable the power manager or to re-enable it
after having disabled it. The only reason that could explain this routine returning ERROR is
if the light power manager's initialization routine failed, which more than likely indicates
that another power manager is configured in the VxWorks kernel. There can only be one
power manager in a system.

RETURNS OK or ERROR if the power manager could not be enabled.

ERRNO N/A

SEE ALSO cpuPwrLightLib, cpuPwrMgrIsEnabled()

VxWorks Kernel API Reference, 6.6
cpuPwrMgrIsEnabled()

160

cpuPwrMgrIsEnabled()

NAME cpuPwrMgrIsEnabled() – Get the CPU power management status

SYNOPSIS BOOL cpuPwrMgrIsEnabled (void)

DESCRIPTION This routine returns the status of the light power manager. TRUE is returned when it is
enabled. Otherwise FALSE is returned.

RETURNS TRUE or FALSE

ERRNO N/A

SEE ALSO cpuPwrLightLib, cpuPwrMgrEnable()

creat()

NAME creat() – create a file

SYNOPSIS int creat
 (
 const char *name, /* name of the file to create */
 int flag /* file permissions */
)

DESCRIPTION This routine creates a file called name and opens it with a specified flag. This routine
determines on which device to create the file; it then calls the create routine of the device
driver to do most of the work. Therefore, much of what transpires is
device/driver-dependent.

The parameter flag is set to O_RDONLY (0), O_WRONLY (1), O_RDWR (2) for the duration of
time the file is open.

The parameter flag can be set to O_SYNC, on dosFs volumes, indicating that each write
should be immediately written to the backing media. This flag synchronizes the FAT and
the directory entries.

On NFS and POSIX compliant file systems such as HRFS, the parameter flag refers instead
to the UNIX style file permission bits.

NOTE For more information about situations when there are no file descriptors available, see the
reference entry for iosInit().

2 Routines
cret()

161

2

RETURNS A file descriptor number, or ERROR if a filename is not specified, the device does not exist,
no file descriptors are available, or the driver returns ERROR.

ERRNO ELOOP
Circular symbolic link, too many links.

EMFILE
Maximum number of files already open.

S_iosLib_DEVICE_NOT_FOUND (ENODEV)
No valid device name found in path.

others
Other errors reported by device drivers.

SEE ALSO ioLib, open()

cret()

NAME cret() – continue until the current subroutine returns

SYNOPSIS STATUS cret
 (
 int taskNameOrId /* task to continue, 0 = default */
)

DESCRIPTION This routine places a breakpoint at the return address of the current subroutine of a
specified task, then continues execution of that task.

To execute, enter:

 -> cret [task]

If task is omitted or zero, the last task referenced is assumed.

When the breakpoint is hit, information about the task will be printed in the same format as
in single-stepping. The breakpoint is automatically removed when hit, or if the task hits
another breakpoint first.

RETURNS OK, or ERROR if there is no such task or the breakpoint table is full.

ERRNO N/A

SEE ALSO dbgLib, so(), c(), b(), VxWorks Kernel Programmer's Guide: Kernel Shell, VxWorks
Command-Line Tools User's Guide 2.2: Host Shell

VxWorks Kernel API Reference, 6.6
d()

162

d()

NAME d() – display memory

SYNOPSIS void d
 (
 void * adrs, /* address to display (if 0, display next block */
 int nunits, /* number of units to print (if 0, use default) */
 int width /* width of displaying unit (1, 2, 4, 8) */
)

DESCRIPTION This command displays the contents of memory, starting at adrs. If adrs is omitted or zero,
d() displays the next memory block, starting from where the last d() command completed.

Memory is displayed in units specified by width. If nunits is omitted or zero, the number of
units displayed defaults to last use. If nunits is non-zero, that number of units is displayed
and that number then becomes the default. If width is omitted or zero, it defaults to the
previous value. If width is an invalid number, it is set to 1. The valid values for width are 1,
2, 4, and 8. The number of units d() displays is rounded up to the nearest number of full
lines.

RETURNS N/A

ERRNO N/A

ERRNO N/A

SEE ALSO usrLib, m(), the VxWorks programmer guides.

d0()

NAME d0() – return the contents of register d0 (also d1 - d7) (MC680x0)

SYNOPSIS int d0
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of register d0 from the TCB of a specified task. If taskId
is omitted or zero, the last task referenced is assumed.

Similar routines are provided for all data registers (d0 - d7): d0() - d7().

2 Routines
dbgHelp()

163

2

RETURNS The contents of register d0 (or the requested register).

ERRNO Not Available

SEE ALSO dbgArchLib, \the VxWorks programmer guides

dbgBpTypeBind()

NAME dbgBpTypeBind() – bind a breakpoint handler to a breakpoint type (MIPS R3000, R4000,
R4650)

SYNOPSIS STATUS dbgBpTypeBind
 (
 int bpType, /* breakpoint type */
 FUNCPTR routine /* function to bind */
)

DESCRIPTION Dynamically bind a breakpoint handler to breakpoints of type 0 - 7. By default only
breakpoints of type zero are handled with the vxWorks breakpoint handler (see dbgLib).
Other types may be used for Ada stack overflow or other such functions. The installed
handler must take the same parameters as excExcHandle() (see excLib).

RETURNS OK, or ERROR if bpType is out of bounds.

ERRNO Not Available

SEE ALSO dbgArchLib, dbgLib, excLib

dbgHelp()

NAME dbgHelp() – display debugging help menu

SYNOPSIS void dbgHelp (void)

DESCRIPTION This routine displays a summary of dbgLib utilities with a short description of each, similar
to the following:

 dbgHelp Print this list
 dbgInit Install debug facilities
 b Display breakpoints
 b addr[,task[,count]] Set breakpoint

VxWorks Kernel API Reference, 6.6
dbgInit()

164

 e addr[,eventNo[,task[,func[,arg]]]]] Set eventpoint (WindView)
 bd addr[,task] Delete breakpoint
 bdall [task] Delete all breakpoints
 c [task[,addr[,addr1]]] Continue from breakpoint
 cret [task] Continue to subroutine return
 s [task[,addr[,addr1]]] Single step
 so [task] Single step/step over subroutine
 l [adr[,nInst]] List disassembled memory
 tt [task] Do stack trace on task
 bh addr[,access[,task[,count[,quiet]]]] set hardware breakpoint
 (if supported by the architecture)

RETURNS N/A

ERRNO N/A

SEE ALSO dbgLib, VxWorks Kernel Programmer's Guide: Kernel Shell

dbgInit()

NAME dbgInit() – initialize the shell debugging package

SYNOPSIS STATUS dbgInit (void)

DESCRIPTION This routine initializes the shell debugging package and enables the basic breakpoint and
single-step functions.

This routine also enables the shell abort function.

NOTE The debugging package should be initialized before any debugging routines are used. If the
configuration macro INCLUDE_DEBUG is defined, dbgInit() is called by the VxWorks root
task at initialisation time.

RETURNS OK, or ERROR if the debug facility cannot be initialized.

ERRNO N/A

SEE ALSO dbgLib, VxWorks Kernel Programmer's Guide: Kernel Shell

2 Routines
dcacheDevDisable()

165

2

dcacheDevCreate()

NAME dcacheDevCreate() – Create a disk cache

SYNOPSIS CBIO_DEV_ID dcacheDevCreate
 (
 CBIO_DEV_ID subDev, /* block device handle */
 char * pRamAddr, /* where it is in memory (NULL = KHEAP_ALLOC) */
 int memSize, /* amount of memory to use */
 char * pDesc /* device description string */
)

DESCRIPTION This routine creates a CBIO layer disk data cache instance. The disk cache unit accesses the
disk through the subordinate CBIO device driver, provided with the subDev argument.

A valid block device BLK_DEV handle may be provided instead of a CBIO handle, in which
case it will be automatically converted into a CBIO device by using the wrapper
functionality from cbioLib.

Memory which will be used for caching disk data may be provided by the caller with
pRamAddr, or it will be allocated by dcacheDevCreate() from the common system memory
pool, if memAddr is passed as NULL. memSize is the amount of memory to use for disk
caching, if 0 is passed, then a certain default value will be calculated, based on available
memory. pDesc is a string describing the device, used later by dcacheShow(), and is useful
when there are many cached disk devices.

A maximum of 16 disk cache devices are supported at this time.

RETURNS disk cache device handle, or NULL if there is not enough memory to satisfy the request, or
the blkDev handle is invalid.

ERRNO Not Available

SEE ALSO dcacheCbio

dcacheDevDisable()

NAME dcacheDevDisable() – Disable the disk cache for this device

SYNOPSIS STATUS dcacheDevDisable
 (
 CBIO_DEV_ID dev /* CBIO device handle */
)

VxWorks Kernel API Reference, 6.6
dcacheDevEnable()

166

DESCRIPTION This function disables the cache by setting the bypass count to zero and storing the old
value, if there is already an old value then we won't repeat the process though.

RETURNS OK if cache is sucessfully disabled or ERROR.

RETURNS Not Available

ERRNO Not Available

SEE ALSO dcacheCbio

dcacheDevEnable()

NAME dcacheDevEnable() – Reenable the disk cache

SYNOPSIS STATUS dcacheDevEnable
 (
 CBIO_DEV_ID dev /* CBIO device handle */
)

DESCRIPTION This function re-enables the cache if we disabled it. If we did not disable it, then we cannot
re-enable it.

RETURNS OK if cache is sucessfully enabled or ERROR.

RETURNS Not Available

ERRNO Not Available

SEE ALSO dcacheCbio

dcacheDevMemResize()

NAME dcacheDevMemResize() – set a new size to a disk cache device

SYNOPSIS STATUS dcacheDevMemResize
 (
 CBIO_DEV_ID dev, /* device handle */
 size_t newSize /* new cache size in bytes */
)

2 Routines
dcacheDevTune()

167

2

DESCRIPTION This routine is used to resize the dcache layer. This routine is also useful after a disk change
event, for example a PCMCIA disk swap. The routine pccardDosDevCreate() in
pccardLib.c uses this routine for that function. This should be invoked each time a new
disk is inserted on media where the device geometry could possibly change. This function
will re-read all device geometry data from the block driver, carve out and initialize all cache
descriptors and blocks.

RETURNS OK or ERROR if the device is invalid or if the device geometry is invalid
(EINVAL) or if there is not enough memory to perform the operation.

RETURNS Not Available

ERRNO Not Available

SEE ALSO dcacheCbio

dcacheDevTune()

NAME dcacheDevTune() – modify tunable disk cache parameters

SYNOPSIS STATUS dcacheDevTune
 (
 CBIO_DEV_ID dev, /* device handle */
 int dirtyMax, /* max # of dirty cache blocks allowed */
 int bypassCount, /* request size for bypassing cache */
 int readAhead, /* how many blocks to read ahead */
 int syncInterval /* how many seconds between disk updates */
)

DESCRIPTION This function allows the user to tune some disk cache parameters to obtain better
performance for a given application or workload pattern. These parameters are checked for
sanity before being used, hence it is recommended to verify the actual parameters being set
with dcacheShow().

Following is the description of each tunable parameter:

bypassCount
In order to achieve maximum performance, Disk Cache is bypassed for very large
requests. This parameter sets the threshold number of blocks for bypassing the cache,
resulting usually in the data being transferred by the low level driver directly to/from
application data buffers (also known as cut-through DMA). Passing the value of 0 in
this argument preserves the previous value of the associated parameter.

syncInterval
The Disk Cache provides a low priority task that will update all modified blocks onto
the disk periodically. This parameters controls the time between these updates in

VxWorks Kernel API Reference, 6.6
dcacheHashTest()

168

seconds. The longer this period, the better throughput is likely to be achieved, while
risking to loose more data in the event of a failure. For removable devices this interval
is fixed at 1 second. Setting this parameter to 0 results in immediate writes to disk when
requested, resulting in minimal data loss risk at the cost of somewhat degraded
performance.

readAhead
In order to avoid accessing the disk in small units, the Disk Cache will read many
contiguous blocks once a block which is absent from the cache is needed. Increasing this
value increases read performance, but a value which is too large may cause blocks
which are frequently used to be removed from the cache, resulting in a low Hit Ratio,
and increasing the number of Seeks, slowing down performance dramatically. Passing
the value of 0 in this argument preserves the pervious value of the associated
parameter.

dirtyMax
Routinely the Disk Cache will keep modified blocks in memory until it is specifically
instructed to update these blocks to the disk, or until the specified time interval
between disk updates has elapsed, or until the number of modified blocks is large
enough to justify an update. Because the disk is updated in an ordered manner, and the
blocks are written in groups when adjacent blocks have been modified, a larger
dirtyMax parameter will minimize the number of Seek operation, but a value which is
too large may decrease the Hit Ratio, thus degrading performance. Passing the value of
0 in this argument preserves the pervious value of the associated parameter.

RETURNS OK or ERROR if device handle is invalid. Parameter value which is out of range will be
silently corrected.

ERRNO Not Available

SEE ALSO dcacheCbio, dcacheShow()

dcacheHashTest()

NAME dcacheHashTest() – test hash table integrity

SYNOPSIS void dcacheHashTest
 (
 CBIO_DEV_ID dev
)

DESCRIPTION none

RETURNS Not Available

2 Routines
devs()

169

2

ERRNO Not Available

SEE ALSO dcacheCbio

dcacheShow()

NAME dcacheShow() – print information about disk cache

SYNOPSIS void dcacheShow
 (
 CBIO_DEV_ID dev, /* device handle */
 int verbose /* 1 - display state of each cache block */
)

DESCRIPTION This routine displays various information regarding a disk cache, namely current disk
parameters, cache size, tunable parameters and performance statistics. The information is
displayed on the standard output.

The dev argument is the device handle, if it is NULL, all disk caches are displayed.

RETURNS N/A

ERRNO Not Available

SEE ALSO dcacheCbio

devs()

NAME devs() – list all system-known devices

SYNOPSIS void devs (void)

DESCRIPTION This command displays a list of all devices known to the I/O system.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, iosDevShow(), the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
dirList()

170

dirList()

NAME dirList() – list contents of a directory (multi-purpose)

SYNOPSIS STATUS dirList
 (
 int fd, /* file descriptor to write on */
 const char * dirString, /* name of the directory to be listed */
 BOOL doLong, /* if TRUE, do long listing */
 BOOL doTree /* if TRUE, recurse into subdirs */
)

DESCRIPTION This command is similar to UNIX ls. It lists the contents of a directory in one of two formats.
If doLong is FALSE, only the names of the files (or subdirectories) in the specified directory
are displayed. If doLong is TRUE, then the file name, size, date, and time are displayed. If
doTree flag is TRUE, then each subdirectory encountered will be listed as well (i.e. the listing
will be recursive).

The dirName parameter specifies the directory to be listed. If dirName is omitted or NULL, the
current working directory will be listed. dirName may contain wildcard characters to list
some of the directory's contents.

LIMITATIONS - With dosFsLib file systems, MS-DOS volume label entries are not reported.

- Although an output format very similar to UNIX "ls" is employed, some information
items have no particular meaning on some file systems.

- Some file systems which do not support the POSIX compliant dirLib() interface, can
not support the doLong and doTree options.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO usrFsLib, dirLib, ls(), ll(), lsr(), llr(), the VxWorks programmer guides.

diskFormat()

NAME diskFormat() – format a disk with dosFs

SYNOPSIS STATUS diskFormat
 (
 const char * pDevName /* name of the device to initialize */
)

2 Routines
dosFsCacheCreate()

171

2

DESCRIPTION This command in now obsolete. Use dosfsDiskFormat or dosFsVolFormat() instead

This command formats a disk and creates the dosFs file system on it. The device must
already have been created by the device driver and dosFs format component must be
included.

EXAMPLE -> diskFormat "/fd0"

RETURNS OK, or ERROR if the device cannot be opened or formatted.

ERRNO Not Available

SEE ALSO usrFsLib, dosFsLib, the VxWorks programmer guides.

diskInit()

NAME diskInit() – initialize a file system on a block device

SYNOPSIS STATUS diskInit
 (
 const char *pDevName /* name of the device to initialize */
)

DESCRIPTION This function is now obsolete.

RETURNS Not Available

ERRNO Not Available

SEE ALSO usrFsLib

dosFsCacheCreate()

NAME dosFsCacheCreate() – create cache for a DosFS volume

SYNOPSIS STATUS dosFsCacheCreate
 (
 char * volName, /* volume name */
 char * dataCacheAddr, /* memory address (NULL = KHEAP_ALLOC) */
 u_int dataCacheSize, /* size of cache */
 char * dirCacheAddr, /* memory address (NULL = KHEAP_ALLOC) */

VxWorks Kernel API Reference, 6.6
dosFsCacheDelete()

172

 u_int dirCacheSize, /* size of cache */
 char * fatCacheAddr, /* memory address (NULL = KHEAP_ALLOC) */
 u_int fatCacheSize /* size of cache */
)

DESCRIPTION none

RETURNS Not Available

ERRNO Not Available

SEE ALSO dosFsCacheLib

dosFsCacheDelete()

NAME dosFsCacheDelete() – delete the disk cache for a dosFs volume

SYNOPSIS STATUS dosFsCacheDelete
 (
 const char * volName /* dosFs volume name */
)

DESCRIPTION This routine removes the disk cache for volName and frees the allocated memory if it was
requested from the system memory pool.

RETURNS STATUS.

ERRNO Not Available

SEE ALSO dosFsCacheLib

dosFsCacheInfo()

NAME dosFsCacheInfo() – retrieve a cache's settings

SYNOPSIS STATUS dosFsCacheInfo
 (
 char * volName, /* Name of the DosFS volume */
 DOS_CACHE_TYPE type, /* Identify which cache to tune */
 DOS_CACHE_INFO * pSettings /* Cache settings */
)

2 Routines
dosFsCacheLibInit()

173

2

DESCRIPTION This routine allows the user to retrieve the cache's bypass and readAhead parameters.
Reading more than bypass sectors at once may trigger a cache flush and data will be
retrieved directly from disk instead of cache. When reading data, DosFS will try to read
readAhead sectors at a time.

volName is a NULL terminated character string identifying the name of the DosFS device.
type identifies the volume's cache for which to retrieve information. Valid values are
DOS_DATA_CACHE, DOS_DIR_CACHE and DOS_FAT_CACHE. pSettings points to a
structure containing parameters for the bypass and readAhead values of the cache.

RETURNS OK on success, ERROR otherwise

ERRNO Not Available

SEE ALSO dosFsCacheLib

dosFsCacheLibInit()

NAME dosFsCacheLibInit() – initialize dosFsCache library.

SYNOPSIS void dosFsCacheLibInit
 (
 u_int defaultDataCacheSize,
 u_int defaultDirCacheSize,
 u_int defaultFatCacheSize
)

DESCRIPTION none

RETURNS N/A.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsCacheLib

VxWorks Kernel API Reference, 6.6
dosFsCacheOptionsGet()

174

dosFsCacheOptionsGet()

NAME dosFsCacheOptionsGet() – get this dosFs volume's disk cache options

SYNOPSIS UINT dosFsCacheOptionsGet
 (
 char * volName /* dosFs volume name */
)

DESCRIPTION This routine gets the cache options for the dosFs volume volName.

RETURNS value of the volume's options.

ERRNO Not Available

SEE ALSO dosFsCacheLib

dosFsCacheOptionsSet()

NAME dosFsCacheOptionsSet() – set this dosFs volume's disk cache options

SYNOPSIS UINT dosFsCacheOptionsSet
 (
 char * volName, /* dosFs volume name */
 UINT options /* new options */
)

DESCRIPTION This routine sets the cache options for the dosFs volume volName. Currently the only option
available is DOS_CACHE_VOL_NO_DMA, which means that dosFsCacheLib does not need
to use DMA-safe buffers on volName when large transfers to and from the media are
requested. This option can gain performance on large transfers, and is recommended for
USB devices.

RETURNS new value of the volume's options.

ERRNO Not Available

SEE ALSO dosFsCacheLib

2 Routines
dosFsCacheTune()

175

2

dosFsCacheShow()

NAME dosFsCacheShow() – show information regarding a dosFs volume's cache

SYNOPSIS void dosFsCacheShow
 (
 const char * volName, /* volume name */
 u_int level /* verbosity level */
)

DESCRIPTION This routine displays information regarding an specific dosFs volume volName cache. If level
is zero, a summary is displayed, otherwise the current state of the internal hash table and
LRU list is displayed.

RETURNS N/A

ERRNO Not Available

SEE ALSO dosFsShow

dosFsCacheTune()

NAME dosFsCacheTune() – tune a cache's settings

SYNOPSIS STATUS dosFsCacheTune
 (
 char * volName, /* Name of the DosFS volume */
 DOS_CACHE_TYPE type, /* Identify which cache to tune */
 DOS_CACHE_INFO * pSettings /* New cache settings */
)

DESCRIPTION This routine allows the user to tune the cache's bypass and readAhead parameters. Reading
more than bypass sectors at once may trigger a cache flush and data will be retrieved
directly from disk instead of cache. When reading data, DosFS will try to read readAhead
sectors at a time.

volName is a NULL terminated character string identifying the name of the DosFS device.
type identifies which cache associated with the volume to tune. Valid values are
DOS_DATA_CACHE, DOS_DIR_CACHE and DOS_FAT_CACHE. pSettings is a structure
containing parameters for the bypass and readAhead values of the cache.

RETURNS OK on success, ERROR otherwise

VxWorks Kernel API Reference, 6.6
dosFsChkDsk()

176

ERRNO Not Available

SEE ALSO dosFsCacheLib

dosFsChkDsk()

NAME dosFsChkDsk() – make volume integrity checking.

SYNOPSIS STATUS dosFsChkDsk
 (
 FAST DOS_FILE_DESC_ID pFd, /* file descriptor of root dir */
 u_int params /* check level and verbosity */
)

DESCRIPTION This library does not make integrity check process itself, but instead uses routine provided
by dosChkLib. This routine prepares parameters and invokes checking routine via
preinitialized function pointer. If dosChkLib is not configured into vxWorks, this routine
returns ERROR.

Ownership on device should be taken by an upper level routine.

RETURNS STATUS as returned by volume checking routine or
ERROR, if such routine is not installed.

ERRNO S_dosFsLib_UNSUPPORTED.

SEE ALSO dosFsLib

dosFsClose()

NAME dosFsClose() – close a dosFs file

SYNOPSIS STATUS dosFsClose
 (
 DOS_FILE_DESC_ID pFd /* file descriptor pointer */
)

DESCRIPTION This routine closes the specified dosFs file. If file contains excess clusters beyond EOF they
are freed, when last file descriptor is being closed for that file.

2 Routines
dosFsDefaultDataCacheSizeGet()

177

2

RETURNS OK, or ERROR if directory couldn't be flushed or entry couldn't be found.

ERRNO S_dosFsLib_INVALID_PARAMETER
S_dosFsLib_DELETED
S_dosFsLib_FD_OBSOLETE /NOMANUAL

SEE ALSO dosFsLib

dosFsDefaultCacheSizeSet()

NAME dosFsDefaultCacheSizeSet() – set the default disk cache size

SYNOPSIS void dosFsDefaultCacheSizeSet
 (
 UINT newDataDefaultSize, /* new default size for dosFs data cache */
 UINT newDirDefaultSize, /* new default size for dosFs dir cache */
 UINT newFatDefaultSize /* new default size for dosFs FAT cache */
)

DESCRIPTION This routine sets the default disk cache size to be used for the next dosFs instantiations.

RETURNS N/A

ERRNO Not Available

SEE ALSO dosFsCacheLib

dosFsDefaultDataCacheSizeGet()

NAME dosFsDefaultDataCacheSizeGet() – get the default data cache size

SYNOPSIS UINT dosFsDefaultDataCacheSizeGet (void)

DESCRIPTION This routine gets the default data cache size.

RETURNS value of the default data cache size.

ERRNO Not Available

SEE ALSO dosFsCacheLib

VxWorks Kernel API Reference, 6.6
dosFsDefaultDirCacheSizeGet()

178

dosFsDefaultDirCacheSizeGet()

NAME dosFsDefaultDirCacheSizeGet() – get the default directory cache size

SYNOPSIS UINT dosFsDefaultDirCacheSizeGet (void)

DESCRIPTION This routine gets the default directory cache size.

RETURNS value of the default directory cache size.

ERRNO Not Available

SEE ALSO dosFsCacheLib

dosFsDefaultFatCacheSizeGet()

NAME dosFsDefaultFatCacheSizeGet() – get the default FAT cache size

SYNOPSIS UINT dosFsDefaultFatCacheSizeGet (void)

DESCRIPTION This routine gets the default FAT cache size.

RETURNS value of the default FAT cache size.

ERRNO Not Available

SEE ALSO dosFsCacheLib

dosFsDevCreate()

NAME dosFsDevCreate() – create file system device.

SYNOPSIS STATUS dosFsDevCreate
 (
 char * pDevName, /* device name */
 device_t device, /* underlying XBD block device */
 u_int maxFiles, /* max no. of simultaneously open files */
 int dosDevCreateOptions /* write option & volume integrity */
)

2 Routines
dosFsDevCreate()

179

2

DESCRIPTION This routine associates an XBD device with a logical I/O device name and prepare it to
perform file system functions. It takes an XBD device handle, typically created by
xbdBlkDevCreate() or xbdPartitionDevCreate(), and defines it as a dosFs volume. As a
result, when high-level I/O operations (e.g., open(), write()) are performed on the device,
the calls will be routed through dosFsLib. The device parameter is the handle of the
underlying partition or block device XBD.

The argument maxFiles specifies the number of files that can be opened at once on the
device.

The volume structure integrity can be automatically checked during volume mounting.
Parameter dosDevCreateOptions defines checking level (DOS_CHK_ONLY or
DOS_CHK_REPAIR), that can be bitwise or-ed with check verbosity level value
(DOS_CHK_VERB_SILENT, DOS_CHK_VERB_1 or DOS_CHK_VERB_2).

If the value of dosDevCreateOptions is 0, the default checking level is used. The default level
is (DOS_CHK_ONLY | DOS_CHK_VERB_2).

To suppress the automatic check disk, bitwise or (DOS_CHK_NONE) or set
dosDevCreateOptions to NONE.

Disk checking is normally suppressed on volumes marked clean. To force a disk-check,
bitwise or (DOS_CHK_FORCE).

The volume may be configured to request DOS_WRITE_THROUGH writes for some or all of
the disk operations. Additional bits of parameter dosDevCreateOptions define the volume's
write-through setting. The default (zero) is to use copyback writes (DOS_WRITE) for all
write operations. The default is the fastest configuration.

To writethrough all FAT table write operations, or in DOS_WRITE_THROUGH_FAT To
writethrough all directory entry write operations, or in DOS_WRITE_THROUGH_DIR To
writethrough all user data buffers, or in DOS_WRITE_THROUGH_USR To writethrough
both FAT and DIRENT operations, or them together. (DOS_WRITE_THROUGH_DIR |
DOS_WRITE_THROUGH_FAT | DOS_CHK_NONE)

User data writes will still use copyback DOS_WRITE operations when using
(DOS_WRITE_THROUGH_DIR | DOS_WRITE_THROUGH_FAT)

To write-through all write operations, including all user data, or in
DOS_WRITE_THROUGH_ALL. This is the slowest operation and all write operation made
by the file system will be DOS_WRITE_THROUGH.

To enable Unicode filenames, or in DOS_FILENAMES_UNICODE. Case insensitivity (if
enabled) currently applies only to ASCII values even when Unicode is turned on. For
instance, a German eszet is never considered the same as two uppercase S characters, but
two uppercase S characters can match two lowercase S characters because these are both in
the first 128 character codes.

NOTE Setting parameter dosDevCreateOptions to NONE (-1) will both disable the automated
chkdsk and force copyback (DOS_WRITE) operation. Unicode filenames will not be enabled.

VxWorks Kernel API Reference, 6.6
dosFsDevDelete()

180

Note that during a call to dosFsDevCreate() actual disk accesses are deferred to the time
when open() or creat() are first called. That is also when the automatic disk checking will
take place. Therefore this function will succeed in cases where a removable disk is not
present in the drive.

RETURNS OK, or ERROR if the device name is already in use or insufficient memory.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosFsDevDelete()

NAME dosFsDevDelete() – delete a dosFs volume

SYNOPSIS STATUS dosFsDevDelete
 (
 DOS_VOLUME_DESC_ID pVolDesc /* pointer to volume descriptor */
)

DESCRIPTION This routine deletes a dosFs volume.

RETURNS OK on success, ERROR otherwise

ERRNO Not Available

SEE ALSO dosFsLib

dosFsDiskProbe()

NAME dosFsDiskProbe() – probe if a device contains a valid dosFs

SYNOPSIS STATUS dosFsDiskProbe
 (
 device_t xbdDevice /* XBD device to probe */
)

DESCRIPTION This routine probes if a device (or a partition) contains a valid DOS FS.

2 Routines
dosFsFdGet()

181

2

RETURNS OK if successful. ERROR otherwise.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosFsFdFree()

NAME dosFsFdFree() – free a file descriptor

SYNOPSIS void dosFsFdFree
 (
 DOS_FILE_DESC_ID pFd
)

DESCRIPTION This routine marks a file descriptor as free and decreases reference count of a referenced file
handle.

RETURNS N/A.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosFsFdGet()

NAME dosFsFdGet() – get an available file descriptor

SYNOPSIS DOS_FILE_DESC_ID dosFsFdGet
 (
 DOS_VOLUME_DESC_ID pVolDesc
)

DESCRIPTION This routine obtains a free dosFs file descriptor.

RETURNS Pointer to file descriptor, or NULL, if none available.

VxWorks Kernel API Reference, 6.6
dosFsFmtLibInit()

182

ERRNO S_dosFsLib_NO_FREE_FILE_DESCRIPTORS /NOMANUAL

SEE ALSO dosFsLib

dosFsFmtLibInit()

NAME dosFsFmtLibInit() – initialize the MS-DOS formatting library

SYNOPSIS void dosFsFmtLibInit(void)

DESCRIPTION This function is called to optionally enable the formatting functionality from dosFsLib.

RETURNS Not Available

ERRNO Not Available

SEE ALSO dosFsFmtLib, dosFsLib, /NOMANUAL

dosFsFmtTest()

NAME dosFsFmtTest() – UNITEST CODE

SYNOPSIS void dosFsFmtTest
 (
 int size
)

DESCRIPTION /NOMANUAL

RETURNS Not Available

ERRNO Not Available

SEE ALSO dosFsFmtLib

2 Routines
dosFsIoctl()

183

2

dosFsHdlrInstall()

NAME dosFsHdlrInstall() – install handler.

SYNOPSIS STATUS dosFsHdlrInstall
 (
 DOS_HDLR_DESC_ID hdlrsList, /* appropriate list */
 DOS_HDLR_DESC_ID hdlr /* ptr on handler descriptor */
)

DESCRIPTION This library does not directly access directory structure, nor FAT, rather it uses particular
handlers to serve such accesses. This function is intended for use by the dosFsLib
sub-modules only.

This routine installs a handler into DOS FS handlers list. There are two such lists: FAT
Handlers List (dosFatHdlrsList) and Directory Handlers List (dosDirHdlrsList). Each handler
must provide its unique Id (see dosFsLibP.h) and pointer to appropriate list to install it to.
All lists are sorted by Id-s in ascending order. Every handler is tried to be mounted on each
new volume in accordance to their order in list, until succeeded. So preferable handlers, that
supports the same type of volumes must have less Id values.

RETURNS STATUS.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosFsIoctl()

NAME dosFsIoctl() – do device specific control function

SYNOPSIS STATUS dosFsIoctl
 (
 FAST DOS_FILE_DESC_ID pFd, /* fd of file to control */
 int function, /* function code */
 int arg /* some argument */
)

DESCRIPTION This routine performs the following ioctl functions.

Any ioctl function codes, that are not supported by this routine are passed to the underlying
XBD module for handling.

VxWorks Kernel API Reference, 6.6
dosFsLastAccessDateEnable()

184

There are some ioctl() functions, that suppose to receive as result a 32-bit numeric value
(FIONFREE, FIOWHERE and so on), however disks and files with size grater, than 4GB are
supported. In order to solve this contradiction new ioctl() functions are provided. They
have the same name as basic functions, but with suffix 64: FIONFREE64, FIOWHERE64 and
so on. These functions gets pointer to long long as an argument. Also FIOWHERE64 returns
value via argument, but not as ioctl()returned value. If an ioctl fails, the task's status (see
errnoGet()) indicates the nature of the error.

RETURNS OK or current position in file for FIOWHERE, or ERROR if function failed or driver returned
error, or if function supposes 32 bit result value, but actual result overloads this restriction.

ERRNO S_dosFsLib_INVALID_PARAMETER
S_dosFsLib_VOLUME_NOT_AVAILABLE
S_dosFsLib_FD_OBSOLETE
S_dosFsLib_DELETED
S_dosFsLib_32BIT_OVERFLOW /NOMANUAL

SEE ALSO dosFsLib

dosFsLastAccessDateEnable()

NAME dosFsLastAccessDateEnable() – enable last access date updating for this volume

SYNOPSIS STATUS dosFsLastAccessDateEnable
 (
 DOS_VOLUME_DESC_ID dosVolDescId, /* dosfs volume ID to alter */
 BOOL enable /* TRUE = enable update, FALSE =
disable update */
)

DESCRIPTION This function enables or disables updating of the last access date directory entry field on
open-read-close operations for the given dosFs volume. The last access date file indicates
the last date that a file has been read or written. When the optional last access date field
update is enabled, read operations on a file will cause a write to the media.

RETURNS OK or ERROR if the volume is invalid or enable is not TRUE or FALSE.

ERRNO Not Available

SEE ALSO dosFsLib

2 Routines
dosFsMonitorDevCreate()

185

2

dosFsLibInit()

NAME dosFsLibInit() – prepare to use the dosFs library

SYNOPSIS STATUS dosFsLibInit
 (
 int maxFiles,
 int options
)

DESCRIPTION This routine initializes the dosFs library. This initialization is enabled when the
configuration macro INCLUDE_DOSFS is defined. This routine installs dosFsLib as a driver
in the I/O system driver table, and allocates and sets up the necessary structures. The driver
number assigned to dosFsLib is placed in the global variable dosFsDrvNum.

RETURNS OK or ERROR, if driver can not be installed.

ERRNO Not Available

SEE ALSO dosFsLib

dosFsMonitorDevCreate()

NAME dosFsMonitorDevCreate() – create a dosFs volume through the fs monitor

SYNOPSIS STATUS dosFsMonitorDevCreate
 (
 device_t xbdId, /* XBD for the device on which to mount. */
 char * pDevName /* Name of the DOS FS device (mount point). */
)

DESCRIPTION This routine creates an DOS FS device.

RETURNS OK if successful. ERROR otherwise.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

VxWorks Kernel API Reference, 6.6
dosFsOpen()

186

dosFsOpen()

NAME dosFsOpen() – open a file on a dosFs volume

SYNOPSIS DOS_FILE_DESC_ID dosFsOpen
 (
 DOS_VOLUME_DESC_ID pVolDesc, /* pointer to volume descriptor */
 char * pPath, /* dosFs full path/filename */
 int flags, /* file open flags */
 int mode /* file open permissions (mode) */
)

DESCRIPTION This routine opens the file name with the specified mode
(O_RDONLY/O_WRONLY/O_RDWR/CREATE/TRUNC). The directory structure is
searched, and if the file is found a dosFs file descriptor is initialized for it. Extended flags
are provided by DOS FS for more efficiency:

- DOS_O_CONTIG_CHK - to check file for contiguity.

- DOS_O_CASENS - force the file name lookup in case insensitive manner, (if directory
format provides such opportunity)

If this is the very first open for the volume, configuration data will be read from the disk
automatically (via dosFsVolMount()).

RETURNS A pointer to a dosFs file descriptor, or ERROR if the volume is not available, or there are no
available dosFs file descriptors, or there is no such file and O_CREAT was not specified, or
file can not be opened with such permissions.

ERRNO S_dosFsLib_INVALID_PARAMETER
S_dosFsLib_READ_ONLY
S_dosFsLib_FILE_NOT_FOUND
S_dosFsLib_FILE_EXISTS /NOMANUAL

SEE ALSO dosFsLib

dosFsShow()

NAME dosFsShow() – display dosFs volume configuration data.

SYNOPSIS STATUS dosFsShow
 (
 void * pDevName, /* name of device */

2 Routines
dosFsVolDescGet()

187

2

 u_int level /* detail level */
)

DESCRIPTION This routine obtains the dosFs volume configuration for the named device, formats the data,
and displays it on the standard output.

If no device name is specified, the current default device is described.

RETURNS OK or ERROR, if no valid device specified.

ERRNO Not Available

SEE ALSO dosFsShow

dosFsVolDescGet()

NAME dosFsVolDescGet() – convert a device name into a DOS volume descriptor pointer.

SYNOPSIS DOS_VOLUME_DESC_ID dosFsVolDescGet
 (
 void * pDevNameOrPVolDesc, /* device name or pointer to dos vol desc
*/
 u_char ** ppTail /* return ptr for name, used in iosDevFind
*/
)

DESCRIPTION This routine validates pDevNameOrPVolDesc to be a DOS volume descriptor pointer else a
path to a DOS device. This routine uses the standard iosLib function iosDevFind() to
obtain a pointer to the device descriptor. If device is eligible, ppTail is filled with the pointer
to the first character following the device name. Note that ppTail is passed to
iosDevFind(). ppTail may be passed as NULL, in which case it is ignored.

RETURNS A DOS_VOLUME_DESC_ID or NULL if not a DOSFS device.

ERRNO S_dosFsLib_INVALID_PARAMETER

SEE ALSO dosFsLib

VxWorks Kernel API Reference, 6.6
dosFsVolFormat()

188

dosFsVolFormat()

NAME dosFsVolFormat() – format an MS-DOS compatible volume

SYNOPSIS STATUS dosFsVolFormat
 (
 char * path, /* path for volume to format */
 int opt, /* bit-wise or'ed options */
 FUNCPTR pPromptFunc /* interactive parameter change callback */
)

DESCRIPTION This utility routine performs the initialization of file system data structures on a disk. It
supports FAT12 for small disks, FAT16 for medium size and FAT32 for large volumes. The
device argument is a device name known to the I/O system.

The opt argument is a bit-wise or'ed combination of options controlling the operation of this
routine as follows:

DOS_OPT_DEFAULT
If the current volume boot block is reasonably intact, use existing parameters, else
calculate parameters based only on disk size, possibly reusing only the volume label
and serial number.

DOS_OPT_PRESERVE
Attempt to preserve the current volume parameters even if they seem to be somewhat
unreliable.

DOS_OPT_BLANK
Disregard the current volume parameters, and calculate new parameters based only on
disk size.

DOS_OPT_QUIET
Do not produce any diagnostic output during formatting.

DOS_OPT_FAT16
Format the volume with FAT16. Valid on volumes up to 2 Gbytes big. For larger ones,
FAT32 must be used.

DOS_OPT_FAT32
Format the volume with FAT32, even if the disk is smaller than 2 Gbytes, but is larger
then 512 Mbytes.

DOS_OPT_VXLONGNAMES
Note that this option is deprecated. Calling dosFsVolFormat with this option will result
in an error.

The third argument, pPromptFunc is an optional pointer to a function that may interactively
prompt the user to change any of the modifiable volume parameters before formatting:

void formatPromptFunc(DOS_VOL_CONFIG *pConfig);

2 Routines
dosFsVolFormatFd()

189

2

The *pConfig structure upon entry to formatPromptFunc() will contain the initial volume
parameters, some of which can be changed before it returns. pPromptFunc should be NULL
if no interactive prompting is required.

COMPATIBILITY Although this routine tries to format the disk to be compatible with Microsoft
implementations of the FAT and FAT32 file systems, there may be differences which are not
under WRS control. For this reason, it is highly recommended that any disks which are
expected to be interchanged between vxWorks and Windows should be formatted under
Windows to provide the best interchangeability. The WRS implementation is more flexible,
and should be able to handle the differences when formatting is done on Windows, but
Windows implementations may not be able to handle minor differences between their
implementation and ours.

AVAILABILITY This function is an optional part of the MS-DOS file system, and may be included in a target
system if it is required to be able to format new volumes.

RETURNS OK or ERROR if was unable to format the disk.

ERRNO Not Available

SEE ALSO dosFsFmtLib

dosFsVolFormatFd()

NAME dosFsVolFormatFd() – format an MS-DOS compatible volume via an opened FD

SYNOPSIS STATUS dosFsVolFormatFd
 (
 int fd, /* rawFs file descriptor */
 int opt, /* bit-wise or'ed options */
 FUNCPTR pPromptFunc /* interactive parameter change callback */
)

DESCRIPTION Refer to dosFsVolFormat()'s documentation. It should also be noted that the file descriptor
parameter will be closed regardless of the routine's outcome.

RETURNS OK or ERROR if was unable to format the disk.

ERRNO Not Available

SEE ALSO dosFsFmtLib

VxWorks Kernel API Reference, 6.6
dosFsVolIsFat12()

190

dosFsVolIsFat12()

NAME dosFsVolIsFat12() – determine if a MSDOS volume is FAT12 or FAT16

SYNOPSIS int dosFsVolIsFat12
 (
 u_char * pBootBuf /* boot parameter block buffer */
)

DESCRIPTION This routine is the container for the logic which determines if a dosFs volume is using
FAT12 or FAT16. Two methods are implemented. Both methods use information from the
volumes boot parameter block fields found in the boot sector.

The first FAT determination method follows the recommendations outlined in the Microsoft
document:

"Hardware White Paper
Designing Hardware for Microsoft Operating Systems
FAT: General Overview of On-Disk Format
Version 1.02, May 5, 1999
Microsoft Corporation"

This method is used in the hopes that greater compatability with MSDOS formatted media
will be achieved. The Microsoft recommended method for FAT type determination
between FAT12 and FAT16 is done via the count of clusters on the volume.

The Microsoft recommended approach is as follows:

1.) Determine the count of sectors occupied by the root directory
entries for this volume, rounding up:

rootDirSecs = ((rootEntCount * dirEntSz) + (bytesPerSec-1)) / bytesPerSec;

Where dirEntSz is 32 for MSDOS 8.3, and 64 for VXLONGNAMES.

2.) Determine the count of sectors occupied by the volumes data region:

dataRgnSecs = totalSecs - (reservedSecs + (nFats * fatSecs) + rootDirSecs);

3.) determine the count of clusters, rounding down:

countOfClusts = dataSecs / secsPerClust; /* Note: this rounds down. */

Note: countOfClusts represents the count of data clusters, starting at two.

4.) determine the FAT types based on the count of clusters on the volume,

if (countOfClusts < 4085) /* Microsoft recommends using "less than" */
{
/* Volume is FAT12 */

2 Routines
dosFsVolIsFat12()

191

2

}
else

{
/* Volume is FAT16 */
}

An alternate method is used when mounting a known VxWorks DOSFS-1.0 volume. This
method is used for greater backward compatability with VxWorks DOSFS-1.0 volumes.
See also: SPR#34704. The VxWorks dosFs1 method deviates from the Microsoft currently
recommened method.

This is the VxWorks DOSFS1 method per dosFsVolDescFill(), dosFsLib.c, dosFs 1.0,
revision history: "03l,16mar99,dgp". Using the identical method here will help ensure
backward compatablitity when mounting volumes formatted by the VxWorks dosFs1.0
code.

The VxWorks DOSFS 1.0 approach is as follows:

1.) Get starting sector of the root directory:

rootSec = reservedSecs + (nFats * secsPerFat);

2.) Get the size of the root dir in bytes:

rootBytes = (nRootEnts * dirEntSz):

Where dirEntSz is 32 for MSDOS 8.3, and 64 for VXLONGNAMES.

3.) Get the starting sector of the data area:

dataSec = rootSec + ((rootBytes + bytesPerSec-1) / bytesPerSec);

4.) Get the number of "FAT entries":

countOfClusts =
(((totalSecs - dataSecs) / secsPerClust) + DOS_MIN_CLUST);

5.) Choose the FAT type based on the count of clusters, note DOSFS1 uses less than or equal
here.

if (countOfClusts <= 4085) /* VxDosFs1 uses less than or equal to. */
{
/* use FAT12 */
}

else
{
/* use FAT16 */
}

VxWorks Kernel API Reference, 6.6
dosFsVolUnmount()

192

By mimicking the dosFs 1.0 approach, we should be able to mount all dosFs 1.0 volumes
correctly. By using the microsoft recommened approach in all other cases, we should be as
compatable as possible with Microsoft OS's.

The volumes Boot Parameter Block fields MUST be validated for sanity before this routine
is called.

pBootBuf is not verified, DO NOT pass this routine a NULL pointer. This routine is also used
by dosFsFmtLib.c

RETURNS TRUE if the FAT type is FAT12, FALSE if the FAT type is FAT16, or ERROR if the data is
invalid.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosFsVolUnmount()

NAME dosFsVolUnmount() – unmount a dosFs volume

SYNOPSIS STATUS dosFsVolUnmount
 (
 void * pDevNameOrPVolDesc /* device name or ptr to */
 /* volume descriptor */
)

DESCRIPTION This routine is called when I/O operations on a volume are to be discontinued. This is the
preferred action prior to changing a removable disk.

All buffered data for the volume is written to the device (if possible, with no error returned
if data cannot be written), any open file descriptors are marked as obsolete, and the volume
is marked as not currently mounted.

When a subsequent open() operation is initiated on the device, new volume will be
mounted automatically.

Once file descriptors have been marked as obsolete, any attempt to use them for file
operations will return an error. (An obsolete file descriptor may be freed by using close().
The call to close() will return an error, but the descriptor will in fact be freed).

This routine may also be invoked by calling ioctl() with the FIOUNMOUNT function code.

This routine must not be called from interrupt level.

2 Routines
dosFsVolumeOptionsSet()

193

2

RETURNS OK, or ERROR if the volume was not mounted.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosFsVolumeOptionsGet()

NAME dosFsVolumeOptionsGet() – get this volume's disk options

SYNOPSIS UINT dosFsVolumeOptionsGet
 (
 char * volName /* dosFs volume name */
)

DESCRIPTION This routine gets the volume options for the dosFs volume volName. It replaces the routine
dosFsCacheOptionsGet().

volName is a NULL terminated character string identifying the DosFS volume.

RETURNS DOS_VOLUME_VOL_NO_DMA if that option is enabled;
0 if no options are enabled; ERROR on failure

ERRNO Not Available

SEE ALSO dosFsLib

dosFsVolumeOptionsSet()

NAME dosFsVolumeOptionsSet() – set this volume's disk options

SYNOPSIS UINT dosFsVolumeOptionsSet
 (
 char * volName, /* dosFs volume name */
 UINT options /* new options */
)

VxWorks Kernel API Reference, 6.6
dosFsXbdBlkCopy()

194

DESCRIPTION This routine sets the volume options for the dosFs volume volName. Currently the only
option available is DOS_VOLUME_VOL_NO_DMA, which means that DosFS does not need
to use DMA-safe buffers on volName when large transfers to and from the media are
requested. This option may gain performance on large transfers, and is recommended for
USB devices. It replaces the routine dosFsCacheOptionsSet().

volName is a NULL terminated character string that corresponds to the name of the desired
DosFS volume. Valid settings for options are currently DOS_VOLUME_VOL_NO_DMA or 0.

RETURNS new value of the volume's options, or ERROR on failure.

ERRNO Not Available

SEE ALSO dosFsLib

dosFsXbdBlkCopy()

NAME dosFsXbdBlkCopy() – copy blocks on the underlying XBD block device.

SYNOPSIS STATUS dosFsXbdBlkCopy
 (
 DOS_VOLUME_DESC * pVolDesc, /* volume descriptor */
 sector_t srcBlock,
 sector_t dstBlock,
 sector_t numBlocks
)

DESCRIPTION none

RETURNS STATUS.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

2 Routines
dosFsXbdBlkWrite()

195

2

dosFsXbdBlkRead()

NAME dosFsXbdBlkRead() – read blocks from the underlying XBD block device.

SYNOPSIS STATUS dosFsXbdBlkRead
 (
 DOS_VOLUME_DESC * pVolDesc, /* volume descriptor */
 sector_t startBlock, /* starting block of transfer */
 sector_t numBlocks, /* number of blocks to transfer */
 addr_t buffer /* address of the memory buffer */
)

DESCRIPTION none

RETURNS STATUS.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosFsXbdBlkWrite()

NAME dosFsXbdBlkWrite() – write blocks to the underlying XBD block device.

SYNOPSIS STATUS dosFsXbdBlkWrite
 (
 DOS_VOLUME_DESC * pVolDesc, /* volume descriptor */
 sector_t startBlock, /* starting block of write */
 sector_t numBlocks, /* number of blocks to write */
 addr_t buffer, /* address of the memory buffer */
 DOS_RW operation /* DOS_WRITE/DOS_WRITE_THROUGH */
)

DESCRIPTION none

RETURNS STATUS.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

VxWorks Kernel API Reference, 6.6
dosFsXbdBytesRW()

196

dosFsXbdBytesRW()

NAME dosFsXbdBytesRW() – read/write bytes to/from the underlying XBD block device.

SYNOPSIS STATUS dosFsXbdBytesRW
 (
 DOS_VOLUME_DESC * pVolDesc, /* volume descriptor */
 sector_t startBlock, /* starting block of the transfer */
 off_t offset, /* offset into block in bytes */
 addr_t buffer, /* address of data buffer */
 size_t nBytes, /* number of bytes to transfer */
 u_int operation /* DOS_READ/DOS_WRITE/WRITE_THROUGH */
)

DESCRIPTION none

RETURNS STATUS.

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosFsXbdIoctl()

NAME dosFsXbdIoctl() – Misc control operations

SYNOPSIS STATUS dosFsXbdIoctl
 (
 DOS_VOLUME_DESC * pVolDesc,
 UINT32 command,
 addr_t arg
)

DESCRIPTION This performs the requested old CBIO ioctl() operations.

RETURNS OK or ERROR and may otherwise set errno.

/NOMANUAL

RETURNS Not Available

ERRNO Not Available

2 Routines
dosPathParse()

197

2

SEE ALSO dosFsLib

dosPathParse()

NAME dosPathParse() – parse a full pathname into an array of names.

SYNOPSIS int dosPathParse
 (
 u_char * path,
 PATH_ARRAY * pnamePtrArray,
 size_t sizeArray
)

DESCRIPTION This routine is similar to pathParse(), but on the contrary it does not allocate additional
buffers nor changes the path string.

Parses a path in directory tree which has directory names separated by / or ''s. It fills the
supplied array of structures with pointers to directory and file names and correspondence
name length. All occurrences of //, . and .. are right removed from path. All tail dots and
spaces are broken from each name, that is name like "abc. . ." is treated as just "abc".

For instance, "/usr/vw/data/../dir/file" gets parsed into

 namePtrArray
 |---------|
 ---------------------------o |
 | | 3 |
 | |---------|
 | -----------------------o |
		2		

	------------o			
			3	

		--------o		
				4

v v v v	NULL			
				0

v v v v				

usr/vw/data/../dir/file				
-------\-----/----------				
 ignored

Note that UTF-8 bytes that are not representing ASCII characters ., /, etc., never compare
equal to ., /, etc., so that no special work is required here for Unicode.

VxWorks Kernel API Reference, 6.6
dosSetVolCaseSens()

198

In the future, the "../" erasure trick is likely to vanish. Do not rely on the fact that you can
currently access "nosuchdir/../file.txt" when "nosuchdir" does not exist.

RETURNS number of levels in path.

ERRNO S_dosFsLib_ILLEGAL_PATH
S_dosFsLib_ILLEGAL_NAME

SEE ALSO dosFsLib

dosSetVolCaseSens()

NAME dosSetVolCaseSens() – set case sensitivity of volume

SYNOPSIS STATUS dosSetVolCaseSens
 (
 DOS_VOLUME_DESC_ID pVolDesc,
 BOOL sensitivity
)

DESCRIPTION Pass TRUE to setup a case sensitive volume. Pass FALSE to setup a case insensitive volume.
Note this affects rename lookups only.

RETURNS TRUE if pVolDesc pointed to a DOS volume.

ERRNO Not Available

SEE ALSO dosFsLib

dosfsDiskFormat()

NAME dosfsDiskFormat() – format a disk with dosFs

SYNOPSIS STATUS dosfsDiskFormat
 (
 const char * pDevName /* name of the device to initialize */
)

2 Routines
dosfsDiskToHost32()

199

2

DESCRIPTION This command formats a disk and creates the dosFs file system on it. The device must
already have been created by the device driver and dosFs format component must be
included.

EXAMPLE -> dosfsDiskFormat "/fd0"

RETURNS OK, or ERROR if the device cannot be opened or formatted.

ERRNO Not Available

SEE ALSO usrFsLib, dosFsLib, the VxWorks programmer guides.

dosfsDiskToHost16()

NAME dosfsDiskToHost16() – convert uint16_t from on-disk to host format

SYNOPSIS uint16_t dosfsDiskToHost16
 (
 uint8_t * pSrc
)

DESCRIPTION This routine converts a uint16_t from on-disk format to host's endian-ness.

RETURNS uint16_t in hosts's endian-ness

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosfsDiskToHost32()

NAME dosfsDiskToHost32() – convert uint32_t from on-disk to host format

SYNOPSIS uint32_t dosfsDiskToHost32
 (
 uint8_t * pSrc
)

DESCRIPTION This routine converts a uint32_t from on-disk format to host's endian-ness.

VxWorks Kernel API Reference, 6.6
dosfsHostToDisk16()

200

RETURNS uint32_t in host's endian-ness

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosfsHostToDisk16()

NAME dosfsHostToDisk16() – convert uint16_t from host to on-disk format

SYNOPSIS void dosfsHostToDisk16
 (
 uint16_t src,
 uint8_t * pDest
)

DESCRIPTION This routine converts a uint16_t from host's memory to on-disk format.

RETURNS N/A

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dosfsHostToDisk32()

NAME dosfsHostToDisk32() – convert uint32_t from host to on-disk format

SYNOPSIS void dosfsHostToDisk32
 (
 uint32_t src,
 uint8_t * pDest
)

DESCRIPTION This routine converts a uint32_t from host's memory to on-disk format.

RETURNS N/A

2 Routines
dpartDevCreate()

201

2

/NOMANUAL

ERRNO Not Available

SEE ALSO dosFsLib

dpartDevCreate()

NAME dpartDevCreate() – Initialize a partitioned disk

SYNOPSIS CBIO_DEV_ID dpartDevCreate
 (
 CBIO_DEV_ID subDev, /* lower level CBIO device */
 int nPart, /* # of partitions */
 FUNCPTR pPartDecodeFunc /* function to decode partition table */
)

DESCRIPTION To handle a partitioned disk, this function should be called, with subDev as the handle
returned from dcacheDevCreate(), It is recommended that for efficient operation a single
disk cache be allocated for the entire disk and shared by its partitions.

nPart is the maximum number of partitions which are expected for the particular disk drive.
Up to 24 (C-Z) partitions per disk are supported.

PARTITION DECODE FUNCTION

An external partition table decode function is provided via the pPartDecodeFunc argument,
which implements a particular style and format of partition tables, and fill in the results into
a table defined as Pn array of PART_TABLE_ENTRY types. See dpartCbio.h for definition of
PART_TABLE_ENTRY. The prototype for this function is as follows:

 STATUS parDecodeFunc
 (
 CBIO_DEV_ID dev, /* device from which to read blocks */
 PART_TABLE_ENTRY *pPartTab, /* table where to fill results */
 int nPart /* # of entries in <pPartTable> */
)

RETURNS CBIO_DEV_ID or NULL if error creating CBIO device.

ERRNO Not Available

SEE ALSO dpartCbio, dosFsDevCreate().

VxWorks Kernel API Reference, 6.6
dpartPartGet()

202

dpartPartGet()

NAME dpartPartGet() – retrieve handle for a partition

SYNOPSIS CBIO_DEV_ID dpartPartGet
 (
 CBIO_DEV_ID masterHandle, /* CBIO handle of the master partition */
 int partNum /* partition number from 0 to nPart */
)

DESCRIPTION This function retrieves a CBIO handle into a particular partition of a partitioned device. This
handle is intended to be used with dosFsDevCreate().

RETURNS CBIO_DEV_ID or NULL if partition is out of range, or masterHandle is invalid.

ERRNO Not Available

SEE ALSO dpartCbio, dosFsDevCreate()

dshmMuxHwAddrToOff()

NAME dshmMuxHwAddrToOff() – translate a local address to a shared memory offset

SYNOPSIS uint32_t dshmMuxHwAddrToOff
 (
 const uint_t hw,
 const void * const addr
)

DESCRIPTION This routine takes a pointer in shared memory and translates it into a shared memory offset
that can be passed via a message to a remote node. This is needed when nodes do not see
the shared memory at the same address locally.* It allows then to pass addresses as offset
from a common point of reference.

RETURNS the shared memory offset corresponding to the local address

ERRNO Not Available

SEE ALSO dshmMuxLib

2 Routines
dshmMuxHwLocalAddrGet()

203

2

dshmMuxHwGet()

NAME dshmMuxHwGet() – obtain an hardware registration handle based on name

SYNOPSIS int dshmMuxHwGet
 (
 const char * const name
)

DESCRIPTION This routine returns the handle of a previously registered hardware based on the name used
at registration time.

RETURNS a hardware registration handle, or -1 if it does not exist

ERRNO Not Available

SEE ALSO dshmMuxLib

dshmMuxHwLocalAddrGet()

NAME dshmMuxHwLocalAddrGet() – obtain address of the local node

SYNOPSIS uint16_t dshmMuxHwLocalAddrGet
 (
 const uint_t hw
)

DESCRIPTION none

RETURNS the address of the local node, 0x0 to 0xfffe, 0xffff if error

ERRNO Not Available

SEE ALSO dshmMuxLib

VxWorks Kernel API Reference, 6.6
dshmMuxHwNodesNumGet()

204

dshmMuxHwNodesNumGet()

NAME dshmMuxHwNodesNumGet() – obtain the maximum number of nodes on a hardware bus

SYNOPSIS int dshmMuxHwNodesNumGet
 (
 const uint_t hw
)

DESCRIPTION This routine returns the maximum number of nodes that can exist on a particular hardware
bus registered with the MUX.

RETURNS the maximum number of nodes, or -1 if hw is invalid

ERRNO Not Available

SEE ALSO dshmMuxLib

dshmMuxHwOffToAddr()

NAME dshmMuxHwOffToAddr() – translate a shared memory offset to a local address

SYNOPSIS void * dshmMuxHwOffToAddr
 (
 const uint_t hw,
 const uint32_t offset
)

DESCRIPTION This routine takes an offset in shared memory that might have been transmitted via a
message and translates it to a local address that can be used as a pointer.

RETURNS the local address corresponding to the shared memory offset

ERRNO Not Available

SEE ALSO dshmMuxLib

2 Routines
dshmMuxHwTasClearGet()

205

2

dshmMuxHwRegister()

NAME dshmMuxHwRegister() – register a hardware bus with the MUX

SYNOPSIS int dshmMuxHwRegister
 (
 const DSHM_HW_ID id, /* bus ID */
 const char * const name, /* bus name */
 const uint_t maxNodes, /* max number of nodes on the bus */
 const DSHM_HW_HOOKS * const pHooks /* bus methods (see dshmMuxLib.h)
*/
)

DESCRIPTION This routine registers a bus supporting DSHM with the MUX, allowing peers to register and
thus services to communicate between each other over the bus.

An OS-dependant hardware bus id must be provided, as well as a bus name, both of which
must be unique on the local target. This routine pre- allocates memory for the potential
services in the system. Finally, entry points in the bus controller pHooks are registered at this
point as well.

These hooks include: shared memory allocation and freeing, message transmission,
message broadcasting, atomic set (test-and-set, compare-and-swap, read-modify-write),
atomic clear (might be left to NULL if not needed), shared memory offset to local address
translation and vice-versa, retrieval of local node address on the bus, allocation of virtual
memory region on the bus, and a fast copy routine.

RETURNS a hardware registration handle, or -1 if failure

ERRNOS S_dshm_MUX_HW_NAME_EXISTS
This bus name is already in use.

S_dshm_MUX_HW_TABLE_FULL

and memory allocation failure errnos.

SEE ALSO dshmMuxLib

dshmMuxHwTasClearGet()

NAME dshmMuxHwTasClearGet() – obtain the TAS clear routine on this bus

SYNOPSIS DSHM_TAS_CLEAR dshmMuxHwTasClearGet

VxWorks Kernel API Reference, 6.6
dshmMuxHwTasGet()

206

 (
 const uint_t hw
)

DESCRIPTION none

RETURNS the atomic set routine, NULL if invalid hardware identifier

ERRNO Not Available

SEE ALSO dshmMuxLib, dshm/adapt/types.h

dshmMuxHwTasGet()

NAME dshmMuxHwTasGet() – obtain the test-and-set routine on this bus

SYNOPSIS DSHM_TAS dshmMuxHwTasGet
 (
 const uint_t hw
)

DESCRIPTION none

RETURNS the atomic set routine, NULL if invalid hardware identifier

ERRNO Not Available

SEE ALSO dshmMuxLib, dshm/adapt/types.h

dshmMuxLibInit()

NAME dshmMuxLibInit() – initialize the DSHM MUX

SYNOPSIS void dshmMuxLibInit
 (
 const uint_t maxHwReg, /* max hw types */
 const uint_t maxSvc /* max services */
)

2 Routines
dshmMuxMemAlloc()

207

2

DESCRIPTION Prepare the mux to receive registration for hardware buses and services. The maximum
amount for each is a configuration parameter. Services cannot register before their
hardware bus does a prior registration.

The maximum number of hardware buses maxHwReg and services maxSvc can be** any
positive integer number, but in practice should always be very small numbers.

RETURNS N/A

ERRNO Not Available

SEE ALSO dshmMuxLib

dshmMuxMemAlloc()

NAME dshmMuxMemAlloc() – allocate shared memory from a specific hardware

SYNOPSIS void * dshmMuxMemAlloc
 (
 const uint_t hw,
 int * const pSize,
 const int min
)

DESCRIPTION This routine allocates a specific slab of memory owned by specified hardware hw. The
allocated slab will be of size *pSize or closest available if no slab of contiguous memory of
greater or equal size is available. Slab is guaranteed to be at least min in size. To allow
allocation of any size available, a value of zero can be passed to min.

NOTE Depending on the hardware, a certain alignment may be forced by the
underlying allocation mechanism.

RETURNS Address of slab if successful or NULL otherwise.

ERRNOS Any error from the installed allocation routine for the hardware.

SEE ALSO dshmMuxLib

VxWorks Kernel API Reference, 6.6
dshmMuxMemFree()

208

dshmMuxMemFree()

NAME dshmMuxMemFree() – free allocated shared memory from a specific hardware

SYNOPSIS STATUS dshmMuxMemFree
 (
 const uint_t hw,
 void * const pMem
)

DESCRIPTION This routine frees a previously allocated slab of memory owned by specified hardware hw.

RETURNS OK if slab and hardware are valid, ERROR otherwise.

ERRNOS Any error from the installed free routine for the hardware.

SEE ALSO dshmMuxLib

dshmMuxMsgRecv()

NAME dshmMuxMsgRecv() – receive a message

SYNOPSIS STATUS dshmMuxMsgRecv
 (
 const uint_t hw, /* hardware on which to receive */
 DSHM(msg), /* message container */
 int unused1, /* possibe future expansion: use 0 */
 int unused2 /* possibe future expansion: use 0 */
)

DESCRIPTION This routine processes a message and calls the specified service processing routine
previously installed.

This routine should only be called by the hardware receive loop, called either via interrupt
or in poll mode.

When this routine calls the service handler, it owns the reference lock on the service object.
The service handler is responsible for unlocking the object via a call to
dshmMuxSvcObjRelease().

RETURNS OK if receive is successful or ERROR otherwise.

2 Routines
dshmMuxSvcNodeJoin()

209

2

ERRNOS S_dshm_MUX_SERVICE_NOT_REGISTERED

any error from the installed receive routine for the service.

SEE ALSO dshmMuxLib

dshmMuxMsgSend()

NAME dshmMuxMsgSend() – transmit a message

SYNOPSIS STATUS dshmMuxMsgSend
 (
 const uint_t hw, /* hardware on which to transmit */
 DSHM(msg), /* message to transmit */
 int unused1, /* possibe future expansion: use 0 */
 int unused2 /* possibe future expansion: use 0 */
)

DESCRIPTION This routine will send a message to a specified destination on a specified hardware based
on information provided in the msg argument. A broadcast address can be provided.

RETURNS OK if send is successful or ERROR otherwise.

ERRNOS S_dshm_MUX_NODE_NOT_REGISTERED

SEE ALSO dshmMuxLib

dshmMuxSvcNodeJoin()

NAME dshmMuxSvcNodeJoin() – signal services that a node has joined the system

SYNOPSIS void dshmMuxSvcNodeJoin
 (
 const uint_t hw, /* on which hw this node sits */
 const uint16_t addr /* node's unique address on hw */
)

DESCRIPTION This routine is to be called when a node joins the system to allow registered service to
perform some action based on the event. This can be something like setting up colleague
links, allocating memory for the peer, etc.

VxWorks Kernel API Reference, 6.6
dshmMuxSvcNodeLeave()

210

This routine should be called by hardware interfaces when they detect that a remote node
has appeared on the shared bus.

RETURNS N/A

ERRNO Not Available

SEE ALSO dshmMuxLib

dshmMuxSvcNodeLeave()

NAME dshmMuxSvcNodeLeave() – signal services that a node has left the system

SYNOPSIS void dshmMuxSvcNodeLeave
 (
 const uint_t hw, /* hardware handle obtained from registration */
 const uint16_t addr /* node's unique address on the bus */
)

DESCRIPTION This routine is to be called when a node leaves the system to allow registered services to
perform some action based on the event. This allows services to update their view of the
system and reclaim resources used for interacting with that particular node.

This routine should be called by hardware interfaces when they detect that a remote node
has disappeared on the shared bus.

RETURNS N/A

ERRNOS N/A

SEE ALSO dshmMuxLib

dshmMuxSvcObjGet()

NAME dshmMuxSvcObjGet() – retrieve a service object and protect it against deletion

SYNOPSIS void * dshmMuxSvcObjGet
 (
 const uint_t hw, /* hw on which the service exists */
 const uint_t svc /* service number, well-known */
)

2 Routines
dshmMuxSvcRegister()

211

2

DESCRIPTION This routine retrieves the reference to the object of a previously registered service svc on the
hardware bus hw. It will also prevent the object from being deleted.

RETURNS A pointer to the object or NULL if the service or hardware are not
registered.

ERRNOS S_dshm_MUX_SERVICE_NOT_REGISTERED

SEE ALSO dshmMuxLib

dshmMuxSvcObjRelease()

NAME dshmMuxSvcObjRelease() – allows modifications to be made on a service object

SYNOPSIS void dshmMuxSvcObjRelease
 (
 const uint_t hw,
 const uint_t svc
)

DESCRIPTION This routine releases a previously obtained reference to the object of a registered service svc
on the hardware bus hw.

RETURNS N/A

ERRNO Not Available

SEE ALSO dshmMuxLib

dshmMuxSvcRegister()

NAME dshmMuxSvcRegister() – register a service with the MUX

SYNOPSIS STATUS dshmMuxSvcRegister
 (
 const uint_t hw, /* hw on which to register service */
 const uint_t svc, /* service number, well-known */
 const void * const pObj, /* pointer to service object */
 const DSHM_SVC_HOOKS * const pHooks /* service receive routine */
)

VxWorks Kernel API Reference, 6.6
dshmMuxSvcWithdraw()

212

DESCRIPTION Register a service with well-known number svc with the MUX. A receive hook called when
a message arrives on any hardware registered must be provided via the rx argument. An
argument to the rx method can register via arg and will be passed to rx when it is called.

RETURNS OK if service if registered successfully or ERROR otherwise.

ERRNOS S_dshm_MUX_SERVICE_TABLE_FULL

SEE ALSO dshmMuxLib

dshmMuxSvcWithdraw()

NAME dshmMuxSvcWithdraw() – remove service from MUX

SYNOPSIS STATUS dshmMuxSvcWithdraw
 (
 const uint_t hw,
 const uint_t svc
)

DESCRIPTION This routine removes the service with well-known name svc from the MUX, for the
hardware bus hw. The stop callback registered with the service will be invoked at this point.

After removal, messages intended for it will be discarded by the hardware processing loop.

RETURNS OK if node withdrawal successful or ERROR otherwise.

ERRNOS S_dshm_MUX_SERVICE_NOT_REGISTERED

SEE ALSO dshmMuxLib

dshmMuxWidtdrawComplete()

NAME dshmMuxWidtdrawComplete() – signal service has finished withdrawing

SYNOPSIS STATUS dshmMuxSvcWithdrawComplete
 (
 const uint_t hw,
 const uint_t svc
)

2 Routines
dsiSysPoolShow()

213

2

DESCRIPTION To be called by the service when the service determines it can remove itself from the system
completely.

WARNING This routine must be called with the reference to the object NOT OWNED by the calling
thread. This routine cannot be called from within the stop callback registered with the
service.

RETURNS Not Available

ERRNO Not Available

SEE ALSO dshmMuxLib

dsiDataPoolShow()

NAME dsiDataPoolShow() – display DSI's data pool statistics

SYNOPSIS void dsiDataPoolShow (void)

DESCRIPTION This routine displays the statistics for the allocated/available clusters in the DSI data pool.
That pool is used to transfer data packets between DSI sockets.

RETURNS N/A

ERRNO Not Available

SEE ALSO dsiSockLib, netPoolShow()

dsiSysPoolShow()

NAME dsiSysPoolShow() – display DSI's system pool statistics

SYNOPSIS void dsiSysPoolShow (void)

DESCRIPTION This routine displays the statistics for the allocated/available clusters in the DSI system
pool. That pool is used by DSI sockets and their protocols' control blocks.

RETURNS N/A

VxWorks Kernel API Reference, 6.6
e()

214

ERRNO Not Available

SEE ALSO dsiSockLib, netPoolShow()

e()

NAME e() – set or display eventpoints (WindView)

SYNOPSIS STATUS e
 (
 INSTR * addr, /* where to set eventpoint, or */
 /* 0 means display all eventpoints */
 event_t eventId, /* event ID */
 int taskNameOrId, /* task affected; 0 means all tasks */
 FUNCPTR evtRtn, /* function to be invoked; */
 /* NULL means no function is invoked */
 int arg /* argument to be passed to <evtRtn> */
)

DESCRIPTION This routine sets "eventpoints"--that is, breakpoint-like instrumentation markers that can be
inserted in code to generate and log an event for use with WindView. Event logging must
be enabled with wvEvtLogEnable() for the eventpoint to be logged.

eventId selects the evenpoint number that will be logged: it is in the user event ID range
(0-25536).

If addr is NULL, then all eventpoints and breakpoints are displayed. If taskNameOrId is 0,
then this event is logged in all tasks. The evtRtn routine is called when this eventpoint is hit.
If evtRtn returns OK, then the eventpoint is logged; otherwise, it is ignored. If evtRtn is a
NULL pointer, then the eventpoint is always logged.

Eventpoints are exactly like breakpoints (which are set with the b() command) except in
how the system responds when the eventpoint is hit. An eventpoint typically records an
event and continues immediately (if evtRtn is supplied, this behavior may be different).
Eventpoints cannot be used at interrupt level.

To delete an eventpoint, use bd().

RETURNS OK, or ERROR if addr is odd or nonexistent in memory, or if the breakpoint table is full.

ERRNO N/A

SEE ALSO dbgLib, wvEvent(), VxWorks Kernel Programmer's Guide: Kernel Shell

2 Routines
edi()

215

2

edi()

NAME edi() – return the contents of register edi (also esi - eax) (x86)

SYNOPSIS int edi
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of register edi from the TCB of a specified task. If taskId
is omitted or zero, the last task referenced is assumed.

Similar routines are provided for all general registers (edi - eax): edi() - eax().

The stack pointer is accessed via eax().

RETURNS The contents of register edi (or the requested register).

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

edi()

NAME edi() – return the contents of register edi (also esi - eax) (x86/SimNT)

SYNOPSIS int edi
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of register edi from the TCB of a specified task. If taskId
is omitted or zero, the last task referenced is assumed.

Similar routines are provided for all address registers (edi - eax): edi() - eax().

The stack pointer is accessed via eax().

RETURNS The contents of register edi (or the requested register).

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

VxWorks Kernel API Reference, 6.6
edrBootCountGet()

216

edrBootCountGet()

NAME edrBootCountGet() – returns the current boot count

SYNOPSIS int edrBootCountGet (void)

DESCRIPTION This function returns the number of times the system has been rebooted since ED&R was
first initialized.

RETURNS The current boot count, or ERROR if it cannot be determined.

ERRNO Not Available

SEE ALSO edrLib

edrBootShow()

NAME edrBootShow() – show all stored boot type ED&R records

SYNOPSIS STATUS edrBootShow
 (
 int start, /* starting point */
 int count /* number of records to show */
)

DESCRIPTION This command displays all records stored in the ED&R log which have a facility of BOOT.
The command accepts a start and count as documented in edrShow().

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO edrShow, edrShow()

2 Routines
edrErrLogClear()

217

2

edrClear()

NAME edrClear() – a synonym for edrErrorLogClear

SYNOPSIS STATUS edrClear (void)

DESCRIPTION This functions provides command line interface to clear the entire ED&R error log.

RETURNS OK, or ERROR if there was some problem clearing the log

ERRNO Not Available

SEE ALSO edrShow

edrErrLogAttach()

NAME edrErrLogAttach() – attach to an existing log

SYNOPSIS EDR_ERR_LOG * edrErrLogAttach
 (
 void * pAddr /* address of an existing log */
)

DESCRIPTION This routine attaches to a previously created error log, but only if pAddr represents a valid
existing log.

RETURNS pointer to log, or NULL if the pLog doesn't represent a valid log instance.

ERRNO Not Available

SEE ALSO edrErrLogLib, edrErrLogCreate()

edrErrLogClear()

NAME edrErrLogClear() – clear the log's contents

SYNOPSIS BOOL edrErrLogClear

VxWorks Kernel API Reference, 6.6
edrErrLogCreate()

218

 (
 EDR_ERR_LOG * pLog /* pointer to log */
)

DESCRIPTION This routine resets all of the the log's node nodes to the unallocated state.

RETURNS TRUE, or FALSE if the pLog doesn't represent a valid log instance.

ERRNO Not Available

SEE ALSO edrErrLogLib, edrErrLogCreate(), edrErrLogAttach()

edrErrLogCreate()

NAME edrErrLogCreate() – create a new log

SYNOPSIS EDR_ERR_LOG * edrErrLogCreate
 (
 void * pAddr, /* address to overlay the log at */
 int size, /* length (in bytes) of the log area */
 int recordSize /* length (in bytes) of each record */
)

DESCRIPTION Creates a new log at address pAddr for a length of size bytes. Each record in the log is created
as size recordSize. The size of the record may be no less than
EDR_ERR_LOG_MIN_PAYLOAD_SIZE. The log has a fixed size overhead of approximately
500 bytes plus an overhead of approximately 150 bytes per record.

If the architecture supports an MMU, the log is write protected after being created.

NOTE The memory provided for the error log must be page aligned and be a multiple of a page
size.

RETURNS A pointer to the log, or NULL if the log could not be created, or pAddr is NULL.

ERRNO Not Available

SEE ALSO edrErrLogLib, edrErrLogAttach()

2 Routines
edrErrLogIterNext()

219

2

edrErrLogIterCreate()

NAME edrErrLogIterCreate() – create an iterator for traversing the log

SYNOPSIS BOOL edrErrLogIterCreate
 (
 EDR_ERR_LOG * pLog, /* pointer to log */
 EDR_ERR_LOG_ITER * pIter, /* pointer to iter for construction */
 int start, /* starting position */
 int count /* number of nodes to enumerate */
)

DESCRIPTION This routine creates an iterator suitable for traversing the set of committed nodes in the log.
The starting postion (record number) to begin traversing the log is specified by start. The
maximum number of records to iterate over is specified by count.

RETURNS TRUE, or FALSE if pLog points to a corrupt or invalid log.

ERRNO Not Available

SEE ALSO edrErrLogLib, edrErrLogIterNext()

edrErrLogIterNext()

NAME edrErrLogIterNext() – returns the next committed node

SYNOPSIS EDR_ERR_LOG_NODE * edrErrLogIterNext
 (
 EDR_ERR_LOG_ITER * pIter /* pointer to iterator */
)

DESCRIPTION This routine returns the next committed node in the log, or NULL if there are no more nodes
that can be enumerated.

RETURNS A pointer to next node or NULL.

ERRNO Not Available

SEE ALSO edrErrLogLib, edrErrLogIterCreate()

VxWorks Kernel API Reference, 6.6
edrErrLogMaxNodeCount()

220

edrErrLogMaxNodeCount()

NAME edrErrLogMaxNodeCount() – return the maximum number of nodes in the log

SYNOPSIS int edrErrLogMaxNodeCount
 (
 EDR_ERR_LOG * pLog /* pointer to log */
)

DESCRIPTION This routine returns the maximum number of nodes that can be held within the specified
log.

RETURNS node count, or ERROR if pLog is not a valid error log.

ERRNO Not Available

SEE ALSO edrErrLogLib

edrErrLogNodeAlloc()

NAME edrErrLogNodeAlloc() – allocate a node from the error log

SYNOPSIS EDR_ERR_LOG_NODE * edrErrLogNodeAlloc
 (
 EDR_ERR_LOG * pLog /* pointer to log */
)

DESCRIPTION This routine allocates the next available node from the specified log. Once the node
information has been written, the node must be committed to the log using
edrErrLogNodeCommit().

If the architecture supports an MMU, once an node is allocated it is unprotected (ie.
writable) until it is commit using edrErrLogNodeCommit().

RETURNS A node instance, or NULL if there are no free nodes.

ERRNO Not Available

SEE ALSO edrErrLogLib, edrErrLogNodeCommit()

2 Routines
edrErrLogNodeCount()

221

2

edrErrLogNodeCommit()

NAME edrErrLogNodeCommit() – commits a previously allocated node

SYNOPSIS BOOL edrErrLogNodeCommit
 (
 EDR_ERR_LOG * pLog, /* pointer to log */
 EDR_ERR_LOG_NODE * pNode /* pointer to node to commit */
)

DESCRIPTION This routine commits the previously allocated node pNode to the log specified by pLog.
Once a node becomes committed, it may be re-allocated by edrErrLogNodeAlloc() if
necessary.

If the architecture supports an MMU, the node is write protected after being committed.

RETURNS TRUE if pNode is currently allocated, or FALSE if pLog or pNode don't represent valid
instances of a log or a node respectively.

ERRNO Not Available

SEE ALSO edrErrLogLib, edrErrLogNodeAlloc()

edrErrLogNodeCount()

NAME edrErrLogNodeCount() – return the number of committed nodes in the log

SYNOPSIS int edrErrLogNodeCount
 (
 EDR_ERR_LOG * pLog /* pointer to log */
)

DESCRIPTION This routine returns the number of committed nodes within the specified log.

RETURNS THe node count, or ERROR if pLog is not a valid error log.

ERRNO Not Available

SEE ALSO edrErrLogLib

VxWorks Kernel API Reference, 6.6
edrErrorInject()

222

edrErrorInject()

NAME edrErrorInject() – injects an error into the ED&R subsystem

SYNOPSIS STATUS edrErrorInject
 (
 int kind, /* severity | facility | option */
 const char * fileName, /* name of source file */
 int lineNumber, /* line number of source code */
 const REG_SET * pRegSet, /* current register values */
 const EXC_INFO * pExcInfo, /* CPU-specific exception info */
 void * address, /* faulting address */
 const char * msg /* additional text string */
)

DESCRIPTION Warning: This function should not normally be called directly, rather, one of the macros in
edrLib.h such as EDR_KERNEL_FATAL_INJECT should be used instead.

This function takes all the supplied arguments and stores them in an error record, along
with numerous other bits of useful information, such as:

- the OS version
- the CPU type and number
- the time at which the error occured
- the current OS context (task, interrupt, exception, RTP)
- a small memory map of the running system
- a code fragment from around the faulting instruction
- a stack trace of the currently active stack

The type of record being injected is represented by the kind parameter. The kind parameter
is a bitwise OR of the following three items:

Severity:

Facility:

EDR_SEVERITY_FATAL - a fatal event
EDR_SEVERITY_NONFATAL - a non-fatal event
EDR_SEVERITY_WARNING - a warning event
EDR_SEVERITY_INFO - an information event

EDR_FACILITY_KERNEL - VxWorks kernel events
EDR_FACILITY_INTERRUPT - interrupt handler events
EDR_FACILITY_INIT - system startup events
EDR_FACILITY_BOOT - system boot events
EDR_FACILITY_REBOOT - system restart events
EDR_FACILITY_RTP - RTP system events
EDR_FACILITY_USER - user generated events

2 Routines
edrErrorInjectHookAdd()

223

2

Options:

From an injection point of view, only the options have an effect on how the record is
generated. The severity and facility values are merely stored in the record for subsequent
use by the show commands.

If the ED&R subsystem is not yet initialised, then the error-record cannot be written to the
log.

LIMITATIONS Since this function may well be called in an exception handling context, it must be able to
run in the limited stack environment for exception handlers. The stack may be as small as a
single VM page, i.e. 4K. Thus no large stack-based arrays or other structures should be used
by the injection hooks.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK if the error was stored correctly, or ERROR if some failure occurs during storage

ERRORS S_edrLib_NOT_INITIALIZED
if the library was not initialized

S_edrLib_PROTECTION_FAILURE
if the memory could not be protected

SEE ALSO edrLib

edrErrorInjectHookAdd()

NAME edrErrorInjectHookAdd() – adds a hook which gets called on error-injection

SYNOPSIS STATUS edrErrorInjectHookAdd
 (
 EDR_ERRINJ_HOOK_FUNCPTR injectHook
)

DESCRIPTION This function adds a hook to edrLib that gets called whenever an error is injected. The hook
function (which must be of type EDR_ERRINJ_HOOK_FUNCPTR) is invoked with a subset of

EDR_EXCLUDE_REGISTERS - don't include registers
EDR_EXCLUDE_TRACEBACK - don't include stack trace
EDR_EXCLUDE_EXCINFO - don't include exc info
EDR_EXCLUDE_DISASSEMBLY - don't include code disssembly
EDR_EXCLUDE_MEMORYMAP - don't include memory map

VxWorks Kernel API Reference, 6.6
edrErrorInjectHookDelete()

224

the parameters passed to edrErrorInject(). The parameters passed to the hook function are
as follows:

 int kind /* severity | facility */
 const char * fileName /* name of source file */
 int lineNumber /* line number of source code */
 void * address /* faulting address */
 const char * msg /* additional text string */

IMPORTANT NOTE The hook function is called directly from edrErrorInject() and so may be invoked in an
interrupt or exception context. Hook functions should therefore make no blocking calls to
the VxWorks kernel API, not should they use an excessive amount of stack space.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK or ERROR if the hook table is full

ERRORS S_edrLib_INJECT_HOOK_TABLE_FULL if the hook table is full.

SEE ALSO edrLib, edrErrorInjectHookDelete

edrErrorInjectHookDelete()

NAME edrErrorInjectHookDelete() – removes an existing error-inject hook

SYNOPSIS STATUS edrErrorInjectHookDelete
 (
 EDR_ERRINJ_HOOK_FUNCPTR injectHook
)

DESCRIPTION This function removes a hook which was added using edrErrorInjectHookAdd().

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK or ERROR if the hook was not found in the hook table.

ERRORS S_edrLib_INJECT_HOOK_NOT_FOUND if the hook was not found.

SEE ALSO edrLib, edrErrorInjectHookAdd

2 Routines
edrErrorInjectPrePostHookAdd()

225

2

edrErrorInjectPrePostHookAdd()

NAME edrErrorInjectPrePostHookAdd() – adds a hook which gets called before and after
error-injection

SYNOPSIS STATUS edrErrorInjectPrePostHookAdd
 (
 VOIDFUNCPTR hook
)

DESCRIPTION This function adds a hook to edrLib that gets called before and after an error is injected, The
hook function (which must be of type FUNCPTR) is invoked with a single integer argument
indicating whether it is pre-injection (EDR_HOOK_TYPE_PRE), or post-injection
(EDR_HOOK_TYPE_POST).

These hook points are not generally for use by clients of edrLib, but are provided as a means
to, for example, kick a hardware watchdog before entering edrErrorInject() in order to
ensure that edrLib has sufficient time to inject an error-record into the error-log before the
watchdog reboots the board.

It should have the following form:-

void prePostHook
 (
 int prePost /* EDR_HOOK_TYPE_PRE, EDR_HOOK_TYPE_POST */
);

IMPORTANT NOTE The hook function is called directly from edrErrorInject() and so may be invoked in an
interrupt or exception context. Hook functions should therefore make no blocking calls to
the VxWorks kernel API, not should they use an excessive amount of stack space.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK or ERROR if the hook table is full

ERRORS S_edrLib_PP_HOOK_TABLE_FULL if the hook table is full.

SEE ALSO edrLib, edrErrorInjectPrePostHookDelete

VxWorks Kernel API Reference, 6.6
edrErrorInjectPrePostHookDelete()

226

edrErrorInjectPrePostHookDelete()

NAME edrErrorInjectPrePostHookDelete() – removes the existing pre/post hook

SYNOPSIS STATUS edrErrorInjectPrePostHookDelete
 (
 VOIDFUNCPTR hook
)

DESCRIPTION This function removes a hook which was added using edrErrorInjectPrePostHookAdd().

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK or ERROR if the hook was not found in the hook table.

ERRORS S_edrLib_PP_HOOK_NOT_FOUND if the hook was not found.

SEE ALSO edrLib, edrErrorInjectPrePostHookAdd

edrErrorInjectTextHookAdd()

NAME edrErrorInjectTextHookAdd() – adds a hook which gets called on record creation

SYNOPSIS STATUS edrErrorInjectTextHookAdd
 (
 EDR_ERRINJ_TEXT_HOOK_FUNCPTR textHook
)

DESCRIPTION This function adds a hook to edrLib that gets called whenever an error is created. The hook
function (which must be of type EDR_ERRINJ_TEXT_HOOK_FUNCPTR) is invoked with a
pointer and length to a buffer which can be filled with textual information. The parameters
passed to the hook function are as follows:

 char * p /* pointer to buffer */
 int size /* size of buffer */
 int kind /* severity | facility */
 const char * fileName /* name of source file */
 int lineNumber /* line number of source code */
 void * address /* faulting address */

The hook must ensure the string written is null terminated. The return value of the hook
must be the number of bytes stored, including the trailing null.

2 Routines
edrErrorLogClear()

227

2

IMPORTANT NOTE The hook function is called directly from edrErrorInject() and so may be invoked in an
interrupt or exception context. Hook functions should therefore make no blocking calls to
the VxWorks kernel API, not should they use an excessive amount of stack space.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK or ERROR if the hook table is full

ERRORS S_edrLib_TEXT_HOOK_TABLE_FULL if the hook table is full

SEE ALSO edrLib, edrErrorInjectTextHookDelete

edrErrorInjectTextHookDelete()

NAME edrErrorInjectTextHookDelete() – removes the existing text writing hook

SYNOPSIS STATUS edrErrorInjectTextHookDelete
 (
 EDR_ERRINJ_TEXT_HOOK_FUNCPTR textHook
)

DESCRIPTION This function removes a hook which was added using edrErrorInjectTextHookAdd().

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK or ERROR if the hook was not found in the hook table.

ERRORS S_edrLib_TEXT_HOOK_NOT_FOUND if the hook was not found.

SEE ALSO edrLib, edrErrorInjectTextHookAdd

edrErrorLogClear()

NAME edrErrorLogClear() – clears the ED&R error log

SYNOPSIS STATUS edrErrorLogClear (void)

VxWorks Kernel API Reference, 6.6
edrErrorRecordCount()

228

DESCRIPTION This function clears all error records out of the error log. It is destructive (records cannot be
undeleted) and should be used with utmost care.

RETURNS OK or ERROR if the log was not able to be cleared

ERRORS S_edrLib_NOT_INITIALIZED
if the library was not initialized

S_edrLib_PROTECTION_FAILURE
if the memory could not be protected

SEE ALSO edrLib

edrErrorRecordCount()

NAME edrErrorRecordCount() – returns the number of error-records in the log

SYNOPSIS int edrErrorRecordCount (void)

DESCRIPTION This function returns the total number of ED&R records which are present in the error log.

RETURNS the number of error-records in the log, or ERROR if the library has not been initialized

ERRORS S_edrLib_NOT_INITIALIZED if the library was not initialized

SEE ALSO edrLib

edrErrorRecordDecode()

NAME edrErrorRecordDecode() – decode one error-record

SYNOPSIS STATUS edrErrorRecordDecode
 (
 EDR_ERROR_RECORD* pER, /* pointer to error record */
 char * pBuf, /* pointer to output buffer */
 int bufSize /* size of output buffer */
)

DESCRIPTION This routine decodes a single error-record into the provided buffer. If no buffer is provided,
the record is decoded to stdout.

2 Routines
edrFlagsGet()

229

2

RETURNS OK, or ERROR if the record can't be decoded

ERRNO Not Available

SEE ALSO edrShow

edrFatalShow()

NAME edrFatalShow() – show all stored fatal type ED&R records

SYNOPSIS STATUS edrFatalShow
 (
 int start, /* starting point */
 int count /* number of records to show */
)

DESCRIPTION This command displays all records stored in the ED&R log which have a severity of FATAL.
The command accepts a start and count as documented in edrShow().

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO edrShow, edrShow()

edrFlagsGet()

NAME edrFlagsGet() – return the ED&R flags which are currently set

SYNOPSIS int edrFlagsGet(void)

DESCRIPTION This routine returns all the ED&R flags which have been set to "on". An identical API is
provided in the RTP space.

RETURNS an integer with the appropriate bits set

ERRNO Not Available

SEE ALSO edrSysDbgLib

VxWorks Kernel API Reference, 6.6
edrHelp()

230

edrHelp()

NAME edrHelp() – prints helpful information on ED&R

SYNOPSIS STATUS edrHelp (void)

DESCRIPTION This routine provides the on-line help for the ED&R show commands.

RETURNS OK

ERRNO Not Available

SEE ALSO edrShow

edrHookShow()

NAME edrHookShow() – show the list of installed ED&R hook routines

SYNOPSIS STATUS edrHookShow (void)

DESCRIPTION This routine shows all the hook routines installed in the various ED&R hook tables, in the
order in which they were installed.

RETURNS N/A

ERRNO Not Available

SEE ALSO edrShow, edrInjectHookShow(), edrInjectTextHookShow(),
edrInjectPrePostHookShow()

edrInfoShow()

NAME edrInfoShow() – show all stored info type ED&R records

SYNOPSIS STATUS edrInfoShow
 (
 int start, /* starting point */

2 Routines
edrInjectHookShow()

231

2

 int count /* number of records to show */
)

DESCRIPTION This command displays all records stored in the ED&R log which have a severity of INFO.
The command accepts a start and count as documented in edrShow().

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO edrShow, edrShow()

edrInitShow()

NAME edrInitShow() – show all stored init type ED&R records

SYNOPSIS STATUS edrInitShow
 (
 int start, /* starting point */
 int count /* number of records to show */
)

DESCRIPTION This command displays all records stored in the ED&R log which have a facility of INIT.
The command accepts a start and count as documented in edrShow().

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO edrShow, edrShow()

edrInjectHookShow()

NAME edrInjectHookShow() – show the list of error injection hook routines

SYNOPSIS STATUS edrInjectHookShow (void)

DESCRIPTION This routine shows all the error injection routines installed in the ED&R inject hook table, in
the order in which they were installed.

VxWorks Kernel API Reference, 6.6
edrInjectPrePostHookShow()

232

RETURNS N/A

ERRNO Not Available

SEE ALSO edrShow, edrInjectHookAdd()

edrInjectPrePostHookShow()

NAME edrInjectPrePostHookShow() – show the list of pre/post injection hook routines

SYNOPSIS STATUS edrInjectPrePostHookShow (void)

DESCRIPTION This routine shows all the pre/post error injection routines installed in the ED&R inject
hook table, in the order in which they were installed.

RETURNS N/A

ERRNO Not Available

SEE ALSO edrShow, edrInjectPrePostHookAdd()

edrInjectTextHookShow()

NAME edrInjectTextHookShow() – show the list of text injection hook routines

SYNOPSIS STATUS edrInjectTextHookShow (void)

DESCRIPTION This routine shows all the text error injection routines installed in the ED&R inject hook
table, in the order in which they were installed.

RETURNS N/A

ERRNO Not Available

SEE ALSO edrShow, edrInjectTextHookAdd()

2 Routines
edrKernelShow()

233

2

edrIntShow()

NAME edrIntShow() – show all stored interrupt type ED&R records

SYNOPSIS STATUS edrIntShow
 (
 int start, /* starting point */
 int count /* number of records to show */
)

DESCRIPTION This command displays all records stored in the ED&R log which have a facility of
INTERRUPT. The command accepts a start and count as documented in edrShow().

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO edrShow, edrShow()

edrIsDebugMode()

NAME edrIsDebugMode() – is the ED&R debug mode flag set?

SYNOPSIS BOOL edrIsDebugMode(void)

DESCRIPTION This routine returns TRUE if the ED&R debug flag is set.

RETURNS TRUE if debug flag is set, FALSE otherwise.

ERRNO Not Available

SEE ALSO edrSysDbgLib

edrKernelShow()

NAME edrKernelShow() – show all stored kernel type ED&R records

SYNOPSIS STATUS edrKernelShow

VxWorks Kernel API Reference, 6.6
edrLibInit()

234

 (
 int start, /* starting point */
 int count /* number of records to show */
)

DESCRIPTION This command displays all records stored in the ED&R log which have a facility of
KERNEL. The command accepts a start and count as documented in edrShow().

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO edrShow, edrShow()

edrLibInit()

NAME edrLibInit() – initializes edrLib

SYNOPSIS STATUS edrLibInit
 (
 BOOL isNew, /* should the PM log area be re-initialized? */
 int recordSize /* size of each ED&R record */
)

DESCRIPTION This function initializes the ED&R susbsystem. The parameter isNew indicates whether the
persistent memory (PM) region used to hold the ED&R records is to be re-initialized. If
isNew is FALSE, edrLibInit() will attempt to open an existing ED&R log PM region and
check that it is valid. If the PM region is invalid, an error is returned. Once the PM region
is opened successfully, the PM region is write protected. The parameter recordSize is used
whenever the log is re-initilaised. Its value represents the payload size for each of the
records in the log. A value of zero specifies that the built in system default size is to be used.

RETURNS OK if the log was successfully created or opened, ERROR otherwise.

ERRORS S_edrLib_PMREGION_ERROR
if the PM region is invalid

S_edrLib_PROTECTION_FAILURE
if the PM region cannot be protected

S_edrLib_ERRLOG_CORRUPTED
if the log appears to be corrupted

S_edrLib_ERRLOG_INCOMPATIBLE
if the log is a newer version

2 Routines
edrRtpShow()

235

2

SEE ALSO edrLib, usrEdrInit in usrEdrInit.c

edrRebootShow()

NAME edrRebootShow() – show all stored reboot type ED&R records

SYNOPSIS STATUS edrRebootShow
 (
 int start, /* starting point */
 int count /* number of records to show */
)

DESCRIPTION This command displays all records stored in the ED&R log which have a facility of
REBOOT. The command accepts a start and count as documented in edrShow().

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO edrShow, edrShow()

edrRtpShow()

NAME edrRtpShow() – show all stored rtp type ED&R records

SYNOPSIS STATUS edrRtpShow
 (
 int start, /* starting point */
 int count /* number of records to show */
)

DESCRIPTION This command displays all records stored in the ED&R log which have a facility of RTP. The
command accepts a start and count as documented in edrShow().

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO edrShow, edrShow()

VxWorks Kernel API Reference, 6.6
edrShow()

236

edrShow()

NAME edrShow() – displays the ED&R error log to stdout

SYNOPSIS STATUS edrShow
 (
 int start, /* starting point */
 int count, /* number of records to show */
 int facility, /* limit to specified facility */
 int severity /* limit to specified severity */
)

DESCRIPTION This command display all or part of the stored ED&R error log to stdout. The command
takes four parameters, the start, count, facility, and severity specifiers.

The start parameter specifies the starting record at which the display should begin. If start
is a positive number, the display begins at start records from the beginning of the log. If start
is a negative number, the display begins at start records from the end of the log.

The count parameter denotes the number of records to display. A value of zero will display
all records.

The facility and severity parameters limit the display to only those records which match the
specified facility and severity. A value of zero will match all facilities and severities.

RETURNS OK or ERROR if the ED&R library was not initialized

ERRNO S_edrLib_NOT_INITIALIZED

SEE ALSO edrShow

edrSystemDebugModeGet()

NAME edrSystemDebugModeGet() – indicates if the system is in debug mode

SYNOPSIS BOOL edrSystemDebugModeGet (void)

DESCRIPTION This routine returns the current setting of the system mode debug flag if it has been set,
otherwise it assumes it is off.

RETURNS TRUE if the debug mode boot flag is set, FALSE if not

ERRNO Not Available

2 Routines
edrSystemDebugModeSet()

237

2

SEE ALSO edrSysDbgLib

edrSystemDebugModeInit()

NAME edrSystemDebugModeInit() – initialise the system mode debug flag

SYNOPSIS STATUS edrSystemDebugModeInit (void)

DESCRIPTION This routine reads the SYSFLG_SYS_MODE_DEBUG flag from the boot-flags supplied in the
system boot line and set the state of the debug flag.

RETURNS TRUE if the debug mode boot flag is set, FALSE if not

ERRNO Not Available

SEE ALSO edrSysDbgLib

edrSystemDebugModeSet()

NAME edrSystemDebugModeSet() – modifies the system debug mode flag

SYNOPSIS void edrSystemDebugModeSet
 (
 BOOL mode
)

DESCRIPTION This routine sets the system debug flag, as maintained by ED&R. It over-rides any setting
given in the boot flags.

RETURNS n/a

ERRNO Not Available

SEE ALSO edrSysDbgLib

VxWorks Kernel API Reference, 6.6
edrUserShow()

238

edrUserShow()

NAME edrUserShow() – show all stored user type ED&R records

SYNOPSIS STATUS edrUserShow
 (
 int start, /* starting point */
 int count /* number of records to show */
)

DESCRIPTION This command displays all records stored in the ED&R log which have a facility of USER.
The command accepts a start and count as documented in edrShow().

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO edrShow, edrShow()

eflags()

NAME eflags() – return the contents of the status register (x86)

SYNOPSIS int eflags
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of the status register from the TCB of a specified task.
If taskId is omitted or zero, the last task referenced is assumed.

RETURNS The contents of the status register.

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

2 Routines
eneRegister()

239

2

eflags()

NAME eflags() – return the contents of the status register (x86/SimNT)

SYNOPSIS int eflags
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of the status register from the TCB of a specified task.
If taskId is omitted or zero, the last task referenced is assumed.

RETURNS The contents of the status register.

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

elPciRegister()

NAME elPciRegister() – register with the VxBus subsystem

SYNOPSIS void elPciRegister(void)

DESCRIPTION This routine registers the elPci driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO tc3c905VxbEnd

eneRegister()

NAME eneRegister() – register with the VxBus subsystem

SYNOPSIS void eneRegister(void)

VxWorks Kernel API Reference, 6.6
envGet()

240

DESCRIPTION This routine registers the NE2000 driver with VxBus as a child of the PLB bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO ne2000VxbEnd

envGet()

NAME envGet() – return a pointer to the environment of a task

SYNOPSIS char ** envGet
 (
 int taskId /* task for which the environment is to be returned */
)

DESCRIPTION This routine returns a pointer to the environment of a task. If the task has a private
environment set, this is what is being referred to then. If taskId is NULL, then the calling
task's environment is retrieved.

RETURNS a pointer to the task's environment, or the pointer to the global environment if the task has
none.

ERRNOS S_objLib_OBJ_ID_ERROR

SEE ALSO envLib

envLibInit()

NAME envLibInit() – initialize environment variable facility

SYNOPSIS STATUS envLibInit
 (
 BOOL installHooks
)

DESCRIPTION If installHooks is TRUE, task create and delete hooks are installed that will optionally create
and destroy private environments for the task being created or destroyed, depending on the
state of VX_PRIVATE_ENV in the task options word. If installHooks is FALSE and a task

2 Routines
envPrivateCreate()

241

2

requires a private environment, it is the application's responsibility to create and destroy the
private environment, using envPrivateCreate() and envPrivateDestroy().

installHooks is controlled by the configuration parameter ENV_VAR_USE_HOOKS.

RETURNS OK, or ERROR if an environment cannot be allocated or the hooks cannot be installed.

ERRNOS N/A

SEE ALSO envLib

envPrivateCreate()

NAME envPrivateCreate() – create a private environment

SYNOPSIS STATUS envPrivateCreate
 (
 int taskId, /* task to have private environment */
 int envSource /* -1 = make an empty private environment */
 /* 0 = copy global env to new private env */
 /* task id = copy the specified task's env */
)

DESCRIPTION This routine creates a private set of environment variables for a specified task, if the
environment variable task create hook is not installed.

Based on the envSource argument, the environment is created in one of three ways:

NOTE This API does not protect against the tasks from deletion while the environment
information is being copied from one task to another. The user should take care not to delete
the taskId nor the envSource task id while this routine is being used.

RETURNS OK, or ERROR if memory is insufficient or source environment is NULL.

ERRNOS S_objLib_OBJ_ID_ERROR
taskId is invalid.

SEE ALSO envLib, envLibInit(), envPrivateDestroy()

envSource Copy Behavior
--------- -------------------------------------
-1 create an empty environment for taskId
0 copy global environment to taskId's new private environment
a task id Given a task ID, copy the task's private environment for taskId

VxWorks Kernel API Reference, 6.6
envPrivateDestroy()

242

envPrivateDestroy()

NAME envPrivateDestroy() – destroy a private environment

SYNOPSIS STATUS envPrivateDestroy
 (
 int taskId /* task with private env to destroy */
)

DESCRIPTION This routine destroys a private set of environment variables that were created with
envPrivateCreate(). Calling this routine is unnecessary if the environment variable task
create hook is installed and the task was spawned with VX_PRIVATE_ENV.

RETURNS OK, or ERROR if the task does not exist.

ERRNOS S_objLib_OBJ_ID_ERROR
taskId is invalid.

SEE ALSO envLib, envPrivateCreate()

envShow()

NAME envShow() – display the environment for a task

SYNOPSIS void envShow
 (
 int taskId /* task for which environment is printed */
)

DESCRIPTION This routine prints to standard output all the environment variables for a specified task or
the global environment. If taskId is NULL, then the calling task's environment is displayed.

RETURNS N/A

ERRNOS S_objLib_OBJ_ID_ERROR

SEE ALSO envLib

2 Routines
errnoOfTaskGet()

243

2

errnoGet()

NAME errnoGet() – get the error status value of the calling task

SYNOPSIS int errnoGet (void)

DESCRIPTION This routine gets the current error status value. It is provided for compatibility with
previous versions of VxWorks.

RETURNS The current error status value.

ERRNO N/A

SEE ALSO errnoLib, errnoSet(), errnoOfTaskGet()

errnoOfTaskGet()

NAME errnoOfTaskGet() – get the error status value of a specified task

SYNOPSIS int errnoOfTaskGet
 (
 int taskId /* task ID, 0 means current task */
)

DESCRIPTION This routine gets the error status most recently set in the TCB of a specified task. If taskId is
zero, the calling task is assumed.

This routine is provided primarily for debugging purposes. Normally, tasks access errno
directly to set and get their own error status values.

RETURNS The error status of the specified task, or ERROR if the task does not exist.

ERRNO N/A

SEE ALSO errnoLib, errnoSet(), errnoGet()

VxWorks Kernel API Reference, 6.6
errnoOfTaskSet()

244

errnoOfTaskSet()

NAME errnoOfTaskSet() – set the error status value of a specified task

SYNOPSIS STATUS errnoOfTaskSet
 (
 int taskId, /* task ID, 0 means current task */
 int errorValue /* error status value */
)

DESCRIPTION This routine sets the error status value in the TCB for a specified task. If taskId is zero, the
calling task is assumed.

This routine is provided primarily for debugging purposes. Normally, tasks access errno
directly to set and get their own error status values.

RETURNS OK, or ERROR if the task does not exist.

ERRNO N/A

SEE ALSO errnoLib, errnoSet(), errnoOfTaskGet()

errnoSet()

NAME errnoSet() – set the error status value of the calling task

SYNOPSIS STATUS errnoSet
 (
 int errorValue /* error status value to set */
)

DESCRIPTION This routine sets the current errno with a specified error status. It is provided for
compatibility with previous versions of VxWorks.

RETURNS OK, or ERROR if the interrupt nest level is too deep.

ERRNO N/A

SEE ALSO errnoLib, errnoGet(), errnoOfTaskSet()

2 Routines
eventReceive()

245

2

etsecRegister()

NAME etsecRegister() – register with the VxBus subsystem

SYNOPSIS void etsecRegister(void)

DESCRIPTION This routine registers the ETSEC driver with VxBus as a child of the PLB bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO vxbEtsecEnd

eventClear()

NAME eventClear() – Clear the calling task's events register

SYNOPSIS STATUS eventClear (void)

DESCRIPTION This routine clears the calling task's events register. Since events can be received at any
time, the caller cannot assume its events register is actually cleared by the time this routine
returns unless interrupts are locked when this routine is called.

RETURNS OK on success or ERROR

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine was called from an ISR.

SEE ALSO eventLib, eventReceive()

eventReceive()

NAME eventReceive() – Wait for event(s)

SYNOPSIS STATUS eventReceive
 (
 UINT32 events, /* events task is waiting to occur */

VxWorks Kernel API Reference, 6.6
eventReceive()

246

 UINT8 options, /* user options */
 int timeout, /* ticks to wait */
 UINT32 *pEventsReceived /* events occurred are returned through this */
)

DESCRIPTION Pends calling task until one or all wanted events have been received. When the specified
events have been received, they are copied from the events register to the variable pointed
to by pEventsReceived, and the events register is cleared (by default).

The options parameter is used to control various aspects of this routine's behaviour. One of
which is to specify if the caller wishes to wait for all events to be received or only one. One
of the following must be specified:

EVENTS_WAIT_ANY (0x1)
Wait for any one of the wanted events.

EVENTS_WAIT_ALL (0x0)
Wait for all wanted events.

Another option is to specify if the events written to pEventsReceived are only those received
and wanted or all events received. Note that an event can be received at any time, including
before eventReceive() is called. By default this routine returns only wanted events unless
the following option is specified:

EVENTS_RETURN_ALL (0x2)
Causes the routine to return all received events whether they are wanted (as specified
in events) or not. It also causes all events to be cleared from the task's events register.

The third option available allows the caller to specify if the received unwanted events are to
be cleared from the calling task's events register. They are cleared by default unless the
following option is specified:

EVENTS_KEEP_UNWANTED (0x4)
Tells this routine not to clear unwanted events. In cases where the
EVENTS_RETURN_ALL option is used, all events are cleared even if this option is
selected. Wanted events are always cleared hence this option has not effect on them.

Lastly, it is possible to retrieve events that have already been received without affecting the
events register by selecting the following option:

EVENTS_FETCH (0x80)
If this option is specified, the contents of the calling task's events register are copied to
the location pointed to by pEventsReceived and the routine returns immediately. The
events are not cleared from the register. The events and timeout arguments are ignored
and so are all other options specified.

The timeout parameter specifies the number of ticks to wait for wanted events. It can also
have the following special values:

NO_WAIT (0)
Return immediately, even if no events have arrived.

2 Routines
eventSend()

247

2

WAIT_FOREVER (-1)
Never time out.

The received events are copied to the location pointed to by pEventsReceived even when the
routine returns ERROR unless a NULL pointer is passed.

WARNING This routine may not be used from interrupt level because ISRs do not have events registers.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK on success or ERROR

ERRNO S_eventLib_TIMEOUT
Wanted events not received before specified timeout expired.

S_eventLib_NOT_ALL_EVENTS
Wanted events not received at the time of the call. This error can only occur if
NO_WAIT is specified in timeout

S_objLib_OBJ_DELETED
Task is waiting for events from a resource that has been destroyed. See semEvLib and
msgQEvLib documentation for more information.

S_intLib_NOT_ISR_CALLABLE
Function was called from ISR.

S_eventLib_ZERO_EVENTS
The events parameter has been passed a value of 0.

SEE ALSO eventLib, semEvLib, msgQEvLib, eventSend()

eventSend()

NAME eventSend() – Send event(s)

SYNOPSIS STATUS eventSend
 (
 int taskId, /* task events will be sent to */
 UINT32 events /* events to send */
)

DESCRIPTION Sends specified events to a task. Passing a taskId of NULL causes the calling task to send
events to itself. This routine can be used by an ISR to send events to a task.

VxWorks Kernel API Reference, 6.6
excConnect()

248

Because an event is actually a bit in the 32 bit word events, the sending process consists of
bitwise ORing events with the present contents of the destination task's events register.
Therefore the process is said to be non-destructive since the events that may already be
present in the task's events register are not affected.

Sending an event to a task that already has the event in its events register does not alter the
contents of the register.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK on success or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR
taskId is invalid.

S_eventLib_NULL_TASKID_AT_INT_LEVEL
Routine was called from ISR with a taskId of NULL.

SEE ALSO eventLib, eventReceive()

excConnect()

NAME excConnect() – connect a C routine to an exception vector (PowerPC)

SYNOPSIS STATUS excConnect
 (
 VOIDFUNCPTR * vector, /* exception vector to attach to */
 VOIDFUNCPTR routine /* routine to be called */
)

DESCRIPTION This routine connects a specified C routine to a specified exception vector. An exception
stub is created and in placed at vector in the exception table. The address of routine is stored
in the exception stub code. When an exception occurs, the processor jumps to the exception
stub code, saves the registers, and calls the C routines.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

The registers are saved to an Exception Stack Frame (ESF) placed on the stack of the task that
has produced the exception. The structure of the ESF used to save the registers is defined
in h/arch/ppc/esfPpc.h.

2 Routines
excCrtConnect()

249

2

The only argument passed by the exception stub to the C routine is a pointer to the ESF
containing the registers values. The prototype of this C routine is described below:

 void excHandler (ESFPPC *);

When the C routine returns, the exception stub restores the registers saved in the ESF and
continues execution of the current task.

RETURNS OK, always.

ERRNO Not Available

SEE ALSO excArchLib, excIntConnect(), excVecSet()

excCrtConnect()

NAME excCrtConnect() – connect a C routine to a critical exception vector (PowerPC 403)

SYNOPSIS STATUS excCrtConnect
 (
 VOIDFUNCPTR * vector, /* exception vector to attach to */
 VOIDFUNCPTR routine /* routine to be called */
)

DESCRIPTION This routine connects a specified C routine to a specified critical exception vector. An
exception stub is created and in placed at vector in the exception table. The address of routine
is stored in the exception stub code. When an exception occurs, the processor jumps to the
exception stub code, saves the registers, and call the C routines.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

The registers are saved to an Exception Stack Frame (ESF) which is placed on the stack of
the task that has produced the exception. The ESF structure is defined in
h/arch/ppc/esfPpc.h.

The only argument passed by the exception stub to the C routine is a pointer to the ESF
containing the register values. The prototype of this C routine is as follows:

 void excHandler (ESFPPC *);

When the C routine returns, the exception stub restores the registers saved in the ESF and
continues execution of the current task.

RETURNS OK, always.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
excHookAdd()

250

SEE ALSO excArchLib, excIntConnect(), excIntCrtConnect, excVecSet()

excHookAdd()

NAME excHookAdd() – specify a routine to be called with exceptions

SYNOPSIS void excHookAdd
 (
 FUNCPTR excepHook /* routine to call when exceptions occur */
)

DESCRIPTION This routine specifies a routine that will be called when hardware exceptions occur. The
specified routine is called after normal exception handling, which includes displaying
information about the error. Upon return from the specified routine, the task that incurred
the error is suspended.

The exception handling routine should be declared as:

 void myHandler
 (
 int task, /* ID of offending task */
 int vecNum, /* exception vector number */
 <ESFxx> *pEsf /* pointer to exception stack frame */
)

where task is the ID of the task that was running when the exception occurred. ESFxx is
architecture-specific and can be found by examining /target/h/arch/arch/esfarch.h; for
example, the PowerPC uses ESFPPC.

This facility is normally used by dbgLib() to activate its exception handling mechanism. If
an application provides its own exception handler, it will supersede the dbgLib mechanism.

RETURNS N/A

ERRNOS N/A

SEE ALSO excLib

2 Routines
excIntConnect()

251

2

excInit()

NAME excInit() – initialize the exception handling package

SYNOPSIS STATUS excInit
 (
 UINT maxIsrJobs /* must be a power of two */
)

DESCRIPTION This routine initializes the interrupt-level job deferral facility. This facility provides the
ability to defer function execution to task level from interrupt level.

RETURNS OK, or ERROR if the tExcTask cannot be spawned.

ERRNOS N/A

SEE ALSO excLib

excIntConnect()

NAME excIntConnect() – connect a C routine to an asynchronous exception vector (PowerPC,
ARM)

SYNOPSIS STATUS excIntConnect
 (
 VOIDFUNCPTR * vector, /* exception vector to attach to */
 VOIDFUNCPTR routine /* routine to be called */
)

DESCRIPTION This routine connects a specified C routine to a specified asynchronous exception vector.

When the C routine is invoked, interrupts are still locked. It is the responsibility of the C
routine to re-enable the interrupt.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

NOTE On PowerPC, the vector is typically the external interrupt vector 0x500 and the decrementer
vector 0x900. An interrupt stub is created and placed at vector in the exception table. The
address of routine is stored in the interrupt stub code. When the asynchronous exception
occurs the processor jumps to the interrupt stub code, saves only the requested registers,
and calls the C routines.

VxWorks Kernel API Reference, 6.6
excIntCrtConnect()

252

Before saving the requested registers, the interrupt stub switches from the current task stack
to the interrupt stack. For nested interrupts, no stack-switching is performed, because the
interrupt is already set.

NOTE On the ARM, the address of routine is stored in a function pointer to be called by the stub
installed on the IRQ exception vector following an asynchronous exception. This routine is
responsible for determining the interrupt source and despatching the correct handler for
that source.

Before calling the routine, the interrupt stub switches to SVC mode, changes to a separate
interrupt stack and saves necessary registers. In the case of a nested interrupt, no SVC stack
switch occurs.

RETURNS OK, always.

ERRNO Not Available

SEE ALSO excArchLib, excConnect(), excVecSet()

excIntCrtConnect()

NAME excIntCrtConnect() – connect a C routine to a critical interrupt vector (PowerPC 403)

SYNOPSIS STATUS excIntCrtConnect
 (
 VOIDFUNCPTR * vector, /* exception vector to attach to */
 VOIDFUNCPTR routine /* routine to be called */
)

DESCRIPTION This routine connects a specified C routine to a specified asynchronous critical exception
vector such as the critical external interrupt vector (0x100), or the watchdog timer vector
(0x1020). An interrupt stub is created and placed at vector in the exception table. The
address of routine is stored in the interrupt stub code. When the asynchronous exception
occurs, the processor jumps to the interrupt stub code, saves only the requested registers,
and calls the C routines.

When the C routine is invoked, interrupts are still locked. It is the C routine's responsibility
to re-enable interrupts.

The routine can be any normal C routine, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

Before the requested registers are saved, the interrupt stub switches from the current task
stack to the interrupt stack. In the case of nested interrupts, no stack switching is performed,
because the interrupt stack is already set.

2 Routines
excVecGet()

253

2

RETURNS OK, always.

ERRNO Not Available

SEE ALSO excArchLib, excConnect(), excCrtConnect, excVecSet()

excJobAdd()

NAME excJobAdd() – request a task-level function call from interrupt level

SYNOPSIS STATUS excJobAdd
 (
 VOIDFUNCPTR func,
 int arg1,
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6
)

DESCRIPTION This routine allows interrupt level code to request a function call to be executed by the
tExcTask at task-level.

WARNING Care must be taken when pushing jobs to tExcTask. Jobs that may block, hang, or generate
exceptions must be avoided since blocking or suspension of the tExcTask may cause other
parts of the system to misbehave.

RETURNS OK. Otherwise ERROR if job posting fails.

ERRNO N/A

SEE ALSO excLib

excVecGet()

NAME excVecGet() – get a CPU exception vector (PowerPC, ARM)

SYNOPSIS FUNCPTR excVecGet

VxWorks Kernel API Reference, 6.6
excVecInit()

254

 (
 FUNCPTR * vector /* vector offset */
)

DESCRIPTION This routine returns the address of the C routine currently connected to vector.

RETURNS The address of the C routine.

ERRNO Not Available

SEE ALSO excArchLib, excVecSet()

excVecInit()

NAME excVecInit() – initialize the exception/interrupt vectors

SYNOPSIS STATUS excVecInit (void)

DESCRIPTION This routine sets all exception vectors to point to the appropriate default exception handlers.
These handlers will safely trap and report exceptions caused by program errors or
unexpected hardware interrupts.

MC680x0:
All vectors from vector 2 (address 0x0008) to 255 (address 0x03fc) are initialized.
Vectors 0 and 1 contain the reset stack pointer and program counter.

MIPS:
All MIPS exception, trap, and interrupt vectors are set to default handlers.

x86:
All vectors from vector 0 (offset (0x0000) to 255 (offset 0x07f8) are initialized to default
handlers. A global variable excDoBell controls the bell that takes 660 microsecs in the
default exception show routine. The default value is TRUE. To turn the bell off, set it
FALSE.

PowerPC:
There are 48 vectors and only vectors that are used are initialized.

SH:
There are 256 vectors, initialized with the default exception handler (for exceptions) or
the unitialized interrupt handler (for interupts). On SH-2, vectors 0 and 1 contain the
power-on reset program counter and stack pointer. Vectors 2 and 3 contain the manual
reset program counter and stack pointer. On SH-3 and SH-4 processors the vector table
is located at (vbr + 0x800), and the (exception code / 8) value is used as vector offset.

2 Routines
excVecSet()

255

2

The first two vectors are reserved for special use: "trapa #0" (offset 0x0) to implement
software breakpoint, and "trapa #1' (offset 0x4) to detect integer zero divide exception.

ARM:
All exception vectors are initialized to default handlers except 0x14 (Address) which is
now reserved on the ARM and 0x1C (FIQ), which is not used by VxWorks.

SimSolaris/SimNT:
This routine does nothing on both simulators and always returns OK.

NOTE This routine is usually called from the system start-up routine, usrInit(), in usrConfig.c. It
must be called before interrupts are enabled.

RETURNS OK, always.

ERRNO Not Available

SEE ALSO excArchLib, excLib

excVecSet()

NAME excVecSet() – set a CPU exception vector (PowerPC, ARM)

SYNOPSIS void excVecSet
 (
 FUNCPTR * vector, /* vector offset */
 FUNCPTR function /* address to place in vector */
)

DESCRIPTION This routine specifies the C routine that will be called when the exception corresponding to
vector occurs. This routine does not create the exception stub; it simply replaces the C
routine to be called in the exception stub.

NOTE ARM On the ARM, there is no excConnect() routine, unlike the PowerPC. The C routine is
attached to a default stub using excVecSet().

RETURNS N/A

ERRNO Not Available

SEE ALSO excArchLib, excVecGet(), excConnect(), excIntConnect()

VxWorks Kernel API Reference, 6.6
exit()

256

exit()

NAME exit() – exit a task (ANSI)

SYNOPSIS void exit
 (
 int code /* code stored in TCB for delete hooks */
)

DESCRIPTION This routine is called by a task to cease to exist as a task. It is called implicitly when the
"main" routine of a spawned task is exited. The code parameter will be stored in the
WIND_TCB for possible use by the delete hooks, or post-mortem debugging.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS N/A

ERRNO N/A

SEE ALSO taskLib, taskDelete(), American National Standard for Information Systems -, Programming
Language - C, ANSI X3.159-1989: Input/Output (stdlib.h), The VxWorks Programmer's Guide

expf()

NAME expf() – compute an exponential value (ANSI)

SYNOPSIS float expf
 (
 float x /* exponent */
)

DESCRIPTION This routine returns the exponential of x in single precision.

RETURNS The single-precision exponential value of x.

ERRNO Not Available

SEE ALSO mathALib

2 Routines
fastStrSearch()

257

2

fabsf()

NAME fabsf() – compute an absolute value (ANSI)

SYNOPSIS float fabsf
 (
 float v /* number to return the absolute value of */
)

DESCRIPTION This routine returns the absolute value of v in single precision.

RETURNS The single-precision absolute value of v.

ERRNO Not Available

SEE ALSO mathALib

fastStrSearch()

NAME fastStrSearch() – Search by optimally choosing the search algorithm

SYNOPSIS char * fastStrSearch
 (
 char * pattern, /* pattern to search for */
 int patternLen, /* length of the pattern */
 char * buffer, /* text buffer to search in */
 int bufferLen, /* length of the text buffer */
 BOOL caseSensitive /* case-sensitive search? */
)

DESCRIPTION Depending on the pattern size, this function uses either the Boyer-Moore-Sunday algorithm
or the Brute Force algorithm. The Boyer-Moore-Sunday algorithm requires pre-processing,
therefore for small patterns it is better to use the Brute Force algorithm.

RETURNS A pointer to the located pattern, or a NULL pointer if the pattern is not found

ERRNO Not Available

SEE ALSO strSearchLib

VxWorks Kernel API Reference, 6.6
fccRegister()

258

fccRegister()

NAME fccRegister() – register with the VxBus subsystem

SYNOPSIS void fccRegister(void)

DESCRIPTION This routine registers the FCC driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO fccVxbEnd

fchmod()

NAME fchmod() – change the permission mode of a file

SYNOPSIS int fchmod
 (
 int fd,
 mode_t mode
)

DESCRIPTION The fchmod function changes or assigns the mode of a file. The mode of a file specifies its
permissions and other attributes. Note that this routine receives open file descriptor as the
first argument compairing to chmod routine.

The value of mode is bitwise inclusive OR of the permissions to be assigned

These permission constants are defined in sys/stat.h as follows:

S_IRUSR
Read permission, owner.

S_IWUSR
Write permission, owner.

S_IXUSR
Execute/search permission, owner.

S_IRWXU
Read/write/execute permission, owner.

S_IRGRP
Read permission, group.

2 Routines
fcntl()

259

2

S_IWGRP
Write permission, group.

S_IXGRP
Execute/search permission, group.

S_IRWXG
Read/write/execute permission, group.

S_IROTH
Read permission, other.

S_IWOTH
Write permission, other.

S_IXOTH
Execute/search permission, other.

S_IRWXO
Read/write/execute permission, other.

RETURNS If it succeeds, returns OK, 0. Otherwise, ERROR, -1 is returned, errno is set to indicate the
error and no change is done to the file.

The following example changes the mode of the file "myFile" to owner
Read/write/execute, group Read and other Read:

 fd = open ("myFile", O_RDONLY, 0);
 status = fchmod (fd, S_IRWXU | S_IRGRP | S_IROTH);

ERRNO EBADF
The fd argument is not a valid open file.

others
Other errors reported by device driver.

SEE ALSO fsPxLib

fcntl()

NAME fcntl() – perform control functions over open files

SYNOPSIS int fcntl
 (
 int fd,
 int command,
 ...
)

VxWorks Kernel API Reference, 6.6
fdatasync()

260

DESCRIPTION The fcntl() function provides for control over open files. The fd argument is an open file
descriptor. The fcntl() function may take a third argument whose data type, value and use
depend upon the value of command which specifies the operation to be performed by
fcntl().

RETURNS Not Available

ERRNO EMFILE
Ran out of file descriptors

EBADF
Bad file descriptor number.

ENOSYS
Device driver does not support the ioctl command.

ENXIO
Device and its driver are removed. close() should be called to release this file
descriptor.

Other
Other errors reported by device driver.

SEE ALSO ioLib

fdatasync()

NAME fdatasync() – synchronize a file data

SYNOPSIS int fdatasync
 (
 int fd /* file descriptor of the file to datasync */
)

DESCRIPTION The function forces all currently queued I/O operations associated with the file indicated
by fd to the synchronized I/O completion state.

The functionality is as described for fsync() with the exception that all I/O operations are
completed as defined for synchronised I/O data integrity completion.

RETURNS Upon successful completion, OK, 0 is returned. Otherwise, ERROR, -1 returned and errno is
set to indicate the error. If the fdatasync() function fails, outstanding I/O operations are not
guaranteed to have been completed.

2 Routines
fecRegister()

261

2

ERRNO

SEE ALSO fsPxLib, fsync()

fdprintf()

NAME fdprintf() – write a formatted string to a file descriptor

SYNOPSIS int fdprintf
 (
 int fd, /* file descriptor to write to */
 const char * fmt, /* format string to write */
 ... /* optional arguments to format */
)

DESCRIPTION This routine writes a formatted string to a specified file descriptor. Its function and syntax
are otherwise identical to printf().

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The number of characters output, or ERROR if there is an error during output.

ERRNO Not Available

SEE ALSO fioLib, printf()

fecRegister()

NAME fecRegister() – register with the VxBus subsystem

SYNOPSIS void fecRegister(void)

DESCRIPTION This routine registers the FEC driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO fecVxbEnd

VxWorks Kernel API Reference, 6.6
feiRegister()

262

feiRegister()

NAME feiRegister() – register with the VxBus subsystem

SYNOPSIS void feiRegister(void)

DESCRIPTION This routine registers the Intel 8255x driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO fei8255xVxbEnd

ffsLsb()

NAME ffsLsb() – find least significant bit set

SYNOPSIS int ffsLsb
 (
 UINT32 i /* value in which to find first set bit */
)

DESCRIPTION This routine finds the least significant bit set in the 32 bit argument passed to it and returns
the index of that bit. Bits are numbered starting at 1 from the least signifficant bit. A return
value of zero indicates that the value passed is zero.

RETURNS index of least significant bit set, or zero

ERRNO N/A

SEE ALSO ffsLib

ffsMsb()

NAME ffsMsb() – find most significant bit set

SYNOPSIS int ffsMsb

2 Routines
fioBaseLibInit()

263

2

 (
 UINT32 i /* value in which to find first set bit */
)

DESCRIPTION This routine finds the most significant bit set in the 32 bit argument passed to it and returns
the index of that bit. Bits are numbered starting at 1 from the least signifficant bit. A return
value of zero indicates that the value passed is zero.

RETURNS index of most significant bit set, or zero

ERRNO N/A

SEE ALSO ffsLib

fileUploadPathClose()

NAME fileUploadPathClose() – close the event-destination file

SYNOPSIS void wvFileUploadPathClose
 (
 UPLOAD_ID pathId /* generic upload-path descriptor */
)

DESCRIPTION This routine closes the file associated with pathId that is serving as a destination for event
data.

RETURNS N/A

ERRNO Not Available

SEE ALSO wvFileUploadPathLib, wvFileUploadPathCreate()

fioBaseLibInit()

NAME fioBaseLibInit() – initialize the formatted I/O support library

SYNOPSIS void fioBaseLibInit (void)

DESCRIPTION This routine initializes the formatted I/O support library. It should be called once in
usrRoot() when formatted I/O functions such as printf() and scanf() are used.

VxWorks Kernel API Reference, 6.6
fioFormatV()

264

RETURNS N/A

ERRNO Not Available

SEE ALSO fioBaseLib

fioFormatV()

NAME fioFormatV() – convert a format string

SYNOPSIS int fioFormatV
 (
 FAST const char *fmt, /* format string */
 va_list vaList, /* pointer to varargs list */
 FUNCPTR outRoutine, /* handler for args as they're formatted */
 int outarg /* argument to routine */
)

DESCRIPTION This routine is used by the printf() family of routines to handle the actual conversion of a
format string. The first argument is a format string, as described in the entry for printf().
The second argument is a variable argument list vaList that was previously established.

As the format string is processed, the result will be passed to the output routine whose
address is passed as the third parameter, outRoutine. This output routine may output the
result to a device, or put it in a buffer. In addition to the buffer and length to output, the
fourth argument, outarg, will be passed through as the third parameter to the output
routine. This parameter could be a file descriptor, a buffer address, or any other value that
can be passed in an "int".

The output routine should be declared as follows:

 STATUS outRoutine
 (
 char *buffer, /* buffer passed to routine */
 int nchars, /* length of buffer */
 int outarg /* arbitrary arg passed to fmt routine */
)

The output routine should return OK if successful, or ERROR if unsuccessful.

RETURNS The number of characters output, or ERROR if the output routine returned ERROR.

ERRNO Not Available

SEE ALSO fioBaseLib

2 Routines
fioRdString()

265

2

fioLibInit()

NAME fioLibInit() – initialize the formatted I/O support library

SYNOPSIS void fioLibInit (void)

DESCRIPTION This routine initializes the formatted I/O support library. It should be called once in
usrRoot() when formatted I/O functions such as printf() and scanf() are used.

RETURNS N/A

ERRNO Not Available

SEE ALSO fioLib

fioRdString()

NAME fioRdString() – read a string from a file

SYNOPSIS int fioRdString
 (
 int fd, /* fd of device to read */
 FAST char string[], /* buffer to receive input */
 int maxbytes /* max no. of chars to read */
)

DESCRIPTION This routine puts a line of input into string. The specified input file descriptor is read until
maxbytes, an EOF, an EOS, or a newline character is reached. A newline character or EOF is
replaced with EOS, unless maxbytes characters have been read.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The length of the string read, including the terminating EOS; or EOF if a read error occurred
or end-of-file occurred without reading any other character.

ERRNO Not Available

SEE ALSO fioLib

VxWorks Kernel API Reference, 6.6
fioRead()

266

fioRead()

NAME fioRead() – read a buffer

SYNOPSIS int fioRead
 (
 int fd, /* file descriptor of file to read */
 char * buffer, /* buffer to receive input */
 int maxbytes /* maximum number of bytes to read */
)

DESCRIPTION This routine repeatedly calls the routine read() until maxbytes have been read into buffer. If
EOF is reached, the number of bytes read will be less than maxbytes.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The number of bytes read, or ERROR if there is an error during the read operation.

ERRNO Not Available

SEE ALSO fioLib, read()

floorf()

NAME floorf() – compute the largest integer less than or equal to a specified value (ANSI)

SYNOPSIS float floorf
 (
 float v /* value to find the floor of */
)

DESCRIPTION This routine returns the largest integer less than or equal to v, in single precision.

RETURNS The largest integral value less than or equal to v, in single precision.

ERRNO Not Available

SEE ALSO mathALib

2 Routines
formatTrans()

267

2

fmodf()

NAME fmodf() – compute the remainder of x/y (ANSI)

SYNOPSIS float fmodf
 (
 float x, /* numerator */
 float y /* denominator */
)

DESCRIPTION This routine returns the remainder of x/y with the sign of x, in single precision.

RETURNS The single-precision modulus of x/y.

ERRNO Not Available

SEE ALSO mathALib

formatTrans()

NAME formatTrans() – Format a transaction disk.

SYNOPSIS STATUS formatTrans
 (
 int fd, /* rawFS file descriptor */
 int blkshift, /* blk size shifter */
 int overhead, /* scaled overhead */
 int type /* type flag */
)

DESCRIPTION The fd argument should be the result of opening a rawFS disk. (Because we just use ordinary
read/write/fstat calls, this can also be any ordinary file descriptor for a file on a disk; we
will just pretend that that file is a whole disk. But in general it should be a rawFS.)

The blkshift argument is used to increase the logical block size of the underlying device. This
reduces the TRFS overhead, but increases the minimum size of any file on the dosFS atop
this TRFS layer. That is, the TRFS overhead goes down but the file system overhead goes
up. In general this should just be 0.

The overhead parameter is 10 times the percent of the disk itself to use as TRFS transactional
space, i.e., an argument of 50 gives 5%, while an argument of 100 gives 10%. A value of 0
results in the default of 5%.

The type parameter should be one of:

VxWorks Kernel API Reference, 6.6
fpathconf()

268

- FORMAT_REGULAR (0): puts transaction master records (TMRs
at the beginning and end of the volume.

- FORMAT_TFFS (1): moves the first TMR to sector 1, leaving
sector 0 available for other purposes (such as TFFS internals).

- FORMAT_DOS (2): not actually supported (yet?).

RETURNS OK if all went well, ERROR otherwise.

ERRNO EINVAL – invalid arguments or inappropriate underlying device E2BIG – underlying device
too big other errno set by rawFS

SEE ALSO xbdTrans, usrFormatTrans()

fpathconf()

NAME fpathconf() – determine the current value of a configurable limit

SYNOPSIS long fpathconf
 (
 int fd, /* file descriptor of the file */
 int name /* Value to query */
)

DESCRIPTION The fpathconf() and pathconf() functions provide a method for the application to
determine the current value of a configurable limit or option (variable) that is associated
with a file or directory.

RETURNS The current value is returned if valid with the query. Otherwise, ERROR, -1 returned and
errno may be set to indicate the error. There are many reasons to return ERROR. If the
variable corresponding to name has no limit for the path or file descriptor, both pathconf()
and fpathconf() return -1 without changing errno.

ERRNO

SEE ALSO fsPxLib, pathconf()

2 Routines
fppProbe()

269

2

fppInit()

NAME fppInit() – initialize floating-point coprocessor support

SYNOPSIS void fppInit (void)

DESCRIPTION This routine initializes floating-point coprocessor support and must be called before using
the floating-point coprocessor. This is done automatically by the root task, usrRoot(), in
usrConfig.c when the configuration macro INCLUDE_HW_FP is defined.

RETURNS N/A

ERRNO Not Available

SEE ALSO fppLib

fppProbe()

NAME fppProbe() – probe for the presence of a floating-point coprocessor

SYNOPSIS STATUS fppProbe (void)

DESCRIPTION This routine determines whether there is a floating-point coprocessor in the system.

The implementation of this routine is architecture-dependent:

MC680x0, x86, SH-4:
This routine sets the illegal coprocessor opcode trap vector and executes a coprocessor
instruction. If the instruction causes an exception, fppProbe() returns ERROR. Note
that this routine saves and restores the illegal coprocessor opcode trap vector that was
there prior to this call.

The probe is only performed the first time this routine is called. The result is stored in
a static and returned on subsequent calls without actually probing.

MIPS:
This routine simply reads the R-Series status register and reports the bit that indicates
whether coprocessor 1 is usable. This bit must be correctly initialized in the BSP.

ARM:
This routine currently returns ERROR to indicate no floating-point coprocessor
support.

VxWorks Kernel API Reference, 6.6
fppRestore()

270

SimNT, SimSolaris:
This routine currently returns OK.

RETURNS OK, or ERROR if there is no floating-point coprocessor.

ERRNO Not Available

SEE ALSO fppArchLib

fppRestore()

NAME fppRestore() – restore the floating-point coprocessor context

SYNOPSIS void fppRestore
 (
 FP_CONTEXT * pFpContext /* where to restore context from */
)

DESCRIPTION This routine restores the floating-point coprocessor context. The context restored is:

&MC680x0:
- registers fpcr, fpsr, and fpiar
- registers f0 - f7
- internal state frame (if NULL, the other registers are not saved.)

&MIPS:
- register fpcsr
- registers fp0 - fp31

&SH-4:
- registers fpcsr and fpul
- registers fr0 - fr15
- registers xf0 - xf15

&x86:
108 byte old context with fsave and frstor instruction
- control word, status word, tag word,
- instruction pointer,
- instruction pointer selector,
- last FP instruction op code,
- data pointer,
- data pointer selector,

2 Routines
fppSave()

271

2

- registers st/mm0 - st/mm7 (10 bytes * 8)
512 byte new context with fxsave and fxrstor instruction
- control word, status word, tag word,
- last FP instruction op code,
- instruction pointer,
- instruction pointer selector,
- data pointer,
- data pointer selector,
- registers st/mm0 - st/mm7 (10 bytes * 8)
- registers xmm0 - xmm7 (16 bytes * 8)

&ARM:
- currently, on this architecture, this routine does nothing.

&SimSolaris:
- register fsr
- registers f0 - f31

&SimNT:
- this routine does nothing on Windows simulator.

RETURNS N/A

ERRNO Not Available

SEE ALSO fppArchLib, fppSave()

fppSave()

NAME fppSave() – save the floating-point coprocessor context

SYNOPSIS void fppSave
 (
 FP_CONTEXT * pFpContext /* where to save context */
)

DESCRIPTION This routine saves the floating-point coprocessor context. The context saved is:

&MC680x0:
- registers fpcr, fpsr, and fpiar
- registers f0 - f7

VxWorks Kernel API Reference, 6.6
fppSave()

272

- internal state frame (if NULL, the other registers are not saved.)

&MIPS:
- register fpcsr
- registers fp0 - fp31

&SH-4:
- registers fpcsr and fpul
- registers fr0 - fr15
- registers xf0 - xf15

&x86:
108 byte old context with fsave and frstor instruction
- control word, status word, tag word,
- instruction pointer,
- instruction pointer selector,
- last FP instruction op code,
- data pointer,
- data pointer selector,
- registers st/mm0 - st/mm7 (10 bytes * 8)
512 byte new context with fxsave and fxrstor instruction
- control word, status word, tag word,
- last FP instruction op code,
- instruction pointer,
- instruction pointer selector,
- data pointer,
- data pointer selector,
- registers st/mm0 - st/mm7 (10 bytes * 8)
- registers xmm0 - xmm7 (16 bytes * 8)

&ARM:
- currently, on this architecture, this routine does nothing.

&SimSolaris:
- register fsr
- registers f0 - f31

&SimNT:
- this routine does nothing on Windows simulator. Floating point
registers are saved by Windows.

2 Routines
fppTaskRegsGet()

273

2

RETURNS N/A

ERRNO Not Available

SEE ALSO fppArchLib, fppRestore()

fppShowInit()

NAME fppShowInit() – initialize the floating-point show facility

SYNOPSIS void fppShowInit (void)

DESCRIPTION This routine links the floating-point show facility into the VxWorks system. It is called
automatically when the floating-point show facility is configured into VxWorks using either
of the following methods:

- If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

- If you use the Tornado project facility, select INCLUDE_HW_FP_SHOW.

RETURNS N/A

ERRNO Not Available

SEE ALSO fppShow

fppTaskRegsGet()

NAME fppTaskRegsGet() – Gets FPU context for a task

SYNOPSIS STATUS fppTaskRegsGet
 (
 int task,
 FPREG_SET *pFpRegSet
)

DESCRIPTION Gets the FPU context for a task.

VxWorks Kernel API Reference, 6.6
fppTaskRegsGet()

274

RETURNS OK on success.
ERROR otherwise

ERRNO S_coprocLib_INVALID_OPERATION
S_coprocLib_INVALID_ARGUMENT
S_coprocLib_NO_COPROC_SUPPORT

SEE ALSO aimFppLib

fppTaskRegsGet()

NAME fppTaskRegsGet() – get the floating-point registers from a task TCB

SYNOPSIS STATUS fppTaskRegsGet
 (
 int task, /* task to get info about */
 FPREG_SET * pFpRegSet /* ptr to floating-point register set */
)

DESCRIPTION This routine copies a task's floating-point registers and/or status registers to the locations
whose pointers are passed as parameters. The floating-point registers are copied into an
array containing all the registers.

NOTE This routine only works well if task is not the calling task. If a task tries to discover its own
registers, the values will be stale (that is, left over from the last task switch).

RETURNS OK, or ERROR if there is no floating-point support or there is an invalid state.

ERRNO Not Available

SEE ALSO fppArchLib, fppTaskRegsSet()

fppTaskRegsSet()

NAME fppTaskRegsSet() – Sets FPU context for a task

SYNOPSIS STATUS fppTaskRegsSet
 (
 int task,

2 Routines
fppTaskRegsShow()

275

2

 FPREG_SET *pFpRegSet
)

DESCRIPTION Sets the FPU context for a task.

RETURNS OK on success.
ERROR otherwise

ERRNO S_coprocLib_INVALID_OPERATION
S_coprocLib_INVALID_ARGUMENT
S_coprocLib_NO_COPROC_SUPPORT

SEE ALSO aimFppLib

fppTaskRegsSet()

NAME fppTaskRegsSet() – set the floating-point registers of a task

SYNOPSIS STATUS fppTaskRegsSet
 (
 int task, /* task to set registers for */
 FPREG_SET * pFpRegSet /* ptr to floating-point register set */
)

DESCRIPTION This routine loads the specified values into the TCB of a specified task. The register values
are copied from the array at pFpRegSet.

RETURNS OK, or ERROR if there is no floating-point support or there is an invalid state.

ERRNO Not Available

SEE ALSO fppArchLib, fppTaskRegsGet()

fppTaskRegsShow()

NAME fppTaskRegsShow() – print the contents of a task's floating-point registers

SYNOPSIS void fppTaskRegsShow

VxWorks Kernel API Reference, 6.6
free()

276

 (
 int task /* task to display floating point registers for */
)

DESCRIPTION This routine prints to standard output the contents of a task's floating-point registers.

RETURNS N/A

ERRNO Not Available

SEE ALSO fppShow

free()

NAME free() – free a block of memory from the system memory partition (ANSI)

SYNOPSIS void free
 (
 void * ptr /* pointer to block of memory to free */
)

DESCRIPTION This routine returns to the free memory pool (kernel heap) a block of memory previously
allocated with malloc(), calloc(), memalign(), realloc() or valloc(). If ptr is a null pointer,
no action occurs.

RETURNS N/A

ERRNO Possible errnos generated by this routine include:

S_memLib_BLOCK_ERROR
The block of memory to free is not valid.

SEE ALSO memPartLib, malloc(), calloc(), memPartFree(), American National Standard for Information
Systems -, Programming Language - C, ANSI X3.159-1989: General Utilities (stdlib.h)

fsEventUtilInit()

NAME fsEventUtilInit() – Initialize the file system event utlility library

SYNOPSIS STATUS fsEventUtilLibInit

2 Routines
fsPathAddedEventRaise()

277

2

 (
 void
)

DESCRIPTION none

RETURNS OK on success, ERROR on failure

ERRNO Not Available

SEE ALSO fsEventUtilLib

fsMonitorInit()

NAME fsMonitorInit() – Initialize the fsMonitor

SYNOPSIS STATUS fsMonitorInit(void)

DESCRIPTION This routine initializes the fsMonitor library.

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO fsMonitor

fsPathAddedEventRaise()

NAME fsPathAddedEventRaise() – Raise a "path added" event

SYNOPSIS void fsPathAddedEventRaise
 (
 char * coreIOPath
)

DESCRIPTION This routine raises an event with the event reporting framework when the specified path
has been added to core I/O by a file system. This routine will cause the wait for path
handler(s) to run.

RETURNS Not Available

VxWorks Kernel API Reference, 6.6
fsPathAddedEventSetup()

278

ERRNO Not Available

SEE ALSO fsEventUtilLib

fsPathAddedEventSetup()

NAME fsPathAddedEventSetup() – Setup to wait for a path

SYNOPSIS STATUS fsPathAddedEventSetup
 (
 FS_PATH_WAIT_STRUCT * pWaitData,
 char * path
)

DESCRIPTION This routine registers with the ERF to wait for the specified path to be added to core I/O by
a file system. This is mainly used my file system formatters when the eject the current file
system and wait for rawFs to instantiate.

RETURNS OK on success or ERROR on error.

ERRNO Not Available

SEE ALSO fsEventUtilLib

fsWaitForPath()

NAME fsWaitForPath() – wait for a path

SYNOPSIS STATUS fsWaitForPath
 (
 FS_PATH_WAIT_STRUCT *pWaitData
)

DESCRIPTION This routine waits for a path to be added to core I/O. The function,
fsPathAddedEventSetup, must be prior for pWaitData to be setup. This function simply
waits on the semaphore provided in pWaitData which will be given by the wait for path
handler.

RETURNS OK on success or ERROR on failure

2 Routines
fsmGetVolume()

279

2

ERRNO Not Available

SEE ALSO fsEventUtilLib

fsmGetDriver()

NAME fsmGetDriver() – Get the XBD name of a mapping based on the path

SYNOPSIS STATUS fsmGetDriver
 (
 char *volume, /* core I/O pathname */
 devname_t driver /* xbd driver name */
)

DESCRIPTION This routine gets the XBD name which is currently mapped to volume, if such a mapping
exists.

The volume parameter specifies the pathname for which a driver name is to be retrieved.

The driver parameter is the resultant of the name mapping, if found.

RETURNS OK if the mapping is found, or ERROR if no such mapping exists.

ERRNO Not Available

SEE ALSO fsMonitor

fsmGetVolume()

NAME fsmGetVolume() – get the pathname based on an XBD name mapping

SYNOPSIS STATUS fsmGetVolume
 (
 char *driver, /* XBD driver name */
 fsmName_t volume /* core I/O pathname */
)

DESCRIPTION This routine retrieves the pathname associated with an XBD name if such a mapping exists.

The driver parameter specifies a driver name for which a pathname is to be retrieved.

The volume parameter specifies the resultant pathname.

VxWorks Kernel API Reference, 6.6
fsmNameInstall()

280

RETURNS OK if the mapping is retrieved, or ERROR if it does not exist.

ERRNO Not Available

SEE ALSO fsMonitor

fsmNameInstall()

NAME fsmNameInstall() – Add a mapping between an XBD name and a pathname

SYNOPSIS STATUS fsmNameInstall
 (
 char *driver, /* XBD driver name */
 char *volume /* core I/O pathname */
)

DESCRIPTION This routine creates a mapping between the driver name and the pathname specified by
volume. This mapping will persist until removed by fsmNameUninstall.

The driver parameter specifies the XBD name to be mapped.

The volume parameter specifies the Core I/O path that driver is to be mapped into.

RETURNS OK if successful or ERROR if the name cannot be added

ERRNO Not Available

SEE ALSO fsMonitor

fsmNameMap()

NAME fsmNameMap() – map an XBD name to a Core I/O path

SYNOPSIS STATUS fsmNameMap
 (
 devname_t xbdName, /* XBD name */
 fsmName_t volName /* core I/O path */
)

2 Routines
fsmProbeInstall()

281

2

DESCRIPTION This function maps an XBD name to a path in Core I/O, either by an explicit mapping
specified by fsmNameInstall() or by using the XBD name to create a Core I/O pathname.
This function always succeeds.

The xbdName parameter specifies the name of the device to be mapped.

The volName parameter specifies the resultant mapped name.

RETURNS OK

ERRNO Not Available

SEE ALSO fsMonitor

fsmNameUninstall()

NAME fsmNameUninstall() – remove an XBD name to pathname mapping

SYNOPSIS STATUS fsmNameUninstall
 (
 char *driver /* driver name */
)

DESCRIPTION This routine removes a name mapping added by fsmNameInstall. After invocation of this
routine, the F/S monitor will create a pathname based on the XBD name instead of using a
name mapping.

The driver parameter specifies the name of the XBD for which a mapping is to be removed.
All occurences of driver are removed.

RETURNS OK if the name mapping is removed or ERROR if the mapping is not found.

ERRNO Not Available

SEE ALSO fsMonitor

fsmProbeInstall()

NAME fsmProbeInstall() – install F/S probe and instantiator functions

SYNOPSIS STATUS fsmProbeInstall

VxWorks Kernel API Reference, 6.6
fsmProbeUninstall()

282

 (
 fsmProbeFunc probe, /* probe routine to install */
 fsmInstFunc inst /* instantiator routine to install */
)

DESCRIPTION This routine installs the file system probe and instantiator functions. When a new file system
is discovered, the file system monitor will call these functions to test for, and instantiate a
particular file system type. If either function fails, then the file system is not created.

The probe parameter specifies the probe function to be used.

The inst parameter specifies the instantiator function to be used when the probe function
succeeds.

RETURNS OK on success, or ERROR if an error is detected.

ERRNO Not Available

SEE ALSO fsMonitor

fsmProbeUninstall()

NAME fsmProbeUninstall() – remove a file system probe

SYNOPSIS STATUS fsmProbeUninstall
 (
 fsmProbeFunc probe /* probe routine to uninstall */
)

DESCRIPTION This routine removes all probe-instantiator pairs that match the probe parameter.

The probe parameter specifies the probe function of the probe-instantiator pair to be
removed.

RETURNS 0 if a probe is removed or ERROR if the probe is not found

ERRNO Not Available

SEE ALSO fsMonitor

2 Routines
fsmUnmountHookDelete()

283

2

fsmUnmountHookAdd()

NAME fsmUnmountHookAdd() – Add an unmount hook function

SYNOPSIS STATUS fsmUnmountHookAdd
 (
 FUNCPTR fn
)

DESCRIPTION This routine adds a hook routine to run when a vnode based file system unmounts.

The fn parameter specifies the hook function.

RETURNS OK if there is space in the table and fn is not NULL

/NOMANUAL

ERRNO Not Available

SEE ALSO fsMonitor

fsmUnmountHookDelete()

NAME fsmUnmountHookDelete() – Remove an unmount hook function

SYNOPSIS STATUS fsmUnmountHookDelete
 (
 FUNCPTR fn
)

DESCRIPTION This routine removes a hook routine to run when a vnode based file system unmounts.

The fn parameter specifies the hook function.

RETURNS OK if fn is found in the table. ERROR otherwise

/NOMANUAL

ERRNO Not Available

SEE ALSO fsMonitor

VxWorks Kernel API Reference, 6.6
fsmUnmountHookRun()

284

fsmUnmountHookRun()

NAME fsmUnmountHookRun() – Runs the unmount hook functions

SYNOPSIS void fsmUnmountHookRun
 (
 DEV_HDR *pDev
)

DESCRIPTION This routine is called my the vnode layer when a file system unmounts to run the unmount
hook functions.

The pDev parameter is passed to each hook function

/NOMANUAL

RETURNS Not Available

ERRNO Not Available

SEE ALSO fsMonitor

fstat()

NAME fstat() – get file status information (POSIX)

SYNOPSIS STATUS fstat
 (
 int fd, /* file descriptor for file to check */
 struct stat *pStat /* pointer to stat structure */
)

DESCRIPTION This routine obtains various characteristics of a file (or directory). The file must already have
been opened using open() or creat(). The fd parameter is the file descriptor returned by
open() or creat().

The pStat parameter is a pointer to a stat structure (defined in stat.h). This structure must
be allocated before fstat() is called.

Upon return, the fields in the stat structure are updated to reflect the characteristics of the
file.

RETURNS OK or ERROR, the result of the ioctl() command to the filesystem driver.

2 Routines
fstatfs()

285

2

ERRNO EBADF
Bad file descriptor number.

S_ioLib_UNKNOWN_REQUEST (ENOSYS)
Device driver does not support the ioctl command.

Other
Other errors reported by device driver.

SEE ALSO dirLib, stat(), ls()

fstatfs()

NAME fstatfs() – get file status information (POSIX)

SYNOPSIS STATUS fstatfs
 (
 int fd, /* file descriptor for file to check */
 struct statfs *pStat /* pointer to statfs structure */
)

DESCRIPTION This routine obtains various characteristics of a file system. A file in the file system must
already have been opened using open() or creat(). The fd parameter is the file descriptor
returned by open() or creat().

The pStat parameter is a pointer to a statfs structure (defined in stat.h). This structure must
be allocated before fstat() is called.

Upon return, the fields in the statfs structure are updated to reflect the characteristics of the
file system. Note that for DosFS, the fields f_files and f_ffree are meaningless and are set
to -1.

RETURNS OK or ERROR, from the ioctl() command.

ERRNO EBADF
Bad file descriptor number.

S_ioLib_UNKNOWN_REQUEST (ENOSYS)
Device driver does not support the ioctl command.

Other
Other errors reported by device driver.

SEE ALSO dirLib, statfs(), ls()

VxWorks Kernel API Reference, 6.6
fsync()

286

fsync()

NAME fsync() – synchronize a file

SYNOPSIS int fsync
 (
 int fd /* file descriptor of the file to sync */
)

DESCRIPTION This function moves all modified data and attributes of the file descriptor fd to a storage
device. When fsync() returns, all in-memory modified copies of buffers associated with fd
have been written to the physical medium. It forces all outstanding data operations to
synchronized file integrity completion.

RETURNS Upon successful completion, OK, 0 is returned. Otherwise, ERROR, -1 returned and errno is
set to indicate the error. If the fsync() function fails, outstanding I/O operations are not
guaranteed to have been completed.

ERRNO

SEE ALSO fsPxLib, fdatasync()

ftruncate()

NAME ftruncate() – truncate a file (POSIX)

SYNOPSIS int ftruncate
 (
 int fildes, /* fd of file to truncate */
 off_t length /* length to truncate file */
)

DESCRIPTION This routine truncates a file to a specified size.

RETURNS 0 (OK) or -1 (ERROR) if unable to truncate file.

ERRNO EROFS
File resides on a read-only file system.

EBADF
File is open for reading only.

EINVAL
File descriptor refers to a file on which this operation is impossible.

2 Routines
geiRegister()

287

2

SEE ALSO ftruncate

g0()

NAME g0() – return the contents of register g0 (also g1-g7) (SimSolaris)

SYNOPSIS int g0
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of global register g0 from the TCB of a specified task.
If taskId is omitted or 0, the current default task is assumed.

Similar routines are provided for all global registers (g0 - g7): g0() - g7().

RETURNS The contents of register g0 (or the requested register).

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

geiRegister()

NAME geiRegister() – register with the VxBus subsystem

SYNOPSIS void geiRegister(void)

DESCRIPTION This routine registers the gei driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO gei825xxVxbEnd

VxWorks Kernel API Reference, 6.6
getOptServ()

288

getOptServ()

NAME getOptServ() – parse parameter string into argc, argv format

SYNOPSIS STATUS getOptServ
 (
 char * ParamString,
 const char * progName, /* program name value for argv[0] */
 int * argc,
 char * argvloc[],
 int argvlen
)

DESCRIPTION none

RETURNS OK if all arguments were successfully stored; otherwise, ERROR.

ERRNO Not Available

SEE ALSO getopt

getenv()

NAME getenv() – get an environment variable (ANSI)

SYNOPSIS char *getenv
 (
 FAST const char *name /* env variable to get value for */
)

DESCRIPTION This routine searches the environment list (see the UNIX BSD 4.3 manual entry for
environ(5V)) for a string of the form "name=value" and returns the value portion of the
string, if the string is present; otherwise it returns a NULL pointer.

RETURNS A pointer to the string value, or a NULL pointer.

ERRNOS N/A

SEE ALSO envLib, envLibInit(), putenv(), UNIX BSD 4.3 manual entry , for environ(5V), American
National Standard for Information Systems -, Programming Language - C, ANSI X3.159-1989:
General Utilities (stdlib.h)

2 Routines
getopt()

289

2

getopt()

NAME getopt() – parse argc/argv argument vector (POSIX)

SYNOPSIS int getopt
 (
 int nargc,
 char * const *nargv,
 const char *ostr
)

DESCRIPTION Decodes arguments passed in an argc/argv[] vector

The parameters nargc and nargv are the argument count and argument array as passed to
main(). The argument ostr is a string of recognized option characters; if a character is
followed by a colon, the option takes an argument.

The variable optind is the index of the next element of the nargv[] vector to be processed. It
shall be initialized to 1 by the system, and getopt() shall update it when it finishes with each
element of nargv[]. When an element of nargv[] contains multiple option characters, it is
unspecified how getopt() determines which options have already been processed.

The getopt() function shall return the next option character (if one is found) from nargv
that matches a character in ostr, if there is one that matches. If the option takes an argument,
getopt() shall set the variable optarg to point to the option-argument as follows:

If the option was the last character in the string pointed to by an element of nargv, then
optarg shall contain the next element of nargv, and optind shall be incremented by 2. If the
resulting value of optind is greater than nargc, this indicates a missing option-argument,
and getopt() shall return an error indication.

Otherwise, optarg shall point to the string following the option character in that element of
nargv, and optind shall be incremented by 1.

If, when getopt() is called:

nargv[optind] is a null pointer nargv[optind] is not the character - nargv[optind] points
to the string "-"

getopt() shall return -1 without changing optind. If:

nargv[optind] points to the string "--"

getopt() shall return -1 after incrementing optind.

If getopt() encounters an option character that is not contained in ostr, it shall return the
question-mark (?) character. If it detects a missing option-argument, it shall return the
colon character (:) if the first character of ostr was a colon, or a question-mark character (
?) otherwise. In either case, getopt() shall set the variable optopt to the option character
that caused the error. If the application has not set the variable opterr to 0 and the first

VxWorks Kernel API Reference, 6.6
getoptInit()

290

character of ostr is not a colon, getopt() shall also print a diagnostic message to stderr in
the format specified for the getopts utility.

The getopt() function need not be reentrant. A function that is not required to be reentrant
is not required to be thread-safe.

RETURNS The getopt() function shall return the next option character specified on the command line.

A colon (:) shall be returned if getopt() detects a missing argument and the first character
of ostr was a colon (:).

A question mark (?) shall be returned if getopt() encounters an option character not in ostr
or detects a missing argument and the first character of ostr was not a colon (:).

Otherwise, getopt() shall return -1 when all command line options are parsed.

ERRNO Not Available

SEE ALSO getopt, POSIX

getoptInit()

NAME getoptInit() – initialize the getopt state structure

SYNOPSIS void getoptInit
 (
 GETOPT_ID pArg /* Pointer to getopt structure to be initialized */
)

DESCRIPTION This function initializes the structure, pGetOpt that is used to maintain the getopt state. This
structure is passed to getopt_r() which is a reentrant threadsafe version of the standard
getopt() call. This function must be called before calling getopt_r()

RETURNS N/A

ERRNO Not Available

SEE ALSO getopt

2 Routines
getopt_r()

291

2

getopt_r()

NAME getopt_r() – parse argc/argv argument vector (POSIX)

SYNOPSIS int getopt_r
 (
 int nargc,
 char * const *nargv,
 const char *ostr,
 GETOPT_ID pGetOpt
)

DESCRIPTION This function is a reentrant version of the getopt() function. The non-reentrant version
keeps the getopt state in global variables across multiple calls made by the application,
while this reentrant version keeps the state in the structure provided by the caller, thus
allowing multiple callers to use getopt simultaneously without requiring any
synchronization between them.

The parameters nargc and nargv are the argument count and argument array as passed to
main(). The argument ostr is a string of recognized option characters; if a character is
followed by a colon, the option takes an argument. The argument pGetOpt points to the
structure allocated by the caller to keep track of the getopt state. Prior to calling getopt_r, it
is the caller responsibility to initialize this structure by calling getoptInit().

The variable pGetOpt->optind is the index of the next element of the nargv[] vector to be
processed. getopt_r() shall update it when it finishes with each element of nargv[]. When
an element of nargv[] contains multiple option characters, it is unspecified how getopt_r()
determines which options have already been processed.

The getopt_r() function shall return the next option character (if one is found) from nargv
that matches a character in ostr, if there is one that matches. If the option takes an argument,
getopt_r() shall set the variable pGetOpt->optarg to point to the option-argument as
follows:

If the option was the last character in the string pointed to by an element of nargv, then
pGetOpt->optarg shall contain the next element of nargv, and pGetOpt->optind shall be
incremented by 2. If the resulting value of pGetOpt->optind is greater than nargc, this
indicates a missing option-argument, and getopt_r() shall return an error indication.

Otherwise, pGetOpt->optarg shall point to the string following the option character in that
element of nargv, and pGetOpt->optind shall be incremented by 1.

If, when getopt_r() is called:

nargv[pGetOpt->optind] is a null pointer nargv[pGetOpt->optind] is not the character -
nargv[pGetOpt->optind] points to the string "-"

getopt_r() shall return -1 without changing pGetOpt->optind. If:

nargv[pGetOpt->optind] points to the string "--"

VxWorks Kernel API Reference, 6.6
h()

292

getopt_r() shall return -1 after incrementing pGetOpt->optind.

If getopt_r() encounters an option character that is not contained in ostr, it shall return the
question-mark (?) character. If it detects a missing option-argument, it shall return the
colon character (:) if the first character of ostr was a colon, or a question-mark character (
?) otherwise. In either case, getopt_r() shall set the variable pGetOpt->optopt to the option
character that caused the error. If the application has not set the variable pGetOpt->opterr
to 0 and the first character of ostr is not a colon, getopt_r() shall also print a diagnostic
message to stderr in the format specified for the getopts utility.

This function is reentrant and thread-safe.

RETURNS The getopt_r() function shall return the next option character specified on the command
line.

A colon (:) shall be returned if getopt_r() detects a missing argument and the first
character of ostr was a colon (:).

A question mark (?) shall be returned if getopt_r() encounters an option character not in
ostr or detects a missing argument and the first character of ostr was not a colon (:).

Otherwise, getopt_r() shall return -1 when all command line options are parsed.

ERRNO Not Available

SEE ALSO getopt, POSIX

h()

NAME h() – display or set the size of shell history

SYNOPSIS void h
 (
 int size /* 0 = display, >0 = set history to new size */
)

DESCRIPTION This command displays or sets the size of VxWorks shell history. If no argument is
specified, shell history is displayed. If size is specified, that number of the most recent
commands is saved for display. The value of size is initially 20.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, shellHistory(), ledLib, the VxWorks programmer guides.

2 Routines
hashFuncModulo()

293

2

hashFuncIterScale()

NAME hashFuncIterScale() – iterative scaling hashing function for strings

SYNOPSIS int hashFuncIterScale
 (
 int elements, /* number of elements in hash table */
 H_NODE_STRING *pHNode, /* pointer to string keyed hash node */
 int seed /* seed to be used as scalar */
)

DESCRIPTION This hashing function interprets the key as a pointer to a null terminated string. A seed of
13 or 27 appears to work well. It calculates the hash as follows:

 for (tkey = pHNode->string; *tkey != '\0'; tkey++)
hash = hash * seed + (unsigned int) *tkey;

 hash &= (elements - 1);

RETURNS integer between 0 and (elements - 1)

ERRNO N/A

SEE ALSO hashLib

hashFuncModulo()

NAME hashFuncModulo() – hashing function using remainder technique

SYNOPSIS int hashFuncModulo
 (
 int elements, /* number of elements in hash table */
 H_NODE_INT *pHNode, /* pointer to integer keyed hash node */
 int divisor /* divisor */
)

DESCRIPTION This hashing function interprets the key as a 32 bit quantity and applies the standard
hashing function: h (k) = K mod D, where D is the passed divisor. The result of the hash
function is masked to the appropriate number of bits to ensure the hash is not greater than
(elements - 1).

RETURNS integer between 0 and (elements - 1)

VxWorks Kernel API Reference, 6.6
hashFuncMultiply()

294

ERRNO N/A

SEE ALSO hashLib

hashFuncMultiply()

NAME hashFuncMultiply() – multiplicative hashing function

SYNOPSIS int hashFuncMultiply
 (
 int elements, /* number of elements in hash table */
 H_NODE_INT *pHNode, /* pointer to integer keyed hash node */
 int multiplier /* multiplier */
)

DESCRIPTION This hashing function interprets the key as a unsigned integer quantity and applies the
standard hashing function: h (k) = leading N bits of (B * K), where N is the appropriate
number of bits such that the hash is not greater than (elements - 1). The overflow of B * K is
discarded. The value of B is passed as an argument. The choice of B is similar to that of the
seed to a linear congruential random number generator. Namely, B's value should take on
a large number (roughly 9 digits base 10) and end in ...x21 where x is an even number.
(Don't ask... it involves statistics mambo jumbo)

RETURNS integer between 0 and (elements - 1)

ERRNO N/A

SEE ALSO hashLib

hashKeyCmp()

NAME hashKeyCmp() – compare keys as 32 bit identifiers

SYNOPSIS BOOL hashKeyCmp
 (
 H_NODE_INT *pMatchHNode, /* hash node to match */
 H_NODE_INT *pHNode, /* hash node in table to compare to */
 int keyCmpArg /* argument ignored */
)

2 Routines
hashTblCreate()

295

2

DESCRIPTION This routine compares hash node keys as 32 bit identifiers. The argument keyCmpArg is
unneeded by this comparator.

RETURNS TRUE if keys match or, FALSE if keys do not match.

ERRNO N/A

SEE ALSO hashLib

hashKeyStrCmp()

NAME hashKeyStrCmp() – compare keys based on strings they point to

SYNOPSIS BOOL hashKeyStrCmp
 (
 H_NODE_STRING *pMatchHNode, /* hash node to match */
 H_NODE_STRING *pHNode, /* hash node in table to compare to */
 int keyCmpArg /* argument ignored */
)

DESCRIPTION This routine compares keys based on the strings they point to. The strings must be null
terminated. The routine strcmp() is used to compare keys. The argument keyCmpArg is
unneeded by this comparator.

RETURNS TRUE if keys match or, FALSE if keys do not match.

ERRNO N/A

SEE ALSO hashLib

hashTblCreate()

NAME hashTblCreate() – create a hash table

SYNOPSIS HASH_ID hashTblCreate
 (
 int sizeLog2, /* number of elements in hash table log 2 */
 FUNCPTR keyCmpRtn, /* function to test keys for equivalence */
 FUNCPTR keyRtn, /* hashing function to generate hash from key */
 int keyArg /* argument to hashing function */
)

VxWorks Kernel API Reference, 6.6
hashTblDelete()

296

DESCRIPTION This routine creates a hash table 2^sizeLog2 number of elements. The hash table is carved
from the caller's heap via malloc (2). To accommodate the list structures associated with the
table, the actual amount of memory allocated will roughly eight times the number of
elements requested. Additionally, two routines must be specified to dictate the behavior of
the hashing table. The first routine, keyCmpRtn, is the key comparator function and the
second routine, keyRtn, is the hashing function.

The hashing function's role is to disperse the hash nodes added to the table as evenly
throughout the table as possible. The hashing function receives as its parameters the
number of elements in the table, a pointer to the HASH_NODE structure, and finally the
keyArg parameter passed to this routine. The keyArg may be used to seed the hashing
function. The hash function returns an index between 0 and (elements - 1). Standard
hashing functions are available in this library.

The keyCmpRtn parameter specifies the other function required by the hash table. This
routine tests for equivalence of two HASH_NODES. It returns a boolean, TRUE if the keys
match, and FALSE if they differ. As an example, a hash node may contain a HASH_NODE
followed by a key which is an unsigned integer identifiers, or a pointer to a string,
depending on the application. Standard hash node comparators are available in this library.

RETURNS HASH_ID, or NULL if hash table could not be created.

ERRNO Possible errnos generated by this routine include:

S_memLib_NOT_ENOUGH_MEMORY
There is not enough memory large enough to satisfy the allocation request.

SEE ALSO hashLib, hashFuncIterScale(), hashFuncModulo(), hashFuncMultiply(),
hashKeyCmp(), hashKeyStrCmp()

hashTblDelete()

NAME hashTblDelete() – delete a hash table

SYNOPSIS STATUS hashTblDelete
 (
 HASH_ID hashId /* id of hash table to delete */
)

DESCRIPTION This routine deletes the specified hash table and frees the associated memory. The hash
table is marked as invalid.

RETURNS OK, or ERROR if hashId is invalid.

2 Routines
hashTblEach()

297

2

ERRNO Possible errnos generated by this routine include:

S_memLib_BLOCK_ERROR
The block of memory to free is not valid.

SEE ALSO hashLib, hashTblDestroy(), hashTblTerminate()

hashTblDestroy()

NAME hashTblDestroy() – destroy a hash table

SYNOPSIS STATUS hashTblDestroy
 (
 HASH_ID hashId, /* id of hash table to destroy */
 BOOL dealloc /* deallocate associated memory */
)

DESCRIPTION This routine destroys the specified hash table and optionally frees the associated memory.
The hash table is marked as invalid.

RETURNS OK, or ERROR if hashId is invalid.

ERRNO Possible errnos generated by this routine include:

S_memLib_BLOCK_ERROR
The block of memory to free is not valid.

SEE ALSO hashLib, hashTblDelete(), hashTblTerminate()

hashTblEach()

NAME hashTblEach() – call a routine for each node in a hash table

SYNOPSIS HASH_NODE *hashTblEach
 (
 HASH_ID hashId, /* hash table to call routine for */
 FUNCPTR routine, /* the routine to call for each hash node */
 int routineArg /* arbitrary user-supplied argument */
)

DESCRIPTION This routine calls a user-supplied routine once for each node in the hash table. The routine
should be declared as follows:

VxWorks Kernel API Reference, 6.6
hashTblFind()

298

BOOL routine (pNode, arg)
 HASH_NODE * pNode; /* pointer to a hash table node */
 int arg; /* arbitrary user-supplied argument */

The user-supplied routine should return TRUE if hashTblEach() is to continue calling it
with the remaining nodes, or FALSE if it is done and hashTblEach() can exit.

RETURNS NULL if traversed whole hash table, or pointer to HASH_NODE that hashTblEach ended
with.

ERRNO N/A

SEE ALSO hashLib

hashTblFind()

NAME hashTblFind() – find a hash node that matches the specified key

SYNOPSIS HASH_NODE *hashTblFind
 (
 FAST HASH_ID hashId, /* id of hash table from which to find node */
 HASH_NODE *pMatchNode, /* pointer to hash node to match */
 int keyCmpArg /* parameter to be passed to key comparator */
)

DESCRIPTION This routine finds the hash node that matches the specified key.

RETURNS pointer to HASH_NODE, or NULL if no matching hash node is found.

ERRNO N/A

SEE ALSO hashLib

hashTblInit()

NAME hashTblInit() – initialize a hash table

SYNOPSIS STATUS hashTblInit
 (
 HASH_ID hashId, /* id of hash table to initialize */
 SL_LIST *pTblMem, /* pointer to memory of sizeLog2 SL_LISTs */

2 Routines
hashTblPut()

299

2

 int sizeLog2, /* number of elements in hash table log 2 */
 FUNCPTR keyCmpRtn, /* function to test keys for equivalence */
 FUNCPTR keyRtn, /* hashing function to generate hash from key */
 int keyArg /* argument to hashing function */
)

DESCRIPTION This routine initializes a hash table. Normally, creation and initialization of the hash table
should be done via the routine hashTblCreate(). However, if control over the memory
allocation is necessary, this routine is used instead.

All parameters are required with the exception of keyArg, which is optional. Refer to
hashTblCreate() for a description of parameters.

RETURNS OK, or ERROR if number of elements is negative, hashId is NULL, or the routines passed are
NULL.

ERRNO N/A

SEE ALSO hashLib, hashTblCreate()

hashTblPut()

NAME hashTblPut() – put a hash node into the specified hash table

SYNOPSIS STATUS hashTblPut
 (
 HASH_ID hashId, /* id of hash table in which to put node */
 HASH_NODE *pHashNode /* pointer to hash node to put in hash table */
)

DESCRIPTION This routine puts the specified hash node in the specified hash table. Identical nodes will be
kept in FIFO order in the hash table.

RETURNS OK, or ERROR if hashId is invalid.

ERRNO N/A

SEE ALSO hashLib, hashTblRemove()

VxWorks Kernel API Reference, 6.6
hashTblRemove()

300

hashTblRemove()

NAME hashTblRemove() – remove a hash node from a hash table

SYNOPSIS STATUS hashTblRemove
 (
 HASH_ID hashId, /* id of hash table to to remove node from */
 HASH_NODE *pHashNode /* pointer to hash node to remove */
)

DESCRIPTION This routine removes the hash node that matches the specified key.

RETURNS OK, or ERROR if hashId is invalid.

ERRNO N/A

SEE ALSO hashLib

hashTblTerminate()

NAME hashTblTerminate() – terminate a hash table

SYNOPSIS STATUS hashTblTerminate
 (
 HASH_ID hashId /* id of hash table to terminate */
)

DESCRIPTION This routine terminates the specified hash table. The memory for the table is not freed. The
hash table is marked as invalid.

RETURNS OK, or ERROR if hashId is invalid.

ERRNO N/A

SEE ALSO hashLib, hashTblDestroy(), hashTblDelete()

2 Routines
help()

301

2

help()

NAME help() – print a synopsis of selected routines

SYNOPSIS void help (void)

DESCRIPTION This command prints the following list of the calling sequences for commonly used
routines, mostly contained in usrLib.

help Print this list
dbgHelp Print debug help info
edrHelp Print ED&R help info
ioHelp Print I/O utilities help info
nfsHelp Print nfs help info
netHelp Print network help info
rtpHelp Print process help info
spyHelp Print task histogrammer help info
timexHelp Print execution timer help info
h [n] Print (or set) shell history
i [task] Summary of tasks' TCBs
ti task Complete info on TCB for task
sp adr,args... Spawn a task, pri=100, opt=0x19, stk=20000
taskSpawn name,pri,opt,stk,adr,args... Spawn a task
td task Delete a task
ts task Suspend a task
tr task Resume a task
tw task Print pending task detailed info
w [task] Print pending task info
d [adr[,nunits[,width]]] Display memory
m adr[,width] Modify memory
mRegs [reg[,task]] Modify a task's registers interactively
pc [task] Return task's program counter
version Print VxWorks version info, and boot line
iam "user"[,"passwd"] Set user name and passwd
whoami Print user name
devs List devices
ld [syms[,noAbort][,"name"]] Load std in into memory
 (syms = add symbols to table:
 -1 = none, 0 = globals, 1 = all)
lkup ["substr"] List symbols in system symbol table
lkAddr address List symbol table entries near address
checkStack [task] List task stack sizes and usage
printErrno value Print the name of a status value
period secs,adr,args... Spawn task to call function periodically
repeat n,adr,args... Spawn task to call function n times (0=forever)
shConfig ["config"] Display or set shell configuration variables
strFree [address] Free strings allocated within the shell

NOTE: Arguments specifying <task> can be either task ID or name.

RETURNS N/A

VxWorks Kernel API Reference, 6.6
histLoad()

302

ERRNO N/A

SEE ALSO usrLib, ioHelp(), netHelp(), spyHelp(), the VxWorks programmer guides.

histLoad()

NAME histLoad() – load history into the current shell session interpreter(s)

SYNOPSIS void histLoad
 (
 char * loadFile, /* file path to load the history from */
 BOOL allInterp /* whether to save for all interpreters */
)

DESCRIPTION This command loads the shell history for the current shell session. If allInterp is set to TRUE,
the load is done for all registered interpreters, otherwise only the history corresponding to
the current interpreter is loaded.

The full path of the history file (including its name) is pointed by loadFile which must be
MAX_FILENAME_LENGTH bytes long at most (including EOS). If loadFile is set to NULL, the
system loads the history from a file named shellHistory.dat in the current directory.

RETURNS N/A

ERRNO Not Available

SEE ALSO usrShellHistLib, shellInterpLib, the VxWorks programmer guides.

histSave()

NAME histSave() – save history of the current shell session interpreter(s)

SYNOPSIS void histSave
 (
 char * saveFile, /* file path to save the history to */
 BOOL allInterp /* whether to save for all interpreters */
)

DESCRIPTION This command saves the shell history for the current shell session. If allInterp is set to TRUE,
the save is done for all registered interpreters, otherwise only the current interpreter history
is saved.

2 Routines
hookAddToHead()

303

2

The full path of the save file (including its name) is pointed to by saveFile which must be
MAX_FILENAME_LENGTH bytes long at most (including EOS). If saveFile is set to NULL, the
history is saved into a file named shellHistory.dat in the current directory.

RETURNS N/A

ERRNO Not Available

SEE ALSO usrShellHistLib, shellInterpLib, the VxWorks programmer guides.

hookAddToHead()

NAME hookAddToHead() – add a hook routine at the start of a hook table

SYNOPSIS STATUS hookAddToHead
 (
 void * hook, /* routine to be added to table */
 void * table[], /* table to which to add */
 int maxEntries /* max entries in table */
)

DESCRIPTION This routine adds a hook routine into a given hook table. The routine is added at the head
(i.e. first entry) of the table. Existing hooks are shifted down to make way for the new hook.
The last entry of the table is always NULL. Hooks are executed from the lowest to highest
index of the table. Hence this routine should be used if hooks should be executed in LIFO
order (i.e. last hook added executes first). Examples of LIFO hook execution are task delete
hooks.

NOTE This routine does not guard against duplicate entries.

RETURNS OK, or ERROR if hook table is full.

ERRNO S_hookLib_HOOK_TABLE_FULL

SEE ALSO hookLib

VxWorks Kernel API Reference, 6.6
hookAddToTail()

304

hookAddToTail()

NAME hookAddToTail() – add a hook routine to the end of a hook table

SYNOPSIS STATUS hookAddToTail
 (
 void * hook, /* routine to be added to table */
 void * table[], /* table to which to add */
 int maxEntries /* max entries in table */
)

DESCRIPTION This routine adds a hook routine into a given hook table. The routine is added at the first
NULL entry in the table. In other words new hooks are appended to the list of hooks already
present.

NOTE This routine does not guard against duplicate entries.

RETURNS OK, or ERROR if hook table is full.

ERRNO S_hookLib_HOOK_TABLE_FULL

SEE ALSO hookLib

hookDelete()

NAME hookDelete() – delete a hook from a hook table

SYNOPSIS STATUS hookDelete
 (
 void * hook, /* routine to be deleted from table */
 void * table[], /* table from which to delete */
 int maxEntries /* max entries in table */
)

DESCRIPTION Deletes a previously added hook (if found) from a given hook table. Entries following the
deleted hook are moved up to fill the vacant spot created.

RETURNS OK, or ERROR if hook could not be found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO hookLib

2 Routines
hookShow()

305

2

hookFind()

NAME hookFind() – Search a hook table for a given hook

SYNOPSIS BOOL hookFind
 (
 void * hook, /* routine to be deleted from table */
 void * table[], /* table from which to delete */
 int maxEntries /* max entries in table */
)

DESCRIPTION This function searches through a given hook table for a certain hook function. If found TRUE
is returned, otherwise FALSE is returned.

RETURNS TRUE, or FALSE if the hook was not found.

ERRNO N/A.

SEE ALSO hookLib

hookShow()

NAME hookShow() – show the hooks in the given hook table

SYNOPSIS void hookShow
 (
 FUNCPTR table[], /* table from which to delete */
 int maxEntries /* max entries in table */
)

DESCRIPTION Shows the contents of a hook table symbolically.

RETURNS N/A.

ERRNO Not Available

SEE ALSO hookShow

VxWorks Kernel API Reference, 6.6
hrfsAdvFormat()

306

hrfsAdvFormat()

NAME hrfsAdvFormat() – format the HRFS file system using advanced options

SYNOPSIS STATUS hrfsAdvFormat
 (
 char * path, /* path to format */
 UINT64 diskSize, /* size of disk in bytes */
 UINT32 blkSize, /* size of block in bytes */
 UINT32 numInodes, /* number of Inodes */
 UINT32 majorVersion, /* file system version to format */
 UINT32 minorVersion,
 UINT32 options /* misc options */
)

DESCRIPTION This routine formats a disk or partition referenced by the path to the media.

The path argument should be a valid path to the disk or partition to be formatted.

The diskSize argument is used to specifiy how many bytes of the media the HRFS file system
should occupy. It can be used to prevent HRFS for using the end portion of the media. In
general this value should be 0 to specify that the entire media is to be used.

The blkSize parameter is used to specify what block size, in byte, HRFS should use. This
block size must be a power of 2, greater than the physical sector size, and be within 512 to
8196 bytes inclusively. In general this value should be specified as 0 so the formatter can
determine the most efficient block size to use for the media size.

The numInodes parameter is used to specify the absolute maximum number of files and
directories the file system can ever have. Note this does not include the root directory which
the formatter creates automatically. Specifiying a value of 0 will tell the HRFS formatter to
allow for the maximum number of files/directories the file system can have based on the
amount of data blocks. I.e. One inode per data block.

The majorVersion and minorVersion parameters are used to specify which particular version
of the file system layout should be used when formatting the disk. A value of zero for both
the major and minor version is used to indicate that the latest version of the file system
should be used.

The options parameter is used to specify additional formatting options. It is currently unused

RETURNS OK on success or ERROR on failure.

ERRNO Not Available

SEE ALSO hrfsFormatLib

2 Routines
hrfsAdvFormatFd()

307

2

hrfsAdvFormatFd()

NAME hrfsAdvFormatFd() – format the HRFS file system using advanced options via a file
descriptor

SYNOPSIS STATUS hrfsAdvFormatFd
 (
 int fd, /* open file descriptor on disk */
 UINT64 diskSize, /* size of disk in bytes */
 UINT32 blkSize, /* size of block in bytes */
 UINT32 numInodes, /* number of Inodes */
 UINT32 majorVersion, /* file system version to format */
 UINT32 minorVersion,
 UINT32 options /* misc options */
)

DESCRIPTION This routine formats a disk or partition referenced by an open file on the media. The file is
closed when formatting is complete.

The fd argument should be a valid file descriptor representing the root directory of the
current file system. This file descriptor will be marked closed and invalid upon return from
this function reguardless of outcome.

The diskSize argument is used to specifiy how many bytes of the media the HRFS file system
should occupy. It can be used to prevent HRFS for using the end portion of the media. In
general this value should be 0 to specify that the entire media is to be used.

The blkSize parameter is used to specify what block size, in byte, HRFS should use. This
block size must be a power of 2, greater than the physical sector size, and be within 512 to
8196 bytes inclusively. In general this value should be specified as 0 so the formatter can
determine the most efficient block size to use for the media size.

The numInodes parameter is used to specify the absolute maximum number of files and
directories the file system can ever have. Note this does not include the root directory which
the formatter creates automatically. Specifiying a value of 0 will tell the HRFS formatter to
allow for the maximum number of files/directories the file system can have based on the
amount of data blocks. I.e. One inode per data block.

The majorVersion and minorVersion parameters are used to specify which particular version
of the file system layout should be used when formatting the disk. A value of zero for both
the major and minor version is used to indicate that the latest version of the file system
should be used.

The options parameter is used to specify additional formatting options. It is currently unused

RETURNS OK on success or ERROR on failure

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
hrfsAscTime()

308

SEE ALSO hrfsFormatLib

hrfsAscTime()

NAME hrfsAscTime() – convert "broken-down" HRFS time to string

SYNOPSIS int hrfsAscTime
 (
 HRFS_TM * pHrfsTm, /* Buffer contain time to convert in HRFS format */
 char * pBuffer, /* Place to write ASCII time format data */
 size_t bufLength /* Size of the supplied ASCII time buffer */
)

DESCRIPTION This routine converts the "broken-down" HRFS time pointed to by pHrfsTm into a string of
the form:

 SUN SEP 16 01:03:52 1973\en\e0

The string is copied into pBuffer. Note that the field pHrfsTm->msec is not displayed.

RETURNS the number of bytes copied to pBuffer.

ERRNO Not Available

SEE ALSO hrFsTimeLib

hrfsChkDsk()

NAME hrfsChkDsk() – check the HRFS file system

SYNOPSIS STATUS hrfsChkDsk
 (
 char * path, /* path to check */
 int verbLevel, /* verbosity level */
 int flags /* additional control information */
)

DESCRIPTION This routine is the HRFS consistency checker. It checks to see if the file system referenced by
the path is stable and consistent.

WARNING. This function can only run on an inactive volume. Any currently
opened files will be closed as this routine will eject the current

2 Routines
hrfsDevCreate()

309

2

file system. The volume will also be unaccessible while the
consistency checker executes.

The path argument should be a valid path to the HRFS formatted disk or partition to be
checked.

The verbLevel argument is used to specify how much information is outputted to the console.
A value of one indicates maximum verbosity. A value of zero indicates minimum verbosity.

The flags parameter is used to specify additional control information to the consistency
checker. If the HRFS_CHKDSK_FLAG_UPGRADE bit is set, the checker will attempt to
upgrade the file system to the newest version. All other flags are ignored if this bit is set. If
the HRFS_CHKDSK_FLAG_REWIND_INODE_JOURNAL bit is set, the checker will attempt
to rewind the inode journal. That is, if the inode journal is not empty and is marked as being
out of sync with the other disk structures, inodes contained in the inode journal are copied
back into the inode table on disk. This has the effect of restoring the inodes to the previous
transaction.

RETURNS OK if media contains no errors or ERROR if one of more problems are
detected.

ERRNO Not Available

SEE ALSO hrfsChkDskLib

hrfsDevCreate()

NAME hrfsDevCreate() – create an HRFS device

SYNOPSIS HRFS_DEV_ID hrfsDevCreate
 (
 char * pDevName, /* Name of the HRFS device (mount point). */
 device_t xbdId, /* XBD for the device on which to mount. */
 int numBufs, /* # of [struct buf] to allocate. */
 int maxFiles, /* Maximum # of simultaneously open files */
 int defCommitPolicy, /* Initial commit policy */
 int defCommitPeriod /* Initial commit period (if policy is
periodic) */
)

DESCRIPTION This routine creates an HRFS device.

RETURNS HRFS_DEV_ID if created and installed in Core I/O, NULL if not.

VxWorks Kernel API Reference, 6.6
hrfsDiskFormat()

310

ERRNO Not Available

SEE ALSO hrFsLib

hrfsDiskFormat()

NAME hrfsDiskFormat() – format a disk with HRFS

SYNOPSIS STATUS hrfsDiskFormat
 (
 const char * pDevName, /* name of the device to initialize */
 int files, /* the maximum number of files to support */
 UINT32 majorVer, /* major version of fs to format */
 UINT32 minorVer, /* minor version of fs to format */
 UINT32 options /* formatter options */
)

DESCRIPTION This command formats a disk and creates the HRFS file system on it. The device must
already have been created by the device driver and HRFS format component must be
included.

EXAMPLE -> hrfsDiskFormat "/fd0", 0 /* format "/fd0" with HRFS */
 /*allowing maximum files */
 -> hrfsDiskFormat "/fd0", 100 /* format "/fd0" with HRFS */
 /*allowing 100 files */

RETURNS OK, or ERROR if the device cannot be opened or formatted.

ERRNO Not Available

SEE ALSO usrFsLib, hrFsLib, the VxWorks programmer guides.

hrfsFormat()

NAME hrfsFormat() – format the HRFS file system via a path

SYNOPSIS STATUS hrfsFormat
 (
 char * path, /* path to format */
 UINT64 diskSize, /* size of disk in bytes */
 UINT32 blkSize, /* size of block in bytes */

2 Routines
hrfsFormatFd()

311

2

 UINT32 numInodes /* number of Inodes */
)

DESCRIPTION This routine formats a disk or partition referenced by the path to the media.

The path argument should be a valid path to the disk or partition to be formatted.

The diskSize argument is used to specifiy how many bytes of the media the HRFS file system
should occupy. It can be used to prevent HRFS for using the end portion of the media. In
general this value should be 0 to specify that the entire media is to be used.

The blkSize parameter is used to specify what block size, in bytes, HRFS should use. This
block size must be a power of 2, greater than the physical sector size, and be within 512 to
8196 bytes inclusively. In general this value should be specified as 0 so the formatter can
determine the most efficient block size to use for the media size.

The numInodes parameter is used to specify the absolute maximum number of files and
directories the file system can ever have. Note this does not include the root directory which
the formatter creates automatically. Specifiying a value of 0 will tell the HRFS formatter to
allow for the maximum number of files/directories the file system can have based on the
amount of data blocks. I.e. One inode per data block.

RETURNS OK on success or ERROR on failure.

ERRNO Not Available

SEE ALSO hrfsFormatLib

hrfsFormatFd()

NAME hrfsFormatFd() – format the HRFS file system via a file descriptor

SYNOPSIS STATUS hrfsFormatFd
 (
 int fd, /* open file descriptor on disk */
 UINT64 diskSize, /* size of disk in bytes */
 UINT32 blkSize, /* size of block in bytes */
 UINT32 numInodes /* number of Inodes */
)

DESCRIPTION This routine formats a disk or partition referenced by an open file on the media. The file is
closed when formatting is complete.

The fd argument should be a valid file descriptor representing the root directory of the
current file system. This file descriptor will be marked closed and invalid upon return from
this function reguardless of outcome.

VxWorks Kernel API Reference, 6.6
hrfsFormatLibInit()

312

The diskSize argument is used to specifiy how many bytes of the media the HRFS file system
should occupy. It can be used to prevent HRFS for using the end portion of the media. In
general this value should be 0 to specify that the entire media is to be used.

The blkSize parameter is used to specify what block size, in bytes, HRFS should use. This
block size must be a power of 2, greater than the physical sector size, and be within 512 to
8196 bytes inclusively. In general this value should be specified as 0 so the formatter can
determine the most efficient block size to use for the media size.

The numInodes parameter is used to specify the absolute maximum number of files and
directories the file system can ever have. Note this does not include the root directory which
the formatter creates automatically. Specifiying a value of 0 will tell the HRFS formatter to
allow for the maximum number of files/directories the file system can have based on the
amount of data blocks. I.e. One inode per data block.

RETURNS OK on success or ERROR on failure

ERRNO Not Available

SEE ALSO hrfsFormatLib

hrfsFormatLibInit()

NAME hrfsFormatLibInit() – prepare to use the HRFS formatter

SYNOPSIS STATUS hrfsFormatLibInit (void)

DESCRIPTION This routine initializes the HRFS formatter library. This initialization is enabled when the
configuration macro INCLUDE_HRFS_FORMAT is defined.

RETURNS OK always

ERRNO Not Available

SEE ALSO hrfsFormatLib

2 Routines
hrfsTimeSplit()

313

2

hrfsTimeCondense()

NAME hrfsTimeCondense() – condense time in HRFS_TM to time in msec

SYNOPSIS INT64 hrfsTimeCondense
 (
 HRFS_TM * pHrfsTm /* Pointer to where HRFS_TM format time is stored */
)

DESCRIPTION This routine condenses the "broken-down" time pointed to by pHrfsTm into the number of
milliseconds since midnight Jan 1, 1970.

RETURNS # of milliseconds since midnight Jan 1, 1970

ERRNO Not Available

SEE ALSO hrFsTimeLib

hrfsTimeGet()

NAME hrfsTimeGet() – return # of milliseconds since midnight Jan 1, 1970

SYNOPSIS hrfsTime_t hrfsTimeGet (void)

DESCRIPTION This routine returns the number of milliseconds since midnight, January 1, 1970.

RETURNS # of milliseconds since midnight, January 1, 1970

ERRNO Not Available

SEE ALSO hrFsTimeLib

hrfsTimeSplit()

NAME hrfsTimeSplit() – split time in msec into HRFS_TM format

SYNOPSIS STATUS hrfsTimeSplit
 (
 INT64 milliSeconds, /* milliseconds to convert to HRFS_TM format */

VxWorks Kernel API Reference, 6.6
hrfsUpgrade()

314

 HRFS_TM * pHrfsTm /* Buffer to store HRFS_TM format time */
)

DESCRIPTION This routine splits the time specified in milliseconds into the "broken-down" format of the
HRFS_TM structure. Should the equivalent number of seconds exceed what can be
represent by a signed integer, this routine will currently return ERROR, and the split will not
have occurred.

RETURNS OK success, or ERROR if the split did not occur

ERRNO Not Available

SEE ALSO hrFsTimeLib

hrfsUpgrade()

NAME hrfsUpgrade() – upgrade the HRFS file system to the latest version

SYNOPSIS STATUS hrfsUpgrade
 (
 char *path /* path to upgrade */
)

DESCRIPTION This routine is the HRFS consistency checker. It checks to see if the file system referenced by
the path is stable and consistent.

WARNING. This function can only run on an inactive volume. Any currently
opened files will closed as this routine will eject the current
file system. The volume will also be unaccessible while the
consistency checker executes.

The path argument should be a valid path to the HRFS formatted disk or partition to be
checked.

RETURNS OK if media was upgraded without errors. ERROR if one of more
problems are detected.

ERRNO Not Available

SEE ALSO hrfsChkDskLib

2 Routines
i()

315

2

i()

NAME i() – print a summary of each task's TCB

SYNOPSIS void i
 (
 int taskNameOrId /* task name or task ID, 0 = summarize all */
)

DESCRIPTION This command displays a synopsis of all the tasks in the system. The ti() routine provides
more complete information on a specific task.

Both i() and ti() use taskShow(); see the documentation for taskShow() for a description
of the output format.

EXAMPLE -> i

 NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
---------- ---------- -------- --- -------- -------- -------- ------- -----
tExcTask excTask 602adf00 0 PEND 60164ad0 602add08 0 0
tLogTask logTask 602b56c8 0 PEND 60164ad0 602b54d0 0 0
tShell0 shellTask 60351ba8 1 READY 6015fe68 6034fde8 0 0
tWdbTask wdbTask 60338308 3 PEND 601579f4 60337ff0 0 0
tNetTask netTask 602bf6a8 50 PEND 601579f4 602bf4e0 0 0
value = 0 = 0x0

CAVEAT This command should be used only as a debugging aid, since the information is obsolete by
the time it is displayed.

SMP CONSIDERATIONS

This command displays a "CPU #" column instead of the "DELAY" column. The "CPU #"
column provides information on the CPU a task is executing on, or "-" if a task is not
running on a CPU.

SMP EXAMPLE -> i

 NAME ENTRY TID PRI STATUS PC SP ERRNO CPU
#
---------- ------------ -------- --- ---------- -------- -------- -------

tExcTask 186438 247210 0 PEND 1e0198 249390 0
-
tJobTask 187390 2a5830 0 PEND 1e0198 2a5770 0
-
tLogTask logTask 2a8990 0 PEND 1dd86c 2a8870 0
-
tNbioLog 188848 2ac220 0 PEND 1e0198 2ac110 0
-
tShell0 shellTask 2be530 1 READY 1e8ec8 2bc780 0
1

VxWorks Kernel API Reference, 6.6
i0()

316

miiBusMoni> 134794 29d010 254 DELAY 1e65a0 29cf80 0
-
tIdleTask0 idleTaskEntr 24d010 287 READY 1dfb1c 24cf90 0
0
tIdleTask1 idleTaskEntr 250630 287 READY 1dfb28 2505b0 0
-
value = 0 = 0x0

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, ti(), taskShow(), the VxWorks programmer guides.

i0()

NAME i0() – return the contents of register i0 (also i1-i7) (SimSolaris)

SYNOPSIS int i0
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of in register i0 from the TCB of a specified task. If
taskId is omitted or 0, the current default task is assumed.

Similar routines are provided for all in registers (i0 - i7): i0() - i7().

The frame pointer is accessed via i6.

RETURNS The contents of register i0 (or the requested register).

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

i8042vxbRegister()

NAME i8042vxbRegister() – register i8042vxb driver

SYNOPSIS void i8042vxbRegister(void)

2 Routines
ichAtaCmd()

317

2

DESCRIPTION This routine registers the i8042vxb driver and device recognition data with the vxBus
subsystem.

NOTE This routine is called early during system initialization, and *MUST NOT* make calls to OS
facilities such as memory allocation and I/O.

RETURNS N/A

ERRNO

SEE ALSO vxbI8042Kbd

ichAtaBlkRW()

NAME ichAtaBlkRW() – read or write sectors to a ATA/IDE disk.

SYNOPSIS STATUS ichAtaBlkRW
 (
 ATA_DEV *pDev,
 sector_t startBlk,
 UINT32 nBlks,
 char *pBuf,
 int direction
)

DESCRIPTION Read or write sectors to a ATA/IDE disk. startBlk is the start Block, nBlks is the number of
blocks, pBuf is data buffer pointer and direction is the direction either to read or write. It
should be O_WRONLY for data write to drive or O_RDONLY for read data from drive.

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtaCmd()

NAME ichAtaCmd() – issue a RegisterFile command to ATA/ATAPI device.

SYNOPSIS STATUS ichAtaCmd

VxWorks Kernel API Reference, 6.6
ichAtaCmd()

318

 (
 int ctrl, /* Controller number. 0 or 1 */
 int drive, /* Drive number. 0 or 1 */
 int cmd, /* Command Register */
 int arg0, /* argument0 */
 int arg1, /* argument1 */
 int arg2, /* argument2 */
 int arg3, /* argument3 */
 int arg4, /* argument4 */
 int arg5 /* argument5 */
)

DESCRIPTION This function executes ATA command to ATA/ATAPI devices specified by arguments ctrl
and drive. cmd is command to be executed and other arguments arg0 to arg5 are interpreted
for differently in each case depending on the cmd command. Some commands (like
ATA_CMD_SET_FEATURE) have sub commands the case in which arg0 is interpreted as
subcommand and arg1 is subcommand specific.

In general these arguments arg0 to arg5 are interpreted as command registers of the device
as mentioned below.

arg0 - Feature Register

arg1 - Sector count

arg2 - Sector number

arg3 - CylLo

arg4 - CylHi

arg5 - sdh Register

As these registers are interpreted for different purpose for each command, arguments are
not named after registers.

The following commands are valid in this function and the validity of each argument for
different commands. Each command is tabulated in the form

COMMAND
 ARG0 | ARG1 | ARG2 | ARG3 | ARG4 | ARG5

ATA_CMD_INITP
 0 0 0 0 0 0

ATA_CMD_RECALIB
 0 0 0 0 0 0

ATA_PI_CMD_SRST
 0 0 0 0 0 0

ATA_CMD_EXECUTE_DEVICE_DIAGNOSTIC
 0 0 0 0 0 0

ATA_CMD_SEEK
 cylinder head 0 0 0 0
or LBA high LBA low

2 Routines
ichAtaCmd()

319

2

ATA_CMD_SET_FEATURE
 FR SC 0 0 0 0
 (SUBCOMMAND) (SubCommand
 Specific Value)

ATA_CMD_SET_MULTI
 sectors per block 0 0 0 0 0

ATA_CMD_IDLE
 SC 0 0 0 0 0
 (Timer Period)

ATA_CMD_STANDBY
 SC 0 0 0 0 0
 (Timer Period)

ATA_CMD_STANDBY_IMMEDIATE
 0 0 0 0 0 0

ATA_CMD_SLEEP
 0 0 0 0 0 0

ATA_CMD_CHECK_POWER_MODE
 0 0 0 0 0 0

ATA_CMD_IDLE_IMMEDIATE
 0 0 0 0 0 0

ATA_CMD_SECURITY_DISABLE_PASSWORD
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_CMD_SECURITY_ERASE_PREPARE
 0 0 0 0 0 0

ATA_CMD_SECURITY_ERASE_UNIT
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_CMD_SECURITY_FREEZE_LOCK
 0 0 0 0 0 0

ATA_CMD_SECURITY_SET_PASSWORD
 0 0 0 0 0 0

ATA_CMD_SECURITY_UNLOCK
 0 0 0 0 0 0

ATA_CMD_SMART (not implemented)
 FR SC SN ATA_ZERO ATA_ZERO ATA_ZERO
 (SUBCOMMAND) (SubCommand (SubCommand
 Specific Value) Specific Value)

ATA_CMD_GET_MEDIA_STATUS
 0 0 0 0 0 0

ATA_CMD_MEDIA_EJECT
 0 0 0 0 0 0

ATA_CMD_MEDIA_LOCK
 0 0 0 0 0 0

ATA_CMD_MEDIA_UNLOCK
 0 0 0 0 0 0

ATA_CMD_CFA_ERASE_SECTORS
 0 0 0 0 0 0

ATA_CMD_CFA_WRITE_SECTORS_WITHOUT_ERASE
 ATA_ZERO SC ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_CMD_CFA_WRITE_SECTORS_WITHOUT_ERASE
 ATA_ZERO SC ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

VxWorks Kernel API Reference, 6.6
ichAtaCmd()

320

ATA_CMD_CFA_TRANSLATE_SECTOR
 ATA_ZERO ATA_ZERO SN cylLo cylHi DH

ATA_CMD_CFA_REQUEST_EXTENDED_ERROR_CODE
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_CMD_SET_MAX
 FR ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO
 (SUBCOMMAND)

The following are the subcommands valid for ATA_CMD_SET_MAX and are tabulated as
below

SUBCOMMAND(in ARG0)
 ARG1 | ARG2 | ARG3 | ARG4 | ARG5

ATA_SUB_SET_MAX_ADDRESS
 SC sector no cylLo cylHi head + modebit
(SET_MAX_VOLATILE
 or
SET_MAX_NON_VOLATILE)

ATA_SUB_SET_MAX_SET_PASS
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_SUB_SET_MAX_LOCK
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_SUB_SET_MAX_UNLOCK
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

ATA_SUB_SET_MAX_FREEZE_LOCK
 ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

In ATA_CMD_SET_FEATURE subcommand only arg0 and arg1 are valid, all other are
ATA_ZERO.

--
SUBCOMMAND(ARG0) ARG1
--

ATA_SUB_ENABLE_8BIT ATA_ZERO

ATA_SUB_ENABLE_WCACHE ATA_ZERO

ATA_SUB_SET_RWMODE mode
 (see page no 168 table 28 in atapi Spec5)
ATA_SUB_ENB_ADV_POW_MNGMNT 0x90

ATA_SUB_ENB_POW_UP_STDBY ATA_ZERO

ATA_SUB_POW_UP_STDBY_SPIN ATA_ZERO

ATA_SUB_BOOTMETHOD ATA_ZERO

ATA_SUB_ENA_CFA_POW_MOD1 ATA_ZERO

ATA_SUB_DISABLE_NOTIFY ATA_ZERO

ATA_SUB_DISABLE_RETRY ATA_ZERO

ATA_SUB_SET_LENGTH ATA_ZERO

ATA_SUB_SET_CACHE ATA_ZERO

ATA_SUB_DISABLE_LOOK ATA_ZERO

2 Routines
ichAtaConfig()

321

2

ATA_SUB_ENA_INTR_RELEASE ATA_ZERO

ATA_SUB_ENA_SERV_INTR ATA_ZERO

ATA_SUB_DISABLE_REVE ATA_ZERO

ATA_SUB_DISABLE_ECC ATA_ZERO

ATA_SUB_DISABLE_8BIT ATA_ZERO

ATA_SUB_DISABLE_WCACHE ATA_ZERO

ATA_SUB_DIS_ADV_POW_MNGMT ATA_ZERO

ATA_SUB_DISB_POW_UP_STDBY ATA_ZERO

ATA_SUB_ENABLE_ECC ATA_ZERO

ATA_SUB_BOOTMETHOD_REPORT ATA_ZERO

ATA_SUB_DIS_CFA_POW_MOD1 ATA_ZERO

ATA_SUB_ENABLE_NOTIFY ATA_ZERO

ATA_SUB_ENABLE_RETRY ATA_ZERO

ATA_SUB_ENABLE_LOOK ATA_ZERO

ATA_SUB_SET_PREFETCH ATA_ZERO

ATA_SUB_SET_4BYTES ATA_ZERO

ATA_SUB_ENABLE_REVE ATA_ZERO

ATA_SUB_DIS_INTR_RELEASE ATA_ZERO

ATA_SUB_DIS_SERV_INTR ATA_ZERO

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtaConfig()

NAME ichAtaConfig() – configure an ATA drive (hard disk or cdrom drive)

SYNOPSIS STATUS ichAtaConfig
 (
 int ctrl, /* 0: primary address, 1: secondary address */
 int drive, /* drive number of hard disk (0 or 1) */
 char *devNames /* mount points for each partition */
)

DESCRIPTION This routine configures an ATA hard disk. Parameters:

VxWorks Kernel API Reference, 6.6
ichAtaConfigInit()

322

drive
the drive number of the hard disk; 0 is C: and 1 is D:.

devName
the mount point for all partitions which are expected to be present on the disk,
separated with commas, for example "/ata0,/ata1" or "C:,D:". Blanks are not allowed in
this string.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage, src/config/usrAta.c, VxWorks Programmer's Guide: I/O System, Local File
Systems, Intel i386/i486/Pentium

ichAtaConfigInit()

NAME ichAtaConfigInit() – intialize the hard disk driver

SYNOPSIS void ichAtaConfigInit (void)

DESCRIPTION This routine is called from usrConfig.c to initialize the hard drive.

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtaCtrlReset()

NAME ichAtaCtrlReset() – reset the specified ATA/IDE disk controller

SYNOPSIS STATUS ichAtaCtrlReset
 (
 int ctrl
)

DESCRIPTION This routine resets the ATA controller specified by ctrl. The device control register is written
with SRST=1

2 Routines
ichAtaDevCreate()

323

2

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtaDevCreate()

NAME ichAtaDevCreate() – create a device for a ATA/IDE disk

SYNOPSIS BLK_DEV * ichAtaDevCreate
 (
 int ctrl, /* ATA controller number, 0 is the primary controller
*/
 int drive, /* ATA drive number, 0 is the master drive */
 UINT32 nBlocks, /* number of blocks on device, 0 = use entire disc */
 UINT32 blkOffset /* offset BLK_DEV nBlocks from the start of the drive
*/
)

DESCRIPTION This routine creates a device for a specified ATA/IDE or ATAPI CDROM disk.

ctrl is a controller number for the ATA controller; the primary controller is 0. The maximum
is specified via ATA_MAX_CTRLS.

drive is the drive number for the ATA hard drive; the master drive is 0. The maximum is
specified via ATA_MAX_DRIVES.

The nBlocks parameter specifies the size of the device in blocks. If nBlocks is zero, the whole
disk is used.

The blkOffset parameter specifies an offset, in blocks, from the start of the device to be used
when writing or reading the hard disk. This offset is added to the block numbers passed by
the file system during disk accesses. (VxWorks file systems always use block numbers
beginning at zero for the start of a device.)

RETURNS A pointer to a block device structure (BLK_DEV) or NULL if memory cannot be allocated for
the device structure.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage, dosFsMkfs(), dosFsDevInit(), rawFsDevInit()

VxWorks Kernel API Reference, 6.6
ichAtaDevIdentify()

324

ichAtaDevIdentify()

NAME ichAtaDevIdentify() – identify device

SYNOPSIS STATUS ichAtaDevIdentify
 (
 int ctrl,
 int dev
)

DESCRIPTION This routine checks whether the device is connected to the controller, if it is, this routine
determines drive type. The routine set type field in the corresponding ATA_DRIVE
structure. If device identification failed, the routine set state field in the corresponding
ATA_DRIVE structure to ATA_DEV_NONE.

RETURNS TRUE if a device present, FALSE otherwise

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtaDmaRW()

NAME ichAtaDmaRW() – read/write a number of sectors on the current track in DMA mode

SYNOPSIS STATUS ichAtaDmaRW
 (
 int ctrl,
 int drive,
 UINT32 cylinder,
 UINT32 head,
 UINT32 sector,
 void * buffer,
 UINT32 nSecs,
 int direction,
 sector_t startBlk
)

DESCRIPTION Read/write a number of sectors on the current track in DMA mode

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

2 Routines
ichAtaDrv()

325

2

SEE ALSO vxbIntelIchStorage

ichAtaDmaToggle()

NAME ichAtaDmaToggle() – turn on or off an individual controllers dma support

SYNOPSIS void ichAtaDmaToggle
 (
 int ctrl
)

DESCRIPTION This routine lets you toggle the DMA setting for an individual controller. The controller
number is passed in as a parameter, and the current value is toggled.

RETURNS OK, or ERROR if the parameters are invalid.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtaDrv()

NAME ichAtaDrv() – Initialize the ATA driver

SYNOPSIS STATUS ichAtaDrv
 (
 int ctrl, /* controller no. 0,1 */
 int drives, /* number of drives 1,2 */
 int vector, /* interrupt vector */
 int level, /* interrupt level */
 int configType, /* configuration type */
 int semTimeout, /* timeout seconds for sync semaphore */
 int wdgTimeout /* timeout seconds for watch dog */
)

DESCRIPTION This routine initializes the ATA/ATAPI device driver, initializes IDE host controller and
sets up interrupt vectors for requested controller. This function must be called once for each
controller, before any access to drive on the controller, usually which is called by usrRoot()
in usrConfig.c.

VxWorks Kernel API Reference, 6.6
ichAtaDumptest()

326

If it is called more than once for the same controller, it returns OK with a message display
Host controller already initialized , and does nothing as already required initialization is
done.

Additionally it identifies devices available on the controller and initializes depending on
the type of the device (ATA or ATAPI). Initialization of device includes reading parameters
of the device and configuring to the defaults.

RETURNS OK, or ERROR if initialization fails.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage, ichAtaDevCreate()

ichAtaDumptest()

NAME ichAtaDumptest() – a quick test of the dump functionality for ATA driver

SYNOPSIS void ichAtaDumptest
 (
 device_t d,
 sector_t sector,
 UINT32 blocks,
 char *data
)

DESCRIPTION device_t device id of the device to dump to. This can be any XBD
device. Could be the XBD of the disk device itself, or
could be the xbd of a partition overlayed on the drive.

sector sector offset to begin dump relative to start of xbd. blocks number of blocks to dump
to device *data buffer that contains data to dump

RETURNS N/A

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

2 Routines
ichAtaParamRead()

327

2

ichAtaInit()

NAME ichAtaInit() – initialize ATA device.

SYNOPSIS STATUS ichAtaInit
 (
 int ctrl,
 int drive
)

DESCRIPTION This routine issues a soft reset command to ATA device for initialization.

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtaParamRead()

NAME ichAtaParamRead() – Read drive parameters

SYNOPSIS STATUS ichAtaParamRead
 (
 int ctrl,
 int drive,
 void *buffer,
 int command
)

DESCRIPTION Read drive parameters.

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

VxWorks Kernel API Reference, 6.6
ichAtaPiInit()

328

ichAtaPiInit()

NAME ichAtaPiInit() – init a ATAPI CD-ROM disk controller

SYNOPSIS STATUS ichAtaPiInit
 (
 int ctrl,
 int drive
)

DESCRIPTION This routine resets a ATAPI CD-ROM disk controller.

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtaRW()

NAME ichAtaRW() – read/write a data from/to required sector.

SYNOPSIS STATUS ichAtaRW
 (
 int ctrl,
 int drive,
 UINT32 cylinder,
 UINT32 head,
 UINT32 sector,
 void * buffer,
 UINT32 nSecs,
 int direction,
 sector_t startBlk
)

DESCRIPTION Read/write a number of sectors on the current track

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

2 Routines
ichAtaShow()

329

2

ichAtaRawio()

NAME ichAtaRawio() – do raw I/O access

SYNOPSIS STATUS ichAtaRawio
 (
 int ctrl,
 int drive,
 ATA_RAW *pAtaRaw
)

DESCRIPTION This routine is called to perform raw I/O access.

drive is a drive number for the hard drive: it must be 0 or 1.

The pAtaRaw is a pointer to the structure ATA_RAW which is defined in ichAtaDrv.h.

RETURNS OK, or ERROR if the parameters are not valid.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtaShow()

NAME ichAtaShow() – show the ATA/IDE disk parameters

SYNOPSIS STATUS ichAtaShow
 (
 int ctrl,
 int drive
)

DESCRIPTION This routine shows the ATA/IDE disk parameters. Its first argument is a controller number,
0 or 1; the second argument is a drive number, 0 or 1.

RETURNS OK, or ERROR if the parameters are invalid.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

VxWorks Kernel API Reference, 6.6
ichAtaShowInit()

330

ichAtaShowInit()

NAME ichAtaShowInit() – initialize the ATA/IDE disk driver show routine

SYNOPSIS STATUS ichAtaShowInit (void)

DESCRIPTION This routine links the ATA/IDE disk driver show routine into the VxWorks system. It is
called automatically when this show facility is configured into VxWorks using either of the
following methods:

- If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

- If you use the Tornado project facility, select INCLUDE_ATA_SHOW.

RETURNS N/A

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtaStatusChk()

NAME ichAtaStatusChk() – Check status of drive and compare to requested status.

SYNOPSIS STATUS ichAtaStatusChk
 (
 ATA_CTRL * pCtrl,
 UINT8 mask,
 UINT8 status
)

DESCRIPTION Wait until the drive is ready.

RETURNS OK, ERROR if the drive status check times out.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

2 Routines
ichAtaXbdRawio()

331

2

ichAtaXbdDevCreate()

NAME ichAtaXbdDevCreate() – create an XBD device for a ATA/IDE disk

SYNOPSIS device_t ichAtaXbdDevCreate
 (
 int ctrl, /* ATA controller number, 0 is the primary
controller */
 int drive, /* ATA drive number, 0 is the master drive */
 UINT32 nBlocks, /* number of blocks on device, 0 = use entire
disc */
 UINT32 blkOffset, /* offset BLK_DEV nBlocks from the start of the
drive */
 const char * name /* name of xbd device to create */
)

DESCRIPTION Use the existing code to create a standard block dev device, then create an XBD device
associated with the BLKDEV.

RETURNS a device identifier upon success, or NULLDEV otherwise

ERRNO

SEE ALSO vxbIntelIchStorage

ichAtaXbdRawio()

NAME ichAtaXbdRawio() – do raw I/O access

SYNOPSIS STATUS ichAtaXbdRawio
 (
 device_t device,
 sector_t sector,
 UINT32 numSecs,
 char *data,
 int direction
)

DESCRIPTION This routine is called to perform raw I/O access.

device is the XBD device identifier for the drive sector starting sector for I/O operation
numSecs number of sectors to read/write data pointer to data buffer dir read or write

The pAtaRaw is a pointer to the structure ATA_RAW which is defined in ichAtaDrv.h.

VxWorks Kernel API Reference, 6.6
ichAtapiBytesPerSectorGet()

332

RETURNS OK, or ERROR if the parameters are not valid.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiBytesPerSectorGet()

NAME ichAtapiBytesPerSectorGet() – get the number of Bytes per sector.

SYNOPSIS UINT16 ichAtapiBytesPerSectorGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the number of Bytes per sector. This function will return correct
values for drives of ATA/ATAPI-4 or less as this field is retired for the drives compliant to
ATA/ATAPI-5 or higher.

RETURNS Bytes per sector.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiBytesPerTrackGet()

NAME ichAtapiBytesPerTrackGet() – get the number of Bytes per track.

SYNOPSIS UINT16 ichAtapiBytesPerTrackGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the number of Bytes per track. This function will return correct
values for drives of ATA/ATAPI-4 or less as this feild is retired for the drives compliant to
ATA/ATAPI-5 or higher.

2 Routines
ichAtapiCurrentCylinderCountGet()

333

2

RETURNS Bytes per track.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiCtrlMediumRemoval()

NAME ichAtapiCtrlMediumRemoval() – Issues PREVENT/ALLOW MEDIUM REMOVAL
packet command

SYNOPSIS STATUS ichAtapiCtrlMediumRemoval
 (
 ATA_DEV * pAtapiDev,
 int arg0
)

DESCRIPTION This function issues a command to drive to PREVENT or ALLOW MEDIA removal.
Argument arg0 selects to LOCK_EJECT or UNLOCK_EJECT.

To lock media eject arg0 should be LOCK_EJECT To unload media eject arg0 should be
UNLOCK_EJECT

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiCurrentCylinderCountGet()

NAME ichAtapiCurrentCylinderCountGet() – get logical number of cylinders in the drive.

SYNOPSIS UINT16 ichAtapiCurrentCylinderCountGet
 (
 int ctrl,
 int drive
)

VxWorks Kernel API Reference, 6.6
ichAtapiCurrentHeadCountGet()

334

DESCRIPTION This function will return the number of logical cylinders in the drive. This value represents
the no of cylinders that can be addressed.

RETURNS Cylinder count.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiCurrentHeadCountGet()

NAME ichAtapiCurrentHeadCountGet() – get the number of read/write heads in the drive.

SYNOPSIS UINT8 ichAtapiCurrentHeadCountGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the number of heads in the drive from device structure.

RETURNS Number of heads.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiCurrentMDmaModeGet()

NAME ichAtapiCurrentMDmaModeGet() – get the enabled Multi word DMA mode.

SYNOPSIS UINT8 ichAtapiCurrentMDmaModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive MDMA mode enable in the ATA/ATAPI drive specified
by ctrl and drive from drive structure. The following bit is set for corresponding mode
selected.

2 Routines
ichAtapiCurrentRwModeGet()

335

2

- Bit2 Multi DMA mode 2 is Selected

- Bit1 Multi DMA mode 1 is Selected

- Bit0 Multi DMA mode 0 is Selected

RETURNS Enabled Multi word DMA mode.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiCurrentPioModeGet()

NAME ichAtapiCurrentPioModeGet() – get the enabled PIO mode.

SYNOPSIS UINT8 ichAtapiCurrentPioModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive current PIO mode enabled in the ATA/ATAPI drive
specified by ctrl and drive from drive structure.

RETURNS Enabled PIO mode.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiCurrentRwModeGet()

NAME ichAtapiCurrentRwModeGet() – get the current Data transfer mode.

SYNOPSIS UINT8 ichAtapiCurrentRwModeGet
 (
 int ctrl,
 int drive
)

VxWorks Kernel API Reference, 6.6
ichAtapiCurrentSDmaModeGet()

336

DESCRIPTION This function will return the current Data transfer mode if it is PIO 0,1,2,3,4 mode, SDMA
0,1,2 mode, MDMA 0,1,2 mode or UDMA 0,1,2,3,4,5 mode.

RETURNS current PIO mode.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiCurrentSDmaModeGet()

NAME ichAtapiCurrentSDmaModeGet() – get the enabled Single word DMA mode.

SYNOPSIS UINT8 ichAtapiCurrentSDmaModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive SDMA mode enable in the ATA/ATAPI drive specified
by ctrl and drive from drive structure

RETURNS Enabled Single word DMA mode.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiCurrentUDmaModeGet()

NAME ichAtapiCurrentUDmaModeGet() – get the enabled Ultra DMA mode.

SYNOPSIS UINT8 ichAtapiCurrentUDmaModeGet
 (
 int ctrl,
 int drive
)

2 Routines
ichAtapiCylinderCountGet()

337

2

DESCRIPTION This function is used to get drive UDMA mode enable in the ATA/ATAPI drive specified
by ctrl and drive from drive structure The following bit is set for corresponding mode
selected.

- Bit4 Ultra DMA mode 4 is Selected

- Bit3 Ultra DMA mode 3 is Selected

- Bit2 Ultra DMA mode 2 is Selected

- Bit1 Ultra DMA mode 1 is Selected

- Bit0 Ultra DMA mode 0 is Selected

RETURNS Enabled Ultra DMA mode.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiCylinderCountGet()

NAME ichAtapiCylinderCountGet() – get the number of cylinders in the drive.

SYNOPSIS UINT16 ichAtapiCylinderCountGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get cyclinder count of the ATA/ATAPI drive specified by ctrl and
drive from drive structure.

RETURNS Cylinder count.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

VxWorks Kernel API Reference, 6.6
ichAtapiDriveSerialNumberGet()

338

ichAtapiDriveSerialNumberGet()

NAME ichAtapiDriveSerialNumberGet() – get the drive serial number.

SYNOPSIS char * ichAtapiDriveSerialNumberGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive serial number of the ATA/ATAPI drive specified by ctrl
and drive from drive structure. It returns a pointer to character array of 20 bytes length
which contains serial number in ascii.

RETURNS Drive serial number.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiDriveTypeGet()

NAME ichAtapiDriveTypeGet() – get the drive type.

SYNOPSIS UINT8 ichAtapiDriveTypeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function routine will return the type of the drive if it is CD-ROM or Printer etc. The
following table indicates the type depending on the return value.

0x00h Direct-access device
0x01h Sequential-access device
0x02h Printer Device
0x03h Processor device
0x04h Write-once device
0x05h CD-ROM device
0x06h Scanner device
0x07h Optical memory device
0x08h Medium Change Device
0x09h Communications device

2 Routines
ichAtapiFeatureEnabledGet()

339

2

RETURNS drive type.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiFeatureEnabledGet()

NAME ichAtapiFeatureEnabledGet() – get the enabled features.

SYNOPSIS UINT32 ichAtapiFeatureEnabledGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive Features Enabled by the ATA/ATAPI drive specified by
ctrl and drive from drive structure. It returns a 32 bit value whose bits represents the features
Enabled. The following table gives the cross reference for the bits.

RETURNS enabled features.

ERRNO Not Available

0x0Ch Array Controller Device
0x0Dh Encloser Services Device
0x0Eh Reduced Block Command Devices
0x0Fh Optical Card Reader/Writer Device
0x1Fh Unknown or no device type

Bit 21 Power-up in Standby Feature
Bit 20 Removable Media Status

Notification Feature
Bit 19 Adavanced Power Management

Feature
Bit 18 CFA Feature
Bit 10 Host protected Area Feature
Bit 4 Packet Command Feature
Bit 3 Power Management Feature
Bit 2 Removable Media Feature
Bit 1 Security Mode Feature
Bit 0 SMART Feature

VxWorks Kernel API Reference, 6.6
ichAtapiFeatureSupportedGet()

340

SEE ALSO vxbIntelIchStorageShow

ichAtapiFeatureSupportedGet()

NAME ichAtapiFeatureSupportedGet() – get the features supported by the drive.

SYNOPSIS UINT32 ichAtapiFeatureSupportedGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive Feature supported by the ATA/ATAPI drive specified by
ctrl and drive from drive structure. It returns a 32 bit value whose bits represents the features
supported. The following table gives the cross reference for the bits.

RETURNS Supported features.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiFirmwareRevisionGet()

NAME ichAtapiFirmwareRevisionGet() – get the firm ware revision of the drive.

SYNOPSIS char * ichAtapiFirmwareRevisionGet
 (
 int ctrl,

Bit 21 Power-up in Standby Feature
Bit 20 Removable Media Status Notification Feature
Bit 19 Adavanced Power Management Feature
Bit 18 CFA Feature
Bit 10 Host protected Area Feature
Bit 4 Packet Command Feature
Bit 3 Power Management Feature
Bit 2 Removable Media Feature
Bit 1 Security Mode Feature
Bit 0 SMART Feature

2 Routines
ichAtapiInit()

341

2

 int drive
)

DESCRIPTION This function is used to get drive Firmware revision of the ATA/ATAPI drive specified by
ctrl and drive from drive structure. It returns a pointer to character array of 8 bytes length
which contains serial number in ascii.

RETURNS firmware revision.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiHeadCountGet()

NAME ichAtapiHeadCountGet() – get the number heads in the drive.

SYNOPSIS UINT8 ichAtapiHeadCountGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get head count of the ATA/ATAPI drive specified by ctrl and drive
from drive structure.

RETURNS Number of heads in the drive.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiInit()

NAME ichAtapiInit() – init ATAPI CD-ROM disk controller

SYNOPSIS STATUS ichAtapiInit
 (
 int ctrl,

VxWorks Kernel API Reference, 6.6
ichAtapiIoctl()

342

 int drive
)

DESCRIPTION This routine resets the ATAPI CD-ROM disk controller.

RETURNS OK, ERROR if the command didn't succeed.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiIoctl()

NAME ichAtapiIoctl() – Control the drive.

SYNOPSIS STATUS ichAtapiIoctl
 (
 int function, /* The IO operation to do */
 int ctrl, /* Controller number of the drive */
 int drive, /* Drive number */
 int password [16], /* Password to set. NULL if not
applicable */
 int arg0, /* 1st arg to pass. NULL if not
applicable */
 UINT32 * arg1, /* Ptr to 2nd arg. NULL if not
applicable */
 UINT8 ** ppBuf /* The data buffer */
)

DESCRIPTION This routine is used to control the drive like setting the password, putting in power save
mode, locking/unlocking the drive, ejecting the medium etc. The argument function defines
the ioctl command, password, and integer array is the password required or set password
value for some commands. Arguments arg0, pointer arg1, pointer to pointer buffer ppBuf
are commad specific.

The following commands are supported for various functionality.

IOCTL_DIS_MASTER_PWD
Disable the master password. where 4th parameter is the master password.

IOCTL_DIS_USER_PWD
Disable the user password.

IOCTL_ERASE_PREPARE
Prepare the drive for erase incase the user password lost, and it is in max security
mode.

2 Routines
ichAtapiIoctl()

343

2

IOCTL_ENH_ERASE_UNIT_USR
Erase in enhanced mode supplying the user password.

IOCTL_ENH_ERASE_UNIT_MSTR
Erase in enhanced mode supplying the master password.

IOCTL_NORMAL_ERASE_UNIT_MSTR
Erase the drive in normal mode supplying the master password.

IOCTL_NORMAL_ERASE_UNIT_USR
Erase the drive in normal mode supplying the user password.

IOCTL_FREEZE_LOCK
Freeze lock the drive.

IOCTL_SET_PASS_MSTR
Set the master password.

IOCTL_SET_PASS_USR_MAX
Set the user password in Maximum security mode.

IOCTL_SET_PASS_USR_HIGH
Set the user password in High security mode.

IOCTL_UNLOCK_MSTR
Unlock the master password.

IOCTL_UNLOCK_USR
Unlock the user password.

IOCTL_CHECK_POWER_MODE
Find the drive power saving mode.

IOCTL_IDLE_IMMEDIATE
Idle the drive immediatly. this will get the drive from the standby or active mode to idle
mode immediatly.

IOCTL_SLEEP
Set the drive in sleep mode. this is the highest power saving mode. to return to the
normal active or IDLE mode, drive need an hardware reset or power on reset or device
reset command.

IOCTL_STANDBY_IMMEDIATE
Standby the drive immediatly.

IOCTL_EJECT_DISK
Eject the media of an ATA drive. Use IOsystem ioctl function for ATAPI drive.

IOCTL_GET_MEDIA_STATUS
Find the media status.

IOCTL_ENA_REMOVE_NOTIFY
Enable the drive's removable media notification feature set.

VxWorks Kernel API Reference, 6.6
ichAtapiIoctl()

344

The following table describes these arguments validity. These are tabulated in the following
form

--
FUNCTION
password [16] arg0 *arg1 **ppBuf
--

IOCTL_DIS_MASTER_PWD
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_DIS_USER_PWD
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ERASE_PREPARE
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ENH_ERASE_UNIT_USR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ENH_ERASE_UNIT_MSTR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_NORMAL_ERASE_UNIT_MSTR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_NORMAL_ERASE_UNIT_USR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_FREEZE_LOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_PASS_MSTR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_PASS_USR_MAX
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_PASS_USR_HIGH
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_UNLOCK_MSTR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_UNLOCK_USR
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_READ_NATIVE_MAX_ADDRESS - it returns address in <arg1>
ATA_ZERO (ATA_SDH_IBM or LBA/CHS add ATA_ZERO
 ATA_SDH_LBA) (LBA 27:24 / Head
 LBA 23:16 / cylHi
 LBA 15:8 / cylLow
 LBA 7:0 / sector no)

IOCTL_SET_MAX_ADDRESS - <arg1> is pointer to LBA address
ATA_ZERO SET_MAX_VOLATILE or LBA address ATA_ZERO
 SET_MAX_NON_VOLATILE

IOCTL_SET_MAX_SET_PASS
password ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_MAX_LOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_MAX_UNLOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SET_MAX_FREEZE_LOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

2 Routines
ichAtapiIoctl()

345

2

IOCTL_CHECK_POWER_MODE - returns power mode in <arg1>
ATA_ZERO ATA_ZERO returns power ATA_ZERO
 mode
 power modes :-1) 0x00 Device in standby mode
 2) 0x80 Device in Idle mode
 3) 0xff Device in Active or Idle mode

IOCTL_IDLE_IMMEDIATE
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SLEEP
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_STANDBY_IMMEDIATE
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ENB_POW_UP_STDBY
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_ENB_SET_ADV_POW_MNGMNT
ATA_ZERO arg0 ATA_ZERO ATA_ZERO

 NOTE:- arg0 value - 1). for minimum power consumption with standby 0x01h
 2). for minimum power consumption without standby 0x01h
 3). for maximum performance 0xFEh

IOCTL_DISABLE_ADV_POW_MNGMNT
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_EJECT_DISK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_LOAD_DISK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_MEDIA_LOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_MEDIA_UNLOCK
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_GET_MEDIA_STATUS - returns status in <arg1>
ATA_ZERO ATA_ZERO status ATA_ZERO

 NOTE: value in <arg1> is
 0x04 -Command aborted
 0x02 -No media in drive
 0x08 -Media change is requested
 0x20 -Media changed
 0x40 -Write Protected

IOCTL_ENA_REMOVE_NOTIFY
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_DISABLE_REMOVE_NOTIFY
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_DISABLE_OPER
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_ENABLE_ATTRIB_AUTO
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_DISABLE_ATTRIB_AUTO
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_ENABLE_OPER
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_OFFLINE_IMMED
ATA_ZERO SubCommand ATA_ZERO ATA_ZERO

VxWorks Kernel API Reference, 6.6
ichAtapiMaxMDmaModeGet()

346

 (refer to ref1 page no 190)

IOCTL_SMART_READ_DATA - returns pointer to pointer <ppBuf> of read data
ATA_ZERO ATA_ZERO ATA_ZERO read data

IOCTL_SMART_READ_LOG_SECTOR - returns pointer to pointer <ppBuf>of read data
ATA_ZERO no of sector to log Address read data
 be read

IOCTL_SMART_RETURN_STATUS
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_SAVE_ATTRIB
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_SMART_WRITE_LOG_SECTOR
ATA_ZERO no of to be written Log Sector address write data

 NOTE: - <ppBuf> contains pointer to pointer data buffer to be written

IOCTL_CFA_ERASE_SECTORS
ATA_ZERO sector count PackedCHS/LBA ATA_ZERO

IOCTL_CFA_REQUEST_EXTENDED_ERROR_CODE
ATA_ZERO ATA_ZERO ATA_ZERO ATA_ZERO

IOCTL_CFA_TRANSLATE_SECTOR - <ppbuf> returns pointer to data pointer.
ATA_ZERO ATA_ZERO PackedLBA/CHS read data

IOCTL_CFA_WRITE_MULTIPLE_WITHOUT_ERASE
ATA_ZERO sector count PackedCHS/LBA write data

 NOTE: -<pbuf> contains pointer to data pointer.

IOCTL_CFA_WRITE_SECTORS_WITHOUT_ERASE
ATA_ZERO sector count PackedCHS/LBA write data

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiMaxMDmaModeGet()

NAME ichAtapiMaxMDmaModeGet() – get the Maximum Multi word DMA mode the drive
supports.

SYNOPSIS UINT8 ichAtapiMaxMDmaModeGet
 (
 int ctrl,
 int drive
)

2 Routines
ichAtapiMaxSDmaModeGet()

347

2

DESCRIPTION This function is used to get drive maximum MDMA mode supported by the ATA/ATAPI
drive specified by ctrl and drive from drive structure The following bits are set for
corresponding modes supported.

RETURNS Maximum Multi word DMA mode.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiMaxPioModeGet()

NAME ichAtapiMaxPioModeGet() – get the Maximum PIO mode that drive can support.

SYNOPSIS UINT8 ichAtapiMaxPioModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive maximum PIO mode supported by the ATA/ATAPI
drive specified by ctrl and drive from drive structure

RETURNS maximum PIO mode.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiMaxSDmaModeGet()

NAME ichAtapiMaxSDmaModeGet() – get the Maximum Single word DMA mode the drive
supports

SYNOPSIS UINT8 ichAtapiMaxSDmaModeGet

Bit2 Multi DMA mode 2 and below are supported
Bit1 Multi DMA mode 1 and below are supported
Bit0 Multi DMA mode 0 is supported

VxWorks Kernel API Reference, 6.6
ichAtapiMaxUDmaModeGet()

348

 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive maximum SDMA mode supported by the ATA/ATAPI
drive specified by ctrl and drive from drive structure

RETURNS Maximum Single word DMA mode.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiMaxUDmaModeGet()

NAME ichAtapiMaxUDmaModeGet() – get the Maximum Ultra DMA mode the drive can
support.

SYNOPSIS UINT8 ichAtapiMaxUDmaModeGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive maximum UDMA mode supported by the ATA/ATAPI
drive specified by ctrl and drive from drive structure. The following bits are set for
corresponding modes supported.

Bit4 Ultra DMA mode 4 and below are supported

Bit3 Ultra DMA mode 3 and below are supported

Bit2 Ultra DMA mode 2 and below are supported

Bit1 Ultra DMA mode 1 and below are supported

Bit0 Ultra DMA mode 0 is supported

RETURNS Maximum Ultra DMA mode.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

2 Routines
ichAtapiPktCmd()

349

2

ichAtapiModelNumberGet()

NAME ichAtapiModelNumberGet() – get the model number of the drive.

SYNOPSIS char * ichAtapiModelNumberGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function is used to get drive Model Number of the ATA/ATAPI drive specified by ctrl
and drive from drive structure. It returns a pointer to character array of 40 bytes length
which contains serial number in ascii.

RETURNS pointer to the model number.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiPktCmd()

NAME ichAtapiPktCmd() – execute an ATAPI command with error processing

SYNOPSIS UINT8 ichAtapiPktCmd
 (
 ATA_DEV * pAtapiDev,
 ATAPI_CMD * pComPack
)

DESCRIPTION This routine executes a single ATAPI command, checks the command completion status
and tries to recover if an error encountered during command execution at any stage.

RETURN SENSE_NO_SENSE if success, or ERROR if not successful for any reason.

RETURNS Not Available

ERRNO S_ioLib_DEVICE_ERROR

SEE ALSO vxbIntelIchStorage

VxWorks Kernel API Reference, 6.6
ichAtapiPktCmdSend()

350

ichAtapiPktCmdSend()

NAME ichAtapiPktCmdSend() – Issue a Packet command.

SYNOPSIS UINT8 ichAtapiPktCmdSend
 (
 ATA_DEV * pAtapiDev,
 ATAPI_CMD * pComPack
)

DESCRIPTION This function issues a packet command to specified drive.

See library file description for more details.

RETURN SENSE_NO_SENSE if success, or ERROR if not successful for any reason

RETURNS Not Available

ERRNO S_ioLib_DEVICE_ERROR

SEE ALSO vxbIntelIchStorage

ichAtapiRead10()

NAME ichAtapiRead10() – read one or more blocks from an ATAPI Device.

SYNOPSIS STATUS ichAtapiRead10
 (
 ATA_DEV * pAtapiDev,
 UINT32 startBlk,
 UINT32 nBlks,
 UINT32 transferLength,
 char * pBuf
)

DESCRIPTION This routine reads one or more blocks from the specified device, starting with the specified
block number.

The name of this routine relates to the SFF-8090i (Mt. Fuji), used for DVD-ROM, and
indicates that the entire packet command uses 10 bytes, rather than the normal 12.

RETURNS OK, ERROR if the read command didn't succeed.

ERRNO Not Available

2 Routines
ichAtapiReadTocPmaAtip()

351

2

SEE ALSO vxbIntelIchStorage

ichAtapiReadCapacity()

NAME ichAtapiReadCapacity() – issue a READ CD-ROM CAPACITY command to a ATAPI
device

SYNOPSIS STATUS ichAtapiReadCapacity
 (
 ATA_DEV * pAtapiDev
)

DESCRIPTION This routine issues a READ CD-ROM CAPACITY command to a specified ATAPI device.

RETURN OK, or ERROR if the command fails.

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiReadTocPmaAtip()

NAME ichAtapiReadTocPmaAtip() – issue a READ TOC command to a ATAPI device

SYNOPSIS STATUS ichAtapiReadTocPmaAtip
 (
 ATA_DEV * pAtapiDev,
 UINT32 transferLength,
 char * resultBuf
)

DESCRIPTION This routine issues a READ TOC command to a specified ATAPI device.

RETURN OK, or ERROR if the command fails.

RETURNS Not Available

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
ichAtapiRemovMediaStatusNotifyVerGet()

352

SEE ALSO vxbIntelIchStorage

ichAtapiRemovMediaStatusNotifyVerGet()

NAME ichAtapiRemovMediaStatusNotifyVerGet() – get the Media Stat Notification Version.

SYNOPSIS UINT16 ichAtapiRemovMediaStatusNotifyVerGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the removable media status notification version of the drive.

RETURNS Version Number.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

ichAtapiScan()

NAME ichAtapiScan() – issue SCAN packet command to ATAPI drive.

SYNOPSIS STATUS ichAtapiScan
 (
 ATA_DEV * pAtapiDev,
 UINT32 startAddressField,
 int function
)

DESCRIPTION This function issues SCAN packet command to ATAPI drive. The function argument should
be 0x00 for fast forward and 0x10 for fast reversed operation.

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

2 Routines
ichAtapiSetCDSpeed()

353

2

SEE ALSO vxbIntelIchStorage

ichAtapiSeek()

NAME ichAtapiSeek() – issues a SEEK packet command to drive.

SYNOPSIS STATUS ichAtapiSeek
 (
 ATA_DEV * pAtapiDev,
 UINT32 addressLBA
)

DESCRIPTION This function issues a SEEK packet command (not ATA SEEK command) to the specified
drive.

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiSetCDSpeed()

NAME ichAtapiSetCDSpeed() – issue SET CD SPEED packet command to ATAPI drive.

SYNOPSIS STATUS ichAtapiSetCDSpeed
 (
 ATA_DEV * pAtapiDev,
 int readDriveSpeed,
 int writeDriveSpeed
)

DESCRIPTION This function issues SET CD SPEED packet command to ATAPI drive while reading and
writing of ATAPI drive(CD-ROM) data. The arguments readDriveSpeed and writeDriveSpeed
are in Kbytes/Second.

RETURN OK or ERROR

VxWorks Kernel API Reference, 6.6
ichAtapiStartStopUnit()

354

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiStartStopUnit()

NAME ichAtapiStartStopUnit() – Issues START STOP UNIT packet command

SYNOPSIS STATUS ichAtapiStartStopUnit
 (
 ATA_DEV * pAtapiDev,
 int arg0
)

DESCRIPTION This function issues a command to drive to MEDIA EJECT and MEDIA LOAD. Argument
arg0 selects to EJECT or LOAD.

To eject media arg0 should be EJECT_DISK To load media arg0 should be LOAD_DISK

RETURN OK or ERROR

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiStopPlayScan()

NAME ichAtapiStopPlayScan() – issue STOP PLAY/SCAN packet command to ATAPI drive.

SYNOPSIS STATUS ichAtapiStopPlayScan
 (
 ATA_DEV * pAtapiDev
)

RETURN OK or ERROR

RETURNS Not Available

2 Routines
ichAtapiVersionNumberGet()

355

2

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiTestUnitRdy()

NAME ichAtapiTestUnitRdy() – issue a TEST UNIT READY command to a ATAPI drive

SYNOPSIS STATUS ichAtapiTestUnitRdy
 (
 ATA_DEV * pAtapiDev
)

DESCRIPTION This routine issues a TEST UNIT READY command to a specified ATAPI drive.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO vxbIntelIchStorage

ichAtapiVersionNumberGet()

NAME ichAtapiVersionNumberGet() – get the ATA/ATAPI version number of the drive.

SYNOPSIS UINT32 ichAtapiVersionNumberGet
 (
 int ctrl,
 int drive
)

DESCRIPTION This function will return the ATA/ATAPI version number of the drive. Most significant 16
bits represent the Major Version Number and the Lease significant 16 bits represents the
minor Version Number.

Major Version Number

Bit 22 ATA/ATAPI-6
Bit 21 ATA/ATAPI-5
Bit 20 ATA/ATAPI-4
Bit 19 ATA-3

VxWorks Kernel API Reference, 6.6
index()

356

Minor version Number (bit 15 through bit 0)

RETURNS ATA/ATAPI version number.

ERRNO Not Available

SEE ALSO vxbIntelIchStorageShow

index()

NAME index() – find the first occurrence of a character in a string

SYNOPSIS char *index
 (
 FAST const char * s, /* string in which to find character */
 FAST int c /* character to find in string */
)

Bit 18 ATA-2

0001h Obsolete
0002h Obsolete
0003h Obsolete
0004h ATA-2 published, ANSI X3.279-1996
0005h ATA-2 X3T10 948D prior to revision 2k
0006h ATA-3 X3T10 2008D revision 1
0007h ATA-2 X3T10 948D revision 2k
0008h ATA-3 X3T10 2008D revision 0
0009h ATA-2 X3T10 948D revision 3
000Ah ATA-3 published, ANSI X3.298-199x
000Bh ATA-3 X3T10 2008D revision 6
000Ch ATA-3 X3T13 2008D revision 7 and 7a
000Dh ATA/ATAPI-4 X3T13 1153D revision 6
000Eh ATA/ATAPI-4 T13 1153D revision 13
000Fh ATA/ATAPI-4 X3T13 1153D revision 7
0010h ATA/ATAPI-4 T13 1153D revision 18
0011h ATA/ATAPI-4 T13 1153D revision 15
0012h ATA/ATAPI-4 published, ANSI NCITS 317-1998
0013h Reserved
0014h ATA/ATAPI-4 T13 1153D revision 14
0015h ATA/ATAPI-5 T13 1321D revision 1
0016h Reserved
0017h ATA/ATAPI-4 T13 1153D revision 17
0018h-FFFFh Reserved

2 Routines
infinityf()

357

2

DESCRIPTION This routine finds the first occurrence of character c in string s.

RETURNS A pointer to the located character, or NULL if c is not found.

ERRNO N/A

SEE ALSO bLib, strchr().

infinity()

NAME infinity() – return a very large double

SYNOPSIS double infinity (void)

DESCRIPTION This routine returns a very large double.

RETURNS The double-precision representation of positive infinity.

ERRNO Not Available

SEE ALSO mathALib

infinityf()

NAME infinityf() – return a very large float

SYNOPSIS float infinityf (void)

DESCRIPTION This routine returns a very large float.

RETURNS The single-precision representation of positive infinity.

ERRNO Not Available

SEE ALSO mathALib

VxWorks Kernel API Reference, 6.6
inflate()

358

inflate()

NAME inflate() – inflate compressed code

SYNOPSIS int inflate
 (
 Byte * src,
 Byte * dest,
 int nBytes
)

DESCRIPTION This routine inflates nBytes of data starting at address src. The inflated code is copied
starting at address dest. Two sanity checks are performed on the data being decompressed.
First, we look for a magic number at the start of the data to verify that it is really a
compressed stream. Second, the entire data is optionally checksummed to verify its
integrity. By default, the checksum is not verified in order to speed up the booting process.
To turn on checksum verification, set the global variable inflateCksum to TRUE in the BSP.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO inflateLib

intCRGet()

NAME intCRGet() – read the contents of the cause register (MIPS)

SYNOPSIS int intCRGet (void)

DESCRIPTION This routine reads and returns the contents of the MIPS cause register.

RETURNS The contents of the cause register.

ERRNO Not Available

SEE ALSO intArchLib, intCRSet()

2 Routines
intConnect()

359

2

intCRSet()

NAME intCRSet() – write the contents of the cause register (MIPS)

SYNOPSIS void intCRSet
 (
 int value /* value to write to cause register */
)

DESCRIPTION This routine writes the contents of the MIPS cause register.

RETURNS N/A

ERRNO Not Available

SEE ALSO intArchLib, intCRGet()

intConnect()

NAME intConnect() – connect a C routine to a hardware interrupt

SYNOPSIS STATUS intConnect
 (
 VOIDFUNCPTR * vector, /* interrupt vector to attach to */
 VOIDFUNCPTR routine, /* routine to be called */
 int parameter /* parameter to be passed to routine */
)

DESCRIPTION This routine connects a specified C routine to a specified interrupt vector. The address of
routine is generally stored at vector so that routine is called with parameter when the interrupt
occurs. The routine is invoked in supervisor mode at interrupt level. A proper C
environment is established, the necessary registers saved, and the stack set up.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

This routine generally simply calls intHandlerCreate() and intVecSet(). The address of
the handler returned by intHandlerCreate() is what actually goes in the interrupt vector.

This routine takes an interrupt vector as a parameter, which is the byte offset into the vector
table. Macros are provided to convert between interrupt vectors and interrupt numbers, see
intArchLib.

VxWorks Kernel API Reference, 6.6
intConnect()

360

NOTE ARM ARM processors generally do not have on-chip interrupt controllers. Control of interrupts
is a BSP-specific matter. This routine calls a BSP-specific routine to install the handler such
that, when the interrupt occurs, routine is called with parameter.

NOTE X86 Refer to the special x86 routine intHandlerCreateI86().

NOTE SH The on-chip interrupt controller (INTC) design of SH architecture depends on the processor
type, but there are some similarities. The number of external interrupt inputs are limited,
so it may necessary to multiplex some interrupt requests. However most of them are
auto-vectored, thus have only one vector to an external interrupt input. As a framework to
handle this type of multiplexed interrupt, you can use your original intConnect code by
hooking it to _func_intConnectHook pointer. If _func_intConnectHook is set, the SH
version of intConnect() simply calls the hooked routine with same arguments, then returns
the status of hooked routine. A sysLib sample is shown below:

#include <intLib.h>
#include <iv.h> /* INUM_INTR_HIGH for SH7750/SH7700 */

#define SYS_INT_TBL_SIZE (255 - INUM_INTR_HIGH)

typedef struct
 {
 VOIDFUNCPTR routine; /* routine to be called */
 int parameter; /* parameter to be passed */
 } SYS_INT_TBL;

LOCAL SYS_INT_TBL sysIntTbl [SYS_INT_TBL_SIZE]; /* local vector table */

LOCAL int sysInumVirtBase = INUM_INTR_HIGH + 1;

STATUS sysIntConnect
 (
 VOIDFUNCPTR *vec, /* interrupt vector to attach to */
 VOIDFUNCPTR routine, /* routine to be called */
 int param /* parameter to be passed to routine */
)
 {
 FUNCPTR intDrvRtn;

 if (vec >= INUM_TO_IVEC (0) && vec < INUM_TO_IVEC (sysInumVirtBase))
 {
 /* do regular intConnect() process */

 intDrvRtn = intHandlerCreate ((FUNCPTR)routine, param);

 if (intDrvRtn == NULL)
 return ERROR;

 /* make vector point to synthesized code */

 intVecSet ((FUNCPTR *)vec, (FUNCPTR)intDrvRtn);
 }
 else

2 Routines
intConnect()

361

2

 {
 int index = IVEC_TO_INUM (vec) - sysInumVirtBase;

 if (index < 0 || index >= SYS_INT_TBL_SIZE)
 return ERROR;

 sysIntTbl [index].routine = routine;
 sysIntTbl [index].parameter = param;
 }

 return OK;
 }

void sysHwInit (void)
 {
 ...
 _func_intConnectHook = (FUNCPTR)sysIntConnect;
 }

LOCAL void sysVmeIntr (void)
 {
 volatile UINT32 vec = *VME_VEC_REGISTER; /* get VME interrupt vector */
 int i = vec - sysInumVirtBase;

 if (i >= 0 && i < SYS_INT_TBL_SIZE && sysIntTbl[i].routine != NULL)
 (*sysIntTbl[i].routine)(sysIntTbl[i].parameter);
 else
 logMsg ("uninitialized VME interrupt: vec = %d\n", vec,0,0,0,0,0);
 }

void sysHwInit2 (void)
 {
 int i;
 ...
 /* initialize VME interrupts dispatch table */

 for (i = 0; i < SYS_INT_TBL_SIZE; i++)
 {
 sysIntTbl[i].routine = (VOIDFUNCPTR)NULL;
 sysIntTbl[i].parameter = NULL;
 }

 /* connect generic VME interrupts handler */

 intConnect (INT_VEC_VME, sysVmeIntr, NULL);
 ...
 }

The used vector numbers of SH processors are limited to certain ranges, depending on the
processor type. The sysInumVirtBase should be initialized to a value higher than the last
used vector number, defined as INUM_INTR_HIGH. It is typically safe to set
sysInumVirtBase to (INUM_INTR_HIGH + 1).

The sysIntConnect() routine simply acts as the regular intConnect() if vector is smaller
than INUM_TO_IVEC (sysInumVirtBase), so sysHwInit2() connects a common VME

VxWorks Kernel API Reference, 6.6
intContext()

362

interrupt dispatcher sysVmeIntr to the multiplexed interrupt vector. If vector is equal to or
greater than INUM_TO_IVEC (sysInumVirtBase), the sysIntConnect() fills a local vector
entry in sysIntTbl[] with an individual VME interrupt handler, in a coordinated manner
with sysVmeIntr.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK, or ERROR if the interrupt handler cannot be built.

ERRNO Not Available

SEE ALSO intArchLib, intHandlerCreate(), intVecSet(), intDisconnect()

intContext()

NAME intContext() – determine if executing in interrupt context

SYNOPSIS BOOL intContext (void)

DESCRIPTION This routine returns TRUE only if the caller is executing in an interrupt context. If executing
in a task context FALSE is returned.

SMP CONSIDERATIONS

In a VxWorks SMP system it is possible for the CPUs to be in different contexts (task or
interrupt) at the same time. Therefore this routine returns the status for the CPU the caller
is executing on.

RETURNS TRUE or FALSE.

ERRNO N/A

SEE ALSO intLib

2 Routines
intCpuLock()

363

2

intCount()

NAME intCount() – get the current interrupt nesting depth

SYNOPSIS int intCount (void)

DESCRIPTION This routine returns the number of interrupts that are currently nested.

SMP CONSIDERATIONS

In a VxWorks SMP system it is possible for the CPUs to be in different contexts (task or
interrupt) at the same time. Therefore this routine returns the nested interrupt count for the
CPU the caller is executing on.

RETURNS The number of nested interrupts.

ERRNO N/A

SEE ALSO intLib

intCpuLock()

NAME intCpuLock() – lock out interrupts on local CPU

SYNOPSIS int intCpuLock (void)

DESCRIPTION This routine disables interrupts on the CPU the calling task or ISR is running on. The
returned value is a lock-out key to be used in a subsequent call to intCpuUnlock() to
release the lock. Execution of interrupts on other CPUs in the SMP system is not affected
by this routine. Because of this behaviour this routine is not a suitable mutual exclusion
mechanism unless all tasks and/or ISRs participating in the mutual exclusion scenario
have a single CPU affinity to the very same CPU.

Calling this routine on the uniprocessor version of VxWorks is equivalent to calling
intLock().

Invoking a VxWorks system routine after having locked interrupts using intCpuLock() on
VxWorks SMP is not permitted and will cause the call to abort and an error to be reported.
Not all VxWorks APIs enforce this restriction. Only those that are intCpuLock restricted.
The reference entries in the VxWorks Kernel API Reference manual specifies when this
restriction applies. Since the intCpuLock() behaviour in the uniprocessor version of
VxWorks is identical to the intLock() API behaviour, the concept of intCpuLock()
restricted APIs only applies to VxWorks SMP.

VxWorks Kernel API Reference, 6.6
intCpuUnlock()

364

RETURNS An architecture-dependent lock-out key for the interrupt level prior to the call.

ERRNO Not Available

SEE ALSO intArchLib, intCpuUnlock(), taskCpuLock(), intLockLevelSet()

intCpuUnlock()

NAME intCpuUnlock() – cancel local CPU interrupt lock

SYNOPSIS void intCpuUnlock
 (
 int lockKey /* lock-out key returned by preceding intCpuLock() */
)

DESCRIPTION This routine removes the lock established using intCpuLock (). It re-enables interrupts on
the CPU the calling task or ISR is running on. Calling this routine on the uniprocessor
version of VxWorks is equivalent to calling intUnlock(). The parameter lockKey is an
architecture-dependent lock-out key returned by a preceding intCpuLock() call.

RETURNS N/A

ERRNO Not Available

SEE ALSO intArchLib, intCpuLock(), taskCpuUnlock()

intDisable()

NAME intDisable() – disable corresponding interrupt bits (MIPS, PowerPC, ARM)

SYNOPSIS int intDisable
 (
 int level /* new interrupt bits (0x0 - 0xff00) */
)

DESCRIPTION On MIPS and PowerPC architectures, this routine disables the corresponding interrupt bits
from the present status register.

2 Routines
intDisconnect()

365

2

NOTE ARM ARM processors generally do not have on-chip interrupt controllers. Control of interrupts
is a BSP-specific matter. This routine calls a BSP-specific routine to disable a particular
interrupt level, regardless of the current interrupt mask level.

NOTE MIPS For MIPS, the macros SR_IBIT1 - SR_IBIT8 define bits that may be set.

RETURNS OK or ERROR. (MIPS: The previous contents of the status register).

ERRNO Not Available

SEE ALSO intArchLib, intEnable()

intDisconnect()

NAME intDisconnect() – disconnect a C routine from a hardware interrupt

SYNOPSIS STATUS intDisconnect
 (
 VOIDFUNCPTR * vector, /* interrupt vector to dettach from */
 VOIDFUNCPTR routine, /* routine to disconnect */
 int parameter /* parameter to be matched */
)

DESCRIPTION This routine disconnects a specified C routine that has a specified parameter from a specified
interrupt vector.

The caller of this routine must first disable the source of interrupts before calling this
routine.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK, ERROR if the interrupt handler cannot be disconnected.

ERRNO The following are the possible errnos returned when ISR object is supported.

S_intLib_NOT_ISR_CALLABLE
this routine must not be called from an ISR

SEE ALSO intLib, intConnect()

VxWorks Kernel API Reference, 6.6
intEnable()

366

intEnable()

NAME intEnable() – enable corresponding interrupt bits (MIPS, PowerPC, ARM)

SYNOPSIS int intEnable
 (
 int level /* new interrupt bits (0x00 - 0xff00) */
)

DESCRIPTION This routine enables the input interrupt bits on the present status register of the MIPS and
PowerPC processors.

NOTE ARM ARM processors generally do not have on-chip interrupt controllers. Control of interrupts
is a BSP-specific matter. This routine calls a BSP-specific routine to enable the interrupt. For
each interrupt level to be used, there must be a call to this routine before it will be allowed
to interrupt.

NOTE MIPS For MIPS, it is strongly advised that the level be a combination of SR_IBIT1 - SR_IBIT8.

RETURNS OK or ERROR. (MIPS: The previous contents of the status register).

ERRNO Not Available

SEE ALSO intArchLib, intDisable()

intHandlerCreate()

NAME intHandlerCreate() – construct an interrupt handler for a C routine (MC680x0, x86, MIPS,
SimSolaris)

SYNOPSIS FUNCPTR intHandlerCreate
 (
 FUNCPTR routine, /* routine to be called */
 int parameter /* parameter to be passed to routine */
)

DESCRIPTION This routine builds an interrupt handler around the specified C routine. This interrupt
handler is then suitable for connecting to a specific vector address with intVecSet(). The
interrupt handler is invoked in supervisor mode at interrupt level. A proper C environment
is established, the necessary registers saved, and the stack set up.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

2 Routines
intHandlerCreateI86()

367

2

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS A pointer to the new interrupt handler, or NULL if memory is insufficient.

ERRNO Not Available

SEE ALSO intArchLib, intConnect()

intHandlerCreateI86()

NAME intHandlerCreateI86() – construct an interrupt handler for a C routine (x86)

SYNOPSIS FUNCPTR intHandlerCreateI86
 (
 FUNCPTR routine, /* routine to be called */
 int parameter, /* parameter to be passed to routine */
 FUNCPTR routineBoi, /* BOI routine to be called */
 int parameterBoi, /* parameter to be passed to routineBoi */
 FUNCPTR routineEoi, /* EOI routine to be called */
 int parameterEoi /* parameter to be passed to routineEoi */
)

DESCRIPTION This routine builds an interrupt handler around a specified C routine. This interrupt
handler is then suitable for connecting to a specific vector address with intVecSet(). The
interrupt handler is invoked in supervisor mode at interrupt level. A proper C environment
is established, the necessary registers saved, and the stack set up.

The routine can be any normal C code, except that it must not invoke certain operating
system functions that may block or perform I/O operations.

IMPLEMENTATION This routine builds an interrupt handler of the following form in allocated memory:

00 e8 kk kk kk kk call _intEnt * tell kernel
05 50 pushl %eax * save regs
06 52 pushl %edx
07 51 pushl %ecx
08 68 pp pp pp pp pushl $_parameterBoi * push BOI param
13 e8 rr rr rr rr call _routineBoi * call BOI routine
18 68 pp pp pp pp pushl $_parameter * push param
23 e8 rr rr rr rr call _routine * call C routine
28 68 pp pp pp pp pushl $_parameterEoi * push EOI param
33 e8 rr rr rr rr call _routineEoi * call EOI routine
38 83 c4 0c addl $12, %esp * pop param
41 59 popl %ecx * restore regs
42 5a popl %edx
43 58 popl %eax

VxWorks Kernel API Reference, 6.6
intLevelSet()

368

44 e9 kk kk kk kk jmp _intExit * exit via kernel

Third and fourth parameter of intHandlerCreateI86() are the BOI routine address and its
parameter that are inserted into the code as "routineBoi" and "parameterBoi". Fifth and
sixth parameter of intHandlerCreateI86() are the EOI routine address and its parameter
that are inserted into the code as "routineEoi" and "parameterEoi". The BOI routine detects
if this interrupt is stray/spurious/phantom by interrogating the interrupt controller, and
returns from the interrupt if it is. The EOI routine issues End Of Interrupt signal to the
interrupt controller, if it is required by the controller. Each interrupt controller has its own
BOI and EOI routine. They are located in the BSP, and their address and parameter are
taken by the intEoiGet function (set to sysIntEoiGet() in the BSP). The Tornado 2, and later,
BSPs should use the BOI and EOI mechanism with intEoiGet function pointer.

To keep the Tornado 101 BSP backward compatible, the function pointer intEOI is not
removed. If intEoiGet is NULL, it should be set to the sysIntEoiGet() routine in the BSP,
intHandlerCreate() and the intEOI function pointer (set to sysIntEOI() in the Tornado 101
BSP) is used.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS A pointer to the new interrupt handler, or NULL if memory is insufficient.

ERRNO Not Available

SEE ALSO intArchLib

intLevelSet()

NAME intLevelSet() – set the interrupt level (MC680X0, x86, ARM, SimSolaris, SimNT and SH)

SYNOPSIS int intLevelSet
 (
 int level /* new interrupt level mask */
)

DESCRIPTION This routine changes the interrupt mask in the status register to take on the value specified
by level. Interrupts are locked out at or below that level. The value of level must be in the
following range:

MC680x0: 0 - 7
SH: 0 - 15
ARM: BSP-specific
SimSolaris: 0 - 1

2 Routines
intLock()

369

2On x86 systems, there are no interrupt level in the processor and the external interrupt
controller manages the interrupt level. Therefore this routine does nothing and returns OK
always.

NOTE SIMNT This routine does nothing.

WARNING Do not call VxWorks system routines with interrupts locked. Violating this rule may
re-enable interrupts unpredictably.

RETURNS The previous interrupt level.

ERRNO Not Available

SEE ALSO intArchLib

intLock()

NAME intLock() – lock out interrupts

SYNOPSIS int intLock (void)

DESCRIPTION This routine disables interrupts. It can be called from either interrupt or task level. The
intLock() routine returns an architecture-dependent lock-out key representing the
interrupt level prior to the call; this key can be passed to intUnlock() to re-enable
interrupts.

For MC680x0, x86, and SH architectures, interrupts are disabled at the level set by
intLockLevelSet(). The default lock-out level is the highest interrupt level (MC680x0 = 7,
x86 = 1, SH = 15).

For SimSolaris architecture, interrupts are masked. Lock-out level returned is 1 if interrupts
were already locked, 0 otherwise.

For SimNT, a windows semaphore is used to lock the interrupts. Lock-out level returned is
1 if interrupts were already locked, 0 otherwise.

For MIPS processors, interrupts are disabled at the master lock-out level; this means no
interrupt can occur even if unmasked in the IntMask bits (15-8) of the status register.

For ARM processors, interrupts (IRQs) are disabled by setting the I bit in the CPSR. This
means no IRQs can occur.

x86: interrupt controller specific

VxWorks Kernel API Reference, 6.6
intLock()

370

For PowerPC processors, there is only one interrupt vector. The external interrupt (vector
offset 0x500) is disabled when intLock() is called; this means that the processor cannot be
interrupted by any external event.

IMPLEMENTATION The lock-out key is implemented differently for different architectures:

WARNINGS Invoking a VxWorks system routine with interrupts locked may result in interrupts being
re-enabled for an unspecified period of time. If the called routine blocks, or results in a
higher priority task becoming eligible for execution (READY), interrupts will be re-enabled
while another task executes, or while the kernel is idle.

To prevent interrupts from being re-enabled for the case where a called routine results in a
higher priority task becoming eligible for execution, the taskLock() primitive can be used
to disable rescheduling. Note that if a task blocks or suspends, the scheduler will always
select the highest priority ready task to execute (or become idle) regardless of whether the
task has locked preemption via taskLock(), and thus interrupts will be re-enabled.

The interrupt lock level is an attribute of a task, i.e. it's part of the task context. Thus, if a
task disables interrupts and subsequently invokes a VxWorks system routine that causes the
calling task to block or cause a higher priority task to be ready, the interrupt lock level will
be restored when the task is later rescheduled for execution. For example, in the following
code fragment, interrupts will be disabled after returning from the taskDelay() invocation:

 lockKey = intLock ();

 ... (work with interrupts locked out)

 taskDelay (sysClkRateGet() * 10); /* delay for 10 seconds */

 ... (work with interrupts locked out)

Finally, the above descriptions only applies for tasks since ISRs are not permitted to block
or suspend, and task rescheduling only occurs when an ISR completes execution.

EXAMPLES lockKey = intLock ();

 ... (work with interrupts locked out)

 intUnlock (lockKey);

To lock out interrupts and task scheduling as well (see WARNINGS above):

MC680x0: interrupt field mask
MIPS: status register
x86: interrupt enable flag (IF) bit from EFLAGS register
PowerPC: MSR register value
ARM I bit from the CPSR
SH: status register
SimSolaris: 1 or 0
SimNT: 1 or 0

2 Routines
intLockLevelGet()

371

2

 if (taskLock() == OK)
 {
 lockKey = intLock ();

 ... (critical section)

 intUnlock (lockKey);
 taskUnlock();
 }
 else
 {
 ... (error message or recovery attempt)
 }

SMP CONSIDERATIONS

This routine is not available in VxWorks SMP. Refer to the VxWorks SMP Migration Guide
for suitable alternatives.

RETURNS An architecture-dependent lock-out key for the interrupt level prior to the call.

ERRNO Not Available

SEE ALSO intArchLib, intUnlock(), taskLock(), intLockLevelSet()

intLockLevelGet()

NAME intLockLevelGet() – get the current interrupt lock-out level (MC680x0, x86, ARM, SH,
SimSolaris, SimNT)

SYNOPSIS int intLockLevelGet (void)

DESCRIPTION This routine returns the current interrupt lock-out level, which is set by intLockLevelSet()
and stored in the globally accessible variable intLockMask. This is the interrupt level
currently masked when interrupts are locked out by intLock(). The default lock-out level
(MC680x0 = 7, x86 = 1, SH = 15) is initially set by kernelInit() when VxWorks is initialized.

NOTE SIMNT This routine does nothing.

RETURNS The interrupt level currently stored in the interrupt lock-out mask. (ARM = ERROR always)

ERRNO Not Available

SEE ALSO intArchLib, intLockLevelSet()

VxWorks Kernel API Reference, 6.6
intLockLevelSet()

372

intLockLevelSet()

NAME intLockLevelSet() – set the current interrupt lock-out level (MC680x0, x86, ARM, SH,
SimSolaris, SimNT)

SYNOPSIS void intLockLevelSet
 (
 int newLevel /* new interrupt level */
)

DESCRIPTION This routine sets the current interrupt lock-out level and stores it in the globally accessible
variable intLockMask. The specified interrupt level is masked when interrupts are locked
by intLock(). The default lock-out level (MC680x0 = 7, x86 = 1, SH = 15) is initially set by
kernelInit() when VxWorks is initialized.

NOTE SIMSOLARIS, SIMNT

This routine does nothing.

NOTE ARM On the ARM, this call establishes the interrupt level to be set when intLock() is called.

RETURNS N/A

ERRNO Not Available

SEE ALSO intArchLib, intLockLevelGet(), intLock(), taskLock()

intSRGet()

NAME intSRGet() – read the contents of the status register (MIPS)

SYNOPSIS int intSRGet (void)

DESCRIPTION This routine reads and returns the contents of the MIPS status register.

RETURNS The previous contents of the status register.

ERRNO Not Available

SEE ALSO intArchLib, intSRSet()

2 Routines
intStackEnable()

373

2

intSRSet()

NAME intSRSet() – update the contents of the status register (MIPS)

SYNOPSIS int intSRSet
 (
 int value /* value to write to status register */
)

DESCRIPTION This routine updates and returns the previous contents of the MIPS status register.

RETURNS The previous contents of the status register.

ERRNO Not Available

SEE ALSO intArchLib, intSRGet()

intStackEnable()

NAME intStackEnable() – enable or disable the interrupt stack usage (x86)

SYNOPSIS STATUS intStackEnable
 (
 BOOL enable /* TRUE to enable, FALSE to disable */
)

DESCRIPTION This routine enables or disables the interrupt stack usage and is only callable from the task
level. An Error is returned for any other calling context. The interrupt stack usage is
disabled in the default configuration for the backward compatibility. Routines that
manipulate the interrupt stack, are located in the file i86/windALib.s. These routines
include intStackEnable(), intEnt() and intExit().

RETURNS OK, or ERROR if it is not in the task level.

ERRNO Not Available

SEE ALSO intArchLib

VxWorks Kernel API Reference, 6.6
intUninitVecSet()

374

intUninitVecSet()

NAME intUninitVecSet() – set the uninitialized vector handler (ARM)

SYNOPSIS void intUninitVecSet
 (
 VOIDFUNCPTR routine /* ptr to user routine */
)

DESCRIPTION This routine installs a handler for the uninitialized vectors to be called when any
uninitialised vector is entered.

RETURNS N/A.

ERRNO Not Available

SEE ALSO intArchLib

intUnlock()

NAME intUnlock() – cancel interrupt locks

SYNOPSIS void intUnlock
 (
 int lockKey /* lock-out key returned by preceding intLock() */
)

DESCRIPTION This routine re-enables interrupts that have been disabled by intLock(). The parameter
lockKey is an architecture-dependent lock-out key returned by a preceding intLock() call.

SMP CONSIDERATIONS

This routine is not available in VxWorks SMP. Refer to the VxWorks SMP Migration Guide
for suitable alternatives.

RETURNS N/A

ERRNO Not Available

SEE ALSO intArchLib, intLock()

2 Routines
intVecBaseSet()

375

2

intVecBaseGet()

NAME intVecBaseGet() – get the vector (trap) base address (MC680x0, x86, MIPS, ARM,
SimSolaris, SimNT)

SYNOPSIS FUNCPTR *intVecBaseGet (void)

DESCRIPTION This routine returns the current vector base address, which is set with intVecBaseSet().

RETURNS The current vector base address (MIPS = 0 always, ARM = 0 always, SimSolaris = 0 always
and SimNT = 0 always).

ERRNO Not Available

SEE ALSO intArchLib, intVecBaseSet()

intVecBaseSet()

NAME intVecBaseSet() – set the vector (trap) base address (MC680x0, x86, MIPS, ARM,
SimSolaris, SimNT)

SYNOPSIS void intVecBaseSet
 (
 FUNCPTR * baseAddr /* new vector (trap) base address */
)

DESCRIPTION This routine sets the vector (trap) base address. The CPU's vector base register is set to the
specified value, and subsequent calls to intVecGet() or intVecSet() will use this base
address. The vector base address is initially 0, until modified by calls to this routine.

NOTE 68000 The 68000 has no vector base register; thus, this routine is a no-op for 68000 systems.

NOTE MIPS The MIPS processors have no vector base register; thus this routine is a no-op for this
architecture.

NOTE SH77XX This routine sets baseAddr to vbr, then loads an interrupt dispatch code to (vbr + 0x600).
When SH77XX processor accepts an interrupt request, it sets an exception code to INTEVT
register and jumps to (vbr + 0x600). Thus this dispatch code is commonly used for all
interrupts' handling.

VxWorks Kernel API Reference, 6.6
intVecGet()

376

The exception codes are 12bits width, and interleaved by 0x20. VxWorks for SH77XX
locates a vector table at (vbr + 0x800), and defines the vector offsets as (exception codes / 8).
This vector table is commonly used by all interrupts, exceptions, and software traps.

All SH77XX processors have INTEVT register at address 0xffffffd8. The SH7707 processor
has yet another INTEVT2 register at address 0x04000000, to identify its enhanced interrupt
sources. The dispatch code obtains the address of INTEVT register from a global constant
intEvtAdrs. The constant is defined in sysLib, thus the selection of INTEVT/INTEVT2 is
configurable at BSP level. The intEvtAdrs is loaded to (vbr + 4) by intVecBaseSet().

After fetching the exception code, the interrupt dispatch code applies a new interrupt mask
to the status register, and jumps to an individual interrupt handler. The new interrupt mask
is taken from intPrioTable[], which is defined in sysALib. The intPrioTable[] is loaded to
(vbr + 0xc00) by intVecBaseSet().

NOTE ARM The ARM processors have no vector base register; thus this routine is a no-op for this
architecture.

NOTE SIMSOLARIS, SIMNT

This routine does nothing.

RETURNS N/A

ERRNO Not Available

SEE ALSO intArchLib, intVecBaseGet(), intVecGet(), intVecSet()

intVecGet()

NAME intVecGet() – get an interrupt vector (MC680x0, x86, MIPS, SH, SimSolaris, SimNT)

SYNOPSIS FUNCPTR intVecGet
 (
 FUNCPTR * vector /* vector offset */
)

DESCRIPTION This routine returns a pointer to the exception/interrupt handler attached to a specified
vector. The vector is specified as an offset into the CPU's vector table. This vector table
starts, by default, at:

MC680x0: 0
MIPS: excBsrTbl in excArchLib
x86: 0
SH702x/SH703x/SH704x/SH76xx: excBsrTbl in excArchLib

2 Routines
intVecGet2()

377

2
However, the vector table may be set to start at any address with intVecBaseSet() (on CPUs
for which it is available).

This routine takes an interrupt vector as a parameter, which is the byte offset into the vector
table. Macros are provided to convert between interrupt vectors and interrupt numbers, see
intArchLib.

NOTE SIMNT This routine does nothing and always returns 0.

RETURNS A pointer to the exception/interrupt handler attached to the specified vector.

ERRNO Not Available

SEE ALSO intArchLib, intVecSet(), intVecBaseSet()

intVecGet2()

NAME intVecGet2() – get a CPU vector, gate type(int/trap), and gate selector (x86)

SYNOPSIS void intVecGet2
 (
 FUNCPTR * vector, /* vector offset */
 FUNCPTR * pFunction, /* address to place in vector */
 int * pIdtGate, /* IDT_TRAP_GATE or IDT_INT_GATE */
 int * pIdtSelector /* sysCsExc or sysCsInt */
)

DESCRIPTION This routine gets a pointer to the exception/interrupt handler attached to a specified vector,
the type of the gate, the selector of the gate. The vector is specified as an offset into the
CPU's vector table. This vector table starts, by default, at address 0. However, the vector
table may be set to start at any address with intVecBaseSet().

RETURNS N/A

ERRNO Not Available

SEE ALSO intArchLib, intVecBaseSet(), intVecGet(), intVecSet(), intVecSet2()

SH77xx: vbr + 0x800
SimSolaris: 0

VxWorks Kernel API Reference, 6.6
intVecSet()

378

intVecSet()

NAME intVecSet() – set a CPU vector (trap) (MC680x0, x86, MIPS, SH, SimSolaris, SimNT)

SYNOPSIS void intVecSet
 (
 FUNCPTR * vector, /* vector offset */
 FUNCPTR function /* address to place in vector */
)

DESCRIPTION This routine attaches an exception/interrupt/trap handler to a specified vector. The vector
is specified as an offset into the CPU's vector table. This vector table starts, by default, at:

However, the vector table may be set to start at any address with intVecBaseSet() (on CPUs
for which it is available). The vector table is set up in usrInit().

This routine takes an interrupt vector as a parameter, which is the byte offset into the vector
table. Macros are provided to convert between interrupt vectors and interrupt numbers, see
intArchLib.

The intVecSet() routine puts this generated code into the trap table entry corresponding to
vector.

Window overflow and window underflow are sacred to the kernel and may not be
pre-empted. They are written here only to track changing trap base registers (TBRs). With
the "branch anywhere" scheme (as opposed to the branch PC-relative +/-8 megabytes) the
first instruction in the vector table must not be a change of flow control nor affect any critical
registers. The JMPL that replaces the BA will always execute the next vector's first
instruction.

NOTE MIPS On MIPS CPUs the vector table is set up statically in software.

NOTE SH77XX The specified interrupt handler function has to coordinate with an interrupt stack frame
which is specially designed for SH77XX version of VxWorks:

 [task's stack] [interrupt stack]

 | xxx | high address
 | yyy | +-------+
 |__zzz__|<--------------|task'sp| 0
 | | |INTEVT | -4
 | | low address | ssr | -8

MC680x0: 0
MIPS: excBsrTbl in excArchLib
x86: 0
SH702x/SH703x/SH704x/SH76xx: excBsrTbl in excArchLib
SH77xx: vbr + 0x800
SimSolaris: 0

2 Routines
intVecSet()

379

2

 |_ spc _| -12 <- sp (non-nested interrupt)
 : :
 : :
 :_______:
 |INTEVT | 0
 | ssr | -4
 |_ spc _| -8 <- sp (nested interrupt)
 | |

This interrupt stack frame is formed by a common interrupt dispatch code which is loaded
at (vbr + 0x600). You usually do not have to pay any attention to this stack frame, since
intConnect() automatically appends an appropriate stack manipulation code to your
interrupt service routine. The intConnect() assumes that your interrupt service routine
(ISR) is written in C, thus it also wraps your ISR in minimal register save/restore codes.
However if you need a very fast response time to a particular interrupt request, you might
want to skip this register save/restore sequence by directly attaching your ISR to the
corresponding vector table entry using intVecSet(). Note that this technique is only
applicable to an interrupt service with NO VxWorks system call. For example it is not
allowed to use semGive() or logMsg() in the interrupt service routine which is directly
attached to vector table by intVecSet(). To facilitate the direct usage of intVecSet() by user,
a special entry point to exit an interrupt context is provided within the SH77XX version of
VxWorks kernel. This entry point is located at address (vbr + intRte1W), here the intRte1W
is a global symbol for the vbr offset of the entry point in 16 bit length. This entry point
intRte1 assumes that the current register bank is 0 (SR.RB == 0), and r1 and r0 are still saved
on the interrupt stack, and it also requires 0x70000000 in r0. Then intRte1 properly cleans
up the interrupt stack and executes rte instruction to return to the previous interrupt or task
context. The following code is an example of intRte1 usage. Here the corresponding
intPrioTable[] entry is assumed to be 0x400000X0, namely MD=1, RB=0, BL=0 at the
beginning of usrIsr1.

 .text
 .align 2
 .global _usrIsr1
 .type _usrIsr1,@function
 .extern _usrRtn
 .extern _intRte1W
 /* intPrioTable[] sets SR to 0x400000X0 */
_usrIsr1:
 mov.l r0,@-sp /* must save r0 first (BANK0) */
 mov.l r1,@-sp /* must save r1 second (BANK0) */

 mov.l r2,@-sp /* save rest of volatile registers (BANK0) */
 mov.l r3,@-sp
 mov.l r4,@-sp
 mov.l r5,@-sp
 mov.l r6,@-sp
 mov.l r7,@-sp
 sts.l pr,@-sp
 sts.l mach,@-sp
 sts.l macl,@-sp

 mov.l UsrRtn,r0

VxWorks Kernel API Reference, 6.6
intVecSet()

380

 jsr @r0 /* call user's C routine */
 nop /* (delay slot) */

 lds.l @sp+,macl /* restore volatile registers (BANK0) */
 lds.l @sp+,mach
 lds.l @sp+,pr
 mov.l @sp+,r7
 mov.l @sp+,r6
 mov.l @sp+,r5
 mov.l @sp+,r4
 mov.l @sp+,r3
 mov.l @sp+,r2
 /* intRte1 restores r1 and r0 */
 mov.l IntRte1W,r1
 mov.w @r1,r0
 stc vbr,r1
 add r0,r1
 mov.l IntRteSR,r0 /* r0: 0x70000000 */
 jmp @r1 /* let intRte1 clean up stack, then rte */
 nop /* (delay slot) */

 .align 2
UsrRtn: .long _usrRtn /* user's C routine */
IntRteSR: .long 0x70000000 /* MD=1, RB=1, BL=1 */
IntRte1W: .long _intRte1W

The intRte1 sets r0 to status register (SR: 0x70000000), to safely restore SPC/SSR and to
clean up the interrupt stack. Note that TLB mishit exception immediately reboots CPU
while SR.BL=1. To avoid this fatal condition, VxWorks loads the intRte1 code and the
interrupt stack to a physical address space (P1) where no TLB mishit happens.

Furthermore, there is another special entry point called intRte2 at an address (vbr +
intRte2W). The intRte2 assumes that SR is already set to 0x70000000 (MD: 1, RB: 1, BL: 1),
then it does not restore r1 and r0. While SR value is 0x70000000, you may use r0,r1,r2,r3 in
BANK1 as volatile registers. The rest of BANK1 registers (r4,r5,r6,r7) are non-volatile, so if
you need to use them then you have to preserve their original values by saving/restoring
them on the interrupt stack. So, if you need the ultimate interrupt response time, you may
set the corresponding intPrioTable[] entry to NULL and manage your interrupt service only
with r0,r1,r2,r3 in BANK1 as shown in the next sample code:

 .text
 .global _usrIsr2
 .type _usrIsr2,@function
 .extern _usrIntCnt /* interrupt counter */
 .extern _intRte2W
 .extern _vxShP1TextBase
 .align 2
 /* MD=1, RB=1, BL=1, since SR is not */
 /* substituted from intPrioTable[]. */
_usrIsr2:
 mov.l UsrIntAck,r1
 mov #0x1,r0
 mov.b r0,@r1 /* acknowledge interrupt */

2 Routines
intVecSet()

381

2

 mov.l UsrIntCnt,r1
 mov.l X1FFFFFFF,r2
 mov.l UsrP1Base,r3
 mov.l @r3,r3 /* r3: SH_P1_TEXT_BASE */
 and r2,r1
 or r3,r1 /* r1: _usrIntCnt address in P1 */
 mov.l @r1,r0
 add #1,r0
 mov.l r0,@r1 /* increment counter */

 mov.l IntRte2W,r1
 and r2,r1
 or r3,r1 /* r1: intRte2W address in P1 */
 mov.w @r1,r0
 stc vbr,r1
 add r1,r0
 jmp @r0 /* let intRte2 clean up stack, then rte */
 nop /* (delay slot) */

 .align 2
UsrIntAck: .long 0xa0001234 /* interrupt acknowledge register */
UsrIntCnt: .long _usrIntCnt
IntRte2W: .long _intRte2W
X1FFFFFFF: .long 0x1fffffff
UsrP1Base: .long _vxShP1TextBase

Note that the entire interrupt service is executed under SR.BL=1 in this sample code. It
means that any access to virtual address space may reboot CPU, since TLB mishit exception
is blocked. Therefore usrIsr2 has to access usrIntCnt and intRte2W from P1 region. Also
usrIsr2 itself has to be executed on P1 region, and it can be done by relocating the address
of usrIsr2 to P1 as shown below:

IMPORT void usrIsr2 (void);

intVecSet (vector, (FUNCPTR) usrIsr2);

In conclusion, you have to guarantee that the entire ISR does not access to any virtual
address space if you set the corresponding intPrioTable[] entry to NULL.

NOTE SIMNT This routine does nothing.

RETURNS N/A

ERRNO Not Available

SEE ALSO intArchLib, intVecBaseSet(), intVecGet()

VxWorks Kernel API Reference, 6.6
intVecSet2()

382

intVecSet2()

NAME intVecSet2() – set a CPU vector, gate type(int/trap), and selector (x86)

SYNOPSIS void intVecSet2
 (
 FUNCPTR * vector, /* vector offset */
 FUNCPTR function, /* address to place in vector */
 int idtGate, /* IDT_TRAP_GATE or IDT_INT_GATE */
 int idtSelector /* sysCsExc or sysCsInt */
)

DESCRIPTION This routine attaches an exception handler to a specified vector, with the type of the gate and
the selector of the gate. The vector is specified as an offset into the CPU's vector table. This
vector table starts, by default, at address 0. However, the vector table may be set to start at
any address with intVecBaseSet(). The vector table is set up in usrInit().

RETURNS N/A

ERRNO Not Available

SEE ALSO intArchLib, intVecBaseSet(), intVecGet(), intVecSet(), intVecGet2()

intVecTableWriteProtect()

NAME intVecTableWriteProtect() – write-protect exception vector table (MC680x0, x86, ARM,
SimSolaris, SimNT)

SYNOPSIS STATUS intVecTableWriteProtect (void)

DESCRIPTION If the unbundled Memory Management Unit (MMU) support package (VxVMI) is present,
this routine write-protects the exception vector table to protect it from being accidentally
corrupted.

Note that other data structures contained in the page will also be write-protected. In the
default VxWorks configuration, the exception vector table is located at location 0 in
memory. Write-protecting this affects the backplane anchor, boot configuration
information, and potentially the text segment (assuming the default text location of 0x1000.)
All code that manipulates these structures has been modified to write-enable memory for
the duration of the operation. If you select a different address for the exception vector table,
be sure it resides in a page separate from other writable data structures.

2 Routines
ioGlobalStdSet()

383

2

NOTE SIMSOLARIS, SIMNT

This routine always returns ERROR on simulators.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK, or ERROR if memory cannot be write-protected.

ERRNO S_intLib_VEC_TABLE_WP_UNAVAILABLE

SEE ALSO intArchLib

ioGlobalStdGet()

NAME ioGlobalStdGet() – get the file descriptor for global input/output/error

SYNOPSIS int ioGlobalStdGet
 (
 int stdFd /* std input (0), output (1), or error (2) */
)

DESCRIPTION This routine returns the current underlying file descriptor for global standard input,
output, and error.

RETURNS The underlying global file descriptor, or ERROR if stdFd is not 0, 1, or 2.

ERRNO N/A.

SEE ALSO ioLib, ioGlobalStdSet(), ioTaskStdGet()

ioGlobalStdSet()

NAME ioGlobalStdSet() – set file descriptor for global input/output/error

SYNOPSIS STATUS ioGlobalStdSet
 (
 int stdFd, /* std input (0), output (1), or error (2) */
 int newFd /* new underlying file descriptor */
)

VxWorks Kernel API Reference, 6.6
ioHelp()

384

DESCRIPTION This routine changes the assignment of a specified global standard file descriptor stdFd (0,
1, or, 2) to the specified underlying file descriptor newFd. newFd should be a file descriptor
open to the desired device or file. All tasks will use this new assignment when doing I/O
to stdFd, unless they have specified a task-specific standard file descriptor (see
ioTaskStdSet()). If stdFd is not 0, 1, or 2, this routine has no effect.

RETURNS OK, or ERROR if input data is not valid.

ERRNO EBADF
The newFd does not represent a valid open file.

EINVAL
The stdFd value is not valid.

SEE ALSO ioLib, ioGlobalStdGet(), ioTaskStdSet()

ioHelp()

NAME ioHelp() – print a synopsis of I/O utility functions

SYNOPSIS void ioHelp (void)

DESCRIPTION This function prints out synopsis for the I/O and File System utility functions.

RETURNS N/A

ERRNO Not Available

SEE ALSO usrFsLib, the VxWorks programmer guides.

ioTaskStdGet()

NAME ioTaskStdGet() – get the file descriptor for task standard input/output/error

SYNOPSIS int ioTaskStdGet
 (
 int taskId, /* ID of desired task (0 = self) */
 int stdFd /* std input (0), output (1), or error (2) */
)

2 Routines
ioTaskStdSet()

385

2

DESCRIPTION This routine returns the current underlying file descriptor for task-specific standard input,
output, and error.

RETURNS The underlying file descriptor, or ERROR if stdFd is not 0, 1, or 2, or the routine is called at
interrupt level.

ERRNO N/A.

SEE ALSO ioLib, ioGlobalStdGet(), ioTaskStdSet()

ioTaskStdSet()

NAME ioTaskStdSet() – set the file descriptor for task standard input/output/error

SYNOPSIS STATUS ioTaskStdSet
 (
 int taskId, /* task whose std fd is to be set (0 = self) */
 int stdFd, /* std input (0), output (1), or error (2) */
 int newFd /* new underlying file descriptor */
)

DESCRIPTION This routine changes the assignment of a specified task-specific standard file descriptor
stdFd (0, 1, or, 2) to the specified underlying file descriptornewFd. newFd should be a file
descriptor open to the desired device or file. The calling task will use this new assignment
when doing I/O to stdFd, instead of the system-wide global assignment which is used by
default. If stdFd is not 0, 1, or 2, this routine has no effect.

NOTE This routine has no effect if it is called at interrupt level.

RETURNS OK, or ERROR if input data is not valid.

ERRNO EBADF
The newFd does not represent a valid open file.

EINVAL
The stdFd or taskId values are not valid.

SEE ALSO ioLib, ioGlobalStdGet(), ioTaskStdGet()

VxWorks Kernel API Reference, 6.6
ioctl()

386

ioctl()

NAME ioctl() – perform an I/O control function

SYNOPSIS int ioctl
 (
 int fd, /* file descriptor */
 int function, /* function code */
 ...
)

DESCRIPTION This routine performs an I/O control function on a device. The control functions used by
VxWorks device drivers are defined in the header file ioLib.h. Most requests are passed on
to the driver for handling. Since the availability of ioctl() functions is driver-specific, these
functions are discussed separately in tyLib, pipeDrv, nfsDrv, dosFsLib, and rawFsLib.

The following example renames the file or directory to the string "newname":

 ioctl (fd, FIORENAME, "newname");

Note that the function FIOGETNAME is handled by the I/O interface level and is not
passed on to the device driver itself. Thus this function code value should not be used by
customer-written drivers. This ioctl code is convenient for checking the validity of any fd
number. The following example shows how to quickly validate a given fd number as being
valid.

 if (ioctl (fd, FIOGETNAME, NULL) == ERROR)
 {
 /* fd is not valid */
 }

RETURNS The return value of the driver, or ERROR if the file descriptor does not exist.

ERRNO EBADF
Bad file descriptor number.

S_ioLib_UNKNOWN_REQUEST (ENOSYS)
Device driver does not support the ioctl command.

ENXIO
Device and its driver are removed. close() should be called to release this file
descriptor.

Other
Other errors reported by device driver.

SEE ALSO ioLib, tyLib, pipeDrv, nfsDrv, dosFsLib, rawFsLib, the VxWorks programmer guides.

2 Routines
iosDevDelDrv()

387

2

iosDevAdd()

NAME iosDevAdd() – add a device to the kernel I/O system

SYNOPSIS STATUS iosDevAdd
 (
 DEV_HDR *pDevHdr, /* pointer to device's structure */
 const char *name, /* name of device */
 int drvnum /* no. of servicing driver, */
 /* returned by iosDrvInstall() */
)

DESCRIPTION This routine adds a device to the I/O system device list, making the device available for
subsequent open() and creat() calls.

The parameter pDevHdr is a pointer to a device header, DEV_HDR (defined in ioLib.h),
which is used as the node in the device list. Usually this is the first item in a larger device
structure for the specific device type. The parameters name and drvnum are entered in
pDevHdr.

RETURNS OK, or ERROR if there is already a device with the specified name.

ERRNO S_iosLib_DUPLICATE_DEVICE_NAME (EINVAL)
Device name already in use.

EINVAL
invalid arguments

SEE ALSO iosLib

iosDevDelDrv()

NAME iosDevDelDrv() – invoke device delete driver if reference counter reaches 0.

SYNOPSIS int iosDevDelDrv
 (
 DEV_HDR *pDevHdr /* pointer to device's structure */
)

DESCRIPTION This routine invokes device delete driver if reference counter reaches 0.

If the device was never added to the device list, unpredictable results may occur.

VxWorks Kernel API Reference, 6.6
iosDevDelete()

388

RETURNS DELETE_DONE
Device deleted successfully. Driver called if being set.

REFCNT_NOT_ZERO
Device driver reference counter is not zero, device delete driver invocation is delayed
until the reference counter reaches zero. The device entry is deleted and all file
descriptors open on the device are invalidated in this case.

DELETE_ERROR
Error encountered in device delete.

ERRNO N/A.

SEE ALSO iosLib

iosDevDelete()

NAME iosDevDelete() – delete a device from the kernel I/O system

SYNOPSIS int iosDevDelete
 (
 DEV_HDR *pDevHdr /* pointer to device's structure */
)

DESCRIPTION This routine deletes a device from the I/O system device list, making it unavailable to
subsequent IO accesses. The driver of the device is intact. iosDrvRemove() will do the same
as this function and remove the driver in addition.

All file descriptors open on the device are invalidated which will fail all subsequent use
other than close() on them. They are held, even invalidated, continuously until the holding
application closes them and thus releases the resource.

If a device delete callback function is installed by iosDevDelCallback(), it will be called if
the device driver reference counter is zero. Otherwise the callback invocation is delayed.

If the device was never added to the device list, unpredictable results may occur.

RETURNS OK (DELETE_DONE)
Device deleted successfully.

REFCNT_NOT_ZERO
Device deleted successfully. This code is returned only when the device delete callback
function is installed by iosDevDelCallback(). When the device driver reference
counter is not zero, the callback invocation is delayed until the reference counter
reaches zero when the last device driver returns. However the device entry is already
deleted and all file descriptors open on the device are invalidated in this case.

2 Routines
iosDevFind()

389

2

ERROR (DELETE_ERROR)
Error encountered in device delete.

ERRNO EINVAL
Invalid argument. Device already deleted, or not installed, etc.

SEE ALSO iosLib

iosDevFind()

NAME iosDevFind() – find an I/O device in the kernel device list

SYNOPSIS DEV_HDR *iosDevFind
 (
 const char *name, /* name of the device */
 const char *(*pNameTail) /* where to put ptr to tail of name */
)

DESCRIPTION This routine searches the device list for a device whose name matches the first portion of
name. If a device is found, iosDevFind() sets the character pointer pointed to by pNameTail
to point to the first character in name, following the portion which matched the device name.
It then returns a pointer to the device. If the routine fails, it returns a pointer to the default
device (that is, the device where the current working directory is mounted) and sets
pNameTail to point to the beginning of name. If there is no default device, iosDevFind()
returns NULL.

RETURNS A pointer to the device header, or NULL if the device is not found.

ERRNO EINVAL
Invalid arguments.

S_iosLib_DEVICE_NOT_FOUND (ENODEV)
No device found.

SEE ALSO iosLib

VxWorks Kernel API Reference, 6.6
iosDevShow()

390

iosDevShow()

NAME iosDevShow() – display the list of devices in the system

SYNOPSIS void iosDevShow (void)

DESCRIPTION This routine displays a list of all devices in the device list.

RETURNS N/A

ERRNO N/A

SEE ALSO iosShow, devs(), windsh, the VxWorks programmer guides, and the IDE and host tools
guides.

iosDrvInstall()

NAME iosDrvInstall() – install a kernel I/O driver

SYNOPSIS int iosDrvInstall
 (
 FUNCPTR pCreate, /* pointer to driver create function */
 FUNCPTR pRemove, /* pointer to driver remove function */
 FUNCPTR pOpen, /* pointer to driver open function */
 FUNCPTR pClose, /* pointer to driver close function */
 FUNCPTR pRead, /* pointer to driver read function */
 FUNCPTR pWrite, /* pointer to driver write function */
 FUNCPTR pIoctl /* pointer to driver ioctl function */
)

DESCRIPTION This routine should be called once by each I/O driver. It hooks up the various I/O service
calls to the driver service routines, assigns the driver a number, and adds the driver to the
driver table.

RETURNS The driver number of the new driver, or ERROR if there is no room for the driver.

ERRNO S_iosLib_DRIVER_GLUT (ENOMEM)
No memory available for data structures.

SEE ALSO iosLib

2 Routines
iosDrvRemove()

391

2

iosDrvRemove()

NAME iosDrvRemove() – remove a kernel I/O driver

SYNOPSIS STATUS iosDrvRemove
 (
 int drvnum, /* no. of driver to remove, */
 /* returned by iosDrvInstall() */
 BOOL forceClose /* if TRUE, force closure of open files */
)

DESCRIPTION This routine removes an I/O driver (added by iosDrvInstall()) from the driver table and all
device header entries which access the driver.

The parameter drvnum is an indicator of driver to be removed that is the number returned
by iosDrvInstall(). If forceClose is true, all open file descriptors on this device will be closed
even they are not closed by applications. This is not recommended. If forceClose is not true,
file descriptors will be invalidated which will fail all IO other than close() on them. This is
the graceful behavior in the driver removal case.

If a device delete callback function is installed to a device by iosDevDelCallback(), it will
be called if the device driver reference counter is zero when the device entry is deleted.
Otherwise the callback invocation is delayed.

RETURNS OK
Driver and Device entries removed successfully.

REFCNT_NOT_ZERO
Driver and Device entries are removed successfully as returning OK case. This code is
returned only when the device delete callback function is installed by
iosDevDelCallback(). When the device driver reference counter is not zero, the
callback invocation is delayed until the reference counter reaches zero when the last
device driver returns.

ERROR
Error encountered in driver & device delete.

ERRNO EINVAL
invalid arguments

SEE ALSO iosLib, iosDrvInstall(), iosDevDelete()

VxWorks Kernel API Reference, 6.6
iosDrvShow()

392

iosDrvShow()

NAME iosDrvShow() – display a list of system drivers

SYNOPSIS void iosDrvShow (void)

DESCRIPTION This routine displays a list of all drivers in the driver list. It now includes the null driver,
which was previously omitted from the list.

RETURNS N/A

ERRNO N/A

SEE ALSO iosShow, windsh, the VxWorks programmer guides, and the IDE and host tools guides.

iosFdEntryGet()

NAME iosFdEntryGet() – get an unused FD_ENTRY from the pool

SYNOPSIS FD_ENTRY* iosFdEntryGet (void)

DESCRIPTION Returns an unused FD_ENTRY pointer, or NULL.

RETURNS Returns a pointer to the item, or NULL if none is available.

ERRNO ENFILE
Too many open files, no internal structures available.

SEE ALSO iosLib

iosFdEntryReturn()

NAME iosFdEntryReturn() – return an FD_ENTRY to the pool

SYNOPSIS STATUS iosFdEntryReturn
 (
 FD_ENTRY * pFdEntry /* entry to be returned to pool */
)

2 Routines
iosFdShow()

393

2

DESCRIPTION The FD_ENTRY argument is returned to the FD_ENTRY pool.

RETURNS OK, always.

ERRNO N/A.

SEE ALSO iosLib

iosFdMaxFiles()

NAME iosFdMaxFiles() – return maximum files for current RTP

SYNOPSIS size_t iosFdMaxFiles (void)

DESCRIPTION Returns the maximum number of open files for the current RTP.

RETURNS The maximum number of files for the current RTP. The highest valid file descriptor number
will be one less than this value.

ERRNO N/A.

SEE ALSO iosLib

iosFdShow()

NAME iosFdShow() – display a list of file descriptor names in the system

SYNOPSIS void iosFdShow (void)

DESCRIPTION This routine displays a list of all file descriptors in the system.

RETURNS N/A

ERRNO N/A

SEE ALSO iosShow, ioctl(), windsh, the VxWorks programmer guides, and the IDE and host tools
guides.

VxWorks Kernel API Reference, 6.6
iosInit()

394

iosInit()

NAME iosInit() – initialize the kernel I/O system

SYNOPSIS STATUS iosInit
 (
 int max_drivers, /* maximum number of drivers allowed */
 int max_files, /* max number of files allowed open at once */
 const char* nullDevName /* name of the null device (bit bucket) */
)

DESCRIPTION This routine initializes the kernel I/O system. It must be called before any other I/O system
routine.

RETURNS OK, or ERROR if memory is insufficient.

ERRNO N/A.

SEE ALSO iosLib

iosRtpFdShow()

NAME iosRtpFdShow() – show the per-RTP fd table

SYNOPSIS STATUS iosRtpFdShow
 (
 RTP_ID rtpId
)

DESCRIPTION Primarily a debugging aid, this routine displays the FD_ENTRY pointers for all open file
descriptors in a specified RTP.

RETURNS OK, or ERROR if the argument is invalid.

ERRNO N/A

SEE ALSO iosShow

2 Routines
irint()

395

2

iosShowInit()

NAME iosShowInit() – initialize the I/O system show facility

SYNOPSIS void iosShowInit (void)

DESCRIPTION This routine links the I/O system show facility into the VxWorks system. It is called
automatically when INCLUDE_SHOW_ROUTINES is defined in configAll.h.

RETURNS N/A

ERRNO N/A

SEE ALSO iosShow

irint()

NAME irint() – convert a double-precision value to an integer

SYNOPSIS int irint
 (
 double x /* argument */
)

DESCRIPTION This routine converts a double-precision value x to an integer using the selected IEEE
rounding direction.

CAVEAT The rounding direction is not pre-selectable and is fixed for round-to-the-nearest.

RETURNS The integer representation of x.

ERRNO Not Available

SEE ALSO mathALib

VxWorks Kernel API Reference, 6.6
irintf()

396

irintf()

NAME irintf() – convert a single-precision value to an integer

SYNOPSIS int irintf
 (
 float x /* argument */
)

DESCRIPTION This routine converts a single-precision value x to an integer using the selected IEEE
rounding direction.

CAVEAT The rounding direction is not pre-selectable and is fixed as round-to-the-nearest.

RETURNS The integer representation of x.

ERRNO Not Available

SEE ALSO mathALib

iround()

NAME iround() – round a number to the nearest integer

SYNOPSIS int iround
 (
 double x /* argument */
)

DESCRIPTION This routine rounds a double-precision value x to the nearest integer value.

NOTE If x is spaced evenly between two integers, it returns the even integer.

RETURNS The integer nearest to x.

ERRNO Not Available

SEE ALSO mathALib

2 Routines
isatty()

397

2

iroundf()

NAME iroundf() – round a number to the nearest integer

SYNOPSIS int iroundf
 (
 float x /* argument */
)

DESCRIPTION This routine rounds a single-precision value x to the nearest integer value.

NOTE If x is spaced evenly between two integers, the even integer is returned.

RETURNS The integer nearest to x.

ERRNO Not Available

SEE ALSO mathALib

isatty()

NAME isatty() – return whether the underlying driver is a tty device

SYNOPSIS BOOL isatty
 (
 int fd /* file descriptor to check */
)

DESCRIPTION This routine simply invokes the ioctl() function FIOISATTY on the specified file descriptor.

RETURNS TRUE, or FALSE if the driver does not indicate a tty device.

ERRNO See ioctl().

SEE ALSO ioLib

VxWorks Kernel API Reference, 6.6
isrCreate()

398

isrCreate()

NAME isrCreate() – create an ISR object

SYNOPSIS ISR_ID isrCreate
 (
 char * name, /* name of ISR object */
 UINT isrTag, /* interrupt identifier */
 FUNCPTR handlerRtn, /* handler routine */
 int parameter, /* parameter to handler routine */
 UINT options /* not used, must be set to 0 */
)

DESCRIPTION This routine creates an ISR object and initializes it with the values passed as arguments. It
is meant to be used by code which connects routines to interrupt vectors by means other
than calling intConnect() since that routine implicitly creates an ISR object.

The name argument is the actual name of the ISR object. Any null terminated ASCII string
is acceptable. The name is merely used for debugging purposes. Should name be NULL, a
name is created using a "isrN" pattern where "N" is a decimal number representing the Nth
ISR object for which the system had to choose a name at creation. Numbering starts at N =
1. ISR objects implicitly created (via intConnect()) are named in that manner.

The isrTag is the means by which an ISR object is associated to an interrupt source. Typically
this would be used to store the vector associated with the interrupt but this is not a
requirement. The caller can use other identification schemes. This library does not make
use of the isrTag other than for information providing/displaying purposes. ISR objects
implicitly created due to a call to intConnect() have their isrTag set to the value of the vector
passed to intConnect().

The handlerRtn is the interrupt service routine that gets invoked when the associated
interrupt occurs. The invocation includes passing arg to the handlerRtn. The prototype for
the handlerRtn should be:

STATUS handlerRtn (int arg)

The handlerRtn and arg arguments for ISR objects that are implicitly created map directly to
the routine and parameter arguments of the intConnect() call.

The options argument is not use and must be set to zero by the caller.

The CODING EXAMPLE section found in the library description illustrates how to use this
routine.

RETURNS The ISR_ID of the ISR object created or NULL if creation failed

ERRNO S_isrLib_ISR_NOT_INIT
ISR library must first be initialized

2 Routines
isrDelete()

399

2

S_intLib_NOT_ISR_CALLABLE
this routine must not be called from an ISR

S_isrLib_INVALID_PARAM
options is not valid

SEE ALSO isrLib, isrDelete()

isrDelete()

NAME isrDelete() – delete an ISR object

SYNOPSIS STATUS isrDelete
 (
 ISR_ID isrId /* ID of ISR object to delete */
)

DESCRIPTION This routine destroys the ISR object specified by isrId and de-allocates the memory used by
the object. This routine complements isrCreate() and is meant to be used by code which
disconnects routines from interrupt vectors by means other than calling intDisconnect()
since that routine implicitly deletes an ISR object.

WARNINGS Before deleting an ISR object, one must ensure it no longer plays a role in
interrupt processing. That is, the ISR object must be disconnected from its interrupt source
before being deleted.

An implicitly created ISR object, one created via intConnect() that is, must never be
explicitly deleted using isrDelete().

RETURNS OK, ERROR if the ISR object could not be deleted.

ERRNO S_objLib_OBJ_ID_ERROR
isrId is not a valid ISR object

S_intLib_NOT_ISR_CALLABLE
this routine must not be called from an ISR

SEE ALSO isrLib, isrCreate()

VxWorks Kernel API Reference, 6.6
isrIdSelf()

400

isrIdSelf()

NAME isrIdSelf() – get the ISR ID of the currently running ISR

SYNOPSIS ISR_ID isrIdSelf (void)

DESCRIPTION This routine returns the ISR ID of the calling ISR. The ISR ID is NULL if the routine is called
at task level. Calling this routine from a watchdog routine either returns the ISR ID of the
system clock ISR or NULL. The latter is returned in cases where the processing of watchdog
routines is deferred. This deferral only takes place when the system clock interrupts the
kernel while it is in a critical section.

RETURNS The ISR ID of the calling ISR. Can be NULL.

ERRNO N/A

SEE ALSO isrLib

isrInfoGet()

NAME isrInfoGet() – get information about an ISR object

SYNOPSIS STATUS isrInfoGet
 (
 ISR_ID isrId, /* ISR object ID */
 ISR_DESC * pIsrDesc /* pointer to ISR description struct */
)

DESCRIPTION This routine retrieves information regarding idrId. The information is returned in the
ISR_DESC structure pointed to by pIsrDesc.

ISR_DESC is defined as:

typedef struct isr_desc
 {
 ISR_ID isrId; /* ISR_ID */
 char * name; /* name */
 UINT isrTag; /* interrupt tag */
 UINT count; /* # of times this ISR has been invoked */
 UINT serviceCount; /* # of times this ISR has returned OK */
 UINT64 cpuTime; /* cpu time spent in ISR */
 int options; /* ISR object options */
 FUNCPTR handlerRtn; /* pointer to handler routine */
 int arg; /* parameter to be passed to routine */

2 Routines
isrInvoke()

401

2

 } ISR_DESC;

Note that because ISR time stamping functionality is not implemented, the cpuTime member
of the structure is always 0.

RETURNS OK, ERROR if isrId if not valid or pIsrDesc is NULL.

ERRNO S_objLib_OBJ_ID_ERROR
isrId is not a valid ISR object

S_isrLib_INVALID_PARAM
pIsrDesc is not valid

SEE ALSO isrLib

isrInvoke()

NAME isrInvoke() – invoke the handler routine of an ISR object

SYNOPSIS STATUS isrInvoke
 (
 ISR_ID isrId
)

DESCRIPTION This routine invokes the handler routine of isrId as specified by the handlerRtn argument
provided when the ISR object was created.

For implicitly created ISR objects, which are created as a result of a call to intConnect(),
isrInvoke() is automatically called when the interrupt associated with the vector specified
in intConnect() occurs. Then, isrInvoke() takes care of calling the user supplied handler
routine for that interrupt. That is, the routine argument provided when intConnect() was
called.

For explicitly created ISR objects, this routine is meant to be installed as an interrupt
handling routine by the creator of the ISR object such that when the associated interrupt
occurs, it is automatically dispatched. The CODING EXAMPLE section of the library
description illustrates how to use this routine in that manner.

Routine isrInvoke() is therefore meant to be an intermediate routine between the hardware
interrupt and the user provided handler for the interrupt. In essence, it is an
instrumentation routine and this allows it to keep statistics on isrId such as the number of
times its handler ran. A WINDVIEW events is also generated as a result of isrInvoke()
running.

RETURNS OK, ERROR if isrId is not valid

VxWorks Kernel API Reference, 6.6
isrShow()

402

ERRNO S_objLib_OBJ_ID_ERROR
isrId is not a valid ISR object

SEE ALSO isrLib, isrCreate()

isrShow()

NAME isrShow() – show information about an ISR object

SYNOPSIS STATUS isrShow
 (
 ISR_ID isrId /* ID of ISR object or NULL for all */
)

DESCRIPTION This routine displays information related to an ISR object or all ISR objects.

EXAMPLE A summary of a single ISR object is displayed as follows:

-> isrShow myIsrId
ID : 0x20f70568
Name : isrTestObject2
Interrupt Tag : 1
Count : 0
Service Count : 0
Options : 0x0
Handler Routine : 0x200c2750 (isrHandlerRtn)
Argument : 0x0

A summary of all ISR objects is displayed as follows:

-> isrShow
ISR_ID Name Tag Counts HandlerRtn
---------- ----------- ---------- ---------------------

0x20ffb178 isr1 4 0/0 winIntRcv
0x20ffb100 isr2 0 31/30 sysNvRamSe > +0x190
0x20f89610 isr3 3 0/0 wdbPipePkt > +0x1ba4
0x20f705e8 isrTestO > 1 0/0 isrHandlerRtn
0x20f70568 isrTestO > 1 0/0 isrHandlerRtn

The format for the Counts column is count/serviceCount.

RETURNS OK or ERROR

ERRNO S_objLib_OBJ_ID_ERROR
isrId is not a valid ISR object

SEE ALSO isrShow

2 Routines
kernelInit()

403

2

kernelCpuEnable()

NAME kernelCpuEnable() – enable a CPU

SYNOPSIS STATUS kernelCpuEnable
 (
 unsigned int cpuToEnable /* CPU to enable */
)

DESCRIPTION This routine enables the CPU whose index matches the cpuToEnable argument. The value
must be between 1 and N - 1, where N is the number of CPUs configured in the system. This
figure can be obtained by calling vxCpuConfiguredGet(). If successful, the call returns OK.
Once a CPU is enabled, it starts dispatching tasks as per the scheduling algorithm.
Furthermore, a subsequent call to vxCpuEnabledGet() will include the specified CPU in
the set of enabled CPUs.

By default VxWorks SMP enables all CPUs configured in the system at boot time. Therefore
calling this routine is not required unless the default behaviour is overridden. This routine
returns ERROR if the specified CPU is already enabled or is outside the range of configured
CPUs. CPU 0 can never be enabled using this routine as it is the bootstrap CPU.

If this routine is unable to enable the specified CPU, before the timeout
(VX_ENABLE_CPU_TIMEOUT) expires, the routine will return ERROR.

This routine always returns ERROR for VxWorks UP.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK or ERROR if cpu index is invalid or VX_ENABLE_CPU_TIMEOUT has been reached

ERRNO N/A

SEE ALSO kernelLib, vxCpuConfiguredGet(), vxCpuEnabledGet()

kernelInit()

NAME kernelInit() – initialize the kernel

SYNOPSIS _WRS_FUNC_NORETURN void kernelInit

VxWorks Kernel API Reference, 6.6
kernelIsCpuIdle()

404

 (
 UINT32 sanity, /* must match
_KERNEL_INIT_PARAMS_VN_AND_SIZE */
 _KERNEL_INIT_PARAMS *pParams /* parameters */
)

DESCRIPTION This routine initializes and starts the kernel. It should be called only once. The parameter
rootRtn specifies the entry point of the user's start-up code that subsequently initializes
system facilities (i.e., the I/O system, network). Typically, rootRtn is set to usrRoot().

Interrupts are enabled for the first time after kernelInit() exits. VxWorks will not exceed the
specified interrupt lock-out level during any of its brief uses of interrupt locking as a means
of mutual exclusion.

The system memory partition is initialized by kernelInit() with the size set by
pMemPoolStart and pMemPoolEnd. Architectures that support a separate interrupt stack
allocate a portion of memory for this purpose, of intStackSize bytes starting at
pMemPoolStart.

NOTE SH77XX The interrupt stack is emulated by software, and it has to be located in a fixed physical
address space (P1 or P2) if the on-chip MMU is enabled. If pMemPoolStart is in a logical
address space (P0 or P3), the interrupt stack area is reserved on the same logical address
space. The actual interrupt stack is relocated to a fixed physical space pointed by VBR.

RETURNS N/A

ERRNO N/A

SEE ALSO kernelLib, intLockLevelSet()

kernelIsCpuIdle()

NAME kernelIsCpuIdle() – determine whether the specified CPU is idle

SYNOPSIS BOOL kernelIsCpuIdle
 (
 unsigned int cpu /* CPU to query status of */
)

DESCRIPTION This routine returns TRUE if the specified CPU is idle.

For the uniprocessor VxWorks environment, this routine returns TRUE if the kernel is
spinning in the idle loop, i.e. the kernel is not executing any tasks.

For SMP, this routine returns TRUE if the specified CPU is executing the idle task. If the
specified CPU is not enabled, the CPU is considered to be idle and TRUE is returned. If the

2 Routines
kernelRoundRobinInstall()

405

2

specified CPU is the one executing the calling task this routine returns FALSE since a CPU
cannot be idle and executing a task other than the idle task. When called from ISR this
routine returns TRUE if the interrupted task is the idle task. Otherwise FALSE is returned.

This routine is meant to be a debugging and system-monitoring tool.

RETURNS TRUE if the specified CPU is idle, FALSE otherwise

ERRNO N/A

SEE ALSO kernelLib, kernelSystemIsIdle()

kernelIsSystemIdle()

NAME kernelIsSystemIdle() – determine whether all enabled processors are idle

SYNOPSIS BOOL kernelIsSystemIdle (void)

DESCRIPTION For the uniprocessor VxWorks environment, this routine returns TRUE if the kernel is
spinning in the idle loop, i.e. the kernel is not executing any tasks.

For SMP, this routine returns TRUE if all enabled processors are idle, or more specifically
executing their respective idle task. CPUs that are not enabled are considered to be idle.
Routine vxCpuEnabledGet() can be used to determine the enabled CPUs in the system.

This routine is meant to be a debugging and system-monitoring tool.

RETURNS TRUE if all CPUs are idle, FALSE otherwise

ERRNO N/A

SEE ALSO kernelLib, kernelIsCpuIdle(), vxCpuEnabledGet(), kernelCpuEnable()

kernelRoundRobinInstall()

NAME kernelRoundRobinInstall() – install VxWorks Round Robin implementation

SYNOPSIS STATUS kernelRoundRobinInstall(void)

VxWorks Kernel API Reference, 6.6
kernelTimeSlice()

406

DESCRIPTION This routine allows user custom schedulers to take advantage of the vxWorks
implementation of the round robin scheduling policy. This routine should only be used if
the component INCLUDE_CUSTOM_SCHEDULER is configured and the user wants to take
advantage of the VxWorks round robin policy. Below is an example of its usage:

 usrCustomSchedulerInit (void)
 {
 ...
 tickAnnounceHook (usrTickFunc); /* register custom hook func */
 kernelRoundRobinInstall(); /* install the VxWorks round robin */
 ...
 }

 usrTickFunc (int tid)
 {
 ...
 if (_func_kernelRoundRobinHook)
 _func_kernelRoundRobinHook (tid);
 ...
 }

RETURNS OK, or ERROR if _func_kernelRoundRobinHook has been initialized

ERRNO N/A

SEE ALSO kernelLib, usrCustomScheduler.c

kernelTimeSlice()

NAME kernelTimeSlice() – enable round-robin selection

SYNOPSIS STATUS kernelTimeSlice
 (
 int ticks /* time-slice in ticks or 0 to disable round-robin */
)

DESCRIPTION This routine enables round-robin selection among tasks of same priority and sets the system
time-slice to ticks. Round-robin scheduling is disabled by default. A time-slice of zero ticks
disables round-robin scheduling.

A hook routine, kernelRoundRobinHook(), is installed by this routine.
kernelRoundRobinHook() is the routine that performs the bulk of the work to schedule
tasks in a round-robin fashion. This hook is called at each tick interrupt when
kernelTimeSlice() is called for the first time if the system is configured with
INCLUDE_VX_NATIVE_SCHEDULER.

For more information about round-robin scheduling, see the manual entry for kernelLib.

2 Routines
kill()

407

2

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if kernelRoundRobinHook() can not be installed

ERRNO N/A

SEE ALSO kernelLib

kernelVersion()

NAME kernelVersion() – return the WIND kernel revision string

SYNOPSIS char *kernelVersion (void)

DESCRIPTION This routine returns a string which contains the current revision of the WIND kernel. The
string is of the form "WIND version x.y", where "x" corresponds to the kernel major revision,
and "y" corresponds to the kernel minor revision.

RETURNS A pointer to a string of format "WIND version x.y"

ERRNO N/A

SEE ALSO kernelLib

kill()

NAME kill() – send a signal to a task (POSIX)

SYNOPSIS int kill
 (
 int tid, /* task to send signal to */
 int signo /* signal to send to task */
)

DESCRIPTION This routine sends a signal signo to the task specified by tid.

VxWorks Kernel API Reference, 6.6
l()

408

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid.

ERRNO EINVAL

SEE ALSO sigLib, taskKill()

l()

NAME l() – disassemble and display a specified number of instructions

SYNOPSIS void l
 (
 INSTR * addr, /* address of first instruction to disassemble */
 /* if 0, continue from the last instruction */
 /* disassembled on the last call to l */
 int count /* number of instruction to disassemble */
 /* if 0, use the same as the last call to l */
)

DESCRIPTION This routine disassembles a specified number of instructions and displays them on standard
output. If the address of an instruction is entered in the system symbol table, the symbol will
be displayed as a label for that instruction. Also, addresses will be displayed symbolically.

To execute, enter:

 -> l [address [,count]]

If address is omitted or zero, disassembly continues from the previous address. If count is
omitted or zero, the last specified count is used (initially 10). As with all values entered via
the shell, the address may be typed symbolically.

RETURNS N/A

ERRNO N/A

SEE ALSO dbgLib, d(), VxWorks Kernel Programmer's Guide: Kernel Shell, VxWorks Command-Line Tools
User's Guide 2.2: Host Shell

2 Routines
ld()

409

2

l0()

NAME l0() – return the contents of register l0 (also l1-l7) (SimSolaris)

SYNOPSIS int l0
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of local register l0 from the TCB of a specified task. If
taskId is omitted or 0, the current default task is assumed.

Similar routines are provided for all local registers (l0 - l7): l0() - l7().

RETURNS The contents of register l0 (or the requested register).

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

ld()

NAME ld() – load an object module into memory

SYNOPSIS MODULE_ID ld
 (
 int syms, /* -1, 0, or 1 */
 BOOL noAbort, /* TRUE = don't abort script on error */
 char * name /* name of object module, NULL = standard input */
)

DESCRIPTION This command loads an object module from a file or from standard input. The object module
must be in architecture object module format (OMF). For most of the architectures, this is
ELF format. External references in the module are resolved during loading. The syms
parameter determines how symbols are loaded; possible values are:

0
Add global symbols to the system symbol table.

1
Add global and local symbols to the system symbol table.

-1
Add no symbols to the system symbol table.

VxWorks Kernel API Reference, 6.6
ledClose()

410

If there is an error during loading (e.g., externals undefined, too many symbols, etc.), then
shellScriptAbort() is called to stop any script that this routine was called from. If noAbort
is TRUE, errors are noted but ignored.

The normal way of using ld() is to load all symbols (syms = 1) during debugging and to load
only global symbols later.

NOTE The routine ld() is a shell routine. That is, it is designed to be used only from the shell, and
not in code running on the target. In future releases, calling ld() directly from code may not
be supported.

COMMON
SYMBOLS

On the kernel shell, for the ld() routine only, common symbol behavior is determined by
the value of the global variable ldCommonMatchAll. The reasoning for
ldCommonMatchAll matches the purpose of the windsh environment variable,
LD_COMMON_MATCH_ALL as explained below.

If ldCommonMatchAll is set to TRUE (equivalent to windsh
"LD_COMMON_MATCH_ALL=on"), the loader tries to match a common symbol with an
existing one. If a symbol with the same name is already defined, the loader takes its address.
Otherwise, the loader creates a new entry. If set to FALSE (equivalent to windsh
"LD_COMMON_MATCH_ALL=off"), the loader does not try to find an existing symbol. It
creates an entry for each common symbol.

EXAMPLE The following example loads the ELF file "module" from the default file device into
memory, and adds any global symbols to the symbol table:

 -> ld < module

This example loads "test.o" with all symbols:

 -> ld 1,0,"test.o"

RETURNS a MODULE_ID, or NULL if there are too many symbols, the object file format is invalid, or
there is an error reading the file.

ERRNO open() errnos, loadModule() errnos.

SEE ALSO usrLib, loadLib, unld(), reld(), the VxWorks programmer guides.

ledClose()

NAME ledClose() – discard the line-editor ID

SYNOPSIS STATUS ledClose

2 Routines
ledLibInit()

411

2

 (
 FAST LED_ID ledId /* ID returned by ledOpen */
)

DESCRIPTION This routine frees resources allocated by ledOpen(). The low-level input/output file
descriptors are not closed.

RETURNS OK, or ERROR if ledId is invalid.

ERRNO N/A

SEE ALSO ledLib, ledOpen()

ledControl()

NAME ledControl() – change the line-editor ID parameters

SYNOPSIS void ledControl
 (
 FAST LED_ID ledId, /* ID returned by ledOpen */
 int inFd, /* new input fd (NONE = no change) */
 int outFd, /* new output fd (NONE = no change) */
 int histSize /* new hist list size (NONE=no change),
(0=display)*/
)

DESCRIPTION This routine changes the input/output file descriptor and the size of the history list.

RETURNS N/A

ERRNO N/A

SEE ALSO ledLib

ledLibInit()

NAME ledLibInit() – initialize the line editing facilities

SYNOPSIS STATUS ledLibInit (void)

DESCRIPTION This routine initializes the line editing facilities. It is called once from shellLibInit().

VxWorks Kernel API Reference, 6.6
ledOpen()

412

RETURNS OK or ERROR if there was a problem

ERRNO Not Available

SEE ALSO ledLib

ledOpen()

NAME ledOpen() – create a new line-editor ID

SYNOPSIS LED_ID ledOpen
 (
 int inFd, /* low-level device input fd */
 int outFd, /* low-level device output fd */
 int histSize /* size of history list */
)

DESCRIPTION This routine creates the ID that is used by ledRead(), ledClose(), and ledControl().
Storage is allocated for up to histSize previously read lines.

RETURNS The line-editor ID, or ERROR if the routine runs out of memory.

ERRNO N/A

SEE ALSO ledLib, ledRead(), ledClose(), ledControl().

ledRead()

NAME ledRead() – read a line with line-editing

SYNOPSIS int ledRead
 (
 LED_ID ledId, /* ID returned by ledOpen */
 char * string, /* where to return line */
 UINT maxBytes /* maximum number of chars to read */
)

DESCRIPTION This routine handles line-editing and history substitutions. If the low-level input file
descriptor is not in OPT_LINE mode, only an ordinary read() routine will be performed.

RETURNS the number of characters read, or EOF.

2 Routines
lio_listio()

413

2

ERRNO N/A

SEE ALSO ledLib, ledOpen()

link()

NAME link() – link a file

SYNOPSIS int link
 (
 const char *name, /* name of file to be linked */
 const char *newname /* name with which to link */
)

DESCRIPTION This routine links the name of a file from newname to name.

RETURNS OK, or ERROR if the file could not be opened or linked.

ERRNO ENOENT
Either name or newname is an empty string.

EMFILE
Maximum number of files already open.

S_iosLib_DEVICE_NOT_FOUND (ENODEV)
No valid device name found in path.

others
Other errors reported by device driver.

SEE ALSO fsPxLib

lio_listio()

NAME lio_listio() – initiate a list of asynchronous I/O requests (POSIX)

SYNOPSIS int lio_listio
 (
 int mode, /* LIO_WAIT or LIO_NOWAIT */
 struct aiocb *const list[], /* list of operations */
 int nEnt, /* size of list */

VxWorks Kernel API Reference, 6.6
lkAddr()

414

 struct sigevent * pSig /* signal on completion */
)

DESCRIPTION This routine submits a number of I/O operations (up to AIO_LISTIO_MAX) to be performed
asynchronously. list is a pointer to an array of aiocb structures that specify the AIO
operations to be performed. The array is of size nEnt.

The aio_lio_opcode field of the aiocb structure specifies the AIO operation to be performed.
Valid entries include LIO_READ, LIO_WRITE, and LIO_NOP. LIO_READ corresponds to a
call to aio_read(), LIO_WRITE corresponds to a call to aio_write(), and LIO_NOP is ignored.

The mode argument can be either LIO_WAIT or LIO_NOWAIT. If mode is LIO_WAIT,
lio_listio() does not return until all the AIO operations complete and the pSig argument is
ignored. If mode is LIO_NOWAIT, the lio_listio() returns as soon as the operations are
queued. In this case, if pSig is not NULL and the signal number indicated by
pSig->sigev_signo is not zero, the signal pSig->sigev_signo is delivered when all requests
have completed.

RETURNS OK if requests queued successfully, otherwise ERROR.

ERRNO EINVAL
EAGAIN
EIO

SEE ALSO aioPxLib, aio_read(), aio_write(), aio_error(), aio_return().

lkAddr()

NAME lkAddr() – list symbols whose values are near a specified value

SYNOPSIS void lkAddr
 (
 unsigned int addr /* address around which to look */
)

DESCRIPTION This command lists the symbols in the system symbol table that are near a specified value.
The symbols that are displayed include:

- symbols whose values are immediately less than the specified value

- symbols with the specified value

- succeeding symbols, until at least 12 symbols have been displayed

This command also displays symbols that are local, i.e., symbols found in the system symbol
table only because their module was loaded by ld().

2 Routines
ll()

415

2

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, symLib, symEach(), the VxWorks programmer guides.

lkup()

NAME lkup() – list symbols

SYNOPSIS void lkup
 (
 char *substr /* substring to match */
)

DESCRIPTION This command lists all symbols in the system symbol table whose names contain the string
substr. If substr is omitted or is 0, a short summary of symbol table statistics is printed. If
substr is the empty string (""), all symbols in the table are listed.

This command also displays symbols that are local, i.e., symbols found in the system symbol
table only because their module was loaded by ld().

By default, lkup() displays 22 symbols at a time. This can be changed by modifying the
global variable symLkupPgSz. If this variable is set to 0, lkup() displays all the symbols
without interruption.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, symLib, symEach(), the VxWorks programmer guides.

ll()

NAME ll() – generate a long listing of directory contents

SYNOPSIS STATUS ll
 (
 const char * dirName /* name of directory to list */
)

VxWorks Kernel API Reference, 6.6
llr()

416

DESCRIPTION This command causes a long listing of a directory's contents to be displayed. It is equivalent
to:

 -> dirList 1, dirName, 1, 0

dirName is a name of a directory or file, and may contain wildcards.

NOTE 1 This is a target resident function, which manipulates the target I/O system. It must be
preceded with the @ letter if executed from the Host Shell (windsh), which has a built-in
command of the same name that operates on the Host's I/O system.

NOTE 2 When used with netDrv devices (FTP or RSH), ll() does not give directory information. It
is equivalent to an ls() call with no long-listing option.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO usrFsLib, dirList(), the VxWorks programmer guides.

llr()

NAME llr() – do a long listing of directory and all its subdirectories contents

SYNOPSIS STATUS llr
 (
 const char * dirName /* name of directory to list */
)

DESCRIPTION This command causes a long listing of a directory's contents to be displayed. It is equivalent
to:

 -> dirList 1, dirName, 1, 0

dirName is a name of a directory or file, and may contain wildcards.

NOTE When used with netDrv devices (FTP or RSH), ll() does not give directory information. It
is equivalent to an ls() call with no long-listing option.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO usrFsLib, dirList(), the VxWorks programmer guides.

2 Routines
loadModule()

417

2

lnPciRegister()

NAME lnPciRegister() – register with the VxBus subsystem

SYNOPSIS void lnPciRegister(void)

DESCRIPTION This routine registers the PCnet/PCI driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO am79c97xVxbEnd

loadModule()

NAME loadModule() – load an object module into memory

SYNOPSIS MODULE_ID loadModule
 (
 int fd, /* file descriptor of file to load */
 int options /* symbols to add to table, other behavior options */
)

DESCRIPTION This routine loads an object module from the specified file, and places the TEXT, DATA, and
BSS into memory allocated from the system memory pool (i.e. the heap).

Calling this function is equivalent to calling loadModuleAt() with NULL for the addresses
of TEXT, DATA, and BSS segments. For more details as well as the supported option flags,
see the reference entry for loadModuleAt().

RETURNS The MODULE_ID, or NULL if there was a problem. NULL is also returned if there are
undefined symbols, but the module is not unloaded. (See loadModuleAt() for more
details).

ERRNO Not Available

SEE ALSO loadLib, loadModuleAt()

VxWorks Kernel API Reference, 6.6
loadModuleAt()

418

loadModuleAt()

NAME loadModuleAt() – load an object module into memory

SYNOPSIS MODULE_ID loadModuleAt
 (
 int fd, /* file descriptor from which to read module */
 int options, /* symbols to add to table, other behavior options */
 char ** ppText, /* load TEXT segment at addr. pointed to by this */
 /* pointer, return load addr. via this ptr */
 char ** ppData, /* load DATA segment at addr. pointed to by this */
 /* pointer, return load addr. via this ptr */
 char ** ppBss /* load BSS segment at addr. pointed to by this */
 /* pointer, return load addr. via this ptr */
)

DESCRIPTION This routine reads an object module from a file descriptor (the fd parameter) and loads the
TEXT, DATA and BSS segments into the system memory space. The code is properly
relocated according to the relocation commands found in the ELF file.

Unresolved references to external symbols will be linked to symbols found in the system.
Symbols in the object module being loaded can optionally be added to a symbol table.

It is also possible to give a specific load directive for each loadable segment, in which case
the loader can use memory that the user set aside using malloc() or memalign().

The exact loader behavior can be controlled using load flags, as described below. Load flags
may be combined (binary OR) to the extent that they are not mutually exclusive.

LINKING UNRESOLVED EXTERNALS

As the module is loaded, any unresolved external references are resolved by looking up the
symbols in the system symbol table. If found, the references to those functions or data in the
new module are linked to the symbols found in the system symbol table. If there is more
than one possible match in the system symbol table, the symbol encountered first (which is
the one added most recently) will be used.

If an unresolved external reference cannot be found in the system symbol table, then an
error message ("undefined symbol: ...") is printed for the symbol, but the loading and
linking continues. The partially resolved module is not removed, to enable the user to
examine the module for debugging purposes. Care should be taken when executing code
from the module. Executing code which contains references to unresolved symbols may
have unexpected results and may corrupt the system memory.

Even though a module with unresolved symbols remains loaded after this routine returns,
NULL will be returned to enable the caller to detect the failure programatically. To unload
the module, the caller may either call the unload routine with the module name, or look up
the module using the module name and then unload the module using the returned
MODULE_ID. See the library entries for moduleLib and unldLib for more details.

2 Routines
loadModuleAt()

419

2

FULLY LINKED MODULES

The VxWorks kernel loader supports loading of fully linked modules via the
LOAD_FULLY_LINKED flag. Fully linked modules do not contain any relocations and are
statically linked on the host to run at a fixed address.

As the loader has no facility to allocate memory at a particular address, it is up to the user
to configure his/her board so that the addresses are available for the loader to copy the
module to. The information contained in the ELF headers can be used for that purpose. It
can be printed by using the "-l" option flag of the GNU "readelf" tool (segment addresses,
sizes and alignement requirements). Please also refer to the alignement and memory
protection sections below for important information on how to allocate memory for use by
the loader.

Since the host linker will store the section/segment addresses and sizes at link time in the
object file, there is no need to provide them to the loader. It will pick them up automatically
from the ELF headers.

Symbol tables are supported (see the symbol table dedicated section below) but not
mandatory.

ADDING SYMBOLS TO THE SYMBOL TABLE

The symbols defined in the module to be loaded may be added to the system symbol table;
this behaviour is controlled by the value of the options parameter:

LOAD_NO_SYMBOLS
Add no symbols to the system symbol table.

LOAD_LOCAL_SYMBOLS
Add only local symbols to the system symbol table.

LOAD_GLOBAL_SYMBOLS
Add only external symbols to the system symbol table.

LOAD_ALL_SYMBOLS
Add both local and external symbols to the system symbol table.

When the options parameter is left unspecified (NULL), the loader defaults to
LOAD_GLOBAL_SYMBOLS. If the module symbols are added to the system symbol table,
modules loaded later may link against these symbols. There is no way to make a module
symbols available for debugging and, at the same time, prevent other modules from linking
against those symbols.

CODE MODULE VISIBILITY

By default any object module loaded in the system will appear as a code module and be
visible with commands such as moduleShow(). It is however possible to hide a code
module with the flag:

HIDDEN_MODULE
Do not display the module via moduleShow().

VxWorks Kernel API Reference, 6.6
loadModuleAt()

420

RELOCATION The relocation commands in the object module are used to relocate the TEXT, DATA, and
BSS segments of the module. The ELF file sections are sorted into these three types of
segments according to the ELF section flags. The location of each segment can either be
specified explicitly or left unspecified, in which case memory will be allocated for the
segment from the kernel heap, according to the section category.

To specify where one or more of the segments should be installed, use the parameters
ppText, ppData, and ppBss. Each of these can have either of the following values:

NULL
No load address is specified, none will be returned.

A pointer to LD_NO_ADDRESS
No load address is specified; after the load is performed, LD_NO_ADDRESS will be
replaced by the actual segment load address.

A pointer to an address
The load address is specified.

The ppText, ppData, and ppBss parameters specify where to load the TEXT, DATA, and BSS
segments, respectively. Each of these parameters is a pointer to a pointer; for example,
**ppText gives the address where the TEXT segment is to begin.

Note that it is up to the user to reserve a sufficient amount of memory for each segment
which address is specified. In particular, alignement requirements need to be kept in mind
when reserving memory for a segment (see the alignement-dedicated section below for
more information). Finally, remember that the loader will only free memory it allocates.
This means the user will have to free memory he/she reserved when, for instance, a module
is unloaded.

For any of the three parameters, there are two ways to request that new memory be
allocated, rather than specifying the segment starting address: you can either specify the
parameter itself as NULL, or you can write the constant LD_NO_ADDRESS in place of an
address. In the second case, the loadModuleAt() routine replaces the LD_NO_ADDRESS
value with the address actually used for each section (that is, it records the address at
*ppText, *ppData, or *ppBss).

The double indirection not only permits reporting the addresses actually used, but also
allows you to specify loading a segment at the beginning of memory, since the following
cases can be distinguished:

- Allocate memory for a segment (TEXT in this example): ppText == NULL

- Begin a section at address zero (the TEXT section, below): *ppText == 0

Note that calling loadModule() is equivalent to calling loadModuleAt() with all three
segment-address parameters set to NULL.

COMMON Some host compiler/linker combinations use another storage class internally called
COMMON. In the C language, uninitialized global variables are eventually put in the BSS
segment. However, in partially linked object modules they are flagged internally as

2 Routines
loadModuleAt()

421

2

COMMON and the static linker (host) resolves these and places them in BSS as a final step
in creating a fully linked object module. However, the kernel loader is used to load partially
linked object modules into the kernel, not executable modules. When the VxWorks loader
encounters a variable labeled as COMMON, memory for the variable can be allocated (see
below), and the variable is entered in the symbol table (if specified) at that address.

Note that most UNIX loaders have an option that forces resolution of the COMMON storage
while leaving the module relocatable. For example, with typical BSD UNIX loaders, "-d"
serves that purpose (in conjunction with "-r" to generate relocatable output). The GNU
linker, ld, belongs to this category. With DIAB, option "-a" has to be passed to the dld linker
(again, in conjunction with "-r" to generate relocatable output).

When the kernel loader encounters a variable labeled "COMMON", its behavior depends
on the following flags:

LOAD_COMMON_MATCH_NONE
Allocate memory for the variable with malloc() and enter the variable in the target
symbol table (if specified) with type SYM_COMM at that address. This is the default.
Note that the remark about symbol linking visibility also applies here : unless
LOAD_NO_SYMBOLS is set, LOAD_COMMON_MATCH_NONE won't prevent other
modules from linking against the module symbols.

LOAD_COMMON_MATCH_USER
The loader seeks a matching "user" symbol, i.e. symbols that have been added by
dynamically loaded object modules (vs symbols statically present at boot time). If no
matching symbol exists, it acts like LOAD_COMMON_MATCH_NONE. If several
matching symbols exist, the symbol most recently added to the target symbol table is
used.

LOAD_COMMON_MATCH_ALL
The loader seeks for any matching symbol. All symbols are considered. If no matching
symbol exists, then it acts like LOAD_COMMON_MATCH_NONE. If several matches are
found, the preference order is the same as for LOAD_COMMON_MATCH_USER.

C++ CONSTRUCTORS SUPPORT

The loader applies the C++ strategy as defined by the C++ runtime library at the time of the
load operation. If this strategy is set to "automatic", then the C++ constructors are executed.
If this strategy is set to "manual", then the loader does not execute the C++ constructors (in
that case, they can be called manually via the cplusCallCtors() API). It is possible to prevent
this default behavior with the following flags:

LOAD_CPLUS_XTOR_AUTO
When this flag is set, the loader always executes the C++ constructors associated to the
module.

LOAD_CPLUS_XTOR_MANUAL
When this flag is set, the loader never executes the C++ constructors associated to the
module.

VxWorks Kernel API Reference, 6.6
loadModuleAt()

422

Note that if there are undefined symbols in the module, the loader will not run the C++
constructors regardless of the status of the above flags (this is to prevent erratic
behavior/application crashes).

Please refer to unldLib for the corresponding unloader flags.

WEAK SYMBOL HANDLING

Most ELF symbols use the standard global/local symbol binding. Some languages,
however, make use of another binding called WEAK. When a WEAK symbol is
encountered, the loader behavior depends on the following flags:

LOAD_WEAK_MATCH_ALL
The loader looks for an already existing global definition with the same name in the
symbol table. If one can be found, the loader honors the existing definition and ignores
the WEAK one. If no match can be found, the loader behaves like
LOAD_WEAK_MATCH_NONE. This is the default.

LOAD_WEAK_MATCH_NONE
The WEAK symbol is registered in the symbol table (if specified) as a global symbol
regardless of any existing definition. This behavior matches what was done by the
VxWorks 5.x loader.

ALIGNMENT CONSIDERATIONS

Please note that memory required to load a segment is more than the bare sum of the size of
sections it contains. The memory needed to load a segment is the sum of the sizes of its
sections plus the padding required by each section alignment requirements (if a section has
no alignment requirements, the architecture default alignment is taken as the section
alignment requirement). Sections alignment requirements can be visualized using the GNU
"objdump" tool (part of the binutils) with the "-h" option (alignment requirements are
represented as powers of 2).

MEMORY PROTECTION

When memory protection is available (see vmBaseLib for more information), the loader will
write-protect the module TEXT segment. For this to properly work, the TEXT segment size
will be rounded up to the next page of memory and the TEXT segment address will be
requested aligned on a page boundary. The unloader will also accordingly unprotect the
TEXT segment when unloading the module.

Please note that the loader will only protect the TEXT segment (and the unloader unprotect
it) if it itself allocates memory for it. If loadModuleAt() is used with user-reserved memory
instead (or when loading a fully linked module), it is up to the user to properly
write-protect/unprotect the module TEXT segment. Here is how to do it :

Allocate aligned TEXT segment memory rounded up to the next page :

 protectedTextSize = ROUND_UP (textSize, VM_PAGE_SIZE_GET());
 pText = (char *) memalign (VM_PAGE_SIZE_GET(), protectedTextSize);

Write-protect the TEXT segment after it has been loaded by loadModuleAt() :

2 Routines
log10f()

423

2

 VM_STATE_SET (NULL, pText, protectedTextSize, VM_STATE_MASK_WRITABLE,
 VM_STATE_WRITABLE_NOT);

Later, you may want to unprotect it :

 VM_STATE_SET (NULL, pText, protectedTextSize, VM_STATE_MASK_WRITABLE,
 VM_STATE_WRITABLE);

EXAMPLES These examples are of ways to invoke the loader from C code. To use the loader from the
shell, use the loader shell commands, defined in usrLib.

Load a module into memory allocated by the loader:

 module_id = loadModuleAt (fd, LOAD_GLOBAL_SYMBOLS, NULL, NULL, NULL);

Load a module into memory allocated by the loader and retrieve segment addresses:

 pText = pData = pBss = LD_NO_ADDRESS;
 module_id = loadModuleAt (fd, LOAD_GLOBAL_SYMBOLS, &pText, &pData,
&pBss);

Load a module to off-board memory at a specified address:

 pText = 0x800000; /* address of TEXT segment
*/
 pData = pBss = LD_NO_ADDRESS; /* other segments allocated by loader
*/
 module_id = loadModuleAt (fd, LOAD_GLOBAL_SYMBOLS, &pText, &pData,
&pBss);

RETURNS A MODULE_ID, or NULL if there was a problem.

ERRNO Possible errnos set by this routine include:

+ S_loadLib_INVALID_ARGUMENT

For a complete description of the errnos, see the reference documentation for loadLib.

SEE ALSO loadLib, unldLib

log10f()

NAME log10f() – compute a base-10 logarithm (ANSI)

SYNOPSIS float log10f
 (
 float x /* value to compute the base-10 logarithm of */
)

DESCRIPTION This routine returns the base-10 logarithm of x in single precision.

VxWorks Kernel API Reference, 6.6
log2()

424

RETURNS The single-precision base-10 logarithm of x.

ERRNO Not Available

SEE ALSO mathALib

log2()

NAME log2() – compute a base-2 logarithm

SYNOPSIS double log2
 (
 double x /* value to compute the base-two logarithm of */
)

DESCRIPTION This routine returns the base-2 logarithm of x in double precision.

RETURNS The double-precision base-2 logarithm of x.

ERRNO Not Available

SEE ALSO mathALib

log2f()

NAME log2f() – compute a base-2 logarithm

SYNOPSIS float log2f
 (
 float x /* value to compute the base-2 logarithm of */
)

DESCRIPTION This routine returns the base-2 logarithm of x in single precision.

RETURNS The single-precision base-2 logarithm of x.

ERRNO Not Available

SEE ALSO mathALib

2 Routines
logFdDelete()

425

2

logFdAdd()

NAME logFdAdd() – add a logging file descriptor

SYNOPSIS STATUS logFdAdd
 (
 int fd /* file descriptor for additional logging device */
)

DESCRIPTION This routine adds to the log file descriptor list another file descriptor fd to which messages
will be logged. The file descriptor must be a valid open file descriptor.

RETURNS OK, or ERROR if the allowable number of additional logging file descriptors (5) is exceeded.

ERRNO Not Available

SEE ALSO logLib, logFdDelete()

logFdDelete()

NAME logFdDelete() – delete a logging file descriptor

SYNOPSIS STATUS logFdDelete
 (
 int fd /* file descriptor to stop using as logging device */
)

DESCRIPTION This routine removes from the log file descriptor list a logging file descriptor added by
logFdAdd(). The file descriptor is not closed; but is no longer used by the logging facilities.

RETURNS OK, or ERROR if the file descriptor was not added with logFdAdd().

ERRNO Not Available

SEE ALSO logLib, logFdAdd()

VxWorks Kernel API Reference, 6.6
logFdSet()

426

logFdSet()

NAME logFdSet() – set the primary logging file descriptor

SYNOPSIS void logFdSet
 (
 int fd /* file descriptor to use as logging device */
)

DESCRIPTION This routine changes the file descriptor where messages from logMsg() are written,
allowing the log device to be changed from the default specified by logInit(). It first
removes the old file descriptor (if one had been previously set) from the log file descriptor
list, then adds the new fd.

The old logging file descriptor is not closed or affected by this call; it is simply no longer
used by the logging facilities.

RETURNS N/A

ERRNO Not Available

SEE ALSO logLib, logFdAdd(), logFdDelete()

logInit()

NAME logInit() – initialize message logging library

SYNOPSIS STATUS logInit
 (
 int fd, /* file descriptor to use as logging device */
 int maxMsgs /* max. number of messages allowed in log queue */
)

DESCRIPTION This routine specifies the file descriptor to be used as the logging device and the number of
messages that can be in the logging queue. If more than maxMsgs are in the queue, they will
be discarded. A message is printed to indicate lost messages.

This routine spawns logTask(), the task-level portion of error logging.

This routine must be called before any other routine in logLib. This is done by the root task,
usrRoot(), in usrConfig.c.

RETURNS OK, or ERROR if a message queue could not be created or logTask() could not be spawned.

2 Routines
logMsg()

427

2

ERRNO Not Available

SEE ALSO logLib

logMsg()

NAME logMsg() – log a formatted error message

SYNOPSIS int logMsg
 (
 char *fmt, /* format string for print */
 int arg1, /* first of six required args for fmt */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6
)

DESCRIPTION This routine logs a specified message via the logging task. This routine's syntax is similar
to printf() -- a format string is followed by arguments to format. However, the logMsg()
routine takes a char * rather than a const char * and requires a fixed number of arguments
(6).

The task ID of the caller is prepended to the specified message.

SPECIAL CONSIDERATIONS

Because logMsg() does not actually perform the output directly to the logging streams, but
instead queues the message to the logging task, logMsg() can be called from interrupt
service routines.

However, since the arguments are interpreted by the logTask() at the time of actual
logging, instead of at the moment when logMsg() is called, arguments to logMsg() should
not be pointers to volatile entities (e.g., dynamic strings on the caller stack).

logMsg() checks to see whether or not it is running in interupt context. If it is, it will not
block. However, if invoked from a task, it can cause the task to block.

For more detailed information about the use of logMsg(), see the manual entry for logLib.

EXAMPLE If the following code were executed by task 20:

 {
 name = "GRONK";
 num = 123;

 logMsg ("ERROR - name = %s, num = %d.\\n", name, num, 0, 0, 0, 0);

VxWorks Kernel API Reference, 6.6
logTask()

428

 }

the following error message would appear on the system log:

 0x180400 (t20): ERROR - name = GRONK, num = 123.

RETURNS The number of bytes written to the log queue, or EOF if the routine is unable to write a
message.

ERRNO Not Available

SEE ALSO logLib, printf(), logTask()

logTask()

NAME logTask() – message-logging support task

SYNOPSIS void logTask (void)

DESCRIPTION This routine prints the messages logged with logMsg(). It waits on a message queue and
prints the messages as they arrive on the file descriptor specified by logInit() (or a
subsequent call to logFdSet() or logFdAdd()).

This task is spawned by logInit().

RETURNS N/A

ERRNO Not Available

SEE ALSO logLib, logMsg()

logf()

NAME logf() – compute a natural logarithm (ANSI)

SYNOPSIS float logf
 (
 float x /* value to compute the natural logarithm of */
)

DESCRIPTION This routine returns the logarithm of x in single precision.

2 Routines
loginEncryptInstall()

429

2

RETURNS The single-precision natural logarithm of x.

ERRNO Not Available

SEE ALSO mathALib

loginDefaultEncrypt()

NAME loginDefaultEncrypt() – default password encryption routine

SYNOPSIS STATUS loginDefaultEncrypt
 (
 char * in, /* input string */
 char * out /* encrypted string */
)

DESCRIPTION This routine provides default encryption for login passwords. It employs a simple
encryption algorithm. It takes as arguments a string in and a pointer to a buffer out. The
encrypted string is then stored in the buffer.

The input strings must be at least 8 characters and no more than 40 characters.

If a more sophisticated encryption algorithm is needed, this routine can be replaced, as long
as the new encryption routine retains the same declarations as the default routine. The
routine vxencrypt in host/hostOs/bin should also be replaced by a host version of
encryptionRoutine. For more information, see the manual entry for loginEncryptInstall().

RETURNS OK, or ERROR if the password is invalid.

ERRNO Possible errnos set by this routine include:

S_loginLib_INVALID_PASSWORD
in string is not a valid password string.

SEE ALSO loginLib, loginEncryptInstall(), vxencrypt

loginEncryptInstall()

NAME loginEncryptInstall() – install an encryption routine

SYNOPSIS void loginEncryptInstall

VxWorks Kernel API Reference, 6.6
loginInit()

430

 (
 FUNCPTR rtn, /* function pointer to encryption routine */
 int var /* argument to the encryption routine (unused) */
)

DESCRIPTION This routine allows the user to install a custom encryption routine. The custom routine rtn
must be of the following form:

STATUS encryptRoutine
 (
 char *password, /* string to encrypt */
 char *encryptedPassword /* resulting encryption */
)

The encryption result string must remain less or equal to MAX_PASSWORD_LEN.

When a custom encryption routine is installed, a host version of this routine must be written
to replace the tool vxencrypt in host/hostOs/bin.

EXAMPLE The custom example above could be installed as follows:

#ifdef INCLUDE_SECURITY
 loginInit (); /* initialize login table */
 shellLoginInstall (loginPrompt, NULL); /* install shell security */
 loginEncryptInstall (encryptRoutine, NULL);
 /* install encrypt. routine */
#endif

RETURNS N/A

ERRNO N/A

SEE ALSO loginLib, loginDefaultEncrypt(), vxencrypt

loginInit()

NAME loginInit() – initialize the login table

SYNOPSIS void loginInit (void)

DESCRIPTION This routine must be called to initialize the login data structure used by routines throughout
this module. If the configuration macro INCLUDE_SECURITY is defined, it is called by
usrRoot() in usrConfig.c, before any other routines in this module.

RETURNS N/A

ERRNO N/A

2 Routines
loginStringSet()

431

2

SEE ALSO loginLib

loginPrompt()

NAME loginPrompt() – display a login prompt and validate a user entry

SYNOPSIS STATUS loginPrompt
 (
 char * userName /* user name, ask if NULL or not provided */
)

DESCRIPTION This routine displays a login prompt and validates a user entry. If both user name and
password match with an entry in the login table, the user is then given access to the
VxWorks system. Otherwise, it prompts the user again.

All control characters are disabled during authentication except CTRL-D, which will
terminate the remote login session.

RETURNS OK if the name and password are valid, or ERROR if there is an EOF or the routine times out.

ERRNO N/A

SEE ALSO loginLib

loginStringSet()

NAME loginStringSet() – change the login string

SYNOPSIS void loginStringSet
 (
 char * newString /* string to become new login prompt */
)

DESCRIPTION This routine changes the login prompt string to newString. The maximum string length is
MAX_LOGIN_NAME_LEN characters.

RETURNS N/A

ERRNO N/A

VxWorks Kernel API Reference, 6.6
loginUserAdd()

432

SEE ALSO loginLib

loginUserAdd()

NAME loginUserAdd() – add a user to the login table

SYNOPSIS STATUS loginUserAdd
 (
 char name[MAX_LOGIN_NAME_LEN + 1], /* user name */
 char passwd[MAX_PASSWORD_LEN + 1] /* user password */
)

DESCRIPTION This routine adds a user name and password entry to the login table. Note that what is saved
in the login table is the user name and the address of passwd, not the actual password.

The length of user names should not exceed MAX_LOGIN_NAME_LEN, while the length of
passwords depends on the encryption routine used. For the default encryption routine,
passwords should be at least 8 characters long and no more than MAX_PASSWORD_LEN
characters.

The procedure for adding a new user to login table is as follows:

(1) Generate the encrypted password by invoking vxencrypt in host/hostOs/bin.

(2) Add a user by invoking loginUserAdd() in the VxWorks shell with the user name and
the encrypted password.

The password of a user can be changed by first deleting the user entry, then adding the user
entry again with the new encrypted password.

EXAMPLE -> loginUserAdd "peter", "RRdRd9Qbyz"
 value = 0 = 0x0
 -> loginUserAdd "robin", "bSzyydqbSb"
 value = 0 = 0x0
 -> loginUserShow

 User Name
 =========
 peter
 robin
 value = 0 = 0x0
 ->

RETURNS OK, or ERROR if the user name has already been entered, or one of the arguments is NULL.

ERRNO Possible errnos set by this routine include:

2 Routines
loginUserDelete()

433

2

EINVAL
An invalid argument is passed to the routine.

S_loginLib_USER_ALREADY_EXISTS
The user name name is already registered.

SEE ALSO loginLib, loginUserVerify(), loginUserDelete(), vxencrypt

loginUserDelete()

NAME loginUserDelete() – delete a user entry from the login table

SYNOPSIS STATUS loginUserDelete
 (
 char * name, /* user name */
 char * passwd /* user password */
)

DESCRIPTION This routine deletes an entry in the login table. Both the user name and password must be
specified to remove an entry from the login table.

RETURNS OK, or ERROR if the specified user or password is incorrect.

ERRNO Possible errnos set by this routine include:

EINVAL
An invalid argument is passed to the routine.

S_loginLib_UNKNOWN_USER
Unknown user name name.

S_loginLib_INVALID_PASSWORD
Invalid password passwd for name

Encryption routine's errnos (see loginEncryptInstall())

SEE ALSO loginLib, loginUserAdd()

VxWorks Kernel API Reference, 6.6
loginUserShow()

434

loginUserShow()

NAME loginUserShow() – display the user login table

SYNOPSIS void loginUserShow (void)

DESCRIPTION This routine displays valid user names.

EXAMPLE -> loginUserShow ()

 User Name
 =========
 peter
 robin
 value = 0 = 0x0

RETURNS N/A

ERRNO N/A

SEE ALSO loginLib

loginUserVerify()

NAME loginUserVerify() – verify a user name and password in the login table

SYNOPSIS STATUS loginUserVerify
 (
 char * name, /* name of user */
 char * passwd /* password of user */
)

DESCRIPTION This routine verifies a user entry in the login table.

RETURNS OK, or ERROR if the user name or password is not found.

ERRNO Possible errnos set by this routine include:

EINVAL
An invalid argument is passed to the routine.

S_loginLib_UNKNOWN_USER
Unknown user name name.

2 Routines
ls()

435

2

S_loginLib_INVALID_PASSWORD
Invalid password passwd for name

Encryption routine's errnos (see loginEncryptInstall())

SEE ALSO loginLib, loginUserAdd()

logout()

NAME logout() – log out of the VxWorks system

SYNOPSIS void logout (void)

DESCRIPTION This command logs out of the VxWorks shell. If a remote login is active (via rlogin or
telnet), it is stopped, and standard I/O is restored to the console.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, rlogin(), telnet(), shellLogout(), the VxWorks programmer guides.

ls()

NAME ls() – generate a brief listing of a directory

SYNOPSIS STATUS ls
 (
 const char * dirName, /* name of dir to list */
 BOOL doLong /* switch on details */
)

DESCRIPTION This function is simply a front-end for dirList(), intended for brevity and backward
compatibility. It produces a list of files and directories, without details such as file size and
date, and without recursion into subdirectories.

dirName is a name of a directory or file, and may contain wildcards. doLong is provided for
backward compatibility.

VxWorks Kernel API Reference, 6.6
lseek()

436

NOTE This is a target resident function, which manipulates the target I/O system. It must be
preceded with the @ letter if executed from the Host Shell (windsh), which has a built-in
command of the same name that operates on the Host's I/O system.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO usrFsLib, dirList(), the VxWorks programmer guides, the, VxWorks Command-Line Tools
User's Guide.

lseek()

NAME lseek() – set a file read/write pointer

SYNOPSIS off_t lseek
 (
 int fd, /* file descriptor */
 off_t offset, /* new byte offset to seek to */
 int whence /* relative file position */
)

DESCRIPTION This routine sets the file read/write pointer of file fd to offset. The argument whence, which
affects the file position pointer, has three values:

This routine calls ioctl() with functions FIOWHERE, FIONREAD, and FIOSEEK.

RETURNS The new offset from the beginning of the file, or ERROR.

ERRNO See ioctl().

SEE ALSO ioLib

SEEK_SET (0) set to offset
SEEK_CUR (1) set to current position plus offset
SEEK_END (2) set to the size of the file plus offset

2 Routines
lstAdd()

437

2

lsr()

NAME lsr() – list the contents of a directory and any of its subdirectories

SYNOPSIS STATUS lsr
 (
 const char * dirName /* name of dir to list */
)

DESCRIPTION This function is simply a front-end for dirList(), intended for brevity and backward
compatibility. It produces a list of files and directories, without details such as file size and
date, with recursion into subdirectories.

dirName is a name of a directory or file, and may contain wildcards.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO usrFsLib, dirList(), the VxWorks programmer guides.

lstAdd()

NAME lstAdd() – add a node to the end of a list

SYNOPSIS void lstAdd
 (
 LIST *pList, /* pointer to list descriptor */
 NODE *pNode /* pointer to node to be added */
)

DESCRIPTION This routine adds a specified node to the end of a specified list.

RETURNS N/A

ERRNO Not Available

SEE ALSO lstLib

VxWorks Kernel API Reference, 6.6
lstConcat()

438

lstConcat()

NAME lstConcat() – concatenate two lists

SYNOPSIS void lstConcat
 (
 FAST LIST *pDstList, /* destination list */
 FAST LIST *pAddList /* list to be added to dstList */
)

DESCRIPTION This routine concatenates the second list to the end of the first list. The second list is left
empty. Either list (or both) can be empty at the beginning of the operation.

RETURNS N/A

ERRNO Not Available

SEE ALSO lstLib

lstCount()

NAME lstCount() – report the number of nodes in a list

SYNOPSIS int lstCount
 (
 LIST *pList /* pointer to list descriptor */
)

DESCRIPTION This routine returns the number of nodes in a specified list.

RETURNS The number of nodes in the list.

ERRNO Not Available

SEE ALSO lstLib

2 Routines
lstExtract()

439

2

lstDelete()

NAME lstDelete() – delete a specified node from a list

SYNOPSIS void lstDelete
 (
 FAST LIST *pList, /* pointer to list descriptor */
 FAST NODE *pNode /* pointer to node to be deleted */
)

DESCRIPTION This routine deletes a specified node from a specified list.

RETURNS N/A

ERRNO Not Available

SEE ALSO lstLib

lstExtract()

NAME lstExtract() – extract a sublist from a list

SYNOPSIS void lstExtract
 (
 FAST LIST *pSrcList, /* pointer to source list */
 FAST NODE *pStartNode, /* first node in sublist to be extracted */
 FAST NODE *pEndNode, /* last node in sublist to be extracted */
 FAST LIST *pDstList /* ptr to list where to put extracted list */
)

DESCRIPTION This routine extracts the sublist that starts with pStartNode and ends with pEndNode from a
source list. It places the extracted list in pDstList.

RETURNS N/A

ERRNO Not Available

SEE ALSO lstLib

VxWorks Kernel API Reference, 6.6
lstFind()

440

lstFind()

NAME lstFind() – find a node in a list

SYNOPSIS int lstFind
 (
 LIST *pList, /* list in which to search */
 FAST NODE *pNode /* pointer to node to search for */
)

DESCRIPTION This routine returns the node number of a specified node (the first node is 1).

RETURNS The node number, or ERROR if the node is not found.

ERRNO Not Available

SEE ALSO lstLib

lstFirst()

NAME lstFirst() – find first node in list

SYNOPSIS NODE *lstFirst
 (
 LIST *pList /* pointer to list descriptor */
)

DESCRIPTION This routine finds the first node in a linked list.

RETURNS A pointer to the first node in a list, or NULL if the list is empty.

ERRNO Not Available

SEE ALSO lstLib

2 Routines
lstGet()

441

2

lstFree()

NAME lstFree() – free up a list

SYNOPSIS void lstFree
 (
 LIST *pList /* list for which to free all nodes */
)

DESCRIPTION This routine turns any list into an empty list. It also frees up memory used for nodes.

RETURNS N/A

ERRNO Not Available

SEE ALSO lstLib, free()

lstGet()

NAME lstGet() – delete and return the first node from a list

SYNOPSIS NODE *lstGet
 (
 FAST LIST *pList /* ptr to list from which to get node */
)

DESCRIPTION This routine gets the first node from a specified list, deletes the node from the list, and
returns a pointer to the node gotten.

RETURNS A pointer to the node gotten, or NULL if the list is empty.

ERRNO Not Available

SEE ALSO lstLib

VxWorks Kernel API Reference, 6.6
lstInit()

442

lstInit()

NAME lstInit() – initialize a list descriptor

SYNOPSIS void lstInit
 (
 FAST LIST *pList /* ptr to list descriptor to be initialized */
)

DESCRIPTION This routine initializes a specified list to an empty list.

RETURNS N/A

ERRNO Not Available

SEE ALSO lstLib

lstInsert()

NAME lstInsert() – insert a node in a list after a specified node

SYNOPSIS void lstInsert
 (
 FAST LIST *pList, /* pointer to list descriptor */
 FAST NODE *pPrev, /* pointer to node after which to insert */
 FAST NODE *pNode /* pointer to node to be inserted */
)

DESCRIPTION This routine inserts a specified node in a specified list. The new node is placed following the
list node pPrev. If pPrev is NULL, the node is inserted at the head of the list.

RETURNS N/A

ERRNO Not Available

SEE ALSO lstLib

2 Routines
lstNStep()

443

2

lstLast()

NAME lstLast() – find the last node in a list

SYNOPSIS NODE *lstLast
 (
 LIST *pList /* pointer to list descriptor */
)

DESCRIPTION This routine finds the last node in a list.

RETURNS A pointer to the last node in the list, or NULL if the list is empty.

ERRNO Not Available

SEE ALSO lstLib

lstNStep()

NAME lstNStep() – find a list node nStep steps away from a specified node

SYNOPSIS NODE *lstNStep
 (
 FAST NODE *pNode, /* the known node */
 int nStep /* number of steps away to find */
)

DESCRIPTION This routine locates the node nStep steps away in either direction from a specified node. If
nStep is positive, it steps toward the tail. If nStep is negative, it steps toward the head. If the
number of steps is out of range, NULL is returned.

RETURNS A pointer to the node nStep steps away, or NULL if the node is out of range.

ERRNO Not Available

SEE ALSO lstLib

VxWorks Kernel API Reference, 6.6
lstNext()

444

lstNext()

NAME lstNext() – find the next node in a list

SYNOPSIS NODE *lstNext
 (
 NODE *pNode /* ptr to node whose successor is to be found */
)

DESCRIPTION This routine locates the node immediately following a specified node.

RETURNS A pointer to the next node in the list, or NULL if there is no next node.

ERRNO Not Available

SEE ALSO lstLib

lstNth()

NAME lstNth() – find the Nth node in a list

SYNOPSIS NODE *lstNth
 (
 FAST LIST *pList, /* pointer to list descriptor */
 FAST int nodenum /* number of node to be found */
)

DESCRIPTION This routine returns a pointer to the node specified by a number nodenum where the first
node in the list is numbered 1. Note that the search is optimized by searching forward from
the beginning if the node is closer to the head, and searching back from the end if it is closer
to the tail.

RETURNS A pointer to the Nth node, or NULL if there is no Nth node.

ERRNO Not Available

SEE ALSO lstLib

2 Routines
m()

445

2

lstPrevious()

NAME lstPrevious() – find the previous node in a list

SYNOPSIS NODE *lstPrevious
 (
 NODE *pNode /* ptr to node whose predecessor is to be found */
)

DESCRIPTION This routine locates the node immediately preceding the node pointed to by pNode.

RETURNS A pointer to the previous node in the list, or NULL if there is no previous node.

ERRNO Not Available

SEE ALSO lstLib

m()

NAME m() – modify memory

SYNOPSIS void m
 (
 void * adrs, /* address to change */
 int width /* width of unit to be modified (1, 2, 4, 8) */
)

DESCRIPTION This command prompts the user for modifications to memory in byte, short word, or long
word specified by width, starting at the specified address. It prints each address and the
current contents of that address, in turn. If adrs or width is zero or absent, it defaults to the
previous value.

The user can respond in one of several ways:

[RETURN]
Do not change this address, but continue, prompting at the next address.

number
Set the content of this address to number.

. (dot)
Do not change this address, and quit.

[EOF]
Do not change this address, and quit.

VxWorks Kernel API Reference, 6.6
m6845vxbRegister()

446

All numbers entered and displayed are in hexadecimal.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, mRegs(), the VxWorks programmer guides.

m6845vxbRegister()

NAME m6845vxbRegister() – register m6845vxb driver

SYNOPSIS void m6845vxbRegister(void)

DESCRIPTION This routine registers the m6845vxb driver and device recognition data with the vxBus
subsystem.

NOTE This routine is called early during system initialization, and *MUST NOT* make calls to OS
facilities such as memory allocation and I/O.

RETURNS N/A

ERRNO

SEE ALSO vxbM6845Vga

m85xxCCSRRegister()

NAME m85xxCCSRRegister() – register m85xxLAWBAR driver

SYNOPSIS void m85xxCCSRRegister (void)

DESCRIPTION This routine registers the m85xxLAWBAR driver and device recognition data with the
vxBus subsystem.

NOTE This routine is called early during system initialization, and *MUST NOT* make calls to OS
facilities such as memory allocation and I/O.

RETURNS N/A

2 Routines
mRegs()

447

2

ERRNO

SEE ALSO m85xxCCSR

mRegs()

NAME mRegs() – modify registers

SYNOPSIS STATUS mRegs
 (
 char * regName, /* register name, NULL for all */
 int taskNameOrId /* task name or task ID, 0 = default task */
)

DESCRIPTION This command modifies the specified register for the specified task. If taskNameOrId is
omitted or zero, the last task referenced is assumed. If the specified register is not found, it
prints out the valid register list and returns ERROR. If no register is specified, it sequentially
prompts the user for new values for a task's registers. It displays each register and the
current contents of that register, in turn. The user can respond in one of several ways:

[RETURN]
Do not change this register, but continue, prompting at the next register.

number
Set this register to number.

. (dot)
Do not change this register, and quit.

[EOF]
Do not change this register, and quit.

All numbers are entered and displayed in hexadecimal, except floating-point values, which
may be entered in double precision.

RETURNS OK, or ERROR if the task or register does not exist.

ERRNO N/A

SEE ALSO usrLib, m(), the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
mach()

448

mach()

NAME mach() – return the contents of system register mach (also macl, pr) (SH)

SYNOPSIS int mach
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of register mach from the TCB of a specified task. If
taskId is omitted or zero, the last task referenced is assumed.

Similar routines are provided for other system registers (macl, pr): macl(), pr(). Note that
pc() is provided by usrLib.c.

RETURNS The contents of register mach (or the requested system register).

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

malloc()

NAME malloc() – allocate a block of memory from the system memory partition (ANSI)

SYNOPSIS void * malloc
 (
 size_t nBytes /* number of bytes to allocate */
)

DESCRIPTION This routine allocates a block of memory from the free lists of the system memory partition
(kernel heap). The size of the block will be equal to or greater than nBytes.

RETURNS A pointer to the allocated block of memory, or a null pointer if there is an error.

ERRNO Possible errnos generated by this routine include:

S_memLib_NOT_ENOUGH_MEMORY
There is no free block large enough to satisfy the allocation request.

SEE ALSO memPartLib, free(), calloc(), valloc(), memPartAlloc(), American National Standard for
Information Systems -, Programming Language - C, ANSI X3.159-1989: General Utilities
(stdlib.h)

2 Routines
memDevCreate()

449

2

memAddToPool()

NAME memAddToPool() – add memory to the system memory partition

SYNOPSIS STATUS memAddToPool
 (
 FAST char * pPool, /* pointer to memory block */
 FAST unsigned poolSize /* block size in bytes */
)

DESCRIPTION This routine adds memory to the system memory partition (kernel heap), in addition to the
amount of memory specified during its creation.

RETURNS OK or ERROR.

ERRNO Possible errnos generated by this routine include:

S_memLib_INVALID_ADDRESS
pPool is equal to NULL.

S_memLib_INVALID_NBYTES
poolSize value is too small.

SEE ALSO memPartLib, memPartAddToPool()

memDevCreate()

NAME memDevCreate() – create a memory device

SYNOPSIS STATUS memDevCreate
 (
 char * name, /* device name */
 char * base, /* where to start in memory */
 int length /* number of bytes */
)

DESCRIPTION This routine creates a memory device containing a single file. Memory for the device is
simply an absolute memory location beginning at base. The length parameter indicates the
size of memory.

For example, to create the device "/mem/cpu0/", a device for accessing the entire memory
of the local processor, the proper call would be:

 memDevCreate ("/mem/cpu0/", 0, sysMemTop())

VxWorks Kernel API Reference, 6.6
memDevCreate()

450

The device is created with the specified name, start location, and size.

To open a file descriptor to the memory, use open(). Specify a pseudo-file name of the byte
offset desired, or open the "raw" file at the beginning and specify a position to seek to. For
example, the following call to open() allows memory to be read starting at decimal offset
1000.

 -> fd = open ("/mem/cpu0/1000", O_RDONLY, 0)

Pseudo-file name offsets are scanned with "%d".

CAVEAT The FIOSEEK operation overrides the offset given via the pseudo-file name at open time.

EXAMPLE Consider a system configured with two CPUs in the backplane and a separate dual-ported
memory board, each with 1 megabyte of memory. The first CPU is mapped at VMEbus
address 0x00400000 (4 Meg.), the second at bus address 0x00800000 (8 Meg.), the
dual-ported memory board at 0x00c00000 (12 Meg.). Three devices can be created on each
CPU as follows. On processor 0:

 -> memDevCreate ("/mem/local/", 0, sysMemTop())
 ...
 -> memDevCreate ("/mem/cpu1/", 0x00800000, 0x00100000)
 ...
 -> memDevCreate ("/mem/share/", 0x00c00000, 0x00100000)

On processor 1:

 -> memDevCreate ("/mem/local/", 0, sysMemTop())
 ...
 -> memDevCreate ("/mem/cpu0/", 0x00400000, 0x00100000)
 ...
 -> memDevCreate ("/mem/share/", 0x00c00000, 0x00100000)

Processor 0 has a local disk. Data or an object module needs to be passed from processor 0
to processor 1. To accomplish this, processor 0 first calls:

 -> copy </disk1/module.o >/mem/share/0

Processor 1 can then be given the load command:

 -> ld </mem/share/0

RETURNS OK, or ERROR if memory is insufficient or the I/O system cannot add the device.

ERRNO S_ioLib_NO_DRIVER

SEE ALSO memDrv

2 Routines
memDevDelete()

451

2

memDevCreateDir()

NAME memDevCreateDir() – create a memory device for multiple files

SYNOPSIS STATUS memDevCreateDir
 (
 char * name, /* device name */
 MEM_DRV_DIRENTRY * files, /* array of dir. entries - not copied */
 int numFiles /* number of entries */
)

DESCRIPTION This routine creates a memory device for a collection of files organised into directories. The
given array of directory entry records describes a number of files, some of which may be
directories, represented by their own directory entry arrays. The structure may be
arbitrarily deep. This effectively allows a filesystem to be created and installed in VxWorks,
for essentially read-only use. The filesystem structure can be created on the host using the
memdrvbuild utility.

Note that the array supplied is not copied; a reference to it is kept. This array should not be
modified after being passed to memDevCreateDir.

RETURNS OK, or ERROR if memory is insufficient or the I/O system cannot add the device.

ERRNO S_ioLib_NO_DRIVER

SEE ALSO memDrv

memDevDelete()

NAME memDevDelete() – delete a memory device

SYNOPSIS STATUS memDevDelete
 (
 char * name /* device name */
)

DESCRIPTION This routine deletes a memory device containing a single file or a collection of files. The
device is deleted with it own name.

For example, to delete the device created by memDevCreate ("/mem/cpu0/", 0,
sysMemTop()), the proper call would be:

 memDevDelete ("/mem/cpu0/");

VxWorks Kernel API Reference, 6.6
memDrv()

452

RETURNS OK, or ERROR if the device doesn't exist.

ERRNO N/A.

SEE ALSO memDrv

memDrv()

NAME memDrv() – install a memory driver

SYNOPSIS STATUS memDrv (void)

DESCRIPTION This routine initializes the memory driver. It is called automatically when VxWorks is
configured with the INCLUDE_MEMDRV component.

RETURNS OK, or ERROR if the I/O system cannot install the driver.

ERRNO N/A.

SEE ALSO memDrv

memEdrBlockMark()

NAME memEdrBlockMark() – mark or unmark selected blocks

SYNOPSIS int memEdrBlockMark
 (
 int partId, /* partition ID selector */
 int taskId, /* task ID selector */
 BOOL unmark /* TRUE to unmark */
)

DESCRIPTION This routine marks blocks selected by partition ID and/or taskId. Passing NULL for either
partId or taskId means no filtering is done for that field.

RETURNS number of newly marked or unmarked blocks

ERRNO Not Available

SEE ALSO memEdrLib, memEdrBlockShow()

2 Routines
memEdrBlockShow()

453

2

memEdrBlockShow()

NAME memEdrBlockShow() – print memory block information

SYNOPSIS STATUS memEdrBlockShow
 (
 int partId, /* partition ID selector */
 void * addr, /* address selector */
 int taskId, /* task ID selector */
 UINT type, /* block type selector */
 UINT level, /* detail level */
 BOOL continuous /* print in continuous mode */
)

DESCRIPTION This routine displays memory block information based on various selection criteria. NULL
or 0 can be used for partId, addr, taskId and type to exclude the respective field from filtering.
The level parameter can be used to enable printing of extended block information (trace)
when collection of extended information is enabled.

The following type parameters are accepted:

If more than 20 blocks match the selection criteria and continuous is FALSE, blocks are
printed 20 at a time. With continuous mode information is also collected 20 at a time, but
printing is continuous, with no user intervention enabled. Note that either way, after each
batch of 20 blocks the mutex lock is released, allowing other tasks to change the
instrumentation database.

RETURNS OK, or ERROR if getting the info failed.

ERRNO N/A

SEE ALSO memEdrShow, memEdrLib, memEdrPartShow(), memEdrBlockMark()

type description
0 any block
1 global variable reported by RTC
2 allocated block
3 queued free block
4 marked allocated block
5 unmarked allocated block

VxWorks Kernel API Reference, 6.6
memEdrFreeQueueFlush()

454

memEdrFreeQueueFlush()

NAME memEdrFreeQueueFlush() – flush the free queue

SYNOPSIS void memEdrFreeQueueFlush (void)

DESCRIPTION This routine can be used to remove all blocks queued on the free queue, and finalize the free
operation. This way memory blocks previously queued will be freed into their respective
memory partitions.

RETURNS N/A

ERRNO Not Available

SEE ALSO memEdrLib

memEdrPartShow()

NAME memEdrPartShow() – show partition information in the kernel

SYNOPSIS STATUS memEdrPartShow
 (
 PART_ID partId /* partition ID */
)

DESCRIPTION This routine displays information about memory partitions in the kernel. If the partId
parameter is NULL, it lists all partitions recorded in the kernel's database.

RETURNS OK, or ERROR if getting the info failed.

ERRNO N/A

SEE ALSO memEdrShow, memEdrLib, memEdrBlockShow()

2 Routines
memEdrRtpBlockShow()

455

2

memEdrRtpBlockMark()

NAME memEdrRtpBlockMark() – mark or unmark selected allocated blocks in an RTP

SYNOPSIS int memEdrRtpBlockMark
 (
 RTP_ID rtpId, /* RTP id */
 int partId, /* partition ID selector */
 int taskId, /* task ID selector */
 BOOL unmark /* TRUE to unmark */
)

DESCRIPTION This routine marks blocks selected by partition ID and/or task ID. Passing NULL for either
partId or taskId means no filtering is done using that field.

This routine only works with RTPs with the memory manager instrumentation
(memEdrLib) enabled and the MEDR_SHOW_ENABLE environment variable set to TRUE.

RETURNS number of newly marked or unmarked blocks

ERRNO N/A

SEE ALSO memEdrRtpShow, memEdrLib, memEdrRtpBlockShow()

memEdrRtpBlockShow()

NAME memEdrRtpBlockShow() – print memory block information of an RTP

SYNOPSIS STATUS memEdrRtpBlockShow
 (
 RTP_ID rtpId, /* RTP id */
 int partId, /* partition ID selector */
 void * addr, /* address selector */
 int taskId, /* task ID selector */
 UINT type, /* block type selector */
 UINT level, /* detail level */
 BOOL continuous /* print in continuous mode */
)

DESCRIPTION This routine displays memory block information based on various selection criteria. NULL
or 0 can be used for partId, addr, taskId and type to exclude the respective field from filtering.
The level parameter can be used to enable printing of extended block information (trace)
when collection of extended information is enabled.

The following type parameters are accepted:

VxWorks Kernel API Reference, 6.6
memEdrRtpPartShow()

456

If more than 20 blocks match the selection criteria and continuous is FALSE, blocks are
printed 20 at a time. With continuous mode information is also collected 20 at a time, but
printing is continuous, with no user intervention enabled. Note that between each batch of
20 blocks the mutex lock is released allowing other tasks to change the instrumentation
database.

This routine only works with RTPs with the memory manager instrumentation
(memEdrLib) enabled and the MEDR_SHOW_ENABLE environment variable set to TRUE.
For symbolic information, the RTP has to be spawned with the RTP_WITH_SYMBOLS
option.

RETURNS OK, or ERROR if getting the info failed.

ERRNO N/A

SEE ALSO memEdrRtpShow, memEdrLib, memEdrRtpPartShow(), memEdrRtpBlockMark()

memEdrRtpPartShow()

NAME memEdrRtpPartShow() – show partition information of an RTP

SYNOPSIS STATUS memEdrRtpPartShow
 (
 RTP_ID rtpId, /* RTP id */
 int partId /* partition ID selector */
)

DESCRIPTION This routine displays information about memory partitions in an RTP. If the partId
parameter is NULL, it lists all partitions recorded in the RTP's database.

This routine only works with RTPs with the memory manager instrumentation
(memEdrLib) enabled and the MEDR_SHOW_ENABLE environment variable set to TRUE.

RETURNS OK, or ERROR if getting the info failed.

ERRNO N/A

type description
0 any block
1 global variable reported by RTC
2 allocated block (marked or unmarked)
3 queued free block
4 marked allocated block
5 unmarked allocated block

2 Routines
memInfoGet()

457

2

SEE ALSO memEdrRtpShow, memEdrLib, memEdrRtpBlockShow()

memFindMax()

NAME memFindMax() – find the largest free block in the system memory partition (kernel heap)

SYNOPSIS int memFindMax (void)

DESCRIPTION This routine searches for the largest block in the system memory partition (kernel heap)
free list and returns its size. It returns 0 if there is no free block in the system memory
partition. The size returned corresponds to the largest block that can be allocated using the
default alignment value, which is used via calls to malloc(), realloc(), or calloc().
Allocation of such a size with an alignment greater than the default aligment will fail: this
may occur when using memalign() or valloc(). The default alignment value is documented
in the manual entry for memPartLib as the architecture specific boundary.

RETURNS The size, in bytes, of the largest available block.

ERRNO Not Available

SEE ALSO memInfo, memPartFindMax()

memInfoGet()

NAME memInfoGet() – get heap information

SYNOPSIS STATUS memInfoGet
 (
 MEM_PART_STATS * pPartStats /* partition stats structure */
)

DESCRIPTION This routine takes a pointer to a MEM_PART_STATS structure. All fields of the structure are
filled in with data from the RTP heap memory partition. For the description of the
information provided, see the memPartInfoGet() documentation.

RETURNS OK if the structure has valid data, otherwise ERROR.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
memOptionsGet()

458

SEE ALSO memInfo, memPartInfoGet()

memOptionsGet()

NAME memOptionsGet() – get the options of the system memory partition (kernel heap)

SYNOPSIS STATUS memOptionsGet
 (
 UINT * pOptions /* pointer to options for kernel heap */
)

DESCRIPTION This routine sets the parameter pOptions with the options of the system memory partition
(kernel heap).

Heap/memory partition options are discussed in details in the reference entry for the
library memLib.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO memLib, memOptionsSet(), memPartOptionsGet(), memPartOptionsSet()

memOptionsSet()

NAME memOptionsSet() – set the options for the system memory partition (kernel heap)

SYNOPSIS STATUS memOptionsSet
 (
 unsigned options /* options for system memory partition (kernel heap) */
)

DESCRIPTION This routine sets the debug and error handling options for the system memory partition
(kernel heap). For detailed description of these options see the memLib and
memPartOptionsSet().

RETURNS OK or ERROR.

ERRNO Not Available

2 Routines
memPartAddToPool()

459

2

SEE ALSO memLib, memOptionsGet(), memPartOptionsSet(), memPartOptionsGet()

memPartAddToPool()

NAME memPartAddToPool() – add memory to a memory partition

SYNOPSIS STATUS memPartAddToPool
 (
 FAST PART_ID partId, /* partition to add memory to */
 FAST char * pPool, /* pointer to memory block */
 FAST unsigned poolSize /* block size in bytes */
)

DESCRIPTION This routine adds memory to a specified memory partition already created with
memPartCreate(). The memory added need not be contiguous with memory previously
assigned to the partition.

The size of the memory pool being added has to be large enough to accommodate the
section overhead consisting of a section header and some reserved blocks that mark the
beginning and the end of the section. This overhead, approximately 64 bytes, is not available
for allocation.

This routine does not verify that the memory block passed corresponds to valid memory or
not. It is the user's responsability to ensure that the block is valid and it does not overlap
with other blocks added to the partition.

RETURNS OK or ERROR.

ERRNO Possible errnos generated by this routine include:

S_smObjLib_NOT_INITIALIZED
partId is a shared partition but the Shared Memory Allocator component was not
initialized.

S_memLib_INVALID_ADDRESS
pPool is equal to NULL.

S_memLib_INVALID_NBYTES
poolSize value is too small.

SEE ALSO memPartLib, smMemLib, memPartCreate(), memAddToPool()

VxWorks Kernel API Reference, 6.6
memPartAlignedAlloc()

460

memPartAlignedAlloc()

NAME memPartAlignedAlloc() – allocate aligned memory from a partition

SYNOPSIS void * memPartAlignedAlloc
 (
 FAST PART_ID partId, /* memory partition to allocate from */
 unsigned nBytes, /* number of bytes to allocate */
 unsigned alignment /* boundary to align to */
)

DESCRIPTION This routine allocates a buffer of size nBytes from a specified partition. Additionally, it
ensures that the allocated buffer begins on a memory address evenly divisible by alignment.
The alignment parameter must be a power of 2.

RETURNS A pointer to the newly allocated block, or NULL if the buffer could not be allocated.

ERRNO Possible errnos generated by this routine include:

S_memLib_INVALID_ALIGNMENT
alignment is not a power of two.

S_memLib_NOT_ENOUGH_MEMORY
There is no free block large enough to satisfy the allocation request.

SEE ALSO memPartLib, memalign()

memPartAlloc()

NAME memPartAlloc() – allocate a block of memory from a partition

SYNOPSIS void * memPartAlloc
 (
 FAST PART_ID partId, /* memory partition to allocate from */
 unsigned nBytes /* number of bytes to allocate */
)

DESCRIPTION This routine allocates a block of memory from a specified partition. The size of the block will
be equal to or greater than nBytes. The partition must already be created with
memPartCreate().

RETURNS A pointer to a block, or NULL if the call fails.

ERRNO Possible errnos generated by this routine include:

2 Routines
memPartCreate()

461

2

S_smObjLib_NOT_INITIALIZED
partId is a shared partition but the Shared Memory Allocator component was not
initialized.

S_memLib_NOT_ENOUGH_MEMORY
There is no free block large enough to satisfy the allocation request.

SEE ALSO memPartLib, smMemLib, memPartCreate(), malloc()

memPartCreate()

NAME memPartCreate() – create a memory partition

SYNOPSIS PART_ID memPartCreate
 (
 char * pPool, /* pointer to memory area */
 unsigned poolSize /* size in bytes */
)

DESCRIPTION This routine creates a new memory partition containing a specified memory pool defined
by its start address, pPool, and its size in bytes, poolSize. It returns a partition ID, which can
be passed to other routines to manage the partition (i.e., to allocate and free memory blocks
in the partition). Partitions can be created to manage any number of separate memory
pools.

Empty memory partitions can be created by setting pPool to NULL and poolSize to 0. For such
partitions, it is necessary to add memory blocks to the partition via memPartAddToPool()
before performing any allocation request.

Unless creating an empty partition, the memory pool size has to be large enough to
accomodate some overhead consisting of a section header and some reserved blocks that
mark the beginning and the end of the section. In addition, certain internal data structures
used to store free block information are also carved from the pool. This overhead, in total
approximately 248 bytes, is not available for allocations.

The create routine does not verify that the memory block passed corresponds to valid
memory or not. It is the user's responsability to make sure the block is valid.

NOTE The descriptor for the new partition object is allocated out of the system memory partition
(i.e., with malloc()).

RETURNS The partition ID, or NULL if there is insufficient memory in the system memory partition
(kernel heap) for a new partition descriptor, or poolSize value is too small.

ERRNO Possible errnos generated by this routine include:

VxWorks Kernel API Reference, 6.6
memPartDelete()

462

S_memLib_INVALID_NBYTES
poolSize value is too small.

SEE ALSO memPartLib, smMemLib

memPartDelete()

NAME memPartDelete() – delete a partition and free associated memory

SYNOPSIS STATUS memPartDelete
 (
 PART_ID partId /* partition to delete */
)

DESCRIPTION This routine deletes the memory partition object. It is supported for local memory partition
but not for shared memory partition.

RETURNS OK or ERROR.

ERRNO Possible errnos generated by this routine include:

S_memLib_NO_PARTITION_DESTROY
feature not supported for shared memory partition.

SEE ALSO memPartLib

memPartFindMax()

NAME memPartFindMax() – find the size of the largest available free block

SYNOPSIS int memPartFindMax
 (
 FAST PART_ID partId /* partition ID */
)

DESCRIPTION This routine searches for the largest block in the memory partition free list and returns its
size. It returns 0 if there is no free block in the memory partition. The size returned
corresponds to the largest block that can be allocated using the default alignment value,
which is used via calls to memPartAlloc(), or memPartRealloc(). Allocation of such a size
with an alignment greater than the default aligment will fail: this may occur when using

2 Routines
memPartFree()

463

2

memPartAlignedAlloc(). The default alignment value is documented in the manual entry
for memPartLib as the architecture specific boundary.

RETURNS The size, in bytes, of the largest available block.

ERRNO Possible errnos generated by this routine include:

S_smObjLib_NOT_INITIALIZED
partId is a shared partition but the Shared Memory Allocator component was not
initialized.

SEE ALSO memInfo, smMemLib, memFindMax()

memPartFree()

NAME memPartFree() – free a block of memory in a partition

SYNOPSIS STATUS memPartFree
 (
 PART_ID partId, /* memory partition to free a block from */
 char * pBlock /* pointer to block of memory to free */
)

DESCRIPTION This routine returns to a partition's free memory lists a block of memory previously
allocated with memPartAlloc(), memPartAlignedAlloc() or memPartRealloc(). If pBlock
is a null pointer, no action occurs and the function returns OK.

RETURNS OK, or ERROR if the block or the partition is invalid.

ERRNO Possible errnos generated by this routine include:

S_smObjLib_NOT_INITIALIZED
partId is a shared partition but the Shared Memory Allocator component was not
initialized.

S_memLib_BLOCK_ERROR
The block of memory to free is not valid.

S_memLib_WRONG_PART_ID
The block does not belong to the partition.

SEE ALSO memPartLib, smMemLib, memPartAlloc(), memPartAlignedAlloc(), free()

VxWorks Kernel API Reference, 6.6
memPartInfoGet()

464

memPartInfoGet()

NAME memPartInfoGet() – get partition information

SYNOPSIS STATUS memPartInfoGet
 (
 PART_ID partId, /* partition ID */
 MEM_PART_STATS * pPartStats /* partition stats structure */
)

DESCRIPTION This routine takes a partition ID and a pointer to a MEM_PART_STATS structure. All the
parameters of the structure are filled in with the current partition information which
include:

numBytesFree
number of free bytes in the partition

numBlocksFree
number of free blocks in the partition

maxBlockSizeFree
maximum block size in bytes that is free

numBytesAlloc
number of allocated bytes in the partition

numBlocksAlloc
number of allocated blocks in the partition

maxBytesAlloc
maximum number of allocated bytes at any time (peak usage)

RETURNS OK if the structure has valid data, otherwise ERROR.

ERRNO Not Available

SEE ALSO memInfo, memShow(), memPartShow()

memPartOptionsGet()

NAME memPartOptionsGet() – get the options of a memory partition

SYNOPSIS STATUS memPartOptionsGet
 (
 PART_ID partId, /* partition to set option for */

2 Routines
memPartOptionsSet()

465

2

 UINT * pOptions /* pointer to partition options */
)

DESCRIPTION This routine sets the parameter pOptions with the options of a specified memory partition.

RETURNS OK, or ERROR if partition is shared or pOptions is a NULL pointer.

ERRNO Possible errnos generated by this routine include:

S_memLib_FUNC_NOT_AVAILABLE
partId is a shared partition for which memPartOptionsGet() is not supported.

SEE ALSO memLib, smMemLib, memPartOptionsSet(), memOptionsGet()

memPartOptionsSet()

NAME memPartOptionsSet() – set the options for a memory partition

SYNOPSIS STATUS memPartOptionsSet
 (
 PART_ID partId, /* partition to set option for */
 unsigned options /* memory management options */
)

DESCRIPTION This routine sets the debug options for a specified memory partition. Two kinds of errors
are detected: attempts to allocate more memory than is available, and bad blocks found
when memory is freed. In both cases, the error status is returned. For the supported options
see the memLib library reference guide.

RETURNS OK or ERROR.

ERRNO Possible errnos generated by this routine include:

S_smObjLib_NOT_INITIALIZED
partId is a shared partition but the Shared Memory Allocator component was not
initialized.

SEE ALSO memLib, smMemLib, memPartOptionsGet(), memOptionsSet()

VxWorks Kernel API Reference, 6.6
memPartRealloc()

466

memPartRealloc()

NAME memPartRealloc() – reallocate a block of memory in a specified partition

SYNOPSIS void * memPartRealloc
 (
 PART_ID partId, /* partition ID */
 char * pBlock, /* block to be reallocated */
 unsigned nBytes /* new block size in bytes */
)

DESCRIPTION This routine changes the size of a specified block of memory and returns a pointer to the
new block. The contents that fit inside the new size (or old size if smaller) remain
unchanged. The memory alignment of the new block is not guaranteed to be the same as
the original block.

If pBlock is NULL, this call is equivalent to memPartAlloc().

If nBytes is set to zero and pBlock points to a valid allocated block, this call is equivalent to
memPartFree() and returns NULL.

RETURNS A pointer to the new block of memory, NULL if the call fails or nBytes is equal to zero.

ERRNO Possible errnos generated by this routine include:

S_memLib_BLOCK_ERROR
The block of memory to free is not valid.

S_smObjLib_NOT_INITIALIZED
partId is a shared partition but the Shared Memory Allocator component was not
initialized.

S_memLib_NOT_ENOUGH_MEMORY
There is no free block large enough to satisfy the allocation request.

S_memLib_WRONG_PART_ID
The block does not belong to the partition.

SEE ALSO memLib, smMemLib, realloc()

memPartShow()

NAME memPartShow() – show blocks and statistics for a given memory partition

SYNOPSIS STATUS memPartShow

2 Routines
memPartSmCreate()

467

2

 (
 PART_ID partId, /* memory partition ID */
 int type /* 0 = statistics, 1 = statistics & list */
 /* 2 = statistics & list & extra info */
)

DESCRIPTION This routine displays statistics about the available and allocated memory in a specified
memory partition. For details about usage and information shown by this routine refer to
the memShow() documentation.

RETURNS OK or ERROR.

ERRNO Possible errnos generated by this routine include:

S_smObjLib_NOT_INITIALIZED
partId is a shared partition but the Shared Memory Allocator component was not
initialized.

SEE ALSO memShow, memShow(), memPartAddToPool()

memPartSmCreate()

NAME memPartSmCreate() – create a shared memory partition (VxMP Option)

SYNOPSIS PART_ID memPartSmCreate
 (
 char * pPool, /* global address of shared memory area */
 unsigned poolSize /* size in bytes */
)

DESCRIPTION This routine creates a shared memory partition that can be used by tasks on all CPUs in the
system. It returns a partition ID which can then be passed to generic memPartLib routines
to manage the partition (i.e., to allocate and free memory blocks in the partition).

pPool is the global address of shared memory dedicated to the partition. The memory area
pointed to by pPool must be in the same address space as the shared memory anchor and
shared memory pool.

poolSize is the size in bytes of shared memory dedicated to the partition.

Before this routine can be called, the shared memory objects facility must be initialized (see
smMemLib).

NOTE The descriptor for the new partition is allocated out of an internal dedicated shared memory
partition. The maximum number of partitions that can be created is
SM_OBJ_MAX_MEM_PART .

VxWorks Kernel API Reference, 6.6
memShow()

468

Memory pool size is rounded down to a 16-byte boundary.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS The partition ID, or NULL if there is insufficient memory in the dedicated partition for a new
partition descriptor.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib, memLib

memShow()

NAME memShow() – show blocks and statistics for the current heap partition

SYNOPSIS STATUS memShow
 (
 int type /* 0 = summary, 1 = list all blocks in the free list, */
 /* 2 = list all sections */
)

DESCRIPTION This routine displays statistics about the available and allocated memory in the current heap
partition. It shows the number of bytes, the number of blocks, and the average block size in
both free and allocated memory, as well as the maximum block size of free memory. It also
shows the number of blocks currently and cumulatively allocated, the average allocated
block size and the maximum number of bytes allocated at any given time (peak usage). The
cumulative information wraps around after reaching UINT_MAX (4GB). Part of the heap
space is used internally by the partition for its bookkeeping. This amount of memory is
displayed as part of the current usage.

The memShow() routine called with type 1 or 2 requires that certain internal data structures
(binary tree, linked list) are traversed. In case of corrupted internal heap structures an
exception may occur, causing the task executing memShow() to get suspended while
holding the partition's mutex semaphore. This, in effect, results in the partition being locked
indefinitely.

The memShow() routine temporarily saves free block information on the stack in order to
avoid performing IO while the partition semaphore is taken. To avoid excessive stack
requirement, the number of lines listed in the free block section is restricted; however, at
least 200 lines are printed. Sections listed are also limited to 50. The user should make sure
that memShow() is called in the context of a task that has sufficient stack space
(approximately 4k needed for memShow()).

2 Routines
memShow()

469

2

EXAMPLE -> memShow
 status bytes blocks avg block max block
 -------- ------------- ---------- ---------- ----------
 current
 free 2330696 11 211881 1962688
 alloc 1858696 4961 374 -
 internal 400 2 200 -
 cumulative
 alloc 2240928 5419 413 -
 peak
 alloc 2202992 - - -

memShow() can be used to detect memory leaks within the current heap. This can be
achieved by comparing values of the current number of allocated bytes before and after the
function call(s) you want to verify. The current amount of free memory cannot be used to
detect memory leaks since it is updated everytime that memory blocks are allocated
internally by the system for the heap partition bookkeeping.

In addition, if type is 1, the routine displays a list of all different size of free blocks present
in the heap partition. The size corresponds to the amount of usable data plus the overhead
required for the block header. The heap partition options are also displayed.

EXAMPLE -> memShow 1

 LIST OF FREE BLOCKS:
 number size
 -------- ----------
 1 24
 1 72
 1 104
 1 144
 1 176
 1 232
 1 264
 1 1440
 1 127080
 1 238472
 1 1962688

 OPTIONS:
 ALLOC_ERROR_LOG
 BLOCK_ERROR_LOG
 BLOCK_ERROR_EDR

 SUMMARY:
 status bytes blocks avg block max block
 -------- ------------- ---------- ---------- ----------
 current
 free 2330696 11 211881 1962688
 alloc 1858696 4961 374 -
 internal 400 2 200 -
 cumulative
 alloc 2240928 5419 413 -

VxWorks Kernel API Reference, 6.6
memShow()

470

 peak
 alloc 2202992 - - -

If type is 2, the routine also displays the address of each free block. The address of the free
blocks is the start address of the free block header, not the start address of the usable data.
In addition, a list of all the memory sections that were added to the heap partition with
memPartAddToPool() or memAddToPool() is displayed.

 -> memShow 2

 LIST OF FREE BLOCKS:
 number size addr
 -------- ---------- ----------
 1 24 0x002075f0
 1 72 0x002b6dd0
 1 104 0x00279a58
 1 144 0x002b5968
 1 176 0x0027a048
 1 232 0x00206110
 1 264 0x0027a1a8
 1 1440 0x00204c58
 1 127080 0x002b6f28
 1 238472 0x0027a2f0
 1 1962688 0x00420d30

 LIST OF MEMORY SECTIONS ADDED TO THE PARTITION:
 start addr size
 ---------- ----------
 0x00206f60 4165792
 0x002003e8 20000
 0x00205208 4096

 OPTIONS:
 ALLOC_ERROR_LOG
 BLOCK_ERROR_LOG
 BLOCK_ERROR_EDR

 SUMMARY:
 status bytes blocks avg block max block
 -------- ------------- ---------- ---------- ----------
 current
 free 2330696 11 211881 1962688
 alloc 1858696 4961 374 -
 internal 400 2 200 -
 cumulative
 alloc 2240928 5419 413 -
 peak
 alloc 2202992 - - -

RETURNS OK or ERROR.

ERRNO Not Available

2 Routines
memalign()

471

2

SEE ALSO memShow, memPartShow(), memAddToPool()

memShowInit()

NAME memShowInit() – initialize the memory partition show facility

SYNOPSIS void memShowInit (void)

DESCRIPTION This routine links the memory partition show facility into the VxWorks system. These
routines are included automatically when this show facility is configured into VxWorks
using the INCLUDE_MEM_SHOW component.

RETURNS N/A

ERRNO Not Available

SEE ALSO memShow

memalign()

NAME memalign() – allocate aligned memory from system memory partition (kernel heap)

SYNOPSIS void * memalign
 (
 unsigned alignment, /* boundary to align to (power of 2) */
 unsigned size /* number of bytes to allocate */
)

DESCRIPTION This routine allocates a buffer of size size from the system memory partition (kernel heap).
Additionally, it insures that the allocated buffer begins on a memory address evenly
divisible by the specified alignment parameter. The alignment parameter must be a power
of 2.

RETURNS A pointer to the newly allocated block, or NULL if the buffer could not be allocated.

ERRNO Possible errnos generated by this routine include:

S_memLib_INVALID_ALIGNMENT
alignment is not a power of two.

VxWorks Kernel API Reference, 6.6
miiBusCreate()

472

S_memLib_NOT_ENOUGH_MEMORY
There is no free block large enough to satisfy the allocation request.

SEE ALSO memLib, memPartAlignedAlloc()

miiBusCreate()

NAME miiBusCreate() – create an miiBus attached to a parent bridge

SYNOPSIS STATUS miiBusCreate
 (
 VXB_DEVICE_ID pDev,
 VXB_DEVICE_ID *pBus
)

DESCRIPTION This function allocates a new VxBus instance and configures it to be an miiBus device. The
new miiBus device inherits almost all of its properties from its parent bridge device,
specified by pDev. An miiBus must be created by all ethernet device instances that have an
MII-based transceiver attached, regardless of whether or not the ethernet controller itself
has access to the PHY's management registers. For example, with MPC8260 boards, there
are two FCC 10/100 ethernet ports which use MII PHYs, but the MDIO pins for the PHYs
are typically connected to parallel I/O port D, which is logically distinct from either FCC
controller. Nevertheless, FCC1 and FCC2 must both have a child MII bus, even though
initially these buses will appear empty. A separate driver is required to provide a 3rd MII
bus instance attached to parellel I/O port D in order to actually make the PHYs available to
the system. These PHYs should be remapped to the MII buses attached to the FCC ports via
remapping entries in hwconf.c.

The miiBusCreate() function will allocate a private pDrvCtrl structure for the bus device,
along with an empty END_MEDIALIST list. (This list will be filled in as PHYs are attached.)
Assuming the new instance is successfully allocated and configured, it will then be
announced to VxBus. (Note that this just tells VxBus of the new device instance. The call to
vxbBusAnnounce(), which tells VxBus to create a new bus instance, has to be done later.)

If the caller provided a non-NULL pBus pointer, it will be used to return a pointer to the
newly created device to the caller.

RETURNS OK if a bus is successfully created, or ERROR otherwise

ERRNO N/A

SEE ALSO miiBus

2 Routines
miiBusGet()

473

2

miiBusDelete()

NAME miiBusDelete() – delete an miiBus and all its child devices

SYNOPSIS STATUS miiBusDelete
 (
 VXB_DEVICE_ID pDev
)

DESCRIPTION This routine is used to shut down an miiBus. All child PHY instances attached to the bus are
deleted, and then the bus instance itself is destroyed. This routine should only be called by
the parent driver that also called miiBusCreate().

RETURNS OK if a bus is successfully destroyed, or ERROR otherwise

ERRNO N/A

SEE ALSO miiBus

miiBusGet()

NAME miiBusGet() – get the miiBus that goes with a given VxBus instance

SYNOPSIS STATUS miiBusGet
 (
 VXB_DEVICE_ID pDev,
 VXB_DEVICE_ID *pBus
)

DESCRIPTION This routine is meant for use by ethernet drivers to locate their child miiBus instances.
Normally, each ethernet driver will create an miiBus with miiBusCreate(), and it should
save a pointer to the instance that miiBusCreate() returns (in which case it doesn't need to
use this function). However, hEnd drivers currently must call miiBusCreate() before their
private pDrvCtrl structures are allocated, and hence have nowhere to store the miiBus
pointer that miiBusCreate() returns. These drivers can therefore use miiBusGet() to
recover and save this pointer later, usually during their DLInit() routines.

RETURNS OK if a bus is found, or ERROR otherwise

ERRNO N/A

SEE ALSO miiBus

VxWorks Kernel API Reference, 6.6
miiBusListAdd()

474

miiBusListAdd()

NAME miiBusListAdd() – Add a PHY to the MII monitor list

SYNOPSIS void miiBusListAdd
 (
 VXB_DEVICE_ID pDev
)

DESCRIPTION This function adds a PHY instance to the monitor list so that it can be checked periodically
by the monitor task. This function is usually called by a PHY in its VxBus instConnect
routine.

RETURNS N/A

ERRNO N/A

SEE ALSO miiBus

miiBusListDel()

NAME miiBusListDel() – Remove a PHY to the MII monitor list

SYNOPSIS void miiBusListDel
 (
 VXB_DEVICE_ID pDev
)

DESCRIPTION This function removes a PHY instance from the monitor list.

RETURNS N/A

ERRNO N/A

SEE ALSO miiBus

2 Routines
miiBusMediaDefaultSet()

475

2

miiBusMediaAdd()

NAME miiBusMediaAdd() – add an entry to an miiBus's media list

SYNOPSIS STATUS miiBusMediaAdd
 (
 VXB_DEVICE_ID pDev,
 UINT32 media
)

DESCRIPTION This routine is used by a PHY instance to announce support for a given media type to its
parent miiBus.

If the media type already exists in the list, this routine leaves the list alone and returns
ERROR.

RETURNS OK if media isn't a duplicate, otherwise ERROR

ERRNO N/A

SEE ALSO miiBus

miiBusMediaDefaultSet()

NAME miiBusMediaDefaultSet() – set the default media for an miiBus

SYNOPSIS STATUS miiBusMediaDefaultSet
 (
 VXB_DEVICE_ID pDev,
 UINT32 media
)

DESCRIPTION This routine is used to specify which media type to specify in the endMediaListDefault
member of a bus's media list. PHY driver detaches.

If the media type doesn't exist in the list, this routine returns ERROR.

RETURNS OK if media entry is found in the list, otherwise ERROR

ERRNO N/A

SEE ALSO miiBus

VxWorks Kernel API Reference, 6.6
miiBusMediaDel()

476

miiBusMediaDel()

NAME miiBusMediaDel() – delete an entry to an miiBus's media list

SYNOPSIS STATUS miiBusMediaDel
 (
 VXB_DEVICE_ID pDev,
 UINT32 media
)

DESCRIPTION This routine is used by a PHY instance to remove an entry for a given media type from its
parent miiBus. This is used when a PHY driver detaches.

If the media type doesn't exist in the list, this routine leaves the list alone and returns
ERROR.

RETURNS OK if media entry is found in the list, otherwise ERROR

ERRNO N/A

SEE ALSO miiBus

miiBusMediaListGet()

NAME miiBusMediaListGet() – obtain a pointer to the bus's media list

SYNOPSIS STATUS miiBusMediaListGet
 (
 VXB_DEVICE_ID pDev,
 END_MEDIALIST ** mediaList
)

DESCRIPTION This routine returns a pointer to the bus's END_MEDIALIST structure to the caller. This is
used by ethernet drivers that support ifmedia to service the EIOCGIFMEDIALIST ioctl.

RETURNS OK if media list is found, or ERROR otherwise

ERRNO N/A

SEE ALSO miiBus

2 Routines
miiBusModeGet()

477

2

miiBusMediaUpdate()

NAME miiBusMediaUpdate() – invoke a PHY's parent's media update callback

SYNOPSIS STATUS miiBusMediaUpdate
 (
 VXB_DEVICE_ID pDev
)

DESCRIPTION This function is used to notify the parent ethernet driver associated with a PHY device that
a link change event has occured. This routine works by calling the miiMediaUpdate method
exported by the parent driver. If the parent device has no miiMediaUpdate method, this
routine fails.

RETURNS OK media update notification succeeds, or ERROR otherwise

ERRNO N/A

SEE ALSO miiBus

miiBusModeGet()

NAME miiBusModeGet() – get the current media mode and link status

SYNOPSIS STATUS miiBusModeGet
 (
 VXB_DEVICE_ID pDev,
 UINT32 * mode,
 UINT32 * sts
)

DESCRIPTION This function queries the PHY currently active on the MII bus, specified by pDev, to
determine the current link mode and state. The mode and link state are specified using
ifmedia definitions (specified in if_media.h). These values can be passed directly to callers
of the EIOCGIFMEDIA ioctl in drivers that implement ifmedia support.

If no active PHY is currently selected, this routine will fail. If a PHY has been selected (by a
call to miiBusModeSet()), its miiModeGet method will be called to query its current
setting. Note that this will result in a read of several of the PHY's registers being accessed,
including the status register.

RETURNS OK if reading the current mode/state succeeds, or ERROR otherwise

VxWorks Kernel API Reference, 6.6
miiBusModeSet()

478

ERRNO N/A

SEE ALSO miiBus

miiBusModeSet()

NAME miiBusModeSet() – set the current media mode

SYNOPSIS STATUS miiBusModeSet
 (
 VXB_DEVICE_ID pDev,
 UINT32 mode
)

DESCRIPTION This function sets the desired link mode of the MII bus. A bus could potentially have more
than one PHY attached, though only one PHY should support any given mode (i.e. you can
have one PHY supporting 100baseTX and another supporting 100baseFX, but you can't
have two that both support 100baseTX -- there wouldn't be any point).

This routine will search the bus media list for the desired media and make the PHY that
supports it the active PHY. The PHY's miiModeSet method will then be invoked to program
the PHY for the desired mode. If the desired mode doesn't exist in the list, or if the PHY
doesn't export an miiModeSet method, this routine fails.

This routine is typically used by ethernet drivers with ifmedia support to service the
EIOCSIFMEDIA ioctl.

RETURNS OK if setting the mode succeeds, or ERROR otherwise

ERRNO N/A

SEE ALSO miiBus

miiBusRead()

NAME miiBusRead() – read a PHY register

SYNOPSIS STATUS miiBusRead
 (
 VXB_DEVICE_ID pDev,
 int phyAddr,

2 Routines
miiBusWrite()

479

2

 int phyReg,
 UINT16 *regVal
)

DESCRIPTION This function reads a register from a PHY, specified by pDev, at a given address. This
routine works by invoking the miiRead method exported by the parent bridge device to
which the bus is attached (e.g. the mottsec driver). If the parent bridge does not export an
miiRead method, this routine will fail.

RETURNS OK read succeeds, or ERROR otherwise

ERRNO N/A

SEE ALSO miiBus

miiBusRegister()

NAME miiBusRegister() – register with the vxBus subsystem

SYNOPSIS void miiBusRegister(void)

DESCRIPTION This routine registers the miiBus driver with vxBus as a child of all applicable parent bus
types, and registers the VXB_BUSID_MII bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO miiBus

miiBusWrite()

NAME miiBusWrite() – write value to a PHY register

SYNOPSIS STATUS miiBusWrite
 (
 VXB_DEVICE_ID pDev,
 int phyAddr,
 int phyReg,

VxWorks Kernel API Reference, 6.6
mkdir()

480

 UINT16 regVal
)

DESCRIPTION This function writes a value to a register from a PHY, specified by pDev, at a given address.
This routine works by invoking the miiWrite method exported by the parent bridge device
to which the bus is attached (e.g. the mottsec driver). If the parent bridge does not export an
miiWrite method, this routine will fail.

RETURNS OK write succeeds, or ERROR otherwise

ERRNO N/A

SEE ALSO miiBus

mkdir()

NAME mkdir() – make a directory

SYNOPSIS STATUS mkdir
 (
 const char * dirName /* directory name */
)

DESCRIPTION This command creates a new directory in a hierarchical file system. The dirName string
specifies the name to be used for the new directory, and can be either a full or relative
pathname.

This call is supported by the VxWorks NFS and dosFs file systems.

RETURNS OK, or ERROR if the directory cannot be created.

ERRNO Not Available

SEE ALSO usrFsLib, rmdir(), VxWorks Kernel Programmer's Guide: Kernel Shell

mlock()

NAME mlock() – lock specified pages into memory (POSIX)

SYNOPSIS int mlock

2 Routines
mmapShow()

481

2

 (
 const void * addr,
 size_t len
)

DESCRIPTION This routine guarantees that the specified pages are memory resident. In VxWorks, the addr
and len arguments are ignored, since all pages are memory resident.

RETURNS 0 (OK) always.

ERRNO N/A

SEE ALSO mmanPxLib

mlockall()

NAME mlockall() – lock all pages used by a process into memory (POSIX)

SYNOPSIS int mlockall
 (
 int flags
)

DESCRIPTION This routine guarantees that all pages used by a process are memory resident. In VxWorks,
the flags argument is ignored, since all pages are memory resident.

RETURNS 0 (OK) always.

ERRNO N/A

SEE ALSO mmanPxLib

mmapShow()

NAME mmapShow() – show information about memory mapped objects in the system

SYNOPSIS STATUS mmapShow
 (
 char * name
)

VxWorks Kernel API Reference, 6.6
mmapShow()

482

DESCRIPTION This routine displays information about objects mapped in the memory space of processes
running in the system. Two types of objects are supported: regular files of supported file
systems, and shared memory objects. These objects are mapped in the address space of a
process with mmap().

This routine can be used in two ways. With the summary mode, when name is NULL, this
routine lists objects that are mapped in at least one process at the time of the call. Mappings
of objects that have been unlinked are shown using this mode.

With the detailed mode, when a file or shared memory object name is specified, this routine
lists all memory mappings of the object. For shared memory objects this also includes
shared mappings that have been unmapped from all processes by the time this routine is
called. Object names that have been unlinked are not accepted.

This routine should be used for debugging purposes only.

EXAMPLE The following example shows the output of summary mmapShow() using the shell's
C-interpreter:

-> mmapShow

 OBJECT UNLINKED RTP ID RTP NAME
------------------------------------- -------- ----------

/pxTestFs/mmapFile1 no 0x61746228 <
in/tmMmanFdLib.vxe
 0x606d6010 <
in/tmMmanFdLib.vxe
/pxTestFs/mmapFile2 yes 0x61746228 <
in/tmMmanFdLib.vxe
 0x606d6010 <
in/tmMmanFdLib.vxe
value = 0 = 0x0

The following example shows the output of summary mmapShow() using the shell's
C-interpreter:

-> mmapShow "/pxTestFs/mmapFile1"

 ADDRESS LENGTH PROT FLAGS OFFSET RTP ID
---------- ---------- ---- -------- ------------------ ----------
0x6306a000 0x00002000 R-- SHARED 0x0000000000000000 0x61746228
0x630d4000 0x00002000 RW- PRIVATE 0x0000000000000000 0x606d6010
value = 0 = 0x0

For the command-interpreter shell, use the mmap list command.

RETURNS N/A

ERRNO Not Available

2 Routines
mmuPro32LibInit()

483

2

SEE ALSO mmanShow

mmuPhysToVirt()

NAME mmuPhysToVirt() – translate a physical address to a virtual address (ARM)

SYNOPSIS VIRT_ADDR mmuPhysToVirt
 (
 PHYS_ADDR physAddr /* physical address to be translated */
)

DESCRIPTION This function converts a physical address to a virtual address using the information
contained within the sysPhysMemDesc structure of the BSP. This routine may be used both
by the BSP MMU initialization and by the vm(Base)Lib code.

If the BSP has a default mapping where physical and virtual addresses are not identical,
then it must provide routines to the cache and MMU architecture code to convert between
physical and virtual addresses. If the mapping described within the sysPhysMemDesc
structure is accurate, then the BSP may use this routine. If it is not accurate, then routines
must be provided within the BSP that are accurate.

NOTE This routine simply performs a linear search through the sysPhysMemDesc structure
looking for the first entry with an address range that includes the given address. Typically,
the performance of this should not be a problem, as this routine will generally be called to
translate RAM addresses, and by convention, the RAM entries come first in the structure. If
this becomes an issue, the routine could be changed so that a separate structure to
sysPhysMemDesc is used, containing the information in a more quickly accessible form. In
any case, if this is not satisfactory, the BSP can provide its own routines.

RETURNS the virtual address

ERRNO Not Available

SEE ALSO mmuMapLib, mmuVirtToPhys

mmuPro32LibInit()

NAME mmuPro32LibInit() – initialize module

SYNOPSIS STATUS mmuPro32LibInit

VxWorks Kernel API Reference, 6.6
mmuPro32Page0UnMap()

484

 (
 int pageSize /* system pageSize (must be 4096 for i86) */
)

DESCRIPTION Build a dummy translation table that will hold the page table entries for the global
translation table. The mmu remains disabled upon completion.

Supervisor Mode Only Not callable from ISR

RETURNS OK if no error, ERROR otherwise

ERRNO S_mmuLib_INVALID_PAGE_SIZE

SEE ALSO mmuPro32Lib

mmuPro32Page0UnMap()

NAME mmuPro32Page0UnMap() – unmap the page zero for NULL pointer detection

SYNOPSIS STATUS mmuPro32Page0UnMap (void)

DESCRIPTION This routine unmap the page zero for NULL pointer access detection.

Not Callable from user level. Not Callable from ISR.

RETURNS OK or ERROR if mmuPageUnMap fails

ERRNO Not Available

SEE ALSO mmuPro32Lib

mmuPro36LibInit()

NAME mmuPro36LibInit() – initialize module

SYNOPSIS STATUS mmuPro36LibInit
 (
 int pageSize /* system pageSize (must be 4KB or 2MB) */
)

2 Routines
mmuPro36PageMap()

485

2

DESCRIPTION Build a dummy translation table that will hold the page table entries for the global
translation table. The mmu remains disabled upon completion.

RETURNS OK if no error, ERROR otherwise

ERRNO S_mmuLib_INVALID_PAGE_SIZE

SEE ALSO mmuPro36Lib

mmuPro36Page0UnMap()

NAME mmuPro36Page0UnMap() – unmap the page zero for NULL pointer detection

SYNOPSIS STATUS mmuPro36Page0UnMap (void)

DESCRIPTION This routine unmap the page zero for NULL pointer access detection.

Not Callable from user level. Not Callable from ISR.

RETURNS OK or ERROR if mmuPageUnMap fails

ERRNO Not Available

SEE ALSO mmuPro36Lib

mmuPro36PageMap()

NAME mmuPro36PageMap() – map 36bit physical memory page to virtual memory page

SYNOPSIS STATUS mmuPro36PageMap
 (
 MMU_TRANS_TBL * transTbl, /* translation table */
 VIRT_ADDR virtualAddress, /* 32bit virtual address */
 LL_INT physPage /* 36bit physical address */
)

DESCRIPTION The 36bit physical page address is entered into the PTE corresponding to the given virtual
page. The state of a newly mapped page is undefined.

RETURNS OK or ERROR if translation table creation failed.

VxWorks Kernel API Reference, 6.6
mmuPro36Translate()

486

ERRNO Not Available

SEE ALSO mmuPro36Lib

mmuPro36Translate()

NAME mmuPro36Translate() – translate a virtual address to a 36bit physical address

SYNOPSIS STATUS mmuPro36Translate
 (
 MMU_TRANS_TBL * transTbl, /* translation table */
 VIRT_ADDR virtAddress, /* 32bit virtual address */
 LL_INT * physAddress /* place to return 36bit result */
)

DESCRIPTION Traverse the translation table and extract the 36bit physical address for the given virtual
address from the PTE corresponding to the virtual address.

RETURNS OK or ERROR if no PTE for given virtual address.

ERRNO Not Available

SEE ALSO mmuPro36Lib

mmuShLibInit()

NAME mmuShLibInit() – Initialize the SH MMU library.

SYNOPSIS STATUS mmuShLibInit
 (
 int pageSize /* minimum vm page size */
)

DESCRIPTION This routine performs the necessary initialization for the SH MMU library. Initialization
consists mainly of initializing processing variables, setting up the processing variables for
the AIM and vmLib and calling the AIM init function.

RETURNS OK or ERROR if unsuccessful.

2 Routines
mmuVirtToPhys()

487

2

ERRNO

SEE ALSO mmuShLib

mmuVirtToPhys()

NAME mmuVirtToPhys() – translate a virtual address to a physical address (ARM)

SYNOPSIS PHYS_ADDR mmuVirtToPhys
 (
 VIRT_ADDR virtAddr /* virtual address to be translated */
)

DESCRIPTION This function converts a virtual address to a physical address using the information
contained within the sysPhysMemDesc structure of the BSP. This routine may be used both
by the BSP MMU initialization and by the vm(Base)Lib code.

If the BSP has a default mapping where physical and virtual addresses are not identical,
then it must provide routines to the cache and MMU architecture code to convert between
physical and virtual addresses. If the mapping described within the sysPhysMemDesc
structure is accurate, then the BSP may use this routine. If it is not accurate, then routines
must be provided within the BSP that are accurate.

NOTE This routine simply performs a linear search through the sysPhysMemDesc structure
looking for the first entry with an address range that includes the given address. Typically,
the performance of this should not be a problem, as this routine will generally be called to
translate RAM addresses, and by convention, the RAM entries come first in the structure. If
this becomes an issue, the routine could be changed so that a separate structure to
sysPhysMemDesc is used, containing the information in a more quickly accessible form. In
any case, if this is not satisfactory, the BSP can provide its own routines.

RETURNS the physical address

ERRNO Not Available

SEE ALSO mmuMapLib, mmuPhysToVirt

VxWorks Kernel API Reference, 6.6
moduleCheck()

488

moduleCheck()

NAME moduleCheck() – verify checksums on all modules loaded in the system

SYNOPSIS STATUS moduleCheck
 (
 int options /* validation options */
)

DESCRIPTION This routine verifies the checksums on the sections of all loaded modules. The checksums
are compared to original checksums computed when the modules were initialy loaded. If
any of the checksums are incorrect, a message is printed to the console, and the routine
returns ERROR.

By default, only the text section checksums are validated.

Bits in the options parameter may be set to control specific checks:

MODCHECK_TEXT
Validate the checksum for the TEXT sections (default).

MODCHECK_DATA
Validate the checksum for the DATA sections.

MODCHECK_BSS
Validate the checksum for the BSS sections.

MODCHECK_RODATA
Validate the checksum for the RODATA sections.

MODCHECK_ALL
Validate the checksum for the all sections.

MODCHECK_NOPRINT
Do not print a message (moduleCheck() still returns ERROR on failure.)

See the definitions in moduleLib.h

CAVEAT This routine is a not able to check the integrity of a module at the time of its load. It can only
detect corruption subsequent to the load.

RETURNS OK, or ERROR if a checksum is invalid for any module.

ERRNO Not Available

SEE ALSO moduleLib

2 Routines
moduleCreateHookAdd()

489

2

moduleCreate()

NAME moduleCreate() – create and initialize a module

SYNOPSIS MODULE_ID moduleCreate
 (
 char * name, /* module name */
 int format, /* object module format */
 int flags /* <options> passed to loader (see loadModuleAt()) */
)

DESCRIPTION This routine creates a code module descriptor.

The arguments specify the name of the object module file, the object module format and an
argument specifying which symbols to add to the symbol table. See the loadModuleAt()
description of options for possibles flags values.

Space for the new code module descriptor is allocated dynamically.

This function is not intended to be used by code outside of the VxWorks kernel libraries.
Documentation is provided for reference only.

RETURNS The MODULE_ID of the newly created module or NULL if there is an error.

ERRNO Not Available

SEE ALSO loadModuleAt(), moduleLib

moduleCreateHookAdd()

NAME moduleCreateHookAdd() – add a routine to be called when a module is added

SYNOPSIS STATUS moduleCreateHookAdd
 (
 FUNCPTR moduleCreateHookRtn /* routine called when module is added */
)

DESCRIPTION This routine adds the specified routine to a list of routines to be called each time
moduleCreate() is called. The specified routine should be declared as follows:

 void moduleCreateHookFunc
 (
 MODULE_ID moduleId /* the module ID to act upon */
)

This routine is called after all fields of the module ID have been filled in.

VxWorks Kernel API Reference, 6.6
moduleCreateHookDelete()

490

NOTE Modules do not have information about their object sections or segments when they are
created. This information is not available until after the entire load process has finished.
Therefore functions used as module create hooks should not use the section or segment
information associated with a module.

RETURNS OK or ERROR if there was a problem.

ERRNO Not Available

SEE ALSO moduleLib, moduleCreateHookDelete()

moduleCreateHookDelete()

NAME moduleCreateHookDelete() – delete a previously added module create hook routine

SYNOPSIS STATUS moduleCreateHookDelete
 (
 FUNCPTR moduleCreateHookRtn /* routine called when module is added */
)

DESCRIPTION This routine removes a specified routine from the list of routines to be called at each
moduleCreate() call.

RETURNS OK, or ERROR if the routine is not in the table of module creation hook routines.

ERRNO Possible errnos set by this routine include:

+ S_moduleLib_HOOK_NOT_FOUND

For a complete description of the errnos, see the reference documentation for moduleLib.

SEE ALSO moduleLib, moduleCreateHookAdd()

moduleDelete()

NAME moduleDelete() – delete module ID information

SYNOPSIS STATUS moduleDelete
 (
 MODULE_ID moduleId /* module to delete */
)

2 Routines
moduleFindByGroup()

491

2

DESCRIPTION This routine deletes a module descriptor, freeing any space that was allocated for the use of
the module ID.

This routine does not free space allocated for the object module itself -- this is done by the
unload routine (unld() or unldByModuleId()).

This function is not intended to be used by code outside of the VxWorks kernel libraries.
Documentation is provided for reference only.

RETURNS OK or ERROR if there was a problem.

ERRNO Possible errnos set by this routine include:

+ S_moduleLib_INVALID_MODULE_ID

For a complete description of the errnos, see the reference documentation for moduleLib.

SEE ALSO moduleLib, unldByModuleId()

moduleFindByGroup()

NAME moduleFindByGroup() – find a module by group number

SYNOPSIS MODULE_ID moduleFindByGroup
 (
 int groupNumber /* group number to find */
)

DESCRIPTION This routine searches for a module with a group number matching groupNumber.

RETURNS A MODULE_ID corresponding to the first module whose group number matches, or NULL
if no match is found.

ERRNO Not Available

SEE ALSO moduleLib, moduleIdFigure()

VxWorks Kernel API Reference, 6.6
moduleFindByName()

492

moduleFindByName()

NAME moduleFindByName() – find a module by name

SYNOPSIS MODULE_ID moduleFindByName
 (
 char * moduleName /* name of module to find */
)

DESCRIPTION This routine searches for a module with a name matching moduleName. The name is the one
that was used when the module was loaded.

RETURNS A MODULE_ID corresponding to the module name, or NULL if no match is found.

ERRNO Not Available

SEE ALSO moduleLib, moduleFindByNameAndPath()

moduleFindByNameAndPath()

NAME moduleFindByNameAndPath() – find a module by filename and path

SYNOPSIS MODULE_ID moduleFindByNameAndPath
 (
 char * moduleName, /* file name to find */
 char * pathName /* path name to find */
)

DESCRIPTION This routine searches for a module with a name matching moduleName and path matching
pathName. The name and path correspond to the parameters that were passed to the load
routine when the module was loaded.

EXAMPLES If the module was loaded using the following name and path:

fd = open ("path/to/the/module/to/load/moduleName", O_RDONLY);
moduleLoad (fd, LOAD_GLOBAL_SYMBOLS);

then the call to moduleFindByNameAndPath() would be done as:

moduleFindByNameAndPath("moduleName", "path/to/the/module/to/load");

The path field should be left empty if the module was loaded without any path specified:

fd = open ("moduleName", O_RDONLY);
moduleLoad (fd, LOAD_GLOBAL_SYMBOLS);
moduleFindByNameAndPath("moduleName", "");

2 Routines
moduleIdListGet()

493

2

RETURNS A MODULE_ID, or NULL if no match is found.

ERRNO Not Available

SEE ALSO moduleLib

moduleFlagsGet()

NAME moduleFlagsGet() – get the flags associated with a module ID

SYNOPSIS int moduleFlagsGet
 (
 MODULE_ID moduleId
)

DESCRIPTION This routine returns the flags associated with a module ID. A module's flags correspond to
the options passed to the loader when loading the module. See loadModuleAt() reference
entry for more information concerning loader flags.

RETURNS The flags associated with the module ID, or zero if the module ID is invalid.

ERRNO Possible errnos set by this routine include:

+ S_moduleLib_INVALID_MODULE_ID

For a complete description of the errnos, see the reference documentation for moduleLib.

SEE ALSO loadModuleAt(), moduleLib

moduleIdListGet()

NAME moduleIdListGet() – get a list of loaded modules

SYNOPSIS int moduleIdListGet
 (
 MODULE_ID * idList, /* Array of module IDs to be filled in */
 int maxModules /* Max modules <idList> can accommodate */
)

DESCRIPTION This routine provides the calling task with a list of all loaded object modules. An unsorted
list of module IDs for no more than maxModules modules is put into idList.

VxWorks Kernel API Reference, 6.6
moduleInfoGet()

494

RETURNS The number of modules put into idList.

ERRNO Not Available

SEE ALSO moduleLib

moduleInfoGet()

NAME moduleInfoGet() – get information about an object module

SYNOPSIS STATUS moduleInfoGet
 (
 MODULE_ID moduleId, /* module to return information about */
 MODULE_INFO * pModuleInfo /* pointer to module info struct */
)

DESCRIPTION This routine fills in a MODULE_INFO structure with information about the specified
module. Note that the name field of the MODULE_INFO structure is a fixed length
(NAME_MAX, see vxParams.h for actual value); the name of the module will be truncated to
fit in the field, if necessary.

RETURNS OK, or ERROR if the module ID is invalid.

ERRNO Possible errnos set by this routine include:

+ S_moduleLib_INVALID_MODULE_ID

For a complete description of the errnos, see the reference documentation for moduleLib.

SEE ALSO moduleLib

moduleNameGet()

NAME moduleNameGet() – get the name associated with a module ID

SYNOPSIS char * moduleNameGet
 (
 MODULE_ID moduleId
)

2 Routines
moduleSegGet()

495

2

DESCRIPTION This routine returns a pointer to the name associated with a module ID. Note: this is a
pointer to the module library's copy of the name string, so the memory it points to should
not be modified.

RETURNS A pointer to the module name corresponding to the module ID, or NULL if the module ID
is invalid.

ERRNO Possible errnos set by this routine include:

+ S_moduleLib_INVALID_MODULE_ID

For a complete description of the errnos, see the reference documentation for moduleLib.

SEE ALSO moduleLib

moduleSegFirst()

NAME moduleSegFirst() – find the first segment in a module

SYNOPSIS SEGMENT_ID moduleSegFirst
 (
 MODULE_ID moduleId /* module to get first segment of */
)

DESCRIPTION This routine returns the ID of the first segment of a module descriptor.

RETURNS A pointer to the segment ID, or NULL if the segment list is empty or the module ID is invalid.

ERRNO Possible errnos set by this routine include:

+ S_moduleLib_INVALID_MODULE_ID

For a complete description of the errnos, see the reference documentation for moduleLib.

SEE ALSO moduleLib, moduleSegGet()

moduleSegGet()

NAME moduleSegGet() – get (delete and return) the first segment from a module

SYNOPSIS SEGMENT_ID moduleSegGet

VxWorks Kernel API Reference, 6.6
moduleSegNext()

496

 (
 MODULE_ID moduleId /* module to get segment from */
)

DESCRIPTION This routine returns the ID of the first segment of a module descriptor, and then removes
the segment descriptor from the module's segment list.

The memory associated with the segment descriptor is not freed.

This function is not intended to be used by code outside of the VxWorks kernel libraries.
Documentation is provided for reference only. Use the routines moduleSegFirst() and
moduleSegNext() to retrieve information about a module's segments.

RETURNS A pointer to the segment ID, or NULL if the segment list is empty.

ERRNO Possible errnos set by this routine include:

+ S_moduleLib_INVALID_MODULE_ID

For a complete description of the errnos, see the reference documentation for moduleLib.

SEE ALSO moduleLib, moduleSegFirst(), moduleSegNext()

moduleSegNext()

NAME moduleSegNext() – find the next segment in a module

SYNOPSIS SEGMENT_ID moduleSegNext
 (
 SEGMENT_ID segmentId /* segment whose successor is to be found */
)

DESCRIPTION This routine returns the ID of the segment in the list immediately following segmentId.

RETURNS A SEGMENT_ID, or NULL if there is no next segment.

ERRNO Not Available

SEE ALSO moduleLib, moduleSegFirst ()

2 Routines
moduleShow()

497

2

moduleShow()

NAME moduleShow() – show information about loaded modules

SYNOPSIS STATUS moduleShow
 (
 char * moduleNameOrId, /* name or ID of the module to show */
 int options /* display options */
)

DESCRIPTION This routine displays information about currently loaded modules and where they are
placed in memory. Different information can be obtained depending on the value of the
moduleNameOrId parameter :

NULL
A summary list of all loaded modules will be displayed. For each module are displayed
its base name, ID, group number and the start addresses of the text, data and BSS
segments.

A module ID or the name of a loaded module
More information about this specific module will be displayed (namely the sizes of the
text, data and BSS segments and the total size of the module).

If the options parameter is set to MODDISPLAY_LONG, module names longer than 15
characters are displayed on their own line (they would otherwise be truncated). In this case,
if moduleShow() is called with a module ID as an argument, the full module path is also
printed.

EXAMPLES Show the list of all modules loaded (C shell):

-> moduleShow ()

MODULE NAME MODULE ID GROUP # TEXT START DATA START BSS START
--------------- ---------- ---------- ---------- ---------- ----------
versionDotOWith 0x616fc520 2 0x60532000 0x60534000 NO SEGMENT
versionDotO15.o 0x616fbe98 3 0x60536000 0x60538000 NO SEGMENT
ctdt.o 0x60534020 4 NO SEGMENT 0x61700000 NO SEGMENT
value = 0 = 0x0

Display information about a particular module (C shell):

-> moduleShow (0x616fc520, 0)

MODULE NAME MODULE ID GROUP # TEXT START DATA START BSS START
--------------- ---------- ---------- ---------- ---------- ----------
versionDotOWith 0x616fc520 2 0x60532000 0x60534000 NO SEGMENT

Size of text segment: 58
Size of data segment: 16
Size of bss segment: 0
Total size : 74
value = 0 = 0x0

VxWorks Kernel API Reference, 6.6
mountdInit()

498

Display full names for all modules loaded (C shell):

-> moduleShow (0, 1)

MODULE NAME MODULE ID GROUP # TEXT START DATA START BSS START
--------------- ---------- ---------- ---------- ---------- ----------
versionDotOWithALongName.o
 0x616fc520 2 0x60532000 0x60534000 NO SEGMENT
versionDotO15.o 0x616fbe98 3 0x60536000 0x60538000 NO SEGMENT
ctdt.o 0x60534020 4 NO SEGMENT 0x61700000 NO SEGMENT
value = 0 = 0x0

Display full name and path for a particular module (C shell):

-> moduleShow (0x616fc520, 1)

MODULE NAME MODULE ID GROUP # TEXT START DATA START BSS START
--------------- ---------- ---------- ---------- ---------- ----------
versionDotOWithALongName.o
 0x616fc520 2 0x60532000 0x60534000 NO SEGMENT

Size of text segment: 58
Size of data segment: 16
Size of bss segment: 0
Total size : 74

Module path:
huelgoat:/folk/joe/target/proj/linux_gnu/default
value = 0 = 0x0

It is also possible to pass a module name instead of a module ID to the moduleShow()
command. Thus :

-> moduleShow ("versionDotOWithALongName.o", 1)

would give the same output as above.

RETURNS OK, or ERROR if the module is not found.

ERRNO Not Available

SEE ALSO moduleLib, VxWorks Kernel Programmer's Guide: `Target Shell`, Workbench User's Guide:
`Wind Shell`

mountdInit()

NAME mountdInit() – initialize the mount daemon

SYNOPSIS STATUS mountdInit

2 Routines
mqPxDescObjIdGet()

499

2

 (
 int priority, /* priority of the mount daemon */
 int stackSize, /* stack size of the mount daemon */
 FUNCPTR authHook, /* hook to run to authorize each request */
 int nExports, /* maximum number of exported file systems */
 int options /* Currently unused */
)

DESCRIPTION This routine spawns a mount daemon if one does not already exist. Defaults for the priority
and stackSize arguments are in the global variables mountdPriorityDefault and
mountdStackSizeDefault, and are initially set to MOUNTD_PRIORITY_DEFAULT and
MOUNTD_STACKSIZE_DEFAULT respectively.

Normally, no authorization checking is performed by either mountd or nfsd. To add
authorization checking, set authHook to point to a routine declared as follows:

nfsstat routine
 (
 int progNum, /* RPC program number */
 int versNum, /* RPC program version number */
 int procNum, /* RPC procedure number */
 struct sockaddr_in clientAddr, /* address of the client */
 void * mountdArg /* argument of the call */
)

The mountdArg will be of type MOUNT3D_ARGUMENT when versNum is 3 and it will be
of type MOUNTD_ARGUMENT when versNum is 1. The user routine must typecast the
mountdArg accoringly and use it. The definitions of MOUNT3D_ARGUMENT &
MOUNTD_ARGUMENT are available in mountd.h file.

The authHook callback must return OK if the request is authorized, and any defined NFS
error code (usually NFSERR_ACCESS) if not.

RETURNS OK, or ERROR if the mount daemon could not be correctly initialized.

ERRNO Not Available

SEE ALSO mountd

mqPxDescObjIdGet()

NAME mqPxDescObjIdGet() – returns the OBJ_ID associated with a mqd_t descriptor

SYNOPSIS OBJ_ID mqPxDescObjIdGet
 (
 mqd_t mqdes /* message queue descriptor */
)

VxWorks Kernel API Reference, 6.6
mqPxLibInit()

500

DESCRIPTION The message queue object identifier (OBJ_ID) is returned given a POSIX message queue
descriptor (mqd_t).

RETURNS OBJ_ID, or NULL if the message queue descriptor is invalid.

ERRNO None

SEE ALSO mqPxLib

mqPxLibInit()

NAME mqPxLibInit() – initialize the POSIX message queue library

SYNOPSIS int mqPxLibInit
 (
 int hashSize /* not used */
)

DESCRIPTION This routine initializes the POSIX message queue facility.

RETURNS OK or ERROR.

ERRNO N/A

SEE ALSO mqPxLib

mqPxShow()

NAME mqPxShow() – display message queue internals

SYNOPSIS STATUS mqPxShow
 (
 mqd_t mqDesc,
 int level
)

DESCRIPTION This routine displays information on a POSIX message queue.

RETURNS OK or ERROR if the descriptor is invalid.

2 Routines
mq_close()

501

2

ERRNO S_objLib_OBJ_ID_ERROR
message queue is invalid.

SEE ALSO mqPxShow

mqPxShowInit()

NAME mqPxShowInit() – initialize the POSIX message queue show facility

SYNOPSIS STATUS mqPxShowInit (void)

DESCRIPTION This routine links the POSIX message queue show routine into the VxWorks system. It is
called automatically when this show facility is configured into VxWorks using either of the
following methods:

If you use the configuration header files, define INCLUDE_SHOW_ROUTINES.

If you use the project facility, select INCLUDE_POSIX_MQ_SHOW.

RETURNS OK always

ERRNO N/A

SEE ALSO mqPxShow

mq_close()

NAME mq_close() – close a message queue (POSIX)

SYNOPSIS int mq_close
 (
 mqd_t mqdes /* message queue descriptor */
)

DESCRIPTION This routine is used to indicate that the calling task is finished with the specified message
queue mqdes. The mq_close() call deallocates any system resources allocated by the system
for use by this task for its message queue. The behavior of a task that is blocked on either a
mq_send() or mq_receive() is undefined when mq_close() is called. The mqdes parameter
will no longer be a valid message queue ID.

VxWorks Kernel API Reference, 6.6
mq_getattr()

502

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK) if the message queue is closed successfully, otherwise -1 (ERROR).

ERRNO EBADF
The mqdes argument is not a valid message queue descriptor.

SEE ALSO mqPxLib, mq_open()

mq_getattr()

NAME mq_getattr() – get message queue attributes (POSIX)

SYNOPSIS int mq_getattr
 (
 mqd_t mqdes, /* message queue descriptor */
 struct mq_attr * pMqStat /* buffer in which to return attributes */
)

DESCRIPTION This routine gets status information and attributes associated with a specified message
queue mqdes. Upon return, the following members of the mq_attr structure referenced by
pMqStat will contain the values set when the message queue was opened but with
modifications made by subsequent calls to mq_setattr():

q_flags
May be modified by mq_setattr().

The following members were set at message queue creation:

mq_maxmsg
Maximum number of messages.

mq_msgsize
Maximum message size.

The following member contains the current state of the message queue.

mq_curmsgs
The number of messages currently in the queue.

RETURNS 0 (OK) if message attributes can be determined, otherwise -1 (ERROR).

2 Routines
mq_notify()

503

2

ERRNO EBADF
The mqes argument is not a valid message queue descriptor.

SEE ALSO mqPxLib, mq_open(), mq_send(), mq_setattr()

mq_notify()

NAME mq_notify() – notify a task that a message is available on a queue (POSIX)

SYNOPSIS int mq_notify
 (
 mqd_t mqdes, /* message queue descriptor */
 const struct sigevent * pNotification /* real-time signal */
)

DESCRIPTION If pNotification is not NULL, this routine attaches the specified pNotification request by the
calling task to the specified message queue mqdes associated with the calling task. The
real-time signal specified by pNotification will be sent to the task when the message queue
changes from empty to non-empty. If a task has already attached a notification request to
the message queue, all subsequent attempts to attach a notification to the message queue
will fail. A task can get notifications from multiple messages queues.

If pNotification is NULL and the task has previously attached a notification request to the
message queue, the attached notification request is detached and the queue is available for
another task to attach a notification request.

If a notification request is attached to a message queue and any task is blocked in
mq_receive() waiting to receive a message when a message arrives at the queue, then the
appropriate mq_receive() will be completed and the notification request remains pending.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK) if successful, otherwise -1 (ERROR).

ERRNO EBADF
The mqes argument is not a valid message queue descriptor.

EBUSY
A task is already registered for notification by the message queue.

EINVAL
This task is trying to remove the registration of another task.

VxWorks Kernel API Reference, 6.6
mq_open()

504

SEE ALSO mqPxLib, mq_open(), mq_send()

mq_open()

NAME mq_open() – open a message queue (POSIX)

SYNOPSIS mqd_t mq_open
 (
 const char * mqName, /* name of queue to open */
 int oflags, /* open flags */
 ... /* extra optional parameters */
)

DESCRIPTION This routine establishes a connection between a named message queue and the calling task.
After a call to mq_open(), the task can reference the message queue using the address
returned by the call. The message queue remains usable until the queue is closed by a
successful call to mq_close().

The message queue must have a name. NULL and empty strings result in EINVAL. If the
name begins with the slash character, then it is treated as a public message queue. All RTPs
can open their own references to the public message queue by using its name. If the name
does not begin with the slash character, then it is treated as a private message queue and
RTPs cannot get access to it.

The following flag bits can be set in oflags:

O_RDONLY
Open the message queue for receiving messages. The task can use the returned
message queue descriptor with mq_receive(), but not mq_send().

O_WRONLY
Open the message queue for sending messages. The task can use the returned message
queue descriptor with mq_send(), but not mq_receive().

O_RDWR
Open the queue for both receiving and sending messages. The task can use any of the
functions allowed for O_RDONLY and O_WRONLY.

Any combination of the following flags can be specified in oflags. These control whether the
message queue is created or merely accessed by the mq_open() call.

O_CREAT
This flag is used to create a message queue if it does not already exist. If O_CREAT is set
and the message queue already exists, then O_CREAT has no effect except as noted
below under O_EXCL. Otherwise, mq_open() creates a message queue. The O_CREAT
flag requires a third and fourth argument: mode, which is of type mode_t, and pAttr,
which is of type pointer to an mq_attr structure. The value of mode has no effect in this

2 Routines
mq_open()

505

2

implementation. If pAttr is NULL, the message queue is created with a
MQ_NUM_MSG_DEFAULT messages of size MQ_MSG_SIZE_DEFAULT. If pAttr is
non-NULL, the message queue attributes mq_maxmsg and mq_msgsize are set to the
values of the corresponding members in the mq_attr structure referred to by pAttr; if
either attribute is less than or equal to zero, an error is returned and errno is set to
EINVAL.

O_EXCL
This flag is used to test whether a message queue already exists. If O_EXCL and
O_CREAT are set, mq_open() fails if the message queue name exists.

O_NONBLOCK
The setting of this flag is associated with the open message queue descriptor. If this flag
is set, then the mq_send() and mq_receive() do not wait for resources or messages that
are not currently available. Instead, they fail with errno set to EAGAIN.

The mq_open() call does not add or remove messages from the queue.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

NOTE Some POSIX functionality is not yet supported:

- A message queue cannot be closed with calls to _exit() or exec().

- A message queue cannot be implemented as a file.

- Message queue names will not appear in the file system.

RETURNS A message queue descriptor, otherwise -1 (ERROR).

ERRNO EEXIST
O_CREAT and O_EXCL are set and the message queue already exists.

ENOENT
O_CREAT is not set and the message queue does not exist.

ENOSPC
There is insufficient space for the creation of the new message queue.

EINVAL

- The specified name is invalid.

- An invalid combination of oflags is specified.

- O_CREAT is specified in oflags, the value of pAttr is not NULL and either
mq_maxmsg or mq_msgsize is less than or equal to zero.

VxWorks Kernel API Reference, 6.6
mq_receive()

506

SEE ALSO mqPxLib, mq_send(), mq_receive(), mq_close(), mq_setattr(), mq_getattr(),
mq_unlink()

mq_receive()

NAME mq_receive() – receive a message from a message queue (POSIX)

SYNOPSIS ssize_t mq_receive
 (
 mqd_t mqdes, /* message queue descriptor */
 void * pMsg, /* buffer to receive message */
 size_t msgLen, /* size of buffer, in bytes */
 int * pMsgPrio /* if not NULL, priority of message */
)

DESCRIPTION This routine receives the oldest of the highest priority message from the message queue
specified by mqdes. If the size of the buffer in bytes, specified by the msgLen argument, is
less than the mq_msgsize attribute of the message queue, mq_receive() will fail and return
an error. Otherwise, the selected message is removed from the queue and copied to pMsg.

If pMsgPrio is not NULL, the priority of the selected message will be stored in pMsgPrio.

If the message queue is empty and O_NONBLOCK is not set in the message queue's
description associated with mqdes, mq_receive() will block until a message is added to the
message queue, or until it is interrupted by a signal. If more than one task is waiting to
receive a message when a message arrives at an empty queue, the task of highest priority
will be selected to receive the message. If the specified message queue is empty and
O_NONBLOCK is set in the message queue's description associated with mqdes, no message
is removed from the queue, and mq_receive() returns an error.

The non-negative size value of the msgLen is not limited, and if a negative value is specified
for msgLen, the negativitiy of that value will be ignored.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS The length of the selected message in bytes, otherwise -1 (ERROR).

ERRNO EAGAIN
O_NONBLOCK was set in the message queue description associated with mqdes, and the
specified message queue is empty.

2 Routines
mq_send()

507

2

EBADF
The mqdes argument is not a valid message queue descriptor open for for reading.

EMSGSIZE
The specified message buffer size, msgLen, is less than the message size attribute of the
message queue.

EINVAL
The pMsg pointer is invalid.

EINTR
A signal was received while blocking on the message queue. This error only occurs for
an RTP task.

SEE ALSO mqPxLib, mq_send()

mq_send()

NAME mq_send() – send a message to a message queue (POSIX)

SYNOPSIS int mq_send
 (
 mqd_t mqdes, /* message queue descriptor */
 const void * pMsg, /* message to send */
 size_t msgLen, /* size of message, in bytes */
 int msgPrio /* priority of message */
)

DESCRIPTION This routine adds the message pMsg to the message queue mqdes. The msgLen parameter
specifies the length of the message in bytes pointed to by pMsg. The value of pMsg must be
less than or equal to the mq_msgsize attribute of the message queue, or mq_send() will fail.

If the message queue is not full, mq_send() will behave as if the message is inserted into the
message queue at the position indicated by the msgPrio argument. A message with a higher
numeric value for msgPrio is inserted before messages with a lower value. The value of
msgPrio must be less than MQ_PRIO_MAX.

If the specified message queue is full and O_NONBLOCK is not set in the message queue,
mq_send() will block until space becomes available to queue the message, or until it is
interrupted by a signal. If the message queue is full and O_NONBLOCK is set in the message
queue's descriptions associated with mqdes, the message is not queued, and mq_send()
returns an error.

USE BY INTERRUPT SERVICE ROUTINES

This routine can be called by interrupt service routines as well as by tasks. This is one of the
primary means of communication between an interrupt service routine and a task. If

VxWorks Kernel API Reference, 6.6
mq_setattr()

508

mq_send() is called from an interrupt service routine, it will behave as if the O_NONBLOCK
flag were set.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK), otherwise -1 (ERROR).

ERRNO EAGAIN
O_NONBLOCK was set in the message queue description associated with mqdes, and the
specified message queue is full.

EBADF
The mqdes argument is not a valid message queue descriptor open for for writing.

EMSGSIZE
The specified message length, msgLen, exceeds the message size attribute of the
message queue.

EINVAL

- The value of msgPrio is greater than or equal to MQ_PRIO_MAX.

- The pMsg pointer is invalid.

EINTR
The request has been interrupted by a signal.

SEE ALSO mqPxLib, mq_receive()

mq_setattr()

NAME mq_setattr() – set message queue attributes (POSIX)

SYNOPSIS int mq_setattr
 (
 mqd_t mqdes, /* message queue descriptor */
 const struct mq_attr * pMqStat, /* new attributes */
 struct mq_attr * pOldMqStat /* old attributes */
)

DESCRIPTION This routine sets attributes associated with the specified message queue mqdes.

The message queue attributes corresponding to the following members defined in the
mq_attr structure are set to the specified values upon successful completion of the call:

2 Routines
mq_unlink()

509

2

mq_flags
The value of the O_NONBLOCK flag.

If pOldMqStat is non-NULL, mq_setattr() will store, in the location referenced by
pOldMqStat, the previous message queue attributes and the current queue status. These
values are the same as would be returned by a call to mq_getattr() at that point.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK) if attributes are set successfully, otherwise -1 (ERROR).

ERRNO EBADF
The mqes argument is not a valid message queue descriptor.

SEE ALSO mqPxLib, mq_open(), mq_send(), mq_getattr()

mq_unlink()

NAME mq_unlink() – remove a message queue (POSIX)

SYNOPSIS int mq_unlink
 (
 const char * mqName /* name of message queue */
)

DESCRIPTION This routine removes the message queue named by the pathname mqName. After a
successful call to mq_unlink(), a call to mq_open() on the same message queue will fail if
the flag O_CREAT is not set. If one or more tasks have the message queue open when
mq_unlink() is called, removal of the message queue is postponed until all references to the
message queue have been closed by mq_close().

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK) if the message queue is unlinked successfully, otherwise -1 (ERROR).

ERRNO ENOENT
A message queue with the specified name, mqName, does not exist.

VxWorks Kernel API Reference, 6.6
msgQClose()

510

SEE ALSO mqPxLib, mq_close(), mq_open()

msgQClose()

NAME msgQClose() – close a named message queue

SYNOPSIS STATUS msgQClose
 (
 MSG_Q_ID msgQId /* message queue ID to close */
)

DESCRIPTION This routine closes a named message queue and decrements its reference counter. In the
case where the counter becomes zero, the message queue is deleted if:

- It has been already removed from the name space by a call to msgQUnlink().

- It was created with the OM_DESTROY_ON_LAST_CALL option.

This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

S_objLib_OBJ_INVALID_ARGUMENT
The message queue ID is NULL.

S_objLib_OBJ_OPERATION_UNSUPPORTED
The message queue is not named.

S_objLib_OBJ_DESTROY_ERROR
An error was detected while deleting the message queue.

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO msgQOpen, msgQOpen(), msgQUnlink()

2 Routines
msgQCreate()

511

2

msgQCreate()

NAME msgQCreate() – create and initialize a message queue

SYNOPSIS MSG_Q_ID msgQCreate
 (
 int maxMsgs, /* max messages that can be queued */
 int maxMsgLength, /* max bytes in a message */
 int options /* message queue options */
)

DESCRIPTION This routine creates a message queue capable of holding up to maxMsgs messages, each up
to maxMsgLength bytes long. The routine returns a message queue ID used to identify the
created message queue in all subsequent calls to routines in this library. The queue can be
created with the following options:

MSG_Q_FIFO (0x00)
Queue pended tasks in FIFO order.

MSG_Q_PRIORITY (0x01)
Queue pended tasks in priority order.

MSG_Q_EVENTSEND_ERR_NOTIFY (0x02)
When a message is sent, if a task is registered for events and the actual sending of
events fails, a value of ERROR is returned and errno is set. This option is off by default.

MSG_Q_INTERRUPTIBLE (0x04)
Signal sent to a RTP task pended on a message queue created with this option, would
make the task ready and return ERROR with errno set to EINTR. This option has no
affect for a kernel task pended on the same message queue created with this option.
This option is off by default.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS MSG_Q_ID, or NULL if error

ERRNO S_memLib_NOT_ENOUGH_MEMORY
There is not enough memory to create the queue as specified.

S_intLib_NOT_ISR_CALLABLE
This routine cannot be called from interrupt level.

S_msgQLib_INVALID_MSG_LENGTH
Negative maxMsgLength specified.

VxWorks Kernel API Reference, 6.6
msgQDelete()

512

S_msgQLib_INVALID_MSG_COUNT
Negative maxMsgs specified.

S_msgQLib_INVALID_QUEUE_TYPE
Invalid pending queue type specified.

S_msgQLib_ILLEGAL_OPTIONS
Illegal option bits were specified.

SEE ALSO msgQLib, msgQSmLib

msgQDelete()

NAME msgQDelete() – delete a message queue

SYNOPSIS STATUS msgQDelete
 (
 MSG_Q_ID msgQId /* message queue to delete */
)

DESCRIPTION This routine deletes a message queue. All tasks pending on either msgQSend() or
msgQReceive(), or pending for the reception of events meant to be sent from the message
queue, unblock and return ERROR. When this function returns, msgQId is no longer a valid
message queue ID.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK on success or ERROR otherwise

ERRNO S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

S_intLib_NOT_ISR_CALLABLE
The routine cannot be called from interrupt level.

S_smObjLib_NO_OBJECT_DESTROY
Deleting a shared message queue is not permitted.

S_objLib_OBJ_OPERATION_UNSUPPORTED
Deleting a named message queue is not permitted.

SEE ALSO msgQLib, msgQSmLib

2 Routines
msgQEvStart()

513

2

msgQEvStart()

NAME msgQEvStart() – start the event notification process for a message queue

SYNOPSIS STATUS msgQEvStart
 (
 MSG_Q_ID msgQId, /* msg Q for which to register events */
 UINT32 events, /* 32 possible events */
 UINT8 options /* event-related msg Q options */
)

DESCRIPTION This routine turns on the event notification process for a given message queue, registering
the calling task on that queue. When a message arrives on the queue and no receivers are
pending, the events specified are sent to the registered task. A task can always overwrite its
own registration.

The events are user-defined. For more information, see the reference entry for eventLib.

The options parameter is used for three user options:

- Specify whether the events are to be sent only once or every time a message arrives until
msgQEvStop() is called.

- Specify if another task can subsequently register itself while the calling task is still
registered. If so specified, the existing task registration will be overwritten without any
warning.

- Specify if events are to be sent immediately in the case a message is waiting to be picked
up.

Here are the possible values to be used in the option field:

EVENTS_SEND_ONCE (0x1)
The message queue will send the events only once.

EVENTS_ALLOW_OVERWRITE (0x2)
Subsequent registrations from other tasks can overwrite the current one.

EVENTS_SEND_IF_FREE (0x4)
The registration process will send events if a message is present on the message queue
when msgQEvStart() is called.

EVENTS_OPTIONS_NONE (0x0)
Must be passed to the options parameter if none of the other three options are used.

WARNING This routine cannot be called from interrupt level.

WARNING Task preemption can allow a msgQDelete() to be performed between the calls to
msgQEvStart() and eventReceive(). This would prevent the task from ever receiving the
events wanted from the message queue.

VxWorks Kernel API Reference, 6.6
msgQEvStop()

514

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK on success, or ERROR

ERRNO S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

S_eventLib_ALREADY_REGISTERED
A task is already registered on the message queue.

S_intLib_NOT_ISR_CALLABLE
This routine cannot be called from interrupt level.

S_eventLib_EVENTSEND_FAILED
The user chose to send events immediately and that operation failed.

S_eventLib_ZERO_EVENTS
The user passed in a value of zero to the events parameter.

SEE ALSO msgQEvLib, eventLib, msgQLib, msgQEvStop()

msgQEvStop()

NAME msgQEvStop() – stop the event notification process for a message queue

SYNOPSIS STATUS msgQEvStop
 (
 MSG_Q_ID msgQId
)

DESCRIPTION This routine turns off the event notification process for a given message queue. This allows
another task to register itself for event notification on that particular message queue. The
routine must be called by the task that is already registered on that particular message
queue.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK on success, or ERROR.

2 Routines
msgQInfoGet()

515

2

ERRNO S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

S_intLib_NOT_ISR_CALLABLE
The routine was called from interrupt level.

S_eventLib_TASK_NOT_REGISTERED
The routine was not called by the registered task.

SEE ALSO msgQEvLib, eventLib, msgQLib, msgQEvStart()

msgQInfoGet()

NAME msgQInfoGet() – get information about a message queue

SYNOPSIS STATUS msgQInfoGet
 (
 MSG_Q_ID msgQId, /* message queue to query */
 MSG_Q_INFO * pInfo /* where to return msg info */
)

DESCRIPTION This routine gets information about the state and contents of a message queue. The
parameter pInfo is a pointer to a structure of type MSG_Q_INFO defined in msgQLib.h as
follows:

 typedef struct /* MSG_Q_INFO */
 {
 int numMsgs; /* OUT: number of messages queued */
 int numTasks; /* OUT: number of tasks waiting on msg q */
 int sendTimeouts; /* OUT: count of send timeouts */
 int recvTimeouts; /* OUT: count of receive timeouts */
 int options; /* OUT: options with which msg q was created */
 int maxMsgs; /* OUT: max messages that can be queued */
 int maxMsgLength; /* OUT: max byte length of each message */
 int taskIdListMax; /* IN: max tasks to fill in taskIdList */
 int * taskIdList; /* PTR: array of task IDs waiting on msg q */
 int msgListMax; /* IN: max msgs to fill in msg lists */
 char ** msgPtrList; /* PTR: array of msg ptrs queued to msg q */
 int * msgLenList; /* PTR: array of lengths of msgs */
 } MSG_Q_INFO;

If a message queue is empty, there may be tasks blocked on receiving. If a message queue is
full, there may be tasks blocked on sending. This can be determined as follows:

- If numMsgs is 0, then numTasks indicates the number of tasks blocked on receiving.

- If numMsgs is equal to maxMsgs, then numTasks is the number of tasks blocked on
sending.

VxWorks Kernel API Reference, 6.6
msgQInfoGet()

516

- If numMsgs is greater than 0 but less than maxMsgs, then numTasks is 0.

A list of pointers to the messages queued and their lengths can be obtained by setting
msgPtrList and msgLenList to the addresses of arrays to receive the respective lists, and
setting msgListMax to the maximum number of elements in those arrays. If either list
pointer is NULL, no data is returned for that array.

No more than msgListMax message pointers and lengths are returned, although numMsgs
is always returned with the actual number of messages queued.

For example, if the caller supplies a msgPtrList and msgLenList with room for 10 messages
and sets msgListMax to 10, but there are 20 messages queued, then the pointers and lengths
of the first 10 messages in the queue are returned in msgPtrList and msgLenList, but
numMsgs is returned with the value 20.

A list of the task IDs of tasks blocked on the message queue can be obtained by setting
taskIdList to the address of an array to receive the list, and setting taskIdListMax to the
maximum number of elements in that array. If taskIdList is NULL, then no task IDs are
returned. No more than taskIdListMax task IDs are returned, although numTasks is
always returned with the actual number of tasks blocked.

For example, if the caller supplies a taskIdList with room for 10 task IDs and sets
taskIdListMax to 10, but there are 20 tasks blocked on the message queue, then the IDs of
the first 10 tasks in the blocked queue are returned in taskIdList, but numTasks is returned
with the value 20.

The tasks returned in taskIdList may be blocked for either send or receive. As noted above
this can be determined by examining numMsgs.

The variables sendTimeouts and recvTimeouts are the counts of the number of times
msgQSend() and msgQReceive() respectively returned with a timeout.

The variables options, maxMsgs, and maxMsgLength are the parameters with which the
message queue was created.

WARNING The information returned by this routine is not static and may be obsolete by the time it is
examined. In particular, the lists of task IDs or message pointers may no longer be valid.
However, the information is obtained atomically; it is an accurate snapshot of the state of
the message queue at the time of the call. This information is generally used for debugging
purposes only.

WARNING The current implementation of this routine locks out interrupts while obtaining the
information. This can compromise the overall interrupt latency of the system. Generally
this routine should be used for debugging purposes only.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK or ERROR.

2 Routines
msgQInitialize()

517

2

ERRNO S_smObjLib_NOT_INITIALIZED
The shared memory message queue library (VxMP Option) was not initialized.

S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

SEE ALSO msgQInfo

msgQInitialize()

NAME msgQInitialize() – initialize a pre-allocated message queue

SYNOPSIS MSG_Q_ID msgQInitialize
 (
 char * pMsgQMem, /* pointer to msg queue to initialize */
 int maxMsgs, /* max messages that can be queued */
 int maxMsgLength, /* max bytes in a message */
 int options /* message queue options */
)

DESCRIPTION This routine initializes a pre-allocated message queue structure and message pool memory.
The message pool memory must be capable of holding up to maxMsgs messages, each of up
to maxMsgLength bytes long. Parameter pMsgPool points to the buffer to be used for holding
queued messages. pMsgPool must point to a 4 byte aligned buffer whose size is (maxMsgs *
MSG_NODE_SIZE (maxMsgLength)).

The queue can be created with the following options:

MSG_Q_FIFO (0x00)
Queue pended tasks in FIFO order.

MSG_Q_PRIORITY (0x01)
Queue pended tasks in priority order.

MSG_Q_EVENTSEND_ERR_NOTIFY (0x02)
When a message is sent, if a task is registered for events and the actual sending of
events fails, a value of ERROR is returned and errno is set. This option is off by default.

MSG_Q_INTERRUPTIBLE (0x04)
A signal sent to an RTP task pended on a message queue created with this option would
make the task ready and return ERROR with errno set to EINTR. This option has no
affect for kernel tasks pended on the same message queue created with this option. This
option is disabled by default.

VxWorks Kernel API Reference, 6.6
msgQNumMsgs()

518

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

The following example illustrates use of the VX_MSG_Q macro and this function together to
instantiate a message queue statically (without using any dynamic memory allocation):

 #include <vxWorks.h>
 #include <msgQLib.h>

 VX_MSG_Q(myMsgQ,100,16); /* declare the msgQ */
 MSG_Q_ID myMsgQId; /* MsgQ ID to send/receive messages */

 STATUS initializeFunction (void)
 {
 if ((myMsgQId = msgQInitialize (myMsgQ, 100, 16, options)) == NULL)
 return (ERROR); /* initialization failed */
 else
 return (OK);
 }

RETURNS The MSG_Q_ID, or NULL on error.

ERRNO N/A

SEE ALSO msgQLib, msgQCreate()

msgQNumMsgs()

NAME msgQNumMsgs() – get the number of messages queued to a message queue

SYNOPSIS int msgQNumMsgs
 (
 FAST MSG_Q_ID msgQId /* message queue to examine */
)

DESCRIPTION This routine returns the number of messages currently queued to a specified message
queue.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS The number of messages queued, or ERROR

2 Routines
msgQOpen()

519

2

ERRNO S_smObjLib_NOT_INITIALIZED
The shared memory message queue library (VxMP Option) was not initialized.

S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

SEE ALSO msgQLib, msgQSmLib

msgQOpen()

NAME msgQOpen() – open a message queue

SYNOPSIS MSG_Q_ID msgQOpen
 (
 const char * name, /* message queue name */
 int maxMsgs, /* max messages that can be queued */
 int maxMsgLength, /* max bytes in a message */
 int options, /* message queue options */
 int mode, /* creation mode */
 void * context /* context value */
)

DESCRIPTION This routine opens a message queue, which means that it searches the name space and
returns the MSG_Q_ID of an existing message queue with name. If none is found, it creates
a new one with name according on the flags set in the mode parameter.

The argument name is mandatory. NULL or empty strings are not allowed.

There are two name spaces available in which msgQOpen() can perform the search. The
name space searched is dependent upon the first character in the name parameter. When this
character is a forward slash /, the public name space is searched; otherwise the private name
space is searched. Similarly, if a message queue is created, the first character in name
specifies the name space that contains the message queue.

Message queues created by this routine can not be deleted with msgQDelete(). Instead, a
msgQClose() must be issued for every msgQOpen(). Then the message queue is deleted
when it is removed from the name space by a call to msgQUnlink(). Alternatively, the
message queue can be previously removed from the name space, and deleted during the last
msgQClose().

A description of the mode and context arguments follows. See the reference entry for
msgQCreate() for a description of the remaining arguments.

mode
The mode parameter passed to this routine consists of the opening flags, which can be
set using a bitwise-OR:

VxWorks Kernel API Reference, 6.6
msgQOpen()

520

OM_CREATE
Create a message queue if none is found.

OM_EXCL
When set jointly with the OM_CREATE flag, create a new message queue without
trying to open an existing one. The call fails if name causes a name clash. This flag has
no effect if the flag OM_CREATE is not set.

OM_DELETE_ON_LAST_CLOSE
Only used when a message queue is created. If set, the message queue is deleted during
the last msgQClose() call, independently of whether msgQUnlink() was previously
called or not.

context
Context value assigned to the created message queue. This value is not actually used
by VxWorks. Instead, the context value can be used by OS extensions to implement
object permissions, for example.

Unlike private objects, a public message queue is not automatically reclaimed when an
application terminates. Note that nevertheless, a msgQClose() is issued on every
application's outstanding msgQOpen(). Therefore, a public message queue can effectively
be deleted, if during this process it is closed for the last time, and it is already unlinked or it
was created with the OM_DELETE_ON_LAST_CLOSE flag.

This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS The MSG_Q_ID of the opened message queue, or NULL if unsuccessful.

ERRNO S_objLib_OBJ_INVALID_ARGUMENT
An invalid option was specified in the mode argument or name is invalid.

S_msgQLib_INVALID_MSG_LENGTH
Negative maxMsgLength specified.

S_msgQLib_INVALID_MSG_COUNT
Negative maxMsgs specified.

S_objLib_OBJ_NOT_FOUND
The OM_CREATE flag was not set in the mode argument and a message queue matching
name was not found.

S_objLib_OBJ_NAME_CLASH
The OM_CREATE and OM_EXCL flags were set and a name clash was detected when
creating the message queue.

2 Routines
msgQReceive()

521

2

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO msgQOpen, msgQUnlink(), msgQClose()

msgQOpenInit()

NAME msgQOpenInit() – initialize the message queue open facility

SYNOPSIS void msgQOpenInit (void)

DESCRIPTION This routine links the message queue creation routine with the open facility into the
VxWorks system. It is called automatically when the message queue facility is configured
into VxWorks by either defining the INCLUDE_OBJ_OPEN and INCLUDING_MSG_Q
components in config.h or selecting INCLUDE_OBJ_OPEN and INCLUDING_MSG_Q in the
project facility.

RETURNS N/A

ERRNO N/A

SEE ALSO msgQOpen

msgQReceive()

NAME msgQReceive() – receive a message from a message queue

SYNOPSIS int msgQReceive
 (
 MSG_Q_ID msgQId, /* message queue from which to receive */
 char * buffer, /* buffer to receive message */
 UINT maxNBytes, /* length of buffer */
 int timeout /* ticks to wait */
)

DESCRIPTION This routine receives a message from the message queue msgQId. The received message is
copied into the specified buffer, which is maxNBytes in length. If the message is longer than
maxNBytes, the remainder of the message is discarded (no error indication is returned).

VxWorks Kernel API Reference, 6.6
msgQReceive()

522

The timeout parameter specifies the number of ticks to wait for a message to be sent to the
queue, if no message is available when msgQReceive() is called. The timeout parameter can
also have the following special values:

NO_WAIT (0)
Return immediately, whether a message has been received or not.

WAIT_FOREVER (-1)
Never time out.

WARNING This routine must not be called by interrupt service routines.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS The number of bytes copied to buffer, or ERROR

ERRNO S_smObjLib_NOT_INITIALIZED
The shared memory message queue library (VxMP Option) was not initialized.

S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

S_objLib_OBJ_DELETED
The message queue was deleted while the calling task was pended.

S_objLib_OBJ_UNAVAILABLE
No message was available and the NO_WAIT timeout was specified.

S_objLib_OBJ_TIMEOUT
A timeout occurred while waiting for a message to become available.

S_msgQLib_INVALID_MSG_LENGTH
The message length exceeds the limit.

S_intLib_NOT_ISR_CALLABLE
This routine cannot be called from interrupt level.

SEE ALSO msgQLib, msgQSmLib, msgQSend()

2 Routines
msgQSend()

523

2

msgQSend()

NAME msgQSend() – send a message to a message queue

SYNOPSIS STATUS msgQSend
 (
 MSG_Q_ID msgQId, /* message queue on which to send */
 char * buffer, /* message to send */
 UINT nBytes, /* length of message */
 int timeout, /* ticks to wait */
 int priority /* MSG_PRI_NORMAL or MSG_PRI_URGENT */
)

DESCRIPTION This routine sends the message in buffer of length nBytes to the message queue msgQId. If
any tasks are already waiting to receive messages on the queue, the message is immediately
delivered to the first waiting task. If no task is waiting to receive messages, the message is
saved in the message queue and, if a task has previously registered to receive events from
the message queue, these events are sent in the context of this call. This may result in the
unpending of the task waiting for the events. If the message queue fails to send events, and
if it was created using the MSG_Q_EVENTSEND_ERR_NOTIFY option, ERROR is returned
even though the message was successfully sent to the queue.

The timeout parameter specifies the number of ticks to wait for adding its message to the
queue if the message queue is full. The timeout parameter can also have the following
special values:

NO_WAIT (0)
Return immediately, even if the message has not been sent.

WAIT_FOREVER (-1)
Never time out.

The priority parameter specifies the priority of the message being sent. The possible values
are:

MSG_PRI_NORMAL (0)
Normal priority; add the message to the tail of the list of queued messages.

MSG_PRI_URGENT (1)
Urgent priority; add the message to the head of the list of queued messages.

USE BY INTERRUPT SERVICE ROUTINES

This routine can be called by interrupt service routines as well as by tasks. This is one of the
primary means of communication between an ISR and a task. When called from an ISR,
timeout must be NO_WAIT.

VxWorks Kernel API Reference, 6.6
msgQShow()

524

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK on success or ERROR otherwise

ERRNO S_smObjLib_NOT_INITIALIZED
The shared memory message queue library (VxMP Option) was not initialized.

S_objLib_OBJ_ID_ERROR
The message queue ID is invalid.

S_objLib_OBJ_DELETED
The message queue was deleted while the calling task was pended.

S_objLib_OBJ_UNAVAILABLE
No free buffer space was available and the NO_WAIT timeout was specified.

S_objLib_OBJ_TIMEOUT
A timeout occurred while waiting for buffer space to become available.

S_msgQLib_INVALID_MSG_LENGTH
The message length exceeds the limit.

S_msgQLib_NON_ZERO_TIMEOUT_AT_INT_LEVEL
The routine was called from an ISR with a non-zero timeout.

S_eventLib_EVENTSEND_FAILED
The message queue failed to send events to the registered task. This errno value can
occur only if the message queue was created with the
MSG_Q_EVENTSEND_ERR_NOTIFY option.

SEE ALSO msgQLib, msgQSmLib, msgQEvStart()

msgQShow()

NAME msgQShow() – show information about a message queue

SYNOPSIS STATUS msgQShow
 (
 MSG_Q_ID msgQId, /* message queue to display */
 int level /* 0 = summary, 1 = details */
)

DESCRIPTION This routine displays the state, and optionally the contents, of a message queue.

A summary of the state of the message queue is displayed as follows:

2 Routines
msgQShowInit()

525

2

 Message Queue Id : 0x3f8c20
 Task Queuing : FIFO
 Message Byte Len : 150
 Messages Max : 50
 Messages Queued : 0
 Receivers Blocked : 1
 Send timeouts : 0
 Receive timeouts : 0
 Options : 0x1 MSG_Q_FIFO

 VxWorks Events

 Registered Task : 0x3f5c70 (t1)
 Event(s) to Send : 0x1
 Options : 0x7 EVENTS_SEND_ONCE
 EVENTS_ALLOW_OVERWRITE
 EVENTS_SEND_IF_FREE

If level is 1, then more detailed information is displayed. If messages are queued, they are
displayed as follows:

 Messages queued:
 # address length value
 1 0x123eb204 4 0x00000001 0x12345678

If tasks are blocked on the queue, they are displayed as follows:

 Receivers blocked:

 NAME TID PRI DELAY
 ---------- -------- --- -----
 tExcTask 3fd678 0 21

RETURNS OK or ERROR.

ERRNO S_smObjLib_NOT_INITIALIZED
The shared memory message queue library (VxMP Option) was not initialized.

SEE ALSO msgQShow, windsh

msgQShowInit()

NAME msgQShowInit() – initialize the message queue show facility

SYNOPSIS void msgQShowInit (void)

DESCRIPTION This routine links the message queue show facility into the VxWorks system. It is called
automatically when the message queue show facility is configured into VxWorks using
either of the following methods:

VxWorks Kernel API Reference, 6.6
msgQSmCreate()

526

- Using the configuration header files, define INCLUDE_SHOW_ROUTINES in config.h.

- Using the project facility, select INCLUDE_MSG_Q_SHOW.

RETURNS N/A

ERRNO Not Available

SEE ALSO msgQShow

msgQSmCreate()

NAME msgQSmCreate() – create and initialize a shared memory message queue (VxMP Option)

SYNOPSIS MSG_Q_ID msgQSmCreate
 (
 int maxMsgs, /* max messages that can be queued */
 int maxMsgLength, /* max bytes in a message */
 int options /* message queue options */
)

DESCRIPTION This routine creates a shared memory message queue capable of holding up to maxMsgs
messages, each up to maxMsgLength bytes long. It returns a message queue ID used to
identify the created message queue. The queue can only be created with the option
MSG_Q_FIFO (0), thus queuing pended tasks in FIFO order.

The global message queue identifier returned can be used directly by generic message
queue handling routines in msgQLib -- msgQSend(), msgQReceive(), and
msgQNumMsgs() -- and by the show routines show() and msgQShow().

If there is insufficient memory to store the message queue structure in the shared memory
message queue partition or if the shared memory system pool cannot handle the requested
message queue size, shared memory message queue creation will fail with errno set to
S_memLib_NOT_ENOUGH_MEMORY. This problem can be solved by incrementing the
value of SM_OBJ_MAX_MSG_Q and/or the shared memory objects dedicated memory size
SM_OBJ_MEM_SIZE .

Before this routine can be called, the shared memory objects facility must be initialized (see
msgQSmLib).

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS MSG_Q_ID, or NULL if error.

2 Routines
msgQUnlink()

527

2

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine has been called from ISR.

S_objLib_OBJ_ID_ERROR
The shared memory message queue partition has not been initialized properly.

S_memLib_NOT_ENOUGH_MEMORY
Can't allocate shared memory message queue object.

S_msgQLib_INVALID_QUEUE_TYPE
Incorrect message queue pend queue type specified.

S_msgQLib_INVALID_MSG_COUNT
Incorrect number (negative) of messages specified.

S_msgQLib_INVALID_MSG_LENGTH
Incorrect length (negative) of messages specified.

S_smObjLib_LOCK_TIMEOUT
Can't get the lock on the shared memory message queue partition in time.

SEE ALSO msgQSmLib, smObjLib, msgQLib, msgQShow

msgQUnlink()

NAME msgQUnlink() – unlink a named message queue

SYNOPSIS STATUS msgQUnlink
 (
 const char * name /* name of message queue to unlink */
)

DESCRIPTION This routine removes a message queue from the name space, and marks it as ready for
deletion on the last msgQClose(). In the case where there is no outstanding msgQOpen()
call, the message queue is deleted immediately.

After a message queue is unlinked, subsequent calls to msgQOpen() using name will not be
able to find the message queue, even if it has not been deleted yet. Instead, a new message
queue could be created if msgQOpen() is called with the OM_CREATE flag.

This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

VxWorks Kernel API Reference, 6.6
munlock()

528

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_objLib_OBJ_INVALID_ARGUMENT
name is NULL or empty.

S_objLib_OBJ_NOT_FOUND
No message queue with name was found.

S_objLib_OBJ_OPERATION_UNSUPPORTED
The message queue is not named.

S_objLib_OBJ_DESTROY_ERROR
An error was detected while deleting the message queue.

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO msgQOpen, msgQOpen(), msgQClose()

munlock()

NAME munlock() – unlock specified pages (POSIX)

SYNOPSIS int munlock
 (
 const void * addr,
 size_t len
)

DESCRIPTION This routine unlocks specified pages from being memory resident.

RETURNS 0 (OK) always.

ERRNO N/A

SEE ALSO mmanPxLib

munlockall()

NAME munlockall() – unlock all pages used by a process (POSIX)

SYNOPSIS int munlockall (void)

2 Routines
mv()

529

2

DESCRIPTION This routine unlocks all pages used by a process from being memory resident.

RETURNS 0 (OK) always.

ERRNO N/A

SEE ALSO mmanPxLib

mv()

NAME mv() – mv file into other directory.

SYNOPSIS STATUS mv
 (
 const char * src, /* source file name or wildcard */
 const char * dest /* destination name or directory */
)

DESCRIPTION This function is similar to rename() but behaves somewhat more like the UNIX program
"mv", it will overwrite files.

This command moves the src file or directory into a file which name is passed in the dest
argument, if dest is a regular file or does not exist. If dest name is a directory, the source object
is moved into this directory as with the same name, if dest is NULL, the current directory is
assumed as the destination directory. src may be a single file name or a path containing a
wildcard pattern, in which case all files or directories matching the pattern will be moved to
dest which must be a directory in this case.

EXAMPLES -> mv("/sd0/dir1","/sd0/dir2")
-> mv("/sd0/*.tmp","/sd0/junkdir")
-> mv("/sd0/FILE1.DAT","/sd0/dir2/f001.dat")

RETURNS OK or error if any of the files or directories could not be moved, or if src is a pattern but the
destination is not a directory.

ERRNO Not Available

SEE ALSO usrFsLib, the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
nanosleep()

530

nanosleep()

NAME nanosleep() – suspend the current task until the time interval elapses (POSIX)

SYNOPSIS int nanosleep
 (
 const struct timespec * rqtp, /* time to delay */
 struct timespec * rmtp /* premature wakeup (NULL=no result) */
)

DESCRIPTION This routine suspends the current task for a specified time rqtp or until a signal or event
notification is made.

The suspension may be longer than requested due to the rounding up of the request to the
timer's resolution or to other scheduling activities (e.g., a higher priority task intervenes).

The timespec structure is defined as follows:

struct timespec
 {
 /* interval = tv_sec*10**9 + tv_nsec */
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds (0 - 1,000,000,000) */
 };

If rmtp is non-NULL, the timespec structure is updated to contain the amount of time
remaining. If rmtp is NULL, the remaining time is not returned. The rqtp parameter is
greater than 0 or less than or equal to 1,000,000,000.

RETURNS 0 (OK), or -1 (ERROR) if the routine is interrupted by a signal or an asynchronous event
notification, or rqtp is invalid.

ERRNO EINVAL

EINTR

SEE ALSO timerLib, sleep(), taskDelay()

netHelp()

NAME netHelp() – print a synopsis of network routines

SYNOPSIS void netHelp (void)

DESCRIPTION This command prints a brief synopsis of network facilities that are typically called from the
shell.

2 Routines
nfsAuthUnixGet()

531

2

hostAdd "hostname","inetaddr" - add a host to remote host table;
 "inetaddr" must be in standard
 Internet address format e.g. "90.0.0.4"
hostShow - print current remote host table
netDevCreate "devname","hostname",protocol
 - create an I/O device to access
 files on the specified host
 (protocol 0=rsh, 1=ftp)
routeAdd "destaddr","gateaddr" - add route to route table
routeDelete "destaddr","gateaddr" - delete route from route table
routeShow - print current route table
iam "usr"[,"passwd"] - specify the user name by which
 you will be known to remote
 hosts (and optional password)
whoami - print the current remote ID
rlogin "host" - log in to a remote host;
 "host" can be inet address or
 host name in remote host table

ifShow ["ifname"] - show info about network interfaces
inetstatShow - show all Internet protocol sockets
tcpstatShow - show statistics for TCP
udpstatShow - show statistics for UDP
ipstatShow - show statistics for IP
icmpstatShow - show statistics for ICMP
arptabShow - show a list of known ARP entries
mbufShow - show mbuf statistics

EXAMPLE: -> hostAdd "wrs", "90.0.0.2"
 -> netDevCreate "wrs:", "wrs", 0
 -> iam "fred"
 -> copy <wrs:/etc/passwd /* copy file from host "wrs" */
 -> rlogin "wrs" /* rlogin to host "wrs" */

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, the VxWorks programmer guides.

nfsAuthUnixGet()

NAME nfsAuthUnixGet() – get the NFS UNIX authentication parameters

SYNOPSIS void nfsAuthUnixGet
 (
 char *machname, /* where to store host machine */
 int *pUid, /* where to store user ID */
 int *pGid, /* where to store group ID */

VxWorks Kernel API Reference, 6.6
nfsAuthUnixPrompt()

532

 int *pNgids, /* where to store number of group IDs */
 int *gids /* where to store array of group IDs */
)

DESCRIPTION This routine gets the previously set UNIX authentication values.

RETURNS N/A

ERRNO Not Available

SEE ALSO nfsCommon, nfsAuthUnixPrompt(), nfsAuthUnixShow(), nfsAuthUnixSet(),
nfsIdSet()

nfsAuthUnixPrompt()

NAME nfsAuthUnixPrompt() – modify the NFS UNIX authentication parameters

SYNOPSIS void nfsAuthUnixPrompt (void)

DESCRIPTION This routine allows UNIX authentication parameters to be changed from the shell. The user
is prompted for each parameter, which can be changed by entering the new value next to
the current one.

EXAMPLE -> nfsAuthUnixPrompt
 machine name: yuba
 user ID: 2001 128
 group ID: 100
 num of groups: 1 3
 group #1: 100 100
 group #2: 0 120
 group #3: 0 200
 value = 3 = 0x3

RETURNS Not Available

ERRNO Not Available

SEE ALSO nfsCommon, nfsAuthUnixShow(), nfsAuthUnixSet(), nfsAuthUnixGet(), nfsIdSet()

2 Routines
nfsAuthUnixShow()

533

2

nfsAuthUnixSet()

NAME nfsAuthUnixSet() – set the NFS UNIX authentication parameters

SYNOPSIS void nfsAuthUnixSet
 (
 char *machname, /* host machine */
 int uid, /* user ID */
 int gid, /* group ID */
 int ngids, /* number of group IDs */
 int *aup_gids /* array of group IDs */
)

DESCRIPTION This routine sets UNIX authentication parameters. It is initially called by usrNetInit().
machname should be set with the name of the mounted system (i.e. the target name itself)
to distinguish hosts from hosts on a NFS network.

RETURNS N/A

ERRNO Not Available

SEE ALSO nfsCommon, nfsAuthUnixPrompt(), nfsAuthUnixShow(), nfsAuthUnixGet(),
nfsIdSet()

nfsAuthUnixShow()

NAME nfsAuthUnixShow() – display the NFS UNIX authentication parameters

SYNOPSIS void nfsAuthUnixShow (void)

DESCRIPTION This routine displays the parameters set by nfsAuthUnixSet() or nfsAuthUnixPrompt().

EXAMPLE -> nfsAuthUnixShow
 machine name = yuba
 user ID = 2001
 group ID = 100
 group [0] = 100
 value = 1 = 0x1

RETURNS N/A

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
nfsChkFilePerms()

534

SEE ALSO nfsCommon, nfsAuthUnixPrompt(), nfsAuthUnixSet(), nfsAuthUnixGet(), nfsIdSet()

nfsChkFilePerms()

NAME nfsChkFilePerms() – check the NFS file permissions with a given permission.

SYNOPSIS STATUS nfsChkFilePerms
 (
 int nfsPerms, /* permissions of the opened file */
 int ruid, /* Remote uid */
 int rgid, /* Remote gid */
 int perm /* permission to be checked for 4:read 2:write 1:execute
*/
)

DESCRIPTION This routine compares the NFS file permissions with a given permission.

This routine is basically designed for nfsOpen() to verify the target file's permission prior
to deleting it due to O_TRUNC.

The parameter perm will take 4(read), 2(write), 1(execute), or combinations of them.

OK means the file has valid permission whichever group is.

Called only by the I/O system.

RETURNS OK, ERROR

ERRNO Not Available

SEE ALSO nfsCommon

nfsDevInfoGet()

NAME nfsDevInfoGet() – read configuration information from the requested device

SYNOPSIS STATUS nfsDevInfoGet
 (
 unsigned long nfsDevHandle, /* NFS device handle */
 NFS_DEV_INFO * pnfsInfo /* ptr to struct to hold config info */
)

2 Routines
nfsDevShow()

535

2

DESCRIPTION This routine accesses the NFS device specified in the parameter nfsDevHandle and fills
in the structure pointed to by pnfsinfo. The calling function should allocate memory for
pnfsinfo and for the two character buffers "remFileSys" and "locFileSys" , that are part of
pnfsInfo. These buffers should have a size of nfsMaxPath

RETURNS OK, if pnfsInfo information is valid, otherwise ERROR

ERRNO S_objLib_OBJ_UNAVAILABLE
This operation is not supported by the available NFS versions.

SEE ALSO nfsCommon, nfsDevListGet()

nfsDevListGet()

NAME nfsDevListGet() – create list of all the NFS devices in the system

SYNOPSIS int nfsDevListGet
 (
 unsigned long nfsDevList[], /* NFS dev list of handles */
 int listSize /* number of elements available in the list
*/
)

DESCRIPTION This routine fills the array nfsDevlist up to listSize, with handles to NFS devices currently in
the system.

RETURNS The number of entries filled in the nfsDevList array.

ERRNO N/A

SEE ALSO nfsCommon, nfsDevInfoGet()

nfsDevShow()

NAME nfsDevShow() – display the mounted NFS devices

SYNOPSIS void nfsDevShow (void)

DESCRIPTION This routine displays the device names and their associated NFS file systems.

VxWorks Kernel API Reference, 6.6
nfsDrvNumGet()

536

EXAMPLE -> nfsDevShow
 device name file system
 ----------- -----------
 /yuba1/ yuba:/yuba1
 /wrs1/ wrs:/wrs1

RETURNS N/A

ERRNO Not Available

SEE ALSO nfsCommon

nfsDrvNumGet()

NAME nfsDrvNumGet() – Get driver number of NFS device

SYNOPSIS STATUS nfsDrvNumGet
 (
 int version /* Version number of NFS */
)

DESCRIPTION This routine returns the NFS driver number for the version requested. If the user specifies
NFS version 2, this routine will return the value stored in variable nfs2DrvNum. If the user
specifies NFS version 3, this routine will return the value stored in the variable
nfs3DrvNum.

If the NFS driver of the user-specified version is yet to be initialized, or if initialization
failed, nfsDrvNumGet will return ERROR.

RETURNS Returns the NFS driver number or ERROR.

ERRNO S_objLib_OBJ_UNAVAILABLE
This version does not support this operation.

SEE ALSO nfsCommon

nfsErrnoSet()

NAME nfsErrnoSet() – set NFS status

SYNOPSIS void nfsErrnoSet

2 Routines
nfsExport()

537

2

 (
 enum nfsstat status
)

DESCRIPTION nfsErrnoSet calls errnoSet with the given "nfs stat" or'd with the NFS status prefix.

RETURNS Not Available

ERRNO Not Available

SEE ALSO nfsCommon

nfsExport()

NAME nfsExport() – specify a file system to be NFS exported

SYNOPSIS STATUS nfsExport
 (
 char * directory, /* Directory to export - FS must support NFS */
 int id, /* ID number for file system */
 BOOL readOnly, /* TRUE if file system is exported read-only */
 int options /* Reserved for future use - set to 0 */
)

DESCRIPTION This routine makes a file system available for mounting by a client. The client should be in
the local host table (see hostAdd()), although this is not required.

The id parameter can either be set to a specific value, or to 0. If it is set to 0, an ID number is
assigned sequentially. Every time a file system is exported, it must have the same ID
number, or clients currently mounting the file system will not be able to access files.

NOTE exporting a file system requires at least 512kb of free space available on the file system for
creation of configuration files.

To display a list of exported file systems, use:

 -> nfsExportShow "localhost"

RETURNS OK, or ERROR if the file system could not be exported.

ERRNO Not Available

SEE ALSO mountd, nfsLib, nfsExportShow(), nfsUnexport()

VxWorks Kernel API Reference, 6.6
nfsExportShow()

538

nfsExportShow()

NAME nfsExportShow() – display the exported file systems of a remote host

SYNOPSIS STATUS nfsExportShow
 (
 char *hostName /* host machine to show exports for */
)

DESCRIPTION This routine displays the file systems of a specified host and the groups that are allowed to
mount them.

EXAMPLE -> nfsExportShow "wrs"
 /d0 staff
 /d1 staff eng
 /d2 eng
 /d3
 value = 0 = 0x0

RETURNS OK or ERROR.

ERRNO S_hostLib_INVALID_PARAMETER
hostName is invalid.

S_objLib_OBJ_UNAVAILABLE
This operation is not supported by the available NFS versions.

S_nfsLib_NFSERR_NOTSUPP
Remote system does not have a compatible mount version.

SEE ALSO nfsCommon

nfsHelp()

NAME nfsHelp() – display the NFS help menu

SYNOPSIS void nfsHelp (void)

DESCRIPTION This routine displays a summary of NFS facilities typically called from the shell:

 nfsHelp Print this list
 netHelp Print general network help list
 nfsMount "host","filesystem"[,"devname"] Create device with
 file system/directory from host
 nfsUnmount "devname" Remove an NFS device

2 Routines
nfsIdSet()

539

2

 nfsAuthUnixShow Print current UNIX authentication
 nfsAuthUnixPrompt Prompt for UNIX authentication
 nfsIdSet id Set user ID for UNIX authentication
 nfsDevShow Print list of NFS devices
 nfsExportShow "host" Print a list of NFS file systems which
 are exported on the specified host
 mkdir "dirname" Create directory
 rm "file" Remove file

 EXAMPLE: -> hostAdd "wrs", "90.0.0.2"
 -> nfsMount "wrs","/disk0/path/mydir","/mydir/"
 -> cd "/mydir/"
 -> nfsAuthUnixPrompt /* fill in user ID, etc. */
 -> ls /* list /disk0/path/mydir */
 -> copy < foo /* copy foo to standard out */
 -> ld < foo.o /* load object module foo.o */
 -> nfsUnmount "/mydir/" /* remove NFS device /mydir/ */

RETURNS N/A

ERRNO Not Available

SEE ALSO nfsCommon

nfsIdSet()

NAME nfsIdSet() – set the ID number of the NFS UNIX authentication parameters

SYNOPSIS void nfsIdSet
 (
 int uid /* user ID on host machine */
)

DESCRIPTION This routine sets only the UNIX authentication user ID number. For most NFS permission
needs, only the user ID needs to be changed. Set uid to the user ID on the NFS server.

RETURNS N/A

ERRNO Not Available

SEE ALSO nfsCommon, nfsAuthUnixPrompt(), nfsAuthUnixShow(), nfsAuthUnixSet(),
nfsAuthUnixGet()

VxWorks Kernel API Reference, 6.6
nfsMntDump()

540

nfsMntDump()

NAME nfsMntDump() – display all NFS file systems mounted on a particular host

SYNOPSIS STATUS nfsMntDump
 (
 const char *hostName /* host machine */
)

DESCRIPTION This routine displays all the NFS file systems mounted on a specified host machine.

RETURNS OK or ERROR.

ERRNO S_nfsLib_NFSERR_INVAL
hostName is invalid.

S_nfsLib_NFSERR_NOTSUPP
Remote system does not have a compatible mount version.

S_objLib_OBJ_UNAVAILABLE
This routine is not supported by the included NFS versions.

SEE ALSO nfsCommon

nfsMount()

NAME nfsMount() – mount an NFS file system

SYNOPSIS STATUS nfsMount
 (
 const char *host, /* name of remote host */
 const char *fileSystem, /* name of remote directory to mount */
 const char *localName /* local device name for remote dir */
)

DESCRIPTION This routine mounts a remote file system. It creates a local device localName for a remote file
system on a specified host. The host must have already been added to the local host table
with hostAdd().

RETURNS OK, or ERROR if the driver is not installed, host is invalid, or memory is insufficient.

ERRNO S_nfsLib_NFSERR_INVAL
Provided arguments are invalid.

2 Routines
nfsMountAll()

541

2

S_objLib_OBJ_UNAVAILABLE
This operation is not supported by the included NFS versions.

S_nfsLib_NFSERR_NOTSUPP
Remote system does not have a compatible mount version.

SEE ALSO nfsCommon, nfsUnmount(), hostAdd()

nfsMountAll()

NAME nfsMountAll() – mount all file systems exported by a specified host

SYNOPSIS STATUS nfsMountAll
 (
 const char *pHostName, /* name of remote host */
 const char *pClientName, /* name of a client specified in access list,
if any */
 BOOL quietFlag /* FALSE = print name of each mounted file
system */
)

DESCRIPTION This routine mounts the file systems exported by the host pHostName which are accessible
by pClientName. A pClientName entry of NULL will only mount file systems that are
accessible by any client. The nfsMount() routine is called to mount each file system. It
creates a local device for each mount that has the same name as the remote file system.

If the quietFlag setting is FALSE, each file system is printed on standard output after it is
mounted successfully.

RETURNS OK, or ERROR if any mount fails.

ERRNO S_nfsLib_NFSERR_INVAL
Invalid arguments.

S_objLib_OBJ_UNAVAILABLE
This operation is not supported by the included NFS versions.

S_nfsLib_NFSERR_NOTSUPP
Incompatible mount version on remote system.

SEE ALSO nfsCommon, nfsMount()

VxWorks Kernel API Reference, 6.6
nfsStatusGet()

542

nfsStatusGet()

NAME nfsStatusGet() – Get the statistics of the NFS server

SYNOPSIS STATUS nfsStatusGet
 (
 void * serverStats, /* pointer to status struct */
 int version /* NFS v2 or NFS v3 */
)

DESCRIPTION This routine returns the statistics of the NFS procedure calls made by the remote NFS clients
serverStats pointer to a memory location where the statistics information will be copied.
version Statistics of which NFS version is desired. This parameter takes two values only.
0x01 for NFS Version 2 and 0x02 for NFS version 3.

RETURNS OK or ERROR if version is invalid.

ERRNO Not Available

SEE ALSO nfsdCommon

nfsUnexport()

NAME nfsUnexport() – remove a file system from the list of exported file systems

SYNOPSIS STATUS nfsUnexport
 (
 char * dirName /* Name of the directory to unexport */
)

DESCRIPTION This routine removes a file system from the list of file systems exported from the target. Any
client attempting to mount a file system that is not exported will receive an error
(NFSERR_ACCESS).

RETURNS OK, or ERROR if the file system could not be removed from the exports list.

ERRNO ENOENT

SEE ALSO mountd, nfsLib, nfsExportShow(), nfsExport()

2 Routines
nfsdHashTableParamsSet()

543

2

nfsUnmount()

NAME nfsUnmount() – unmount an NFS device

SYNOPSIS STATUS nfsUnmount
 (
 const char *localName /* local of nfs device */
)

DESCRIPTION This routine unmounts file systems that were previously mounted via NFS.

RETURNS OK, or ERROR if localName is not an NFS device or cannot be mounted.

ERRNO S_nfsLib_NFSERR_INVAL
localName is invalid.

S_nfsDrv_NOT_AN_NFS_DEVICE
localName is not an NFS device.

S_objLib_OBJ_UNAVAILABLE
This operation is not supported by the included NFS versions.

SEE ALSO nfsCommon, nfsMount()

nfsdHashTableParamsSet()

NAME nfsdHashTableParamsSet() – sets up the parameters for the NFS hash table

SYNOPSIS void nfsdHashTableParamsSet
 (
 int bucketSize,
 int tableLen,
 char * basePath
)

DESCRIPTION This function must be called prior to the call to nfsExport, and can be called repeatedly to
configure different exports differently.

bucketSize represents the number of bytes available in each hash bucket. The selectable sizes
are 512, 1k, 2k, 4k, 8k, 16k. It is probably a good idea to make this value the same size as a
disk allocation unit in general. Never smaller, but perhaps larger if you plan on accessing
lots of files with very long filenames. Note, that the code always keeps one bucket in
memory, and reads and writes whole buckets at a time. So larger buckets can impact
performance. A value of zero preserves the previous value. The default is 1k.

VxWorks Kernel API Reference, 6.6
nfsdInit()

544

tableLen represents the number of buckets. As we all know, prime numbers work best for
hashing, so selectable sizes for tableLen are all prime numbers that are close to powers of 2.
Specifically: 7, 17, 31, 61, 127, 251, 509, 1021, and 2039. When the hash-function is applied to
a filename or inode, it is the result of the modulus operation that then determines the bucket
the value is placed into. A value of zero preserves the previous value. The default value is
509.

basePath allows you to move the hash file to a seperate location. Perhaps a disk volume
dedicated to hash files, or a RAM drive if you do not need the inode-to-filename mappings
preserved. The default is "" which indicates that the hash files will be saved to the exported
volume. nfsExport("/foo",0,0) would result in /foo/nfsHashTbl.cfg and
/foo/nfsHashTbl.cfg being created. With basePath set to "/ramDrv", the files would be
placed in the /ramDrv volume and pre-pended with the export path. Specifically, the files
created would be /ramDrv/foo_nfsHashTbl.cfg and /ramDrv/foo_nfsHashTbl.dat.
Passing in NULL preserves the existing value. The default value is "";

bucketSize and tableLen are only used when creating a hash table for the first time. After that,
their values are preserved in nfsHashTbl.cfg. However, basePath (if different from the
default) must be called so the NFS server can locate the files.

RETURNS Not Available

ERRNO Not Available

SEE ALSO nfsHash

nfsdInit()

NAME nfsdInit() – initialize the NFS server

SYNOPSIS STATUS nfsdInit
 (
 int nServers, /* the number of NFS servers to create */
 int nExportedFs, /* maximum number of exported file systems */
 int priority, /* the priority for the NFS servers */
 FUNCPTR authHook, /* Authentication hook */
 FUNCPTR mountAuthHook, /* authentication hook for mount daemon */
 int options /* 3 bits used only */
)

DESCRIPTION This routine initializes the NFS server. nServers specifies the number of Tasks to be
spawned to handle NFS requests. priority is the priority that those tasks will run at.
authHook is a pointer to an authorization routine. mountAuthHook is a pointer to a similar
routine, passed to mountdInit(). options (only 3 LSBs are used for specifying the NFS
version). Currently options can take the following values. 0x01 to start the NFS V2 service

2 Routines
nfsdStatusShow()

545

2

only. 0x02 to start the NFS V3 service only. 0x00 to start the NFS V2 and V3 services
(default)

Normally, no authorization is performed by either mountd or nfsd. If you want to add
authorization, set authHook to a function pointer to a routine declared as follows:

nfsstat routine
 (
 int progNum, /* RPC program number */
 int versNum, /* RPC program version number */
 int procNum, /* RPC procedure number */
 struct sockaddr_in clientAddr, /* address of the client */
 NFSD_ARGUMENT * nfsdArg /* argument of the call */
)

The nfsdArg will be of type "NFSD_ARGUMENT" if versNum is 2. The nfsdArg will be of
type "NFS3D_ARGUMENT" if versNum is 3. The user authentication hook must use the
nfsdArg accordingly.

The authHook routine should return NFS_OK if the request is authorized, and
NFS3ERR_ACCES if not. (NFSERR_ACCESS is not required; any legitimate NFS error code
can be returned.)

See mountdInit() for documentation on mountAuthHook. Note that mountAuthHook and
authHook can point to the same routine. Simply use the progNum, versNum, and procNum
fields to decide whether the request is an NFS request or a mountd request.

RETURNS OK, or ERROR if the NFS server cannot be started.

ERRNO Not Available

SEE ALSO nfsd, nfsExport(), mountdInit()

nfsdStatusShow()

NAME nfsdStatusShow() – show the status of the NFS server

SYNOPSIS STATUS nfsdStatusShow
 (
 int options /* unused */
)

DESCRIPTION This routine shows statistics of procedure calls to the NFS server. This routine takes one
parameter to specify the NFS server version whose statistics are to be shown. options takes
one of the following 3 values. 0x01 Display statistics of NFS version 2 server only. 0x02
Display statistics of NFS version 3 server only. 0x00 Display statistics of NFS version 2 & 3.

VxWorks Kernel API Reference, 6.6
nicRegister()

546

RETURNS OK, or ERROR if the information cannot be obtained.

ERRNO Not Available

SEE ALSO nfsdCommon

nicRegister()

NAME nicRegister() – register with the VxBus subsystem

SYNOPSIS void nicRegister(void)

DESCRIPTION This routine registers the ST-NIC driver with VxBus as a child of the PLB bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO ns83902VxbEnd

npc()

NAME npc() – return the contents of the next program counter (SimSolaris)

SYNOPSIS int npc
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of the next program counter from the TCB of a specified
task. If taskId is omitted or 0, the current default task is assumed.

RETURNS The contents of the next program counter.

ERRNO Not Available

SEE ALSO dbgArchLib, ti()

2 Routines
nvRamSegDefGet()

547

2

nseRegister()

NAME nseRegister() – register with the VxBus subsystem

SYNOPSIS void nseRegister(void)

DESCRIPTION This routine registers the NatSemi driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO ns8381xVxbEnd

nvRamSegDefGet()

NAME nvRamSegDefGet() – get segment allocation from BSP

SYNOPSIS STATUS nvRamSegDefGet
 (
 VXB_DEVICE_ID pInst,
 HCF_DEVICE * pHcf,
 NVRAM_SEGMENT ** ppSegList,
 int * pSegListCount
)

DESCRIPTION This routine reads entries from the hcf record for the NVRam
device specified by pInst, and fills them in to a table.

Allocation of the table is performed within this routine,
using hwMemLib allocation. The table consists of a nSeg field
indicating the number of segments, followed by a set of structures
containing the start offset, size, allocation name, and allocation
unit number.

Within the hwconf.c file, resource names are specified with the
name "segAddr". Segment size names are "segSz". Driver (or
OS module) names are "drvName". Driver unit number names are
"drvUnit". Note that each of these four resource names must be
specified for each segment, regardless of whether the segment is
allocated or not. For segments not allocated, the segment should

VxWorks Kernel API Reference, 6.6
o0()

548

either be omitted, or allocated to a module named "unallocated"
unit -1.

The hwconf entries for each segment must be grouped together,
and each segment must have all segments fully described: name,
unit, addr, size. Failure to meet these restrictions will result
in segment information being corrupted or discarded.

RETURNS OK, or ERROR if the table cannot be allocated

ERRNO Not Available

SEE ALSO vxbNonVolLib

o0()

NAME o0() – return the contents of register o0 (also o1-o7) (SimSolaris)

SYNOPSIS int o0
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of out register o0 from the TCB of a specified task. If
taskId is omitted or 0, the current default task is assumed.

Similar routines are provided for all out registers (o0 - o7): o0() - o7().

The stack pointer is accessed via o6.

RETURNS The contents of register o0 (or the requested register).

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

2 Routines
objContextGet()

549

2

objClassTypeGet()

NAME objClassTypeGet() – get an object's class type

SYNOPSIS enum windObjClassType objClassTypeGet
 (
 OBJ_ID objId
)

DESCRIPTION The class type of the specified object is returned.

RETURNS class type enum, or ERROR if caller has insufficient access rights.

ERRNO Possible errnos generated by this routine include:

S_objLib_OBJ_ID_ERROR
Invalid object identifier.

SEE ALSO objLib

objContextGet()

NAME objContextGet() – return the object's context value

SYNOPSIS STATUS objContextGet
 (
 OBJ_ID objId, /* object to get context from */
 void ** pContext /* where to store context value */
)

DESCRIPTION The value stored in the object's context field is returned. The context field is typically set by
calling objContextSet() or an xxxOpen() routine.

RETURNS OK, or ERROR if objId is invalid.

ERRNO Possible errnos generated by this routine include:

S_objLib_OBJ_ID_ERROR
Invalid object identifier.

SEE ALSO objLib

VxWorks Kernel API Reference, 6.6
objContextSet()

550

objContextSet()

NAME objContextSet() – set the object's context value

SYNOPSIS STATUS objContextSet
 (
 OBJ_ID objId, /* object to set context on */
 void * context /* context value */
)

DESCRIPTION This routine sets the object's context field. This value is not actually used by VxWorks.
Instead, the context value can be used by OS extensions to implement object permissions,
for example.

RETURNS OK, or ERROR if objId is invalid.

ERRNO Possible errnos generated by this routine include:

S_objLib_OBJ_ID_ERROR
Invalid object identifier.

SEE ALSO objLib

objHandleShow()

NAME objHandleShow() – show information on the object referenced by an object handle

SYNOPSIS STATUS objHandleShow
 (
 OBJ_HANDLE objHandle, /* object handle to get information from */
 RTP_ID rtpId /* ID of RTP to which objHandle belongs */
)

DESCRIPTION This routine displays information regarding the WIND object an object handle references.
This routine is intended to be used for debugging purposes.

RETURNS OK, or ERROR if the information could not be displayed.

ERRNO N/A

SEE ALSO objShow, objShowAll()

2 Routines
objNameGet()

551

2

objHandleTblShow()

NAME objHandleTblShow() – show information on an RTP's handle table

SYNOPSIS void objHandleTblShow
 (
 RTP_ID rtpId,
 int disp
)

DESCRIPTION This routine displays the contents of the supplied rtpId handle table. The argument count
indicates the number of slots in the table to display. In case count is zero, all the in-use slots
in the table are displayed. This routine is intended to be used only for debugging purposes.

RETURNS N/A

ERRNO N/A

SEE ALSO objShow, rtpShow(), rtpDetailShow()

objNameGet()

NAME objNameGet() – get an object's name

SYNOPSIS STATUS objNameGet
 (
 OBJ_ID objId, /* pointer to object to get name */
 char * nameBuf, /* pointer to name string buffer */
 int bufSize /* size, in bytes, of name buffer */
)

DESCRIPTION The specified object's name string is copied into nameBuf.

RETURNS OK, or ERROR if object name cannot be retrieved.

ERRNO Possible errnos generated by this routine include:

S_objLib_OBJ_NAME_TRUNCATED
Supplied name buffer is too small. Truncated name has been returned.

S_objLib_OBJ_NOT_NAMED
Object has not been labeled with a name.

VxWorks Kernel API Reference, 6.6
objNameLenGet()

552

S_objLib_OBJ_ID_ERROR
Invalid object identifier.

SEE ALSO objLib

objNameLenGet()

NAME objNameLenGet() – get an object's name length

SYNOPSIS int objNameLenGet
 (
 OBJ_ID objId
)

DESCRIPTION The specified object's name length (without the terminating \0 character) is returned.

RETURNS name length or -1 if the object name cannot be retrieved

ERRNO Possible errnos generated by this routine include:

S_objLib_OBJ_ID_ERROR
Invalid object identifier.

S_objLib_OBJ_OPERATION_UNSUPPORTED
Object class does not support the name get operation.

S_objLib_OBJ_NOT_NAMED
Object has not been labeled with a name.

SEE ALSO objLib

objNameToId()

NAME objNameToId() – find object with matching name string and type

SYNOPSIS OBJ_ID objNameToId
 (
 enum windObjClassType classType,
 const char * name
)

2 Routines
objNameToId()

553

2

DESCRIPTION The object name space is searched for an object with a matching name and classType. There
may exist more than one object of the same type with identical names. In such cases, this
routine will return the id of the first object found.

This routine is provided if the INCLUDE_OBJ_INFO component is present in the
configuration.

Values for the windObjClassType enumerated type are tabulated below:

RETURNS NULL if no match occurs, otherwise OBJ_ID of matching object.

ERRNO Possible errnos generated by this routine include:

S_objLib_OBJ_ILLEGAL_CLASS_TYPE
The specified object class type is invalid.

SEE ALSO objLib

Value Object Class
0 Invalid
1 Wind Semaphore
2 POSIX Semaphore
3 Wind Message Queue
4 POSIX Message Queue
5 Real Time Process
6 Task
7 Watchdog Timer
8 File Descriptor
9 Page Pool
10 Page Manager
11 Group
12 Virtual Memory Context
13 Event Trigger
14 Memory Partition
15 I2O
16 device management system
17 Set
18 ISR object
19 POSIX Timer
20 Shared data region

VxWorks Kernel API Reference, 6.6
objOwnerGet()

554

objOwnerGet()

NAME objOwnerGet() – return the object's owner

SYNOPSIS OBJ_ID objOwnerGet
 (
 OBJ_ID objId /* object to get owner from */
)

DESCRIPTION The ID of the object that owns the specified object is returned.

RETURNS owner object ID, or NULL if invalid object id, the task does not
have access rights, or object ownership is excluded from the system

ERRNO Possible errnos generated by this routine include:

S_objLib_OBJ_ID_ERROR
Invalid object identifier.

SEE ALSO objLib

objOwnerSet()

NAME objOwnerSet() – change the object's owner

SYNOPSIS STATUS objOwnerSet
 (
 OBJ_ID objId, /* object to set owner */
 OBJ_ID ownerId /* owner object ID */
)

DESCRIPTION Set the owner of an object. This routine is used to change the default object ownership
hierarchy. The calling task must have access rights to both the object objId whose owner is
being changed, and the owner object ownerId which must be a real time process.

The owner object ownerId must be a real time process.

If INCLUDE_OBJ_OWNERSHIP is excluded this routine simply returns OK.

RETURNS ERROR if object ID or owner ID is invalid.

ERRNO Possible errnos generated by this routine include:

2 Routines
objShowAll()

555

2

S_objLib_OBJ_ID_ERROR
Invalid object or owner object identifier.

S_objLib_OBJ_INVALID_OWNER
Invalid object ownership relationship.

SEE ALSO objLib

objShow()

NAME objShow() – show information on an object

SYNOPSIS STATUS objShow
 (
 OBJ_ID objId, /* object to show information on */
 int showType /* show type */
)

DESCRIPTION Call class attached show routine for an object.

RETURNS OK, or ERROR if information could not be shown.

ERRNO Possible errnos generated by this routine include:

S_objLib_OBJ_ID_ERROR
Invalid object identifier.

S_objLib_OBJ_NO_METHOD
Show routine for this class of object not installed.

SEE ALSO objLib

objShowAll()

NAME objShowAll() – show all information on an object

SYNOPSIS STATUS objShowAll
 (
 OBJ_ID objId, /* object to show information on */
 int showType /* show type */
)

VxWorks Kernel API Reference, 6.6
objShowAll()

556

DESCRIPTION This routine displays all information about an object. The generic object information is
handled directly by this routine, while the class specific information is handled by the show
routine registered for the class. The routine objShow() only displays the class-specific
information. The showType parameter is passed transparently to the class-specific show
routine. Typically, a showType of 1 is used to enable a detailed information display. If objId
is not given or is null, objShowAll() displays all information on the system.

EXAMPLE The following example shows information on a task with TID = 0x188d78 :

[vxKernel] -> objShowAll 0x188d78

Generic Object Information
==========================

Type : Task
Name : /pubTestTask
Attr : 0xc1 (WIND_OBJ_NAME_DYNAMIC WIND_OBJ_PUBLIC WIND_OBJ_NAMED)
refCnt: 2
Ctx : 0x0 (type = 1)

Owner Information

ID : 0x000badc4
Type : Real Time Process
Name : (null)

Object Handles opened on this object:

Object Handle RTP
------------- --------------------------
 0x1e001d 0xdc722c helloworld.vxe

Owned Objects

Object Id Object Type Object Name
---------- --------------------------------------- ------------------------
0x001ff2d8 Binary Semaphore (null)
0x001ff288 Binary Semaphore (userTblSem)
0x001ff238 Mutex Semaphore wdMutexSem
0x001ff1b8 |-Watchdog (null)
0x001ff168 Message Queue (null)

Task Specific Information
=========================

NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
------------ --------- -------- --- -------- -------- ------- ----- -----
/pubTestTask 0x45345 c7cce4 100 PEND 419563 dc9fc8 0 0
 value = 0 = 0x0

2 Routines
open()

557

2

The ownership hierarchy is shown by an indentation of the object type. In the above
example, the watchdog object is directly owned by a semaphore object (wdMutexSem),
which in turn is owned by the task object (testTask). Hence the watchdog object is indirectly
owned by the task object (testTask).

For an object that is not named, if a symbol table entry whose value matches the object id
exists, the symbol name, enclosed in brackets, will be displayed under the object name
column. When an object is not named and an exact symbol table match does not exist,
"(null)" will be displayed under the object name column.

WARNING Deleting objId while objShowAll() is gathering information, can lead to unexpected
results.

RETURNS OK, or ERROR if the information could not be displayed.

ERRNO N/A

SEE ALSO objShow

open()

NAME open() – open a file

SYNOPSIS int open
 (
 const char *name, /* name of the file to open */
 int flags, /* access control flag */
 int mode /* mode of file to create (UNIX chmod style) */
)

DESCRIPTION This routine opens a file for reading, writing, or updating, and returns a file descriptor for
that file. The arguments to open() are the filename name and the type of access set in flags
and a UNIX chmod-style file mode mode.

The parameter flags is set to one or a combination of the following access settings by bitwise
OR operation for the duration of time the file is open. The following list is just a generic
description of supported settings. Their availability and effect with or without combination
among them change from device to device. Check the specific device manual for further
details.

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.

VxWorks Kernel API Reference, 6.6
open()

558

O_RDWR
Open for reading and writing.

O_CREAT
Create a file if not existing.

O_EXCL
Error on open if file exists and O_CREAT is also set.

O_SYNC
Write on the file descriptor complete as defined by synchronized I/O file integrity
completion.

O_DSYNC
Write on the file descriptor complete as defined by synchronized I/O data integrity
completion.

O_RSYNC
Read on the file descriptor complete at the same sync level as O_DSYNC and O_SYNC
flags.

O_APPEND
If set, the file offset is set to the end of the file prior to each write. So writes are
guaranteed at the end. It has no effect on devices other than the regular file system.

O_NONBLOCK
Non-blocking I/O if being set.

O_NOCTTY
Do not assign a ctty on this open, which does not cause the terminal device to become
the controlling terminal for the process. Effective only on a terminal device.

O_TRUNC
Open with truncation. If the file exists and is a regular file, and the file is successfully
opened, its length is truncated to 0. It has no effect on devices other than the regular file
system.

In general, open() can only open pre-existing devices and files. However, files can also be
created with open() by setting O_CREAT and perhaps some other like O_RDWR which
depends on the file system implementation. In this case, the file is created with a UNIX
chmod-style file mode, as indicated with the parameter mode. For example:

 fd = open ("/usr/myFile", O_CREAT | O_RDWR, 0644);

Files, on dosFs volumes, can be opened with the O_SYNC flag indicating that each write
should be immediately written to the backing media. This synchronizes the FAT and the
directory entries.

NOTE For more information about situations when there are no file descriptors available, see the
reference entry for iosInit().

2 Routines
opendir()

559

2

Also note that not all device drivers honor the flags or mode values when opening a file.
Most simple devices simply ignore them and return an open file descriptor for both reading
and writing. Read the device driver manual for information on this.

RETURNS A file descriptor number, or ERROR if a file name is not specified, the device does not exist,
no file descriptors are available, or the driver returns ERROR.

ERRNO ELOOP
Circular symbolic link, too many links.

EMFILE
Maximum number of files already open.

S_iosLib_DEVICE_NOT_FOUND (ENODEV)
No valid device name found in path.

others
Other errors reported by device drivers.

SEE ALSO ioLib, creat()

opendir()

NAME opendir() – open a directory for searching (POSIX)

SYNOPSIS DIR *opendir
 (
 const char* dirName /* name of directory to open */
)

DESCRIPTION This routine opens the directory named by dirName and allocates a directory descriptor
(DIR) for it. A pointer to the DIR structure is returned. The return of a NULL pointer
indicates an error.

After the directory is opened, readdir() is used to extract individual directory entries.
Finally, closedir() is used to close the directory.

WARNING For remote file systems mounted over netDrv, opendir() fails, because the netDrv
implementation strategy does not provide a way to distinguish directories from plain files.
To permit use of opendir() on remote files, use NFS rather than netDrv.

RETURNS A pointer to a directory descriptor, or NULL if there is an error.

ERRNO N/A.

VxWorks Kernel API Reference, 6.6
operator_delete()

560

SEE ALSO dirLib, closedir(), readdir(), rewinddir(), ls()

operator_delete()

NAME operator_delete() – default run-time support for memory deallocation (C++)

SYNOPSIS extern void operator delete
 (
 void *pMem /* pointer to dynamically-allocated object */
)

DESCRIPTION This function provides the default implementation of operator delete. It returns the
memory, previously allocated by operator new, to the VxWorks system memory partition.

RETURNS N/A

ERRNO Not Available

SEE ALSO cplusLib

operator_new()

NAME operator_new() – default run-time support for operator new (C++)

SYNOPSIS extern void * operator new
 (
 size_t n /* size of object to allocate */
) throw (std::bad_alloc)

DESCRIPTION This function provides the default implementation of operator new. It allocates memory
from the system memory partition for the requested object. The value, when evaluated, is
a pointer of the type pointer-to-T where T is the type of the new object.

If allocation fails a new-handler, if one is defined, is called. If the new-handler returns,
presumably after attempting to recover from the memory allocation failure, allocation is
retried. If there is no new-handler an exception of type "bad_alloc" is thrown.

THROWS std::bad_alloc if allocation failed.

RETURNS Pointer to new object.

2 Routines
operator_new()

561

2

ERRNO Not Available

SEE ALSO cplusLib

operator_new()

NAME operator_new() – default run-time support for operator new (nothrow) (C++)

SYNOPSIS extern void * operator new
 (
 size_t n, /* size of object to allocate */
 const nothrow_t & /* supply argument of "nothrow" here */
) throw ()

DESCRIPTION This function provides the default implementation of operator new (nothrow). It allocates
memory from the system memory partition for the requested object. The value, when
evaluated, is a pointer of the type pointer-to-T where T is the type of the new object.

If allocation fails, a new-handler, if one is defined, is called. If the new-handler returns,
presumably after attempting to recover from the memory allocation failure, allocation is
retried. If the new_handler throws a bad_alloc exception, the exception is caught and 0 is
returned. If allocation fails and there is no new_handler 0 is returned.

RETURNS Pointer to new object or 0 if allocation fails.

ERRNO Not Available

SEE ALSO cplusLib

operator_new()

NAME operator_new() – run-time support for operator new with placement (C++)

SYNOPSIS extern void * operator new
 (
 size_t n, /* size of object to allocate (unused) */
 void * pMem /* pointer to allocated memory */
)

DESCRIPTION This function provides the default implementation of the global new operator, with support
for the placement syntax. New-with-placement is used to initialize objects for which

VxWorks Kernel API Reference, 6.6
oprintf()

562

memory has already been allocated. pMem points to the previously allocated memory.
memory.

RETURNS pMem

ERRNO Not Available

SEE ALSO cplusLib

oprintf()

NAME oprintf() – write a formatted string to an output function

SYNOPSIS int oprintf
 (
 FUNCPTR prtFunc, /* pointer to output function */
 int prtArg, /* argument for output function */
 const char * fmt, /* format string to write */
 ... /* optional arguments to format string */
)

DESCRIPTION This routine prints a formatted string via the function specified by prtFunc. The function
will receive as parameters a pointer to a buffer, an integer indicating the length of the buffer,
and the argument prtArg. If NULL is specified as the output function, the output will be sent
to stdout.

The function and syntax of oprintf are otherwise identical to printf().

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The number of characters output, not including the NULL terminator.

ERRNO Not Available

SEE ALSO fioBaseLib, printf()

2 Routines
passFsDevInit()

563

2

partLibCreate()

NAME partLibCreate() – partition a device

SYNOPSIS STATUS partLibCreate
 (
 int fd,
 int nPart,
 int size1,
 int size2,
 int size3
)

DESCRIPTION This routine partitions a device.

RETURNS OK on success, ERROR otherwise

ERRNO Not Available

SEE ALSO partLib

passFsDevInit()

NAME passFsDevInit() – associate a device with passFs file system functions

SYNOPSIS void * passFsDevInit
 (
 char * devName /* device name */
)

DESCRIPTION This routine associates the name devName with the file system and installs it in the I/O
System's device table.

RETURNS A pointer to the volume descriptor on success, else NULL.

ERRNO S_iosLib_DUPLICATE_DEVICE_NAME (EINVAL)
Device name already in use.

SEE ALSO passFsLib

VxWorks Kernel API Reference, 6.6
passFsInit()

564

passFsInit()

NAME passFsInit() – prepare to use the passFs library

SYNOPSIS STATUS passFsInit
 (
 int passfs, /* number of pass-through file systems */
 BOOL cacheEnable /* enable passfs cache ? */
)

DESCRIPTION This routine initializes the passFs library. It must be called only once, before any other
routines in the library. First argument specifies the number of passFs devices that may be
open at once, second argument is a boolean that specifies if cache must be enabled or not.
This routine installs passFsLib as a driver in the I/O system driver table, allocates and sets
up the necessary memory structures, and initializes semaphores.

Usually this routine is called from the root task, usrRoot(), in prjConfig(). This
initialization is enabled when the configuration component INCLUDE_PASSFS is defined.

NOTE Maximum number of pass-through file systems is 1.

RETURNS OK on success, else ERROR.

ERRNO S_iosLib_DRIVER_GLUT (ENOMEM)
No memory available for data structures.

SEE ALSO passFsLib

pathconf()

NAME pathconf() – determine the current value of a configurable limit

SYNOPSIS long pathconf
 (
 const char *path, /* path of the file */
 int name /* Value to query */
)

DESCRIPTION The fpathconf() and pathconf() functions provide a method for the application to
determine the current value of a configurable limit or option (variable) that is associated
with a file or directory.

2 Routines
pc()

565

2

RETURNS The current value is returned if valid with the query. Otherwise, ERROR, -1 returned and
errno may be set to indicate the error. There are many reasons to return ERROR. If the
variable corresponding to name has no limit for the path or file descriptor, both pathconf()
and fpathconf() return -1 without changing errno.

ERRNO

SEE ALSO fsPxLib, fpathconf()

pause()

NAME pause() – suspend the task until delivery of a signal (POSIX)

SYNOPSIS int pause (void)

DESCRIPTION This routine suspends the task until delivery of a signal.

NOTE Since the pause() function suspends thread execution indefinitely, there is no successful
completion return value.

RETURNS -1, always.

ERRNO EINTR

SEE ALSO sigLib

pc()

NAME pc() – return the contents of the program counter

SYNOPSIS int pc
 (
 int task /* task ID */
)

DESCRIPTION This command extracts the contents of the program counter for a specified task from the
task's TCB. If task is omitted or 0, the current task is used.

RETURNS the contents of the program counter.

VxWorks Kernel API Reference, 6.6
pcConDevBind()

566

ERRNO N/A

SEE ALSO usrLib, ti(), the VxWorks programmer guides.

pcConDevBind()

NAME pcConDevBind() – bind keyboard or VGA device with console

SYNOPSIS TY_DEV * pcConDevBind
 (
 int arg,
 FUNCPTR pFunc,
 void * pArg
)

DESCRIPTION This routine is called by the keyboard and VGA drivers to associate themselves with a PC
console instance. The keyboard driver should normally pass its unit number for arg, and
NULL for the remaining two parameters. The VGA driver should pass a pointer to its buffer
processing routine and the argument to this routine for these two parameters.

RETURNS TY_DEV pointer associated with console, or NULL.

ERRNO Not Available

SEE ALSO vxbPcConsole

pcConDevCreate()

NAME pcConDevCreate() – create a device for the on-board ports

SYNOPSIS STATUS pcConDevCreate
 (
 char * name, /* name to use for this device */
 FAST int channel, /* virtual console number */
 int rdBufSize, /* read buffer size, in bytes */
 int wrtBufSize /* write buffer size in bytes */
)

DESCRIPTION This routine creates a device on one of the pcConsole ports. Each port to be used should
have only one device associated with it, by calling this routine.

2 Routines
pentiumBtc()

567

2

RETURNS OK, or ERROR if there is no driver or one already exists for the specified port.

ERRNO Not Available

SEE ALSO vxbPcConsole

pcConDrv()

NAME pcConDrv() – initialize the console driver

SYNOPSIS STATUS pcConDrv (void)

DESCRIPTION This routine initializes the console driver, sets up interrupt vectors, and performs hardware
initialization of the keybord and display.

RETURNS OK, or ERROR if the driver cannot be installed.

ERRNO Not Available

SEE ALSO vxbPcConsole

pentiumBtc()

NAME pentiumBtc() – execute atomic compare-and-exchange instruction to clear a bit

SYNOPSIS STATUS pentiumBtc (pFlag)
 char * pFlag; /* flag address */

DESCRIPTION This routine compares a byte specified by the first parameter with TRUE. If it is TRUE, it
changes it to 0 and returns OK. If it is not TRUE, it returns ERROR. LOCK and CMPXCHGB
are used to get the atomic memory access.

RETURNS OK or ERROR if the specified flag is not TRUE

ERRNO Not Available

SEE ALSO pentiumALib

VxWorks Kernel API Reference, 6.6
pentiumBts()

568

pentiumBts()

NAME pentiumBts() – execute atomic compare-and-exchange instruction to set a bit

SYNOPSIS STATUS pentiumBts (pFlag)
 char * pFlag; /* flag address */

DESCRIPTION This routine compares a byte specified by the first parameter with 0. If it is 0, it changes it to
TRUE and returns OK. If it is not 0, it returns ERROR. LOCK and CMPXCHGB are used to
get the atomic memory access.

RETURNS OK or ERROR if the specified flag is not zero.

ERRNO Not Available

SEE ALSO pentiumALib

pentiumCr4Get()

NAME pentiumCr4Get() – get contents of CR4 register

SYNOPSIS int pentiumCr4Get (void)

DESCRIPTION This routine gets the contents of the CR4 register. This routine is kept for the backward
compatibility, and vxCr4Get() should be used instead. The CR4 is introduced in the
Pentium processor, thus this routine just returns in the pre Pentium generation processors.

RETURNS Contents of CR4 register.

ERRNO Not Available

SEE ALSO pentiumALib

pentiumCr4Set()

NAME pentiumCr4Set() – sets specified value to the CR4 register

SYNOPSIS void pentiumCr4Set (cr4)

2 Routines
pentiumMcaShow()

569

2

 int cr4; /* value to write CR4 register */

DESCRIPTION This routine sets a specified value to the CR4 register. This routine is kept for the backward
compatibility, and vxCr4Set() should be used instead. The CR4 is introduced in the
Pentium processor, thus this routine just returns in the pre Pentium generation processors.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumMcaEnable()

NAME pentiumMcaEnable() – enable/disable the MCA (Machine Check Architecture)

SYNOPSIS void pentiumMcaEnable
 (
 BOOL enable /* TRUE to enable, FALSE to disable the MCA */
)

DESCRIPTION This routine enables/disables 1) the Machine Check Architecture and its Error Reporting
register banks 2) the Machine Check Exception by toggling the MCE bit in the CR4. This
routine works on either P5, P6 or P7 family.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

pentiumMcaShow()

NAME pentiumMcaShow() – show MCA (Machine Check Architecture) registers

SYNOPSIS void pentiumMcaShow (void)

DESCRIPTION This routine shows Machine-Check global control registers and Error-Reporting register
banks. Number of the Error-Reporting register banks is kept in a variable mcaBanks.

VxWorks Kernel API Reference, 6.6
pentiumMsrGet()

570

MCi_ADDR and MCi_MISC registers in the Error-Reporting register bank are showed if
MCi_STATUS indicates that these registers are valid.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumShow

pentiumMsrGet()

NAME pentiumMsrGet() – get the contents of the specified MSR (Model Specific Register)

SYNOPSIS void pentiumMsrGet (addr, pData)
 int addr; /* MSR address */
 long long int * pData; /* MSR data */

DESCRIPTION This routine gets the contents of the specified MSR. The first parameter is an address of the
MSR. The second parameter is a pointer of 64Bit variable.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumMsrInit()

NAME pentiumMsrInit() – initialize all the MSRs (Model Specific Register)

SYNOPSIS STATUS pentiumMsrInit (void)

DESCRIPTION This routine initializes all the MSRs in the processor. This routine works on either P5, P6 or
P7 family processors.

RETURNS OK, or ERROR if RDMSR/WRMSR instructions are not supported.

ERRNO Not Available

2 Routines
pentiumMsrShow()

571

2

SEE ALSO pentiumLib

pentiumMsrSet()

NAME pentiumMsrSet() – set a value to the specified MSR (Model Specific Registers)

SYNOPSIS void pentiumMsrSet (addr, pData)
 int addr; /* MSR address */
 long long int * pData; /* MSR data */

DESCRIPTION This routine sets a value to a specified MSR. The first parameter is an address of the MSR.
The second parameter is a pointer of 64Bit variable.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumMsrShow()

NAME pentiumMsrShow() – show all the MSR (Model Specific Register)

SYNOPSIS void pentiumMsrShow (void)

DESCRIPTION This routine shows all the MSRs in the Pentium and Pentium[234].

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumShow

VxWorks Kernel API Reference, 6.6
pentiumMtrrDisable()

572

pentiumMtrrDisable()

NAME pentiumMtrrDisable() – disable MTRR (Memory Type Range Register)

SYNOPSIS void pentiumMtrrDisable (void)

DESCRIPTION This routine disables the MTRR that provide a mechanism for associating the memory types
with physical address ranges in system memory.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

pentiumMtrrEnable()

NAME pentiumMtrrEnable() – enable MTRR (Memory Type Range Register)

SYNOPSIS void pentiumMtrrEnable (void)

DESCRIPTION This routine enables the MTRR that provide a mechanism for associating the memory types
with physical address ranges in system memory.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

pentiumMtrrGet()

NAME pentiumMtrrGet() – get MTRRs to a specified MTRR table

SYNOPSIS STATUS pentiumMtrrGet
 (
 MTRR * pMtrr /* MTRR table */
)

2 Routines
pentiumP5PmcGet()

573

2

DESCRIPTION This routine gets MTRRs to a specified MTRR table with RDMSR instruction. The read
MTRRs are CAP register, DEFTYPE register, fixed range MTRRs, and variable range
MTRRs.

RETURNS OK, or ERROR if MTRR is being accessed.

ERRNO Not Available

SEE ALSO pentiumLib

pentiumMtrrSet()

NAME pentiumMtrrSet() – set MTRRs from specified MTRR table with WRMSR instruction.

SYNOPSIS STATUS pentiumMtrrSet
 (
 MTRR * pMtrr /* MTRR table */
)

DESCRIPTION This routine sets MTRRs from specified MTRR table with WRMSR instruction. The written
MTRRs are DEFTYPE register, fixed range MTRRs, and variable range MTRRs.

RETURNS OK, or ERROR if MTRR is enabled or being accessed.

ERRNO Not Available

SEE ALSO pentiumLib

pentiumP5PmcGet()

NAME pentiumP5PmcGet() – get the contents of P5 PMC0 and PMC1

SYNOPSIS void pentiumP5PmcGet (pPmc0, pPmc1)
 long long int * pPmc0; /* Performance Monitoring Counter 0 */
 long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets the contents of both PMC0 (Performance Monitoring Counter 0) and
PMC1. The first parameter is a pointer of 64Bit variable to store the content of the Counter
0, and the second parameter is for the Counter 1.

VxWorks Kernel API Reference, 6.6
pentiumP5PmcGet0()

574

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP5PmcGet0()

NAME pentiumP5PmcGet0() – get the contents of P5 PMC0

SYNOPSIS void pentiumP5PmcGet0 (pPmc0)
 long long int * pPmc0; /* Performance Monitoring Counter 0 */

DESCRIPTION This routine gets the contents of PMC0 (Performance Monitoring Counter 0). The parameter
is a pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP5PmcGet1()

NAME pentiumP5PmcGet1() – get the contents of P5 PMC1

SYNOPSIS void pentiumP5PmcGet1 (pPmc1)
 long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets a content of PMC1 (Performance Monitoring Counter 1). Parameter is a
pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

2 Routines
pentiumP5PmcReset1()

575

2

pentiumP5PmcReset()

NAME pentiumP5PmcReset() – reset both PMC0 and PMC1

SYNOPSIS void pentiumP5PmcReset (void)

DESCRIPTION This routine resets both PMC0 (Performance Monitoring Counter 0) and PMC1.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP5PmcReset0()

NAME pentiumP5PmcReset0() – reset PMC0

SYNOPSIS void pentiumP5PmcReset0 (void)

DESCRIPTION This routine resets PMC0 (Performance Monitoring Counter 0).

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP5PmcReset1()

NAME pentiumP5PmcReset1() – reset PMC1

SYNOPSIS void pentiumP5PmcReset1 (void)

DESCRIPTION This routine resets PMC1 (Performance Monitoring Counter 1).

RETURNS N/A

VxWorks Kernel API Reference, 6.6
pentiumP5PmcStart0()

576

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP5PmcStart0()

NAME pentiumP5PmcStart0() – start PMC0

SYNOPSIS STATUS pentiumP5PmcStart0 (pmc0Cesr)
 int pmc0Cesr; /* PMC0 control and event select */

DESCRIPTION This routine starts PMC0 (Performance Monitoring Counter 0) by writing specified PMC0
events to Performance Event Select Registers. The only parameter is the content of
Performance Event Select Register.

RETURNS OK or ERROR if PMC0 is already started.

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP5PmcStart1()

NAME pentiumP5PmcStart1() – start PMC1

SYNOPSIS STATUS pentiumP5PmcStart1 (pmc1Cesr)
 int pmc1Cesr; /* PMC1 control and event select */

DESCRIPTION This routine starts PMC1 (Performance Monitoring Counter 0) by writing specified PMC1
events to Performance Event Select Registers. The only parameter is the content of
Performance Event Select Register.

RETURNS OK or ERROR if PMC1 is already started.

ERRNO Not Available

SEE ALSO pentiumALib

2 Routines
pentiumP5PmcStop1()

577

2

pentiumP5PmcStop()

NAME pentiumP5PmcStop() – stop both P5 PMC0 and PMC1

SYNOPSIS void pentiumP5PmcStop (void)

DESCRIPTION This routine stops both PMC0 (Performance Monitoring Counter 0) and PMC1 by clearing
two Performance Event Select Registers.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP5PmcStop0()

NAME pentiumP5PmcStop0() – stop P5 PMC0

SYNOPSIS void pentiumP5PmcStop0 (void)

DESCRIPTION This routine stops only PMC0 (Performance Monitoring Counter 0) by clearing the PMC0
bits of Control and Event Select Register.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP5PmcStop1()

NAME pentiumP5PmcStop1() – stop P5 PMC1

SYNOPSIS void pentiumP5PmcStop1 (void)

DESCRIPTION This routine stops only PMC1 (Performance Monitoring Counter 1) by clearing the PMC1
bits of Control and Event Select Register.

VxWorks Kernel API Reference, 6.6
pentiumP6PmcGet()

578

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP6PmcGet()

NAME pentiumP6PmcGet() – get the contents of PMC0 and PMC1

SYNOPSIS void pentiumP6PmcGet (pPmc0, pPmc1)
 long long int * pPmc0; /* Performance Monitoring Counter 0 */
 long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets the contents of both PMC0 (Performance Monitoring Counter 0) and
PMC1. The first parameter is a pointer of 64Bit variable to store the content of the Counter
0, and the second parameter is for the Counter 1.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP6PmcGet0()

NAME pentiumP6PmcGet0() – get the contents of PMC0

SYNOPSIS void pentiumP6PmcGet0 (pPmc0)
 long long int * pPmc0; /* Performance Monitoring Counter 0 */

DESCRIPTION This routine gets the contents of PMC0 (Performance Monitoring Counter 0). The parameter
is a pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

2 Routines
pentiumP6PmcReset0()

579

2

pentiumP6PmcGet1()

NAME pentiumP6PmcGet1() – get the contents of PMC1

SYNOPSIS void pentiumP6PmcGet1 (pPmc1)
 long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION This routine gets a content of PMC1 (Performance Monitoring Counter 1). Parameter is a
pointer of 64Bit variable to store the content of the Counter.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP6PmcReset()

NAME pentiumP6PmcReset() – reset both PMC0 and PMC1

SYNOPSIS void pentiumP6PmcReset (void)

DESCRIPTION This routine resets both PMC0 (Performance Monitoring Counter 0) and PMC1.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP6PmcReset0()

NAME pentiumP6PmcReset0() – reset PMC0

SYNOPSIS void pentiumP6PmcReset0 (void)

DESCRIPTION This routine resets PMC0 (Performance Monitoring Counter 0).

VxWorks Kernel API Reference, 6.6
pentiumP6PmcReset1()

580

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP6PmcReset1()

NAME pentiumP6PmcReset1() – reset PMC1

SYNOPSIS void pentiumP6PmcReset1 (void)

DESCRIPTION This routine resets PMC1 (Performance Monitoring Counter 1).

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP6PmcStart()

NAME pentiumP6PmcStart() – start both PMC0 and PMC1

SYNOPSIS STATUS pentiumP6PmcStart (pmcEvtSel0, pmcEvtSel1)
 int pmcEvtSel0; /* Performance Event Select Register 0 */
 int pmcEvtSel1; /* Performance Event Select Register 1 */

DESCRIPTION This routine starts both PMC0 (Performance Monitoring Counter 0) and PMC1 by writing
specified events to Performance Event Select Registers. The first parameter is a content of
Performance Event Select Register 0, and the second parameter is for the Performance Event
Select Register 1.

RETURNS OK or ERROR if PMC is already started.

ERRNO Not Available

SEE ALSO pentiumALib

2 Routines
pentiumPmcGet()

581

2

pentiumP6PmcStop()

NAME pentiumP6PmcStop() – stop both PMC0 and PMC1

SYNOPSIS void pentiumP6PmcStop (void)

DESCRIPTION This routine stops both PMC0 (Performance Monitoring Counter 0) and PMC1 by clearing
two Performance Event Select Registers.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumP6PmcStop1()

NAME pentiumP6PmcStop1() – stop PMC1

SYNOPSIS void pentiumP6PmcStop1 (void)

DESCRIPTION This routine stops only PMC1 (Performance Monitoring Counter 1) by clearing the
Performance Event Select Register 1. Note, clearing the Performance Event Select Register 0
stops both counters, PMC0 and PMC1.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumPmcGet()

NAME pentiumPmcGet() – get the contents of PMC0 and PMC1

SYNOPSIS void pentiumPmcGet (pPmc0, pPmc1)
 long long int * pPmc0; /* Performance Monitoring Counter 0 */
 long long int * pPmc1; /* Performance Monitoring Counter 1 */

VxWorks Kernel API Reference, 6.6
pentiumPmcGet0()

582

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

pentiumPmcGet0()

NAME pentiumPmcGet0() – get the contents of PMC0

SYNOPSIS void pentiumPmcGet0 (pPmc0)
 long long int * pPmc0; /* Performance Monitoring Counter 0 */

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

pentiumPmcGet1()

NAME pentiumPmcGet1() – get the contents of PMC1

SYNOPSIS void pentiumPmcGet1 (pPmc1)
 long long int * pPmc1; /* Performance Monitoring Counter 1 */

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

2 Routines
pentiumPmcReset1()

583

2

pentiumPmcReset()

NAME pentiumPmcReset() – reset both PMC0 and PMC1

SYNOPSIS void pentiumPmcReset (void)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

pentiumPmcReset0()

NAME pentiumPmcReset0() – reset PMC0

SYNOPSIS void pentiumPmcReset0 (void)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

pentiumPmcReset1()

NAME pentiumPmcReset1() – reset PMC1

SYNOPSIS void pentiumPmcReset1 (void)

DESCRIPTION none

RETURNS N/A

VxWorks Kernel API Reference, 6.6
pentiumPmcShow()

584

ERRNO Not Available

SEE ALSO pentiumLib

pentiumPmcShow()

NAME pentiumPmcShow() – show PMCs (Performance Monitoring Counters)

SYNOPSIS void pentiumPmcShow
 (
 BOOL zap /* 1: reset PMC0 and PMC1 */
)

DESCRIPTION This routine shows Performance Monitoring Counter 0 and 1. Monitored events are selected
by Performance Event Select Registers in in pentiumPmcStart (). These counters are cleared
to 0 if the parameter "zap" is TRUE.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumShow

pentiumPmcStart()

NAME pentiumPmcStart() – start both PMC0 and PMC1

SYNOPSIS STATUS pentiumPmcStart (pmcEvtSel0, pmcEvtSel1)
 int pmcEvtSel0; /* Performance Event Select Register 0 */
 int pmcEvtSel1; /* Performance Event Select Register 1 */

DESCRIPTION none

RETURNS OK or ERROR if PMC is already started.

ERRNO Not Available

SEE ALSO pentiumLib

2 Routines
pentiumPmcStop()

585

2

pentiumPmcStart0()

NAME pentiumPmcStart0() – start PMC0

SYNOPSIS STATUS pentiumPmcStart0 (pmcEvtSel0)
 int pmcEvtSel0; /* PMC0 control and event select */

DESCRIPTION none

RETURNS OK or ERROR if PMC is already started.

ERRNO Not Available

SEE ALSO pentiumLib

pentiumPmcStart1()

NAME pentiumPmcStart1() – start PMC1

SYNOPSIS STATUS pentiumPmcStart1 (pmcEvtSel1)
 int pmcEvtSel1; /* PMC1 control and event select */

DESCRIPTION none

RETURNS OK or ERROR if PMC1 is already started.

ERRNO Not Available

SEE ALSO pentiumLib

pentiumPmcStop()

NAME pentiumPmcStop() – stop both PMC0 and PMC1

SYNOPSIS void pentiumPmcStop (void)

DESCRIPTION none

VxWorks Kernel API Reference, 6.6
pentiumPmcStop0()

586

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

pentiumPmcStop0()

NAME pentiumPmcStop0() – stop PMC0

SYNOPSIS void pentiumPmcStop0 (void)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

pentiumPmcStop1()

NAME pentiumPmcStop1() – stop PMC1

SYNOPSIS void pentiumPmcStop1 (void)

DESCRIPTION none

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumLib

2 Routines
pentiumTlbFlush()

587

2

pentiumSerialize()

NAME pentiumSerialize() – execute a serializing instruction CPUID

SYNOPSIS void pentiumSerialize (void)

DESCRIPTION This routine executes a serializing instruction CPUID. Serialization means that all
modifications to flags, registers, and memory by previous instructions are completed before
the next instruction is fetched and executed and all buffered writes have drained to
memory.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumTlbFlush()

NAME pentiumTlbFlush() – flush TLBs (Translation Lookaside Buffers)

SYNOPSIS void pentiumTlbFlush (void)

DESCRIPTION This routine flushes TLBs by loading the CR3 register. All of the TLBs are automatically
invalidated any time the CR3 register is loaded. The page global enable (PGE) flag in
register CR4 and the global flag in a page-directory or page-table entry can be used to
frequently used pages from being automatically invalidated in the TLBs on a load of CR3
register. The only way to deterministically invalidate global page entries is to clear the PGE
flag and then invalidate the TLBs.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

VxWorks Kernel API Reference, 6.6
pentiumTscGet32()

588

pentiumTscGet32()

NAME pentiumTscGet32() – get the lower half of the 64Bit TSC (Timestamp Counter)

SYNOPSIS UINT32 pentiumTscGet32 (void)

DESCRIPTION This routine gets a lower half of the 64Bit TSC by RDTSC instruction. RDTSC instruction
saves the lower 32Bit in EAX register, so this routine simply returns after executing RDTSC
instruction.

RETURNS Lower half of the 64Bit TSC (Timestamp Counter)

ERRNO Not Available

SEE ALSO pentiumALib

pentiumTscGet64()

NAME pentiumTscGet64() – get 64Bit TSC (Timestamp Counter)

SYNOPSIS void pentiumTscGet64 (pTsc)
 long long int * pTsc; /* Timestamp Counter */

DESCRIPTION This routine gets 64Bit TSC by RDTSC instruction. Parameter is a pointer of 64Bit variable
to store the content of the Counter.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

pentiumTscReset()

NAME pentiumTscReset() – reset the TSC (Timestamp Counter)

SYNOPSIS void pentiumTscReset (void)

2 Routines
period()

589

2

DESCRIPTION This routine resets the TSC by writing zero to the TSC with WRMSR instruction.

RETURNS N/A

ERRNO Not Available

SEE ALSO pentiumALib

period()

NAME period() – spawn a task to call a function periodically

SYNOPSIS int period
 (
 int secs, /* period in seconds */
 FUNCPTR func, /* function to call repeatedly */
 int arg1, /* first of eight args to pass to func */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8
)

DESCRIPTION This command spawns a task that repeatedly calls a specified function, with up to eight of
its arguments, delaying the specified number of seconds between calls.

For example, to have i() display task information every 5 seconds, just type:

 -> period 5, i

NOTE The task is spawned using the sp() routine. See the description of sp() for details about
priority, options, stack size, and task ID.

RETURNS A task ID, or ERROR if the task cannot be spawned.

ERRNO sp() errnos.

SEE ALSO usrLib, periodRun(), sp(), the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
periodRun()

590

periodRun()

NAME periodRun() – call a function periodically

SYNOPSIS void periodRun
 (
 int secs, /* no. of seconds to delay between calls */
 FUNCPTR func, /* function to call repeatedly */
 int arg1, /* first of eight args to pass to func */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8
)

DESCRIPTION This command repeatedly calls a specified function, with up to eight of its arguments,
delaying the specified number of seconds between calls.

Normally, this routine is called only by period(), which spawns it as a task.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, period(), the VxWorks programmer guides.

philDemo()

NAME philDemo() – entry point for VxWorks/SMP Dijkstra's dining philosophers demo

SYNOPSIS int philDemo (int arg)

DESCRIPTION This routine is the entry point for the VxWorks/SMP Dijkstra's dining philosophers demo.
Specifying a non-0 value for arg disables the usage of ANSI escape sequences in the console
output.

RETURNS OK always.

ERRNO N/A

SEE ALSO phil

2 Routines
pipeDevDelete()

591

2

pipeDevCreate()

NAME pipeDevCreate() – create a pipe device

SYNOPSIS STATUS pipeDevCreate
 (
 const char* name, /* name of pipe to be created */
 int nMessages, /* max. number of messages in pipe */
 int nBytes /* size of each message */
)

DESCRIPTION This routine creates a pipe device. It cannot be called from an interrupt service routine. It
allocates memory for the necessary structures and initializes the device. The pipe device will
have a maximum of nMessages messages of up to nBytes each in the pipe at once. When the
pipe is full, a task attempting to write to the pipe will be suspended until a message has been
read. Messages are lost if written to a full pipe at interrupt level.

RETURNS OK, or ERROR if the call fails.

ERRNO ENXIO
driver not initialized

S_intLib_NOT_ISR_CALLABLE
cannot be called from an ISR

EINVAL
invalid arguments

SEE ALSO pipeDrv

pipeDevDelete()

NAME pipeDevDelete() – delete a pipe device

SYNOPSIS STATUS pipeDevDelete
 (
 const char * name, /* name of pipe to be deleted */
 BOOL force /* if TRUE, force pipe deletion */
)

DESCRIPTION This routine deletes a pipe device of a given name. The name must match that passed to
pipeDevCreate() else ERROR will be returned. This routine frees memory for the necessary
structures and deletes the device. It cannot be called from an interrupt service routine.

VxWorks Kernel API Reference, 6.6
pipeDrv()

592

A pipe device cannot be deleted until its number of open requests has been reduced to zero
by an equal number of close requests and there are no tasks pending in its select list. If the
optional force flag is asserted, the above restrictions are ignored, resulting in forced deletion
of any select list and freeing of pipe resources.

CAVEAT Forced pipe deletion can have catastrophic results. Use only as a last resort.

RETURNS OK, or ERROR if the call fails.

ERRNO S_intLib_NOT_ISR_CALLABLE
cannot be called from an ISR

ENXIO
driver not initialized

EMFILE
pipe still has open files

EBUSY
pipe is selected by at least one pending task

EINVAL
invalid arguments

ENODEV
no device found

SEE ALSO pipeDrv

pipeDrv()

NAME pipeDrv() – initialize the pipe driver

SYNOPSIS STATUS pipeDrv (void)

DESCRIPTION This routine initializes and installs the driver. It must be called before any pipes are created.
It is called automatically during initialization when VxWorks is configured with the
INCLUDE_PIPES component.

RETURNS OK, or ERROR if the driver installation fails.

ERRNO S_iosLib_DRIVER_GLUT (ENOMEM)
No memory available for data structures.

SEE ALSO pipeDrv

2 Routines
pmInvalidate()

593

2

pmFreeSpace()

NAME pmFreeSpace() – returns the amount of free space left in the PM arena

SYNOPSIS int pmFreeSpace
 (
 PM_ARENA_DEF arena /* arena definition function */
)

DESCRIPTION This function returns the amount of useable free space remaining in the PM arena. Clients
of pmLib may request any amount up to this value.

RETURNS the amount of free space in the arena (in bytes), or ERROR if pmLib has not been initialized

ERRNO Not Available

SEE ALSO pmLib

pmInvalidate()

NAME pmInvalidate() – invalidates the entire PM arena

SYNOPSIS STATUS pmInvalidate
 (
 PM_ARENA_DEF arena /* arena definition function */
)

DESCRIPTION Warning: THIS ROUTINE WILL RENDER THE ENTIRE PM ARENA INVALID!

This function should be used with utmost care. It will invalidate the entire PM arena,
effectively wiping out all regions and making their contents inaccessible.

It should only be used when there is a need to wipe the entire PM arena, typically during
development.

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO pmLib

VxWorks Kernel API Reference, 6.6
pmRegionAddr()

594

pmRegionAddr()

NAME pmRegionAddr() – returns the address of a persistent heap region

SYNOPSIS void *pmRegionAddr
 (
 PM_ARENA_DEF arena, /* arena definition function */
 int region /* region number number */
)

DESCRIPTION This function returns a pointer to the virtual address of the start of the data area of a
persistent heap region.

RETURNS a pointer to the region's data area or NULL if the region or arena is invalid

ERRNO Not Available

SEE ALSO pmLib

pmRegionClose()

NAME pmRegionClose() – closes a region making it inaccessible to clients

SYNOPSIS STATUS pmRegionClose
 (
 PM_ARENA_DEF arena, /* arena definition function */
 int region /* region identifier */
)

DESCRIPTION This function makes the given region inaccessible to all clients of pmLib. It does not
guarantee to return the memory to the arena's free space, since it may be non-contiguous
with the remaining free space, but it will attempt to coalesce it if at all possible.

RETURNS OK if the region was closed safely, or ERROR if not

ERRNO Not Available

SEE ALSO pmLib

2 Routines
pmRegionOpen()

595

2

pmRegionCreate()

NAME pmRegionCreate() – creates a persistent heap region

SYNOPSIS int pmRegionCreate
 (
 PM_ARENA_DEF arena, /* arena definition function */
 const char * key, /* short name for region */
 unsigned int size, /* the requested size */
 int mode /* initial protection */
)

DESCRIPTION This function creates a new region in the PM arena, of the given size, with the given key. The
key must be unique -- if a region already exists with the same name, it is considered an error,
and this function will fail by returning ERROR.

If the requested size is not a multiple of the page size, it will be rounded up to the next
multiple of the page size.

RETURNS a positive integer identifying the region, or ERROR if it could not be created, or an existing
region has the same name

ERRNO Not Available

SEE ALSO pmLib

pmRegionOpen()

NAME pmRegionOpen() – opens an existing persistent heap region

SYNOPSIS int pmRegionOpen
 (
 PM_ARENA_DEF arena, /* arena definition function */
 const char * key /* short name for region */
)

DESCRIPTION This function opens an existing region in the PM arena. It looks for a region with a name
matching the supplied key. If one is found, it will return its region identifier. If no such
region is found, it returns ERROR.

RETURNS a positive integer identifying the region, or ERROR if it could not be located

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
pmRegionProtect()

596

SEE ALSO pmLib

pmRegionProtect()

NAME pmRegionProtect() – makes a PM region read-only

SYNOPSIS STATUS pmRegionProtect
 (
 PM_ARENA_DEF arena, /* arena definition function */
 int region, /* the region identifier */
 int mode /* PM_PROT_XXX value */
)

DESCRIPTION This function only alters the protection state of the region if the containing arena is set up
for RDONLY mode, i.e. it prefers to be immutable most of the time. If the arena was
initialised in RDWR mode, then it will remain writeable always, and any attempt to set it
(or one of its regions) into RDONLY mode is an error.

RETURNS OK or ERROR if the region or arena is invalid

ERRNO Not Available

SEE ALSO pmLib

pmRegionSize()

NAME pmRegionSize() – return the size of a persistent heap region

SYNOPSIS int pmRegionSize
 (
 PM_ARENA_DEF arena, /* arena definition function */
 int region /* persistent heap region number */
)

DESCRIPTION This function returns the size of a region within the persistent heap.

RETURNS the size of the region's data area or ERROR if the region or arena is invalid

ERRNO Not Available

2 Routines
pmValidate()

597

2

SEE ALSO pmLib

pmShow()

NAME pmShow() – shows the created persistent heap segments

SYNOPSIS int pmShow
 (
 PM_ARENA_DEF arena /* arena definition function */
)

DESCRIPTION This function displays the allocated persistent heaps and their headers.

RETURNS OK normally, or ERROR if the PM library is not initialised

ERRNO Not Available

SEE ALSO pmLib

pmValidate()

NAME pmValidate() – validates a PM arena

SYNOPSIS STATUS pmValidate
 (
 PM_ARENA_DEF arena /* arena definition function */
)

DESCRIPTION This function tests the validity or otherwise of a PM arena.

RETURNS OK if the arena is valid, or ERROR if it is corrupt or does not appear to be a PM arena

ERRNO Not Available

SEE ALSO pmLib

VxWorks Kernel API Reference, 6.6
poolBlockAdd()

598

poolBlockAdd()

NAME poolBlockAdd() – add an item block to the pool

SYNOPSIS ULONG poolBlockAdd
 (
 POOL_ID poolId, /* ID of pool to delete */
 void * pBlock, /* base address of block to add */
 ULONG size /* size of block to add */
)

DESCRIPTION This routine adds an item block to the pool using memory provided by the user. The
memory provided must be sufficient for at least one properly aligned item.

RETURNS number of items added, or 0 in case of error

ERRNO S_poolLib_INVALID_POOL_ID
not a valid pool ID.

S_poolLib_INVALID_BLK_ADDR
pBlock parameter is NULL.

S_poolLib_BLOCK_TOO_SMALL
size insufficient for at least one item.

SEE ALSO poolLib, poolCreate()

poolCreate()

NAME poolCreate() – create a pool

SYNOPSIS POOL_ID poolCreate
 (
 const char * pName, /* optional name to assign to pool */
 ULONG itmSize, /* size in bytes of a pool item (must be > 0) */
 ULONG alignment, /* alignment of a pool item */
 /* (must be power of 2, or 0) */
 ULONG initCnt, /* initial number of items to put in pool */
 ULONG incrCnt, /* min no of items to add to pool dynamically */
 /* (if 0, no pool expansion is done) */
 PART_ID partId, /* memory partition ID */
 ULONG options /* initial options for pool */
)

2 Routines
poolDelete()

599

2

DESCRIPTION This routine creates a pool by allocating an initial block of memory which is guarenteed to
contain at least initCnt items. The pool will hold items of the specified size and alignment
only. The alignment defaults to the architecture specific allocation alignment size, and it
must be a power of two value. As items are allocated from the pool, the initial block may
be emptied. When a block is emptied and more items are requested, another block of
memory is dynamically allocated which is guarenteed to contain incrCnt items. If incrCnt is
zero, no automatic pool expansion is done.

The partition ID parameter can be used to request all item blocks being allocated from a
specific memory partition. If this parameter is NULL, the item blocks are allocated from the
system memory partition.

POOL OPTIONS The options parameter can be used to set the following properties of the pool. Options
cannot be changed after the pool has been created. The following options are supported:

RETURNS ID of pool or NULL if any zero count or size or insufficient memory.

ERRNO S_poolLib_ARG_NOT_VALID
one or more invalid input arguments.

SEE ALSO poolLib, poolDelete()

poolDelete()

NAME poolDelete() – delete a pool

SYNOPSIS STATUS poolDelete
 (
 POOL_ID poolId, /* ID of pool to delete */
 BOOL force /* force deletion if there are items in use */
)

DESCRIPTION This routine deletes a specified pool and all item blocks allocated for it. Memory provided
by the user using poolBlockAdd() are not freed.

If the pool is still in use (i.e. not all items have been returned to the pool) deletion can be
forced with the force parameter set to TRUE.

RETURNS OK or ERROR if bad pool ID or pool in use.

Option Description
POOL_THREAD_SAFE Pool operations are protected with mutex semaphore
POOL_CHECK_ITEM Items returned to the pool are verified to be valid

VxWorks Kernel API Reference, 6.6
poolFreeCount()

600

ERRNO S_poolLib_INVALID_POOL_ID
not a valid pool ID.

S_poolLib_POOL_IN_USE
can't delete a pool still in use.

SEE ALSO poolLib, poolCreate()

poolFreeCount()

NAME poolFreeCount() – return number of free items in pool

SYNOPSIS ULONG poolFreeCount
 (
 POOL_ID poolId /* ID of pool */
)

DESCRIPTION This routine returns the number of free items in the specified pool.

RETURNS number of items, or zero if invalid pool ID.

ERRNO S_poolLib_INVALID_POOL_ID
not a valid pool ID.

SEE ALSO poolLib, poolTotalCount()

poolIncrementGet()

NAME poolIncrementGet() – get the increment value used to grow the pool

SYNOPSIS ULONG poolIncrementGet
 (
 POOL_ID poolId /* ID of pool */
)

DESCRIPTION This routine can be used to get the increment value used to grow the pool. The increment
specifies how many new items are added to the pool when there are no free items left in the
pool.

RETURNS increment value, or zero if invalid pool ID.

2 Routines
poolItemGet()

601

2

ERRNO S_poolLib_INVALID_POOL_ID
not a valid pool ID.

SEE ALSO poolLib, poolIncrementSet()

poolIncrementSet()

NAME poolIncrementSet() – set the increment value used to grow the pool

SYNOPSIS STATUS poolIncrementSet
 (
 POOL_ID poolId, /* ID of pool */
 ULONG incrCnt /* new increment value */
)

DESCRIPTION This routine can be used to set the increment value used to grow the pool. The increment
specifies how many new items are added to the pool when there are no free items left in the
pool.

Setting the increment to zero disables automatic growth of the pool.

RETURNS OK, or ERROR if poolId is invalid

ERRNO S_poolLib_INVALID_POOL_ID
not a valid pool ID.

SEE ALSO poolLib, poolIncrementGet()

poolItemGet()

NAME poolItemGet() – get next free item from pool and return a pointer to it

SYNOPSIS void * poolItemGet
 (
 POOL_ID poolId /* ID of pool from which to get item */
)

DESCRIPTION This routine gets the next free item from the specified pool and returns a pointer to it. If the
current block of items is empty, the pool increment count is non-zero, and the routine is
called from task context then a new block is allocated of the given incremental size and an
item from the new block is returned.

VxWorks Kernel API Reference, 6.6
poolItemReturn()

602

In the kernel, this routine can be called from interrupt context if the pool was created
without the POOL_THREAD_SAFE option. When called from ISR, the pool will not
automatically grow and the routine fails if there are no free items in the pool.

RETURNS pointer to item, or NULL in case of error.

ERRNO S_poolLib_INVALID_POOL_ID
not a valid pool ID.

S_poolLib_STATIC_POOL_EMPTY
no more items available in static pool.

S_poolLib_INT_CTX_POOL_EMPTY
no more items in pool while called from ISR.

SEE ALSO poolLib, poolItemReturn()

poolItemReturn()

NAME poolItemReturn() – return an item to the pool

SYNOPSIS STATUS poolItemReturn
 (
 POOL_ID poolId, /* ID of pool to which to return item */
 void * pItem /* pointer to item to return */
)

DESCRIPTION This routine returns the specified item to the specified pool. To enable address verification
on the item, the pool should be created with the POOL_CHECK_ITEM option. The
verification can be an expensive operation, therefore the POOL_CHECK_ITEM option
should be used when error detection is more important than deterministic behaviour of this
routine.

In the kernel, this routine can be called from an ISR if the pool was created without the
POOL_THREAD_SAFE option.

RETURNS OK, or ERROR in case of failure.

ERRNO S_poolLib_INVALID_POOL_ID
not a valid pool ID.

S_poolLib_NOT_POOL_ITEM
NULL pointer or item does not belong to pool.

2 Routines
poolShow()

603

2

S_poolLib_UNUSED_ITEM
item is already in pool free list.

SEE ALSO poolLib, poolItemGet()

poolShow()

NAME poolShow() – display pool information

SYNOPSIS void poolShow
 (
 POOL_ID poolId, /* ID of pool from which to get item */
 ULONG level /* display info level */
)

DESCRIPTION This show routine displays information about a pool. If level is 1, it also displays statistics
about memory usage efficiency by the pool. Some count values and statistics typically
change dynamically, so the displayed values represent a snapshot of the pool status at the
time of querying.

If the pool ID passed to this routine is NULL, a summary of all pools managed by poolLib
is displayed (up to 128 pools). The following is an example for a summary info:

EXAMPLE
 -> poolShow

 NAME POOL ID SIZE TOTAL FREE
 -------------------- ---------- -------- -------- --------
 fdEntries 0x02439ef0 80 450 44
 sets 0x02439d00 84 72 7
 set_nodes 0x02439a60 12 288 31
 mmuPgTables 0x02438f60 4096 1647 3
 memEdrPool 0x02338d20 32 294913 26973

The following is an example for a detailed info for a specific pool, with info level 1:

EXAMPLE
 -> poolShow 0x02438f60, 1

 Pool : mmuPgTables
 Item Size : 4096
 Alignment : 0x1000
 Increment : 8
 Total items : 1647
 Free items : 3
 Options : THREAD_SAFE
 Blocks : 2

VxWorks Kernel API Reference, 6.6
poolTotalCount()

604

 Overhead : 204 bytes (0%)

 BLOCK ADDR ITEMS FREE
 ---------- -------- --------
 0x024ea000 8 3
 0x0243a000 175 0

If the pool ID passed to this routine is NULL, a summary of all pools managed by poolLib
is displayed (up to 128 pools).

RETURNS N/A

ERRNO none

SEE ALSO poolShow, poolLib

poolTotalCount()

NAME poolTotalCount() – return total number of items in pool

SYNOPSIS ULONG poolTotalCount
 (
 POOL_ID poolId /* ID of pool */
)

DESCRIPTION This routine returns the total number of items in the specified pool.

RETURNS number of items, or zero if invalid pool ID.

ERRNO S_poolLib_INVALID_POOL_ID
not a valid pool ID.

SEE ALSO poolLib, poolFreeCount()

poolUnusedBlocksFree()

NAME poolUnusedBlocksFree() – free blocks that have all items unused

SYNOPSIS STATUS poolUnusedBlocksFree

2 Routines
powf()

605

2

 (
 POOL_ID poolId /* ID of pool to free blocks */
)

DESCRIPTION This routine allows reducing the memory used by a pool by freeing item blocks that have
all items returned to the pool. Execution time of this routine is not deterministic as it
depends on the number of free items and the number of blocks in the pool. In case of
multi-thread safe pools (POOL_THREAD_SAFE), this routine also locks the pool for that
time.

Blocks that were added using poolBlockAdd() are not freed by this routine, even if all items
have been returned; only blocks that were automatically allocated during creation or
auto-growth from the pool's memory partition are freed.

RETURNS OK, or ERROR in case of failure

ERRNO S_poolLib_INVALID_POOL_ID
not a valid pool ID.

SEE ALSO poolLib, poolBlockAdd(), poolCreate()

powf()

NAME powf() – compute the value of a number raised to a specified power (ANSI)

SYNOPSIS float powf
 (
 float x, /* operand */
 float y /* exponent */
)

DESCRIPTION This routine returns the value of x to the power of y in single precision.

RETURNS The single-precision value of x to the power of y.

ERRNO Not Available

SEE ALSO mathALib

VxWorks Kernel API Reference, 6.6
primesCompute()

606

primesCompute()

NAME primesCompute() – entry point for the VxWorks SMP prime number computation demo

SYNOPSIS STATUS primesCompute
 (
 unsigned int maxPrimeNum,
 unsigned int numTasks /* if 0 then use display mode */
)

DESCRIPTION This routine is the entry point for the VxWorks SMP prime number computation demo.

This function will create numTasks computational tasks to compute prime numbers from 2
to maxPrimeNum. Specifying a numTasks of 0 selects "graph" mode. Graph mode will
repeatedly compute prime numbers from 2 to maxPrimeNum using 1 to numTasks
computational tasks. The compute times are plotted on an ASCII graph on standard output
(STD_OUT). The x-axis represents the number of tasks used to compute prime numbers,
and the y-axis represents the elapsed computation time.

See the module description for more information.

RETURNS ERROR if failed to allocate memory for the prime number candidate array or failed to
spawn computational tasks. Otherwise OK is returned.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
Out of memory for creation of computational tasks or prime number candidate array

SEE ALSO primesDemo

printErr()

NAME printErr() – write a formatted string to the standard error stream

SYNOPSIS int printErr
 (
 const char * fmt, /* format string to write */
 ... /* optional arguments to format */
)

DESCRIPTION This routine writes a formatted string to standard error. Its function and syntax are
otherwise identical to printf().

2 Routines
printLogo()

607

2

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The number of characters output, or ERROR if there is an error during output.

ERRNO Not Available

SEE ALSO fioBaseLib, printf()

printErrno()

NAME printErrno() – print the definition of a specified error status value

SYNOPSIS void printErrno
 (
 int errNo /* status code whose name is to be printed */
)

DESCRIPTION This command displays the error-status string, corresponding to a specified error-status
value. It is only useful if the error-status symbol table has been built and included in the
system. If errNo is zero, then the current task status is used by calling errnoGet().

This facility is described in errnoLib.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, errnoLib, errnoGet(), the VxWorks programmer guides.

printLogo()

NAME printLogo() – print the VxWorks logo

SYNOPSIS void printLogo (void)

DESCRIPTION This command displays the VxWorks banner seen at boot time. It also displays the
VxWorks version number and kernel version number.

RETURNS N/A

VxWorks Kernel API Reference, 6.6
printf()

608

ERRNO N/A

SEE ALSO usrLib, the VxWorks programmer guides.

printf()

NAME printf() – write a formatted string to the standard output stream (ANSI)

SYNOPSIS int printf
 (
 const char * fmt, /* format string to write */
 ... /* optional arguments to format string */
)

DESCRIPTION This routine writes output to standard output under control of the string fmt. The string fmt
contains ordinary characters, which are written unchanged, plus conversion specifications,
which cause the arguments that follow fmt to be converted and printed as part of the
formatted string.

The number of arguments for the format is arbitrary, but they must correspond to the
conversion specifications in fmt. If there are insufficient arguments, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. The routine returns when the end of the format string is
encountered.

The format is a multibyte character sequence, beginning and ending in its initial shift state.
The format is composed of zero or more directives: ordinary multibyte characters (not %)
that are copied unchanged to the output stream; and conversion specification, each of which
results in fetching zero or more subsequent arguments. Each conversion specification is
introduced by the % character. After the %, the following appear in sequence:

- Zero or more flags (in any order) that modify the meaning of the conversion
specification.

- An optional minimum field width. If the converted value has fewer characters than the
field width, it will be padded with spaces (by default) on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The field width
takes the form of an asterisk (*) (described later) or a decimal integer.

- An optional precision that gives the minimum number of digits to appear for the d, i,
o, u, x, and X conversions, the number of digits to appear after the decimal-point
character for e, E, and f conversions, the maximum number of significant digits for the
g and G conversions, or the maximum number of characters to be written from a string
in the s conversion. The precision takes the form of a period (.) followed either by an
asterisk (*) (described later) or by an optional decimal integer; if only the period is

2 Routines
printf()

609

2

specified, the precision is taken as zero. If a precision appears with any other
conversion specifier, the behavior is undefined.

- An optional h specifying that a following d, i, o, u, x, and X conversion specifier applies
to a short int or unsigned short int argument (the argument will have been promoted
according to the integral promotions, and its value converted to short int or unsigned
short int before printing); an optional h specifying that a following n conversion
specifier applies to a pointer to a short int argument. An optional l (ell) specifying that
a following d, i, o, u, x, and X conversion specifier applies to a long int or unsigned
long int argument; or an optional l specifying that a following n conversion specifier
applies to a pointer to a long int argument. An optional ll (ell-ell) specifying that a
following d, i, o, u, x, and X conversion specifier applies to a long long int or ̀ unsigned
long long int' argument; or an optional ll specifying that a following n conversion
specifier applies to a pointer to a long long int argument. If a h, l or ll appears with any
other conversion specifier, the behavior is undefined.

- WARNING: ANSI C also specifies an optional L in some of the same contexts as l
above, corresponding to a long double argument. However, the current release of the
VxWorks libraries does not support long double data; using the optional L gives
unpredictable results.

- A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, can be indicated by an asterisk (*). In
this case, an int argument supplies the field width or precision. The arguments specifying
field width, or precision, or both, should appear (in that order) before the argument (if any)
to be converted. A negative field width argument is taken as a - flag followed by a positive
field width. A negative precision argument is taken as if the precision were omitted.

The flag characters and their meanings are:

-
The result of the conversion will be left-justified within the field. (it will be
right-justified if this flag is not specified.)

+
The result of a signed conversion will always begin with a plus or minus sign. (It will
begin with a sign only when a negative value is converted if this flag is not specified.)

space
If the first character of a signed conversion is not a sign, or if a signed conversion results
in no characters, a space will be prefixed to the result. If the space and + flags both
appear, the space flag will be ignored.

#
The result is to be converted to an "alternate form." For o conversion it increases the
precision to force the first digit of the result to be a zero. For x (or X) conversion, a
non-zero result will have "0x" (or "0X") prefixed to it. For e, E, f, g, and g conversions,
the result will always contain a decimal-point character, even if no digits follow it.
(Normally, a decimal-point character appears in the result of these conversions only if

VxWorks Kernel API Reference, 6.6
printf()

610

no digit follows it). For g and G conversions, trailing zeros will not be removed from
the result. For other conversions, the behavior is undefined.

0
For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any indication
of sign or base) are used to pad to the field width; no space padding is performed. If
the 0 and - flags both appear, the 0 flag will be ignored. For d, i, o, u, x, and X
conversions, if a precision is specified, the 0 flag will be ignored. For other conversions,
the behavior is undefined.

The conversion specifiers and their meanings are:

d, i
The int argument is converted to signed decimal in the style [-]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a precision of zero is no
characters.

o, u, x, X
The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef are used for
x conversion and the letters ABCDEF for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can be represented
in fewer digits, it will be expanded with leading zeros. The default precision is 1. The
result of converting a zero value with a precision of zero is no characters.

f
The double argument is converted to decimal notation in the style [-]ddd.ddd, where
the number of digits after the decimal point character is equal to the precision
specification. If the precision is missing, it is taken as 6; if the precision is zero and the
flag is not specified, no decimal-point character appears. If a decimal-point character
appears, at least one digit appears before it. The value is rounded to the appropriate
number of digits.

e, E
The double argument is converted in the style [-]d.ddde+/-dd, where there is one digit
before the decimal-point character (which is non-zero if the argument is non-zero) and
the number of digits after it is equal to the precision; if the precision is missing, it is
taken as 6; if the precision is zero and the # flag is not specified, no decimal-point
character appears. The value is rounded to the appropriate number of digits. The E
conversion specifier will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. If the value is zero, the
exponent is zero.

g, G
The double argument is converted in style f or e (or in style E in the case of a G
conversion specifier), with the precision specifying the number of significant digits. If
the precision is zero, it is taken as 1. The style used depends on the value converted;

2 Routines
printf()

611

2

style e (or E) will be used only if the exponent resulting from such a conversion is less
than -4 or greater than or equal to the precision. Trailing zeros are removed from the
fractional portion of the result; a decimal-point character appears only if it is followed
by a digit.

c
The int argument is converted to an unsigned char, and the resulting character is
written.

s
The argument should be a pointer to an array of character type. Characters from the
array are written up to (but not including) a terminating null character; if the precision
is specified, no more than that many characters are written. If the precision is not
specified or is greater than the size of the array, the array will contain a null character.

p
The argument should be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in hexadecimal representation (prefixed with "0x").

n
The argument should be a pointer to an integer into which the number of characters
written to the output stream so far by this call to fprintf() is written. No argument is
converted.

%
A % is written. No argument is converted. The complete conversion specification is
%%.

If a conversion specification is invalid, the behavior is undefined.

If any argument is, or points to, a union or an aggregate (except for an array of character
type using s conversion, or a pointer using p conversion), the behavior is undefined.

In no case does a non-existent or small field width cause truncation of a field if the result of
a conversion is wider than the field width, the field is expanded to contain the conversion
result.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The number of characters written, or a negative value if an output error occurs.

ERRNO Not Available

SEE ALSO fioBaseLib, fprintf(), American National Standard for Information Systems -, Programming
Language - C, ANSI X3.159-1989: Input/Output (stdio.h)

VxWorks Kernel API Reference, 6.6
proofUtf8()

612

proofUtf8()

NAME proofUtf8() – Determine if a string represents a valid UTF-8 character

SYNOPSIS int proofUtf8
 (
 const unsigned char * utf8,
 const int length
)

DESCRIPTION This routine checks a string to determine if it contains a valid UTF-8 encoded character,
including \0.

RETURNS If positive, the number of encoded bytes used to represent the Unicode character. If
non-positive, UC_FORMAT indicates that the string is in an invalid format, and UC_NOSRC
indicates that the string contains insufficient characters to represent a valid encoding, given
the value of the first character.

ERRNO Not Available

SEE ALSO utfLib

proofUtf8String()

NAME proofUtf8String() – determine if a string is valid UTF-8

SYNOPSIS int proofUtf8String
 (
 const unsigned char * utf8
)

DESCRIPTION This routine determines if a NULL terminated string is valid UTF-8.

RETURNS If positive, the number of Unicode characters represented by a UTF-8 encoding. If
non-positive, UC_FORMAT indicates that the string is of invalid format.

ERRNO Not Available

SEE ALSO utfLib

2 Routines
psrShow()

613

2

psr()

NAME psr() – return the contents of the processor status register (SimSolaris)

SYNOPSIS int psr
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of the processor status register from the TCB of a
specified task. If taskId is omitted or 0, the default task is assumed.

RETURNS The contents of the processor status register.

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

psrShow()

NAME psrShow() – display the meaning of a specified PSR value, symbolically (ARM)

SYNOPSIS STATUS psrShow
 (
 UINT32 psrval /* psr value to show */
)

DESCRIPTION This routine displays the meaning of all fields in a specified PSR value, symbolically.

RETURNS OK, always.

ERRNO Not Available

SEE ALSO dbgArchLib

VxWorks Kernel API Reference, 6.6
pthread_attr_destroy()

614

pthread_attr_destroy()

NAME pthread_attr_destroy() – destroy a thread attributes object (POSIX)

SYNOPSIS int pthread_attr_destroy
 (
 pthread_attr_t *pAttr /* thread attributes */
)

DESCRIPTION Destroy the thread attributes object pAttr. It should not be re-used until it has been
reinitialized.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_init()

pthread_attr_getdetachstate()

NAME pthread_attr_getdetachstate() – get value of detachstate attribute from thread attributes
object (POSIX)

SYNOPSIS int pthread_attr_getdetachstate
 (
 const pthread_attr_t *pAttr, /* thread attributes */
 int *pDetachstate /* current detach state (out) */
)

DESCRIPTION This routine returns the current detach state specified in the thread attributes object pAttr.
The value is stored in the location pointed to by pDetachstate. Possible values for the detach
state are: PTHREAD_CREATE_DETACHED and PTHREAD_CREATE_JOINABLE.

RETURNS zero on success, EINVAL if an invalid thread attribute is passed or if pDetachState is NULL.

ERRNO None.

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_setdetachstate()

2 Routines
pthread_attr_getname()

615

2

pthread_attr_getinheritsched()

NAME pthread_attr_getinheritsched() – get current value if inheritsched attribute in thread
attributes object (POSIX)

SYNOPSIS int pthread_attr_getinheritsched
 (
 const pthread_attr_t *pAttr, /* thread attributes object */
 int *pInheritsched /* inheritance mode (out) */
)

DESCRIPTION This routine gets the scheduling inheritance value from the thread attributes object pAttr.

Possible values are:

PTHREAD_INHERIT_SCHED
Inherit scheduling parameters from parent thread.

PTHREAD_EXPLICIT_SCHED
Use explicitly provided scheduling parameters (i.e. those specified in the thread
attributes object).

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_getschedparam(),
pthread_attr_getschedpolicy() pthread_attr_setinheritsched()

pthread_attr_getname()

NAME pthread_attr_getname() – get name of thread attribute object

SYNOPSIS int pthread_attr_getname
 (
 pthread_attr_t *pAttr,
 char **name
)

DESCRIPTION This routine gets the name in the specified thread attributes object, pAttr.

RETURNS zero on success, EINVAL if an invalid thread attribute is passed or if name is NULL.

ERRNO None.

VxWorks Kernel API Reference, 6.6
pthread_attr_getopt()

616

SEE ALSO pthreadLib, pthread_attr_setname()

pthread_attr_getopt()

NAME pthread_attr_getopt() – get options from thread attribute object

SYNOPSIS int pthread_attr_getopt
 (
 pthread_attr_t * pAttr,
 int * pOptions
)

DESCRIPTION This non-POSIX routine gets options from the specified thread attributes object, pAttr. To
see the options actually applied to the VxWorks task under thread, use taskOptionsGet().

This routine expects the pOptions parameter to be a valid storage space.

See taskLib.h for definitions of task options.

RETURNS zero on success, EINVAL if an invalid thread attribute is passed or if pOptions is NULL.

ERRNO None.

SEE ALSO pthreadLib, pthread_attr_setopt(), taskOptionsGet()

pthread_attr_getschedparam()

NAME pthread_attr_getschedparam() – get value of schedparam attribute from thread attributes
object (POSIX)

SYNOPSIS int pthread_attr_getschedparam
 (
 const pthread_attr_t *pAttr, /* thread attributes */
 struct sched_param *pParam /* current parameters (out) */
)

DESCRIPTION Return, via the pointer pParam, the current scheduling parameters from the thread attributes
object pAttr.

RETURNS On success zero; on failure the EINVAL error code.

2 Routines
pthread_attr_getscope()

617

2

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_setschedparam(),
pthread_getschedparam(), pthread_setschedparam(), sched_getparam(),
sched_setparam()

pthread_attr_getschedpolicy()

NAME pthread_attr_getschedpolicy() – get schedpolicy attribute from thread attributes object
(POSIX)

SYNOPSIS int pthread_attr_getschedpolicy
 (
 const pthread_attr_t *pAttr, /* thread attributes */
 int *pPolicy /* current policy (out) */
)

DESCRIPTION This routine returns, via the pointer pPolicy, the current scheduling policy in the thread
attributes object specified by pAttr. Possible values for VxWorks systems are SCHED_RR,
SCHED_FIFO and SCHED_OTHER.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_setschedpolicy(),
pthread_getschedparam(), pthread_setschedparam(), sched_setscheduler(),
sched_getscheduler()

pthread_attr_getscope()

NAME pthread_attr_getscope() – get contention scope from thread attributes (POSIX)

SYNOPSIS int pthread_attr_getscope
 (
 const pthread_attr_t *pAttr, /* thread attributes object
*/
 int *pContentionScope /* contention scope (out)
*/
)

VxWorks Kernel API Reference, 6.6
pthread_attr_getstackaddr()

618

DESCRIPTION Reads the current contention scope setting from a thread attributes object. For VxWorks this
is always PTHREAD_SCOPE_SYSTEM. If the thread attributes object is uninitialized then
EINVAL will be returned. The contention scope is returned in the location pointed to by
pContentionScope.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_setscope()

pthread_attr_getstackaddr()

NAME pthread_attr_getstackaddr() – get value of stackaddr attribute from thread attributes object
(POSIX)

SYNOPSIS int pthread_attr_getstackaddr
 (
 const pthread_attr_t *pAttr, /* thread attributes */
 void **ppStackaddr /* current stack address (out) */
)

DESCRIPTION This routine returns the stack address from the thread attributes object pAttr in the location
pointed to by ppStackaddr.

RETURNS zero on success, EINVAL if an invalid thread attribute is passed or if ppStackaddr is NULL.

ERRNO None.

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_getstacksize(),
pthread_attr_setstackaddr()

pthread_attr_getstacksize()

NAME pthread_attr_getstacksize() – get stack value of stacksize attribute from thread attributes
object (POSIX)

SYNOPSIS int pthread_attr_getstacksize
 (
 const pthread_attr_t *pAttr, /* thread attributes */

2 Routines
pthread_attr_init()

619

2

 size_t *pStacksize /* current stack size (out) */
)

DESCRIPTION This routine gets the current stack size from the thread attributes object pAttr and places it
in the location pointed to by pStacksize.

RETURNS zero on success, EINVAL if an invalid thread attribute is passed or if pStackSize is NULL.

ERRNO None.

SEE ALSO pthreadLib, pthread_attr_init(), pthread_attr_setstacksize(),
pthread_attr_getstackaddr()

pthread_attr_init()

NAME pthread_attr_init() – initialize thread attributes object (POSIX)

SYNOPSIS int pthread_attr_init
 (
 pthread_attr_t *pAttr /* thread attributes */
)

DESCRIPTION This routine initializes a thread attributes object. If pAttr is NULL then this function will
return EINVAL.

The attributes that are set by default are as follows:

Stack Address
NULL - allow the system to allocate the stack.

Stack Size
0 - use the VxWorks taskLib default stack size.

Detach State
PTHREAD_CREATE_JOINABLE

Contention Scope
PTHREAD_SCOPE_SYSTEM

Scheduling Inheritance
PTHREAD_INHERIT_SCHED

Scheduling Policy
SCHED_OTHER (i.e. active VxWorks native scheduling policy).

Scheduling Priority
Use pthreadLib default priority

VxWorks Kernel API Reference, 6.6
pthread_attr_setdetachstate()

620

Note that the scheduling policy and priority values are only used if the scheduling
inheritance mode is changed to PTHREAD_EXPLICIT_SCHED - see
pthread_attr_setinheritsched() for information.

Additionally, VxWorks-specific attributes are being set as follows:

Task Name
NULL - the task name is automatically generated.

Task Options
VX_FP_TASK

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_destroy(), pthread_attr_getdetachstate(),
pthread_attr_getinheritsched(), pthread_attr_getschedparam(),
pthread_attr_getschedpolicy(), pthread_attr_getscope(), pthread_attr_getstackaddr(),
pthread_attr_getstacksize(), pthread_attr_setdetachstate(),
pthread_attr_setinheritsched(), pthread_attr_setschedparam(),
pthread_attr_setschedpolicy(), pthread_attr_setscope(), pthread_attr_setstackaddr(),
pthread_attr_setstacksize(), pthread_attr_setname() (VxWorks extension),
pthread_attr_setopt() (VxWorks extension)

pthread_attr_setdetachstate()

NAME pthread_attr_setdetachstate() – set detachstate attribute in thread attributes object (POSIX)

SYNOPSIS int pthread_attr_setdetachstate
 (
 pthread_attr_t *pAttr, /* thread attributes */
 int detachstate /* new detach state */
)

DESCRIPTION This routine sets the detach state in the thread attributes object pAttr. The new detach state
specified by detachstate must be one of PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. Any other values will cause an error to be returned
(EINVAL).

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

2 Routines
pthread_attr_setname()

621

2

SEE ALSO pthreadLib, pthread_attr_getdetachstate(), pthread_attr_init()

pthread_attr_setinheritsched()

NAME pthread_attr_setinheritsched() – set inheritsched attribute in thread attribute object
(POSIX)

SYNOPSIS int pthread_attr_setinheritsched
 (
 pthread_attr_t *pAttr, /* thread attributes object */
 int inheritsched /* inheritance mode */
)

DESCRIPTION This routine sets the scheduling inheritance to be used when creating a thread with the
thread attributes object specified by pAttr.

Possible values are:

PTHREAD_INHERIT_SCHED
Inherit scheduling parameters from parent thread.

PTHREAD_EXPLICIT_SCHED
Use explicitly provided scheduling parameters (i.e. those specified in the thread
attributes object).

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_getinheritsched(), pthread_attr_init(),
pthread_attr_setschedparam(), pthread_attr_setschedpolicy()

pthread_attr_setname()

NAME pthread_attr_setname() – set name in thread attribute object

SYNOPSIS int pthread_attr_setname
 (
 pthread_attr_t *pAttr,
 char *name
)

VxWorks Kernel API Reference, 6.6
pthread_attr_setopt()

622

DESCRIPTION This routine sets the name in the specified thread attributes object, pAttr.

RETURNS zero on success, EINVAL if an invalid thread attribute is passed.

ERRNO None.

SEE ALSO pthreadLib, pthread_attr_getname()

pthread_attr_setopt()

NAME pthread_attr_setopt() – set options in thread attribute object

SYNOPSIS int pthread_attr_setopt
 (
 pthread_attr_t * pAttr,
 int options
)

DESCRIPTION This non-POSIX routine sets options in the specified thread attributes object, pAttr. This
allows for specifying a non-default set of options for the VxWorks task acting as a thread.
Additional options may be applied to the task once the thread has been created via the
taskOptionsSet() API.

Note that the task options provided through this routine will supersede the default options
otherwise applied at thread creation.

See taskLib.h for definitions of valid task options.

RETURNS zero on success, EINVAL if an invalid thread attribute is passed.

ERRNO None.

SEE ALSO pthreadLib, pthread_attr_getopt(), taskOptionsSet()

pthread_attr_setschedparam()

NAME pthread_attr_setschedparam() – set schedparam attribute in thread attributes object
(POSIX)

SYNOPSIS int pthread_attr_setschedparam

2 Routines
pthread_attr_setschedpolicy()

623

2

 (
 pthread_attr_t *pAttr, /* thread attributes */
 const struct sched_param *pParam /* new parameters */
)

DESCRIPTION Set the scheduling parameters in the thread attributes object pAttr. The scheduling
parameters are essentially the thread's priority. Note that the PTHREAD_EXPLICIT_SCHED
mode must be set (see pthread_attr_setinheritsched() for information) for the priority to
take effect.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_getschedparam(), pthread_attr_init(),
pthread_getschedparam(), pthread_setschedparam(), pthread_attr_setinheritsched(),
sched_getparam(), sched_setparam()

pthread_attr_setschedpolicy()

NAME pthread_attr_setschedpolicy() – set schedpolicy attribute in thread attributes object
(POSIX)

SYNOPSIS int pthread_attr_setschedpolicy
 (
 pthread_attr_t *pAttr, /* thread attributes */
 int policy /* new policy */
)

DESCRIPTION Select the thread scheduling policy. The default scheduling policy is to inherit the current
system setting. Unlike the POSIX model, scheduling policies under VxWorks are global. If
a scheduling policy is being set explicitly, the PTHREAD_EXPLICIT_SCHED mode must be
set (see pthread_attr_setinheritsched() for information), and the selected scheduling policy
must match the global scheduling policy in place at the time; failure to do so will result in
pthread_create() failing with the error EPERM.

POSIX defines the following policies:

SCHED_RR
Realtime, round-robin scheduling.

SCHED_FIFO
Realtime, first-in first-out scheduling.

SCHED_OTHER
Other, active VxWorks native scheduling policy.

VxWorks Kernel API Reference, 6.6
pthread_attr_setscope()

624

Although the SCHED_RR and SCHED_FIFO policies can be set when the precaution
described above is respected, using the SCHED_OTHER policy instead is always ensured to
be successful.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_getschedpolicy(), pthread_attr_init(),
pthread_attr_setinheritsched(), pthread_getschedparam(), pthread_setschedparam(),
sched_setscheduler(), sched_getscheduler()

pthread_attr_setscope()

NAME pthread_attr_setscope() – set contention scope for thread attributes (POSIX)

SYNOPSIS int pthread_attr_setscope
 (
 pthread_attr_t *pAttr, /* thread attributes object */
 int contentionScope /* new contention scope */
)

DESCRIPTION For VxWorks PTHREAD_SCOPE_SYSTEM is the only supported contention scope. If the
PTHREAD_SCOPE_PROCESS value is passed to this function this will result in ENOTSUP
being returned.

RETURNS On success zero; on failure the EINVAL or ENOTSUP error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_getscope(), pthread_attr_init()

pthread_attr_setstackaddr()

NAME pthread_attr_setstackaddr() – set stackaddr attribute in thread attributes object (POSIX)

SYNOPSIS int pthread_attr_setstackaddr
 (
 pthread_attr_t *pAttr, /* thread attributes */

2 Routines
pthread_attr_setstacksize()

625

2

 void *pStackaddr /* new stack address */
)

DESCRIPTION This routine sets the stack address in the thread attributes object pAttr to be pStackaddr. On
VxWorks this address must be the lowest address of the stack regardless of what the thread
considers as the stack base or the stack end.

No alignment constraints are imposed by the pthread library so the thread's stack can be
obtained via a simple call to malloc() or memPartAlloc().

The memory area used a stack is not automatically freed when the thread exits. This
operation cannot be done via the exiting thread's cleanup stack since the cleanup handler
routines use the same stack as the thread. Therefore freeing the stack space must be done by
the code which allocated the thread's stack once the thread's task no longer exists in the
system.

The stack size is set using the routine pthread_attr_setstacksize(). Note that failure to set
the stack size when a stack address is provided will result in an EINVAL error status
returned by pthread_create().

RETURNS zero on success, EINVAL if an invalid thread attribute is passed.

ERRNO None.

SEE ALSO pthreadLib, pthread_attr_getstacksize(), pthread_attr_setstacksize(), pthread_attr_init()

pthread_attr_setstacksize()

NAME pthread_attr_setstacksize() – set stacksize attribute in thread attributes object (POSIX)

SYNOPSIS int pthread_attr_setstacksize
 (
 pthread_attr_t *pAttr, /* thread attributes */
 size_t stacksize /* new stack size */
)

DESCRIPTION This routine sets the thread stack size (in bytes) in the specified thread attributes object,
pAttr.

The stack address is set using the routine pthread_attr_setstackaddr(). Note that failure to
set the stack size when a stack address is provided will result in an EINVAL error status
returned by pthread_create().

RETURNS EINVAL if the stack size is lower than PTHREAD_STACK_MIN or if an invalid thread
attribute is passed. Zero otherwise.

VxWorks Kernel API Reference, 6.6
pthread_cancel()

626

ERRNO None.

SEE ALSO pthreadLib, pthread_attr_getstacksize(), pthread_attr_setstackaddr(),
pthread_attr_init(), pthread_create()

pthread_cancel()

NAME pthread_cancel() – cancel execution of a thread (POSIX)

SYNOPSIS int pthread_cancel
 (
 pthread_t thread /* thread to cancel */
)

DESCRIPTION This routine sends a cancellation request to the thread specified by thread. Depending on the
settings of that thread, it may ignore the request, terminate immediately or defer
termination until it reaches a cancellation point.

When the thread terminates it performs as if pthread_exit() had been called with the exit
status PTHREAD_CANCELED.

IMPLEMENTATION NOTE

In VxWorks, asynchronous thread cancellation is accomplished using a signal. The signal
SIGCNCL has been reserved for this purpose. Applications should take care not to block or
handle this signal.

RETURNS On success zero; on failure the ESRCH error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_exit(), pthread_setcancelstate(), pthread_setcanceltype(),
pthread_testcancel()

pthread_cleanup_pop()

NAME pthread_cleanup_pop() – pop a cleanup routine off the top of the stack (POSIX)

SYNOPSIS void pthread_cleanup_pop

2 Routines
pthread_cleanup_push()

627

2

 (
 int run /* execute handler? */
)

DESCRIPTION This routine removes the cleanup handler routine at the top of the cancellation cleanup stack
of the calling thread and executes it if run is non-zero. The routine should have been added
using the pthread_cleanup_push() function.

Once the routine is removed from the stack it will no longer be called when the thread exits.

RETURNS N/A

ERRNO N/A

SEE ALSO pthreadLib, pthread_cleanup_push(), pthread_exit()

pthread_cleanup_push()

NAME pthread_cleanup_push() – pushes a routine onto the cleanup stack (POSIX)

SYNOPSIS void pthread_cleanup_push
 (
 void (*routine)(void *), /* cleanup routine */
 void *arg /* argument */
)

DESCRIPTION This routine pushes the specified cancellation cleanup handler routine, routine, onto the
cancellation cleanup stack of the calling thread. When a thread exits and its cancellation
cleanup stack is not empty, the cleanup handlers are invoked with the argument arg in LIFO
order from the cancellation cleanup stack.

RETURNS N/A

ERRNO N/A

SEE ALSO pthreadLib, pthread_cleanup_pop(), pthread_exit()

VxWorks Kernel API Reference, 6.6
pthread_cond_broadcast()

628

pthread_cond_broadcast()

NAME pthread_cond_broadcast() – unblock all threads waiting on a condition (POSIX)

SYNOPSIS int pthread_cond_broadcast
 (
 pthread_cond_t *pCond
)

DESCRIPTION This function unblocks all threads blocked on the condition variable pCond. Nothing
happens if no threads are waiting on the specified condition variable.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_destroy(), pthread_cond_init(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait()

pthread_cond_destroy()

NAME pthread_cond_destroy() – destroy a condition variable (POSIX)

SYNOPSIS int pthread_cond_destroy
 (
 pthread_cond_t *pCond /* condition variable */
)

DESCRIPTION This routine destroys the condition variable pointed to by pCond. No threads can be waiting
on the condition variable when this function is called. If there are threads waiting on the
condition variable, then pthread_cond_destroy() returns EBUSY.

RETURNS On success zero; on failure a non-zero error code.

EINVAL

EBUSY

ERRNO

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_init(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait()

2 Routines
pthread_cond_signal()

629

2

pthread_cond_init()

NAME pthread_cond_init() – initialize condition variable (POSIX)

SYNOPSIS int pthread_cond_init
 (
 pthread_cond_t *pCond, /* condition variable */
 pthread_condattr_t *pAttr /* condition variable attributes */
)

DESCRIPTION This function initializes a condition variable. A condition variable is a synchronization
device that allows threads to block until some predicate on shared data is satisfied. The basic
operations on conditions are to signal the condition (when the predicate becomes true), and
wait for the condition, blocking the thread until another thread signals the condition.

A condition variable must always be associated with a mutex to avoid a race condition
between the wait and signal operations.

If pAttr is NULL then the default attributes are used as specified by POSIX; if pAttr is
non-NULL then it is assumed to point to a condition attributes object initialized by
pthread_condattr_init(), and those are the attributes used to create the condition variable.

RETURNS On success zero; on failure a non-zero error code:

EINVAL

ERRNO

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_signal(),
pthread_cond_timedwait(), pthread_cond_wait()

pthread_cond_signal()

NAME pthread_cond_signal() – unblock a thread waiting on a condition (POSIX)

SYNOPSIS int pthread_cond_signal
 (
 pthread_cond_t *pCond
)

DESCRIPTION This routine unblocks one thread waiting on the specified condition variable pCond. If no
threads are waiting on the condition variable then this routine does nothing; if more than
one thread is waiting, then one will be released, but it is not specified which one.

VxWorks Kernel API Reference, 6.6
pthread_cond_timedwait()

630

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_init(),
pthread_cond_timedwait(), pthread_cond_wait()

pthread_cond_timedwait()

NAME pthread_cond_timedwait() – wait for a condition variable with a timeout (POSIX)

SYNOPSIS int pthread_cond_timedwait
 (
 pthread_cond_t *pCond, /* condition variable */
 pthread_mutex_t *pMutex, /* POSIX mutex */
 const struct timespec *pAbstime /* timeout time */
)

DESCRIPTION This function atomically releases the mutex pMutex and waits for another thread to signal
the condition variable pCond. As with pthread_cond_wait(), the mutex must be locked by
the calling thread when pthread_cond_timedwait() is called.

If the condition variable is signalled before the system time reaches the time specified by
pAbsTime, then the mutex is re-acquired and the calling thread unblocked.

If the system time reaches or exceeds the time specified by pAbsTime before the condition is
signalled, then the mutex is re-acquired, the thread unblocked and ETIMEDOUT returned.

If the calling thread gets cancelled while pending on the condition variable
pthread_cond_timedwait() will also re-acquire the mutex prior to executing the
cancellation cleanup handlers (if any). The mutex will however be released prior to the
thread exiting so that this mutex can be used by other threads.

NOTE The timeout is specified as an absolute value of the system clock in a timespec structure (see
clock_gettime() for more information). This is different from most VxWorks timeouts
which are specified in ticks relative to the current time.

RETURNS On success zero; on failure a non-zero error code:

2 Routines
pthread_cond_wait()

631

2

EINVAL

ETIMEDOUT

ERRNO

SEE ALSO pthrbeadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_init(),
pthread_cond_signal(), pthread_cond_wait()

pthread_cond_wait()

NAME pthread_cond_wait() – wait for a condition variable (POSIX)

SYNOPSIS int pthread_cond_wait
 (
 pthread_cond_t *pCond, /* condition variable */
 pthread_mutex_t *pMutex /* POSIX mutex */
)

DESCRIPTION This function atomically releases the mutex pMutex and waits for the condition variable
pCond to be signalled by another thread. The mutex must be locked by the calling thread
when pthread_cond_wait() is called; if it is not then this function returns an error
(EINVAL).

Before returning to the calling thread, pthread_cond_wait() re-acquires the mutex.

If the calling thread gets cancelled while pending on the condition variable
pthread_cond_wait() will also re-acquire the mutex prior to executing the cancellation
cleanup handlers (if any). The mutex will however be released prior to the thread exiting so
that this mutex can be used by other threads.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_condattr_init(), pthread_condattr_destroy(),
pthread_cond_broadcast(), pthread_cond_destroy(), pthread_cond_init(),
pthread_cond_signal(), pthread_cond_timedwait()

VxWorks Kernel API Reference, 6.6
pthread_condattr_destroy()

632

pthread_condattr_destroy()

NAME pthread_condattr_destroy() – destroy a condition attributes object (POSIX)

SYNOPSIS int pthread_condattr_destroy
 (
 pthread_condattr_t *pAttr /* condition variable attributes */
)

DESCRIPTION This routine destroys the condition attribute object pAttr. It must not be reused until it is
reinitialized.

RETURNS Always returns zero.

ERRNO None.

SEE ALSO pthreadLib, pthread_cond_init(), pthread_condattr_init()

pthread_condattr_init()

NAME pthread_condattr_init() – initialize a condition attribute object (POSIX)

SYNOPSIS int pthread_condattr_init
 (
 pthread_condattr_t *pAttr /* condition variable attributes */
)

DESCRIPTION This routine initializes the condition attribute object pAttr and fills it with default values for
the attributes.

RETURNS On success zero; on failure a non-zero error code:

EINVAL

ERRNO

SEE ALSO pthreadLib, pthread_cond_init(), pthread_condattr_destroy()

2 Routines
pthread_detach()

633

2

pthread_create()

NAME pthread_create() – create a thread (POSIX)

SYNOPSIS int pthread_create
 (
 pthread_t * pThread, /* Thread ID (out) */
 const pthread_attr_t * pAttr, /* Thread attributes object */
 void * (*startRoutine)(void *), /* Entry function */
 void * arg /* Entry function argument */
)

DESCRIPTION This routine creates a new thread and if successful writes its ID into the location pointed to
by pThread. If pAttr is NULL then default attributes are used. The new thread executes
startRoutine with arg as its argument.

The new thread's cancelability state and cancelability type are respectively set to
PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED.

RETURNS On success zero; on failure one of the following non-zero error codes:

EINVAL
can be returned when the value specified by pAttr is invalid, when a user-supplied
stack address is provided but the stack size is invalid, and when the pThread parameter
is null.

EAGAIN
can be returned when not enough memory is available to either create the thread or
create a resource required for the thread.

EPERM
the explicit scheduling policy does not match the VxWorks scheduling policy currently
in effect.

ERRNO N/A

SEE ALSO pthreadLib, pthread_exit(), pthread_join(), pthread_detach()

pthread_detach()

NAME pthread_detach() – dynamically detach a thread (POSIX)

SYNOPSIS int pthread_detach

VxWorks Kernel API Reference, 6.6
pthread_equal()

634

 (
 pthread_t thread /* thread to detach */
)

DESCRIPTION This routine puts the thread thread into the detached state. This prevents other threads from
synchronizing on the termination of the thread using pthread_join().

RETURNS On success zero; on failure a non-zero error code:

EINVAL

ESRCH

ERRNO N/A

SEE ALSO pthreadLib, pthread_join()

pthread_equal()

NAME pthread_equal() – compare thread IDs (POSIX)

SYNOPSIS int pthread_equal
 (
 pthread_t t1, /* thread one */
 pthread_t t2 /* thread two */
)

DESCRIPTION Tests the equality of the two threads t1 and t2.

RETURNS Non-zero if t1 and t2 refer to the same thread, otherwise zero.

ERRNO Not Available

SEE ALSO pthreadLib

pthread_exit()

NAME pthread_exit() – terminate a thread (POSIX)

SYNOPSIS void pthread_exit

2 Routines
pthread_getschedparam()

635

2

 (
 void *status /* exit status */
)

DESCRIPTION This function terminates the calling thread. All cleanup handlers that have been set for the
calling thread with pthread_cleanup_push() are executed in reverse order (the most
recently added handler is executed first). Termination functions for thread-specific data are
then called for all keys that have non-NULL values associated with them in the calling thread
(see pthread_key_create() for more details). Finally, execution of the calling thread is
stopped.

The status argument is the return value of the thread and can be consulted from another
thread using pthread_join() unless this thread was detached (i.e. a call to pthread_detach()
had been made for it, or it was created in the detached state).

All threads that remain joinable at the time they exit should ensure that pthread_join() is
called on their behalf by another thread to reclaim the resources that they hold.

RETURNS Does not return.

ERRNO N/A

SEE ALSO pthreadLib, pthread_cleanup_push(), pthread_detach(), pthread_join(),
pthread_key_create()

pthread_getschedparam()

NAME pthread_getschedparam() – get value of schedparam attribute from a thread (POSIX)

SYNOPSIS int pthread_getschedparam
 (
 pthread_t thread, /* thread */
 int *pPolicy, /* current policy (out) */
 struct sched_param *pParam /* current parameters (out) */
)

DESCRIPTION This routine reads the current scheduling parameters and policy of the thread specified by
thread. The information is returned via pPolicy and pParam.

Note that this routine actually always maps the current VxWorks scheduling policy on one
of the two following POSIX scheduling policies: SCHED_FIFO or SCHED_RR. The
SCHED_OTHER policy can therefore never be returned even if it has been set via
pthread_setschedparam().

RETURNS On success zero; on failure the ESRCH error code.

VxWorks Kernel API Reference, 6.6
pthread_getspecific()

636

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_getschedparam() pthread_attr_getschedpolicy(),
pthread_attr_setschedparam() pthread_attr_setschedpolicy(),
pthread_setschedparam(), sched_getparam(), sched_setparam()

pthread_getspecific()

NAME pthread_getspecific() – get thread specific data (POSIX)

SYNOPSIS void *pthread_getspecific
 (
 pthread_key_t key /* thread specific data key */
)

DESCRIPTION This routine returns the value associated with the thread specific data key key for the calling
thread.

RETURNS The value associated with key, or NULL.

ERRNO N/A

SEE ALSO pthreadLib, pthread_key_create(), pthread_key_delete(), pthread_setspecific()

pthread_join()

NAME pthread_join() – wait for a thread to terminate (POSIX)

SYNOPSIS int pthread_join
 (
 pthread_t thread, /* thread to wait for */
 void **ppStatus /* exit status of thread (out) */
)

DESCRIPTION This routine will block the calling thread until the thread specified by thread terminates, or
is canceled. The thread must be in the joinable state, i.e. it cannot have been detached by a
call to pthread_detach(), or created in the detached state.

If ppStatus is not NULL and pthread_join() returns successfully, when thread terminates its
exit status will be stored in the specified location. The exit status will be either the value

2 Routines
pthread_key_create()

637

2

passed to pthread_exit(), or PTHREAD_CANCELED if the thread was canceled or the thread
was deleted by a VxWorks task.

Only one thread can wait for the termination of a given thread. If another thread is already
waiting when this function is called an error will be returned (EINVAL).

If the calling thread passes its own ID in thread, the call will fail with the error EDEADLK.

NOTE All threads that remain joinable at the time they exit should ensure that pthread_join() is
called on their behalf by another thread to reclaim the resources that they hold.

RETURNS On success zero; on failure a non-zero error code:

EINVAL

ESRCH

EDEADLK

ERRNO N/A

SEE ALSO pthreadLib, pthread_detach(), pthread_exit()

pthread_key_create()

NAME pthread_key_create() – create a thread specific data key (POSIX)

SYNOPSIS int pthread_key_create
 (
 pthread_key_t *pKey, /* thread specific data key */
 void (*destructor)(void *) /* destructor function */
)

DESCRIPTION This routine allocates a new thread specific data key. The key is stored in the location
pointed to by key. The value initially associated with the returned key is NULL in all
currently executing threads. If the maximum number of keys are already allocated, the
function returns an error (EAGAIN).

The destructor parameter specifies a destructor function associated with the key. When a
thread terminates via pthread_exit(), or by cancellation, destructor is called with the value
associated with the key in that thread as an argument. The destructor function is not called
if that value is NULL. The order in which destructor functions are called at thread
termination time is unspecified.

It is the user's responsibility to call pthread_key_delete() when the memory associated
with the key is no longer required, and to ensure that no threads access the key after it has
been deleted. Failure to do this can return unexpected results, and can cause memory leaks.

VxWorks Kernel API Reference, 6.6
pthread_key_delete()

638

RETURNS On success zero; on failure the EAGAIN error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_getspecific(), pthread_key_delete(), pthread_setspecific()

pthread_key_delete()

NAME pthread_key_delete() – delete a thread specific data key (POSIX)

SYNOPSIS int pthread_key_delete
 (
 pthread_key_t key /* thread specific data key to delete */
)

DESCRIPTION This routine deletes the thread specific data associated with key, and deallocates the key
itself. It does not call any destructor associated with the key.

Any attempt to use key following the call to pthread_key_delete() results in undefined
behavior.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_key_create()

pthread_kill()

NAME pthread_kill() – send a signal to a thread (POSIX)

SYNOPSIS int pthread_kill
 (
 pthread_t thread, /* thread to signal */
 int sig /* signal to send */
)

DESCRIPTION This routine sends signal number sig to the thread specified by thread. The signal is delivered
and handled as described for the kill() function.

RETURNS On success zero; on failure one of the following non-zero error codes: ESRCH, EINVAL

2 Routines
pthread_mutex_getprioceiling()

639

2

ERRNO N/A

SEE ALSO pthreadLib, kill(), pthread_sigmask(), sigprocmask(), sigaction(), sigsuspend(),
sigwait()

pthread_mutex_destroy()

NAME pthread_mutex_destroy() – destroy a mutex (POSIX)

SYNOPSIS int pthread_mutex_destroy
 (
 pthread_mutex_t *pMutex /* POSIX mutex */
)

DESCRIPTION This routine destroys a mutex object, freeing the resources it might hold. The mutex can be
safely destroyed when unlocked. On VxWorks a thread may destroy a mutex that it owns
(i.e. that the thread has locked). If the mutex is locked by an other thread this routine will
return an error (EBUSY).

RETURNS On success zero; on failure a non-zero error code:

EINVAL

EBUSY

ERRNO N/A

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semDelete()

pthread_mutex_getprioceiling()

NAME pthread_mutex_getprioceiling() – get the value of the prioceiling attribute of a mutex
(POSIX)

SYNOPSIS int pthread_mutex_getprioceiling
 (
 pthread_mutex_t *pMutex, /* POSIX mutex */
 int *pPrioceiling /* current priority ceiling (out) */
)

VxWorks Kernel API Reference, 6.6
pthread_mutex_init()

640

DESCRIPTION This function gets the current value of the prioceiling attribute of a mutex. Unless the mutex
was created with a protocol attribute value of PTHREAD_PRIO_PROTECT, this value is
meaningless.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_mutex_setprioceiling(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_setprioceiling()

pthread_mutex_init()

NAME pthread_mutex_init() – initialize mutex from attributes object (POSIX)

SYNOPSIS int pthread_mutex_init
 (
 pthread_mutex_t *pMutex, /* POSIX mutex */
 const pthread_mutexattr_t *pAttr /* mutex attributes */
)

DESCRIPTION This routine initializes the mutex object pointed to by pMutex according to the mutex
attributes specified in pAttr. If pAttr is NULL, default attributes are used as defined in the
POSIX specification. If pAttr is non-NULL then it is assumed to point to a mutex attributes
object initialized by pthread_mutexattr_init(), and those are the attributes used to create
the mutex.

RETURNS On success zero; on failure a non-zero error code:

EINVAL

ERRNO N/A

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_destroy(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semMCreate()

2 Routines
pthread_mutex_setprioceiling()

641

2

pthread_mutex_lock()

NAME pthread_mutex_lock() – lock a mutex (POSIX)

SYNOPSIS int pthread_mutex_lock
 (
 pthread_mutex_t *pMutex /* POSIX mutex */
)

DESCRIPTION This routine locks the mutex specified by pMutex. If the mutex is currently unlocked, it
becomes locked, and is said to be owned by the calling thread. In this case
pthread_mutex_lock() returns immediately.

If the mutex is already locked by another thread, pthread_mutex_lock() blocks the calling
thread until the mutex is unlocked by its current owner.

If it is already locked by the calling thread, pthread_mutex_lock will deadlock on itself and
the thread will block indefinitely.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semTake()

pthread_mutex_setprioceiling()

NAME pthread_mutex_setprioceiling() – dynamically set the prioceiling attribute of a mutex
(POSIX)

SYNOPSIS int pthread_mutex_setprioceiling
 (
 pthread_mutex_t *pMutex, /* POSIX mutex */
 int prioceiling, /* new priority ceiling */
 int *pOldPrioceiling /* old priority ceiling (out) */
)

DESCRIPTION This function dynamically sets the value of the prioceiling attribute of a mutex. Unless the
mutex was created with a protocol value of PTHREAD_PRIO_PROTECT, this function does
nothing.

VxWorks Kernel API Reference, 6.6
pthread_mutex_trylock()

642

RETURNS On success zero; on failure a non-zero error code:

EINVAL

EPERM

S_objLib_OBJ_ID_ERROR

S_semLib_NOT_ISR_CALLABLE

ERRNO N/A

SEE ALSO pthreadLib, pthread_mutex_getprioceiling(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_setprioceiling()

pthread_mutex_trylock()

NAME pthread_mutex_trylock() – lock mutex if it is available (POSIX)

SYNOPSIS int pthread_mutex_trylock
 (
 pthread_mutex_t *pMutex /* POSIX mutex */
)

DESCRIPTION This routine locks the mutex specified by pMutex. If the mutex is currently unlocked, it
becomes locked and owned by the calling thread. In this case pthread_mutex_trylock()
returns immediately.

If the mutex is already locked by another thread, pthread_mutex_trylock() returns
immediately with the error code EBUSY.

RETURNS On success zero; on failure a non-zero error code:

EINVAL

EBUSY

ERRNO N/A

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semTake()

2 Routines
pthread_mutexattr_destroy()

643

2

pthread_mutex_unlock()

NAME pthread_mutex_unlock() – unlock a mutex (POSIX)

SYNOPSIS int pthread_mutex_unlock
 (
 pthread_mutex_t *pMutex
)

DESCRIPTION This routine unlocks the mutex specified by pMutex. If the calling thread is not the current
owner of the mutex, pthread_mutex_unlock() returns with the error code EPERM.

RETURNS On success zero; on failure a non-zero error code:

EINVAL

EPERM

S_objLib_OBJ_ID_ERROR

S_semLib_NOT_ISR_CALLABLE

ERRNO N/A

SEE ALSO pthreadLib, semLib, semMLib, pthread_mutex_init(), pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_unlock(), pthread_mutexattr_init(),
semGive()

pthread_mutexattr_destroy()

NAME pthread_mutexattr_destroy() – destroy mutex attributes object (POSIX)

SYNOPSIS int pthread_mutexattr_destroy
 (
 pthread_mutexattr_t *pAttr /* mutex attributes */
)

DESCRIPTION This routine destroys a mutex attribute object. The mutex attribute object must not be reused
until it is reinitialized.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

VxWorks Kernel API Reference, 6.6
pthread_mutexattr_getprioceiling()

644

SEE ALSO pthreadLib, pthread_mutexattr_getprioceiling(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_init(), pthread_mutexattr_setprioceiling(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

pthread_mutexattr_getprioceiling()

NAME pthread_mutexattr_getprioceiling() – get the current value of the prioceiling attribute in a
mutex attributes object (POSIX)

SYNOPSIS int pthread_mutexattr_getprioceiling
 (
 pthread_mutexattr_t *pAttr, /* mutex attributes */
 int *pPrioceiling /* current priority ceiling (out) */
)

DESCRIPTION This function gets the current value of the prioceiling attribute in a mutex attributes object.
Unless the value of the protocol attribute is PTHREAD_PRIO_PROTECT, this value is
ignored.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprotocol(),
pthread_mutexattr_init(), pthread_mutexattr_setprioceiling(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

pthread_mutexattr_getprotocol()

NAME pthread_mutexattr_getprotocol() – get value of protocol in mutex attributes object (POSIX)

SYNOPSIS int pthread_mutexattr_getprotocol
 (
 pthread_mutexattr_t *pAttr, /* mutex attributes */
 int *pProtocol /* current protocol (out) */
)

DESCRIPTION This function gets the current value of the protocol attribute in a mutex attributes object.

RETURNS On success zero; on failure the EINVAL error code.

2 Routines
pthread_mutexattr_setprioceiling()

645

2

ERRNO N/A

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_init(), pthread_mutexattr_setprioceiling(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

pthread_mutexattr_init()

NAME pthread_mutexattr_init() – initialize mutex attributes object (POSIX)

SYNOPSIS int pthread_mutexattr_init
 (
 pthread_mutexattr_t *pAttr /* mutex attributes */
)

DESCRIPTION This routine initializes the mutex attribute object pAttr and fills it with default values for
the attributes:

Mutex Protocol
PTHREAD_PRIO_INHERIT - the priority of the owner thread is temporarily raised if a
higher priority thread is blocked on the mutex.

Mutex Priority Ceiling
0 - lowest priority.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_getprotocol(), pthread_mutexattr_setprioceiling(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

pthread_mutexattr_setprioceiling()

NAME pthread_mutexattr_setprioceiling() – set prioceiling attribute in mutex attributes object
(POSIX)

SYNOPSIS int pthread_mutexattr_setprioceiling
 (
 pthread_mutexattr_t *pAttr, /* mutex attributes */

VxWorks Kernel API Reference, 6.6
pthread_mutexattr_setprotocol()

646

 int prioceiling /* new priority ceiling */
)

DESCRIPTION This function sets the value of the prioceiling attribute in a mutex attributes object. Unless
the protocol attribute is set to PTHREAD_PRIO_PROTECT, this attribute is ignored.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_getprotocol(), pthread_mutexattr_init(),
pthread_mutexattr_setprotocol(), pthread_mutex_init()

pthread_mutexattr_setprotocol()

NAME pthread_mutexattr_setprotocol() – set protocol attribute in mutex attribute object (POSIX)

SYNOPSIS int pthread_mutexattr_setprotocol
 (
 pthread_mutexattr_t *pAttr, /* mutex attributes */
 int protocol /* new protocol */
)

DESCRIPTION This function selects the locking protocol to be used when a mutex is created using this
attributes object. The protocol to be selected is either PTHREAD_PRIO_INHERIT or
PTHREAD_PRIO_PROTECT.

RETURNS On success zero; on failure a non-zero error code:

EINVAL

ENOTSUP

ERRNO N/A

SEE ALSO pthreadLib, pthread_mutexattr_destroy(), pthread_mutexattr_getprioceiling(),
pthread_mutexattr_getprotocol(), pthread_mutexattr_init(),
pthread_mutexattr_setprioceiling(), pthread_mutex_init()

2 Routines
pthread_once()

647

2

pthread_once()

NAME pthread_once() – dynamic package initialization (POSIX)

SYNOPSIS int pthread_once
 (
 pthread_once_t * pOnceControl, /* once control location */
 void (*initFunc)(void) /* function to call */
)

DESCRIPTION This routine provides a mechanism to ensure that one, and only one call to a user specified
initialization function will occur. This allows all threads in a system to attempt initialization
of some feature they need to use, without any need for the application to explicitly prevent
multiple calls.

When a thread makes a call to pthread_once(), the first thread to call it with the specified
control variable, pOnceControl, will result in a call to initFunc, but subsequent calls will not.
The pOnceControl parameter determines whether the associated initialization routine has
been called. The initFunc function is complete when pthread_once() returns.

The function pthread_once() is not a cancellation point; however, if the function initFunc is
a cancellation point, and the thread is canceled while executing it, the effect on pOnceControl
is the same as if pthread_once() had never been called.

CAVEAT If the initialization function does not return then all threads calling pthread_once() with the
same control variable will stay blocked as well. It is therefore imperative that the
initialization function always returns.

WARNING If pOnceControl has automatic storage duration or is not initialized to the value
PTHREAD_ONCE_INIT, the behavior of pthread_once() is undefined.

The constant PTHREAD_ONCE_INIT is defined in the pthread.h header file.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO None

SEE ALSO pthreadLib

VxWorks Kernel API Reference, 6.6
pthread_self()

648

pthread_self()

NAME pthread_self() – get the calling thread's ID (POSIX)

SYNOPSIS pthread_t pthread_self (void)

DESCRIPTION This function returns the calling thread's ID.

If the caller is a native VxWorks task it will be given a POSIX thread persona.

RETURNS Calling thread's ID.

ERRNO Not Available

SEE ALSO pthreadLib

pthread_setcancelstate()

NAME pthread_setcancelstate() – set cancellation state for calling thread (POSIX)

SYNOPSIS int pthread_setcancelstate
 (
 int state, /* new state */
 int *oldstate /* old state (out) */
)

DESCRIPTION This routine sets the cancellation state for the calling thread to state, and, if oldstate is not
NULL, returns the old state in the location pointed to by oldstate.

The state can be one of the following:

PTHREAD_CANCEL_ENABLE
Enable thread cancellation.

PTHREAD_CANCEL_DISABLE
Disable thread cancellation (i.e. thread cancellation requests are ignored).

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_cancel(), pthread_setcanceltype(), pthread_testcancel()

2 Routines
pthread_setschedparam()

649

2

pthread_setcanceltype()

NAME pthread_setcanceltype() – set cancellation type for calling thread (POSIX)

SYNOPSIS int pthread_setcanceltype
 (
 int type, /* new type */
 int *oldtype /* old type (out) */
)

DESCRIPTION This routine sets the cancellation type for the calling thread to type. If oldtype is not NULL,
then the old cancellation type is stored in the location pointed to by oldtype.

Possible values for type are:

PTHREAD_CANCEL_ASYNCHRONOUS
Any cancellation request received by this thread will be acted upon as soon as it is
received.

PTHREAD_CANCEL_DEFERRED
Cancellation requests received by this thread will be deferred until the next cancellation
point is reached.

RETURNS On success zero; on failure the EINVAL error code.

ERRNO N/A

SEE ALSO pthreadLib, pthread_cancel(), pthread_setcancelstate(), pthread_testcancel()

pthread_setschedparam()

NAME pthread_setschedparam() – dynamically set schedparam attribute for a thread (POSIX)

SYNOPSIS int pthread_setschedparam
 (
 pthread_t thread, /* thread */
 int policy, /* new policy */
 const struct sched_param *pParam /* new parameters */
)

DESCRIPTION This routine will set the scheduling parameters (pParam) and policy (policy) for the thread
specified by thread.

In VxWorks the scheduling policy is global and not set on a per-thread basis; if the selected
policy is one of SCHED_FIFO or SCHED_RR and this does not match the current VxWorks

VxWorks Kernel API Reference, 6.6
pthread_setspecific()

650

scheduling policy then this function will return an error (EPERM). If the policy parameter is
set to SCHED_OTHER, which always matches the active scheduling policy, only the thread's
priority will be changed.

RETURNS On success zero; on failure one of the following non-zero error codes: EPERM, ESRCH
(invalid task ID), EINVAL (scheduling priority is outside valid range)

ERRNO N/A

SEE ALSO pthreadLib, pthread_attr_getschedparam(), pthread_attr_getschedpolicy(),
pthread_attr_setschedparam(), pthread_attr_setschedpolicy(),
pthread_getschedparam(), sched_getparam(), sched_setparam()

pthread_setspecific()

NAME pthread_setspecific() – set thread specific data (POSIX)

SYNOPSIS int pthread_setspecific
 (
 pthread_key_t key, /* thread specific data key */
 const void *value /* new value */
)

DESCRIPTION Sets the value of the thread specific data associated with key to value for the calling thread.

RETURNS On success zero; on failure a non-zero error code:

EINVAL

ENOMEM

ERRNO N/A

SEE ALSO pthreadLib, pthread_getspecific(), pthread_key_create(), pthread_key_delete()

pthread_sigmask()

NAME pthread_sigmask() – change and/or examine calling thread's signal mask (POSIX)

SYNOPSIS int pthread_sigmask

2 Routines
pthread_testcancel()

651

2

 (
 int how, /* method for changing set */
 const sigset_t * set, /* new set of signals */
 sigset_t * oset /* old set of signals */
)

DESCRIPTION This routine changes the signal mask for the calling thread as described by the how and set
arguments. If oset is not NULL, the previous signal mask is stored in the location pointed to
by it.

The value of how indicates the manner in which the set is changed and consists of one of the
following defined in signal.h:

SIG_BLOCK
The resulting set is the union of the current set and the signal set pointed to by set.

SIG_UNBLOCK
The resulting set is the intersection of the current set and the complement of the signal
set pointed to by set.

SIG_SETMASK
The resulting set is the signal set pointed to by oset.

RETURNS On success zero; on failure a EINVAL error code is returned.

ERRNO N/A

SEE ALSO pthreadLib, kill(), pthread_kill(), sigprocmask(), sigaction(), sigsuspend(), sigwait()

pthread_testcancel()

NAME pthread_testcancel() – create a cancellation point in the calling thread (POSIX)

SYNOPSIS void pthread_testcancel (void)

DESCRIPTION This routine creates a cancellation point in the calling thread. It has no effect if cancellation
is disabled (i.e. the cancellation state has been set to PTHREAD_CANCEL_DISABLE using the
pthread_setcancelstate() function).

If cancellation is enabled, the cancellation type is PTHREAD_CANCEL_DEFERRED and a
cancellation request has been received, then this routine will call pthread_exit() with the
exit status set to PTHREAD_CANCELED. If any of these conditions is not met, then the
routine does nothing.

RETURNS N/A

VxWorks Kernel API Reference, 6.6
ptyDevCreate()

652

ERRNO N/A

SEE ALSO pthreadLib, pthread_cancel(), pthread_setcancelstate(), pthread_setcanceltype()

ptyDevCreate()

NAME ptyDevCreate() – create a pseudo terminal

SYNOPSIS STATUS ptyDevCreate
 (
 char *name, /* name of pseudo terminal */
 int rdBufSize, /* size of terminal read buffer */
 int wrtBufSize /* size of write buffer */
)

DESCRIPTION This routine creates a master and slave device which can then be opened by the master and
slave processes. The master process simulates the "hardware" side of the driver, while the
slave process is the application program that normally talks to a tty driver. Data written to
the master device can then be read on the slave device, and vice versa.

RETURNS OK, or ERROR if memory is insufficient.

ERRNO S_ioLib_NO_DRIVER (ENXIO)
The ptyDrv driver is not installed.

S_iosLib_DUPICATE_DEVICE_NAME (EINVAL)
The device name is already in use.

SEE ALSO ptyDrv

ptyDevRemove()

NAME ptyDevRemove() – destroy a pseudo terminal

SYNOPSIS STATUS ptyDevRemove
 (
 char * pName /* name of pseudo terminal to remove */
)

DESCRIPTION This routine removes an existing master and slave device and releases all allocated memory.
It will close any open files using either device.

2 Routines
putenv()

653

2

RETURNS OK, or ERROR if terminal not found

ERRNO S_ioLib_NO_DRIVER (ENXIO)
The ptyDrv is not installed.

SEE ALSO ptyDrv

ptyDrv()

NAME ptyDrv() – initialize the pseudo-terminal driver

SYNOPSIS STATUS ptyDrv (void)

DESCRIPTION This routine initializes the pseudo-terminal driver. It must be called before any other
routine in this module.

RETURNS OK, or ERROR if the master or slave devices cannot be installed.

ERRNO N/A

SEE ALSO ptyDrv

putenv()

NAME putenv() – set an environment variable

SYNOPSIS STATUS putenv
 (
 char *pEnvString /* string to add to env */
)

DESCRIPTION This routine sets an environment variable to a value by altering an existing variable or
creating a new one. The parameter points to a string of the form "variableName=value".
Unlike the UNIX implementation, the string passed as a parameter is copied to a private
buffer.

RETURNS OK, or ERROR if space cannot be malloc'd.

VxWorks Kernel API Reference, 6.6
pwd()

654

ERRNOS S_memLib_NOT_ENOUGH_MEMORY
There is no free block large enough to satisfy the allocation request.

SEE ALSO envLib, envLibInit(), getenv()

pwd()

NAME pwd() – print the current default directory

SYNOPSIS void pwd (void)

DESCRIPTION This command displays the current working device/directory.

NOTE This is a target resident function, which manipulates the target I/O system. It must be
preceded with the @ letter if executed from the Host Shell (windsh), which has a built-in
command of the same name that operates on the Host's I/O system.

RETURNS N/A

ERRNO Not Available

SEE ALSO usrFsLib, cd(), the VxWorks programmer guides, the, VxWorks Command-Line Tools User's
Guide.

quiccEngineDrvCtrlShow()

NAME quiccEngineDrvCtrlShow() – place holder just prints out control structure ptr

SYNOPSIS int quiccEngineDrvCtrlShow
 (
 VXB_DEVICE_ID pInst
)

DESCRIPTION none

RETURNS N/A

ERRNO

SEE ALSO quiccEngineUtils

2 Routines
r0()

655

2

quiccEngineRegister()

NAME quiccEngineRegister() – register quiccEngine driver

SYNOPSIS void quiccEngineRegister(void)

DESCRIPTION This routine registers the quiccEngine driver and device recognition data with the vxBus
subsystem.

NOTE This routine is called early during system initialization, and *MUST NOT* make calls to OS
facilities such as memory allocation and I/O.

RETURNS N/A

ERRNO

SEE ALSO quiccEngineUtils

r0()

NAME r0() – return the contents of register r0 (also r1 - r14) (ARM)

SYNOPSIS int r0
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of register r0 from the TCB of a specified task. If taskId
is omitted or zero, the last task referenced is assumed.

Similar routines are provided for registers (r1 - r14): r1() - r14().

RETURNS The contents of register r0 (or the requested register).

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

VxWorks Kernel API Reference, 6.6
r0()

656

r0()

NAME r0() – return the contents of general register r0 (also r1-`r15') (SH)

SYNOPSIS int r0
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of register r0 from the TCB of a specified task. If taskId
is omitted or zero, the last task referenced is assumed.

Similar routines are provided for all general registers (r1 - r15): r1() - r15().

RETURNS The contents of register r0 (or the requested register).

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

raise()

NAME raise() – send a signal to the caller's task

SYNOPSIS int raise
 (
 int signo /* signal to send to caller's task */
)

DESCRIPTION This routine sends the signal signo to the task invoking the call.

RETURNS OK (0), or ERROR (-1) if the signal number or task ID is invalid.

ERRNO EINVAL

SEE ALSO sigLib, taskRaise()

2 Routines
ramDevCreate()

657

2

ramDevCreate()

NAME ramDevCreate() – create a RAM disk device

SYNOPSIS BLK_DEV* ramDevCreate
 (
 char *ramAddr, /* where it is in memory (0 = malloc) */
 int bytesPerBlk, /* number of bytes per block */
 int blksPerTrack, /* number of blocks per track */
 int nBlocks, /* number of blocks on this device */
 int blkOffset /* no. of blks to skip at start of device */
)

DESCRIPTION This routine creates a RAM disk device.

Memory for the RAM disk can be pre-allocated separately; if so, the ramAddr parameter
should be the address of the pre-allocated device memory. Or, memory can be
automatically allocated with malloc() by setting ramAddr to zero.

The bytesPerBlk parameter specifies the size of each logical block on the RAM disk. If
bytesPerBlk is zero, 512 is used.

The blksPerTrack parameter specifies the number of blocks on each logical track of the RAM
disk. If blksPerTrack is zero, the count of blocks per track is set to nBlocks (i.e., the disk is
defined as having only one track).

The nBlocks parameter specifies the size of the disk, in blocks. If nBlocks is zero, a default size
is used. The default is calculated using a total disk size of either 51,200 bytes or one-half of
the size of the largest memory area available, whichever is less. This default disk size is then
divided by bytesPerBlk to determine the number of blocks.

The blkOffset parameter specifies an offset, in blocks, from the start of the device to be used
when writing or reading the RAM disk. This offset is added to the block numbers passed
by the file system during disk accesses. (VxWorks file systems always use block numbers
beginning at zero for the start of a device.) This offset value is typically useful only if a
specific address is given for ramAddr. Normally, blkOffset is 0.

FILE SYSTEMS Once the device has been created, it must be associated with a name and a file system (dosFs,
hrfs, or rawFs). This is accomplished in a two step process. The ramDevCreate() call
returns a pointer to a block device structure (BLK_DEV). This structure contains fields that
describe the physical properties of a disk device and specify the addresses of routines within
the ramDrv driver. The BLK_DEV structure address should be passed to an XBD wrapper
via xbdBlkDevCreate() along with the name of the device. XBDs are the new and preferred
method for interfacing with file systems.

After the XBD wrapper is created, the file system framework will attempt to identify the
type of file system instantiated on the device. If it can not be identified, then it is instantiated
with rawFs.

VxWorks Kernel API Reference, 6.6
ramDiskDevCreate()

658

The desired file system (dosFs or hrfs) can be instantiated on the ram drive using either
dosFsVolFormat(), dosfsDiskFormat(),hrfsFormat(), or hrfsDiskFormat(). The ram
drive to be formatted is identified by the name of the device given in the XBD wrapper.

EXAMPLE In the following example, a 208-Kbyte RAM disk is created with automatically allocated
memory, 512-byte blocks, 32 blocks per track, and no block offset. The device is then
initialized for use with dosFs and assigned the name "/ramDrv":

 BLK_DEV *pBlkDev;

 pBlkDev = ramDevCreate (NULL, 512, 32, 416, 0);
 xbdBlkDevCreate (pBlkDev, "/ramDrv");
 dosFsVolFormat ("/ramDrv:0", DOS_OPT_BLANK, NULL);

The names used in xbdBlkDevCreate() and dosFsVolFormat() are slightly different on
purpose. The ":0" is appended to "/ramDrv" by xbdBlkDevCreate() and represents the
whole (unpartitioned) disk.

If the RAM disk memory already contains a disk image created elsewhere, the first
argument to ramDevCreate() should be the address in memory, and the formatting
parameters -- bytesPerBlk, blksPerTrack, nBlocks, and blkOffset -- must be identical to those
used when the image was created. For example:

 pBlkDev = ramDevCreate (0xc0000, 512, 32, 416, 0);

In this case, the file system does not have to be explicitly created as the file system
framework will probe the ram drive to determine the type of file system previously
instantiated on it. The detected file system will be automatically re-instantiated on the
device. This procedure is useful if a RAM disk is to be created at the same address used in
a previous boot of VxWorks. The contents of the RAM disk will then be preserved.

If no known file system was detected, the ram drive will default to rawFs.

RETURNS A pointer to a block device structure (BLK_DEV) or NULL if memory cannot be allocated for
the device structure or for the RAM disk.

ERRNO N/A.

SEE ALSO ramDrv, xbdBlkDevCreate(), dosFsVolFormat(), hrfsFormat()

ramDiskDevCreate()

NAME ramDiskDevCreate() – Initialize a RAM Disk device

SYNOPSIS CBIO_DEV_ID ramDiskDevCreate

2 Routines
ramDrv()

659

2

 (
 char *pRamAddr, /* where it is in memory (0 = malloc) */
 int bytesPerBlk, /* number of bytes per block */
 int blksPerTrack, /* number of blocks per track */
 int nBlocks, /* number of blocks on this device */
 int blkOffset /* no. of blks to skip at start of device */
)

DESCRIPTION This function creates a compact RAM-Disk device that can be directly utilized by dosFsLib,
without the intermediate disk cache. It can be used for non-volatile RAM as well as volatile
RAM disks.

The RAM size is specified in terms of total number of blocks in the device and the block size
in bytes. The minimal block size is 32 bytes. If pRamAddr is NULL, space will be allocated
from the default memory pool.

CAVEAT When used with NV-RAM, this module can not eliminate mid-block write interruption,
which may cause file system corruption not existent in common disk drives.

RETURNS a CBIO handle that can be directly used by dosFsDevCreate() or NULL if the requested
amount of RAM is not available.

ERRNO Not Available

SEE ALSO ramDiskCbio, dosFsDevCreate().

ramDrv()

NAME ramDrv() – prepare a RAM disk driver for use (optional)

SYNOPSIS STATUS ramDrv (void)

DESCRIPTION This routine performs no real function, except to provide compatibility with earlier versions
of ramDrv and to parallel the initialization function found in true disk device drivers. It also
is used in usrConfig.c to link in the RAM disk driver when building VxWorks. It is
automatically called when VxWorks is configured with the INCLUDE_RAMDRV
component.

RETURNS OK, always.

ERRNO N/A.

SEE ALSO ramDrv

VxWorks Kernel API Reference, 6.6
rawFsDevInit()

660

rawFsDevInit()

NAME rawFsDevInit() – associate a block device with raw volume functions

SYNOPSIS RAW_VOL_DESC *rawFsDevInit
 (
 char * pVolName, /* volume name to be used with iosDevAdd */
 device_t xbd /* XBD device */
)

DESCRIPTION This routine takes a block device created by a device driver and defines it as a raw file
system volume. As a result, when high-level I/O operations, such as open() and write()
are performed, on the device, the calls will be routed through rawFsLib.

This routine associates pVolName with a device and installs it in the VxWorks I/O System's
device table. The driver number used when the device is added to the table is that which
was assigned to the raw library during rawFsInit(). (The driver number is kept in the
global variable rawFsDrvNum.)

The xbd is a device_t referring to an XBD device which represents the backing media for this
rawFs. The XBD device will not be accessed until an I/O operation occurs on the file system.

RETURNS A pointer to the volume descriptor (RAW_VOL_DESC), or NULL if there is an error.

ERRNO Not Available

SEE ALSO rawFsLib

rawFsInit()

NAME rawFsInit() – prepare to use the raw volume library

SYNOPSIS STATUS rawFsInit
 (
 int maxFiles /* max no. of simultaneously open files */
)

DESCRIPTION This routine initializes the raw volume library. It must be called exactly once, before any
other routine in the library. The argument specifies the number of file descriptors that may
be open at once. This routine allocates and sets up the necessary memory structures and
initializes semaphores.

This routine also installs raw volume library routines in the VxWorks I/O system driver
table. The driver number assigned to rawFsLib is placed in the global variable

2 Routines
read()

661

2

rawFsDrvNum. This number will later be associated with system file descriptors opened
to rawFs devices.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO rawFsLib

rawPerfDemo()

NAME rawPerfDemo() – entry point for the VxWorks/SMP raw performance demo

SYNOPSIS STATUS rawPerfDemo (void)

DESCRIPTION This routine is the entry point for the VxWorks/SMP raw performance demo. It is typically
called from the target shell.

This function will create N worker tasks; N = number of CPUs currently enabled in the
system. Aggregate raw performance figures are obtained as described in the module
description. The aggregate raw performance data is plotted in real-time on an ASCII
character graph.

See the module description for more information.

RETURNS ERROR if failed to create worker tasks, otherwise OK is returned.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
Out of memory for creation of worker tasks

SEE ALSO rawPerfDemo

read()

NAME read() – read bytes from a file or device

SYNOPSIS int read
 (
 int fd, /* file descriptor from which to read */
 char * buffer, /* pointer to buffer to receive bytes */

VxWorks Kernel API Reference, 6.6
readdir()

662

 size_t maxbytes /* max no. of bytes to read into buffer */
)

DESCRIPTION This routine reads a number of bytes (less than or equal to maxbytes) from a specified file
descriptor and places them in buffer. It calls the device driver to do the work.

RETURNS The number of bytes read (between 1 and maxbytes, 0 if end of file), or ERROR if the file
descriptor does not exist, the driver does not have a read routines, or the driver returns
ERROR. If the driver does not have a read routine, errno is set to ENOTSUP.

ERRNO EBADF
Bad file descriptor number.

ENOTSUP
Device driver does not support the read command.

ENXIO
Device and its driver are removed. close() should be called to release this file
descriptor.

Other
Other errors reported by device driver.

SEE ALSO ioLib

readdir()

NAME readdir() – read one entry from a directory (POSIX)

SYNOPSIS struct dirent *readdir
 (
 DIR *pDir /* pointer to directory descriptor */
)

DESCRIPTION This routine obtains directory entry data for the next file from an open directory. The pDir
parameter is the pointer to a directory descriptor (DIR) which was returned by a previous
opendir().

This routine returns a pointer to a dirent structure which contains the name of the next file.
Empty directory entries and MS-DOS volume label entries are not reported. The name of
the file (or subdirectory) described by the directory entry is returned in the d_name field of
the dirent structure. The name is a single null-terminated string.

The returned dirent pointer will be NULL, if it is at the end of the directory or if an error
occurred. Because there are two conditions which might cause NULL to be returned, the
task's error number (errno) must be used to determine if there was an actual error. Before

2 Routines
readdir_r()

663

2

calling readdir(), set errno to OK. If a NULL pointer is returned, check the new value of
errno. If errno is still OK, the end of the directory was reached; if not, errno contains the
error code for an actual error which occurred.

RETURNS A pointer to a dirent structure, or NULL if there is an end-of-directory marker or error from
the IO system.

ERRNO EBADF
Bad file descriptor number.

S_ioLib_UNKNOWN_REQUEST (ENOSYS)
Device driver does not support the ioctl command.

Other
Other errors reported by device driver.

SEE ALSO dirLib, opendir(), readdir_r(), closedir(), rewinddir(), ls()

readdir_r()

NAME readdir_r() – read one entry from a directory (POSIX)

SYNOPSIS int readdir_r
 (
 DIR *pDir, /* pointer to directory descriptor */
 struct dirent *entry, /* pointer to directory entry */
 struct dirent **result /* pointer to pointer to result of read */
)

DESCRIPTION This routine obtains directory entry data for the next file from an open directory. The pDir
parameter is the pointer to a directory descriptor (DIR) which was returned by a previous
opendir().

The caller must allocate storage pointed to by entry to be large enough for a dirent structure
with an array of char d_name member containing at least NAME_MAX.

On successful return, the pointer returned at *result will be the same value as the argument
entry. Upon reaching the end of the directory stream, this pointer will have the value NULL.

RETURNS zero if successful or an error number to indicate failure.

ERRNO EBADF
Bad file descriptor number.

S_ioLib_UNKNOWN_REQUEST (ENOSYS)
Device driver does not support the ioctl command.

VxWorks Kernel API Reference, 6.6
realloc()

664

Other
Other errors reported by device driver.

SEE ALSO dirLib, opendir(), readdir(), closedir(), rewinddir(), ls()

realloc()

NAME realloc() – reallocate a block of memory (ANSI)

SYNOPSIS void * realloc
 (
 void * pBlock, /* block to reallocate */
 size_t newSize /* new block size */
)

DESCRIPTION This routine changes the size of a specified block of memory and returns a pointer to the
new block of memory. The contents that fit inside the new size (or old size if smaller) remain
unchanged. The memory alignment of the new block is not guaranteed to be the same as
the original block.

When the INCLUDE_MEM_MGR_FULL component is included this funcition changes to an
optimized implementation that attempts to resize the existing block.

If pBlock is NULL, this call is equivalent to malloc().

If newSize is set to zero and pBlock points to a valid allocated block, this call is equivalent to
free().

RETURNS A pointer to the new block of memory, NULL if the call fails or if newSize is equal to zero.

ERRNO Possible errnos generated by this routine include:

S_memLib_NOT_ENOUGH_MEMORY
There is no free block large enough to satisfy the allocation request.

SEE ALSO memPartLib, memPartRealloc(), American National Standard for Information Systems -,
Programming Language - C, ANSI X3.159-1989: General Utilities (stdlib.h)

2 Routines
rebootHookAdd()

665

2

reboot()

NAME reboot() – reset network devices and transfer control to boot ROMs

SYNOPSIS void reboot
 (
 int startType /* how the boot ROMS will reboot */
)

DESCRIPTION This routine returns control to the boot ROMs after calling a series of preliminary shutdown
routines that have been added via rebootHookAdd(), including routines to reset all
network devices. After calling the shutdown routines, interrupts are locked, all caches are
cleared, and control is transferred to the boot ROMs.

The bit values for startType are defined in sysLib.h:

BOOT_NORMAL (0x00)
causes the system to go through the countdown sequence and try to reboot VxWorks
automatically. Memory is not cleared.

BOOT_NO_AUTOBOOT (0x01)
causes the system to display the VxWorks boot prompt and wait for user input to the
boot ROM monitor. Memory is not cleared.

BOOT_CLEAR (0x02)
the same as BOOT_NORMAL, except that memory is cleared.

BOOT_QUICK_AUTOBOOT (0x04)
the same as BOOT_NORMAL, except the countdown is shorter.

RETURNS N/A

ERRNO Not Available

SEE ALSO rebootLib, sysToMonitor(), rebootHookAdd(), windsh, the VxWorks programmer
guides, and the IDE and host tools guides.

rebootHookAdd()

NAME rebootHookAdd() – add a routine to be called at reboot

SYNOPSIS STATUS rebootHookAdd
 (
 FUNCPTR rebootHook /* routine to be called at reboot */
)

VxWorks Kernel API Reference, 6.6
reld()

666

DESCRIPTION This routine adds the specified routine to a list of routines to be called when VxWorks is
rebooted. The specified routine should be declared as follows:

 void rebootHook
 (
 int startType /* startType is passed to all hooks */
)

Reboot hooks will be called in the order they were added, when the reboot() function is
executed.

Reboot hooks must follow similar restrictions as with interrupt service routines (ISRs).
Reboot hooks must not invoke kernel service routines that may block. For example, calling
free() or semTake() while the semaphore is not available, would cause the caller to block.
Blocking calls within the reboot hooks may causes the reboot process to reschedule() or
hang, potentially leaving the system in an undefined state.

RETURNS OK, or ERROR if memory is insufficient.

ERRNO Not Available

SEE ALSO rebootLib, reboot()

reld()

NAME reld() – reload an object module (shell command)

SYNOPSIS MODULE_ID reld
 (
 void * nameOrId, /* name or ID of the object module file */
 int options /* options used for unloading */
)

DESCRIPTION This routine unloads a specified object module from the system, and then calls
loadModule() to load a new copy of the same name.

If the file was originally loaded using a complete pathname, then reld() will use the
complete name to locate the file. If the file was originally loaded using a partial pathname,
then the current working directory must be changed to the working directory in use at the
time of the original load.

Valid values for the options parameter are the same as those allowed for the function
unld().

This routine is a shell command. That is, it is designed to be used only in the shell, and not
in code running on the target. In future releases, calling reld() directly from code may not
be supported.

2 Routines
rename()

667

2

RETURNS A module ID (type MODULE_ID), or NULL.

ERRNO Not Available

SEE ALSO usrLib, loadLib, unld(), ld(), the VxWorks programmer guides.

rename()

NAME rename() – change the name of a file

SYNOPSIS int rename
 (
 const char *oldname, /* name of file to rename */
 const char *newname /* name with which to rename file */
)

DESCRIPTION This routine changes the name of a file from oldfile to newfile.

NOTE Only certain devices support rename(). To confirm that your device supports it, consult the
respective xxDrv or xxFs listings to verify that ioctl FIORENAME exists. For example,
dosFs, HRFS and NFS support rename(), but netDrv does not.

RETURNS OK, or ERROR if the file could not be opened or renamed.

ERRNO ENOENT
Either oldname or newname is an empty string.

ELOOP
Circular symbolic link, too many links.

EMFILE
Maximum number of files already open.

S_iosLib_DEVICE_NOT_FOUND (ENODEV)
No valid device name found in path.

ENOSYS
Device driver does not support the symlink ioctl command.

others
Other errors reported by device driver.

SEE ALSO fsPxLib

VxWorks Kernel API Reference, 6.6
repeat()

668

repeat()

NAME repeat() – spawn a task to call a function repeatedly

SYNOPSIS int repeat
 (
 FAST int n, /* no. of times to call func (0=forever) */
 FAST FUNCPTR func, /* function to call repeatedly */
 int arg1, /* first of eight args to pass to func */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8
)

DESCRIPTION This command spawns a task that calls a specified function n times, with up to eight of its
arguments. If n is 0, the routine is called endlessly, or until the spawned task is deleted.

NOTE The task is spawned using sp(). See the description of sp() for details about priority,
options, stack size, and task ID.

RETURNS A task ID, or ERROR if the task cannot be spawned.

ERRNO sp() errnos.

SEE ALSO usrLib, repeatRun(), sp(), the VxWorks programmer guides.

repeatRun()

NAME repeatRun() – call a function repeatedly

SYNOPSIS void repeatRun
 (
 FAST int n, /* no. of times to call func (0=forever) */
 FAST FUNCPTR func, /* function to call repeatedly */
 int arg1, /* first of eight args to pass to func */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,

2 Routines
rewinddir()

669

2

 int arg8
)

DESCRIPTION This command calls a specified function n times, with up to eight of its arguments. If n is 0,
the routine is called endlessly.

Normally, this routine is called only by repeat(), which spawns it as a task.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, repeat(), the VxWorks programmer guides.

rewinddir()

NAME rewinddir() – reset position to the start of a directory (POSIX)

SYNOPSIS void rewinddir
 (
 DIR *pDir /* pointer to directory descriptor */
)

DESCRIPTION This routine resets the position pointer in a directory descriptor (DIR). The pDir parameter
is the directory descriptor pointer that was returned by opendir().

As a result, the next readdir() will cause the current directory data to be read in again, as if
an opendir() had just been performed. Any changes in the directory that have occurred
since the initial opendir() will now be visible. The first entry in the directory will be
returned by the next readdir().

RETURNS N/A

ERRNO N/A.

SEE ALSO dirLib, opendir(), readdir(), closedir()

VxWorks Kernel API Reference, 6.6
rindex()

670

rindex()

NAME rindex() – find the last occurrence of a character in a string

SYNOPSIS char *rindex
 (
 FAST const char * s, /* string in which to find character */
 int c /* character to find in string */
)

DESCRIPTION This routine finds the last occurrence of character c in string s.

RETURNS A pointer to c, or NULL if c is not found.

ERRNO N/A

SEE ALSO bLib

rm()

NAME rm() – remove a file

SYNOPSIS STATUS rm
 (
 const char * fileName /* name of file to remove */
)

DESCRIPTION This command is provided for UNIX similarity. It simply calls remove().

RETURNS OK, or ERROR if the file cannot be removed.

ERRNO Not Available

SEE ALSO usrFsLib, remove(), the VxWorks programmer guides.

2 Routines
rngBufGet()

671

2

rmdir()

NAME rmdir() – remove a directory

SYNOPSIS STATUS rmdir
 (
 const char * dirName /* name of directory to remove */
)

DESCRIPTION This command removes an existing directory from a hierarchical file system. The dirName
string specifies the name of the directory to be removed, and may be either a full or relative
pathname.

This call is supported by the VxWorks NFS and dosFs file systems.

RETURNS OK, or ERROR if the directory cannot be removed.

ERRNO Not Available

SEE ALSO usrFsLib, mkdir(), the VxWorks programmer guides.

rngBufGet()

NAME rngBufGet() – get characters from a ring buffer

SYNOPSIS int rngBufGet
 (
 FAST RING_ID rngId, /* ring buffer to get data from */
 char *buffer, /* pointer to buffer to receive data */
 int maxbytes /* maximum number of bytes to get */
)

DESCRIPTION This routine copies bytes from the ring buffer rngId into buffer. It copies as many bytes as are
available in the ring, up to maxbytes. The bytes copied will be removed from the ring.

RETURNS The number of bytes actually received from the ring buffer; it may be zero if the ring buffer
is empty at the time of the call.

ERRNO N/A.

SEE ALSO rngLib

VxWorks Kernel API Reference, 6.6
rngBufPut()

672

rngBufPut()

NAME rngBufPut() – put bytes into a ring buffer

SYNOPSIS int rngBufPut
 (
 FAST RING_ID rngId, /* ring buffer to put data into */
 char *buffer, /* buffer to get data from */
 int nbytes /* number of bytes to try to put */
)

DESCRIPTION This routine puts bytes from buffer into ring buffer ringId. The specified number of bytes will
be put into the ring, up to the number of bytes available in the ring.

RETURNS The number of bytes actually put into the ring buffer; it may be less than number requested,
even zero, if there is insufficient room in the ring buffer at the time of the call.

ERRNO N/A.

SEE ALSO rngLib

rngCreate()

NAME rngCreate() – create an empty ring buffer

SYNOPSIS RING_ID rngCreate
 (
 int nbytes /* number of bytes in ring buffer */
)

DESCRIPTION This routine creates a ring buffer of size nbytes, and initializes it. Memory for the buffer is
allocated from the system memory partition.

RETURNS The ID of the ring buffer, or NULL if memory cannot be allocated.

ERRNO N/A.

SEE ALSO rngLib

2 Routines
rngFlush()

673

2

rngDelete()

NAME rngDelete() – delete a ring buffer

SYNOPSIS void rngDelete
 (
 FAST RING_ID ringId /* ring buffer to delete */
)

DESCRIPTION This routine deletes a specified ring buffer. Any data currently in the buffer will be lost.

RETURNS N/A

ERRNO N/A.

SEE ALSO rngLib

rngFlush()

NAME rngFlush() – make a ring buffer empty

SYNOPSIS void rngFlush
 (
 FAST RING_ID ringId /* ring buffer to initialize */
)

DESCRIPTION This routine initializes a specified ring buffer to be empty. Any data currently in the buffer
will be lost.

RETURNS N/A

ERRNO N/A.

SEE ALSO rngLib

VxWorks Kernel API Reference, 6.6
rngFreeBytes()

674

rngFreeBytes()

NAME rngFreeBytes() – determine the number of free bytes in a ring buffer

SYNOPSIS int rngFreeBytes
 (
 FAST RING_ID ringId /* ring buffer to examine */
)

DESCRIPTION This routine determines the number of bytes currently unused in a specified ring buffer.

RETURNS The number of unused bytes in the ring buffer.

ERRNO N/A.

SEE ALSO rngLib

rngIsEmpty()

NAME rngIsEmpty() – test if a ring buffer is empty

SYNOPSIS BOOL rngIsEmpty
 (
 RING_ID ringId /* ring buffer to test */
)

DESCRIPTION This routine determines if a specified ring buffer is empty.

RETURNS TRUE if empty, FALSE if not.

ERRNO N/A.

SEE ALSO rngLib

rngIsFull()

NAME rngIsFull() – test if a ring buffer is full (no more room)

SYNOPSIS BOOL rngIsFull

2 Routines
rngNBytes()

675

2

 (
 FAST RING_ID ringId /* ring buffer to test */
)

DESCRIPTION This routine determines if a specified ring buffer is completely full.

RETURNS TRUE if full, FALSE if not.

ERRNO N/A.

SEE ALSO rngLib

rngMoveAhead()

NAME rngMoveAhead() – advance a ring pointer by n bytes

SYNOPSIS void rngMoveAhead
 (
 FAST RING_ID ringId, /* ring buffer to be advanced */
 FAST int n /* number of bytes ahead to move input pointer */
)

DESCRIPTION This routine advances the ring buffer input pointer by n bytes. This makes n bytes available
in the ring buffer, after having been written ahead in the ring buffer with rngPutAhead().

RETURNS N/A

ERRNO N/A.

SEE ALSO rngLib

rngNBytes()

NAME rngNBytes() – determine the number of bytes in a ring buffer

SYNOPSIS int rngNBytes
 (
 FAST RING_ID ringId /* ring buffer to be enumerated */
)

DESCRIPTION This routine determines the number of bytes currently in a specified ring buffer.

VxWorks Kernel API Reference, 6.6
rngPutAhead()

676

RETURNS The number of bytes filled in the ring buffer.

ERRNO N/A.

SEE ALSO rngLib

rngPutAhead()

NAME rngPutAhead() – put a byte ahead in a ring buffer without moving ring pointers

SYNOPSIS void rngPutAhead
 (
 FAST RING_ID ringId, /* ring buffer to put byte in */
 char byte, /* byte to be put in ring */
 int offset /* offset beyond next input byte where to put byte
*/
)

DESCRIPTION This routine writes a byte into the ring, but does not move the ring buffer pointers. Thus
the byte will not yet be available to rngBufGet() calls. The byte is written offset bytes ahead
of the next input location in the ring. Thus, an offset of 0 puts the byte in the same position
as would RNG_ELEM_PUT would put a byte, except that the input pointer is not updated.

Bytes written ahead in the ring buffer with this routine can be made available all at once by
subsequently moving the ring buffer pointers with the routine rngMoveAhead().

Before calling rngPutAhead(), the caller must verify that at least offset + 1 bytes are available
in the ring buffer.

RETURNS N/A

ERRNO N/A.

SEE ALSO rngLib

romStart()

NAME romStart() – generic ROM initialization

SYNOPSIS void romStart

2 Routines
roundf()

677

2

 (
 FAST int startType /* start type */
)

DESCRIPTION This is the first C code executed after reset.

This routine is called by the assembly start-up code in romInit(). It clears memory, copies
ROM to RAM, and possibly invokes the uncompressor. It then jumps to the entry point of
the uncompressed object code.

RETURNS N/A

ERRNO

SEE ALSO bootInit

round()

NAME round() – round a number to the nearest integer

SYNOPSIS double round
 (
 double x /* value to round */
)

DESCRIPTION This routine rounds a double-precision value x to the nearest integral value.

RETURNS The double-precision representation of x rounded to the nearest integral value.

ERRNO Not Available

SEE ALSO mathALib

roundf()

NAME roundf() – round a number to the nearest integer

SYNOPSIS float roundf
 (
 float x /* argument */
)

VxWorks Kernel API Reference, 6.6
rtgRegister()

678

DESCRIPTION This routine rounds a single-precision value x to the nearest integral value.

RETURNS The single-precision representation of x rounded to the nearest integral value.

ERRNO Not Available

SEE ALSO mathALib

rtgRegister()

NAME rtgRegister() – register with the VxBus subsystem

SYNOPSIS void rtgRegister(void)

DESCRIPTION This routine registers the RealTek driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO rtl8169VxbEnd

rtlRegister()

NAME rtlRegister() – register with the VxBus subsystem

SYNOPSIS void rtlRegister(void)

DESCRIPTION This routine registers the RealTek driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO rtl8139VxbEnd

2 Routines
rtpDelete()

679

2

rtpDelete()

NAME rtpDelete() – terminates a real time process (RTP)

SYNOPSIS STATUS rtpDelete
 (
 RTP_ID rtpId, /* ID of the RTP to be deleted */
 int options, /* options for deletion */
 int delStatus /* exit status */
)

DESCRIPTION This routine terminates an RTP from the system. The termination of the RTP removes all
objects (including tasks) owned by the RTP from the system via the resource reclamation
facility. Any mapped memory in the RTP will be unmapped and memory will be freed back
to the system. Memory allocated to the RTP for the executable file will also be freed back to
the system. Note that public objects still in use by other users in the system will be inherited
by the kernel, and will not be reclaimed at this point.

Shared data regions created and mapped in the RTP will be unmapped. If the RTP is the last
client reference to the shared data, the termination of the RTP will trigger a deletion of the
shared data region. For more information on shared data regions, please refer to sdLib.

Shared libraries created and mapped by an RTP will also be unmapped. As with shared data
regions, if the terminating RTP is the last reference to the shared library, the termination of
the RTP will trigger the deletion of the shared library from the system.

There is currently no user-available values for the options parameter. This parameter should
always be set to zero.

delStatus is the exit status of the RTP that can be extracted by the parent of this RTP through
the wait() system call.

Users may install RTP delete hooks to be called before the termination of the victim RTP's
resources. These hooks must reside within the kernel. For hooks that access the RTP's user
space, the hooks are responsible for switching into the context of the RTP to perform the
access. The delete hooks are called after tasks within the RTP are terminated. To add a delete
hook routine, use the following:

rtpDeleteHookAdd()
Add a hook routine to be called during the termination of an RTP.

WARNING rtpDelete() may not be called from an Interrupt Service Routine (ISR).

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK, or ERROR if RTP can not be deleted

VxWorks Kernel API Reference, 6.6
rtpDeleteHookAdd()

680

ERRNOS Possible errnos generated are:

S_rtpLib_INVALID_RTP_ID
The specified rtpId parameter is not a valid ID or is in the deleted state already.

S_objLib_OBJ_ID_ERROR
The specified rtpId is invalid for the rtpDelete() operation.

S_objLib_OBJ_DELETED
The RTP object has already been terminated and the RTP no longer exists.

SEE ALSO rtpLib, rtpSpawn(), sdDelete()

rtpDeleteHookAdd()

NAME rtpDeleteHookAdd() – add a routine to be called when RTPs are deleted

SYNOPSIS STATUS rtpDeleteHookAdd
 (
 RTP_DELETE_HOOK hook, /* routine to be called when RTPs are deleted
*/
 BOOL addToHead /* add routine to head of list? */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called whenever an
RTP is deleted. The hook routine should have the following prototype:

 void deleteHook
 (
 const RTP_ID rtpId /* RTP ID of the RTP about to be deleted */
 const int exitCode /* exit code or delete status for the RTP */
)

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,
the new hook is added to the head of the list (in other words, it will be the first hook to
execute). It is typical for delete hooks to be added at the head of the table. Doing so enables
the most recently added hooks to execute first. This is useful when hook routines have
dependencies among themselves, and the order in which the hooks execute is important.

RTP delete hooks are called from rtpDelete() before any deletion is done. Delete hooks are
not expected to return anything (return values if any are not checked).

RETURNS OK, or ERROR if the table of RTP delete routines is full.

ERRNO N/A.

2 Routines
rtpHelp()

681

2

SEE ALSO rtpHookLib, rtpDeleteHookDelete()

rtpDeleteHookDelete()

NAME rtpDeleteHookDelete() – delete a previously added RTP delete hook routine

SYNOPSIS STATUS rtpDeleteHookDelete
 (
 RTP_DELETE_HOOK hook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified routine from the list of routines to be called at each RTP
delete.

RETURNS OK, or ERROR if the routine is not in the table of RTP delete routines.

ERRNO N/A.

SEE ALSO rtpHookLib, rtpDeleteHookAdd()

rtpHelp()

NAME rtpHelp() – print a synopsis of RTP-related shell commands

SYNOPSIS void rtpHelp (void)

DESCRIPTION This routine prints the synopsis of the shell commands applying to Real-Time Processes.

RETURNS N/A

ERRNO N/A

SEE ALSO usrRtpLib

VxWorks Kernel API Reference, 6.6
rtpHookShow()

682

rtpHookShow()

NAME rtpHookShow() – display all installed RTP hooks

SYNOPSIS void rtpHookShow (void)

DESCRIPTION This routine displays the contents of all three RTP hook tables, the pre-create, post-create,
and delete hook tables.

EXAMPLE The following example shows a hypothetical set of RTP hook table contents

 -> rtpHookShow

 RTP Pre-Create Hook Table:

 hookfunc1
 hookfunc2
 hookfunc3

 RTP Post-Create Hook Table:

 hookfunc4
 hookfunc5
 hookfunc6

 RTP Init-Complete Hook Table:

 hookfunc7
 hookfunc8
 hookfunc9

 RTP Delete Hook Table:

 hookfunc12
 hookfunc11
 hookfunc10
 value = 1 = 0x1
 ->

RETURNS N/A

ERRNOS N/A

SEE ALSO rtpShow, rtpShow(), hookShow(), syscallHookShow()

2 Routines
rtpInfoGet()

683

2

rtpInfoGet()

NAME rtpInfoGet() – Get specific information on an RTP

SYNOPSIS STATUS rtpInfoGet
 (
 RTP_ID rtpId, /* RTP ID to get info */
 RTP_DESC * rtpStruct /* Location to store RTP info */
)

DESCRIPTION This routine obtains information about an RTP and stores the information in the specified
RTP descriptor rtpStruct. The information stored in the descriptor, for the most part, is a
snapshot copy of the information about the RTP object. The descriptor must have been
allocated before calling this function, and the memory for it must come from the the calling
task's memory space. To allocate the memory for the descriptor from the calling task's
memory space, either use malloc() within the calling task or declare the structure as an
automatic variable in the calling task, placing it on the calling task's stack.

The rtpStruct structure looks like the following:

typedef struct
 {
 char pathName[VX_RTP_NAME_LENGTH+1]; // pointer to executable path
 int status; // the state of the RTP
 UINT32 options; // option bits, e.g. debug, symtable
 void * entrAddr; // entry point of ELF file
 int initTaskId; // the initial task ID
 INT32 taskCnt; // number of tasks in the RTP
 RTP_ID parentId; // RTP ID of the parent
 } RTP_DESC;

The length of the pathName field is limited to VX_RTP_NAME_LENGTH (255). The errno
S_rtpLib_RTP_NAME_MAX will be set if the RTP's executable pathName exceeds this limit.

The initTaskId will be 0 if the initial task of the RTP was deleted at the time this routine is
called. The initTaskId will also be 0 if the caller is a task in a different RTP, as initial task is
private to an RTP.

The IDs of the initTaskId and parentId are the WIND kernel IDs, when the routine is used
in the kernel. objShow() may be called directly to display information on these objects. If
the routine is invoked within an RTP, these IDs are opaque IDs local to the RTP. To display
information on these IDs, use the objHandleShow() routine on the opaque IDs.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK or ERROR

VxWorks Kernel API Reference, 6.6
rtpInitCompleteHookAdd()

684

ERRNOS S_objLib_OBJ_ID_ERROR
Invalid RTP ID or null rtpStruct parameter.

S_rtpLib_RTP_NAME_LENGTH_EXCEEDED
The actual path name of the RTP exceeds the VX_RTP_NAME_LENGTH (255).

SEE ALSO rtpUtilLib, rtpLib, rtpShow()

rtpInitCompleteHookAdd()

NAME rtpInitCompleteHookAdd() – Add routine to be called after RTP init-complete.

SYNOPSIS STATUS rtpInitCompleteHookAdd
 (
 RTP_INIT_COMPLETE_HOOK hook, /* routine to be called after rtp init
*/
 BOOL addToHead /* add routine to head of list? */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called after an RTP is
created and fully initialized (i.e. just before its initial task starts running). Init-Complete
hook routines should have the following prototype:

 void rtpInitCompleteHook
 (
 const RTP_ID rtpId /* ID of the created RTP */
)

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,
the new hook is added to the head of the list (i.e. it will be the first hook to execute).

RTP Init-Complete hooks are called as a result of calling rtpSpawn(), and are called after
the RTP's creation and initialization are fully complete. Init-Complete hooks are used as a
notification point for debuggers and other tools that may want to access the newly created
RTP's memory space.

Init-Complete hooks are a notification point, and can't return an ERROR. Therefore, they
should typically not create any objects or perform any actions that are critical to the
existence of the RTP. Consider using a post-create hook if this functionality is required.

RETURNS OK, or ERROR if the table of RTP Init-Complete routines is full.

ERRNO N/A.

SEE ALSO rtpHookLib, rtpInitCompleteHookDelete()

2 Routines
rtpKill()

685

2

rtpInitCompleteHookDelete()

NAME rtpInitCompleteHookDelete() – delete a previously added RTP init-complete hook

SYNOPSIS STATUS rtpInitCompleteHookDelete
 (
 RTP_INIT_COMPLETE_HOOK hook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified hook routine from the list of RTP Init-Complete hook
routines.

RETURNS OK on success, or ERROR if the hook routine was not found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO rtpHookLib, rtpInitCompleteHookAdd()

rtpKill()

NAME rtpKill() – send a signal to a RTP

SYNOPSIS int rtpKill
 (
 RTP_ID rtpId,
 int signo
)

DESCRIPTION This routine sends a kill signal signo to the RTP specified by pRtpId. If signo equals -1, it will
use objEach to go through the list of RTP's and send a kill signal to each RTP.

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid.

ERRNO EINVAL

SEE ALSO rtpSigLib

VxWorks Kernel API Reference, 6.6
rtpLkAddr()

686

rtpLkAddr()

NAME rtpLkAddr() – list symbols in an RTP whose values are near a specified value

SYNOPSIS void rtpLkAddr
 (
 UINT addr, /* address around which to look */
 RTP_ID rtpId /* RTP to look for symbols in */
)

DESCRIPTION This command lists the symbols in the RTP's symbol table that are near a specified value.
The symbols that are displayed include:

- symbols whose values are immediately less than the specified value

- symbols with the specified value

- succeeding symbols, until at least 12 symbols have been displayed

The results of this command depend partly on what options were used to spawn the RTP.
The default options cause only global symbols from the ELF file used to spawn the RTP to
be available for this routine.

RETURNS N/A

ERRNO N/A

SEE ALSO usrRtpLib, rtpLib, symLib, symEach(), the VxWorks programmer guides, the IDE and
host tools guides.

rtpLkup()

NAME rtpLkup() – list symbols from an RTP's symbol table

SYNOPSIS void rtpLkup
 (
 char * substr, /* substring to match */
 RTP_ID rtpId /* Id of rtp to search for symbol in */
)

DESCRIPTION This command lists all symbols in the RTP's symbol table whose names contain the string
substr. If substr is omitted or is 0, a short summary of symbol table statistics is printed. If
substr is the empty string (""), all symbols in the table are listed.

2 Routines
rtpMemShow()

687

2

By default, rtpLkup() displays 22 symbols at a time. This can be changed by modifying the
global variable symLkupPgSz. If this variable is set to 0, rtpLkup() displays all the symbols
without interruption.

RETURNS N/A

ERRNO N/A

SEE ALSO usrRtpLib, usrLib, rtpLib, symLib, symEach(), the VxWorks programmer guides, the IDE
and host tools programer guides.

rtpMemShow()

NAME rtpMemShow() – display memory context information for real time proceses

SYNOPSIS STATUS rtpMemShow
 (
 char * rtpNameOrId, /* RTP name or ID */
 int level /* detail level */
)

DESCRIPTION This routine displays memory context information for a real time process. This routine
takes two parameters, rtpNameOrId and level. The first parameter can either be an RTP ID
or an RTP name string. The second parameter is the level of detail to display the
information for the RTPs. If the level is 0, then it displays a summary memory context
information for the specified RTP. If the level is 1, then rtpMemShow() displays detailed
memory context information. If the level is 2, then rtpMemShow() also displays POSIX
mapped file and mapped object information.

SUMMARY INFORMATION EXAMPLE

The following example shows the summary output for all RTPs in the system.

C-interpreter shell:
-> rtpMemShow 0x27ba010

Memory Information for 0x27bb000 RTP (name = "myRtp.vxe"):

Virtual Memory Context:
=======================

Virtual Memory Context ID: 0x301ecd0
Private Virtual Memory Allocated: 0x6a000 bytes
Private Virtual Memory Mapped: 0x66000 bytes

value = 0 = 0x0

VxWorks Kernel API Reference, 6.6
rtpMemShow()

688

DETAILED INFORMATION EXAMPLE

The following example shows the detailed output for an RTP.

C-interpreter shell:
-> rtpMemShow 1635018888, 1

Memory Information for 0x61746888 RTP (name = "< in/tmMmanFdLib.vxe"):

Virtual Memory Context:
=======================

Virtual Memory Context ID: 0x606ad290
Private Virtual Memory Allocated: 0x6a000 bytes
Private Virtual Memory Mapped: 0x66000 bytes

Private Mappings:

VIRTUAL ADDR BLOCK LENGTH PHYSICAL ADDR PROT (S/U) CACHE SPECIAL
------------ ------------ ------------- ---------- ------- ------------
0x63000000 0x00012000 0x6174a000 R-X / R-X CB-/--/- --
0x63012000 0x00010000 0x6175c000 RWX / RWX CB-/--/- --
0x63022000 0x00002000 ***unmapped***
0x63024000 0x00010000 0x6176c000 RWX / RWX CB-/--/- --
0x63034000 0x00002000 ***unmapped***
0x63036000 0x00032000 0x6177c000 RWX / RWX CB-/--/- --
0x63068000 0x00002000 0x617ae000 R-X / R-X CB-/--/- --

Shared Data Mappings:

VIRTUAL ADDR BLOCK LENGTH PHYSICAL ADDR PROT (S/U) CACHE SPECIAL
------------ ------------ ------------- ---------- ------- ------------
0x6306c000 0x00002000 0x617b8000 RWX / RWX CB-/--/- --

Shared Object (POSIX) Mappings:

VIRTUAL ADDR BLOCK LENGTH PHYSICAL ADDR PROT (S/U) CACHE SPECIAL
------------ ------------ ------------- ---------- ------- ------------
0x6306a000 0x00002000 0x617b0000 R-X / R-X CB-/--/- --

value = 0 = 0x0

For further information on the fields from the Memory Context section, see
vxContextShow().

The private mappings of an RTP consist of the memory mapped objects (mapped with
MAP_PRIVATE), the RTP's code segments (text/data/bss), the RTP's heap, and the stacks of
the tasks running in the RTP.

The Shared Data Mappings consists of Shared Data regions opened with the sdLib API; this
also includes shared library text segments.

The Shared Object Mappings consist of mappings obtained with mmap() using the
MAP_SHARED flag.

2 Routines
rtpMemShow()

689

2

MAPPED OBJECT INFORMATION EXAMPLE

The following example shows POSIX memory mapped files information.

C-interpreter shell:
-> rtpMemShow 1635018888, 2

[removed detailed memory context information, same as above]

Memory Mapped Objects (POSIX):
==============================

 ADDRESS LENGTH PROT FLAGS OFFSET OBJECT
---------- ---------- ---- -------- ------------------ ----------------------
0x63036000 0x00010000 RW- PRIVATE N/A ***anonymous***
0x63046000 0x00010000 RW- PRIVATE N/A ***anonymous***
0x63056000 0x00012000 RW- PRIVATE N/A ***anonymous***
0x63068000 0x00002000 R-- PRIVATE 0x0000000000000000 /pxFs/mmapFd1
0x6306a000 0x00002000 R-- SHARED 0x0000000000000000 /pxFs/mmapFd2
value = 0 = 0x0

Note that the PROT value shown in the Memory Mapped Objects section is the parameter
passed to mmap() (i.e. the bit values of PROT_READ, PROT_WRITE, PROT_EXE passed via
the prot parameter). The PROT value displayed in the Memory Context section shows the
actual protection that resulted after setting the corresponding MMU protection attributes.
Depending on the constraints of the processor architecture and system configuration these
may or may not be the same.

COMMAND INTERPRETER

For the command-interpreter shell, use the rtp meminfo command.

RETURNS OK if success, ERROR otherwise

ERRNOS Possible errnos generated by this function include:

S_objLib_OBJ_ID_ERROR
An incorrect RTP ID was provided.

S_objLib_ACCESS_DENIED
Unable to get exclusive access to the RTP or the RTP list.

SEE ALSO rtpShow, rtpShow(), rtpLib, rtpUtilLib, vmContextShow(), the VxWorks programmer
guides.

VxWorks Kernel API Reference, 6.6
rtpPostCreateHookAdd()

690

rtpPostCreateHookAdd()

NAME rtpPostCreateHookAdd() – add a routine to be called just after RTP creation.

SYNOPSIS STATUS rtpPostCreateHookAdd
 (
 RTP_POST_CREATE_HOOK hook, /* routine to be called on rtp creation
*/
 BOOL addToHead /* add routine to head of list? */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called just after an RTP
and its initial task are created, but before the newly created RTP starts running.

Upon creation, all routines specified by rtpPostCreateHookAdd() will be called in the
context of the creating RTP, so any objects created by an post-create hook will be owned by
the caller's RTP rather than the newly created RTP. To set the ownership of newly created
objects to the new RTP, objOwnerSet() should be used. For example:

objOwnerSet (createdObjId, rtpId)

Post-create hook routines should have the following prototype:

 STATUS rtpPostCreateHook
 (
 const RTP_ID rtpId /* ID of the created RTP */
)

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,
the new hook is added to the head of the list (i.e. it will be the first hook to execute).

RTP Post-creation hooks are called from rtpSpawn(), and should return either OK or
ERROR. If the return value from a post-create hook is anything other than OK, the created
RTP and its initial task are deleted, and rtpSpawn() returns ERROR. Post-creation hooks
can be used to perform additional application-specific resource allocation etc where the
created RTP's details should be known. Should such allocations fail, users have the option
of reversing RTP creation by returning ERROR.

RETURNS OK, or ERROR if the table of RTP post-create routines is full.

ERRNO N/A.

SEE ALSO rtpHookLib, rtpPostCreateHookDelete()

2 Routines
rtpPreCreateHookAdd()

691

2

rtpPostCreateHookDelete()

NAME rtpPostCreateHookDelete() – delete a previously added RTP post-create hook.

SYNOPSIS STATUS rtpPostCreateHookDelete
 (
 RTP_POST_CREATE_HOOK hook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified hook routine from the list of RTP post-create hook
routines.

RETURNS OK on success, or ERROR if the hook routine was not found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO rtpHookLib, rtpPostCreateHookAdd()

rtpPreCreateHookAdd()

NAME rtpPreCreateHookAdd() – add a routine to be called before RTP creation.

SYNOPSIS STATUS rtpPreCreateHookAdd
 (
 RTP_PRE_CREATE_HOOK hook, /* routine to be called on rtp creation */
 BOOL addToHead /* add routine to head of list? */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called just before an
RTP is created. The hook routine should have the following prototype:

 STATUS rtpPreCreateHook
 (
 const char * rtpFileName, /* Null-terminated path to executable */
 const char * argv[], /* pointer to NULL terminated argv array */
 const char * envp[], /* pointer to NULL terminated envp array */
 int priority, /* priority of initial task */
 int uStackSize, /* User space stack size for intial task */
 int options, /* the options passed to RTP */
 int taskOptions /* Task options for RTP's initial task */
)

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,
the new hook is added to the head of the list (i.e. it will be the first hook to execute).

VxWorks Kernel API Reference, 6.6
rtpPreCreateHookDelete()

692

RTP Pre-creation hooks are called from rtpSpawn() before RTP creation begins. Hooks
should return either OK or ERROR. If the return value from any hook is anything other than
OK, RTP creation does not proceed. Pre-creation hooks can be used to implement
rudimentary authentication schemes by rejecting RTP spawn requests before any action is
taken.

RETURNS OK, or ERROR if the table of RTP pre-create routines is full.

ERRNO N/A.

SEE ALSO rtpHookLib, rtpPreCreateHookDelete()

rtpPreCreateHookDelete()

NAME rtpPreCreateHookDelete() – delete a previously added RTP pre-create hook.

SYNOPSIS STATUS rtpPreCreateHookDelete
 (
 RTP_PRE_CREATE_HOOK hook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified hook routine from the list of RTP pre- create hook routines.

RETURNS OK on success, or ERROR if the hook routine was not found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO rtpHookLib, rtpPreCreateHookAdd()

rtpShlShow()

NAME rtpShlShow() – Display shared library information for an RTP

SYNOPSIS STATUS rtpShlShow
 (
 RTP_ID rtpId /* RTP to display SHLs on */
)

2 Routines
rtpShow()

693

2

DESCRIPTION This routine takes an RTP as parameter and displays SHL information of all SHLs for the
RTP. The SHL_ID information displayed by this routine can be used by shlShow() to
display detail information for a specific SHL.

The options field may be specified to not print the header for the SHLs displayed.

- SHL_SHOW_NO_HDR (0x0001) Do not display the header for this routine.

EXAMPLE Below is an example display of a shared library.

-> rtpShlShow 0x8d1ea9c
 SHL NAME ID TEXT_ADDR TEXT_SIZE DATA_ADDR DATA_SIZE
-------------------- ---------- ---------- ---------- ---------- ----------
< tty/slDfw/libSo.so 1 0xff435000 0x574 0xff46d000 0x628

RETURNS OK, or ERROR if invalid RTP id

ERRNOS Possible errnos generated by this function include:

S_objLib_OBJ_ID_ERROR
An incorrect SHL ID was provided.

S_objLib_ACCESS_DENIED
Unable to get exclusive access to the SHL list.

SEE ALSO shlShow, shlShow(), rtpShow()

rtpShow()

NAME rtpShow() – display information for real time proceses

SYNOPSIS BOOL rtpShow
 (
 char * rtpNameOrId, /* RTP name or ID */
 int level /* 0 = summary, 1 = detailed, 2 = all in details */
)

DESCRIPTION This routine displays information for a real time process. This routine takes two parameters,
rtpNameOrId and level. The first parameter can either be an RTP ID or an RTP name string.
The second parameter is the level of detail to display the information for the RTPs.

Depending on the level and the RTP ID specified, the information displayed differs. If the
level is 0, then it displays the summary information for either the specified RTP or all RTPs
in the system. If the level is 1, then rtpShow() displays the detailed information, for the
specified RTP or the current task's home RTP (if RTP ID is NULL, and called from the

VxWorks Kernel API Reference, 6.6
rtpShow()

694

command shell). If level is 2, rtpShow() displays the detailed information for all RTPs in
the system, regardless of the RTP ID you specify. Refer to the table for more information.

In summary mode, rtpShow() only displays the RTP name (including the path) up to a
maximum of 20 characters long. If the name is more than 20 characters, it will be truncated
to 20 characters for displaying purposes. Preceding the truncated name, a "< " will be
displayed to indicate that the name is more than 20 characters long. To get a display of the
full RTP name, display the RTP with the level set to 1.

SUMMARY INFORMATION EXAMPLE

The following example shows the summary output for all RTPs in the system. If a RTP ID
(or name) is specified, only the information for that RTP will be displayed.

C-interpreter shell:
-> rtpShow

 NAME ID STATE ENTRY ADDR OPTIONS TASK CNT
------------------- ---------- ------------- ---------- --------- --------
< /apps/myApp.vxe 0x4a9450 STATE_NORMAL 0xa0000148 0x11 1

value = 1 = 0x1

For the command-interpreter shell, use the command rtp.

The display contains the following fields:

STATE_CREATE
The RTP is currently in its create phase.

STATE_CREATE+S
The RTP is in RTP_STATE_CREATE state and its status is in RTP_STATUS_STOP. This
indicates that the RTP currently in the create phase but is suspended during this phase.

Level
RTP Name
or ID Meaning

Cmd Shell
Equivalent

0 0 Display summary information for all RTPs. rtp
0 RTP Display summary information for specified RTP. rtp rtpId
1 RTP Display detailed information for specified RTP. rtp info rtpId
2 ANY Display detailed information for all RTP. rtp info

Field Meaning
NAME The name of the RTP, using the executable filename.
ID The numeric ID associated with the RTP.
STATUS State of the RTP. Refer to the table below for more information.
ENTRY ADRS The entry routine address of the application.
OPTIONS Options specified for the RTP. Refer to the options below.
TASK CNT Number of tasks in the RTP.

2 Routines
rtpShow()

695

2

STATE_CREATE+D
The RTP is in RTP_STATE_CREATE state and its status is in
RTP_STATUS_ELECTED_DELETER. This indicates that the RTP has encountered an
error during its create phase and has started its deletion.

STATE_NORMAL
The RTP has completed initializing and its currently running normally.

STATE_NORMAL+S
The RTP is in RTP_STATE_NORMAL state and its status is in RTP_STATUS_STOP. This
indicates that the RTP currently has all its task in TASK_STOP state.

STATE_NORMAL+D
The RTP is in RTP_STATE_NORMAL state and its status is in
RTP_STATUS_ELECTED_DELETER. This indicates that the RTP has initiated its delete
phase.

STATE_DELETE
The RTP is in the processing of terminating and cleaning up.

STATE_DELETE+S
The RTP is in RTP_STATE_DELETE state and its status is in RTP_STATUS_STOP. This
indicates that the RTP is in the delete phase but tasks in the RTP has been stopped.

STATE_DELETE+D
The RTP is in RTP_STATE_DELETE state and its status is
RTP_STATUS_ELECTED_DELETER. This indicates that the RTP has initiated its delete
phase. The deletion process can not be undone.

DETAILED INFORMATION EXAMPLE

The following example shows the detailed output for a single RTP (i.e. the level was
specified as 1). If the level is specified as 2, the detailed information is displayed for all RTP
and the user is prompted to press return or Q between each RTP.

C-interpreter shell:
-> rtpShow 0x4a9450, 1

 NAME ID STATE ENTRY ADDR OPTIONS TASK CNT
------------------ ---------- ------------- ---------- --------- --------
< /apps/myApp.vxe 0x4a9450 STATE_NORMAL 0xa0000148 0x11 1

Full Name: /usr/apps/myApp.vxe
Options: (0x11) RTP_GLOBAL_SYMBOLS RTP_DEBUG
rtpId->pArgv ptr: 0xa001ef8c
rtpId->pEnv ptr: 0xa001ef94
Initial Task ID: 0x4ab020
Symbol table: 0x47b6c0

SEGMENT START ADDR SIZE
------- ---------- ----------
text 0xa0000080 49068
data 0xa000d02c 1424

VxWorks Kernel API Reference, 6.6
rtpSigqueue()

696

bss 0xa000d5bc 15310

Shared Libraries:

 SHL NAME ID TEXT_ADDR TEXT_SIZE DATA_ADDR DATA_SIZE
------------------- --------- ---------- ---------- ---------- ----------
< tty/sls/libSo.so 1 0xff435000 0x574 0xff46d000 0x628

Type <CR> to continue, Q<CR> to stop:
value = 1 = 0x1

For the command-interpreter shell, use the command rtp info.

The summary line contains the same fields as explained above. The additional information
is explained in the following table:

RETURNS TRUE if success, FALSE otherwise

ERRNOS Possible errnos generated by this function include:

S_objLib_OBJ_ID_ERROR
An incorrect RTP ID was provided.

S_objLib_ACCESS_DENIED
Unable to get exclusive access to the RTP or the RTP list.

SEE ALSO rtpShow, rtpMemShow(), rtpLib, rtpUtilLib, vmContextShow(), the VxWorks
programmer guides.

rtpSigqueue()

NAME rtpSigqueue() – send a queued signal to a RTP

SYNOPSIS int rtpSigqueue
 (
 RTP_ID rtpId,
 int signo,

Field Meaning
Full Name The complete name for the RTP.
Options Detailed breakdown of the options word (see rtpCreate()).
rtpId->pArgv ptr The address in user space where the arguments are stored.
rtpId->pEnv ptr Address in user space of the environment string.
SEGMENT Information The text and data information for the RTP executable.
Initial Task ID The Initial task ID of the RTP.
Symbol table The ID of the symbol table holding this RTP's symbols.
Shared Libraries The summary list of shared libraries used by the RTP.

2 Routines
rtpSp()

697

2

 const union sigval value
)

DESCRIPTION The function sigqueue() sends the queued signal specified by signo with the
signal-parameter value specified by value to the process specified by pRtpId.

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid, or if there are no
queued-signal buffers available.

ERRNO EINVAL
EAGAIN

SEE ALSO rtpSigLib

rtpSp()

NAME rtpSp() – launch a RTP with default options.

SYNOPSIS int rtpSp
 (
 char * execAndArgs, /* path to the executable file + arguments */
 int initTaskPrio, /* priority of RTP's initial task */
 int userStackSize, /* size of the initial task's user stack */
 int launchOptions, /* options to apply to the RTP at launch */
 int launchTaskOptions /* task option for the RTP's initial task */
)

DESCRIPTION This command is a short form of the underlying rtpSpawn() routine, convenient for
launching Real-Time Process (RTP) from the shell.

The executable file used to launch the application as well as the arguments to be passed to
the main() routine of the application are all contained in the routine's first argument: the
string execAndArgs. For instance:

rtpSp "/folk/me/myVxWorksApp.vxe firstArgument secondArgument"

The space character is interpreted as the separator between each element of the string. Any
application argument can be a sub-string of its own providing that it is surrounded with
escaped double quote characters. For instance:

rtpSp "/folk/me/myVxWorksApp.vxe \"first argument\" \"second argument\""

Although it is possible to specify properties and options to apply to the RTP's initial task
using the parameters initTaskPrio, userStackSize, launchOptions and launchTaskOptions these
parameters may be left unspecified (i.e. left null). In this case, default values for these
properties and options will be applied. These default values may be overriden by updating
the values of the following global variables:

VxWorks Kernel API Reference, 6.6
rtpSpawn()

698

rtpSpPriority:
220 - initial task's priority.

rtpSpStackSize:
65,535 - initial task's user stack size, in bytes.

rtpSpOptions:
0x1 (RTP_GLOBAL_SYMBOLS) - OR'ed options to apply to the RTP, see rtpSpawn() for
details.

If you to want to spawn an RTP with no option bits set but do not want to modify the value
of the rtpSpOptions variable, then rtpSp should be called with launchOptions set to -1. The
special value -1 forces the default value in rtpSpOptions to be ignored. This results in the
RTP to be started without any option set (the same as if the rtpSpOptions variable held a
null value).

rtpSpTaskOptions:
VX_FP_TASK - OR'ed options to apply to the initial task of the RTP, see also
taskSpawn().

As in the case of launchOptions, if rtpSpTaskOptions is set to -1, the default value in
rtpSpTaskOptions is ignored and the initial task of the RTP is spawned with no task option
bits (i.e. no floating-point support etc).

Additionally, the delay to wait before terminating the execution of the command after an
application has been launched can be contolled using:

rtpSpDelay:
100 - number of ticks to wait.

Note that these global variables also apply to the command interpreter mode of the shell.

CAVEAT the content of the string execAndArgs is modified by this routine when parsed.

RETURNS A RTP_ID on success, ERROR otherwise.

ERRNO N/A

SEE ALSO usrRtpLib, rtpLib, rtpSpawn(), taskSpawn()

rtpSpawn()

NAME rtpSpawn() – spawns a new Real Time Process (RTP) in the system

SYNOPSIS RTP_ID rtpSpawn

2 Routines
rtpSpawn()

699

2

 (
 const char * rtpFileName, /* Null terminated path to executable */
 const char * argv[], /* Pointer to NULL terminated argv array */
 const char * envp[], /* Pointer to NULL terminated envp array */
 int priority, /* Priority of initial task */
 int uStackSize, /* User space stack size for initial task */
 int options, /* The options passed to the RTP */
 int taskOptions /* Task options for the RTP's initial task */
)

DESCRIPTION This routine creates and initializes a Real Time Process (RTP) in the system, with the
specified file as the executable for the RTP.

Each RTP is named. The name is based on the specified executable filename, via the
rtpFileName argument, loaded in the RTP. This executable file must reside in a filesystem.
The filesystem may be external or media-less and bundled (ROMFS) into the VxWorks
system.

The first element to the argv[] array, by convention, should be the filename path of the
executable. rtpSpawn() does not automatically populate argv[0] to be the executable
pathname; the user must set it. Not providing argv[0] with the executable pathname may
cause unexpected results if dynamic shared libraries are involved. Below is an example:

 char * argv[] = {"/usr/test.vxe", NULL};
 rtpSpawn (argv[0], argv, NULL, 100, 0x10000, 0, 0);

An RTP is a container for resources of the RTP application. Resources that may be associated
with an RTP are: tasks, heap memory, and objects. Memory allocated for an RTP is unique
in the system. Memory allocated to an RTP are task stacks, heap memory to be used by the
user level heap manager, and memory allocated for the text and data segments of the
application.

RTPs provide symbol name isolation. An executable may be spawned more than once in the
system and the execution of the applications will not interfer with each other.

Tasks in an RTP are scheduled as part of the global scheduling scheme in the system. RTPs
are not schedulable entities; only tasks within the RTPs are schedulable. Thus, for an RTP to
exist, tasks must exist in it.

The envp environment array may be used to pass specific RTP environment variable settings
to the application. Environment variables, such as LD_LIBRARY_PATH, may be set for an
RTP. To obtain environment information for an RTP, use the getenv() routine or the extern
char **environ variable in the application. Other reserved environment variables can be
used to pass information used by the RTP when it initializes:

HEAP_INITIAL_SIZE
Set the initial size of the RTP's heap to a value other than the default (0x10000).

HEAP_MAX_SIZE
Set the maximum size that the RTP's heap may grow to.

VxWorks Kernel API Reference, 6.6
rtpSpawn()

700

HEAP_INCR_SIZE
Set the growth increment when it should be different from the default (a virtual
memory page size).

See the application-side memLib documentation for more details. Such variables can be
used as follows:

 char * argv[] = {"/usr/test.vxe", NULL};
 char * envp[] = {"HEAP_INITIAL_SIZE=0x20000", "HEAP_MAX_SIZE=0x100000",
NULL);
 rtpSpawn (argv[0], argv, envp, 100, 0x10000, 0, 0);

The creation and initialization of an RTP also creates the initial task of the RTP. This initial
task initializes the VxWorks user level library, libc support or taskLib support, of the RTP.
Three of rtpSpawn()'s parameters are dedicated to setting the initial task's priority,
user-side stack and options:

priority:this parameter sets the priority of the RTP's initial task and care should be taken in
setting a priority appropriate for an application (i.e. do not leave this parameter set to
zero as this would create an initial task of the highest priority in VxWorks, possibly
disturbing the functioning the rest of the system. A value between 200 and 220 is
usually adequate).

uStackSize:this parameter sets the size of the initial task's user-side stack. If this parameter is
left null this size is set to the default value (0x4000 bytes).

taskOptions:this parameter allows to pass options to the initial task created with the RTP.
The taskOptions parameter has exactly the same value and meaning as the options
parameter passed to taskSpawn(). Some task options available for kernel tasks are
prohibited for RTP tasks, and will be ignored if set. These are the
VX_SUPERVISOR_MODE and VX_UNBREAKABLE options. The initial task of every RTP
is created with the VX_DEALLOC_STACK option.

Options may be passed to the rtpSpawn() API to specify the behavior of the RTP:

RTP_GLOBAL_SYMBOLS (0x01)
The global symbols of the executable file will be registered in the RTP's symbol table.
This is required when debugging using the embedded debugging facility.

RTP_ALL_SYMBOLS (0x03)
Both the global and local symbols of the executable file will be registered in the RTP's
symbol table. This can be helpful when debugging using the embedded debugging
facility.

RTP_DEBUG (0x10)
The execution of the RTP will be stopped at startup in order to enable debugging the
application.

RTP_BUFFER_VAL_OFF (0x20)
User buffer passed to system calls will not be validated for this RTP. This will reduce
the system call overhead, to the detriment of security. This option should be used only
once the application code was properly debugged.

2 Routines
rtpSpawn()

701

2

RTP_LOADED_WAIT (0x40)
rtpSpawn() will not return until the RTP has been instantiated, all code loaded, the
RTP's state is RTP_STATE_NORMAL, and execution is about to transfer to user mode.

RTP_CPU_AFFINITY_NONE (0x80)
By default the RTP's initial task inherits the CPU affinity of the task that spawned the
RTP. This option removes any CPU affinity that would have applied to the initial task
(i.e. this task will migrate from one CPU to another). Applies to SMP only.

A set of hooks are provided for users to extend the capabilities of the rtpSpawn() routine.
Hooks may be added prior to the creation of the RTP, after the creation of the RTP object
and VM context, and also after the loading of the RTP executable file. To add hooks at each
of these points, use the following routines:

rtpPreCreateHookAdd()
Add a hook to be called prior to the creation of the RTP. The hook is executed in the
caller's context. This hook facility is useful for validations prior to RTP creation, such as
restricting the creation of RTPs to certain RTPs. Note, when this hook fails, RTP delete
hook is not called.

rtpPostCreateHookAdd()
Add a hook to be called after the creation of the RTP object and VM context. Hooks are
executed in the context of the caller. Any objects created by the hooks are owned by the
caller unless the owner is reset via the objOwnerSet() API. This hook should not
attempt to delete the RTP.

The post create hook is useful for extending the initialization of the RTP object such as
initializing any user defined structures or objects.

An error returned from the registered hook routines will invoke a termination of the
RTP. The RTP state is RTP_STATE_CREATE. Please refer to the routine
rtpPostCreateHookAdd() for more information.

rtpInitCompleteHookAdd()
Add a hook to be called after loading of the RTP executable file and before the RTP's
initial task starts executing in user mode. The RTP state is RTP_STATE_NORMAL.

rtpDeleteHookAdd()
Add a hook to be called when an RTP is terminated. The hooks are called at the
beginning of the rtpDelete() routine. The RTP state is RTP_STATE_NORMAL

For more detailed information on RTP hooks, refer to rtpHookLib.

The default behavior when an RTP task encounters an error, such as an exception, is that the
system will terminate the faulty RTP. However, for debugging purposes, the system may be
configured to behave in a lab mode where an exception would not terminate the RTP.
Instead the faulty task and RTP will be suspended for debugging. To turn on the lab mode
refer to the edrLib documentation.

WARNING rtpSpawn() may not be called from an Interrupt Service Routine (ISR).

VxWorks Kernel API Reference, 6.6
rtpSymTblIdGet()

702

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS RTP_ID of the new RTP, or ERROR otherwise.

ERRNOS Possible errnos returned from this routine are:

S_rtpLib_INVALID_FILE
The path to the executable file is not valid. The rtpFileName parameter is either null or
the executable file cannot be found via the provided path. A valid path is a path that
can be successfully accessed via the kernel shell.

S_rtpLib_INVALID_TASK_OPTION
One or more of the options specified for the initial task are not supported for a
user-mode task.

S_rtpLib_INSTANTIATE_FAILED
The RTP object was created but failed to load and reach RTP_STATE_NORMAL

SEE ALSO rtpLib, rtpDelete(), rtpInfoGet(), rtpHookLib, memLib, the VxWorks programmer
guides.

rtpSymTblIdGet()

NAME rtpSymTblIdGet() – Get the symbol table ID of an RTP

SYNOPSIS SYMTAB_ID rtpSymTblIdGet
 (
 RTP_ID rtpId /* RTP ID whose symbol table ID is needed */
)

DESCRIPTION This routine gets and returns the symbol table ID for an RTP's symbol table.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The RTP's symbol table ID or NULL if the ID could not be retrieved

ERRNOS S_objLib_OBJ_ID_ERROR
RTP object is not valid.

SEE ALSO rtpUtilLib, rtpLib

2 Routines
rtpSymsAdd()

703

2

rtpSymsAdd()

NAME rtpSymsAdd() – add symbols from an executable file to a RTP symbol table

SYNOPSIS STATUS rtpSymsAdd
 (
 RTP_ID rtpId, /* RTP the symbols should be added to */
 UINT32 regPolicy, /* symbol registration policy */
 char * filePath /* path and name of the executable file */
)

DESCRIPTION This command is provided as a help in case a RTP needs to be debugged but has been
launched with an empty symbol table. It forces the registration of the symbols from an
executable file into a RTP symbol table.

Note that this command does not verify whether the symbols are already in the symbol table
and does not prevent the creation of multiple occurences of these symbols.

It is important to understand that symbols are added to the symbol table in the order of their
registration and that the most recent entry will hide symbols of same name already
registered. The rtpLkup() command will show all occurences of the symbols of a given
name so it is possible to use their addresses instead of their names if there is a risk of
confusion.

The only required information is the RTP ID (rtpId parameter).

The regPolicy parameter sets the symbol registration policy. The policy can be one of the
following:

0x01 (RTP_GLOBAL_SYMBOLS)
Add only global symbols to the symbol table. This is the default when the parameter is
left null.

0x02 (RTP_LOCAL_SYMBOLS)
Add only local symbols to the symbol table.

0x03 (RTP_ALL_SYMBOLS)
Add both local and global symbols to the symbol table.

The filePath parameter overrides the path recorded for the RTP. It may be left null if the
symbols should be read from the same file as the one used to start the RTP with. This
parameter must be used when the symbols should be read from a file stored in a different
location than what was recorded when the RTP has been launched. Note that there is no
runtime verification that the file corresponds to the executable used to launch the RTP.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK if the symbols could be read and recorded, ERROR otherwise.

VxWorks Kernel API Reference, 6.6
rtpSymsOverride()

704

ERRNO N/A

SEE ALSO usrRtpLib, rtpSymsRemove(), shlSymsAdd(), shlSymsRemove(), rtpSymsForce()

rtpSymsOverride()

NAME rtpSymsOverride() – override the RTP symbol registration policy

SYNOPSIS STATUS rtpSymsOverride
 (
 int overridePolicy /* override the symbol registration policy */
)

DESCRIPTION This command is provided as a help for debugging and monitoring RTPs launched by other
applications. It allows to temporarily bypass the symbol registration policy encoded in RTPs
and forces an alternate symbol registration policy which will apply to all applications
launched after the change is made. The change is in effect until cancelled.

The overridePolicy parameter sets the alternate symbol registration policy. The policy can be
one of the following:

- Prevent any symbol to be registered in the RTP's symbol table.

1 Add only global symbols to the symbol table.

3 Add both local and global symbols to the symbol table.

-1 Cancel any override of the symbol registration policy.

After the override of the RTP symbol registration policy is canceled, any newly launched
application will get applied the symbol registration policy set by the parent application, or
the shell.

RETURNS OK if the override policy could be set, ERROR otherwise.

ERRNO Not Available

SEE ALSO usrRtpLib, rtpSymsAdd(), rtpSymsRemove(), shlSymsAdd(), shlSymsRemove()

2 Routines
rtpTaskKill()

705

2

rtpSymsRemove()

NAME rtpSymsRemove() – remove symbols from a RTP symbol table

SYNOPSIS STATUS rtpSymsRemove
 (
 RTP_ID rtpId, /* RTP the symbols should be removed from */
 UINT32 remPolicy /* symbol removal policy */
)

DESCRIPTION This command forces the removal of symbols from a RTP symbol table.

The remPolicy parameter sets the symbol removal policy. The policy can be one of the
following:

0x02 (RTP_LOCAL_SYMBOLS)
Remove only local symbols from the symbol table.

0x03 (RTP_ALL_SYMBOLS)
Removes both local and global symbols from the symbol table.

Note: in the current implementation, this command will also remove the symbols related to
shared libraries bound to the RTP. In order to remove only the symbols related to a specific
shared library use shlSymsRemove().

RETURNS OK if the symbols could be removed, ERROR otherwise.

ERRNO N/A

SEE ALSO usrRtpLib, rtpSymsAdd(), shlSymsAdd(), shlSymsRemove(), rtpSymsForce()

rtpTaskKill()

NAME rtpTaskKill() – send a signal to a task

SYNOPSIS int rtpTaskKill
 (
 TASK_ID tid, /* task to send signal to */
 int signo /* signal to send to task */
)

DESCRIPTION This routine sends a kill signal signo to the RTP task specified by tid.

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid.

VxWorks Kernel API Reference, 6.6
rtpTaskSigqueue()

706

ERRNO EINVAL

SEE ALSO rtpSigLib

rtpTaskSigqueue()

NAME rtpTaskSigqueue() – send a queued signal to a task

SYNOPSIS int rtpTaskSigqueue
 (
 TASK_ID tid,
 int signo,
 const union sigval value
)

DESCRIPTION The function rtpTaskSigqueue() sends the queued signal specified by signo with the
signal-parameter value specified by value to the RTP task specified by tid.

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid, or if there are no
queued-signal buffers available.

ERRNO EINVAL
EAGAIN

SEE ALSO rtpSigLib

rtpi()

NAME rtpi() – display all tasks within an RTP

SYNOPSIS STATUS rtpi
 (
 RTP_ID rtpId /* RTP identifier value, or 0 for task's RTP */
)

DESCRIPTION This command displays summary task information on tasks associated with the RTP rtpId.
For more detailed information, the routine ti() or taskShow() should be used with a
specified TASK_ID.

2 Routines
s()

707

2

This routine displays tasks of an RTP in sorted order if the number of tasks is less than 100.
If more than 100 tasks are within an RTP, the tasks will be displayed in the order they are
created.

RETURNS OK, or ERROR if rtpId is invalid

ERRNO Possible errno values are:

S_objLib_OBJ_ID_ERROR
An invalid RTP ID was provided.

S_objLib_ACCESS_DENIED
Unable to get exclusive access to the RTP to display tasks.

SEE ALSO usrRtpLib, i(), ti(), taskShow()

s()

NAME s() – single-step a task

SYNOPSIS STATUS s
 (
 int taskNameOrId, /* task to step; 0 = default */
 INSTR * addr, /* address to step to; 0 = next instruction */
 INSTR * addr1 /* address for npc, 0 = next instruction */
)

DESCRIPTION This routine single-steps a task that is stopped at a breakpoint.

To execute, enter:

 -> s [task[,addr[,addr1]]]

If task is omitted or zero, the last task referenced is assumed. If addr is non-zero, then the
program counter is changed to addr; if addr1 is non-zero, the next program counter is
changed to addr1, and the task is stepped.

CAVEAT When a task is continued, s() does not distinguish between a stopped task or a task stopped
by the debugger. Therefore, its use should be restricted to only those tasks being debugged.

NOTE The next program counter, addr1, is currently supported only by SPARC.

RETURNS OK, or ERROR if the debugging package is not installed, the task cannot be found, or the task
is not suspended.

ERRNO N/A

VxWorks Kernel API Reference, 6.6
salCall()

708

SEE ALSO dbgLib, so(), c(), VxWorks Kernel Programmer's Guide: Kernel Shell, VxWorks Command-Line
Tools User's Guide 2.2: Host Shell

salCall()

NAME salCall() – invoke a socket-based server

SYNOPSIS int salCall
 (
 int sockfd, /* client socket fd */
 void * pSendBuf, /* message buffer */
 int sendLen, /* size of message buffer */
 void * pRecvBuf, /* reply buffer */
 int recvLen /* size of reply buffer */
)

DESCRIPTION This routine sends a message to the server associated with the socket descriptor sockfd and
waits for a reply. The message consists of the sendLen bytes pointed at by pSendBuf. The
reply is placed in the recvLen bytes pointed at by pRecvBuf. If fewer than recvLen bytes are
received the unused portion of pRecvBuf is not altered; if more than recvLen bytes are
received the unused portion of the reply may be kept or discarded depending on the socket
protocol being used.

If the socket descriptor is used by multiple clients, mutual exclusion needs to be provided
before this routines is called. This is to avoid the case when a reply is intercepted by a higher
priority task sharing the same sockfd.

RETURNS # of bytes placed in reply buffer, for connection based transport, 0 bytes may returned when
the called end closes the connection; ERROR otherwise.

ERRNO S_salLib_INVALID_ARGUMENT
An invalid argument was passed to this routine.

SEE ALSO salClient

salCreate()

NAME salCreate() – create a named socket-based server

SYNOPSIS SAL_SERVER_ID salCreate

2 Routines
salCreate()

709

2

 (
 const char * name, /* service name */
 int sockFamily, /* desired socket address family
*/
 int sockType, /* desired socket type */
 int sockProtocol, /* desired socket protocol */
 const struct salSockopt * options, /* array of socket options */
 int numOptions /* number of socket options */
)

DESCRIPTION This routine creates a socket-based server. One or more sockets are created for the server,
and the service is registered with SNS using the service name name.

name is represented in the following URL format:

[SNS:]service_name[@scope]

Refer to snsLib for more information on the format.

This routine tries to create one or more sockets for the combination defined by sockFamily,
sockType, and sockProtocol. If the sockFamily specified is AF_UNSPEC, then a socket creation
attempt is made with each family type supported by SAL. If the sockType specified is 0, then
a socket creation attempt is made with each socket type. If the sockProtocol specified is 0,
then the default protocol for that family is used.

The sockFamily, sockType, and sockProtocol parameters can be used to limit the server to a
given address family and/or socket type and/or socket protocol. salCreate supports
connection-oriented message based socket types only, and creates a passive listening socket.

The options parameter points to an array of numOptions socket option values that are applied
to each server socket created. If the socket cannot be successfully configured, it is closed and
is not incorporated into the server.

WARNING Once successfully created, the SAL server must still be configured with one or more
processing routines before calling salRun().

RETURNS created server ID, NULL if fails.

ERRNO S_salLib_INVALID_ARGUMENT
An invalid argument was passed to this routine.

S_salLib_SERVER_SOCKET_ERROR
Unable to create any sockets with the desired properties

S_salLib_SNS_UNAVAILABLE
Unable to establish connection to the SNS server task.

S_salLib_SNS_DID_NOT_REPLY
Did not receive a reply from the SNS server task.

S_salLib_SNS_PROTOCOL_ERROR
Received an invalid reply from the SNS server task.

VxWorks Kernel API Reference, 6.6
salDelete()

710

S_salLib_SNS_OUT_OF_MEMORY
The SNS server task has insufficient memory to register the service.

S_salLib_SERVICE_ALREADY_EXISTS
The specified service has already been registered with SNS.

SEE ALSO salServer, salDelete(), salRemove(), salServerRtnSet()

salDelete()

NAME salDelete() – delete a named socket-based server

SYNOPSIS STATUS salDelete
 (
 SAL_SERVER_ID server /* server structure to use */
)

DESCRIPTION This routine deletes the socket-based server specified by server. and frees the server data
structure memory. All the sockets associated with server are closed. The associated service
is deregistered from SNS.

A server can only be deleted by the task in the same RTP (or kernel) as the service owner.

RETURNS OK or ERROR.

ERRNO S_salLib_INVALID_ARGUMENT
An invalid argument was passed to this routine.

S_salLib_SNS_UNAVAILABLE
Unable to establish connection to the SNS server task.

S_salLib_SNS_DID_NOT_REPLY
Did not receive a reply from the SNS server task.

S_salLib_SNS_PROTOCOL_ERROR
Received an invalid reply from the SNS server task.

S_salLib_INVALID_SERVICE_DESCRIPTOR
Service descriptor is not registered with SNS, or has a different owner.

SEE ALSO salServer, salCreate(), salRemove()

2 Routines
salNameFind()

711

2

salNameFind()

NAME salNameFind() – find services with the specified name

SYNOPSIS int salNameFind
 (
 const char * pattern, /* services name pattern */
 char servName[][SAL_SERV_NAME_MAXSIZE],
 /* buffer to hold the returned
name */
 int num, /* number of element in the
servNames */
 void ** ppCookie /* cookie get/return last
matching address */
)

DESCRIPTION This function returns services with names that match the specified pattern.

Applications provide the buffer for storing the returned names. The function returns the
number of names found. The function also returns a cookie for follow up searching.

pattern is represented in the following URL format:

[SNS:]service_name[@scope]

If pattern contains wildcard characters, the routine will search for all services that match the
pattern.

Refer to snsLib for more information on the format and the use of wildcards.

The function returns a number of services no greater than num. If more matches are found
the function can be called again to retrieve the remaining values. The behavior of the
function is determined by the ppCookie field.

In order to guarantee all data can be retrieved (possibly through subsequent calls) when the
function is called for the first time, the ppCookie field needs to be non-NULL and the value
*ppCookie needs to be set to NULL. If the returned value *ppCookie is still NULL, this means
all the services matching the pattern have been retrieved. XXX - Yiming to verify If the
returned value *ppCookie is not NULL, this means that more matches might be available. In
this case, the client application can call salNameFind() again using the returned ppCookie to
retrieve further entries.

Hence, in order to start a new search, either ppCookie is NULL (in which case the function
can not be called again to retrieve more values) or *ppCookie is NULL.

RETURNS >=0: number of services found, -1: error.

ERRNO S_salLib_INVALID_ARGUMENT
Invalid argument.

VxWorks Kernel API Reference, 6.6
salOpen()

712

S_salLib_SNS_UNAVAILABLE
Unable to establish communications with the SNS server task.

SEE ALSO salClient, salSocketFind(), snsLib

salOpen()

NAME salOpen() – establish communication with a named socket-based server

SYNOPSIS int salOpen
 (
 const char * name /* service name in URL format */
)

DESCRIPTION This routine establishes a connection to the server application corresponding to the SNS
service name name. If the specified service exists salOpen() tries to connect to each of the
server's sockets in turn, until it is successful or all sockets have been tried; it returns the
resulting socket descriptor.

name is represented in the following URL format:

[SNS:]service_name[@scope]

If name contains wildcard characters, the routine will use the first matching service.

Refer to snsLib for more information on the format and the use of wildcards.

This routine uses the default socket options for the client socket it creates; if special options
are required by the client before completing the connection, use salSocketFind() to
establish communication with the server.

User should close the returned socket using close().

RETURNS >=0: the descriptor of the newly connected socket; -1 : cannot establish communication.

ERRNO S_salLib_INVALID_ARGUMENT
An invalid argument was passed to this routine.

S_salLib_SNS_UNAVAILABLE
Unable to establish connection to the SNS server task.

S_salLib_SNS_DID_NOT_REPLY
Did not receive a reply from the SNS server task.

S_salLib_SNS_PROTOCOL_ERROR
Received an invalid reply from the SNS server task.

2 Routines
salRemove()

713

2

S_salLib_SERVICE_NOT_FOUND
The specified service is not registered with SNS.

S_salLib_INVALID_SERVICE_DESCRIPTOR
The specified service was deregistered from SNS before all socket addresses could be
examined.

S_salLib_CLIENT_SOCKET_ERROR
Unable to connect to any of the specified server socket addresses.

SEE ALSO salClient, close(), salSocketFind(), snsLib

salRemove()

NAME salRemove() – Remove service from SNS by name

SYNOPSIS STATUS salRemove
 (
 const char * name /* service name */
)

DESCRIPTION This function removes a service identified by name from SNS. Unlike salDelete(), which
requires the caller and service owner to be in the same memory space, this function can
delete any service as long as the service is visible to the caller. Therefore, a service with
scope node can be deleted by any task on the same node, and a service with scope private
can only be deleted by tasks in the same memory space. Further, services of scope cluster
(or larger) can only be deleted by the node that created them.

name is represented in the following URL format:

[SNS:]service_name[@scope]

Refer to snsLib for more information on the format.

name must uniquely identify a service:

service_name
should not contain any wildcard character

scope
must refer a specific level (i.e. the "upto_" prefix can not be used)

NOTE This routine removes only the service name from SNS. It does not remove the service, nor
does it close any of the sockets associated to it. These features are provided by salDelete().

RETURNS OK if the service is removed, ERROR otherwise.

VxWorks Kernel API Reference, 6.6
salRun()

714

ERRNO S_salLib_INVALID_ARGUMENT
The service name is invalid

S_salLib_SERVICE_NOT_FOUND
The specified service is not found.

SEE ALSO salServer, salDelete(), salCreate(), snsLib

salRun()

NAME salRun() – activate a socket-based server

SYNOPSIS STATUS salRun
 (
 SAL_SERVER_ID server, /* server structure to use */
 void * pData /* user private data */
)

DESCRIPTION This routine activates the SAL server specified by server. The server monitors all sockets
associated with the server, and calls an appropriate processing routine whenever a socket
requires attention.

Once invoked, this routine will execute indefinitely and will return only when the server
terminates.

Server termination occurs automatically if salRun() detects an error.

The server can terminate also by the application through the processing routine return
value SAL_RUN_TERMINATE. In this case salRun() simply returns OK.

In both cases salRun() does not close any socket. salDelete() should be called to perform
the cleanup.

The parameter pData can be used to pass any user data. This data is passed to the processing
routines when they are being called.

Processing routines should be configured in the server before this routine is called.

RETURNS OK if server is terminated by processing routine, ERROR otherwise.

ERRNO S_salLib_INVALID_ARGUMENT
An invalid argument was passed to this routine.

S_salLib_SERVER_SOCKET_ERROR
A server socket has failed unexpectedly.

S_salLib_INTERNAL_ERROR
The server's internal data structure has become corrupted.

2 Routines
salSocketFind()

715

2

SEE ALSO salServer, salServerRtnSet()

salServerRtnSet()

NAME salServerRtnSet() – configures the processing routine with the SAL server

SYNOPSIS STATUS salServerRtnSet
 (
 SAL_SERVER_ID svrId, /* server ID */
 SAL_RTN_TYPE rtnType, /* type of processing routine to set */
 SAL_SERV_RTN routine /* processing routine entry point */
)

DESCRIPTION This routine configures a processing routine with the server pSrvrId. The processing routine
is identified by the type rtnType and the SAL_SERV_RTN function pointer routine.

It accepts the following rtnType:

SAL_RTN_READ
read routine

SAL_RTN_ACCEPT
accept routine

If routine is NULL, the processing routine is cleared and the default handler will be used, if
available.

This function must be called before activating the SAL server, i.e. before the call to salRun().

RETURNS OK or ERROR

ERRNO S_salLib_INVALID_ARGUMENT
An invalid argument was passed to this routine.

SEE ALSO salServer, salRun()

salSocketFind()

NAME salSocketFind() – find sockets for a named socket-based server

SYNOPSIS STATUS salSocketFind
 (
 const char * name, /* service name in URL format */

VxWorks Kernel API Reference, 6.6
salSocketFind()

716

 int sockFamily, /* desired socket address family */
 int sockType, /* desired socket type */
 int sockProtocol, /* desired socket protocol */
 struct addrinfo ** ppSockInfoList /* list of socket entries */
)

DESCRIPTION This routine looks for sockets related to a server application registered with SNS, which
matches the specified search criteria. Each socket entry associated with the SNS service
name name is examined to see if it is compatible with the restrictions imposed by sockFamily,
sockType, and sockProtocol. The search succeeds if at least one matching socket entry is
found.

name is represented in the following URL format:

[SNS:]service_name[@scope]

Please refer to snsLib for more information on the format.

If name contains wildcard characters, the function will only find the first matching service
and retrieve its socket information.

To obtain the complete list of service matching the given pattern, use the salNameFind()
routine.

If sockInfoList is not NULL then a list of the matching socket entries is created, and sockInfoList
is set to the start of the list. However if sockInfoList is NULL, or the service specified by name
does not exist, then no list of socket entries is created and sockInfoList is left unchanged.

WARNING The storage for the socket list created by this routine must be released by calling
snsfreeaddrinfo() when the list is no longer required.

RETURNS OK or ERROR

ERRNO S_salLib_INVALID_ARGUMENT
An invalid argument was passed to this routine.

S_salLib_SNS_UNAVAILABLE
Unable to establish connection to the SNS server task.

S_salLib_SNS_DID_NOT_REPLY
Did not receive a reply from the SNS server task.

S_salLib_SNS_PROTOCOL_ERROR
Received an invalid reply from the SNS server task.

S_salLib_SERVICE_NOT_FOUND
The specified service is not registered with SNS.

S_salLib_INVALID_SERVICE_DESCRIPTOR
The specified service was deregistered from SNS before all socket entries could be
examined.

2 Routines
scMemValEnable()

717

2

S_salLib_NO_SOCKET_FOUND
The specified service has no sockets that match the desired criteria.

SEE ALSO salClient, salNameFind(), snsLib

sbeRegister()

NAME sbeRegister() – register with the VxBus subsystem

SYNOPSIS void sbeRegister(void)

DESCRIPTION This routine registers the Broadcom driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO sbeVxbEnd

scMemValEnable()

NAME scMemValEnable() – enable or disable pointer/buffer validation in system calls

SYNOPSIS void scMemValEnable
 (
 BOOL enable /* TRUE: enable validation; FALSE: disable validation */
)

DESCRIPTION This routine either enables or disables pointer/buffer validations in system calls, system
wide. By default when the OS starts, pointer/buffer validation is ON. Pointer validation can
also be disabled for a given RTP by passing the option RTP_BUFFER_VAL_OFF as part of the
options parameter of rtpSpawn().

RETURNS N/A

ERRNO Not Available

SEE ALSO scMemVal, scMemValidate(), rtpSpawn()

VxWorks Kernel API Reference, 6.6
scMemValidate()

718

scMemValidate()

NAME scMemValidate() – validate an address range passed to a system call routine

SYNOPSIS STATUS scMemValidate
 (
 const void * addr, /* start address */
 UINT size, /* address range size in bytes */
 SC_PROT_ATTR access /* minimal access in supervisor mode */
)

DESCRIPTION The routine scMemValidate() should be used by system call validation code to verify that
a pointer passed as a parameter to a system call routine points to a memory location that
belongs to the calling RTP memory context, and that this memory can be dereferenced by
the kernel while it executes the system call.

The routine checks if the memory range [addr ... (addr + size -1)] belongs entirely to either:
- the calling task's stack
- the memory section corresponding to the read-only segment of the RTP:
text + rodata segment.

- the memory section corresponding to the data segment of the RTP
(read-write access).

- the memory section corresponding to the bss segment of the RTP
(read-write access).

- a block that was mapped by the calling RTP vith mmap(). Note that
in addition to memory block obtained by direct call to mmap(), this
also includes blocks that correspond the RTP heap and shared
library private data (data and bss segments) that the RTP is
attached to.

- a memory section corresponding to a Shared Data region that the RTP
has mapped. Note that this also takes care of the read-only code
of SLs that the RTP is attached to.

- other RTP-private memory, such as stack of other tasks in the
same RTP.

Note that if size is equal to 0, scMemVal() simply returns OK without validating the
zero-length buffer.

Once the buffer to validate is matched with one of the memory section listed above, that is
the buffer is contained entirely within this memory section, scMemValidate() checks that
the access permissions to this memory section authorizes the access defined by access. The
type of access requested is defined by access parameter and can take the following values:

- SC_PROT_READ (0x1)
- SC_PROT_WRITE (0x2)

If access is set to 0, then it defaults to (SC_PROT_READ | SC_PROT_WRITE).

2 Routines
sched_get_priority_max()

719

2

The parameters addr and size do not need to be aligned to a MMU page size.

Buffer validation accross system calls can be disabled system wide by calling
scMemValEnable (FALSE). To re-enable buffer validation system-wide simply call
scMemValEnable(TRUE). Buffer validation accross system calls can be disabled for a given
RTP, by passing the option RTP_BUFFER_VAL_OFF as part of the options parameter when
calling rtpSpawn(). For more details refer to the rtpSpawn() manual entry.

RETURNS OK if the address range is valid, ERROR otherwise.

ERRNO Possible errno generated by this routine include:

EINVAL
The access parameter passed is invalid.

ENOTSUP
The routine was called in unsupported context.

ENOMEM
Memory validation failed with due to boundary constraints.

EACCES
Memory validation failed due to access constraints.

SEE ALSO scMemVal, scMemValEnable(), rtpSpawn()

sched_get_priority_max()

NAME sched_get_priority_max() – get the maximum priority (POSIX)

SYNOPSIS int sched_get_priority_max
 (
 int policy /* scheduling policy */
)

DESCRIPTION This routine returns the value of the highest possible task priority for a specified scheduling
policy (SCHED_FIFO or SCHED_RR).

NOTE If the global variable posixPriorityNumbering is FALSE, the VxWorks native priority
numbering scheme is used, in which higher priorities are indicated by smaller numbers.
This is different than the priority numbering scheme specified by POSIX, in which higher
priorities are indicated by larger numbers.

RETURNS Maximum priority value, or -1 (ERROR) on error.

VxWorks Kernel API Reference, 6.6
sched_get_priority_min()

720

ERRNO EINVAL – invalid scheduling policy.

SEE ALSO schedPxLib

sched_get_priority_min()

NAME sched_get_priority_min() – get the minimum priority (POSIX)

SYNOPSIS int sched_get_priority_min
 (
 int policy /* scheduling policy */
)

DESCRIPTION This routine returns the value of the lowest possible task priority for a specified scheduling
policy (SCHED_FIFO or SCHED_RR).

NOTE If the global variable posixPriorityNumbering is FALSE, the VxWorks native priority
numbering scheme is used, in which higher priorities are indicated by smaller numbers.
This is different than the priority numbering scheme specified by POSIX, in which higher
priorities are indicated by larger numbers.

RETURNS Minimum priority value, or -1 (ERROR) on error.

ERRNO EINVAL – invalid scheduling policy.

SEE ALSO schedPxLib

sched_getparam()

NAME sched_getparam() – get the scheduling parameters for a specified task (POSIX)

SYNOPSIS int sched_getparam
 (
 pid_t tid, /* task ID */
 struct sched_param * param /* scheduling param to store priority */
)

DESCRIPTION This routine gets the scheduling priority for a specified task, tid. If tid is 0, it gets the priority
of the calling task. The task's priority is copied to the sched_param structure pointed to by
param.

2 Routines
sched_rr_get_interval()

721

2

NOTE If the global variable posixPriorityNumbering is FALSE, the VxWorks native priority
numbering scheme is used, in which higher priorities are indicated by smaller numbers.
This is different than the priority numbering scheme specified by POSIX, in which higher
priorities are indicated by larger numbers.

RETURNS 0 (OK) if successful, or -1 (ERROR) on error.

ERRNO ESRCH – invalid task ID.

SEE ALSO schedPxLib

sched_getscheduler()

NAME sched_getscheduler() – get the current scheduling policy (POSIX)

SYNOPSIS int sched_getscheduler
 (
 pid_t tid /* task ID */
)

DESCRIPTION This routine returns the currents scheduling policy (i.e., SCHED_FIFO or SCHED_RR).

RETURNS Current scheduling policy (SCHED_FIFO or SCHED_RR), or -1 (ERROR) on error.

ERRNO ESRCH – invalid task ID.

SEE ALSO schedPxLib

sched_rr_get_interval()

NAME sched_rr_get_interval() – get the current time slice (POSIX)

SYNOPSIS int sched_rr_get_interval
 (
 pid_t tid, /* task ID */
 struct timespec * interval /* struct to store time slice */
)

DESCRIPTION This routine sets interval to the current time slice period if round-robin scheduling is
currently enabled.

VxWorks Kernel API Reference, 6.6
sched_setparam()

722

RETURNS 0 (OK) if successful, -1 (ERROR) on error.

ERRNO EINVAL – round-robin scheduling is not currently enabled.
ESRCH – invalid task ID.

SEE ALSO schedPxLib

sched_setparam()

NAME sched_setparam() – set a task's priority (POSIX)

SYNOPSIS int sched_setparam
 (
 pid_t tid, /* task ID */
 const struct sched_param * param /* scheduling parameter */
)

DESCRIPTION This routine sets the priority of a specified task, tid. If tid is 0, it sets the priority of the calling
task. Valid priority numbers are 0 through 255.

The param argument is a structure whose member sched_priority is the integer priority
value. For example, the following program fragment sets the calling task's priority to 13
using POSIX interfaces:

#include "sched.h"
 ...
struct sched_param AppSchedPrio;
 ...
AppSchedPrio.sched_priority = 13;
if (sched_setparam (0, &AppSchedPrio) != OK)
 {
 ... /* recovery attempt or abort message */
 }
 ...

NOTE If the global variable posixPriorityNumbering is FALSE, the VxWorks native priority
numbering scheme is used, in which higher priorities are indicated by smaller numbers.
This is different than the priority numbering scheme specified by POSIX, in which higher
priorities are indicated by larger numbers.

RETURNS 0 (OK) if successful, or -1 (ERROR) on error.

ERRNO EINVAL – scheduling priority is outside valid range.
ESRCH – task ID is invalid.

SEE ALSO schedPxLib

2 Routines
sched_yield()

723

2

sched_setscheduler()

NAME sched_setscheduler() – set scheduling policy and scheduling parameters (POSIX)

SYNOPSIS int sched_setscheduler
 (
 pid_t tid, /* task ID */
 int policy, /* scheduling policy requested */
 const struct sched_param * param /* scheduling parameters requested */
)

DESCRIPTION This routine sets the scheduling policy and scheduling parameters for a specified task, tid.
If tid is 0, it sets the scheduling policy and scheduling parameters for the calling task.

Because VxWorks does not set scheduling policies (e.g., round-robin scheduling) on a
task-by-task basis, setting a scheduling policy that conflicts with the current system policy
simply fails and errno is set to EINVAL. If the requested scheduling policy is the same as
the current system policy, then this routine acts just like sched_setparam().

NOTE If the global variable posixPriorityNumbering is FALSE, the VxWorks native priority
numbering scheme is used, in which higher priorities are indicated by smaller numbers.
This is different than the priority numbering scheme specified by POSIX, in which higher
priorities are indicated by larger numbers.

RETURNS The previous scheduling policy (SCHED_FIFO or SCHED_RR), or -1 (ERROR) on error.

ERRNO EINVAL – scheduling priority is outside valid range, or it is impossible to set the specified
scheduling policy.
ESRCH – invalid task ID.

SEE ALSO schedPxLib

sched_yield()

NAME sched_yield() – relinquish the CPU (POSIX)

SYNOPSIS int sched_yield (void)

DESCRIPTION This routine forces the running task to give up the CPU.

RETURNS 0 (OK) if successful, or -1 (ERROR) on error.

VxWorks Kernel API Reference, 6.6
scsi2IfInit()

724

ERRNO Not Available

SEE ALSO schedPxLib

scsi2IfInit()

NAME scsi2IfInit() – initialize the SCSI-2 interface to scsiLib

SYNOPSIS void scsi2IfInit (void)

DESCRIPTION This routine initializes the SCSI-2 function interface by adding all the routines in scsi2Lib
plus those in scsiDirectLib and scsiCommonLib. It is invoked at startup if the component
INCLUDE_SCSI2 is configured in VxWorks. The calling interface remains the same between
SCSI-1 and SCSI-2; this routine simply sets the calling interface function pointers to the
SCSI-2 functions.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsi2Lib

scsiAutoConfig()

NAME scsiAutoConfig() – configure all devices connected to a SCSI controller

SYNOPSIS STATUS scsiAutoConfig
 (
 SCSI_CTRL *pScsiCtrl /* ptr to SCSI controller info */
)

DESCRIPTION This routine cycles through all valid SCSI bus IDs and logical unit numbers (LUNs),
attempting a scsiPhysDevCreate() with default parameters on each. All devices which
support the INQUIRY command are configured. The scsiShow() routine can be used to
find the system table of SCSI physical devices attached to a specified SCSI controller. In
addition, scsiPhysDevIdGet() can be used programmatically to get a pointer to the
SCSI_PHYS_DEV structure associated with the device at a specified SCSI bus ID and LUN.

RETURNS OK, or ERROR if pScsiCtrl and the global variable pSysScsiCtrl are both NULL.

2 Routines
scsiBlkDevInit()

725

2

ERRNO Not Available

SEE ALSO scsiLib

scsiBlkDevCreate()

NAME scsiBlkDevCreate() – define a logical partition on a SCSI block device

SYNOPSIS BLK_DEV * scsiBlkDevCreate
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device info */
 int numBlocks, /* number of blocks in block device */
 int blockOffset /* address of first block in volume */
)

DESCRIPTION This routine creates and initializes a BLK_DEV structure, which describes a logical partition
on a SCSI physical-block device. A logical partition is an array of contiguously addressed
blocks; it can be completely described by the number of blocks and the address of the first
block in the partition. In normal configurations partitions do not overlap, although such a
condition is not an error.

NOTE If numBlocks is 0, the rest of device is used.

RETURNS A pointer to the created BLK_DEV, or NULL if parameters exceed physical device
boundaries, if the physical device is not a block device, or if memory is insufficient for the
structures.

ERRNO Not Available

SEE ALSO scsiLib

scsiBlkDevInit()

NAME scsiBlkDevInit() – initialize fields in a SCSI logical partition

SYNOPSIS void scsiBlkDevInit
 (
 SCSI_BLK_DEV * pScsiBlkDev, /* ptr to SCSI block dev. struct */
 int blksPerTrack, /* blocks per track */
 int nHeads /* number of heads */
)

VxWorks Kernel API Reference, 6.6
scsiBlkDevShow()

726

DESCRIPTION This routine specifies the disk-geometry parameters required by certain file systems (for
example, dosFs). It is called after a SCSI_BLK_DEV structure is created with
scsiBlkDevCreate(), but before calling a file system initialization routine. It is generally
required only for removable-media devices.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsiLib

scsiBlkDevShow()

NAME scsiBlkDevShow() – show the BLK_DEV structures on a specified physical device

SYNOPSIS void scsiBlkDevShow
 (
 SCSI_PHYS_DEV * pScsiPhysDev /* ptr to SCSI physical device info */
)

DESCRIPTION This routine displays all of the BLK_DEV structures created on a specified physical device.
This routine is called by scsiShow() but may also be invoked directly, usually from the
shell.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsiLib, scsiShow()

scsiBusReset()

NAME scsiBusReset() – pulse the reset signal on the SCSI bus

SYNOPSIS STATUS scsiBusReset
 (
 SCSI_CTRL * pScsiCtrl /* ptr to SCSI controller info */
)

2 Routines
scsiCacheSnoopEnable()

727

2

DESCRIPTION This routine calls a controller-specific routine to reset a specified controller's SCSI bus. If no
controller is specified (pScsiCtrl is 0), the value in the global variable pSysScsiCtrl is used.

RETURNS OK, or ERROR if there is no controller or controller-specific routine.

ERRNO Not Available

SEE ALSO scsiLib

scsiCacheSnoopDisable()

NAME scsiCacheSnoopDisable() – inform SCSI that hardware snooping of caches is disabled

SYNOPSIS void scsiCacheSnoopDisable
 (
 SCSI_CTRL * pScsiCtrl /* pointer to a SCSI_CTRL structure */
)

DESCRIPTION This routine informs the SCSI library that hardware snooping is disabled and that scsi2Lib
should execute any neccessary cache coherency code. In order to make scsi2Lib aware that
hardware snooping is disabled, this routine should be called after all SCSI-2 initializations,
especially after scsi2CtrlInit().

RETURNS N/A

ERRNO Not Available

SEE ALSO scsi2Lib

scsiCacheSnoopEnable()

NAME scsiCacheSnoopEnable() – inform SCSI that hardware snooping of caches is enabled

SYNOPSIS void scsiCacheSnoopEnable
 (
 SCSI_CTRL * pScsiCtrl /* pointer to a SCSI_CTRL structure */
)

DESCRIPTION This routine informs the SCSI library that hardware snooping is enabled and that scsi2Lib
need not execute any cache coherency code. In order to make scsi2Lib aware that hardware

VxWorks Kernel API Reference, 6.6
scsiCacheSynchronize()

728

snooping is enabled, this routine should be called after all SCSI-2 initializations, especially
after scsi2CtrlInit().

RETURNS N/A

ERRNO Not Available

SEE ALSO scsi2Lib

scsiCacheSynchronize()

NAME scsiCacheSynchronize() – synchronize the caches for data coherency

SYNOPSIS void scsiCacheSynchronize
 (
 SCSI_THREAD * pThread, /* ptr to thread info */
 SCSI_CACHE_ACTION action /* cache action required */
)

DESCRIPTION This routine performs whatever cache action is necessary to ensure cache coherency with
respect to the various buffers involved in a SCSI command.

The process is as follows:

1. The buffers for command, identification, and write data, which are simply written to
SCSI, are flushed before the command.

2. The status buffer, which is written and then read, is cleared (flushed and invalidated)
before the command.

3. The data buffer for a read command, which is only read, is cleared before the command.

The data buffer for a read command is cleared before the command rather than invalidated
after it because it may share dirty cache lines with data outside the read buffer. DMA
drivers for older versions of the SCSI library have flushed the first and last bytes of the data
buffer before the command. However, this approach is not sufficient with the enhanced
SCSI library because the amount of data transferred into the buffer may not fill it, which
would cause dirty cache lines which contain correct data for the un-filled part of the buffer
to be lost when the buffer is invalidated after the command.

To optimize the performance of the driver in supporting different caching policies, the
routine uses the CACHE_USER_FLUSH macro when flushing the cache. In the absence of a
CACHE_USER_CLEAR macro, the following steps are taken:

1. If there is a non-NULL flush routine in the cacheUserFuncs structure, the cache is
cleared.

2 Routines
scsiFormatUnit()

729

2

2. If there is a non-NULL invalidate routine, the cache is invalidated.

3. Otherwise nothing is done; the cache is assumed to be coherent without any software
intervention.

Finally, since flushing (clearing) cache line entries for a large data buffer can be
time-consuming, if the data buffer is larger than a preset (run-time configurable) size, the
entire cache is flushed.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsi2Lib

scsiErase()

NAME scsiErase() – issue an ERASE command to a SCSI device

SYNOPSIS STATUS scsiErase
 (
 SCSI_PHYS_DEV *pScsiPhysDev, /* ptr to SCSI physical device */
 BOOL longErase /* TRUE for entire tape erase */
)

DESCRIPTION This routine issues an ERASE command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiFormatUnit()

NAME scsiFormatUnit() – issue a FORMAT_UNIT command to a SCSI device

SYNOPSIS STATUS scsiFormatUnit
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */
 BOOL cmpDefectList, /* whether defect list is complete */

VxWorks Kernel API Reference, 6.6
scsiIdentMsgBuild()

730

 int defListFormat, /* defect list format */
 int vendorUnique, /* vendor unique byte */
 int interleave, /* interleave factor */
 char * buffer, /* ptr to input data buffer */
 int bufLength /* length of buffer in bytes */
)

DESCRIPTION This routine issues a FORMAT_UNIT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiLib

scsiIdentMsgBuild()

NAME scsiIdentMsgBuild() – build an identification message

SYNOPSIS int scsiIdentMsgBuild
 (
 UINT8 * msg,
 SCSI_PHYS_DEV * pScsiPhysDev,
 SCSI_TAG_TYPE tagType,
 UINT tagNumber
)

DESCRIPTION This routine builds an identification message in the caller's buffer, based on the specified
physical device, tag type, and tag number.

If the target device does not support messages, there is no identification message to build.

Otherwise, the identification message consists of an IDENTIFY byte plus an optional
QUEUE TAG message (two bytes), depending on the type of tag used.

NOTE This function is not intended for use by application programs.

RETURNS The length of the resulting identification message in bytes or -1 for ERROR.

ERRNO Not Available

SEE ALSO scsi2Lib

2 Routines
scsiInquiry()

731

2

scsiIdentMsgParse()

NAME scsiIdentMsgParse() – parse an identification message

SYNOPSIS SCSI_IDENT_STATUS scsiIdentMsgParse
 (
 SCSI_CTRL * pScsiCtrl,
 UINT8 * msg,
 int msgLength,
 SCSI_PHYS_DEV ** ppScsiPhysDev,
 SCSI_TAG * pTagNum
)

DESCRIPTION This routine scans a (possibly incomplete) identification message, validating it in the
process. If there is an IDENTIFY message, it identifies the corresponding physical device.

If the physical device is currently processing an untagged (ITL) nexus, identification is
complete. Otherwise, the identification is complete only if there is a complete QUEUE TAG
message.

If there is no physical device corresponding to the IDENTIFY message, or if the device is
processing tagged (ITLQ) nexuses and the tag does not correspond to an active thread (it
may have been aborted by a timeout, for example), then the identification sequence fails.

The caller's buffers for physical device and tag number (the results of the identification
process) are always updated. This is required by the thread event handler (see
scsiMgrThreadEvent().)

NOTE This function is not intended for use by application programs.

RETURNS The identification status (incomplete, complete, or rejected).

ERRNO Not Available

SEE ALSO scsi2Lib

scsiInquiry()

NAME scsiInquiry() – issue an INQUIRY command to a SCSI device

SYNOPSIS STATUS scsiInquiry
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */
 char * buffer, /* ptr to input data buffer */

VxWorks Kernel API Reference, 6.6
scsiIoctl()

732

 int bufLength /* length of buffer in bytes */
)

DESCRIPTION This routine issues an INQUIRY command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiLib

scsiIoctl()

NAME scsiIoctl() – perform a device-specific I/O control function

SYNOPSIS STATUS scsiIoctl
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI block device info */
 int function, /* function code */
 int arg /* argument to pass called function */
)

DESCRIPTION This routine performs a specified ioctl function using a specified SCSI block device.

RETURNS The status of the request, or ERROR if the request is unsupported.

ERRNO Not Available

SEE ALSO scsiLib

scsiLoadUnit()

NAME scsiLoadUnit() – issue a LOAD/UNLOAD command to a SCSI device

SYNOPSIS STATUS scsiLoadUnit
 (
 SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI physical device */
 BOOL load, /* TRUE=load, FALSE=unload */
 BOOL reten, /* TRUE=retention and unload */
 BOOL eot /* TRUE=end of tape and unload */
)

2 Routines
scsiMgrCtrlEvent()

733

2

DESCRIPTION This routine issues a LOAD/UNLOAD command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiMgrBusReset()

NAME scsiMgrBusReset() – handle a controller-bus reset event

SYNOPSIS void scsiMgrBusReset
 (
 SCSI_CTRL * pScsiCtrl /* SCSI ctrlr on which bus reset */
)

DESCRIPTION This routine resets in turn: each attached physical device, each target, and the
controller-finite-state machine. In practice, this routine implements the SCSI hard reset
option.

NOTE This routine does not physically reset the SCSI bus; see scsiBusReset(). This routine should
not be called by application programs.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsiMgrLib

scsiMgrCtrlEvent()

NAME scsiMgrCtrlEvent() – send an event to the SCSI controller state machine

SYNOPSIS void scsiMgrCtrlEvent
 (
 SCSI_CTRL * pScsiCtrl,
 SCSI_EVENT_TYPE eventType
)

VxWorks Kernel API Reference, 6.6
scsiMgrEventNotify()

734

DESCRIPTION This routine is called by the thread driver whenever selection, reselection, or disconnection
occurs or when a thread is activated. It manages a simple finite-state machine for the SCSI
controller.

NOTE This function should not be called by application programs.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsiMgrLib

scsiMgrEventNotify()

NAME scsiMgrEventNotify() – notify the SCSI manager of a SCSI (controller) event

SYNOPSIS STATUS scsiMgrEventNotify
 (
 SCSI_CTRL * pScsiCtrl, /* pointer to SCSI controller structure */
 SCSI_EVENT * pEvent, /* pointer to the SCSI event */
 int eventSize /* size of the event information */
)

DESCRIPTION This routine posts an event message on the appropriate SCSI manager queue, then notifies
the SCSI manager that there is a message to be accepted.

NOTE This routine should not be called by application programs.

No access serialization is required, because event messages are only posted by the SCSI
controller ISR. See the reference entry for scsiBusResetNotify().

RETURNS OK, or ERROR if the SCSI manager's event queue is full.

ERRNO Not Available

SEE ALSO scsiMgrLib, scsiBusResetNotify()

2 Routines
scsiMgrThreadEvent()

735

2

scsiMgrShow()

NAME scsiMgrShow() – show status information for the SCSI manager

SYNOPSIS void scsiMgrShow
 (
 SCSI_CTRL * pScsiCtrl, /* SCSI controller to use */
 BOOL showPhysDevs, /* TRUE => show phys dev details */
 BOOL showThreads, /* TRUE => show thread details */
 BOOL showFreeThreads /* TRUE => show free thread IDs */
)

DESCRIPTION This routine shows the current state of the SCSI manager for the specified controller,
including the total number of threads created and the number of threads currently free.

Optionally, this routine also shows details for all created physical devices on this controller
and all threads for which SCSI requests are outstanding. It also shows the IDs of all free
threads.

NOTE The information displayed is volatile; this routine is best used when there is no activity on
the SCSI bus. Threads allocated by a client but for which there are no outstanding SCSI
requests are not shown.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsiMgrLib

scsiMgrThreadEvent()

NAME scsiMgrThreadEvent() – send an event to the thread state machine

SYNOPSIS void scsiMgrThreadEvent
 (
 SCSI_THREAD * pThread,
 SCSI_THREAD_EVENT_TYPE eventType
)

DESCRIPTION This routine forwards an event to the thread's physical device. If the event is completion
or deferral, it frees up the tag which was allocated when the thread was activated and either
completes or defers the thread.

VxWorks Kernel API Reference, 6.6
scsiModeSelect()

736

NOTE This function should not be called by application programs.

The thread passed into this function does not have to be an active client thread (it may be an
identification thread).

If the thread has no corresponding physical device, this routine does nothing. (This
occasionally occurs if an unexpected disconnection or bus reset happens when an
identification thread has not yet identified which physical device it corresponds to.)

RETURNS N/A

ERRNO Not Available

SEE ALSO scsiMgrLib

scsiModeSelect()

NAME scsiModeSelect() – issue a MODE_SELECT command to a SCSI device

SYNOPSIS STATUS scsiModeSelect
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device
*/
 int pageFormat, /* value of the page format bit (0-1)
*/
 int saveParams, /* value of the save parameters bit (0-1)
*/
 char * buffer, /* ptr to output data buffer
*/
 int bufLength /* length of buffer in bytes
*/
)

DESCRIPTION This routine issues a MODE_SELECT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiLib

2 Routines
scsiMsgInComplete()

737

2

scsiModeSense()

NAME scsiModeSense() – issue a MODE_SENSE command to a SCSI device

SYNOPSIS STATUS scsiModeSense
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */
 int pageControl, /* value of the page control field (0-3)
*/
 int pageCode, /* value of the page code field (0-0x3f)
*/
 char * buffer, /* ptr to input data buffer */
 int bufLength /* length of buffer in bytes */
)

DESCRIPTION This routine issues a MODE_SENSE command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiLib

scsiMsgInComplete()

NAME scsiMsgInComplete() – handle a complete SCSI message received from the target

SYNOPSIS STATUS scsiMsgInComplete
 (
 SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
 SCSI_THREAD *pThread /* ptr to thread info */
)

DESCRIPTION This routine parses the complete message and takes any necessary action, which may
include setting up an outgoing message in reply. If the message is not understood, the
routine rejects it and returns an ERROR status.

NOTE This function is intended for use only by SCSI controller drivers.

RETURNS OK, or ERROR if the message is not supported.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
scsiMsgOutComplete()

738

SEE ALSO scsi2Lib

scsiMsgOutComplete()

NAME scsiMsgOutComplete() – perform post-processing after a SCSI message is sent

SYNOPSIS STATUS scsiMsgOutComplete
 (
 SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
 SCSI_THREAD *pThread /* ptr to thread info */
)

DESCRIPTION This routine parses the complete message and takes any necessary action.

NOTE This function is intended for use only by SCSI controller drivers.

RETURNS OK, or ERROR if the message is not supported.

ERRNO Not Available

SEE ALSO scsi2Lib

scsiMsgOutReject()

NAME scsiMsgOutReject() – perform post-processing when an outgoing message is rejected

SYNOPSIS void scsiMsgOutReject
 (
 SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
 SCSI_THREAD *pThread /* ptr to thread info */
)

NOTE This function is intended for use only by SCSI controller drivers.

RETURNS OK, or ERROR if the message is not supported.

ERRNO Not Available

SEE ALSO scsi2Lib

2 Routines
scsiPhysDevCreate()

739

2

scsiPhysDevCreate()

NAME scsiPhysDevCreate() – create a SCSI physical device structure

SYNOPSIS SCSI_PHYS_DEV * scsiPhysDevCreate
 (
 SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */
 int devBusId, /* device's SCSI bus ID */
 int devLUN, /* device's logical unit number */
 int reqSenseLength, /* length of REQUEST SENSE data dev returns
*/
 int devType, /* type of SCSI device */
 BOOL removable, /* whether medium is removable */
 int numBlocks, /* number of blocks on device */
 int blockSize /* size of a block in bytes */
)

DESCRIPTION This routine enables access to a SCSI device and must be the first routine invoked. It must
be called once for each physical device on the SCSI bus.

If reqSenseLength is NULL (0), one or more REQUEST_SENSE commands are issued to the
device to determine the number of bytes of sense data it typically returns. Note that if the
device returns variable amounts of sense data depending on its state, you must consult the
device manual to determine the maximum amount of sense data that can be returned.

If devType is NONE (-1), an INQUIRY command is issued to determine the device type; as
an added benefit, it acquires the device's make and model number. The scsiShow() routine
displays this information. Common values of devType can be found in scsiLib.h or in the
SCSI specification.

If numBlocks or blockSize are specified as NULL (0), a READ_CAPACITY command is issued
to determine those values. This occurs only for device types that support READ_CAPACITY.

RETURNS A pointer to the created SCSI_PHYS_DEV structure, or NULL if the routine is unable to create
the physical-device structure.

ERRNO Not Available

SEE ALSO scsiLib

VxWorks Kernel API Reference, 6.6
scsiPhysDevDelete()

740

scsiPhysDevDelete()

NAME scsiPhysDevDelete() – delete a SCSI physical-device structure

SYNOPSIS STATUS scsiPhysDevDelete
 (
 SCSI_PHYS_DEV *pScsiPhysDev /* ptr to SCSI physical device info */
)

DESCRIPTION This routine deletes a specified SCSI physical-device structure.

RETURNS OK, or ERROR if pScsiPhysDev is NULL or SCSI_BLK_DEVs have been created on the
device.

ERRNO Not Available

SEE ALSO scsiLib

scsiPhysDevIdGet()

NAME scsiPhysDevIdGet() – return a pointer to a SCSI_PHYS_DEV structure

SYNOPSIS SCSI_PHYS_DEV * scsiPhysDevIdGet
 (
 SCSI_CTRL * pScsiCtrl, /* ptr to SCSI controller info */
 int devBusId, /* device's SCSI bus ID */
 int devLUN /* device's logical unit number */
)

DESCRIPTION This routine returns a pointer to the SCSI_PHYS_DEV structure of the SCSI physical device
located at a specified bus ID (devBusId) and logical unit number (devLUN) and attached to a
specified SCSI controller (pScsiCtrl).

RETURNS A pointer to the specified SCSI_PHYS_DEV structure, or NULL if the structure does not exist.

ERRNO Not Available

SEE ALSO scsiLib

2 Routines
scsiRdSecs()

741

2

scsiPhysDevShow()

NAME scsiPhysDevShow() – show status information for a physical device

SYNOPSIS void scsiPhysDevShow
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* physical device to be displayed */
 BOOL showThreads, /* show IDs of associated threads */
 BOOL noHeader /* do not print title line */
)

DESCRIPTION This routine shows the state, the current nexus type, the current tag number, the number of
tagged commands in progress, and the number of waiting and active threads for a SCSI
physical device. Optionally, it shows the IDs of waiting and active threads, if any. This
routine may be called at any time, but note that all of the information displayed is volatile.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsi2Lib

scsiRdSecs()

NAME scsiRdSecs() – read sector(s) from a SCSI block device

SYNOPSIS STATUS scsiRdSecs
 (
 SCSI_BLK_DEV * pScsiBlkDev, /* ptr to SCSI block device info */
 int sector, /* sector number to be read */
 int numSecs, /* total sectors to be read */
 char * buffer /* ptr to input data buffer */
)

DESCRIPTION This routine reads the specified physical sector(s) from a specified physical device.

RETURNS OK, or ERROR if the sector(s) cannot be read.

ERRNO Not Available

SEE ALSO scsiLib

VxWorks Kernel API Reference, 6.6
scsiRdTape()

742

scsiRdTape()

NAME scsiRdTape() – read bytes or blocks from a SCSI tape device

SYNOPSIS int scsiRdTape
 (
 SCSI_SEQ_DEV *pScsiSeqDev, /* ptr to SCSI sequential device info */
 UINT count, /* total bytes or blocks to be read */
 char *buffer, /* ptr to input data buffer */
 BOOL fixedSize /* if variable size blocks */
)

DESCRIPTION This routine reads the specified number of bytes or blocks from a specified physical device.
If the boolean fixedSize is true, then numBytes represents the number of blocks of size
blockSize, defined in the pScsiPhysDev structure. If variable block sizes are used (fixedSize
= FALSE), then numBytes represents the actual number of bytes to be read.

RETURNS Number of bytes or blocks actually read, 0 if EOF, or ERROR.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiReadCapacity()

NAME scsiReadCapacity() – issue a READ_CAPACITY command to a SCSI device

SYNOPSIS STATUS scsiReadCapacity
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */
 int * pLastLBA, /* where to return last */
 /* logical block address */
 int * pBlkLength /* where to return block length */
)

DESCRIPTION This routine issues a READ_CAPACITY command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiLib

2 Routines
scsiReqSense()

743

2

scsiRelease()

NAME scsiRelease() – issue a RELEASE command to a SCSI device

SYNOPSIS STATUS scsiRelease
 (
 SCSI_PHYS_DEV *pScsiPhysDev /* ptr to SCSI physical device */
)

DESCRIPTION This routine issues a RELEASE command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiDirectLib

scsiReleaseUnit()

NAME scsiReleaseUnit() – issue a RELEASE UNIT command to a SCSI device

SYNOPSIS STATUS scsiReleaseUnit
 (
 SCSI_SEQ_DEV *pScsiSeqDev /* ptr to SCSI sequential device */
)

DESCRIPTION This routine issues a RELEASE UNIT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiReqSense()

NAME scsiReqSense() – issue a REQUEST_SENSE command to a SCSI device and read results

SYNOPSIS STATUS scsiReqSense

VxWorks Kernel API Reference, 6.6
scsiReserve()

744

 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */
 char * buffer, /* ptr to input data buffer */
 int bufLength /* length of buffer in bytes */
)

DESCRIPTION This routine issues a REQUEST_SENSE command to a specified SCSI device and reads the
results.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiLib

scsiReserve()

NAME scsiReserve() – issue a RESERVE command to a SCSI device

SYNOPSIS STATUS scsiReserve
 (
 SCSI_PHYS_DEV *pScsiPhysDev /* ptr to SCSI physical device */
)

DESCRIPTION This routine issues a RESERVE command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiDirectLib

scsiReserveUnit()

NAME scsiReserveUnit() – issue a RESERVE UNIT command to a SCSI device

SYNOPSIS STATUS scsiReserveUnit
 (
 SCSI_SEQ_DEV *pScsiSeqDev /* ptr to SCSI sequential device */
)

2 Routines
scsiSeqDevCreate()

745

2

DESCRIPTION This routine issues a RESERVE UNIT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiRewind()

NAME scsiRewind() – issue a REWIND command to a SCSI device

SYNOPSIS STATUS scsiRewind
 (
 SCSI_SEQ_DEV *pScsiSeqDev /* ptr to SCSI Sequential device */
)

DESCRIPTION This routine issues a REWIND command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiSeqDevCreate()

NAME scsiSeqDevCreate() – create a SCSI sequential device

SYNOPSIS SEQ_DEV *scsiSeqDevCreate
 (
 SCSI_PHYS_DEV *pScsiPhysDev /* ptr to SCSI physical device info */
)

DESCRIPTION This routine creates a SCSI sequential device and saves a pointer to this SEQ_DEV in the
SCSI physical device. The following functions are initialized in this structure:

sd_seqRd scsiRdTape()
sd_seqWrt scsiWrtTape()
sd_ioctl scsiIoctl() (in scsiLib)

VxWorks Kernel API Reference, 6.6
scsiSeqIoctl()

746

Only one SEQ_DEV per SCSI_PHYS_DEV is allowed, unlike BLK_DEVs where an entire list
is maintained. Therefore, this routine can be called only once per creation of a sequential
device.

RETURNS A pointer to the SEQ_DEV structure, or NULL if the command fails.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiSeqIoctl()

NAME scsiSeqIoctl() – perform an I/O control function for sequential access devices

SYNOPSIS int scsiSeqIoctl
 (
 SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device */
 int function, /* ioctl function code */
 int arg /* argument to pass to called function */
)

DESCRIPTION This routine issues scsiSeqLib commands to perform sequential device-specific I/O control
operations.

RETURNS OK or ERROR.

ERRNO S_scsiLib_INVALID_BLOCK_SIZE

SEE ALSO scsiSeqLib

sd_seqWrtFileMarks scsiWrtFileMarks()
sd_statusChk scsiSeqStatusCheck()
sd_reset (not used)
sd_rewind scsiRewind()
sd_reserve scsiReserve()
sd_release scsiRelease()
sd_readBlkLim scsiSeqReadBlockLimits()
sd_load scsiLoadUnit()
sd_space scsiSpace()
sd_erase scsiErase()

2 Routines
scsiSeqStatusCheck()

747

2

scsiSeqReadBlockLimits()

NAME scsiSeqReadBlockLimits() – issue a READ_BLOCK_LIMITS command to a SCSI device

SYNOPSIS STATUS scsiSeqReadBlockLimits
 (
 SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device
*/
 int *pMaxBlockLength, /* where to return maximum block length
*/
 UINT16 *pMinBlockLength /* where to return minimum block length
*/
)

DESCRIPTION This routine issues a READ_BLOCK_LIMITS command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiSeqStatusCheck()

NAME scsiSeqStatusCheck() – detect a change in media

SYNOPSIS STATUS scsiSeqStatusCheck
 (
 SCSI_SEQ_DEV *pScsiSeqDev /* ptr to a sequential dev */
)

DESCRIPTION This routine issues a TEST_UNIT_READY command to a SCSI device to detect a change in
media. It is called by file systems before executing open() or creat().

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO scsiSeqLib

VxWorks Kernel API Reference, 6.6
scsiShow()

748

scsiShow()

NAME scsiShow() – list the physical devices attached to a SCSI controller

SYNOPSIS STATUS scsiShow
 (
 SCSI_CTRL *pScsiCtrl /* ptr to SCSI controller info */
)

DESCRIPTION This routine displays the SCSI bus ID, logical unit number (LUN), vendor ID, product ID,
firmware revision (rev.), device type, number of blocks, block size in bytes, and a pointer to
the associated SCSI_PHYS_DEV structure for each physical SCSI device known to be
attached to a specified SCSI controller.

NOTE If pScsiCtrl is NULL, the value of the global variable pSysScsiCtrl is used, unless it is also
NULL.

RETURNS OK, or ERROR if both pScsiCtrl and pSysScsiCtrl are NULL.

ERRNO Not Available

SEE ALSO scsiLib

scsiSpace()

NAME scsiSpace() – move the tape on a specified physical SCSI device

SYNOPSIS STATUS scsiSpace
 (
 SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device info */
 int count, /* count for space command */
 int spaceCode /* code for the type of space command */
)

DESCRIPTION This routine moves the tape on a specified SCSI physical device. There are two types of
space code that are mandatory in SCSI; currently these are the only two supported:

Code Description Support
000 Blocks Yes
001 File marks Yes
010 Sequential file marks No
011 End-of-data No
100 Set marks No

2 Routines
scsiSyncXferNegotiate()

749

2
RETURNS OK, or ERROR if an error is returned by the device.

ERRNO S_scsiLib_ILLEGAL_REQUEST

SEE ALSO scsiSeqLib

scsiStartStopUnit()

NAME scsiStartStopUnit() – issue a START_STOP_UNIT command to a SCSI device

SYNOPSIS STATUS scsiStartStopUnit
 (
 SCSI_PHYS_DEV *pScsiPhysDev, /* ptr to SCSI physical device */
 BOOL start /* TRUE == start, FALSE == stop */
)

DESCRIPTION This routine issues a START_STOP_UNIT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiDirectLib

scsiSyncXferNegotiate()

NAME scsiSyncXferNegotiate() – initiate or continue negotiating transfer parameters

SYNOPSIS void scsiSyncXferNegotiate
 (
 SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
 SCSI_TARGET *pScsiTarget, /* ptr to SCSI target info */
 SCSI_SYNC_XFER_EVENT eventType /* tells what has just happened */
)

101 Sequential set marks No
Code Description Support

VxWorks Kernel API Reference, 6.6
scsiTapeModeSelect()

750

DESCRIPTION This routine manages negotiation by means of a finite-state machine which is driven by
"significant events" such as incoming and outgoing messages. Each SCSI target has its own
independent state machine.

NOTE If the controller does not support synchronous transfer or if the target's maximum
REQ/ACK offset is zero, attempts to initiate a round of negotiation are ignored.

This function is intended for use only by SCSI controller drivers.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsi2Lib

scsiTapeModeSelect()

NAME scsiTapeModeSelect() – issue a MODE_SELECT command to a SCSI tape device

SYNOPSIS STATUS scsiTapeModeSelect
 (
 SCSI_PHYS_DEV *pScsiPhysDev, /* ptr to SCSI physical device
*/
 int pageFormat, /* value of the page format bit (0-1)
*/
 int saveParams, /* value of the save parameters bit (0-1)
*/
 char *buffer, /* ptr to output data buffer
*/
 int bufLength /* length of buffer in bytes
*/
)

DESCRIPTION This routine issues a MODE_SELECT command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiSeqLib

2 Routines
scsiTargetOptionsGet()

751

2

scsiTapeModeSense()

NAME scsiTapeModeSense() – issue a MODE_SENSE command to a SCSI tape device

SYNOPSIS STATUS scsiTapeModeSense
 (
 SCSI_PHYS_DEV *pScsiPhysDev, /* ptr to SCSI physical device */
 int pageControl, /* value of the page control field (0-3) */
 int pageCode, /* value of the page code field (0-0x3f) */
 char *buffer, /* ptr to input data buffer */
 int bufLength /* length of buffer in bytes */
)

DESCRIPTION This routine issues a MODE_SENSE command to a specified SCSI tape device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiTargetOptionsGet()

NAME scsiTargetOptionsGet() – get options for one or all SCSI targets

SYNOPSIS STATUS scsiTargetOptionsGet
 (
 SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
 int devBusId, /* target to interrogate */
 SCSI_OPTIONS *pOptions /* buffer to return options */
)

DESCRIPTION This routine copies the current options for the specified target into the caller's buffer.

RETURNS OK, or ERROR if the bus ID is invalid.

ERRNO Not Available

SEE ALSO scsi2Lib

VxWorks Kernel API Reference, 6.6
scsiTargetOptionsSet()

752

scsiTargetOptionsSet()

NAME scsiTargetOptionsSet() – set options for one or all SCSI targets

SYNOPSIS STATUS scsiTargetOptionsSet
 (
 SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
 int devBusId, /* target to affect, or all */
 SCSI_OPTIONS *pOptions, /* buffer containing new options */
 UINT which /* which options to change */
)

DESCRIPTION This routine sets the options defined by the bitmask which for the specified target (or all
targets if devBusId is SCSI_SET_OPT_ALL_TARGETS).

The bitmask which can be any combination of the following, bitwise OR'd together
(corresponding fields in the SCSI_OPTIONS structure are shown in parentheses):

NOTE This routine can be used after the target device has already been used; in this case, however,
it is not possible to change the tag parameters. This routine must not be used while there is
any SCSI activity on the specified target(s).

RETURNS OK, or ERROR if the bus ID or options are invalid.

ERRNO Not Available

SEE ALSO scsi2Lib

SCSI_SET_OPT_TIMEOUT selTimeOut select timeout period, microseconds
SCSI_SET_OPT_MESSAGES messages FALSE to disable SCSI messages
SCSI_SET_OPT_DISCONNECT disconnect FALSE to disable discon/recon
SCSI_SET_OPT_XFER_PARAMS maxOffset, max sync xfer offset, 0=>async

minPeriod min sync xfer period, x 4 nsec.
SCSI_SET_OPT_TAG_PARAMS tagType, default tag type (SCSI_TAG_*)

maxTags max cmd tags available
SCSI_SET_OPT_WIDE_PARAMS xferWidth data transfer width setting.

xferWidth = 0 ; 8 bits wide
xferWidth = 1 ; 16 bits wide

2 Routines
scsiTestUnitRdy()

753

2

scsiTargetOptionsShow()

NAME scsiTargetOptionsShow() – display options for specified SCSI target

SYNOPSIS STATUS scsiTargetOptionsShow
 (
 SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
 int devBusId /* target to interrogate */
)

DESCRIPTION This routine displays the current target options for the specified target in the following
format:

Target Options (id <scsi bus ID>):
 selection TimeOut: <timeout> nano secs
 messages allowed: TRUE or FALSE
 disconnect allowed: TRUE or FALSE
 REQ/ACK offset: <negotiated offset>
 transfer period: <negotiated period>
 transfer width: 8 or 16 bits
maximum transfer rate: <peak transfer rate> MB/sec
 tag type: <tag type>
 maximum tags: <max tags>

RETURNS OK, or ERROR if the bus ID is invalid.

ERRNO Not Available

SEE ALSO scsi2Lib

scsiTestUnitRdy()

NAME scsiTestUnitRdy() – issue a TEST_UNIT_READY command to a SCSI device

SYNOPSIS STATUS scsiTestUnitRdy
 (
 SCSI_PHYS_DEV * pScsiPhysDev /* ptr to SCSI physical device */
)

DESCRIPTION This routine issues a TEST_UNIT_READY command to a specified SCSI device.

RETURNS OK, or ERROR if the command fails.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
scsiThreadInit()

754

SEE ALSO scsiLib

scsiThreadInit()

NAME scsiThreadInit() – perform generic SCSI thread initialization

SYNOPSIS STATUS scsiThreadInit
 (
 SCSI_THREAD * pThread
)

DESCRIPTION This routine initializes the controller-independent parts of a thread structure, which are
specific to the SCSI manager.

NOTE This function should not be called by application programs. It is intended to be used by
SCSI controller drivers.

RETURNS OK, or ERROR if the thread cannot be initialized.

ERRNO Not Available

SEE ALSO scsi2Lib

scsiWideXferNegotiate()

NAME scsiWideXferNegotiate() – initiate or continue negotiating wide parameters

SYNOPSIS void scsiWideXferNegotiate
 (
 SCSI_CTRL *pScsiCtrl, /* ptr to SCSI controller info */
 SCSI_TARGET *pScsiTarget, /* ptr to SCSI target info */
 SCSI_WIDE_XFER_EVENT eventType /* tells what has just happened */
)

DESCRIPTION This routine manages negotiation means of a finite-state machine which is driven by
"significant events" such as incoming and outgoing messages. Each SCSI target has its own
independent state machine.

2 Routines
scsiWrtSecs()

755

2

NOTE If the controller does not support wide transfers or the target's transfer width is zero,
attempts to initiate a round of negotiation are ignored; this is because zero is the default
narrow transfer.

This function is intended for use only by SCSI controller drivers.

RETURNS N/A

ERRNO Not Available

SEE ALSO scsi2Lib

scsiWrtFileMarks()

NAME scsiWrtFileMarks() – write file marks to a SCSI sequential device

SYNOPSIS STATUS scsiWrtFileMarks
 (
 SCSI_SEQ_DEV * pScsiSeqDev, /* ptr to SCSI sequential device info */
 int numMarks, /* number of file marks to write */
 BOOL shortMark /* TRUE to write short file mark */
)

DESCRIPTION This routine writes file marks to a specified physical device.

RETURNS OK, or ERROR if the file mark cannot be written.

ERRNO Not Available

SEE ALSO scsiSeqLib

scsiWrtSecs()

NAME scsiWrtSecs() – write sector(s) to a SCSI block device

SYNOPSIS STATUS scsiWrtSecs
 (
 SCSI_BLK_DEV * pScsiBlkDev, /* ptr to SCSI block device info */
 int sector, /* sector number to be written */
 int numSecs, /* total sectors to be written */

VxWorks Kernel API Reference, 6.6
scsiWrtTape()

756

 char * buffer /* ptr to input data buffer */
)

DESCRIPTION This routine writes the specified physical sector(s) to a specified physical device.

RETURNS OK, or ERROR if the sector(s) cannot be written.

ERRNO Not Available

SEE ALSO scsiLib

scsiWrtTape()

NAME scsiWrtTape() – write data to a SCSI tape device

SYNOPSIS STATUS scsiWrtTape
 (
 SCSI_SEQ_DEV *pScsiSeqDev, /* ptr to SCSI sequential device info */
 int numBytes, /* total bytes or blocks to be written */
 char *buffer, /* ptr to input data buffer */
 BOOL fixedSize /* if variable size blocks */
)

DESCRIPTION This routine writes data to the current block on a specified physical device. If the boolean
fixedSize is true, then numBytes represents the number of blocks of size blockSize, defined in
the pScsiPhysDev structure. If variable block sizes are used (fixedSize = FALSE), then
numBytes represents the actual number of bytes to be written. If numBytes is greater than the
maxBytesLimit field defined in the pScsiPhysDev structure, then more than one SCSI
transaction is used to transfer the data.

RETURNS OK, or ERROR if the data cannot be written or zero bytes are written.

ERRNO Not Available

SEE ALSO scsiSeqLib

2 Routines
sdCreate()

757

2

sdCreate()

NAME sdCreate() – create a new shared data region

SYNOPSIS SD_ID sdCreate
 (
 char * name, /* name of the shared data region */
 int options, /* creation options */
 UINT32 size, /* size of shared data in bytes */
 off_t64 physAddress, /* optional physical address */
 MMU_ATTR attr, /* allowed user MMU attributes */
 void ** pVirtAddress /* optional virtual base address */
)

DESCRIPTION This routine creates a new shared data region and maps it into the calling task's memory
context. The following table shows each parameter and whether it is required or not:

Because each shared data region must have a unique name, if the region specified by name
already exists in the system the creation will fail. NULL will be returned.

Currently there are only two possible values of options:

The value of size must be greater than 0. It is rounded up to a page aligned size determined
by the architecture.

If physAddress is specified and the address is not available, NULL will be returned. The
physAddress specified must be aligned on the architecture dependent page size boundary
and must not be mapped to any other memory context.

The MMU attributes specified in attr will be used as the default attributes of the shared data
region. All client applications will use these by default, and may only change the local
access permissions to a subset of these. The application which creates the region will have
read and write access in addition to the defaults and will be allowed to set local permissions
to any allowed by the architecture.

Basic MMU attribute definitions for shared data regions are provided in the
sdLibCommon.h header file. These include:

Parameter Required? Default
name Yes N/A
options No 0
size Yes N/A
physAddress No System Allocated
attr No Read/Write, System Default Cache Setting
pVirtAddress Yes N/A

Option name Value Meaning
SD_LINGER 0x1 SD region may remain after the last client unmaps.
SD_PRIVATE 0x2 SD region is only available in the owner RTP.

VxWorks Kernel API Reference, 6.6
sdCreate()

758

One of each the SD_ATTR and SD_CACHE macros above must be provided. The SD_CACHE
macros can not be combined.

The cache attributes of a shared data region can not be changed after creation. All clients
of that region will use the value provided at create time, including the owner.

If more specific MMU attributes are required please see vmLibCommon.h for a complete
list of available MMU attributes.

NOTE The MMU_ATTR mask used internally by the shared data library is the combination of:

MMU_ATTR_PROT_MASK

MMU_ATTR_VALID_MSK

MMU_ATTR_SPL_MSK

Care must be taken to provide suitable values for all these attributes.

The start address of the shared data region is stored at the location specified by
pVirtAddress. This must be a valid address within the context of the calling application. It
can not be NULL.

The SD_ID returned is private to the calling application. It can be shared between tasks
within that application but not with tasks that reside outside that application.

RETURNS ID of new shared data region, or NULL on error.

ERRNO Possible errno values set by this routine are:

S_sdLib_VIRT_ADDR_PTR_IS_NULL
pVirtAddress is NULL

S_sdLib_ADDR_NOT_ALIGNED
physAddress is not properly aligned

S_sdLib_PHYS_ADDR_OUT_OF_RANGE
physAddress exceeds physical address space

S_sdLib_SIZE_IS_NULL
size is NULL

Attribute Meaning
SD_ATTR_RW Read/Write for both Supervisor and User Modes
SD_ATTR_RO Read Only for both Supervisor and User Modes
SD_ATTR_RWX Read/Write/Execute for both Supervisor and User

Modes
SD_ATTR_RX Read/Execute for both Supervisor and User Modes
SD_CACHE_COPYBACK Copyback cache mode
SD_CACHE_WRITETHROUGH Write through cache mode
SD_CACHE_OFF Cache Off

2 Routines
sdCreateHookAdd()

759

2

S_sdLib_INVALID_OPTIONS
options is not a valid combination

S_sdLib_VIRT_PAGES_NOT_AVAILABLE
not enough virtual space left in system

S_sdLib_PHYS_PAGES_NOT_AVAILABLE
not enough physical memory left in system

SEE ALSO sdLib, sdOpen(), sdUnmap(), sdProtect(), sdDelete()

sdCreateHookAdd()

NAME sdCreateHookAdd() – add a hook routine to be called at Shared Data creation

SYNOPSIS STATUS sdCreateHookAdd
 (
 SD_CREATE_HOOK sdCreateHook, /* hook routine to call */
 BOOL addToHead /* add routine to head of list */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called just after an SD
is created. The hook routine should have the following prototype:

 STATUS sdCreateHook
 (
 const SD_ID sdId, /* ID of the created SD */
)

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,
the new hook is added to the head of the list (i.e. it will be the first hook to execute).

Shared Data create hooks are called from sdCreate() or sdOpen() after the creation is done.
Create hooks are not expected to return anything (return values if any are not checked).

RETURNS OK, or ERROR if the table of SD create routines is full.

ERRNO N/A.

SEE ALSO sdLib, sdCreateHookDelete()

VxWorks Kernel API Reference, 6.6
sdCreateHookDelete()

760

sdCreateHookDelete()

NAME sdCreateHookDelete() – delete a Shared Data creation hook routine

SYNOPSIS STATUS sdCreateHookDelete
 (
 SD_CREATE_HOOK sdCreateHook /* hook routine to delete */
)

DESCRIPTION This routine removes a specified hook routine from the list of Shared Data create hook
routines.

RETURNS OK on success, or ERROR if the hook routine was not found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO sdLib, sdCreateHookAdd()

sdDelete()

NAME sdDelete() – delete a shared data region

SYNOPSIS STATUS sdDelete
 (
 SD_ID sdId, /* ID of shared data region to delete */
 int options /* options field is not used */
)

DESCRIPTION Deletes a shared data region. This is only possible if there are no applications that have the
shared data region mapped. Currently there are no options defined for this function, this
parameter should be passed as zero always.

Unless the option SD_LINGER was specified at creation of the shared data region it will
automatically be deleted when the last client application exits or explicitly calls sdUnmap().

RETURNS OK, or ERROR on failure.

ERRNO Possible errno values set by this routine are:

S_sdLib_INVALID_SD_ID
sdId is not valid

S_sdLib_CLIENT_COUNT_NOT_NULL
sdId still mapped by an application

2 Routines
sdDeleteHookDelete()

761

2

SEE ALSO sdLib, sdCreate(), sdOpen(), sdMap(), sdUnmap(), sdProtect()

sdDeleteHookAdd()

NAME sdDeleteHookAdd() – add a hook routine to be called at Shared Data deletion

SYNOPSIS STATUS sdDeleteHookAdd
 (
 SD_DELETE_HOOK sdDeleteHook, /* hook routine to call */
 BOOL addToHead /* add routine to head of list */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called just before a SD
is deleted. The hook routine should have the following prototype:

 void sdDeleteHook
 (
 const SD_ID sdId, /* ID of the deleted SD */
)

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,
the new hook is added to the head of the list (i.e. it will be the first hook to execute).

SD delete hooks are called from sdDelete() before any deletion is done. Delete hooks are
not expected to return anything (return values if any are not checked).

RETURNS OK, or ERROR if the table of SD create routines is full.

ERRNO N/A.

SEE ALSO sdLib, sdDeleteHookDelete()

sdDeleteHookDelete()

NAME sdDeleteHookDelete() – delete a Shared Data deletion hook routine

SYNOPSIS STATUS sdDeleteHookDelete
 (
 SD_DELETE_HOOK sdDeleteHook /* hook routine to delete */
)

VxWorks Kernel API Reference, 6.6
sdGenericHookAdd()

762

DESCRIPTION This routine removes a specified hook routine from the list of Shared Data delete hook
routines.

RETURNS OK on success, or ERROR if the hook routine was not found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO sdLib, sdDeleteHookAdd()

sdGenericHookAdd()

NAME sdGenericHookAdd() – add a hook routine to be called before Shared Data routine

SYNOPSIS STATUS sdGenericHookAdd
 (
 SD_GENERIC_HOOK sdGenericHook, /* hook routine to call */
 BOOL addToHead /* add routine to head of list */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called just before an SD
is created, mapped, unmapped, deleted, or has its protection attributes changed. The hook
routine should have the following prototype:

 STATUS sdGenericHook
 (
 const void * sdId or name, /* ID or name of the SD */
 int options /* options passed to hook routine */
)

The options argument is used to identify what routine invoked the hook and whether the
first argument is to be treated as a name or an ID. These are specified by the following
enumeration:

 typedef enum sd_routines
 {
 SD_HOOK_TYPE_MSK = 0x00000001,
 SD_HOOK_ID = 0x00000000,
 SD_HOOK_NAME = 0x00000001,
 SD_HOOK_ROUTINE_MSK = 0x0000000e,
 SD_HOOK_CREATE = 0x00000002,
 SD_HOOK_OPEN = 0x00000004,
 SD_HOOK_DELETE = 0x00000006,
 SD_HOOK_MAP = 0x00000008,
 SD_HOOK_UNMAP = 0x0000000a,
 SD_HOOK_PROTECT = 0x0000000c
 } SD_HOOK_OPTIONS;

2 Routines
sdGenericHookDelete()

763

2

Only sdCreate() and sdOpen() invoke the generic hook with the SD_HOOK_NAME option
specified.

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,
the new hook is added to the head of the list (i.e. it will be the first hook to execute).

Shared Data generic hooks are called from sdCreate(), sdOpen(), sdMap(), sdUnmap(),
and sdProtect() and should return either OK or ERROR. If the return value from a generic
hook is anything other than OK the operation is aborted and the routine from which it was
invoked returns ERROR.

RETURNS OK, or ERROR if the table of SD create routines is full.

ERRNO N/A.

SEE ALSO sdLib, sdGenericHookDelete()

sdGenericHookDelete()

NAME sdGenericHookDelete() – delete a Shared Data generic hook routine

SYNOPSIS STATUS sdGenericHookDelete
 (
 SD_GENERIC_HOOK sdGenericHook /* hook routine to delete */
)

DESCRIPTION This routine removes a specified hook routine from the list of Shared Data generic hook
routines.

RETURNS OK on success, or ERROR if the hook routine was not found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO sdLib, sdGenericHookAdd()

VxWorks Kernel API Reference, 6.6
sdInfoGet()

764

sdInfoGet()

NAME sdInfoGet() – get specific information about a Shared Data Region

SYNOPSIS STATUS sdInfoGet
 (
 SD_ID sdId, /* SD ID to get info */
 SD_DESC * pSdStruct /* location to store SD info */
)

DESCRIPTION This routine obtains the information for a Shared Data region and stores the information in
the specified SD descriptor (sdStruct). The information stored in the descriptor is copied
from information in the SD object. The descriptor must have been allocated before calling
this function, and the memory for it must come from the calling task's RTP space. To
allocate the memory for the descriptor from the calling task's RTP space, either use malloc()
within the calling task or declare the structure as an automatic variable in the calling task,
placing it on the calling task's stack.

If the name of the Shared Data region is longer than VX_SD_NAME_LENGTH characters it
will be truncated.

The sdStruct structure looks like the following:

typedef struct
 {
 char name[VX_SD_NAME_LENGTH+1]; // name of SD
 int options; // options, e.g. SD_LINGER, SD_PRIVATE
 MMU_ATTR defaultAttr; // default attributes of SD
 MMU_ATTR currentAttr; // current attributes of SD
 UINT size; // size of SD in bytes
 VIRT_ADDR startAddr // start address of SD
 } SD_DESC;

See the header file vmLibCommon.h for definitions of the values returned in defaultAttr
and currentAttr.

RETURNS OK, or ERROR on failure.

ERRNO Possible errno values set by this routine are:

S_sdLib_INVALID_SD_ID
sdId is not valid

SEE ALSO sdLib, sdCreate(), sdOpen(), sdMap(), sdUnmap(), sdProtect(), sdDelete()

2 Routines
sdMap()

765

2

sdMap()

NAME sdMap() – map a shared data region into an application or the kernel

SYNOPSIS VIRT_ADDR sdMap
 (
 SD_ID sdId, /* ID of shared data region to map */
 MMU_ATTR attr, /* MMU attr used to map region */
 int options /* reserved - use zero */
)

DESCRIPTION This routine maps the shared data region specified by sdId into the current calling task's
memory context. The region is then available to all tasks within that application, or all tasks
in the kernel if the calling task was a kernel task.

The shared data region is mapped using the MMU attributes specified by attr. These
attributes must be equal to, or a subset of the default attributes of sdId. If 0 was passed then
the default attributes of sdId are used. It is possible to use this routine to set the attributes
on a shared data region for the calling task's RTP even if sdId is currently mapped in its
memory context.

Basic MMU attribute definitions for shared data regions are provided in the
sdLibCommon.h header file. These include:

If more specific MMU attributes are required please see vmLibCommon.h for a complete
list of available MMU attributes.

NOTE The MMU_ATTR mask used internally by the shared data library is the combination of:

MMU_ATTR_PROT_MASK

MMU_ATTR_VALID_MSK

MMU_ATTR_SPL_MSK

Care must be taken to provide suitable values for all these attributes.

There are currently no options specified for this function, zero should be passed in the
options parameter.

RETURNS The base virtual address of the shared data region, or NULL on failure.

ERRNO Possible errno values set by this routine are:

Attribute Meaning
SD_ATTR_RW Read/Write for both Supervisor and User Modes
SD_ATTR_RO Read Only for both Supervisor and User Modes
SD_ATTR_RWX Read/Write/Execute for both Supervisor and User Modes
SD_ATTR_RX Read/Execute for both Supervisor and User Modes

VxWorks Kernel API Reference, 6.6
sdOpen()

766

S_sdLib_INVALID_SD_ID
sdId is not valid

S_sdLib_SD_IS_PRIVATE
sdId is private to another application

SEE ALSO sdLib, sdCreate(), sdOpen(), sdUnmap(), sdProtect(), sdDelete()

sdOpen()

NAME sdOpen() – open a shared data region for use

SYNOPSIS SD_ID sdOpen
 (
 char * name, /* name of SD to open or create */
 int options, /* open options */
 int mode, /* open mode */
 UINT32 size, /* size of shared data in bytes */
 off_t64 physAddress, /* optional physical address */
 MMU_ATTR attr, /* allowed MMU attributes */
 void ** pVirtAddress /* virtual return address */
)

DESCRIPTION This routine takes a shared data region name and looks for the region in the system. If the
region does not exist in the system, and the OM_CREATE flag is specified in mode, then a new
shared data region is created and mapped to the application. If mode does not specify
OM_CREATE then no shared data region is created and NULL is returned. If the region does
already exist in the system it is mapped into the calling task's memory context.

The following table shows each parameter and whether it is required or not:

If the region specified by name already exists in the system all other arguments, except
pVirtAddress and attr (if specified) will be ignored. In this case the region will be mapped
into the calling task's memory context and the start address of the region will still be stored
at pVirtAddress and the SD_ID of the region will be returned.

Currently there are only two possible values of options:

Parameter Required? Default
name Yes N/A
options No 0
mode No 0
size Yes N/A
physAddress No System Allocated
attr No Read/Write, System Default Cache Setting
pVirtAddress Yes N/A

2 Routines
sdOpen()

767

2

Currently there are only two possible values of mode other than the default (0):

The value of size must be greater than 0. It is rounded up to a page aligned size determined
by the architecture.

If physAddress is specified and the address is not available, NULL will be returned. The
physAddress specified must be aligned on the architecture dependent page size boundary
and must not be mapped to any other memory context.

The MMU attributes specified in attr will be used as the default attributes of the shared data
region. All client applications will use these by default, and may only change the local
access permissions to a subset of these. The application which creates the region will have
read and write access in addition to the defaults and will be allowed to set local permissions
to any allowed by the architecture.

Basic MMU attribute definitions for shared data regions are provided in the
sdLibCommon.h header file. These include:

One of each the SD_ATTR and SD_CACHE macros above must be provided. The SD_CACHE
macros can not be combined.

The cache attributes of a shared data region can not be changed after creation. All clients
of that region will use the value provided at create time, including the owner.

If more specific MMU attributes are required please see vmLibCommon.h for a complete
list of available MMU attributes.

Option name Value Meaning
SD_LINGER 0x1 SD region may remain after the last client unmaps.
SD_PRIVATE 0x2 SD region is only available in the owner RTP.

Mode Meaning
DEFAULT (0) Do not create an SD region if a matching name was not found.
OM_CREATE Create a shared data region if a matching name was not found.
OM_EXCL When set jointly with OM_CREATE, create a new shared data region

immediately without attempting to open an existing shared data
region. An error condition is returned if a shared data region with name
already exists. This attribute has no effect if the OM_CREATE attribute
is not specified.

Attribute Meaning
SD_ATTR_RW Read/Write for both Supervisor and User Modes
SD_ATTR_RO Read Only for both Supervisor and User Modes
SD_ATTR_RWX Read/Write/Execute for both Supervisor and User

Modes
SD_ATTR_RX Read/Execute for both Supervisor and User Modes
SD_CACHE_COPYBACK Copyback cache mode
SD_CACHE_WRITETHROUGH Write through cache mode
SD_CACHE_OFF Cache Off

VxWorks Kernel API Reference, 6.6
sdProtect()

768

NOTE The MMU_ATTR mask used internally by the shared data library is the combination of:

MMU_ATTR_PROT_MASK

MMU_ATTR_VALID_MSK

MMU_ATTR_SPL_MSK

Care must be taken to provide suitable values for all these attributes.

The start address of the shared data region is stored at the location specified by
pVirtAddress. This must be a valid address within the context of the calling application. It
can not be NULL.

The SD_ID returned is private to the calling application. It can be shared between tasks
within that application but not with tasks that reside outside that application.

RETURNS SD_ID of opened Shared Data region, or NULL on failure.

ERRNO Possible errno values set by this routine are:

S_sdLib_VIRT_ADDR_PTR_IS_NULL
pVirtAddress is NULL

S_sdLib_ADDR_NOT_ALIGNED
physAddress is not properly aligned

S_sdLib_PHYS_ADDR_OUT_OF_RANGE
physAddress exceeds physical address space

S_sdLib_SIZE_IS_NULL
size is NULL

S_sdLib_INVALID_OPTIONS
options is not a valid combination

S_sdLib_VIRT_PAGES_NOT_AVAILABLE
not enough virtual space left in system

S_sdLib_PHYS_PAGES_NOT_AVAILABLE
not enough physical memory left in system

SEE ALSO sdLib, sdCreate(), sdUnmap(), sdProtect(), sdDelete()

sdProtect()

NAME sdProtect() – change the protection attributes of a mapped SD

SYNOPSIS STATUS sdProtect

2 Routines
sdProtect()

769

2

 (
 SD_ID sdId, /* ID of shared data region */
 MMU_ATTR attr /* new attributes to set */
)

DESCRIPTION This routine allows the caller to change the protection of a mapped shared data region in its
memory context. The shared data must be mapped in the context of the calling task.

These attributes must be equal to, or a subset of the default attributes of sdId. If 0 was passed
then the default attributes of sdId are used.

The default attributes of sdId may be retrieved by calling the routine sdInfoGet().

Basic MMU attribute definitions for shared data regions are provided in the
sdLibCommon.h header file. These include:

NOTE The MMU_ATTR mask used internally by the shared data library is the combination of:

MMU_ATTR_PROT_MASK

MMU_ATTR_VALID_MSK

MMU_ATTR_CACHE_MSK

MMU_ATTR_SPL_MSK

Care must be taken to provide suitable values for all these attributes.

RETURNS OK, or ERROR on failure.

ERRNO Possible errno values set by this routine are:

S_sdLib_INVALID_SD_ID
sdId is not valid

S_sdLib_NOT_MAPPED
sdId is not mapped to the current application

SEE ALSO sdLib, sdCreate(), sdOpen(), sdMap(), sdUnmap(), sdDelete()

Attribute Meaning
SD_ATTR_RW Read/Write for both Supervisor and User Modes
SD_ATTR_RO Read Only for both Supervisor and User Modes
SD_ATTR_RWX Read/Write/Execute for both Supervisor and User Modes
SD_ATTR_RX Read/Execute for both Supervisor and User Modes

VxWorks Kernel API Reference, 6.6
sdShow()

770

sdShow()

NAME sdShow() – display information for shared data regions

SYNOPSIS BOOL sdShow
 (
 char * sdNameOrId, /* SD name or ID */
 int level /* 0 = summary, 1 = detailed, 2 = all */
)

DESCRIPTION This routine displays information for a shared data region. This routine takes two
parameters, sdNameOrId and level. The first parameter can either be an SD ID or an SD name
string. The second parameter is the level of detail to display the information for the SDs.

Depending on the level and the SD ID specified, the information displayed differs. If the
level is 0, then it displays the summary information for either the specified SD or all SDs in
the system. If the level is 1, then sdShow() displays the detailed information, including the
client information, for the specified SD or all SDs in the system (if SD_ID is NULL). If level is
2, sdShow() displays the detailed information for all SDs in the system, regardless of the
SD ID you specify. Refer to the table for more information.

sdShow() only displays the SD name up to a maximum of 12 characters long. If the name
is more than 12 characters, the name will be truncated to 10 characters for displaying
purposes. Following the truncated name, a ">" will be display to indicate that the name is
more than 12 characters long. To get a display of the full SD name, display the SD with the
level set to 1.

SUMMARY INFORMATION EXAMPLE

The following example shows the summary output for all SDs in the system. If a SD ID (or
name) is specified, only the information for that SD will be displayed.

-> sdShow

 NAME ID VIRT ADDR PHYS ADDR SIZE CLIENT CNT
------------ ---------- ---------- ------------------ ---------- ----------
mySharedDa > 0x4c1820 0xa0000000 0x017fa000 0x1000 1

value = 0 = 0x0

The display contains the following fields:

Level SD Name or ID Meaning
0 0 Display summary information for all SDs.
0 SD Display summary information for specified SD.
1 0 Display detailed information for all SDs.
1 SD Display detailed information for specified SD.
2 ANY Display detailed information for all SD.

2 Routines
sdShow()

771

2

DETAILED INFORMATION EXAMPLE

The following example shows the detailed output for a single SD (i.e. the level was specified
as 1). If the level is specified as 2, the detailed information is displayed for all SDs in the
system and the user is prompted to press return or Q between each SD.

 -> sdShow 0x4c1820, 1

 NAME ID VIRT ADDR PHYS ADDR SIZE CLIENT CNT
------------ ---------- ---------- ------------------ ---------- ----------
mySharedDa > 0x4c1820 0xa0000000 0x017fa000 0x1000 1

Full Name: mySharedDataRegion
Options (0x1): SD_LINGER

Default MMU Attributes (0x85b):

 ACCESS CACHE
 ----------------------- ---------
 Sup.: RW- User: RW- DEFAULT

Clients:

 NAME ID ACCESS CACHE
 ------------ ---------- ----------------------- ----------
 kernel 0x25a7c0 Sup.: RWX User: RWX CB /--/--

value = 0 = 0x0

The summary line contains the same fields as explained above. The additional information
is explained in the following table:

RETURNS N/A

Field Meaning
NAME The name of the SD.
ID The numeric ID associated with the SD in the kernel.
VIRT ADRS The virtual start address of the SD.
PHYS ADRS The physical start address of the SD.
SIZE SD size in bytes.
CLIENT CNT Number of clients of the SD.

Field Meaning
Full Name The complete name for the SD.
Options Detailed breakdown of the options word (see

sdCreate()).
Default MMU
Attributes

Default MMU attributes for the SD.

Clients Complete list of current clients and their access
rights.

VxWorks Kernel API Reference, 6.6
sdUnmap()

772

ERRNOS Possible errnos generated by this function include:

S_objLib_OBJ_ID_ERROR
An incorrect SD ID was provided.

SEE ALSO sdShow, sdLib, rtpLib, vmBaseLib, the VxWorks programmer guides.

sdUnmap()

NAME sdUnmap() – unmap a shared data region from an application or the kernel

SYNOPSIS STATUS sdUnmap
 (
 SD_ID sdId, /* ID of shared data region to unmap */
 int options /* options */
)

DESCRIPTION This routine unmaps the shared data region specified by sdId from the calling task's
memory context. The region is then no longer available to any tasks within that application,
or any tasks in the kernel if the calling task was a kernel task. There are currently no options
specified for this function, zero should be passed in the options parameter.

RETURNS OK, or ERROR on failure.

ERRNO Possible errno values set by this routine are:

S_sdLib_INVALID_SD_ID
sdId is not valid

S_sdLib_NOT_MAPPED
sdId is not mapped to the current application

SEE ALSO sdLib, sdCreate(), sdOpen(), sdMap(), sdProtect(), sdDelete()

selNodeAdd()

NAME selNodeAdd() – add a wake-up node to a select() wake-up list

SYNOPSIS STATUS selNodeAdd
 (
 SEL_WAKEUP_LIST *pWakeupList, /* list of tasks to wake up */

2 Routines
selWakeup()

773

2

 SEL_WAKEUP_NODE *pWakeupNode /* node to add to list */
)

DESCRIPTION This routine adds a wake-up node to a device's wake-up list. It is typically called from a
driver's FIOSELECT function.

RETURNS OK, or ERROR if memory is insufficient.

ERRNO N/A

SEE ALSO selectLib

selNodeDelete()

NAME selNodeDelete() – find and delete a node from a select() wake-up list

SYNOPSIS STATUS selNodeDelete
 (
 SEL_WAKEUP_LIST *pWakeupList, /* list of tasks to wake up */
 SEL_WAKEUP_NODE *pWakeupNode /* node to delete from list */
)

DESCRIPTION This routine deletes a specified wake-up node from a specified wake-up list. Typically, it is
called by a driver's FIOUNSELECT function.

RETURNS OK, or ERROR if the node is not found in the wake-up list.

ERRNO N/A

SEE ALSO selectLib

selWakeup()

NAME selWakeup() – wake up a task pended in select()

SYNOPSIS void selWakeup
 (
 SEL_WAKEUP_NODE *pWakeupNode /* node to wake up */
)

VxWorks Kernel API Reference, 6.6
selWakeupAll()

774

DESCRIPTION This routine wakes up a task pended in select(). Once a driver's FIOSELECT function
installs a wake-up node in a device's wake-up list (using selNodeAdd()) and checks to
make sure the device is ready, this routine ensures that the select() call does not pend.

RETURNS N/A

ERRNO N/A

SEE ALSO selectLib

selWakeupAll()

NAME selWakeupAll() – wake up all tasks in a select() wake-up list

SYNOPSIS void selWakeupAll
 (
 SEL_WAKEUP_LIST *pWakeupList, /* list of tasks to wake up */
 FAST SELECT_TYPE type /* readers (SELREAD) or writers
(SELWRITE) */
)

DESCRIPTION This routine wakes up all tasks pended in select() that are waiting for a device; it is called
by a driver when the device becomes ready. The type parameter specifies the task to be
awakened, either reader tasks (SELREAD) or writer tasks (SELWRITE).

RETURNS N/A

ERRNO N/A

SEE ALSO selectLib

selWakeupListInit()

NAME selWakeupListInit() – initialize a select() wake-up list

SYNOPSIS void selWakeupListInit
 (
 SEL_WAKEUP_LIST *pWakeupList /* wake-up list to initialize */
)

2 Routines
selWakeupListTerm()

775

2

DESCRIPTION This routine should be called in a device's create routine to initialize the SEL_WAKEUP_LIST
structure.

RETURNS N/A

ERRNO N/A

SEE ALSO selectLib

selWakeupListLen()

NAME selWakeupListLen() – get the number of nodes in a select() wake-up list

SYNOPSIS int selWakeupListLen
 (
 SEL_WAKEUP_LIST *pWakeupList /* list of tasks to wake up */
)

DESCRIPTION This routine returns the number of nodes in a specified SEL_WAKEUP_LIST. It can be used
by a driver to determine if any tasks are currently pended in select() on this device, and
whether these tasks need to be activated with selWakeupAll().

RETURNS The number of nodes currently in a select() wake-up list, or ERROR.

ERRNO N/A

SEE ALSO selectLib

selWakeupListTerm()

NAME selWakeupListTerm() – terminate a select() wake-up list

SYNOPSIS void selWakeupListTerm
 (
 SEL_WAKEUP_LIST *pWakeupList /* wake-up list to terminate */
)

DESCRIPTION This routine should be called in a device's terminate routine to terminate the
SEL_WAKEUP_LIST structure.

VxWorks Kernel API Reference, 6.6
selWakeupType()

776

RETURNS N/A

ERRNO N/A

SEE ALSO selectLib

selWakeupType()

NAME selWakeupType() – get the type of a select() wake-up node

SYNOPSIS SELECT_TYPE selWakeupType
 (
 SEL_WAKEUP_NODE *pWakeupNode /* node to get type of */
)

DESCRIPTION This routine returns the type of a specified SEL_WAKEUP_NODE. It is typically used in a
device's FIOSELECT function to determine if the device is being selected for read or write
operations.

RETURNS SELREAD (read operation) or SELWRITE (write operation).

ERRNO N/A

SEE ALSO selectLib

select()

NAME select() – pend on a set of file descriptors

SYNOPSIS int select
 (
 int width, /* number of bits to examine from 0 */
 FAST fd_set *pReadFds, /* read fds */
 FAST fd_set *pWriteFds, /* write fds */
 fd_set *pExcFds, /* exception fds */
 struct timeval *pTimeOut /* max time to wait, NULL = forever */
)

DESCRIPTION This routine permits a task to pend until one of a set of file descriptors becomes ready. Three
parameters -- pReadFds, pWriteFds, and pExceptFds -- point to file descriptor sets in which
each bit corresponds to a particular file descriptor. Bits set in the read file descriptor set

2 Routines
select()

777

2

(pReadFds) will cause select() to pend until data is available on any of the corresponding file
descriptors, while bits set in the write file descriptor set (pWriteFds) will cause select() to
pend until any of the corresponding file descriptors become writable.

The following macros are available for setting the appropriate bits in the file descriptor set
structure:

 FD_SET(fd, &fdset)
 FD_CLR(fd, &fdset)
 FD_ZERO(&fdset)

If either pReadFds, pWriteFds, or pExceptFds is NULL, they are ignored. The width parameter
defines how many bits will be examined in the file descriptor sets, and should be set to either
the maximum file descriptor value in use plus one, or simply to FD_SETSIZE. When select()
returns, it zeros out the file descriptor sets, and sets only the bits that correspond to file
descriptors that are ready. The FD_ISSET macro may be used to determine which bits are
set.

If pTimeOut is NULL, select() will block indefinitely. If pTimeOut is not NULL, but points to
a timeval structure with an effective time of zero, the file descriptors in the file descriptor
sets will be polled and the results returned immediately. If the effective time value is greater
than zero, select() will return after the specified time has elapsed, even if none of the file
descriptors are ready.

Applications can use select() with pipes and serial devices, in addition to sockets. Select
now has the capability to support exception reports, but note that most devices do not
provide exception notification for select activity. Refer to the manual for each particular
driver to learn about its select() support, if any.

The value for the maximum number of file descriptors configured in the system
(NUM_FILES) should be less than or equal to the value of FD_SETSIZE (2048).

Driver developers should consult the VxWorks programmer guides for details on writing
drivers that will use select().

RETURNS The number of file descriptors with activity, 0 if timed out, or ERROR if an error occurred
when the driver's select() routine was invoked via ioctl().

ERRNOS Possible errnos generated by this routine include:

S_selectLib_NO_SELECT_SUPPORT_IN_DRIVER
A driver associated with one or more fds does not support select().

S_selectLib_NO_SELECT_CONTEXT
The task's select context was not initialized at task creation time.

S_selectLib_WIDTH_OUT_OF_RANGE
The width parameter is greater than the maximum possible fd.

S_memLib_NOT_ENOUGH_MEMORY
Heap allocation failure has caused select to fail.

VxWorks Kernel API Reference, 6.6
selectInit()

778

EBADF
An invalid file descriptor was specified in one of the sets, or a valid file descriptor
which was specified was closed by another task while the select() call was in progress.
(Note, closing a file descriptor in use by another task is NOT recommended.)

SEE ALSO selectLib, the VxWorks programmer guides.

selectInit()

NAME selectInit() – initialize the select facility

SYNOPSIS void selectInit
 (
 int numFiles /* no longer used */
)

DESCRIPTION This routine initializes the UNIX BSD 4.3 select facility. It is initialized automatically when
the INCLUDE_SELECT component is configured. It installs a task create hook such that a
select context is initialized for each task.

RETURNS N/A

ERRNO N/A

SEE ALSO selectLib

semBCreate()

NAME semBCreate() – create and initialize a binary semaphore

SYNOPSIS SEM_ID semBCreate
 (
 int options, /* semaphore options */
 SEM_B_STATE initialState /* initial semaphore state */
)

DESCRIPTION This routine allocates and initializes a binary semaphore. The semaphore is initialized to
the initialState of either SEM_FULL (1) or SEM_EMPTY (0).

The options parameter specifies the queuing style blocked tasks and response on signals for
blocked RTP tasks. Tasks may be queued on a priority basis or a first-in-first-out basis. The

2 Routines
semBInitialize()

779

2

queuing style options are SEM_Q_PRIORITY (0x1) and SEM_Q_FIFO (0x0), respectively.
That parameter also specifies if semGive() should return ERROR when the semaphore fails
to send events. This option is turned off by default; it is activated by doing a bitwise-OR of
SEM_EVENTSEND_ERR_NOTIFY (0x10) with the queuing style of the semaphore.
SEM_INTERRUPTIBLE(0x20) is the option which makes the blocked RTP task on the
semaphore ready and return ERROR with errno set to EINTR when a signal is generated to
that task. This option has no affect when a kernel task blocks on the same semaphore
created with this option. This option is turned off by default.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. This restriction is not strictly enforced.

RETURNS The semaphore ID, or NULL if memory cannot be allocated or if error.

ERRNO S_semLib_INVALID_OPTION
Invalid option was specified.

S_memLib_NOT_ENOUGH_MEMORY
Not enough memory available to create the semaphore.

S_semLib_INVALID_STATE
Invalid initial state.

S_semLib_INVALID_QUEUE_TYPE
Invalid type of semaphore queue specified.

S_spinLockLib_NOT_SPIN_LOCK_CALLABLE
This API is spinlock restricted and can not be called taking a spinlock.

SEE ALSO semBLib, semLib

semBInitialize()

NAME semBInitialize() – initialize a pre-allocated binary semaphore.

SYNOPSIS SEM_ID semBInitialize
 (
 char * pSemMem, /* pointer to allocated storage */
 int options, /* semaphore options */
 SEM_B_STATE initialState /* initial semaphore state */
)

DESCRIPTION This routine initializes a binary semaphore that has been pre-allocated (i.e. by the
VX_BINARY_SEMAPHORE macro). The semaphore is initialized and an ID is returned for
further operations on this semaphore.

VxWorks Kernel API Reference, 6.6
semBSmCreate()

780

The options and initialState parameters have the same meaning as those for semBCreate().
Please see the documentation for semBCreate() for more details.

The following example illustrates use of the VX_BINARY_ SEMAPHORE macro and this
function together to instantiate a binary semaphore statically (without using any dynamic
memory allocation):

 #include <vxWorks.h>
 #include <semLib.h>

 VX_BINARY_SEMAPHORE(mySemB); /* declare the semaphore */
 SEM_ID mySemBId; /* semaphore ID for further operations */

 STATUS initializeFunction (void)
 {
 if ((mySemBId = semBInitialize (mysemB, options, 0)) == NULL)
 return (ERROR); /* initialization failed */
 else
 return (OK);
 }

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. This restriction is not strictly enforced.

RETURNS The semaphore ID, or NULL on error.

ERRNO S_spinLockLib_NOT_SPIN_LOCK_CALLABLE
This API is spinlock restricted and can not be called taking a spinlock.

SEE ALSO semBLib

semBSmCreate()

NAME semBSmCreate() – create and initialize a shared memory binary semaphore (VxMP
Option)

SYNOPSIS SEM_ID semBSmCreate
 (
 int options, /* semaphore options */
 SEM_B_STATE initialState /* initial semaphore state */
)

DESCRIPTION This routine allocates and initializes a shared memory binary semaphore. The semaphore is
initialized to an initialState of either SEM_FULL (available) or SEM_EMPTY (not available).
The shared semaphore structure is allocated from the shared semaphore dedicated memory
partition.

2 Routines
semCCreate()

781

2

The semaphore ID returned by this routine can be used directly by the generic
semaphore-handling routines in semLib -- semGive(), semTake(), and semFlush() -- and
the show routines, such as show() and semShow().

The queuing style for blocked tasks is set by options; the only supported queuing style for
shared memory semaphores is first-in-first-out, selected by SEM_Q_FIFO .

Before this routine can be called, the shared memory objects facility must be initialized (see
semSmLib).

The maximum number of shared memory semaphores (binary plus counting) that can be
created is SM_OBJ_MAX_SEM , a configurable parameter.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory support
option, VxMP.

RETURNS The semaphore ID, or NULL if memory cannot be allocated from the shared semaphore
dedicated memory partition.

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine has been called from ISR.

S_objLib_OBJ_ID_ERROR
The shared memory semaphore partition has not been initialized properly.

S_memLib_NOT_ENOUGH_MEMORY
Can't allocate shared memory semaphore object.

S_semLib_INVALID_QUEUE_TYPE
Incorrect semaphore pend queue type specified.

S_semLib_INVALID_STATE
Incorrect initial semaphore state specified.

S_smObjLib_LOCK_TIMEOUT
Can't get the lock on the shared memory semaphore partition in time.

SEE ALSO semSmLib, semLib, semBLib, smObjLib, semShow, the VxWorks programmer guides.

semCCreate()

NAME semCCreate() – create and initialize a counting semaphore

SYNOPSIS SEM_ID semCCreate
 (
 int options, /* semaphore option modes */

VxWorks Kernel API Reference, 6.6
semCInitialize()

782

 int initialCount /* initial count */
)

DESCRIPTION This routine allocates and initializes a counting semaphore. The semaphore is initialized to
the specified initial count.

The options parameter specifies the queuing style and response on signals for blocked RTP
tasks. Tasks may be queued on a priority basis or a first-in-first-out basis. The queuing style
options are SEM_Q_PRIORITY (0x1) and SEM_Q_FIFO (0x0), respectively. That parameter
also specifies if semGive() should return ERROR when the semaphore fails to send events.
This option is turned off by default; it is activated by doing a bitwise-OR of
SEM_EVENTSEND_ERR_NOTIFY (0x10) with the queuing style of the semaphore.
SEM_INTERRUPTIBLE(0x20) is the option which makes the blocked RTP task on the
semaphore ready and return ERROR with errno set to EINTR when a signal is generated to
that task. This option has no affect when a kernel task blocks on the same semaphore created
with this option. This option is turned off by default.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The semaphore ID, or NULL if memory cannot be allocated or error.

ERRNO S_semLib_INVALID_INITIAL_COUNT
The specified initial count is negative

S_semLib_INVALID_OPTION
Options not applicable to counting semaphores were specified.

S_memLib_NOT_ENOUGH_MEMORY
There is not enough memory to create the semaphore.

SEE ALSO semCLib, semLib

semCInitialize()

NAME semCInitialize() – initialize a pre-allocated counting semaphore.

SYNOPSIS SEM_ID semCInitialize
 (
 char * pSemMem, /* pointer to allocated storage */
 int options, /* semaphore options */
 int initialCount /* initial count */
)

2 Routines
semCSmCreate()

783

2

DESCRIPTION This routine initializes a counting semaphore that has been pre-allocated (i.e. by the
VX_COUNTING_SEMAPHORE macro). The semaphore is initialized and
an ID is returned for further operations on this semaphore.

The options and initialCount parameters have the same meaning as those for semCCreate().
Please see the documentation for semCCreate() for more details.

The following example illustrates use of the VX_COUNTING_SEMAPHORE macro and this
function together to instantiate a counting semaphore statically (without using any dynamic
memory allocation):

 #include <vxWorks.h>
 #include <semLib.h>

 VX_COUNTING_SEMAPHORE(mySemC); /* declare the semaphore */
 SEM_ID mySemCId; /* semaphore ID for further operations */

 STATUS initializeFunction (void)
 {
 if ((mySemCId = semCInitialize (mysemC, options, 0)) == NULL)
 return (ERROR); /* initialization failed */
 else
 return (OK);
 }

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The semaphore ID, or NULL on error.

ERRNO N/A

SEE ALSO semCLib

semCSmCreate()

NAME semCSmCreate() – create and initialize a shared memory counting semaphore (VxMP
Option)

SYNOPSIS SEM_ID semCSmCreate
 (
 int options, /* semaphore options */
 int initialCount /* initial semaphore count */
)

VxWorks Kernel API Reference, 6.6
semClose()

784

DESCRIPTION This routine allocates and initializes a shared memory counting semaphore. The initial
count value of the semaphore is specified by initialCount.

The semaphore ID returned by this routine can be used directly by the generic
semaphore-handling routines in semLib -- semGive(), semTake() and semFlush() -- and
the show routines, such as show() and semShow().

The queuing style for blocked tasks is set by options; the only supported queuing style for
shared memory semaphores is first-in-first-out, selected by SEM_Q_FIFO .

Before this routine can be called, the shared memory objects facility must be initialized (see
semSmLib).

The maximum number of shared memory semaphores (binary plus counting) that can be
created is SM_OBJ_MAX_SEM , a configurable paramter.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory support
option, VxMP.

RETURNS The semaphore ID, or NULL if memory cannot be allocated from the shared semaphore
dedicated memory partition.

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine has been called from ISR.

S_objLib_OBJ_ID_ERROR
The shared memory semaphore partition has not been initialized properly.

S_memLib_NOT_ENOUGH_MEMORY
Can't allocate shared memory semaphore object.

S_semLib_INVALID_QUEUE_TYPE
Incorrect semaphore pend queue type specified.

S_semLib_INVALID_COUNT
Incorrect initial count (negative) specified.

S_smObjLib_LOCK_TIMEOUT
Can't get the lock on the shared memory semaphore partition in time.

SEE ALSO semSmLib, semLib, semCLib, smObjLib, semShow, the VxWorks programmer guides.

semClose()

NAME semClose() – close a named semaphore

SYNOPSIS STATUS semClose

2 Routines
semDelete()

785

2

 (
 SEM_ID semId /* semaphore ID to close */
)

DESCRIPTION This routine closes a named semaphore. It decrements the semaphore's reference counter.
In case it becomes zero, the semaphore is deleted if:

- It has been already removed from the name space by a call to semUnlink().

- It was created with the OM_DESTROY_ON_LAST_CLOSE option.

This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_objLib_OBJ_ID_ERROR
Semaphore ID is invalid.

S_objLib_OBJ_INVALID_ARGUMENT
Semaphore ID is NULL.

S_objLib_OBJ_OPERATION_UNSUPPORTED
Semaphore is not named.

S_objLib_OBJ_DESTROY_ERROR
Error while deleting the semaphore.

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO semOpen, semOpen, semUnlink

semDelete()

NAME semDelete() – delete a semaphore

SYNOPSIS STATUS semDelete
 (
 SEM_ID semId /* semaphore ID to delete */
)

VxWorks Kernel API Reference, 6.6
semEvStart()

786

DESCRIPTION This routine terminates and deallocates any memory associated with a specified semaphore.
All tasks pending on the semaphore or pending for the reception of events meant to be sent
from the semaphore will unblock and return ERROR.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

WARNING Take care when deleting semaphores, particularly those used for mutual exclusion, to avoid
deleting a semaphore out from under a task that already has taken (owns) that semaphore.
Applications should adopt the protocol of only deleting semaphores that the deleting task
has successfully taken.

RETURNS OK, or ERROR if the semaphore ID is invalid.

ERRNOS S_intLib_NOT_ISR_CALLABLE
Routine cannot be called from ISR.

S_objLib_OBJ_ID_ERROR
Semaphore ID is invalid.

S_smObjLib_NO_OBJECT_DESTROY
Deleting a shared semaphore is not permitted

S_objLib_OBJ_OPERATION_UNSUPPORTED
Deleting a named semaphore is not permitted.

SEE ALSO semLib, semBLib, semCLib, semMLib, semSmLib

semEvStart()

NAME semEvStart() – start the event notification process for a semaphore

SYNOPSIS STATUS semEvStart
 (
 SEM_ID semId, /* semaphore on which to register events */
 UINT32 events, /* 32 possible events to register */
 UINT8 options /* event-related semaphore options */
)

DESCRIPTION This routine turns on the event notification process for a given semaphore, registering the
calling task on that semaphore. When the semaphore becomes available but no task is
pending on it, the events specified will be sent to the registered task. A task can always
overwrite its own registration.

The events are user-defined. For more information, see the reference entry for eventLib.

2 Routines
semEvStart()

787

2

The option parameter is used for 3 user options:

- Specify if the events are to be sent only once or every time the semaphore becomes free
until semEvStop() is called.

- Specify if another task can subsequently register itself while the calling task is still
registered. If so specified, the existing task registration will be overwritten without any
warning.

- Specify if events are to be sent at the time of the registration in the case the semaphore
is free.

Here are the respective values to be used to form the options field:

EVENTS_SEND_ONCE (0x1)
The semaphore will send the events only once.

EVENTS_ALLOW_OVERWRITE (0x2)
Subsequent registrations from other tasks may overwrite the current one.

EVENTS_SEND_IF_FREE (0x4)
The registration process will send events if the semaphore is free at the time
semEvStart() is called.

EVENTS_OPTIONS_NONE (0x0)
Must be passed to the options parameter if none of the other three options are used.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

WARNING This routine cannot be called from interrupt level.

WARNING Task preemption can allow a semDelete() to be performed between the calls to
semEvStart() and eventReceive(). This prevents the task from ever receiving the events
wanted from the semaphore.

RETURNS OK on success, or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR
The semaphore ID is invalid.

S_eventLib_ALREADY_REGISTERED
A task is already registered on the semaphore.

S_intLib_NOT_ISR_CALLABLE
This routine cannot be called from interrupt level.

S_eventLib_EVENTSEND_FAILED
The user chose to send events immediately and that operation failed.

S_eventLib_ZERO_EVENTS
The user passed in a value of zero to the events parameter.

VxWorks Kernel API Reference, 6.6
semEvStop()

788

SEE ALSO semEvLib, eventLib, semLib, semEvStop()

semEvStop()

NAME semEvStop() – stop the event notification process for a semaphore

SYNOPSIS STATUS semEvStop
 (
 SEM_ID semId
)

DESCRIPTION This routine turns off the event notification process for a given semaphore. It thus allows
another task to register itself for event notification on that particular semaphore. It must be
called from the task that is already registered on that particular semaphore.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK on success, or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR
The semaphore ID is invalid.

S_intLib_NOT_ISR_CALLABLE
The routine cannot be called from interrupt level.

S_eventLib_TASK_NOT_REGISTERED
The routine was not called by the registered task.

SEE ALSO semEvLib, eventLib, semLib, semEvStart()

semExchange()

NAME semExchange() – atomically give and take a pair of semaphores

SYNOPSIS STATUS semExchange
 (
 SEM_ID giveSemId, /* semaphore ID to give */
 SEM_ID takeSemId, /* semaphore ID to take */
 int timeout /* timeout in ticks */
)

2 Routines
semExchange()

789

2

DESCRIPTION This routine atomically performs a give operation on a sempahore and a take operation on
another semaphore. The semaphore specified to be given will be released when the caller
acquires or pends attempting to acquire the semaphore specifed to be taken.

This routine performs the give operation on a semaphore specified by the giveSemId
argument. Depending on the type of this semaphore, the state of the semaphore and of the
pending tasks may be affected. If no tasks are pending on the semaphore and a task has
previously registered to receive events from the semaphore, these events are sent in the
context of this call. This may result in the unpending of the task waiting for the events. If
the semaphore fails to send events and if it was created using the
SEM_EVENTSEND_ERR_NOTIFY option, ERROR is returned even though the give operation
was successful. The behavior of semGive() is discussed fully in the library description of
the specific semaphore type being used.

If the give operation returns ERROR for any reason the subsequent take operation will not
be performed.

This routine performs the take operation on a semaphore specified by the takeSemId
argument. Depending on the type of this semaphore, the state of the semaphore and the
calling task may be affected. The behavior of semTake() is discussed fully in the library
description of the specific semaphore type being used.

A timeout in ticks may be specified for the semTake() portion of the semExchange()
operation. If a task times out, semExchange() will return ERROR. Timeouts of
WAIT_FOREVER (-1) and NO_WAIT (0) indicate to wait indefinitely or not to wait at all.

When semExchange() returns due to timeout, it sets the errno to S_objLib_OBJ_TIMEOUT
(defined in objLib.h).

Because it completes when the caller pends during the semTake() operation the semGive()
operation will occur regardless of timeout. It is possible for the caller to release the specified
give semaphore and not acquire the semaphore specified to be taken.

The semExchange() routine is not callable from interrupt service routines.

Currently only binary and mutex semaphore types are supported by semExchange().

An attempt to specify a semaphore of another type for either the give or take operation of
semExchange() will result in a return value of ERROR. Neither the give or take operation
will be performed.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK, or ERROR if the semaphore ID is invalid or the task timed out.

ERRNOS S_intLib_NOT_ISR_CALLABLE
Routine was called from an ISR.

S_objLib_OBJ_ID_ERROR
Semaphore ID is invalid.

VxWorks Kernel API Reference, 6.6
semFlush()

790

S_objLib_OBJ_TIMEOUT
Timeout occured while pending on sempahore.

S_objLib_OBJ_UNAVAILABLE
Would have blocked but NO_WAIT was specified.

S_semLib_INVALID_OPERATION
Current task not owner of semaphore.

S_eventLib_EVENTSEND_FAILED
Semaphore failed to send events to the registered task. This errno value can only exist
if the semaphore was created with the SEM_EVENTSEND_ERR_NOTIFY option.

SEE ALSO semExchange, semLib, semBLib, semMLib

semFlush()

NAME semFlush() – unblock every task pended on a semaphore

SYNOPSIS STATUS semFlush
 (
 SEM_ID semId /* semaphore ID to unblock everyone for */
)

DESCRIPTION This routine atomically unblocks all tasks pended on a specified semaphore, i.e., all tasks
will be unblocked before any is allowed to run. The state of the underlying semaphore is
unchanged. All pended tasks will enter the ready queue before having a chance to execute.

The flush operation is useful as a means of broadcast in synchronization applications. Its
use is illegal for mutual-exclusion semaphores created with semMCreate() or with
reader/writer semaphores created with semRWCreate().

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if the semaphore ID is invalid or the operation is not supported.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO semLib, semBLib, semCLib, semMLib, semRWLib, semSmLib

2 Routines
semGive()

791

2

semGive()

NAME semGive() – give a semaphore

SYNOPSIS STATUS semGive
 (
 SEM_ID semId /* semaphore ID to give */
)

DESCRIPTION This routine performs the give operation on a specified semaphore. Depending on the type
of semaphore, the state of the semaphore and of the pending tasks may be affected. If no
tasks are pending on the semaphore and a task has previously registered to receive events
from the semaphore, these events are sent in the context of this call. This may result in the
unpending of the task waiting for the events. If the semaphore fails to send events and if it
was created using the SEM_EVENTSEND_ERR_NOTIFY option, ERROR is returned even
though the give operation was successful. The behavior of semGive() is discussed fully in
the library description of the specific semaphore type being used.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK on success or ERROR otherwise

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine was called from an ISR for a semaphore.

S_objLib_OBJ_ID_ERROR
Semaphore ID is invalid.

S_semLib_INVALID_OPERATION
Current task not owner of semaphore.

S_semLib_COUNT_OVERFLOW
Counting semaphore was given when count was already at maximum.

S_eventLib_EVENTSEND_FAILED
Semaphore failed to send events to the registered task. This errno value can only exist
if the semaphore was created with the SEM_EVENTSEND_ERR_NOTIFY option.

SEE ALSO semLib, semBLib, semCLib, semMLib, semRWLib, semSmLib, semEvStart()

VxWorks Kernel API Reference, 6.6
semInfo()

792

semInfo()

NAME semInfo() – get information about tasks blocked on a semaphore

SYNOPSIS int semInfo
 (
 SEM_ID semId, /* semaphore ID to summarize */
 int idList[], /* array of task IDs to be filled in */
 int maxTasks /* max tasks idList can accommodate */
)

DESCRIPTION This routine returns the number of tasks that are blocked on the specified semaphore, semId.
If a non-NULL array is passed in idList, then up to maxTasks task IDs are copied into the
array. In this case, this routine returns the number of task IDs that could be copied into the
array. The array is unordered.

WARNING There is no guarantee that all listed tasks are still valid or that new tasks have not been
blocked by the time semInfo() returns.

RETURNS The actual number of blocked tasks if idList is NULL
or the number of task IDs placed in idList.

ERRNO S_objLib_OBJ_ID_ERROR
Invalid semaphore ID.

S_intLib_NOT_ISR_CALLABLE
This routine is not callable from an ISR.

SEE ALSO semInfo, semInfoGet()

semInfoGet()

NAME semInfoGet() – get information about a semaphore

SYNOPSIS STATUS semInfoGet
 (
 SEM_ID semId, /* semaphore to query */
 SEM_INFO * pInfo /* where to return semaphore info */
)

DESCRIPTION This routine gets information about the state of a semaphore. The parameter pInfo is a
pointer to a structure of type SEM_INFO defined in semLibCommon.h as follows:

2 Routines
semInfoGet()

793

2

 typedef struct /* SEM_INFO */
 {
 UINT numTasks; /* OUT: number of blocked tasks */
 SEM_TYPE semType; /* OUT: semaphore type */
 int options; /* OUT: options with which sem was created */
 union
 {
 UINT count; /* OUT: semaphore count (counting sems) */
 BOOL full; /* OUT: binary semaphore FULL? */
 int owner; /* OUT: task ID of mutex semaphore owner */
 } state;
 int taskIdListMax; /* IN: max tasks to fill in taskIdList */
 int * taskIdList; /* PTR: array of pending task IDs */
 } SEM_INFO;

The semaphore type is determined by examining semType. Based on this information the
appropriate field in the state union can be examined to determine a) the current count of a
counting semaphore state.count, b) whether a binary semaphore is full state.full, or c) the
owner of a mutex semaphore state.owner.

If a binary semaphore is not full state.full = FALSE, or if a counting semaphore's count is 0
state.count = 0, or a mutex semaphore is already owned state.owner != NULL, then there may
be tasks blocked on semTake(). The numTasks field indicates the number of blocked tasks.

A list of the task IDs of tasks blocked on the semaphore can be obtained by setting taskIdList
to the address of an array to receive the list, and setting taskIdListMax to the maximum
number of elements in that array. If taskIdList is NULL, then no task IDs are returned. No
more than taskIdListMax task IDs are returned, although numTasks will always be returned
with the actual number of tasks blocked.

For example, if the caller supplies a taskIdList with room for 10 task IDs and sets
taskIdListMax to 10, but there are 20 tasks blocked on the semaphore, then the IDs of the first
10 tasks blocked on the semaphore will be returned in taskIdList, but numTasks will be
returned with the value 20.

The options field is the parameter with which the semaphore was created.

WARNING The information returned by this routine is not static and may be obsolete by the time it is
examined. In particular, the list of task IDs may no longer be valid. However, the
information is obtained atomically, thus it will be an accurate snapshot of the state of the
semaphore at the time of the call. This information is generally used for debugging
purposes only.

If taskIdList is non-NULL, i.e. the caller is requesting the list of pended tasks, the execution
time of semInfoGet() may be non-deterministic.

This routine cannot be used to extract information on shared semaphores.

RETURNS OK or ERROR

ERRNO S_objLib_OBJ_ID_ERROR
Invalid semaphore ID.

VxWorks Kernel API Reference, 6.6
semMCreate()

794

S_semLib_INVALID_OPERATION
Specified semaphore is a shared semaphore, or the semaphore is an unknown type.

SEE ALSO semInfo, semInfo()

semMCreate()

NAME semMCreate() – create and initialize a mutual-exclusion semaphore

SYNOPSIS SEM_ID semMCreate
 (
 int options /* mutex semaphore options */
)

DESCRIPTION This routine allocates and initializes a mutual-exclusion semaphore. The semaphore state
is initialized to full.

Semaphore options include the following:

SEM_Q_PRIORITY (0x1)
Queue pended tasks on the basis of their priority.

SEM_Q_FIFO (0x0)
Queue pended tasks on a first-in-first-out basis.

SEM_DELETE_SAFE (0x4)
Protect a task that owns the semaphore from unexpected deletion. This option enables
an implicit taskSafe() for each semTake(), and an implicit taskUnsafe() for each
semGive().

SEM_INVERSION_SAFE (0x8)
Protect the system from priority inversion. With this option, the task owning the
semaphore will execute at the highest priority of the tasks pended on the semaphore, if
it is higher than its current priority. This option must be accompanied by the
SEM_Q_PRIORITY queuing mode.

SEM_EVENTSEND_ERR_NOTIFY (0x10)
When the semaphore is given, if a task is registered for events and the actual sending
of events fails, a value of ERROR is returned and the errno is set accordingly. This
option is off by default.

SEM_INTERRUPTIBLE (0x20)
Signal sent to an RTP task blocked on a semaphore created with this option, would
make the task ready and return with ERROR and errno set to EINTR. This option has no
affect for a kernel task blocked on the same semaphore created with this option. This
option is off by default.

2 Routines
semMGiveForce()

795

2

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. This restriction is not strictly enforced.

RETURNS The semaphore ID, or NULL if the semaphore cannot be created.

ERRNO S_semLib_INVALID_OPTION
Invalid option was passed to semMCreate.

S_memLib_NOT_ENOUGH_MEMORY
Not enough memory available to create the semaphore.

SEE ALSO semMLib, semLib, semBLib, taskSafe(), taskUnsafe()

semMGiveForce()

NAME semMGiveForce() – give a mutual-exclusion semaphore without restrictions

SYNOPSIS STATUS semMGiveForce
 (
 FAST SEM_ID semId /* semaphore ID to give */
)

DESCRIPTION This routine gives a mutual-exclusion semaphore, regardless of semaphore ownership. It is
intended as a debugging aid only.

The routine is particularly useful when a task dies while holding some mutual-exclusion
semaphore, because the semaphore can be resurrected. The routine will give the semaphore
to the next task in the pend queue or make the semaphore full if no tasks are pending. In
effect, execution will continue as if the task owning the semaphore had actually given the
semaphore.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. This restriction is not strictly enforced.

CAVEATS This routine should be used only as a debugging aid, when the condition of the semaphore
is known.

RETURNS OK, or ERROR if the semaphore ID is invalid.

ERRNO N/A

SEE ALSO semMLib, semGive()

VxWorks Kernel API Reference, 6.6
semMInitialize()

796

semMInitialize()

NAME semMInitialize() – initialize a pre-allocated mutex semaphore.

SYNOPSIS SEM_ID semMInitialize
 (
 char * pSemMem, /* pointer to allocated storage */
 int options /* mutex semaphore options */
)

DESCRIPTION This routine initializes a mutual exclusion semaphore that has been pre- allocated (i.e. by
the VX_MUTEX_SEMAPHORE macro). The semaphore is initialized and an ID is returned
for further operations on this semaphore.

The options parameter has the same meaning as that for semMCreate(). Please see the
documentation for semBCreate() for more details.

The following example illustrates use of the VX_MUTEX_SEMAPHORE macro and this
function together to instantiate a mutex semaphore statically (without using any dynamic
memory allocation):

 #include <vxWorks.h>
 #include <semLib.h>

 VX_MUTEX_SEMAPHORE(mySemM); /* declare the semaphore */
 SEM_ID mySemMId; /* semaphore ID for further operations */

 STATUS initializeFunction (void)
 {
 if ((mySemMId = semMInitialize (mySemM, options, 0)) == NULL)
 return (ERROR); /* initialization failed */
 else
 return (OK);
 }

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. This restriction is not strictly enforced.

RETURNS The semaphore ID, or NULL on error.

ERRNO S_spinLockLib_NOT_SPIN_LOCK_CALLABLE
This API is spinlock restricted and can not be called after taking a spinlock.

SEE ALSO semMLib

2 Routines
semOpen()

797

2

semOpen()

NAME semOpen() – open a named semaphore

SYNOPSIS SEM_ID semOpen
 (
 const char * name, /* name of semaphore */
 SEM_TYPE type, /* type of semaphore */
 int initState, /* initial state or initial count */
 int options, /* semaphore options */
 int mode, /* OM_CREATE, ... */
 void * context /* context value */
)

DESCRIPTION This routine either opens an existing semaphore or creates a new semaphore if the
appropriate flags in the mode parameter are set. A semaphore with the name specified by
the name parameter is searched for, and if found the SEM_ID of the semaphore is returned.
A new semaphore may only be created if the search of existing semaphores fails (ie. the
name must be unique).

There are two name spaces in which semOpen() can perform a search in, the "private to the
application" name space and the "public" name space. Which is selected depends on the first
character in the name parameter. When this character is a forward slash /, the "public" name
space is used, otherwise the the "private to the application" name space is used.

Semaphores created by this routine can not be deleted with semDelete(). Instead, a
semClose() must be issued for every semOpen(). Then the semaphore is deleted when it
is removed from the name space by a call to semUnlink(). Alternatively, the semaphore can
be previously removed from the name space, and deleted during the last semClose().

The parameters to the semOpen function are as follows:

name
A mandatory text string which represents the name by which the semaphore is known
by. NULL or empty strings can not be used.

type
When creating a semaphore, it specifies which type of semaphore is to be created. The
valid types are:

initState
When a binary or counting semaphore is created, the initial state of the semaphore is
set according to the value of initState. For binary semaphores the value of initState must
be either SEM_FULL or SEM_EMPTY. For counting semaphores the semaphore count is
set to the value of initState.

SEM_TYPE_BINARY create a binary semaphore
SEM_TYPE_MUTEX create a mutual exclusion semaphore
SEM_TYPE_COUNTING create a counting semaphore

VxWorks Kernel API Reference, 6.6
semOpen()

798

options
Semaphore creation options as decribed in semLib.

mode
The mode parameter consists of the access rights (which are currently ignored) and the
opening flags which are bitwise-OR'd together. The flags available are:

OM_CREATE
Create a new semaphore if a matching semaphore name is not found.

OM_EXCL
When set jointly with the OM_CREATE flag, creates a new semaphore immediately
without trying to open an existing semaphore. The call fails if the semaphore's name
causes a name clash. This flag has no effect if the OM_CREATE flag is not specified.

OM_DELETE_ON_LAST_CLOSE
Only used when a semaphore is created. If set, the semaphore will be deleted during
the last semClose() call, independently on whether semUnlink() was previously
called or not.

context
Context value assigned to the created semaphore. This value is not actually used by
VxWorks. Instead, the context value can be used by OS extensions to implement object
permissions, for example.

Unlike private objects, a public semaphore is not automatically reclaimed when an
application terminates. Note that nevertheless, a semClose() is issued on every
application's outstanding semOpen(). Therefore, a public semaphore can effectively be
deleted, if during this process it is closed for the last time, and it is already unlinked or it
was created with the OM_DELETE_ON_LAST_CLOSE flag.

This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS The SEM_ID of the opened semaphore, or NULL if unsuccessful.

ERRNO S_objLib_OBJ_INVALID_ARGUMENT
An invalid option was specified in the mode argument or name is invalid.

S_semLib_INVALID_INITIAL_COUNT
The specified initial count for counting semaphore is negative

S_objLib_OBJ_NOT_FOUND
The OM_CREATE flag was not set in the mode argument and a semaphore matching
name was not found.

2 Routines
semPxLibInit()

799

2

S_objLib_OBJ_NAME_CLASH
The OM_CREATE and OM_EXCL flags were set and a name clash was detected when
creating the semaphore.

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO semOpen, semUnlink(), semClose()

semOpenInit()

NAME semOpenInit() – initialize the semaphore open facility

SYNOPSIS void semOpenInit (void)

DESCRIPTION This routine links the semaphore creation routine with open facility into the VxWorks
system. It is called automatically when the semaphore facility is configured into VxWorks
by either defining INCLUDE_OBJ_OPEN and INCLUDE_SEM_BINARY in config.h or
selecting INCLUDE_OBJ_OPEN and INCLUDE_SEM_BINARY in the project facility.

RETURNS N/A

ERRNO N/A

SEE ALSO semOpen

semPxLibInit()

NAME semPxLibInit() – initialize POSIX semaphore support

SYNOPSIS STATUS semPxLibInit (void)

DESCRIPTION This routine must be called before using POSIX semaphores. If POSIX semaphores are
included, this routine will be called during system initialization.

RETURNS OK, or ERROR if there is an error installing the semaphore library.

ERRNO None

VxWorks Kernel API Reference, 6.6
semPxShow()

800

SEE ALSO semPxLib

semPxShow()

NAME semPxShow() – display semaphore internals

SYNOPSIS STATUS semPxShow
 (
 sem_t * semDesc,
 int level
)

DESCRIPTION This routine displays POSIX semaphore information. Currently, only a level of 0 is
supported. This function prints the semaphore name, how many times sem_open has been
called, and the value of the semaphore. If the semaphore value is greater than zero, than
the number of available semaphores is printed. If the semaphore value is equal to 0, then the
number of blocked tasks are also printed.

RETURNS OK or ERROR if the descriptor is invalid.

ERRNO N/A

SEE ALSO semPxShow

semPxShowInit()

NAME semPxShowInit() – initialize the POSIX semaphore show facility

SYNOPSIS STATUS semPxShowInit (void)

DESCRIPTION This routine links the POSIX semaphore show routine into the VxWorks system. It is called
automatically when the this show facility is configured into VxWorks using the
INCLUDE_POSIX_SEM_SHOW component.

RETURNS OK.

ERRNO N/A

SEE ALSO semPxShow

2 Routines
semRTake()

801

2

semRTake()

NAME semRTake() – take a semaphore as a reader

SYNOPSIS STATUS semRTake
 (
 SEM_ID semId, /* semaphore ID to take */
 int timeout /* timeout in ticks */
)

DESCRIPTION Takes the semaphore. If the semaphore is held by another task in "write" mode (or another
task has attempted to take the semaphore in "write" mode and pended) the task will become
pended until the semaphore becomes available. If the semaphore is already available or
held by other tasks in "read" mode (with no tasks pended in "write" mode) the caller will
gain ownership.

After a successful call to this routine the caller is granted concurrent access along with those
tasks that have also taken the semaphore in this mode. Mutual exclusion is maintained
between these tasks and tasks that have taken the semaphore in "write" mode.

This routine may be called recursively. However, it should not be called by a task that holds
the semaphore in "write" mode. Calling semRTake() in such circumstances will result in a
return value of ERROR.

If deletion safe option is enabled, an implicit taskSafe() operation will occur.

If priority inversion safe option is enabled, and the calling task blocks, and the priority of
the calling task is greater than the semaphore owner, the owner will inherit the caller's
priority.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

WARNING This routine must not be used from interrupt level.

RETURNS OK, or ERROR if the semaphore ID is invalid or the task timed out

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine was called from an ISR.

S_objLib_OBJ_ID_ERROR
Semaphore ID is invalid.

S_objLib_OBJ_TIMEOUT
Timeout occured while pending on sempahore.

VxWorks Kernel API Reference, 6.6
semRWCreate()

802

S_objLib_OBJ_UNAVAILABLE
Would have blocked but NO_WAIT was specified.

S_semLib_INVALID_OPERATION
Task already holds the semaphore as a writer.

SEE ALSO semRWLib

semRWCreate()

NAME semRWCreate() – create and initialize a reader/writer semaphore

SYNOPSIS SEM_ID semRWCreate
 (
 int options, /* reader/writer semaphore options */
 int maxReaders /* maximum concurrent readers */
)

DESCRIPTION This routine allocates and initializes a reader/writer semaphore.

Semaphore options include the following:

SEM_Q_PRIORITY (0x1)
Queue pended tasks on the basis of their priority.

SEM_Q_FIFO (0x0)
Queue pended tasks on a first-in-first-out basis.

SEM_DELETE_SAFE (0x4)
Protect a task that owns the semaphore from unexpected deletion. This option enables
an implicit taskSafe() for each semTake(), and an implicit taskUnsafe() for each
semGive().

SEM_INVERSION_SAFE (0x8)
Protect the system from priority inversion. With this option, the task or tasks owning
the semaphore will execute at the highest priority of the tasks pended on the
semaphore, if it is higher than its current priority. This option must be accompanied
by the SEM_Q_PRIORITY queuing mode.

The maxReaders argument specifies the maximum number of tasks that may concurrently
hold a read/write semaphore in read mode. It is an error to specify a value of 0 for
maxReaders. If the value of maxReaders exceeds the system maximum value (specified in the
component configuration option SEM_RW_MAX_CONCURRENT_READERS) then that
system specific maximum will be used instead of maxReaders.

2 Routines
semRWGiveForce()

803

2

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The semaphore ID, or NULL if the semaphore cannot be created.

ERRNO S_semLib_INVALID_OPTION
Invalid option was passed to semRWCreate or maxReaders is 0.

S_memLib_NOT_ENOUGH_MEMORY
Not enough memory available to create the semaphore.

SEE ALSO semLib, semRWLib, semMLib, semBLib, taskSafe(), taskUnsafe()

semRWGiveForce()

NAME semRWGiveForce() – give a reader/writer semaphore without restrictions

SYNOPSIS STATUS semRWGiveForce
 (
 FAST SEM_ID semId /* semaphore ID to give */
)

DESCRIPTION This routine gives a reader/writer semaphore, regardless of semaphore ownership. It is
intended as a debugging aid only.

The routine is particularly useful when a task dies while holding some reader/writer
semaphore, because the semaphore can be resurrected. The routine will give the semaphore
to the next task in the pend queue or make the semaphore full if no tasks are pending. In
effect, execution will continue as if the task owning the semaphore had actually given the
semaphore.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

CAVEATS This routine should be used only as a debugging aid, when the condition of the semaphore
is known.

RETURNS OK, or ERROR if the semaphore ID is invalid

ERRNO S_intLib_NOT_ISR_CALLABLE
This routine is not callable from an ISR.

VxWorks Kernel API Reference, 6.6
semRWInitialize()

804

SEE ALSO semRWLib, semGive()

semRWInitialize()

NAME semRWInitialize() – initialize a pre-allocated read/write semaphore.

SYNOPSIS SEM_ID semRWInitialize
 (
 char * pSemMem, /* pointer to allocated storage */
 int options, /* RW semaphore options */
 int maxReaders /* maximum concurrent readers */
)

DESCRIPTION This routine initializes a reader/writer semaphore that has been pre- allocated (i.e. by the
VX_READ_WRITE_SEMAPHORE macro). The semaphore is initialized and an ID is returned
for further operations on this semaphore.

The options parameter has the same meaning as that for semRWCreate(). Please see the
documentation for semRWCreate() for more details.

The maxReaders parameter specifies the maximum concurrent readers for the semaphores.
If this value exceeds that of the system defined maximum, specified in
SEM_RW_MAX_CONCURRENT_READERS, then that system specified value will be used
instead of maxReaders. It is worth noting that memory allocated in this case will still be that
of a semaphore created with maxReaders number of maximum readers. It is an error to
specify 0 as the value of maxReaders.

The following example illustrates use of the VX_READ_WRITE_SEMAPHORE macro and
this function together to instantiate a read/write semaphore statically (without using any
dynamic memory allocation):

 #include <vxWorks.h>
 #include <semLib.h>

 #define NUM_READERS 0x20

 /* declare the semaphore */

 VX_READ_WRITE_SEMAPHORE(mySemRW, NUM_READERS);
 SEM_ID mySemRWId; /* semaphore ID for further operations */

 STATUS initializeFunction (void)
 {
 if ((mySemRWId =
 semRWInitialize (mySemRW, options, NUM_READERS)) ==
NULL)
 return (ERROR); /* initialization failed */
 else

2 Routines
semShow()

805

2

 return (OK);
 }

RETURNS The semaphore ID, or NULL on error

ERRNO S_semLib_INVALID_OPTION
Invalid options were provided.

SEE ALSO semRWLib

semShow()

NAME semShow() – show information about a semaphore

SYNOPSIS STATUS semShow
 (
 SEM_ID semId, /* semaphore to display */
 int level /* 0 = summary, 1 = details */
)

DESCRIPTION This routine displays the state and optionally the pended tasks of a semaphore.

A summary of the state of the semaphore is displayed as follows:

 Semaphore Id : 0x585f2
 Semaphore Type : BINARY
 Task Queuing : PRIORITY
 Pended Tasks : 1
 State : EMPTY {Count if COUNTING, Owner if MUTEX}
 Options : 0x1 SEM_Q_PRIORITY

 VxWorks Events

 Registered Task : 0x594f0 (t1)
 Event(s) to Send : 0x1
 Options : 0x7 EVENTS_SEND_ONCE
 EVENTS_ALLOW_OVERWRITE
 EVENTS_SEND_IF_FREE

If level is 1, then more detailed information will be displayed. If tasks are blocked on the
queue, they are displayed in the order in which they will unblock, as follows:

 Pended Tasks

 NAME TID PRI DELAY
 ---------- -------- --- -----
 tExcTask 3fd678 0 21
 tLogTask 3f8ac0 0 611

VxWorks Kernel API Reference, 6.6
semTake()

806

RETURNS OK or ERROR.

ERRNO S_smObjLib_NOT_INITIALIZED
The shared memory object library is not initialized.

SEE ALSO semShow, windsh, VxWorks Programmer's Guide, VxWorks Command-Line Tools User's
Guide.

semTake()

NAME semTake() – take a semaphore

SYNOPSIS STATUS semTake
 (
 SEM_ID semId, /* semaphore ID to take */
 int timeout /* timeout in ticks */
)

DESCRIPTION This routine performs the take operation on a specified semaphore. Depending on the type
of semaphore, the state of the semaphore and the calling task may be affected. The behavior
of semTake() is discussed fully in the library description of the specific semaphore type
being used.

A timeout in ticks may be specified. If a task times out, semTake() will return ERROR.
Timeouts of WAIT_FOREVER (-1) and NO_WAIT (0) indicate to wait indefinitely or not to
wait at all.

When semTake() returns due to timeout, it sets the errno to S_objLib_OBJ_TIMEOUT
(defined in objLib.h).

The semTake() routine is not callable from interrupt service routines.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if the semaphore ID is invalid or the task timed out.

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine was called from an ISR.

S_objLib_OBJ_ID_ERROR
Semaphore ID is invalid.

2 Routines
semUnlink()

807

2

S_objLib_OBJ_TIMEOUT
Timeout occured while pending on sempahore.

S_objLib_OBJ_UNAVAILABLE
Would have blocked but NO_WAIT was specified.

SEE ALSO semLib, semBLib, semCLib, semMLib, semRWLib, semSmLib

semUnlink()

NAME semUnlink() – unlink a named semaphore

SYNOPSIS STATUS semUnlink
 (
 const char * name /* name of semaphore to unlink */
)

DESCRIPTION This routine removes a semaphore from the name space, and marks it as ready for deletion
on the last semClose(). In case there are already no outstanding semOpen() calls, the
semaphore is deleted. After a semaphore is unlinked, subsequent calls to semOpen() using
name will not be able to find the semaphore, even if it has not been deleted yet. Instead, a
new semaphore could be created if semOpen() is called with the OM_CREATE flag.

This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_objLib_OBJ_INVALID_ARGUMENT
name is NULL or empty.

S_objLib_OBJ_NOT_FOUND
No semaphore with name was found.

S_objLib_OBJ_OPERATION_UNSUPPORTED
Semaphore is not named.

S_objLib_OBJ_DESTROY_ERROR
Error while deleting the semaphore.

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

VxWorks Kernel API Reference, 6.6
semWTake()

808

SEE ALSO semOpen, semOpen(), semClose()

semWTake()

NAME semWTake() – take a semaphore in write mode

SYNOPSIS STATUS semWTake
 (
 SEM_ID semId, /* semaphore ID to take */
 int timeout /* timeout in ticks */
)

DESCRIPTION Takes the semaphore. If the semaphore is not available, i.e., it is held in either "read" or
"write" mode by another task, this task will become pended until the semaphore becomes
available. If the semaphore is already available this call will take the semaphore and
continue running.

After a successful call to this routine the caller is granted exclusive access to the resource.

This routine may be called recursively. However, it should not be called by a task that holds
the semaphore in "read" mode. Calling semWTake() in such circumstances will result in a
return value of ERROR.

If deletion safe option is enabled, an implicit taskSafe() operation will occur.

If priority inversion safe option is enabled, and the calling task blocks, and the priority of
the calling task is greater than the semaphore owner, the owner will inherit the caller's
priority.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

WARNING This routine must not be used from interrupt level.

RETURNS OK, or ERROR if the semaphore ID is invalid or the task timed out

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine was called from an ISR.

S_objLib_OBJ_ID_ERROR
Semaphore ID is invalid.

S_objLib_OBJ_TIMEOUT
Timeout occured while pending on sempahore.

2 Routines
sem_close()

809

2

S_objLib_OBJ_UNAVAILABLE
Would have blocked but NO_WAIT was specified.

S_semLib_INVALID_OPERATION
Task already holds the semaphore as a writer.

SEE ALSO semRWLib

sem_close()

NAME sem_close() – close a named semaphore (POSIX)

SYNOPSIS int sem_close
 (
 sem_t * sem /* semaphore descriptor */
)

DESCRIPTION This routine is called to indicate that the calling task is finished with the specified named
semaphore, sem. It deallocates any system resources allocated by the system for use by this
task for this semaphore. Calling sem_close() with an unnamed semaphore will result in an
EINVAL error.

If the semaphore has not been removed with a call to sem_unlink(), then sem_close() has
no effect on the state of the semaphore. However, if the semaphore has been unlinked, it is
destroyed when the last reference to it is closed.

WARNING Take care to avoid risking the deletion of a semaphore that another task has already locked.
Applications should only close semaphores that the closing task has opened.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL – invalid semaphore descriptor – the semaphore is unnamed

SEE ALSO semPxLib, sem_unlink(), sem_open(), sem_init()

VxWorks Kernel API Reference, 6.6
sem_destroy()

810

sem_destroy()

NAME sem_destroy() – destroy an unnamed semaphore (POSIX)

SYNOPSIS int sem_destroy
 (
 sem_t * sem /* semaphore descriptor */
)

DESCRIPTION This routine is used to destroy the unnamed semaphore indicated by sem.

The sem_destroy() call can only destroy a semaphore created by sem_init(). Calling
sem_destroy() with a named semaphore will cause an EINVAL error. Subsequent use of the
sem semaphore after destruction will cause an EINVAL error.

If one or more tasks is blocked on the semaphore, the semaphore is not destroyed, and the
routine returns with EBUSY error.

WARNING Take care when deleting semaphores, particularly those used for mutual exclusion, to avoid
deleting a semaphore out from under a task that has already locked that semaphore.
Applications should adopt the protocol of only deleting semaphores that the deleting task
has successfully locked.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL – invalid semaphore descriptor – the specified semaphore, sem, is named
EBUSY – one or more tasks is blocked on the semaphore

SEE ALSO semPxLib, sem_init()

sem_getvalue()

NAME sem_getvalue() – get the value of a semaphore (POSIX)

SYNOPSIS int sem_getvalue
 (
 sem_t * sem, /* semaphore descriptor */

2 Routines
sem_init()

811

2

 int * sval /* buffer by which the value is returned */
)

DESCRIPTION This routine updates the location referenced by the sval argument to have the value of the
semaphore referenced by sem without affecting the state of the semaphore. The updated
value represents an actual semaphore value that occurred at some unspecified time during
the call, but may not be the actual value of the semaphore when it is returned to the calling
task.

If sem is locked, the value returned by sem_getvalue() will either be zero or a negative
number whose absolute value represents the number of tasks waiting for the semaphore at
some unspecified time during the call.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL – invalid semaphore descriptor – invalid sval pointer

SEE ALSO semPxLib, sem_post(), sem_trywait(), sem_trywait()

sem_init()

NAME sem_init() – initialize an unnamed semaphore (POSIX)

SYNOPSIS int sem_init
 (
 sem_t * sem, /* semaphore to be initialized */
 int pshared, /* RTP sharing :ignored */
 unsigned int value /* semaphore initialization value */
)

DESCRIPTION This routine is used to initialize the unnamed semaphore sem. The value of the initialized
semaphore is value. Following a successful call to sem_init() the semaphore may be used
in subsequent calls to sem_wait(), sem_trywait(), and sem_post(). This semaphore
remains usable until the semaphore is destroyed.

The value of pshared parameter is ignored.

Only sem itself maybe used for performing synchronization. The result of referring to copies
of sem in calls to sem_wait, sem_trywait(), sem_post() and sem_destroy() is undefined.

VxWorks Kernel API Reference, 6.6
sem_open()

812

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL – value exceeds
SEM_VALUE_MAX – sem points to an invalid buffer
ENOSPC – unable to initialize semaphore due to resource constraints

SEE ALSO semPxLib, sem_wait(), sem_trywait(), sem_post(), sem_destroy()

sem_open()

NAME sem_open() – initialize/open a named semaphore (POSIX)

SYNOPSIS sem_t * sem_open
 (
 const char * name, /* semaphore name */
 int oflag, /* semaphore creation flags */
 ... /* extra optional parameters */
)

DESCRIPTION This routine establishes a connection between a named semaphore and a task. Following a
call to sem_open() with a semaphore name name, the task may reference the semaphore
associated with name using the address returned by this call. This semaphore may be used
in subsequent calls to sem_wait(), sem_trywait(), and sem_post(). The semaphore
remains usable until the semaphore is closed by a successful call to sem_close().

The oflag argument controls whether the semaphore is created or merely accessed by the call
to sem_open(). The following flag bits may be set in oflag:

O_CREAT
Use this flag to create a semaphore if it does not already exist. If O_CREAT is set and
the semaphore already exists, O_CREAT has no effect except as noted below under
O_EXCL. Otherwise, sem_open() creats a semaphore. O_CREAT requires a third and
fourth argument: mode, which is of type mode_t, and value, which is of type unsigned
int. mode has no effect in this implementation. The semaphore is created with an initial
value of value. Valid initial values for semaphores must be less than or equal to
SEM_VALUE_MAX.

O_EXCL
If O_EXCL and O_CREAT are set, sem_open() will fail if the semaphore name exists. If
O_EXCL is set and O_CREAT is not set, the named semaphore is not created.

To determine whether a named semaphore already exists in the system, call sem_open()
with the flags O_CREAT | O_EXCL. If the sem_open() call fails, the semaphore exists.

The semaphore must have a name. NULL or empty strings result in EINVAL. If the
semaphore name begins with the slash character, then it is treated as a public semaphore.

2 Routines
sem_post()

813

2

RTPs can open their own references to the public semaphore by using its name. If the name
does not begin with the slash character, then it is treated as a private semaphore and RTPs
cannot get access to it.

If a task makes multiple calls to sem_open() with the same value for name, then a reference
to the same semaphore is returned for each such call, provided that there have been no calls
to sem_unlink() for this semaphore.

References to copies of the semaphore will produce undefined results.

NOTE The current implementation has the following limitations:

- A semaphore cannot be closed with calls to _exit() or exec().
- A semaphore cannot be implemented as a file.
- Semaphore names will not appear in the file system.

RETURNS A pointer to sem_t, or -1 (ERROR) if unsuccessful.

ERRNO EEXIST -
O_CREAT and
O_EXCL are set and the semaphore already exists
EINVAL – value exceeds
SEM_VALUE_MAX – the semaphore name is invalid
ENAMETOOLONG – the semaphore name is too long
ENOENT – the named semaphore does not exist and
O_CREAT is not set
ENOSPC – the semaphore could not be initialized due to resource constraints

SEE ALSO semPxLib, sem_unlink(), sem_close()

sem_post()

NAME sem_post() – unlock (give) a semaphore (POSIX)

SYNOPSIS int sem_post
 (
 sem_t * sem /* semaphore descriptor */
)

DESCRIPTION This routine unlocks the semaphore referenced by sem by performing the semaphore unlock
operation on that semaphore.

VxWorks Kernel API Reference, 6.6
sem_timedwait()

814

If the semaphore value resulting from the operation is positive, then no tasks were blocked
waiting for the semaphore to become unlocked; the semaphore value is simply
incremented.

If the value of the semaphore resulting from this semaphore is zero, then one of the tasks
blocked waiting for the semaphore will return successfully from its call to sem_wait().

NOTE The _POSIX_PRIORITY_SCHEDULING functionality is not yet supported.

Note that the POSIX terms unlock and post correspond to the term give used in other
VxWorks semaphore documentation.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL – invalid semaphore descriptor

SEE ALSO semPxLib, sem_wait(), sem_trywait()

sem_timedwait()

NAME sem_timedwait() – lock (take) a semaphore with a timeout (POSIX)

SYNOPSIS int sem_timedwait
 (
 sem_t * sem,
 const struct timespec * abs_timeout
)

DESCRIPTION This routine locks the semaphore referenced by sem. If the semaphore cannot be locked
immediately, the calling process will wait till the absolute time specified by abs_timeout
passes. If the semaphore cannot be locked before abs_timeout has passed, an error is
returned.

Upon successful return, the state of the semaphore is always locked (either as a result of this
call or by a previous sem_wait() or sem_trywait()). The semaphore will remain locked
until sem_post() is executed and returns successfully.

Deadlock detection is not implemented.

2 Routines
sem_trywait()

815

2

Note that the POSIX term lock corresponds to the term take used in other VxWorks
semaphore documentation.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO ETIMEDOUT
The semaphore could not be locked before the timeout expired.

EINVAL
The semaphore descriptor is invalid, or the nanosecond field of the timeout value is
greater than 1 billion.

EINTR
A signal interrupted this function.

SEE ALSO semPxLib, sem_wait(), sem_trywait(), sem_post()

sem_trywait()

NAME sem_trywait() – lock (take) a semaphore, returning error if unavailable (POSIX)

SYNOPSIS int sem_trywait
 (
 sem_t * sem /* semaphore descriptor */
)

DESCRIPTION This routine locks the semaphore referenced by sem only if the semaphore is currently not
locked; that is, if the semaphore value is currently positive. Otherwise, it does not lock the
semaphore. In either case, this call returns immediately without blocking.

Upon successful return, the state of the semaphore is always locked (either as a result of this
call or by a previous sem_wait() or sem_trywait()). The semaphore will remain locked
until sem_post() is executed and returns successfully.

Deadlock detection is not implemented.

Note that the POSIX term lock corresponds to the term take used in other VxWorks
semaphore documentation.

VxWorks Kernel API Reference, 6.6
sem_unlink()

816

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EAGAIN – semaphore is already locked
EINVAL – invalid semaphore descriptor

SEE ALSO semPxLib, sem_wait(), sem_post()

sem_unlink()

NAME sem_unlink() – remove a named semaphore (POSIX)

SYNOPSIS int sem_unlink
 (
 const char * name /* semaphore name */
)

DESCRIPTION This routine removes the string name from the semaphore name table, and marks the
corresponding semaphore for destruction. An unlinked semaphore is destroyed when the
last reference to it is removed by sem_close(). After a name is unlinked, calls to
sem_open() using the same name cannot connect to the same semaphore, even if other
tasks are still using it. Instead, such calls refer to a new semaphore with the same name.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO ENAMETOOLONG – semaphore name too long
ENOENT – a semaphore with the specified name does not exist

SEE ALSO semPxLib, sem_open(), sem_close()

2 Routines
set_new_handler()

817

2

sem_wait()

NAME sem_wait() – lock (take) a semaphore, blocking if not available (POSIX)

SYNOPSIS int sem_wait
 (
 sem_t * sem /* semaphore descriptor */
)

DESCRIPTION This routine locks the semaphore referenced by sem by performing the semaphore lock
operation on that semaphore. If the semaphore value is currently zero, the calling task will
not return from the call to sem_wait() until it either locks the semaphore or the call is
interrupted by a signal.

On return, the state of the semaphore is locked and will remain locked until sem_post() is
executed and returns successfully.

Deadlock detection is not implemented.

Note that the POSIX term lock corresponds to the term take used in other VxWorks
documentation regarding semaphores.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS 0 (OK), or -1 (ERROR) if unsuccessful.

ERRNO EINVAL – invalid semaphore descriptor
EINTR – got a signal while blocking on the semaphore. Applicable only for RTP task

SEE ALSO semPxLib, sem_trywait(), sem_post()

set_new_handler()

NAME set_new_handler() – set new_handler to user-defined function (C++)

SYNOPSIS extern void (*set_new_handler (void(* pNewNewHandler)())) (void)

DESCRIPTION This function is used to define the function that will be called when operator new cannot
allocate memory.

VxWorks Kernel API Reference, 6.6
set_terminate()

818

The new_handler acts for all threads in the system; you cannot set a different handler for
different tasks.

RETURNS A pointer to the previous value of new_handler.

ERRNO Not Available

SEE ALSO cplusLib

set_terminate()

NAME set_terminate() – set terminate to user-defined function (C++)

SYNOPSIS extern void (*set_terminate (void(* terminate_handler)())) (void)

DESCRIPTION This function is used to define the terminate_handler which will be called when an
uncaught exception is raised.

The terminate_handler acts for all threads in the system; you cannot set a different handler
for different tasks.

RETURNS The previous terminate_handler.

ERRNO Not Available

SEE ALSO cplusLib

shConfig()

NAME shConfig() – display or set the shell configuration

SYNOPSIS void shConfig
 (
 const char * config /* configuration string */
)

DESCRIPTION This routine displays or sets the shell configuration of the current shell session.

If config is NULL, the routine displays the cofiguration variables; otherwise, it sets the
configuration. The format of the string config is:

2 Routines
shellCmdAdd()

819

2

<variable> = <value> , <variable> = <value> , ...

The variable name or value can contain , and = if these characters are escaped or quoted.

RETURNS N/A.

ERRNO N/A

SEE ALSO usrLib, shellConfigGet(), shellConfigSet(), the VxWorks programmer guides.

shellAbort()

NAME shellAbort() – abort a shell session

SYNOPSIS STATUS shellAbort
 (
 SHELL_ID shellId /* shell session Id */
)

DESCRIPTION This routine aborts the shell session shellId. Before the shell task is restarted, its task trace is
printed.

If shellId is equal to ALL_SHELL_SESSIONS, all the shell session are aborted. if shellId is equal
to CURRENT_SHELL_SESSION, the current shell session is aborted.

RETURNS OK, or ERROR if shellId is not a valid shell session Id.

ERRNO N/A

SEE ALSO shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellCmdAdd()

NAME shellCmdAdd() – add a shell command

SYNOPSIS STATUS shellCmdAdd
 (
 const char * topic, /* topic name */
 const SHELL_CMD * pShellCmd /* pointer on the command structure */
)

VxWorks Kernel API Reference, 6.6
shellCmdAdd()

820

DESCRIPTION This routine adds the shell command pointed by pShellCmd. The command is added under
the topic topic. If the topic does not already exist, an error is returned.

COMMAND
FORMAT

A command is defined as a structure: {cmdFullname, func, opt, shortDesc, fullDesc, synopsis}

cmdFullname is the name of the command to add. It may be a composed command name,
that means a command name like "foo bar". In that example, "foo" is the top command
name, and "bar" is a sub-command of "foo".

func is the function to call for that command name.

If the opt parameter is not equal to NULL, the declaration of that function is:

int func
 (
 SHELL_OPTION options[] /* options array */
)

options is a pointer on the argument array of the command.

If the opt parameter is NULL, the declaration of the function is:

int func
 (
 int argc, /* number of argument */
 char ** arcv /* pointer on the array of arguments */
)

opt is a string that describes the possible options that the command accepts. Each option is
a single character (case sensitive) which defines a single option. If an option expects an extra
argument, an extra : character has to be added after the option character. For example, "avf:"
means that the command accepts options "-a", "-v" and "-f extraArg". The order of the option
character matters: it defines the order of the options in the option array passed to func.

Each cell of the options array passed to func is composed of a boolean value (TRUE if the
option is set, FALSE otherwise) and of a pointer on a string (pointer on an extra argument).
Another boolean indicates if it is the last cell of the array.

If the option string opt is ":", the argument string of the command is passed to func without
any process, as the string field of the first cell of the options array.

shortDesc is a short description of the command. A sequence of "%s" characters will be
replaced by the function name. The string should not be ended by a \n character.

fullDesc is the full description of the command. A sequence of "%s" characters will be
replaced by the function name. This description should contain the explanation of the
command options. The string should not be ended by a \n character.

synopsis is the synopsis of the command. A sequence of "%s" characters will be replaced by
the function name. The string should not be ended by a \n character.

RETURNS OK, or ERROR if an error occured

2 Routines
shellCmdAliasAdd()

821

2

ERRNO S_shellInterpCmdLib_UNKNOWN_TOPIC
The topic is not registered yet.

S_shellLib_UNMATCHED_QUOTE
A quote character is missing in the command name

S_shellInterpCmdLib_WRONG_CMD
A wrong command name was supplied

malloc(), calloc() and memPartCreate() errnos.

SEE ALSO shellInterpCmdLib, shellCmdTopicAdd(), shellCmdArrayAdd().

shellCmdAliasAdd()

NAME shellCmdAliasAdd() – add an alias string

SYNOPSIS STATUS shellCmdAliasAdd
 (
 const char * aliasName, /* alias name */
 const char * string, /* string aliased */
 BOOL allocate /* TRUE to allocate memory */
)

DESCRIPTION This routine adds the alias string aliasName. During the parsing of the shell imput line by
the command interpreter, this aliasName string will be replaced by string.

If allocate is set to FALSE, both strings are not copied into an internal database; only their
pointers are stored for future use. If allocate is TRUE, a buffer is allocated to store the strings
aliasName and string. This buffer is freed when the alias is removed.

NOTE It is not possible to add an alias if a command with the same name exists.

RETURNS OK, or ERROR if the alias cannot be added.

ERRNO N/A

SEE ALSO shellInterpCmdLib, shellCmdAliasArrayAdd(), shellCmdAliasDelete().

VxWorks Kernel API Reference, 6.6
shellCmdAliasArrayAdd()

822

shellCmdAliasArrayAdd()

NAME shellCmdAliasArrayAdd() – add an array of alias strings

SYNOPSIS STATUS shellCmdAliasArrayAdd
 (
 const SHELL_CMD_ALIAS aliasArray[], /* array of aliases */
 BOOL allocate /* TRUE to allocate memory */
)

DESCRIPTION This routine adds the alias stored in the array aliasArray. The end of the array is defined by
an entry with the alias name set to NULL.

If allocate is set to FALSE, both strings are not copied into an internal database; only their
pointers are stored for future use. If allocate is TRUE, a buffer is allocated to store the strings
aliasName and string. This buffer is freed when the alias is removed.

NOTE It is not possible to add an alias if a command with the same name exists.

RETURNS OK, or ERROR if one alias cannot be added.

ERRNO N/A

SEE ALSO shellInterpCmdLib, shellCmdAliasAdd()

shellCmdAliasDelete()

NAME shellCmdAliasDelete() – delete an alias

SYNOPSIS STATUS shellCmdAliasDelete
 (
 const char * alias /* alias to delete */
)

DESCRIPTION This routine deletes the alias alias.

RETURNS OK, or ERROR if the alias cannot be found.

ERRNO N/A

SEE ALSO shellInterpCmdLib, shellCmdAliasAdd()

2 Routines
shellCmdExec()

823

2

shellCmdArrayAdd()

NAME shellCmdArrayAdd() – add an array of shell commands

SYNOPSIS STATUS shellCmdArrayAdd
 (
 const char * topic, /* topic name */
 const SHELL_CMD shellCmdArray[] /* array of commands */
)

DESCRIPTION This routine adds the list of shell commands stored in the array pointed by pShellCmdArray.
These commands are added under the topic topic. If the topic does not already exist, an error
is returned.

COMMAND ARRAY FORMAT

An element of the array is a command structure as described by the routine
shellCmdAdd(). The end of the array is marked by a cmdFullname equals to NULL.

RETURNS OK, or ERROR if one command cannot be added.

ERRNO S_shellInterpCmdLib_UNKNOWN_TOPIC
The topic is not registered yet.

S_shellLib_UNMATCHED_QUOTE
A quote character is missing in the command name

S_shellInterpCmdLib_WRONG_CMD
A wrong command name was supplied

malloc(), calloc() and memPartCreate() errno.

SEE ALSO shellInterpCmdLib, shellCmdTopicAdd(), shellCmdAdd().

shellCmdExec()

NAME shellCmdExec() – execute a shell command

SYNOPSIS STATUS shellCmdExec
 (
 const char * name, /* command name to execute */
 const char * args /* arguments of the command */
)

VxWorks Kernel API Reference, 6.6
shellCmdMemRegister()

824

DESCRIPTION This routine executes the shell command name with the argument string args. The argument
string args is parsed to extract all arguments and options.

The arguments are separated by blank characters. If a blank character has to be set as part
of an argument, the argument needs to be quoted (with simple or double quote) or the space
has to be escaped (with the "\" character). The argument string is parsed using the option
string set for the command.

If the pointer to the option string of the command is NULL, the arguments are only split into
an array of strings. This array and the number of strings is passed to the command function
(as argc/argv parameters).

This routine has to be called from within a shell task. It cannot be called by another task.

RETURNS OK, or ERROR if the command cannot be executed.

ERRNO S_shellInterpCmdLib_UNKNOWN_CMD
The command name name is unknown.

S_shellLib_UNKNOWN_OPT
A options of the command is not valid.

S_shellLib_UNMATCHED_QUOTE
A quote string is not ended with a quote character.

S_shellLib_MISSING_ARG
An option is missing its extra argument.

malloc() and memPartCreate() errno.

SEE ALSO shellInterpCmdLib

shellCmdMemRegister()

NAME shellCmdMemRegister() – register a buffer against the command interpreter

SYNOPSIS STATUS shellCmdMemRegister
 (
 void * pMem, /* memory block to register */
 BOOL shellPool /* TRUE for shell memory pool */
)

DESCRIPTION This routine registers the memory block pointed by pMem into the memory list of the
command interpreter. When the shell task is restarted or ended, the registered memory
blocks are freed by the shell.

2 Routines
shellCmdPreParseAdd()

825

2

If the memory block has been allocated from the shell memory pool using
shellMemMalloc() or shellMemCalloc() routines, shellPool must be set to to TRUE.
Otherwise, shellPool must be set to FALSE.

RETURNS OK, or ERROR if an error occured.

ERRNO S_shellLib_NO_SHELL_CMD
The current interpreter of the current shell session is not the command interpreter.

malloc() and memPartCreate() errno.

SEE ALSO shellInterpCmdLib, shellCmdMemRegister()

shellCmdMemUnregister()

NAME shellCmdMemUnregister() – unregister a buffer

SYNOPSIS STATUS shellCmdMemUnregister
 (
 void * pMem /* memory block to unregister */
)

DESCRIPTION This routine unregisters the memory block pointed by pMem from the memory list of the
command interpreter.

RETURNS OK, or ERROR if the memory was not registered

ERRNO S_shellLib_NO_SHELL_CMD
The current interpreter of the current shell session is not the command interpreter.

SEE ALSO shellInterpCmdLib, shellCmdMemRegister().

shellCmdPreParseAdd()

NAME shellCmdPreParseAdd() – define a command to be pre-parsed

SYNOPSIS STATUS shellCmdPreParseAdd
 (
 const char * name, /* command name to pre-parse */

VxWorks Kernel API Reference, 6.6
shellCmdSymTabIdGet()

826

 char * (*preParseRtn) (char * line) /* pre-parse routine address */
)

DESCRIPTION This routine is used to define that the command name needs a special handling. During the
command line parsing, if name string is found at the beginning of a line, the routine
preParseRtn is called before any processing by the interpreter. name must be a single
command name.

The prototype of preParseRtn is:

char * preParseRtn
 {
 char * line /* complete line to be parsed */
 };

The line string is the line parsed by the interpreter, the initial blank characters being
stripped. This string begins with the command name.

If preParseRtn returns NULL, the interpreter interupts the line parsing. Otherwise, it
continues the parsing of the returned pre-parsed line.

The returned buffer must be allocated by the routine preParseRtn using either a malloc(),
calloc() or strdup() call. It will be freed by the interpreter using free().

RETURNS OK, or ERROR if the command name is not registered yet

ERRNO N/A

SEE ALSO shellInterpCmdLib

shellCmdSymTabIdGet()

NAME shellCmdSymTabIdGet() – get symbol table Id of a shell session

SYNOPSIS SYMTAB_ID shellCmdSymTabIdGet
 (
 SHELL_ID shellId
)

DESCRIPTION This routine returns the symbol table Id associated to the current memory context of the
shell session shellId. shellId can be equal to CURRENT_SHELL_SESSION.

RETURNS the symbol table Id, or 0 if the symbol table is not available

ERRNO N/A

2 Routines
shellCompatibleCheck()

827

2

SEE ALSO shellInterpCmdLib

shellCmdTopicAdd()

NAME shellCmdTopicAdd() – add a shell command topic

SYNOPSIS STATUS shellCmdTopicAdd
 (
 const char * topic, /* topic name */
 const char * desc /* topic description */
)

DESCRIPTION This routine adds the topic topic with the description desc to the list of topics.

NOTE The topic name and the description are not copied internaly. Only the string pointers are
stored in the internal structure.

RETURNS OK, or ERROR if the topic cannot be added.

ERRNO N/A

SEE ALSO shellInterpCmdLib

shellCompatibleCheck()

NAME shellCompatibleCheck() – check the compatibility mode of the shell

SYNOPSIS BOOL shellCompatibleCheck (void)

DESCRIPTION This routine checks if the shell is configured to be VxWorks 5.5 compatible or not.

RETURNS TRUE if the shell is VxWorks 5.5 compatible, FALSE otherwise.

ERRNO N/A

SEE ALSO shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

VxWorks Kernel API Reference, 6.6
shellConfigDefaultGet()

828

shellConfigDefaultGet()

NAME shellConfigDefaultGet() – get default shell configuration

SYNOPSIS char * shellConfigDefaultGet (void)

DESCRIPTION This routine returns the default shell configuration variables. The format of the string
returned is:

<variable>=<value>,<variable>=<value>, ...

The returned string has to be freed by the caller with a free().

RETURNS a pointer on the default shell configuration string, or NULL if an error occured.

ERRNO N/A

SEE ALSO shellConfigLib, shellConfigGet(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellConfigDefaultSet()

NAME shellConfigDefaultSet() – set default shell configuration

SYNOPSIS STATUS shellConfigDefaultSet
 (
 const char * config /* default configuration string */
)

DESCRIPTION This routine sets the default values of the shell configuration variables. The format of the
string config is:

<variable> = <value> , <variable> = <value> , ...

The variable name or value can contain "," and "=" characters if they are escaped or quoted.

These configuration variables are seen by all shell sessions and can be superseed by a
configuration variable defined localy to a shell session.

RETURNS OK, ERROR if the configuration cannot be set or there was a problem

ERRNO S_shellLib_CONFIG_ERROR
The format of the configuration string is wrong.

malloc() and memPartCreate() errno.

2 Routines
shellConfigDefaultValueSet()

829

2

SEE ALSO shellConfigLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellConfigDefaultValueGet()

NAME shellConfigDefaultValueGet() – get a default configuration variable value

SYNOPSIS const char * shellConfigDefaultValueGet
 (
 const char * name /* variable name */
)

DESCRIPTION This routine gets the value of the default configuration variable name. If the variable does
not exist, NULL is returned.

RETURNS a pointer on the string value, or NULL if the variable does not exist or if there was a problem.

ERRNO N/A

SEE ALSO shellConfigLib, shellConfigValueGet(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellConfigDefaultValueSet()

NAME shellConfigDefaultValueSet() – set a default configuration variable value

SYNOPSIS STATUS shellConfigDefaultValueSet
 (
 const char * name, /* variable name */
 const char * value /* variable value or NULL */
)

DESCRIPTION This routine sets the value of the default configuration variable named name. If the variable
does not exist, it is added to the default configuration variable list.

The strings name and values are copied into memory. value can be a NULL pointer.

RETURNS OK, ERROR if the configuration cannot be set or there was a problem

ERRNO N/A

SEE ALSO shellConfigLib, shellConfigValueSet(), VxWorks Kernel Programmer's Guide: Kernel Shell

VxWorks Kernel API Reference, 6.6
shellConfigDefaultValueUnset()

830

shellConfigDefaultValueUnset()

NAME shellConfigDefaultValueUnset() – unset a default configuration variable value

SYNOPSIS void shellConfigDefaultValueUnset
 (
 const char * name /* variable name */
)

DESCRIPTION This routine unsets the default configuration variable name.

RETURNS N/A

ERRNO N/A

SEE ALSO shellConfigLib, shellConfigValueUnset(), VxWorks Kernel Programmer's Guide: Kernel
Shell

shellConfigGet()

NAME shellConfigGet() – get the shell configuration

SYNOPSIS char * shellConfigGet
 (
 SHELL_ID shellId /* shell session Id */
)

DESCRIPTION This routine returns the shell configuration variables of the shell session shellId. The format
of the string returned is:

<variable>=<value>,<variable>=<value>, ...

shellId can be CURRENT_SHELL_SESSION.

The returned string has to be freed by the caller with a free().

RETURNS a pointer on the shell configuration string, or NULL if an error occured.

ERRNO S_shellLib_NOT_SHELL_TASK
The shell session is invalid.

shellDataAdd(), shellDataGet(), malloc() and memPartCreate() errno.

2 Routines
shellConfigValueGet()

831

2

SEE ALSO shellConfigLib, shellConfigDefaultGet(), shellLib, VxWorks Kernel Programmer's Guide:
Kernel Shell

shellConfigSet()

NAME shellConfigSet() – set shell configuration

SYNOPSIS STATUS shellConfigSet
 (
 SHELL_ID shellId, /* shell session identifier */
 const char * config /* default configuration string */
)

DESCRIPTION This routine sets the values of the shell configuration variables of the shell session shellId.
The format of the string config is:

<variable> = <value> , <variable> = <value> , ...

The variable name or value can contain "," and "=" characters if they are escaped or quoted.

The configuration variables will only be seen by the shell session shellId, They superseed any
default configuration values with same name.

shellId can be CURRENT_SHELL_SESSION.

RETURNS OK, ERROR if the configuration cannot be set or if shellId is not a valid shell session identifier.

ERRNO S_shellLib_CONFIG_ERROR
The format of the configuration string is wrong.

S_shellLib_NOT_SHELL_TASK
The shell session is invalid.

shellDataAdd(), shellDataGet(), malloc() and memPartCreate() errno.

SEE ALSO shellConfigLib, shellConfigDefaultSet(), shellLib, VxWorks Kernel Programmer's Guide:
Kernel Shell

shellConfigValueGet()

NAME shellConfigValueGet() – get a shell configuration variable value

SYNOPSIS const char * shellConfigValueGet

VxWorks Kernel API Reference, 6.6
shellConfigValueSet()

832

 (
 SHELL_ID shellId, /* shell session Id */
 const char * name /* variable name */
)

DESCRIPTION This routine gets, from the shell session shellId, the value of the configuration variable name.
If the variable does not exist or if shellId is not a valid shell session, NULL is returned.

shellId can be CURRENT_SHELL_SESSION.

RETURNS a pointer on the string value, or NULL if the variable does not exist or an error occurred.

ERRNO N/A

SEE ALSO shellConfigLib, shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellConfigValueSet()

NAME shellConfigValueSet() – set a shell configuration variable value

SYNOPSIS STATUS shellConfigValueSet
 (
 SHELL_ID shellId, /* shell session Id */
 const char * name, /* variable name */
 const char * value /* variable value */
)

DESCRIPTION This routine sets, for the shell session shellId, the value of the configuration variable name to
value. If the variable does not exist, it is added to the internal list of the shell session.

The strings name and values are copied into memory. value can be a NULL pointer.

shellId can be CURRENT_SHELL_SESSION.

RETURNS OK, ERROR if the configuration cannot be set

ERRNO S_shellLib_NOT_SHELL_TASK
The shell session is invalid.

shellDataAdd(), shellDataGet(), malloc() and memPartCreate() errno.

SEE ALSO shellConfigLib, shellConfigDefaultValueSet(), shellLib, VxWorks Kernel Programmer's
Guide: Kernel Shell

2 Routines
shellDataAdd()

833

2

shellConfigValueUnset()

NAME shellConfigValueUnset() – unset a shell configuration variable value

SYNOPSIS STATUS shellConfigValueUnset
 (
 SHELL_ID shellId, /* shell session Id */
 const char * name /* variable name */
)

DESCRIPTION This routine unsets, for the shell session shellId, the configuration variable name.

shellId can be CURRENT_SHELL_SESSION.

RETURNS OK, or ERROR if the variable cannot be unset.

ERRNO S_shellLib_NOT_SHELL_TASK
The shell session is invalid.

shellDataAdd(), shellDataGet(), malloc() and memPartCreate() errno.

SEE ALSO shellConfigLib, shellConfigDefaultValueUnset(), shellLib, VxWorks Kernel Programmer's
Guide: Kernel Shell

shellDataAdd()

NAME shellDataAdd() – add user data to a specified shell

SYNOPSIS STATUS shellDataAdd
 (
 SHELL_ID shellId, /* the shell identifier */
 const char * key, /* the key for the value to add */
 void * pData, /* the value to add */
 SHELL_DATA_FUNCPTR finalizeRtn /* finalize routine of the data, or NULL
*/
)

DESCRIPTION This routine adds to the user data list of the shell shellId a new data pData with the key
named key. If the key already exists, the previous data is overwritten.

The routine finalizeRtn is called when the shell session is terminated to free any internal
value associated with the user data pData. finalizeRtn may be NULL.

The prototype of finalizeRtn is SHELL_DATA_FUNCPTR:

void finalizeRtn

VxWorks Kernel API Reference, 6.6
shellDataFirst()

834

 (
 SHELL_ID shellId, /* shell session Id */
 const char * key, /* data key */
 void * pData /* data value */
)

with shellId the identifier of the shell session terminated and pData the user data associated
with the key key.

RETURNS OK, or ERROR if an error occured

ERRNO S_shellLib_NOT_SHELL_TASK
shellId is not a valid shell session.

malloc() and memPartCreate() errno.

SEE ALSO shellDataLib, shellFromNameDataAdd(), shellDataRemove(), shellLib, VxWorks Kernel
Programmer's Guide: Kernel Shell

shellDataFirst()

NAME shellDataFirst() – get the first user data that matchs a key

SYNOPSIS SHELL_ID shellDataFirst
 (
 const char * key, /* key data to search */
 void ** ppData /* where to store data value */
)

DESCRIPTION This routine returns the first user data named key in all shell sessions. The user data value
is stored into the location pointed by ppData.

RETURNS the shell session Id, or 0 if none shell session contains the key key.

ERRNO N/A

SEE ALSO shellDataLib, shellDataNext(), shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

2 Routines
shellDataFromNameGet()

835

2

shellDataFromNameAdd()

NAME shellDataFromNameAdd() – add user data to a specified shell

SYNOPSIS STATUS shellDataFromNameAdd
 (
 const char * taskName, /* the shell task name */
 const char * key, /* the key for the value to add */
 void * pData, /* the value to add */
 SHELL_DATA_FUNCPTR finalizeRtn /* finalize routine of the data, or NULL
*/
)

DESCRIPTION This routine adds to the user data list of shell session associated to the shell task named
taskName a new data pData with the key named key. If the key already exists, the previous
data is overwritten.

The routine finalizeRtn is called when the shell session is terminated to free any internal
value associated with the user data pData. finalizeRtn may be NULL.

The prototype of finalizeRtn is SHELL_DATA_FUNCPTR:

void finalizeRtn
 (
 SHELL_ID shellId, /* shell session Id */
 const char * key, /* data key */
 void * pData /* data value */
)

with shellId the identifier of the shell session terminated and pData the user data associated
with the key key.

RETURNS OK, or ERROR if an error occured.

ERRNO S_shellLib_NOT_SHELL_TASK
taskName is not a shell task.

malloc() and memPartCreate() errno.

SEE ALSO shellDataLib, shellDataAdd(), shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellDataFromNameGet()

NAME shellDataFromNameGet() – get user data from a specified shell

SYNOPSIS STATUS shellDataFromNameGet

VxWorks Kernel API Reference, 6.6
shellDataGet()

836

 (
 const char * taskName, /* the shell task name */
 const char * key, /* the key for the value to get */
 void ** ppData /* get the data there */
)

DESCRIPTION This routine returns the data named key stored within the shell session whose associated
shell task is name taskName. The user data value is stored into the location pointed by
ppData.

RETURNS OK, or ERROR if an error occured.

ERRNO S_shellLib_NOT_SHELL_TASK
taskName is not a shell task.

S_shellLib_NO_USER_DATA
Key key does not exist within the shell session context.

SEE ALSO shellDataLib, shellDataGet(), shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellDataGet()

NAME shellDataGet() – get user data from a specified shell

SYNOPSIS STATUS shellDataGet
 (
 SHELL_ID shellId, /* the shell identifier */
 const char * key, /* the key for the value to get */
 void ** ppData /* where to store the data value */
)

DESCRIPTION This routine returns the data named key stored within the shell session shellId. The user data
value is stored into the location pointed by ppData.

RETURNS OK, or ERROR if an error occured.

ERRNO S_shellLib_NOT_SHELL_TASK
taskName is not a shell task.

S_shellLib_NO_USER_DATA
the key name key does not exist within the shell session context shellId.

SEE ALSO shellDataLib, shellFromNameDataGet(), shellLib, VxWorks Kernel Programmer's Guide:
Kernel Shell

2 Routines
shellDataRemove()

837

2

shellDataNext()

NAME shellDataNext() – get the next user data that matchs a key

SYNOPSIS SHELL_ID shellDataNext
 (
 const char * key, /* key data to search */
 SHELL_ID shellId, /* previous shell session id */
 void ** ppData /* where to store data value */
)

DESCRIPTION This routine returns the next user data named key in all shell session. shellId is the previous
shell session checked. The user data value is stored into the location pointed by ppData.

RETURNS the shell session Id, or 0 if none shell session contains the key key.

ERRNO N/A

SEE ALSO shellDataLib, shellDataFirst(), shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellDataRemove()

NAME shellDataRemove() – remove user data from a specified shell

SYNOPSIS void shellDataRemove
 (
 SHELL_ID shellId, /* the shell identifier */
 const char * key, /* the key for the value to remove */
 BOOL finalize /* TRUE to call the finalize routine */
)

DESCRIPTION This routine removes the data defined by the key key from the shell session shellId.

If finalize is TRUE, the finalize routine associated with the data is called before the data is
removed from the list.

RETURNS N/A

ERRNO N/A

SEE ALSO shellDataLib, shellDataAdd(), shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

VxWorks Kernel API Reference, 6.6
shellErrnoGet()

838

shellErrnoGet()

NAME shellErrnoGet() – get the shell session errno

SYNOPSIS int shellErrnoGet
 (
 SHELL_ID shellId /* shell session Id */
)

DESCRIPTION This routine returns the errno value for the shell session shellId. The shell task errno is set to
this value before calling a VxWorks function.

shellId can be equal to CURRENT_SHELL_SESSION.

RETURNS the errno value, or -1 if shellId is not a valid shell session

ERRNO N/A

SEE ALSO shellLib, shellErrnoSet(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellErrnoSet()

NAME shellErrnoSet() – set the shell session errno

SYNOPSIS void shellErrnoSet
 (
 SHELL_ID shellId, /* shell session Id */
 int errNo /* errno number */
)

DESCRIPTION This routine sets the errno value for the shell session shellId to errNo. The shell task errno is
set to this value before calling a VxWorks function; when the VxWorks function returns, the
current errno value of the shell task is save using shellErrnoSet().

shellId can be equal to CURRENT_SHELL_SESSION.

RETURNS N/A

ERRNO N/A

SEE ALSO shellLib, shellErrnoGet(), VxWorks Kernel Programmer's Guide: Kernel Shell

2 Routines
shellFromTaskGet()

839

2

shellFirst()

NAME shellFirst() – get the first shell session

SYNOPSIS SHELL_ID shellFirst (void)

DESCRIPTION This routine returns the Id of the first running shell session.

RETURNS the first shell Id, or 0 if no shell session is running.

ERRNO N/A

SEE ALSO shellLib, shellNext(), shellFromTaskGet(), shellFromNameGet(), VxWorks Kernel
Programmer's Guide: Kernel Shell

shellFromNameGet()

NAME shellFromNameGet() – get a shell session Id from a task name

SYNOPSIS SHELL_ID shellFromNameGet
 (
 const char * taskName /* the shell task name */
)

DESCRIPTION This routine returns the shell session Id of the shell task whose name is taskName.

RETURNS the shell session Id, or 0 if the task is not a shell task.

ERRNO N/A

SEE ALSO shellLib, shellFirst(), shellFromTaskGet(), VxWorks Kernel Programmer's Guide: Kernel
Shell

shellFromTaskGet()

NAME shellFromTaskGet() – get a shell session Id from its task Id

SYNOPSIS SHELL_ID shellFromTaskGet

VxWorks Kernel API Reference, 6.6
shellGenericInit()

840

 (
 int taskId /* the shell task ID or 0 */
)

DESCRIPTION This routine returns the shell session identifier whose task identifier is taskId. If taskId is 0,
the current task Id is used.

RETURNS the shell session identifier, or 0 if taskId is not a shell task.

ERRNO N/A

SEE ALSO shellLib, shellFirst(), shellFromNameGet(), VxWorks Kernel Programmer's Guide: Kernel
Shell

shellGenericInit()

NAME shellGenericInit() – start a shell session

SYNOPSIS STATUS shellGenericInit
 (
 const char * config, /* configuration string or NULL */
 int stackSize, /* shell stack (0 = default value) */
 const char * shellName, /* shell task name or NULL for def. base name
*/
 char ** pShellName, /* pointer on the shell task name or NULL */
 BOOL interactive, /* interactive mode if TRUE */
 BOOL loginAccess, /* login access */
 int fdin, /* input file descriptor */
 int fdout, /* output file descriptor */
 int fderr /* error file descriptor */
)

DESCRIPTION This routine starts a shell session. This is a generic routine to start a shell session.

config is a string that holds the values of the configuration variables this new shell session.
stackSize defines the size of the stack allocated for the shell task. A value of 0 is used to define
the default value. shellName is a pointer on the desired shell task name. If this parameter is
NULL, a generic name is used for each shell task. pShellName, if not NULL, will return a
pointer on the shell task name. interpName is the desired interpreter name to use with this
shell session. interactive is set to TRUE if this shell session is interactive; FALSE otherwise.
loginAccess is set to TRUE if one wants the user to identify itself with a login and password
before accessing the shell (this feature is only usefull if a login function has been previously
installed). fdin, fdout and fderr are the file descriptors to use respectively for the standard
input, output and error of the shell task.

2 Routines
shellHistory()

841

2

If loginAccess is set to TRUE, and if the INCLUDE_SECURITY component is installed, the user
will be asked for a login and a password before the shell start.

NOTE 1 If the shell is configured to use only one shell task for all the connections, (compatibility
mode), this routine only changes the I/O of the only shell session, and restarts it. On
termination of the shell task (see shellTerminate()), the previous I/O of the shell task is
restored, and the shell task is restarted.

NOTE 2 If the shell is configured to use only one shell task for all the connections, pShellName may
return a task name different from the one specified by shellName.

RETURNS OK, or ERROR if the shell session cannot be created.

ERRNO S_shellLib_NO_INTERP
The interpreter specified is not registered.

S_shellLib_SHELL_TASK_EXISTS
A shell session with the same name or the same standard input already exists.

S_shellLib_SHELL_TASK_MAX
The maximun number of shell session has been reached.

S_shellLib_INTERNAL_ERROR
An internal error prevents the shell session to be created.

taskSpawn() errnos, malloc() and memPartCreate() errno.

SEE ALSO shellLib, shellLock(), shellTerminate(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellHistory()

NAME shellHistory() – display or set the size of the shell history (vxWorks 5.5 compatibility)

SYNOPSIS STATUS shellHistory
 (
 int size /* 0 = display, >0 = set history to new size */
)

DESCRIPTION This routine displays shell history, or resets the default number of commands displayed by
shell history to size. By default, history size is 20 commands. Shell history is actually
maintained by ledLib. If size is 0, the routine displays the line history.

IMPORTANT NOTE This routine is backward compatible with previous version of the kernel shell. It only
changes history size of the current shell session. If the current task is not a shell task, the
routine will use the shell task attached to the console (if one exists).

VxWorks Kernel API Reference, 6.6
shellIdVerify()

842

RETURNS OK, or ERROR if there is not a shell task attached to the console.

ERRNO N/A

SEE ALSO shellLib, ledLib, ledControl(), h(), VxWorks Kernel Programmer's Guide: Kernel Shell,
Wind River Workbench Command-Line User's Guide 2.2: Host Shell

shellIdVerify()

NAME shellIdVerify() – verify the validity of a shell session Id

SYNOPSIS STATUS shellIdVerify
 (
 SHELL_ID shellId /* shell session Id to verify */
)

DESCRIPTION This routine checks the validity of the shell session identifier shellId.

RETURNS OK if the shell identifier is valid, ERROR otherwise.

ERRNO N/A

SEE ALSO shellLib, shellFirst(), shellFromNameGet(), VxWorks Kernel Programmer's Guide: Kernel
Shell

shellInterpByNameFind()

NAME shellInterpByNameFind() – Find an interpreter based on its name

SYNOPSIS SHELL_INTERP * shellInterpByNameFind
 (
 const char * interpName /* shell interpreter name to find */
)

DESCRIPTION This routine checks if an interpreter with name interpName does exist.

RETURNS a pointer on the interpreter structure if an interpreter is found, or NULL if the interpreter
with specified name is not registered.

ERRNO N/A

2 Routines
shellInterpDefaultNameGet()

843

2

SEE ALSO shellInterpDefaultNameGet(), shellInterpRegister(), shellLib, shellInterpLib, VxWorks
Kernel Programmer's Guide: Kernel Shell

shellInterpCtxGet()

NAME shellInterpCtxGet() – get the interpreter context

SYNOPSIS SHELL_INTERP_CTX * shellInterpCtxGet
 (
 SHELL_ID shellId /* shell session identifier */
)

DESCRIPTION This routine returns a pointer to the context of the current interpreter used by the shell
session shellId

RETURNS a pointer to the interpreter context, or NULL if none interpreter is active.

ERRNO N/A

SEE ALSO shellInterpLib, shellInterpNameGet(), shellInterpRegister(), shellLib, VxWorks Kernel
Programmer's Guide: Kernel Shell

shellInterpDefaultNameGet()

NAME shellInterpDefaultNameGet() – get the name of the default interpreter

SYNOPSIS const char * shellInterpDefaultNameGet (void)

DESCRIPTION This routine returns the name of the default interpreter.

RETURNS a pointer on the interpreter name, or NULL if none interpreter is registered.

ERRNO N/A

SEE ALSO shellInterpLib, shellInterpNameGet(), shellInterpRegister(), shellLib, VxWorks Kernel
Programmer's Guide: Kernel Shell

VxWorks Kernel API Reference, 6.6
shellInterpEvaluate()

844

shellInterpEvaluate()

NAME shellInterpEvaluate() – interpret a string by an interpreter

SYNOPSIS STATUS shellInterpEvaluate
 (
 char * arg, /* argument to evaluate */
 const char * interpreterName, /* or NULL for default */
 SHELL_EVAL_VALUE * pValue /* interpreter return value */
)

DESCRIPTION This routine interprets the string arg by the interpreter named interpreterName. The result
value is returned in pValue. If interpreterName is NULL, the function uses the default
interpreter, the one which was registered first. Note that the string arg may be modified by
the interpreter, you need to save it before calling this routine if you want to use it later.

RETURNS OK, or ERROR if an error occured

ERRNO S_shellLib_NO_INTERP
The interpreter specified is not registered or it does not have an evaluation routine.

S_shellLib_NOT_SHELL_TASK
The current task is not a shell task.

S_shellLib_INTERNAL_ERROR
An internal error occured and prevents the evaluation.

S_shellLib_INTERP_INIT_ERROR
The context of the interpreter cannot be initialized.

Interpreter's evaluation routine errnos.

SEE ALSO shellInterpLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellInterpNameGet()

NAME shellInterpNameGet() – get the name of the current interpreter

SYNOPSIS const char * shellInterpNameGet
 (
 SHELL_ID shellId /* shell session ID */
)

DESCRIPTION This routine returns the name of the current interpreter of the shell session shellId.

2 Routines
shellInterpRegister()

845

2

RETURNS a pointer on the interpreter name, or NULL if none interpreter is defined

ERRNO N/A

SEE ALSO shellInterpLib, shellInterpDefaultNameGet(), shellInterpRegister(), shellLib, VxWorks
Kernel Programmer's Guide: Kernel Shell

shellInterpRegister()

NAME shellInterpRegister() – register a new interpreter

SYNOPSIS STATUS shellInterpRegister
 (
 FUNCPTR interpInitRtn /* interpreter init routine */
)

DESCRIPTION This routine is used to register a new interpreter against the kernel shell.

interpInitRtn is the initialization routine of the interpreter to register. Its definition is:

STATUS init
 (
 SHELL_INTERP * pInterp /* interpreter structure */
)

with pInterp a pointer on an interpreter structure.

The interpInitRtn routine is called at registration time. This routine must complete the fields
of the SHELL_INTERP structure with the addresses of the interpreter routines:

- the interpreter context initialization function,

- the parser function,

- the evaluation function,

- the completion function,

- the restart function (called whenever the shell is restarted, by CTRL-C key combination
for example),

- the interpreter context finalizer function (to release any resources).

Any of these routine addresses (except the init function) can be NULL.

The interpInitRtn routine also has to set the interpreter name and default prompt. The
interpreter name must be unique among the registered interpreters.

The definitions of the interpreter routines are:

STATUS ctxInit

VxWorks Kernel API Reference, 6.6
shellInterpRegister()

846

 (
 SHELL_INTERP_CTX * pInterpCtx /* interpreter context */
)

with pInterpCtx a pointer to the interpreter context, which is unique per shell session. This
routine is called either when a new shell session is started, when a statement is evaluated or
when the shell is switched to a new interpreter for which the interpreter context does not
exist yet. This routine returns ERROR if an error occured, OK otherwise.

STATUS parser
 (
 SHELL_INTERP_CTX * pInterpCtx, /* interpreter context */
 const char * inputLine, /* input line to parse */
 BOOL isInteractive /* TRUE for interactive session */
)

with pInterpCtx a pointer to the interpreter context, inputLine a pointer to the input string to
interpret. isInteractive is TRUE if the parsing is interactive. This routine returns ERROR if an
error occured, OK otherwise.

STATUS evaluate
 (
 SHELL_INTERP_CTX * pInterpCtx, /* interpreter context */
 const char * inputLine, /* input line to parse */
 SHELL_EVAL_VALUE * pValue /* where to store return value */
)

This routine is used to evaluate a string inputLine by the interpreter. The resulting value is
stored into the shell value pointed by pValue. pInterpCtx is a pointer to the interpreter
context. This routine returns ERROR if an error occured, OK otherwise.

STATUS completion
 (
 SHELL_INTERP_CTX * pInterpCtx, /* interpreter context */
 LED_ID ledId, /* LED identifier */
 char * line, /* line to complete */
 UINT lineSize, /* size of line buffer */
 UINT * pCursorPos, /* cursor position in the line */
 char completionChar /* completion character */
)

This routine is called when a completion character is typed on the input. The completion
characters are defined by the Line EDiting mode used. ledId identifies the Line EDiting
session. line is the input line currently printed. Its maximal size is lineSize. The terminal EOS
is not counted with this size. pCursorPos is a pointer to the position of the cursor in line.
completionChar is the character typed for completion. pInterpCtx is a pointer to the interpreter
context. This routine returns ERROR if the completion does not succeed, OK otherwise.

void ctxRestart
 (
 SHELL_INTERP_CTX * pInterpCtx /* interpreter context */
)

with pInterpCtx a pointer to the interpreter context. This routine is called whenever the shell
session is restarted. It is up to the interpreter to release any allocated resources.

2 Routines
shellLock()

847

2

STATUS ctxFinalize
 (
 SHELL_INTERP_CTX * pInterpCtx /* interpreter context */
)

with pInterpCtx a pointer to the interpreter context. This routine is used to free any internal
resource used by the interpreter for a shell session. It is called when a shell session is
terminated. This routine returns ERROR if an error occured, OK otherwise.

The ctxInit routine does not need to set up the currentPrompt field of the pInterpCtx
structure, but only the prompt field with the prompt string of the interpreter.

The pInterpParam field of pInterpCtx can be used to store the address of an internal structure
of the interpreter.

The first interpreter registered becomes the default interpreter. The default interpreter is
used by a shell session if no name is defined for its initialisation.

RETURNS OK, or ERROR if an error occured.

ERRNO S_shellLib_INTERP_EXISTS
An interpreter with the same name is already registered

S_shellLib_INTERNAL_ERROR
An internal error occurs. The interpreter is not registered.

memPartAlloc(), malloc() errnos

SEE ALSO shellInterpLib, shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellLock()

NAME shellLock() – lock access to the shell (vxWorks 5.5 compatibility)

SYNOPSIS BOOL shellLock
 (
 BOOL request /* TRUE = lock, FALSE = unlock */
)

VxWorks 5.5 behavior

This routine locks or unlocks access to the shell. When locked, cooperating tasks, such as
telnetdTask() and rlogindTask(), will not be able to control the shell.

If the shell is configured to use a unique task (compatibility mode), this routine reacts as the
VxWorks 5.5 version. But for normal mode of the shell (multiple shell sessions), the routine
always returns TRUE.

VxWorks Kernel API Reference, 6.6
shellNext()

848

RETURNS If the shell session is unique, TRUE if request is "lock" and the routine successfully locks the
shell, otherwise FALSE; TRUE if request is "unlock" and the routine successfully unlocks the
shell, otherwise FALSE. In multiple shell session mode, TRUE is always returned.

ERRNO N/A

SEE ALSO shellLib, shellCompatibleSet(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellNext()

NAME shellNext() – get the next shell session

SYNOPSIS SHELL_ID shellNext
 (
 SHELL_ID shellId /* shell ID whose successor is to be found */
)

DESCRIPTION This routine returns the Id of the next shell session, compared to shellId.

RETURNS the next shell Id or 0 if there is no more running shell.

ERRNO N/A

SEE ALSO shellLib, shellFirst(), shellFromTaskGet(), shellFromNameGet(), VxWorks Kernel
Programmer's Guide: Kernel Shell

shellPromptFmtDftSet()

NAME shellPromptFmtDftSet() – set the default prompt format string

SYNOPSIS STATUS shellPromptFmtDftSet
 (
 const char * interp, /* interpreter name or NULL for default */
 const char * promptFmt /* prompt format string or NULL for initial */
)

DESCRIPTION This routine sets the format of the default prompt of the interpreter named interp to
promptFmt. If interp is NULL, the default interpreter is used (the first registered). If
promptFmt is NULL, the initial interpreter prompt, the one defined by the interpreter init
function, is restored.

2 Routines
shellPromptFmtSet()

849

2

NOTE Setting the default prompt of an interpreter after its first use will not modify the current
prompt for a shell session. The change will be visible for new shell sessions or if it is done
prior the first use of the interpreter. In order to change the current prompt, the routine
shellPromptFmtSet() should be used.

RETURNS OK, or ERROR if the memory for the prompt cannot be allocated or if the interpreter is not
registered.

ERRNO S_shellLib_NO_INTERP
none interpreter named interp exists.

malloc() errnos, memPartCreate() errnos.

SEE ALSO shellPromptLib, shellPromptFmtSet(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellPromptFmtSet()

NAME shellPromptFmtSet() – set the current prompt format string

SYNOPSIS STATUS shellPromptFmtSet
 (
 SHELL_ID shellId, /* CURRENT_SHELL_SESSION for current shell */
 const char * interp, /* interpreter name or NULL for current */
 const char * promptFmt /* prompt format string or NULL for default */
)

DESCRIPTION This routine sets the format of the current prompt of the interpreter named interp, associated
with the shell session shellId, to promptFmt. If shellId is CURRENT_SHELL_SESSION, the
current shell session is used. If interp is NULL, the current interpreter of shellId is used. If
promptFmt is NULL, the default interpreter prompt is restored.

NOTE Setting the current prompt for a shell session does not affect the other running sessions or
new shell sessions. To change the default prompt of an interpreter, the routine
shellPromptFmtDftSet() should be used instead.

RETURNS OK, or ERROR if the interpreter does not exist or a memory error occured.

ERRNO S_shellLib_NOT_SHELL_TASK
shellId is an invalid shell session.

S_shellLib_NO_INTERP
none interpreter named interp exists.

malloc() errnos, memPartCreate() errnos.

VxWorks Kernel API Reference, 6.6
shellPromptFmtStrAdd()

850

SEE ALSO shellPromptLib, shellPromptFmtDftSet(), VxWorks Kernel Programmer's Guide: Kernel
Shell

shellPromptFmtStrAdd()

NAME shellPromptFmtStrAdd() – add a new prompt format string

SYNOPSIS STATUS shellPromptFmtStrAdd
 (
 char fmt, /* format character */
 VOIDFUNCPTR fmtRtn, /* format routine */
 BOOL force /* TRUE to superseed a previous definition */
)

DESCRIPTION This routine adds a new format string which manage the format character fmt. The display
function associated with the format is fmtRtn. If force is TRUE, the format routine fmtRtn will
superseed a previous definition of the format routine.

When the shell prompt is printed, each format routine associated with the format strings
used in the prompt string are called with the prototype:

void fmtRtn
 (
 SHELL_ID shellId /* shell session Id */
)

with shellId the identifier of the shell session managed. The format routine can use regular
output functions (printf(), printErr() ...) as the IO of the current task is correctly redirected
to the dedicated shell terminal.

RETURNS OK, or ERROR if the format cannot be added.

ERRNO

SEE ALSO shellPromptLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellPromptSet()

NAME shellPromptSet() – change the shell prompt (vxWorks 5.5 compatibility)

SYNOPSIS STATUS shellPromptSet

2 Routines
shellResourceReleaseHookAdd()

851

2

 (
 const char * newPrompt /* string to become new shell prompt */
)

DESCRIPTION This routine changes the format of the current shell prompt of the C interpreter to
newPrompt. If newPrompt is NULL, the default C interpreter prompt is restored instead.

IMPORTANT NOTE This routine is backward compatible with previous version of the kernel shell. This routine
changes the prompt of the C interpreter only. If the shell is configured as compatible with
VxWorks 5.5 (SHELL_COMPATIBLE parameter is TRUE), the default C interpreter prompt is
also modified, not only the current prompt. If the current task is not a shell task, the routine
will use the shell task attached to the console (if one exists).

RETURNS OK, or ERROR if there is not a shell task attached to the console.

ERRNO N/A

SEE ALSO shellLib, shellPromptFmtSet(), shellPromptFmtDftSet(), VxWorks Kernel Programmer's
Guide: Kernel Shell, Wind River Workbench Command-Line User's Guide 2.2: Host Shell

shellResourceReleaseHookAdd()

NAME shellResourceReleaseHookAdd() – add a resource-releasing hook to the shell

SYNOPSIS STATUS shellResourceReleaseHookAdd
 (
 SHELL_RES_RELEASE_HOOK hook /* hook routine to add */
)

DESCRIPTION The function registers a routine which will be run when the shell is terminated or aborted.
The routine is meant to release mutexes, semaphores or related data structures used within
the shell components. When an abnormal shell exit occurs, this is used for deadlock
prevention.

Each hook routine must be of the following form :

void releaseHook
 (
 SHELL_ID shellId, /* shell session Id */
 BOOL force /* whether to force-release */
)

The hooks are meant to release global resources, otherwise the release would be
implemented in context-related termination routines. However, it is possible that
session-related operations be needed. For that purpose, the hook takes a session ID as a
parameter.

VxWorks Kernel API Reference, 6.6
shellRestart()

852

The force parameter is used to indicate that force-relinquishing is needed. This is because the
context in which the hook executes might not be the one of the resource owner. For instance,
semMForceGive() is be used instead of semGive() in that case.

RETURNS OK, or ERROR if the hook table is full or an error occurred.

ERRNO

SEE ALSO shellLib

shellRestart()

NAME shellRestart() – restart a shell session

SYNOPSIS STATUS shellRestart
 (
 SHELL_ID shellId /* the ID of the shell session to restart */
)

DESCRIPTION This routine restarts the shell session shellId.

shellId can be a valid session identifier or CURRENT_SHELL_SESSION.

RETURNS OK, or ERROR it not possible to restart the shell session.

ERRNO N/A

SEE ALSO shellLib, shellTaskGet(), taskRestart(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellScriptAbort()

NAME shellScriptAbort() – signal the shell to stop processing a script (vxWorks 5.5 compatibility)

SYNOPSIS STATUS shellScriptAbort (void)

DESCRIPTION This routine signals the current shell session to abort processing a script file. It can be called
from within a script if an error is detected.

2 Routines
shellTaskIdDefault()

853

2

IMPORTANT NOTE This routine is kept for backward compatibility reason with previous version of the kernel
shell. This routine aborts scripting of the current shell session. If the current task is not a
shell task, the function will use the shell task attached to the console (if one exists).

RETURNS OK, or ERROR if there is not a shell task attached to the console.

ERRNO N/A

SEE ALSO shellLib, shellScriptNoAbort(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellTaskGet()

NAME shellTaskGet() – get the task Id of a shell session

SYNOPSIS int shellTaskGet
 (
 SHELL_ID shellId /* shell session Id */
)

DESCRIPTION This routine returns the task Id for the shell session shellId.

RETURNS the shell task Id, or ERROR if the shell session is not valid.

ERRNO N/A

SEE ALSO shellLib, shellIdVerify(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellTaskIdDefault()

NAME shellTaskIdDefault() – set the default task for a given shell session

SYNOPSIS int shellTaskIdDefault
 (
 SHELL_ID shellId, /* shell session Id */
 int taskId /* default task Id or 0 */
)

DESCRIPTION This routine set the default task associated with the shell session shellId to taskId.

VxWorks Kernel API Reference, 6.6
shellTerminate()

854

If shellId is equal to CURRENT_SHELL_SESSION, the current shell session is used. If this
function is called outside of a shell session, and shellId is CURRENT_SHELL_SESSION, the
shell session attached to the console is used (if one exists).

If shellId is equal to ALL_SHELL_SESSIONS, the default task taskId is set for all shell sessions.

If taskId is 0, the default task of the shell session shellId is returned.

RETURNS the last default task Id (may be 0 if not previously set)

ERRNO N/A

SEE ALSO shellLib, taskIdDefault(), VxWorks Kernel Programmer's Guide: Kernel Shell

shellTerminate()

NAME shellTerminate() – terminate a shell task

SYNOPSIS void shellTerminate
 (
 SHELL_ID shellId /* the shell ID to terminate */
)

DESCRIPTION This routine kills a shell session, based on its Id shellId. Suicide is prohibited (a shell session
cannot kill itself by this call; use exit() instead).

NOTE If the shell is configured to use only one shell session for all the connections, (compatible
mode), this routine only restores the I/O of the shell task (see shellGenericInit()), and then
restarts it.

RETURNS N/A

ERRNO N/A

SEE ALSO shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

2 Routines
shlShow()

855

2

shlShow()

NAME shlShow() – display information for shared libraries

SYNOPSIS BOOL shlShow
 (
 SHL_ID shlId, /* Shared Lib ID */
 int level /* 0 = summary, 1 = detailed, 2 = all */
)

DESCRIPTION This routine displays information for shared libraries (SHL). This routine takes two
parameters, shlId and level. The first parameter is the shared library ID, which may be
obtained by using rtpShlShow(). The second parameter is the level of detail to display the
SHL information.

Depending on the level and the SHL ID specified, the information displayed differs. If the
level is 0, then it displays the summary information for either the specified SHL or all SHLs
in the system. If the level is 1, then shlShow() displays the detailed information for the
specified SHL. If level is 2, shlShow() displays the detailed information for all SHLs in the
system, regardless of the SHL ID you specify. Refer to the table for more information.

shlShow() only displays the SHL name up to a maximum of 20 characters long. If the name
is more than 20 characters, the name will be truncated to 18 characters for displaying
purposes. Prepended to the truncated name, a "<" will be display to indicate that the name
is more than 20 characters long. To get a display of the full SHL name, display the SHL with
the level set to 1.

For the command interpreter shell, use the shl and the shl info commands to display SHL
information.

Use this routine to display information on SHLs in the system. For information on SHLs
associated with an RTP, use the rtpShlShow() routine to display this information.

EXAMPLE Below is an example display of a shared library.

-> shlShow 0x11c0724

 SHL NAME ID TEXT ADDR TEXT SIZE DATA SIZE REF CNT
-------------------- ---------- ---------- ---------- ---------- -------
< tty/slDfw/libSo.so 1 0xff435000 0x574 0x628 2

RETURNS TRUE, or FALSE if the SL is invalid.

Level SHL ID Meaning
0 0 Display summary information for all SHLs.
0 SHL Display summary information for specified SHL.
1 0 Invalid Display of the SHL, must specify SHL.
1 SHL Display detailed information for specified SHL.
2 ANY Display detailed information for all SHLs.

VxWorks Kernel API Reference, 6.6
shlSymsAdd()

856

ERRNO Possible errnos generated by this function include:

S_objLib_OBJ_ID_ERROR
An incorrect SHL ID was provided.

S_objLib_ACCESS_DENIED
Unable to get exclusive access to the SHL list.

SEE ALSO shlShow, rtpLib, rtpShow, shlLib, the VxWorks programmer guides.

shlSymsAdd()

NAME shlSymsAdd() – add symbols from a shared object file to a RTP symbol table

SYNOPSIS STATUS shlSymsAdd
 (
 void * shlId, /* ID of the shared library */
 RTP_ID rtpId, /* RTP the symbols should be added to */
 UINT32 regPolicy, /* symbol registration policy */
 char * filePath /* path and name of the shared object file */
)

DESCRIPTION This command is provided as a help in case a RTP needs to be debugged but has been
launched with an empty symbol table. It forces the registration of the symbols from a shared
object file into a RTP symbol table.

Note that this command does not verify whether the symbols are already in the symbol table
and does not prevent the creation of multiple occurences of these symbols.

It is important to understand that symbols are added to the symbol table in the order of their
registration and that the most recent entry will hide symbols of same name already
registered. The rtpLkup() command will show all occurences of the symbols of a given
name so it is possible to use their addresses instead of their names if there is a risk of
confusion.

The only required information are the shared library ID (shlId parameter) and the RTP ID
(rtpId parameter).

The regPolicy parameter sets the symbol registration policy. The policy can be one of the
following:

0x01 (RTP_GLOBAL_SYMBOLS)
Add only global symbols to the symbol table. This is the default when the parameter is
left null.

0x02 (RTP_LOCAL_SYMBOLS)
Add only local symbols to the symbol table.

2 Routines
shlSymsRemove()

857

2

0x03 (RTP_ALL_SYMBOLS)
Add both local and global symbols to the symbol table.

The filePath parameter overrides the path recorded for the shared library. It may be left null
if the symbols should be read from the same file as the one used to create the shared library
with. This parameter must be used when the symbols should be read from a file stored in a
different location than what was recorded when the shared library has been created.

RETURNS OK if the symbols could be read and recorded, ERROR otherwise.

ERRNO N/A

SEE ALSO usrRtpLib, shlSymsRemove(), rtpSymsAdd(), rtpSymsRemove()

shlSymsRemove()

NAME shlSymsRemove() – remove shared library symbols from a RTP symbol table

SYNOPSIS STATUS shlSymsRemove
 (
 void * shlId, /* ID of the shared library */
 RTP_ID rtpId, /* RTP the symbols should be removed from */
 UINT32 remPolicy /* symbol removal policy */
)

DESCRIPTION This command forces the removal of symbols related to a shared library from a RTP symbol
table.

The remPolicy parameter sets the symbol removal policy. The policy can be one of the
following:

0x02 (RTP_LOCAL_SYMBOLS)
Remove only the shared library's local symbols from the symbol table.

0x03 (RTP_ALL_SYMBOLS)
Removes both the shared library's local and global symbols from the symbol table.

RETURNS OK if the symbols could be removed, ERROR otherwise.

ERRNO N/A

SEE ALSO usrRtpLib, shlSymsAdd(), rtpSymsAdd(), rtpSymsRemove()

VxWorks Kernel API Reference, 6.6
show()

858

show()

NAME show() – print information on a specified object

SYNOPSIS void show
 (
 int objId, /* object ID */
 int level /* information level */
)

DESCRIPTION This command prints information on the specified object. System objects include tasks, local
and shared semaphores, local and shared message queues, local and shared memory
partitions, watchdogs, and symbol tables. An information level is interpreted by the objects
show routine on a class by class basis. Refer to the object's library manual page for more
information.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, i(), ti(), lkup(), the VxWorks programmer guides.

sigInit()

NAME sigInit() – initialize the signal facilities

SYNOPSIS int sigInit
 (
 BOOL posixMode
)

DESCRIPTION This routine initializes the signal facilities. It is usually called from the system start-up
routine usrInit() in usrConfig, before interrupts are enabled.

If the boolean parameter posixMode is TRUE then the signals sent to a faulting task will be
POSIX conformant, if it is FALSE the signals will be backwards compatible with previous
versions of VxWorks.

RETURNS OK, or ERROR if the delete hooks cannot be installed.

ERRNO S_taskLib_TASK_HOOK_TABLE_FULL
Task hook table is full and signal delete hook can not be added.

2 Routines
sigaddset()

859

2

SEE ALSO sigLib

sigaction()

NAME sigaction() – examine and/or specify the action associated with a signal (POSIX)

SYNOPSIS int sigaction
 (
 int signo, /* signal of handler of interest */
 const struct sigaction *pAct, /* location of new handler */
 struct sigaction *pOact /* location to store old handler */
)

DESCRIPTION This routine allows the calling process to examine and/or specify the action to be associated
with a specific signal.

RETURNS OK (0), or ERROR (-1) if the signal number is invalid.

ERRNO EINVAL

SEE ALSO sigLib

sigaddset()

NAME sigaddset() – add a signal to a signal set (POSIX)

SYNOPSIS int sigaddset
 (
 sigset_t *pSet, /* signal set to add signal to */
 int signo /* signal to add */
)

DESCRIPTION This routine adds the signal specified by signo to the signal set specified by pSet.

RETURNS OK (0), or ERROR (-1) if the signal number is invalid.

ERRNO EINVAL

SEE ALSO sigLib

VxWorks Kernel API Reference, 6.6
sigblock()

860

sigblock()

NAME sigblock() – add to a set of blocked signals

SYNOPSIS int sigblock
 (
 int mask /* mask of additional signals to be blocked */
)

DESCRIPTION This routine adds the signals in mask to the task's set of blocked signals. A one (1) in the bit
mask indicates that the specified signal is blocked from delivery. Use the macro SIGMASK
to construct the mask for a specified signal number.

This routine has been deprecated, instead use sigprocmask().

RETURNS The previous value of the signal mask.

ERRNO N/A

SEE ALSO sigLib, sigprocmask()

sigdelset()

NAME sigdelset() – delete a signal from a signal set (POSIX)

SYNOPSIS int sigdelset
 (
 sigset_t *pSet, /* signal set to delete signal from */
 int signo /* signal to delete */
)

DESCRIPTION This routine deletes the signal specified by signo from the signal set specified by pSet.

RETURNS OK (0), or ERROR (-1) if the signal number is invalid.

ERRNO EINVAL

SEE ALSO sigLib

2 Routines
sigismember()

861

2

sigemptyset()

NAME sigemptyset() – initialize a signal set with no signals included (POSIX)

SYNOPSIS int sigemptyset
 (
 sigset_t *pSet /* signal set to initialize */
)

DESCRIPTION This routine initializes the signal set specified by pSet, such that all signals are excluded.

RETURNS OK (0), or ERROR (-1) if the signal set cannot be initialized.

ERRNO N/A

SEE ALSO sigLib

sigfillset()

NAME sigfillset() – initialize a signal set with all signals included (POSIX)

SYNOPSIS int sigfillset
 (
 sigset_t *pSet /* signal set to initialize */
)

DESCRIPTION This routine initializes the signal set specified by pSet, such that all signals are included.

RETURNS OK (0), or ERROR (-1) if the signal set cannot be initialized.

ERRNO N/A

SEE ALSO sigLib

sigismember()

NAME sigismember() – test to see if a signal is in a signal set (POSIX)

SYNOPSIS int sigismember

VxWorks Kernel API Reference, 6.6
signal()

862

 (
 const sigset_t *pSet, /* signal set to test */
 int signo /* signal to test for */
)

DESCRIPTION This routine tests whether the signal specified by signo is a member of the set specified by
pSet.

RETURNS 1 if the specified signal is a member of the specified set, OK (0) if it is not, or ERROR (-1) if
the test fails.

ERRNO EINVAL

SEE ALSO sigLib

signal()

NAME signal() – specify the handler associated with a signal

SYNOPSIS void (*signal
 (
 int signo,
 void (*pHandler) ()
)) ()

DESCRIPTION This routine chooses one of three ways in which receipt of the signal number signo is to be
subsequently handled. If the value of pHandler is SIG_DFL, default handling for that signal
will occur. If the value of pHandler is SIG_IGN, the signal will be ignored. Otherwise,
pHandler must point to a function to be called when that signal occurs.

A signal handler associated with signo as a result of a call to this routine will be reset to
SIG_DFL upon entry into the signal handler. Subsequent instances of signo will thus be
handled with the default action. The sigaction() routine must be used if this behavior is not
desired.

RETURNS The value of the previous signal handler, or SIG_ERR.

ERRNO EINVAL

SEE ALSO sigLib, sigaction()

2 Routines
sigprocmask()

863

2

sigpending()

NAME sigpending() – retrieve the set of pending signals blocked from delivery (POSIX)

SYNOPSIS int sigpending
 (
 sigset_t *pSet /* location to store pending signal set */
)

DESCRIPTION This routine stores the set of signals that are blocked from delivery and that are pending for
the calling process in the space pointed to by pSet.

RETURNS OK (0), or ERROR (-1) if the signal TCB cannot be allocated.

ERRNO ENOMEM

SEE ALSO sigLib

sigprocmask()

NAME sigprocmask() – examine and/or change the signal mask (POSIX)

SYNOPSIS int sigprocmask
 (
 int how, /* how signal mask will be changed */
 const sigset_t *pSet, /* location of new signal mask */
 sigset_t *pOset /* location to store old signal mask */
)

DESCRIPTION This routine allows the calling process to examine and/or change its signal mask. If the
value of pSet is not NULL, it points to a set of signals to be used to change the currently
blocked set.

The value of how indicates the manner in which the set is changed and consists of one of the
following, defined in signal.h:

SIG_BLOCK
the resulting set is the union of the current set and the signal set pointed to by pSet.

SIG_UNBLOCK
the resulting set is the intersection of the current set and the complement of the signal
set pointed to by pSet.

SIG_SETMASK
the resulting set is the signal set pointed to by pSet.

VxWorks Kernel API Reference, 6.6
sigqueue()

864

RETURNS OK (0), or ERROR (-1) if how is invalid.

ERRNO EINVAL

SEE ALSO sigLib, sigsetmask(), sigblock()

sigqueue()

NAME sigqueue() – send a queued signal to a task

SYNOPSIS int sigqueue
 (
 int tid,
 int signo,
 const union sigval value
)

DESCRIPTION The function sigqueue() sends the signal specified by signo with the signal-parameter value
specified by value to the process specified by tid.

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid, or if there are no
queued-signal buffers available.

ERRNO EINVAL

EAGAIN

SEE ALSO sigLib, taskSigqueue()

sigqueueInit()

NAME sigqueueInit() – initialize the queued signal facilities

SYNOPSIS int sigqueueInit
 (
 int nQueues
)

DESCRIPTION This routine initializes the queued signal facilities. It must be called before any call to
sigqueue(). It is usually called from the system start-up routine usrInit() in usrConfig,
after sysInit() is called.

2 Routines
sigsuspend()

865

2

It allocates nQueues buffers to be used by sigqueue(). A buffer is used by each call to
sigqueue() and freed when the signal is delivered (thus if a signal is block, the buffer is
unavailable until the signal is unblocked.)

RETURNS OK, or ERROR if memory could not be allocated.

ERRNO N/A

SEE ALSO sigLib

sigsetmask()

NAME sigsetmask() – set the signal mask

SYNOPSIS int sigsetmask
 (
 int mask /* new signal mask */
)

DESCRIPTION This routine sets the calling task's signal mask to a specified value. A one (1) in the bit mask
indicates that the specified signal is blocked from delivery. Use the macro SIGMASK to
construct the mask for a specified signal number.

This routine has been deprecated, instead use sigprocmask().

RETURNS The previous value of the signal mask.

ERRNO N/A

SEE ALSO sigLib, sigprocmask()

sigsuspend()

NAME sigsuspend() – suspend the task until delivery of a signal (POSIX)

SYNOPSIS int sigsuspend
 (
 const sigset_t *pSet /* signal mask while suspended */
)

VxWorks Kernel API Reference, 6.6
sigtimedwait()

866

DESCRIPTION This routine suspends the task until delivery of a signal. While suspended, pSet is used as
the set of masked signals.

NOTE Since the sigsuspend() function suspends thread execution indefinitely, there is no
successful completion return value.

RETURNS -1, always.

ERRNO EINTR

SEE ALSO sigLib

sigtimedwait()

NAME sigtimedwait() – wait for a signal

SYNOPSIS int sigtimedwait
 (
 const sigset_t *pSet, /* the signal mask while suspended */
 siginfo_t *pInfo, /* return value */
 const struct timespec *pTimeout
)

DESCRIPTION The function sigtimedwait() selects the pending signal from the set specified by pSet. If
multiple signals in pSet are pending, it will remove and return the lowest numbered one. If
no signal in pSet is pending at the time of the call, the task will be suspend until one of the
signals in pSet become pending, it is interrupted by an unblocked caught signal, or until the
time interval specified by pTimeout has expired. If pTimeout is NULL, then the timeout
interval is forever.

If the pInfo argument is non-NULL, the selected signal number is stored in the si_signo
member, and the cause of the signal is stored in the si_code member. If the signal is a
queued signal, the value is stored in the si_value member of pInfo; otherwise the content of
si_value is undefined.

The following values are defined in signal.h for si_code:

SI_USER
the signal was sent by the kill() function.

SI_QUEUE
the signal was sent by the sigqueue() function.

SI_TIMER
the signal was generated by the expiration of a timer set by timer_settime().

2 Routines
sigvec()

867

2

SI_ASYNCIO
the signal was generated by the completion of an asynchronous I/O request.

SI_MESGQ
the signal was generated by the arrival of a message on an empty message queue.

The function sigtimedwait() provides a synchronous mechanism for tasks to wait for
asynchromously generated signals. A task should use sigprocmask() to block any signals
it wants to handle synchronously and leave their signal handlers in the default state. The
task can then make repeated calls to sigtimedwait() to remove any signals that are sent to it.

RETURNS Upon successful completion (that is, one of the signals specified by pSet is pending or is
generated) sigtimedwait() will return the selected signal number. Otherwise, a value of -1
is returned and errno is set to indicate the error.

ERRNO EINTR
The wait was interrupted by an unblocked, caught signal.

EAGAIN
No signal specified by pSet was delivered within the specified timeout period.

EINVAL
The pTimeout argument specified a tv_nsec value less than zero or greater than or equal
to 1000 million.

SEE ALSO sigLib, sigwait()

sigvec()

NAME sigvec() – install a signal handler

SYNOPSIS int sigvec
 (
 int sig, /* signal to attach handler to */
 const struct sigvec *pVec, /* new handler information */
 struct sigvec *pOvec /* previous handler information */
)

DESCRIPTION This routine binds a signal handler routine referenced by pVec to a specified signal sig. It
can also be used to determine which handler, if any, has been bound to a particular signal:
sigvec() copies current signal handler information for sig to pOvec and does not install a
signal handler if pVec is set to NULL (0).

Both pVec and pOvec are pointers to a structure of type struct sigvec. The information
passed includes not only the signal handler routine, but also the signal mask and additional
option bits. The structure sigvec and the available options are defined in signal.h.

VxWorks Kernel API Reference, 6.6
sigwait()

868

RETURNS OK (0), or ERROR (-1) if the signal number is invalid or the signal TCB cannot be allocated.

ERRNO EINVAL

ENOMEM

SEE ALSO sigLib

sigwait()

NAME sigwait() – wait for a signal to be delivered (POSIX)

SYNOPSIS int sigwait
 (
 const sigset_t *pSet,
 int *pSig
)

DESCRIPTION This routine waits until one of the signals specified in pSet is delivered to the calling thread.
It then stores the number of the signal received in the the location pointed to by pSig.

The signals in pSet must not be ignored on entrance to sigwait(). If the delivered signal has
a signal handler function attached, that function is not called.

RETURNS OK, or ERROR on failure.

ERRNO N/A

SEE ALSO sigLib, sigtimedwait()

sigwaitinfo()

NAME sigwaitinfo() – wait for real-time signals

SYNOPSIS int sigwaitinfo
 (
 const sigset_t *pSet, /* the signal mask while suspended */
 siginfo_t *pInfo /* return value */
)

DESCRIPTION The function sigwaitinfo() is equivalent to calling sigtimedwait() with pTimeout equal to
NULL. See that reference entry for more information.

2 Routines
sil31xxBISTShow()

869

2

RETURNS Upon successful completion (that is, one of the signals specified by pSet is pending or is
generated) sigwaitinfo() returns the selected signal number. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRNO EINTR
The wait was interrupted by an unblocked, caught signal.

SEE ALSO sigLib

sil31xxBIST()

NAME sil31xxBIST() – Controller Built-In Self Test...

SYNOPSIS STATUS sil31xxBIST
 (
 int ctrlNum
)

DESCRIPTION /NOMANUAL

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbSI31xxStorage

sil31xxBISTShow()

NAME sil31xxBISTShow() – Show the results of the power-on BIST

SYNOPSIS VOID sil31xxBISTShow
 (
)

DESCRIPTION none

RETURNS Nothing

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
sil31xxDiskPresent()

870

SEE ALSO vxbSI31xxStorage

sil31xxDiskPresent()

NAME sil31xxDiskPresent() – Return OK if disk exists.

SYNOPSIS STATUS sil31xxDiskPresent
 (
 int ctrlNum,
 int devNum
)

DESCRIPTION none

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO vxbSI31xxStorage

sil31xxDrvVxbInit()

NAME sil31xxDrvVxbInit() – Initialize the driver.

SYNOPSIS void sil31xxDrvVxbInit
 (
 BUS_DEVICE_ID pDev, /* vxbus DeviceID */
 int ctrlNum /* assigned instance (controller number) */
)

DESCRIPTION Initialize the driver structure for a single instance of the controller. This routine would get
called once for each 31xx device.

RETURNS N/A

ERRNO

SEE ALSO vxbSI31xxStorage

2 Routines
sil31xxRegisterPortCallback()

871

2

sil31xxIsr()

NAME sil31xxIsr() – Interrupt service routine.

SYNOPSIS VOID sil31xxIsr
 (
 int arg
)

DESCRIPTION none

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbSI31xxStorage

sil31xxRegisterPortCallback()

NAME sil31xxRegisterPortCallback() – register the port call back for a PHYRdyChg

SYNOPSIS STATUS sil31xxRegisterPortCallback
 (
 int ctrlNum,
 int portNum,
 VOIDFUNCPTR myCallbackPtr,
 VOID *myParam
)

DESCRIPTION event

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO vxbSI31xxStorage

VxWorks Kernel API Reference, 6.6
sil31xxSectorRW()

872

sil31xxSectorRW()

NAME sil31xxSectorRW() – read a single sector

SYNOPSIS STATUS sil31xxSectorRW
 (
 int ctrl,
 int port,
 sector_t sector,
 uint32_t numSecs,
 char *data,
 BOOL isRead
)

DESCRIPTION This routine is called to read a single sector and dump the output on the console.

ctrl controller number port port number sector starting sector for I/O operation numSecs
number of sectors to read data pointer to data buffer

RETURNS OK, or ERROR if the parameters are not valid.

ERRNO Not Available

SEE ALSO vxbSI31xxStorage

sil31xxXbdCreate()

NAME sil31xxXbdCreate() – Create an XBD for the specified port.

SYNOPSIS device_t sil31xxXbdCreate
 (
 int ctrlNum,
 int devNum,
 char *devName /* NULL for default, override with value */
)

DESCRIPTION none

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO vxbSI31xxStorage

2 Routines
sincos()

873

2

sil31xxXbdDelete()

NAME sil31xxXbdDelete() – Delete an XBD for a specified port

SYNOPSIS STATUS sil31xxXbdDelete
 (
 int ctrlNum,
 int devNum
)

DESCRIPTION none

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO vxbSI31xxStorage

sincos()

NAME sincos() – compute both a sine and cosine

SYNOPSIS void sincos
 (
 double x, /* angle in radians */
 double *sinResult, /* sine result buffer */
 double *cosResult /* cosine result buffer */
)

DESCRIPTION This routine computes both the sine and cosine of x in double precision. The sine is copied
to sinResult and the cosine is copied to cosResult.

RETURNS N/A

ERRNO Not Available

SEE ALSO mathALib

VxWorks Kernel API Reference, 6.6
sincosf()

874

sincosf()

NAME sincosf() – compute both a sine and cosine

SYNOPSIS void sincosf
 (
 float x, /* angle in radians */
 float *sinResult, /* sine result buffer */
 float *cosResult /* cosine result buffer */
)

DESCRIPTION This routine computes both the sine and cosine of x in single precision. The sine is copied to
sinResult and the cosine is copied to cosResult. The angle x is expressed in radians.

RETURNS N/A

ERRNO Not Available

SEE ALSO mathALib

sinf()

NAME sinf() – compute a sine (ANSI)

SYNOPSIS float sinf
 (
 float x /* angle in radians */
)

DESCRIPTION This routine returns the sine of x in single precision. The angle x is expressed in radians.

RETURNS The single-precision sine of x.

ERRNO Not Available

SEE ALSO mathALib

2 Routines
sleep()

875

2

sinhf()

NAME sinhf() – compute a hyperbolic sine (ANSI)

SYNOPSIS float sinhf
 (
 float x /* number whose hyperbolic sine is required */
)

DESCRIPTION This routine returns the hyperbolic sine of x in single precision.

RETURNS The single-precision hyperbolic sine of x.

ERRNO Not Available

SEE ALSO mathALib

sleep()

NAME sleep() – delay for a specified amount of time

SYNOPSIS unsigned int sleep
 (
 unsigned int secs
)

DESCRIPTION This routine causes the calling task to be blocked for secs seconds.

The time the task is blocked for may be longer than requested due to the rounding up of the
request to the timer's resolution or to other scheduling activities (e.g., a higher priority task
intervenes).

RETURNS Zero if the requested time has elapsed, or the number of seconds remaining if it was
interrupted.

ERRNO EINVAL

EINTR

SEE ALSO timerLib, nanosleep(), taskDelay()

VxWorks Kernel API Reference, 6.6
smMemAddToPool()

876

smMemAddToPool()

NAME smMemAddToPool() – add memory to shared memory system partition (VxMP Option)

SYNOPSIS STATUS smMemAddToPool
 (
 char * pPool, /* pointer to memory pool */
 unsigned poolSize /* block size in bytes */
)

DESCRIPTION This routine adds memory to the shared memory system partition after the initial allocation
of memory. The memory added need not be contiguous with memory previously assigned,
but it must be in the same address space.

pPool is the global address of shared memory added to the partition. The memory area
pointed to by pPool must be in the same address space as the shared memory anchor and
shared memory pool.

poolSize is the size in bytes of shared memory added to the partition.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if access to the shared memory system partition fails.

ERRNO S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

smMemCalloc()

NAME smMemCalloc() – allocate memory for array from shared memory system partition (VxMP
Option)

SYNOPSIS void * smMemCalloc
 (
 int elemNum, /* number of elements */
 int elemSize /* size of elements */
)

DESCRIPTION This routine allocates a block of memory for an array that contains elemNum elements of size
elemSize from the shared memory system partition. The return value is the local address of
the allocated shared memory block.

2 Routines
smMemFree()

877

2

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS A pointer to the block, or NULL if the memory cannot be allocated.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

smMemFindMax()

NAME smMemFindMax() – find largest free block in shared memory system partition (VxMP
Option)

SYNOPSIS int smMemFindMax (void)

DESCRIPTION This routine searches for the largest block in the shared memory system partition free list
and returns its size.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS The size (in bytes) of the largest available block, or ERROR if the attempt to access the
partition fails.

ERRNO S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

smMemFree()

NAME smMemFree() – free a shared memory system partition block of memory (VxMP Option)

SYNOPSIS STATUS smMemFree
 (
 void * ptr /* pointer to block of memory to be freed */
)

VxWorks Kernel API Reference, 6.6
smMemMalloc()

878

DESCRIPTION This routine takes a block of memory previously allocated with smMemMalloc() or
smMemCalloc() and returns it to the free shared memory system pool.

It is an error to free a block of memory that was not previously allocated.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if the block is invalid.

ERRNO S_memLib_BLOCK_ERROR
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib, smMemMalloc(), smMemCalloc()

smMemMalloc()

NAME smMemMalloc() – allocate block of memory from shared memory system partition (VxMP
Option)

SYNOPSIS void * smMemMalloc
 (
 unsigned nBytes /* number of bytes to allocate */
)

DESCRIPTION This routine allocates a block of memory from the shared memory system partition whose
size is equal to or greater than nBytes. The return value is the local address of the allocated
shared memory block.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS A pointer to the block, or NULL if the memory cannot be allocated.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

2 Routines
smMemRealloc()

879

2

smMemOptionsSet()

NAME smMemOptionsSet() – set debug options for shared memory system partition (VxMP
Option)

SYNOPSIS STATUS smMemOptionsSet
 (
 unsigned options /* options for system partition */
)

DESCRIPTION This routine sets the debug options for the shared system memory partition. Two kinds of
errors are detected: attempts to allocate more memory than is available, and bad blocks
found when memory is freed or reallocated. In both cases, the following options can be
selected for actions to be taken when an error is detected: (1) return the error status, (2) log
an error message and return the error status, or (3) log an error message and suspend the
calling task. These options are discussed in detail in the library manual entry for
smMemLib.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK or ERROR.

ERRNO S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

smMemRealloc()

NAME smMemRealloc() – reallocate block of memory from shared memory system partition
(VxMP Option)

SYNOPSIS void * smMemRealloc
 (
 void * pBlock, /* block to be reallocated */
 unsigned newSize /* new block size */
)

DESCRIPTION This routine changes the size of a specified block and returns a pointer to the new block of
shared memory. The contents that fit inside the new size (or old size, if smaller) remain
unchanged. The return value is the local address of the reallocated shared memory block.

VxWorks Kernel API Reference, 6.6
smMemShow()

880

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS A pointer to the new block of memory, or NULL if the reallocation cannot be completed.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
S_memLib_BLOCK_ERROR
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smMemLib

smMemShow()

NAME smMemShow() – show the shared memory system partition blocks and statistics (VxMP
Option)

SYNOPSIS void smMemShow
 (
 int type /* 0 = statistics, 1 = statistics & list */
)

DESCRIPTION This routine displays the total amount of free space in the shared memory system partition,
including the number of blocks, the average block size, and the maximum block size. It also
shows the number of blocks currently allocated, and the average allocated block size.

If type is 1, it displays a list of all the blocks in the free list of the shared memory system
partition.

WARNING This routine locks access to the shared memory system partition while displaying the
information. This can compromise the access time to the partition from other CPUs in the
system. Generally, this routine is used for debugging purposes only.

EXAMPLE -> smMemShow 1

 FREE LIST:
 num addr size
 --- ---------- ----------
 1 0x4ffef0 264
 2 0x4fef18 1700

 SUMMARY:
 status bytes blocks ave block max block
 --------------- --------- -------- ---------- ----------
 current
 free 1964 2 982 1700
 alloc 2356 1 2356 -

2 Routines
smNameAdd()

881

2

 cumulative
 alloc 2620 2 1310 -
 value = 0 = 0x0

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS N/A

ERRNO Not Available

SEE ALSO smMemShow, windsh, the VxWorks programmer guides, the, VxWorks Command-Line
Tools User's Guide

smNameAdd()

NAME smNameAdd() – add a name to the shared memory name database (VxMP Option)

SYNOPSIS STATUS smNameAdd
 (
 char * name, /* name string to enter in database */
 void * value, /* value associated with name */
 int type /* type associated with name */
)

DESCRIPTION This routine adds a name of specified object type and value to the shared memory objects
name database.

The name parameter is an arbitrary null-terminated string with a maximum of 20 characters,
including EOS.

By convention, type values of less than 0x1000 are reserved by VxWorks; all other values are
user definable. The following types are predefined in smNameLib.h :

A name can be entered only once in the database, but there can be more than one name
associated with an object ID.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

Name Value Type
T_SM_SEM_B = 0 shared binary semaphore
T_SM_SEM_C = 1 shared counting semaphore
T_SM_MSG_Q = 2 shared message queue
T_SM_PART_ID = 3 shared memory Partition
T_SM_BLOCK = 4 shared memory allocated block

VxWorks Kernel API Reference, 6.6
smNameFind()

882

RETURNS OK, or ERROR if there is insufficient memory for name to be allocated, if name is already in
the database, or if the database is already full.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smNameLib_NAME_TOO_LONG
S_smNameLib_NAME_ALREADY_EXIST
S_smNameLib_DATABASE_FULL
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smNameLib, smNameShow

smNameFind()

NAME smNameFind() – look up a shared memory object by name (VxMP Option)

SYNOPSIS STATUS smNameFind
 (
 char * name, /* name to search for */
 void ** pValue, /* pointer where to return value */
 int * pType, /* pointer where to return object type */
 int waitType /* NO_WAIT or WAIT_FOREVER */
)

DESCRIPTION This routine searches the shared memory objects name database for an object matching a
specified name. If the object is found, its value and type are copied to the addresses pointed
to by pValue and pType. The value of waitType can be one of the following:

NO_WAIT (0)
The call returns immediately, even if name is not in the database.

WAIT_FOREVER (-1)
The call returns only when name is available in the database. If name is not already in,
the database is scanned periodically as the routine waits for name to be entered.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if the object is not found, if name is too long, or the wait type is invalid.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smNameLib_NAME_TOO_LONG
S_smNameLib_NAME_NOT_FOUND
S_smNameLib_INVALID_WAIT_TYPE
S_smObjLib_LOCK_TIMEOUT

2 Routines
smNameFindByValue()

883

2

SEE ALSO smNameLib, smNameShow

smNameFindByValue()

NAME smNameFindByValue() – look up a shared memory object by value (VxMP Option)

SYNOPSIS STATUS smNameFindByValue
 (
 void * value, /* value to search for */
 char * name, /* pointer where to return name */
 int * pType, /* pointer where to return object type */
 int waitType /* NO_WAIT or WAIT_FOREVER */
)

DESCRIPTION This routine searches the shared memory name database for an object matching a specified
value. If the object is found, its name and type are copied to the addresses pointed to by
name and pType. The value of waitType can be one of the following:

NO_WAIT (0)
The call returns immediately, even if the object value is not in the database.

WAIT_FOREVER (-1)
The call returns only when the object value is available in the database.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if value is not found or if the wait type is invalid.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smNameLib_VALUE_NOT_FOUND
S_smNameLib_INVALID_WAIT_TYPE
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smNameLib, smNameShow

VxWorks Kernel API Reference, 6.6
smNameRemove()

884

smNameRemove()

NAME smNameRemove() – remove an object from the shared memory objects name database
(VxMP Option)

SYNOPSIS STATUS smNameRemove
 (
 char * name /* name of object to remove */
)

DESCRIPTION This routine removes an object called name from the shared memory objects name database.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if the object name is not in the database or if name is too long.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smNameLib_NAME_TOO_LONG
S_smNameLib_NAME_NOT_FOUND
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smNameLib, smNameShow

smNameShow()

NAME smNameShow() – show the contents of the shared memory objects name database (VxMP
Option)

SYNOPSIS STATUS smNameShow
 (
 int level /* information level */
)

DESCRIPTION This routine displays the names, values, and types of objects stored in the shared memory
objects name database. Predefined types are shown, using their ASCII representations; all
other types are printed in hexadecimal.

The level parameter defines the level of database information displayed. If level is 0, only
statistics on the database contents are displayed. If level is greater than 0, then both statistics
and database contents are displayed.

2 Routines
smObjAttach()

885

2

WARNING This routine locks access to the shared memory objects name database while displaying its
contents. This can compromise the access time to the name database from other CPUs in the
system. Generally, this routine is used for debugging purposes only.

EXAMPLE -> smNameShow

Names in Database Max : 30 Current : 6 Free : 24

-> smNameShow 1

Names in Database Max : 30 Current : 6 Free : 24

Name Value Type
---------------- ----------- -------------
inputImage 0x802340 SM_MEM_BLOCK
ouputImage 0x806340 SM_MEM_BLOCK
imagePool 0x802001 SM_MEM_PART
imageInSem 0x8e0001 SM_SEM_B
imageOutSem 0x8e0101 SM_SEM_C
actionQ 0x8e0201 SM_MSG_Q
userObject 0x8e0400 0x1b0

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if the name facility is not initialized.

ERRNO S_smNameLib_NOT_INITIALIZED
S_smObjLib_LOCK_TIMEOUT

SEE ALSO smNameShow, smNameLib

smObjAttach()

NAME smObjAttach() – attach the calling CPU to the shared memory objects facility (VxMP
Option)

SYNOPSIS STATUS smObjAttach
 (
 SM_OBJ_DESC * pSmObjDesc /* pointer to shared memory descriptor */
)

DESCRIPTION This routine "attaches" the calling CPU to the shared memory objects facility. The shared
memory area is identified by the shared memory descriptor with an address specified by
pSmObjDesc. The descriptor must already have been initialized by calling smObjInit().

VxWorks Kernel API Reference, 6.6
smObjGlobalToLocal()

886

This routine is called automatically when the component INCLUDE_SM_OBJ is included.

This routine will complete the attach process only if and when the shared memory has been
initialized by the master CPU. If the shared memory is not recognized as active within the
timeout period (10 minutes), this routine returns ERROR.

The smObjAttach() routine connects the shared memory objects handler to the shared
memory interrupt. Note that this interrupt may be shared between the shared memory
network driver and the shared memory objects facility when both are used at the same time.

WARNING Once a CPU has attached itself to the shared memory objects facility, it cannot be detached.
Since the shared memory network driver and the shared memory objects facility use the
same low-level attaching mechanism, a CPU cannot be detached from a shared memory
network driver if the CPU also uses shared memory objects.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if the shared memory objects facility is not active or the number of CPUs
exceeds the maximum.

ERRNO S_smLib_INVALID_CPU_NUMBER

SEE ALSO smObjLib, smObjSetup(), smObjInit()

smObjGlobalToLocal()

NAME smObjGlobalToLocal() – convert a global address to a local address (VxMP Option)

SYNOPSIS void * smObjGlobalToLocal
 (
 void * globalAdrs /* global address to convert */
)

DESCRIPTION This routine converts a global shared memory address globalAdrs to its corresponding local
value. This routine does not verify that globalAdrs is really a valid global shared memory
address.

All addresses stored in shared memory are global. Any access made to shared memory by
the local CPU must be done using local addresses. This routine and
smObjLocalToGlobal() are used to convert between these address types.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

2 Routines
smObjInit()

887

2

RETURNS The local shared memory address pointed to by globalAdrs.

ERRNO Not Available

SEE ALSO smObjLib, smObjLocalToGlobal()

smObjInit()

NAME smObjInit() – initialize a shared memory objects descriptor (VxMP Option)

SYNOPSIS void smObjInit
 (
 SM_OBJ_DESC * pSmObjDesc, /* ptr to shared memory descriptor */
 SM_ANCHOR * anchorLocalAdrs, /* shared memory anchor local adrs */
 int ticksPerBeat, /* cpu ticks per heartbeat */
 int smObjMaxTries, /* max no. of tries to obtain spinLock */
 int intType, /* interrupt method */
 int intArg1, /* interrupt argument #1 */
 int intArg2, /* interrupt argument #2 */
 int intArg3 /* interrupt argument #3 */
)

DESCRIPTION This routine initializes a shared memory descriptor. The descriptor must already be
allocated in the CPU's local memory. Once the descriptor has been initialized by this
routine, the CPU may attach itself to the shared memory area by calling smObjAttach().

This routine is called automatically when the component INCLUDE_SM_OBJ is included.

Only the shared memory descriptor itself is modified by this routine. No structures in
shared memory are affected.

Parameters:

pSmObjDesc
The address of the shared memory descriptor to be initialized; this structure must be
allocated before smObjInit() is called.

anchorLocalAdrs
The memory address by which the local CPU may access the shared memory anchor.
This address may vary among CPUs in the system because of address offsets
(particularly if the anchor is located in one CPU's dual-ported memory).

ticksPerBeat
Specifies the frequency of the shared memory anchor's heartbeat. The frequency is
expressed in terms of how many CPU ticks on the local CPU correspond to one
heartbeat period.

VxWorks Kernel API Reference, 6.6
smObjLibInit()

888

smObjMaxTries
Specifies the maximum number of tries to obtain access to an internal mutually
exclusive data structure.

intType, intArg1, intArg2, intArg3
Allow a CPU to announce the method by which it is to be notified of shared memory
events. See the manual entry for if_sm for a discussion about interrupt types and their
associated parameters.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS N/A

ERRNO Not Available

SEE ALSO smObjLib, smObjSetup(), smObjAttach()

smObjLibInit()

NAME smObjLibInit() – install the shared memory objects facility (VxMP Option)

SYNOPSIS STATUS smObjLibInit (void)

DESCRIPTION This routine installs the shared memory objects facility. It is called automatically when the
component INCLUDE_SM_OBJ is included.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if the shared memory objects facility has already been installed.

ERRNO Not Available

SEE ALSO smObjLib

2 Routines
smObjSetup()

889

2

smObjLocalToGlobal()

NAME smObjLocalToGlobal() – convert a local address to a global address (VxMP Option)

SYNOPSIS void * smObjLocalToGlobal
 (
 void * localAdrs /* local address to convert */
)

DESCRIPTION This routine converts a local shared memory address localAdrs to its corresponding global
value. This routine does not verify that localAdrs is really a valid local shared memory
address.

All addresses stored in shared memory are global. Any access made to shared memory by
the local CPU must be done using local addresses. This routine and
smObjGlobalToLocal() are used to convert between these address types.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS The global shared memory address pointed to by localAdrs.

ERRNO Not Available

SEE ALSO smObjLib, smObjGlobalToLocal()

smObjSetup()

NAME smObjSetup() – initialize the shared memory objects facility (VxMP Option)

SYNOPSIS STATUS smObjSetup
 (
 SM_OBJ_PARAMS * smObjParams /* setup parameters */
)

DESCRIPTION This routine initializes the shared memory objects facility by filling the shared memory
header. It must be called only once by the shared memory master CPU. It is called
automatically only by the master CPU, when the component INCLUDE_SM_OBJ is included.

Any CPU on the system backplane can use the shared memory objects facility; however, the
facility must first be initialized on the master CPU. Then before other CPUs are attached to
the shared memory area by smObjAttach(), each must initialize its own shared memory

VxWorks Kernel API Reference, 6.6
smObjShow()

890

objects descriptor using smObjInit(). This mechanism is similar to the one used by the
shared memory network driver.

The smObjParams parameter is a pointer to a structure containing the values used to describe
the shared memory objects setup. This structure is defined as follows in smObjLib.h:

typedef struct sm_obj_params /* setup parameters */
 {
 BOOL allocatedPool; /* TRUE if shared memory pool is malloced */
 SM_ANCHOR * pAnchor; /* shared memory anchor */
 char * smObjFreeAdrs; /* start address of shared memory pool */
 int smObjMemSize; /* memory size reserved for shared memory */
 int maxCpus; /* max number of CPUs in the system */
 int maxTasks; /* max number of tasks using smObj */
 int maxSems; /* max number of shared semaphores */
 int maxMsgQueues; /* max number of shared message queues */
 int maxMemParts; /* max number of shared memory partitions */
 int maxNames; /* max number of names of shared objects */
 } SM_OBJ_PARAMS;

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if the shared memory pool cannot hold all the requested objects or the
number of CPUs exceeds the maximum.

ERRNO S_smObjLib_TOO_MANY_CPU
S_smObjLib_SHARED_MEM_TOO_SMALL

SEE ALSO smObjLib, smObjInit(), smObjAttach()

smObjShow()

NAME smObjShow() – display the current status of shared memory objects (VxMP Option)

SYNOPSIS STATUS smObjShow (void)

DESCRIPTION This routine displays useful information about the current status of shared memory objects
facilities.

WARNING The information returned by this routine is not static and may be obsolete by the time it is
examined. This information is generally used for debugging purposes only.

EXAMPLE -> smObjShow
 Shared Mem Anchor Local Addr: 0x600.
 Shared Mem Hdr Local Addr: 0xb1514.

2 Routines
smObjTimeoutLogEnable()

891

2

 Attached CPU : 5
 Max Tries to Take Lock: 1

 Shared Object Type Current Maximum Available
 -------------------- ---------- --------- ----------
 Tasks 1 20 19
 Binary Semaphores 8 30 20
 Counting Semaphores 2 30 20
 Messages Queues 3 10 7
 Memory Partitions 1 4 3
 Names in Database 16 100 84

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS OK, or ERROR if no shared memory objects are initialized.

ERRNO S_smObjLib_NOT_INITIALIZED

SEE ALSO smObjShow, smObjLib

smObjTimeoutLogEnable()

NAME smObjTimeoutLogEnable() – control logging of failed attempts to take a spin-lock (VxMP
Option)

SYNOPSIS void smObjTimeoutLogEnable
 (
 BOOL timeoutLogEnable /* TRUE to enable, FALSE to disable */
)

DESCRIPTION This routine enables or disables the printing of a message when an attempt to take a shared
memory spin-lock fails.

By default, message logging is enabled.

AVAILABILITY This routine is distributed as a component of the unbundled shared memory objects support
option, VxMP.

RETURNS N/A

ERRNO Not Available

SEE ALSO smObjLib

VxWorks Kernel API Reference, 6.6
smeRegister()

892

smeRegister()

NAME smeRegister() – register with the VxBus subsystem

SYNOPSIS void smeRegister(void)

DESCRIPTION This routine registers the SMSC driver with VxBus as a child of the PLB bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO vxbSmscLan9118End

smpLockDemo()

NAME smpLockDemo() – smpLockDemo entry point (shell command)

SYNOPSIS STATUS smpLockDemo
 (
 unsigned int secs, /* The minimum life time of a worker task */
 unsigned int reqNumOfTasks, /* number of tasks */
 BOOL setAff /* do task have affinity */
 /* numbOfTask is disgarded if affinity set
*/
)

DESCRIPTION Invoke the smpLockDemo by calling this routine from the kernel shell:

-> smpLockDemo <number of secs>, <number of tasks>, <[TRUE, FALSE];
(affinity)

The secs argument is optional. It represents the number of seconds the demo spends
updating the local and global counts for each synchronization mechanism mentioned in the
module description. When invoked with no arguments the default is two seconds.

RETURNS OK if worker tasks were spawn without failure otherwise returns ERROR

ERRNO N/A

SEE ALSO smpLockDemo

2 Routines
snsShow()

893

2

snprintf()

NAME snprintf() – write a formatted string to a buffer, not exceeding buffer size (ANSI)

SYNOPSIS int snprintf
 (
 char * buffer, /* buffer to write to */
 size_t count, /* max number of characters to store in buffer */
 const char * fmt, /* format string */
 ... /* optional arguments to format */
)

DESCRIPTION This routine copies a formatted string to a specified buffer, up to a given number of
characters. The formatted string will be null terminated. This routine guarantees never to
write beyond the provided buffer regardless of the format specifier or the arguments to be
formatted. The count argument specifies the maximum number of characters to store in the
buffer, including the null terminator.

Its function and syntax are otherwise identical to printf().

RETURNS The number of characters copied to buffer, not including the NULL terminator. Even when
the supplied buffer is too small to hold the complete formatted string, the return value
represents the number of characters that would have been written to buffer if count was
sufficiently large.

ERRNO Not Available

SEE ALSO fioBaseLib, sprintf(), printf(), "International Organization for Standardization, ISO/IEC
9899:1999, ", "Programming languages - C: Input/output (stdio.h)"

snsShow()

NAME snsShow() – show information about services in the SNS directory

SYNOPSIS void snsShow
 (
 const char * servName /* service name prefix */
)

DESCRIPTION This routine displays information about the services registered with SNS. servName is
represented in URL format:

[SNS:]service_name[@scope]

VxWorks Kernel API Reference, 6.6
snsShow()

894

where the parts in brackets, [], are optional.

SNS: represent the URL service, i.e. the Socket Name Service. It is the only value accepted
and can be omitted. @scope represents the visibility of the service name within the system.
It can take several values, depending from the context and the application needs.

If the the scope is not specified, "@node" is assumed.

The URL representation is case insensitive.

All services whose name begins with the string specified by service_name are listed.
service_name may contain wildcard characters * or ? for name pattern matching, where *
denotes matching as many characters as possible, including zero number of character, ?
denotes matching any single character.

If servName is NULL, or points to a null string, then all services in the SNS directory are
listed.

The information displayed for each service listed includes:

- the service name

- the service scope

- socket address family associated with the service

- socket type associated with the service

- socket protocol number associated with the service: 0 represents the dummy value,
since the socket address family and type are known.

- socket address associated with the service

Examples,

RETURNS N/A.

ERRNO Not Available

SEE ALSO snsShow, snsLib

NAME............. SCOPE FAMILY .TYPE.. PROTO ADDR
webAdmin node LOCAL SEQPKT 0 /comp/socket/0x4
eventBlog priv LOCAL SEQPKT 0 /comp/socket/0x8
clusterTimeServer clust TIPC SEQPKT 0 * 1.1.5,1086717964

2 Routines
sp()

895

2

so()

NAME so() – single-step, but step over a subroutine

SYNOPSIS STATUS so
 (
 int taskNameOrId /* task to step; 0 = default */
)

DESCRIPTION This routine single-steps a task that is stopped at a breakpoint. However, if the next
instruction is a branch call to a subroutine, so() executes the subroutine and stops after.

To execute, enter:

 -> so [task]

If task is omitted or zero, the last task referenced is assumed.

RETURNS OK, or ERROR if the debugging package is not installed, the task cannot be found, or the task
is not suspended.

ERRNO N/A

SEE ALSO dbgLib, s(), cret(), the VxWorks programmer guides, the , VxWorks Command-Line Tools
User's Guide.

sp()

NAME sp() – spawn a task with default parameters

SYNOPSIS int sp
 (
 FUNCPTR func, /* function to call */
 int arg1, /* first of nine args to pass to spawned task */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8,
 int arg9
)

VxWorks Kernel API Reference, 6.6
spinLockIsrGive()

896

DESCRIPTION This command spawns a specified function as a task with the following defaults. These
default priorities may be overriden by updating the specified shell variable:

priority (spTaskPriority):
100

stack size (spTaskStackSize):
20,000 bytes

task options (spTaskOptions):
COPROCS_ALL (execute with all coprocessors support)

task name:
a name of the form tN where N is an integer which increments as new tasks are
spawned, e.g., t1, t2, t3, etc.

task ID:
highest not currently used

The task ID is displayed after the task is spawned.

This command is a short form of the underlying taskSpawn() routine, convenient for
spawning tasks in which the default parameters are satisfactory. If the default parameters
are unacceptable, taskSpawn() should be called directly.

RETURNS a task ID, or ERROR if the task cannot be spawned.

ERRNO EINVAL
the address func is NULL

taskSpawn() errnos.

SEE ALSO usrLib, taskLib, taskSpawn(), the VxWorks programmer guides.

spinLockIsrGive()

NAME spinLockIsrGive() – release an ISR-callable spinlock

SYNOPSIS void spinLockIsrGive
 (
 spinlockIsr_t *pLock /* pointer to ISR-callable spinlock */
)

DESCRIPTION This routine releases the ISR-callable spinlock pointed to by pLock. Furthermore, it
re-enables interrupts that had been disabled on the local CPU when the lock was acquired
using spinLockIsrTake(). Calling this routine under the following circumstances is
considered to be an error condition and has undefined behaviour:

2 Routines
spinLockIsrHeld()

897

2

- The calling task or ISR is not the one that acquired the spinlock.

- The pLock argument does not point to a properly initialized ISR-callable spinlock.

This function forces a read/write memory barrier before releasing the lock.

If INCLUDE_SPINLOCK_DEBUG is defined the following scenarios will cause a ED&R
kernel fatal error which may reboot the target depending on ED&R policy in place:

- If a CPU different than the owner of a spinlock attempts to release it

- If a CPU attempts to release a spinlock that was never acquired

RETURNS N/A

ERRNO N/A

SEE ALSO spinLockLib, spinLockIsrGive(), spinLockIsrInit()

spinLockIsrHeld()

NAME spinLockIsrHeld() – is an ISR-callable spinlock held by the current CPU?

SYNOPSIS
BOOL spinLockIsrHeld
 (
 spinlockIsr_t *pLock /* pointer to ISR-callable spinlock */
)

DESCRIPTION This routine returns TRUE if the ISR-callable spinlock pointed to by pLock is currently held
by the calling CPU, or FALSE if it is not.

Calling this routine with a pLock that points to anything that is not a properly initialized
ISR-callable spinlock has undefined behaviour.

RETURNS BOOL

ERRNO N/A

SEE ALSO spinLockLib, spinLockIsrGive(), spinLockIsrTake()

VxWorks Kernel API Reference, 6.6
spinLockIsrInit()

898

spinLockIsrInit()

NAME spinLockIsrInit() – initialize an ISR-callable spinlock

SYNOPSIS
VxWorks Architecture Supplements

void spinLockIsrInit
 (
 spinlockIsr_t *pLock, /* pointer to ISR-callable spinlock */
 int flags /* spinlock attributes */
)

DESCRIPTION This routine initializes the ISR-callable spinlock pointed to by pLock, using the flags
specified. Currently, no flags are defined; this argument is a placeholder for future
enhancements. A spinlock must be initialized before it is used for the first time. A spinlock
is built on the ability of a processor to perform an atomic read-modify-write access to
memory. Some CPUs may have cache attributes and memory alignment restrictions on the
use of these instructions. It is the responsibility of the caller to ensure the memory location
where the spinlock is located respects these restrictions, if any.

This routine must not be called from interrupt level.

If INCLUDE_SPINLOCK_DEBUG is defined, the following scenarios will cause a ED&R
kernel fatal error which may reboot the target depending on the ED&R policy in place:

- If this routine is called from interrupt level

RETURNS N/A

ERRNO N/A

SEE ALSO spinLockLib, spinLockIsrTake(), spinLockIsrGive(), spinLockTaskInit()

spinLockIsrTake()

NAME spinLockIsrTake() – take an ISR-callable spinlock

SYNOPSIS
void spinLockIsrTake
 (
#ifdef SPIN_LOCK_TRACE
 spinlockIsr_t *pLock, /* pointer to ISR-callable spinlock */
 char *file,
 int line

2 Routines
spinLockIsrTake()

899

2

#else
 spinlockIsr_t *pLock /* pointer to ISR-callable spinlock */
#endif
)

RETURNS: N/A

ERRNO: N/A

SEE ALSO: spinLockIsrGive()

<section>
<heading>DESCRIPTION
<p>
This routine acquires the ISR-callable spinlock pointed to by pLock.
If the lock is available at the time of the call, this routine
marks the spinlock as being in use and returns immediately. If the
spinlock is unavailable, the routine busy-waits for the lock to become
available. Because of this busy-wait characteristic, recursive acquisition
of a spinlock causes a live lock situation where the acquiring task or
ISR busy-waits forever for a spinlock it already holds.

<p>
Acquisition of an ISR-callable spinlock causes interrupts to be masked
on the local CPU until the lock is released using spinLockIsrGive().
It is therefore recommended that this type of spinlock be held for
a minimal amount of time as it increases interrupt latency on
the local CPU.

<p>
Calling this routine with a pLock that points to anything that is not a
properly initialized ISR-callable spinlock has undefined behaviour.

<p>
This routine provides a memory barrier mechanism to prevent memory access
reordering that may be performed by the hardware.

<p>
If INCLUDE_SPINLOCK_DEBUG is defined the following scenario will inject a
kernel fatal error message in ED&R and may reboot the target depending on
the policy in place:

<p>
- If this routine is called within the context of a CPU already holding the

same spinlock. A lock can not be taken recursively.

<p>
- If this routine is called while any another ISR-callable is already held.

ISR-callable spinlocks can not be nested.

<p>
If INCLUDE_SPINLOCK_DEBUG is defined the following scenarios will cause a

VxWorks Kernel API Reference, 6.6
spinLockIsrTake()

900

ED&R kernel fatal error which may reboot the target depending on ED&R policy
in place:

<returns>
<heading>RETURNS
<p>
Not Available

<errno>
<heading>ERRNO
<p>
Not Available

<seealso>
<heading>SEE ALSO
<p>
spinLockLib

<routinedoc>
<rtnhead>spinLockTaskGive()
<rtnname>
<heading>NAME
<rtnshort>
spinLockTaskGive() – release a task-only spinlock

<synopsis>
<heading>SYNOPSIS
<code>

void spinLockTaskGive
 (
 spinlockTask_t *pLock /* pointer to task-only spinlock */
)

DESCRIPTION This routine releases the task-only spinlock pointed to by pLock. Furthermore, it re-enables
task pre-emption that had been disabled on the local CPU when the lock was acquired
using spinLockTaskTake(). Calling this routine under the following circumstances is
considered to be an error condition and has undefined behaviour:

- The calling task is not the one that acquired the spinlock.

- The caller is an ISR.

- The pLock argument does not point to a properly initialized task-only spinlock.

This function forces a read/write memory barrier before releasing the lock.

If INCLUDE_SPINLOCK_DEBUG is defined the following scenarios will cause a ED&R
kernel fatal error which may reboot the target depending on the ED&R policy in place:

2 Routines
spinLockTaskInit()

901

2

- If this routine is called from interrupt level

- If this routine is called within the context of CPU other than owner of
the spinlock

RETURNS N/A

ERRNO N/A

SEE ALSO spinLockLib, spinLockTaskTake(), spinLockTaskInit()

spinLockTaskInit()

NAME spinLockTaskInit() – initialize a task-only spinlock

SYNOPSIS void spinLockTaskInit
 (
 spinlockTask_t *pLock, /* pointer to task-only spinlock */
 int flags /* spinlock attributes */
)

DESCRIPTION This routine initializes the task-only spinlock pointed to by pLock, using the flags specified.
Currently, no flags are defined; this argument is a placeholder for future enhancements. A
spinlock must be initialized before it is used for the first time. A spinlock is build on the
ability of a processor to perform an atomic read-modify-write access to memory. Some
CPUs may have cache attributes and memory alignment restrictions on the use of these
instructions. It is the responsibility of the caller to ensure the memory location where the
spinlock is located respects these restrictions, if any.

This routine must not be called from interrupt level.

If INCLUDE_SPINLOCK_DEBUG is defined the following scenarios will cause a ED&R
kernel fatal error which may reboot the target depending on the ED&R policy in place:

- If this routine is called from interrupt level

RETURNS N/A

ERRNO N/A

SEE ALSO spinLockLib, spinLockTaskTake(), spinLockTaskGive(), spinLockIsrInit(), VxWorks
Architecture Supplements

VxWorks Kernel API Reference, 6.6
spinLockTaskTake()

902

spinLockTaskTake()

NAME spinLockTaskTake() – take a task-only spinlock

SYNOPSIS void spinLockTaskTake
 (
#ifdef SPIN_LOCK_TRACE
 spinlockTask_t *pLock, /* pointer to task-only spinlock */
 char *file,
 int line
#else
 spinlockTask_t *pLock /* pointer to task-only spinlock */
#endif
)

DESCRIPTION This routine acquires the task-only spinlock pointed to by pLock. If the lock is available at
the time of the call, this routine marks the spinlock as being in use and returns immediately.
If the spinlock is unavailable, the routine busy-waits for the lock to become available.
Because of this busy-wait characteristic, recursive acquisition of a spinlock causes a live lock
situation where the acquiring task busy-waits forever for a spinlock it already holds.

Acquisition of an task-only spinlock causes task pre-emption to be disabled on the local
CPU until the lock is released using spinLockTaskGive(). It is therefore recommended that
this type of spinlock be held for a minimal amount of time as it prevents scheduling on the
local CPU.

Calling this routine under the following circumstances is considered to be an error
condition and has undefined behaviour:

- Calling this routine with a pLock that points to anything that is not a properly
initialized task-only spinlock.

- The caller is an ISR.

This routine provides a memory barrier mechanism to prevent memory access reordering
that may be performed by the hardware.

If INCLUDE_SPINLOCK_DEBUG is defined the following scenarios will cause a ED&R
kernel fatal error which may reboot the target depending on the ED&R policy in place:

- If this routine is called from interrupt level

- If this routine is called within the context of a CPU already holding the
target spinlock

- If any other spinlock (any type) is held when this routine is called

RETURNS N/A

ERRNO N/A

2 Routines
spy()

903

2

SEE ALSO spinLockLib, spinLockTaskGive()

sprintf()

NAME sprintf() – write a formatted string to a buffer (ANSI)

SYNOPSIS int sprintf
 (
 char * buffer, /* buffer to write to */
 const char * fmt, /* format string */
 ... /* optional arguments to format */
)

DESCRIPTION This routine copies a formatted string to a specified buffer, which is null-terminated. Its
function and syntax are otherwise identical to printf().

RETURNS The number of characters copied to buffer, not including the NULL terminator.

ERRNO Not Available

SEE ALSO fioBaseLib, printf(), American National Standard for Information Systems -, Programming
Language - C, ANSI X3.159-1989: Input/Output (stdio.h)

spy()

NAME spy() – begin periodic task activity reports

SYNOPSIS void spy
 (
 int freq, /* reporting freq in sec, 0 = default of 5 */
 int ticksPerSec /* interrupt clock freq, 0 = default of 100 */
)

DESCRIPTION This routine collects task activity data and periodically runs spyReport(). Data is gathered
ticksPerSec times per second, and a report is made every freq seconds. If freq is zero, it
defaults to 5 seconds. If ticksPerSec is omitted or zero, it defaults to 100.

This routine spawns spyTask() to do the actual reporting.

It is not necessary to call spyClkStart() before running spy().

RETURNS N/A

VxWorks Kernel API Reference, 6.6
spyClkStart()

904

ERRNO N/A

SEE ALSO usrLib, spyLib, spyClkStart(), spyTask(), the VxWorks programmer guides.

spyClkStart()

NAME spyClkStart() – start collecting task activity data

SYNOPSIS STATUS spyClkStart
 (
 int intsPerSec /* timer interrupt freq, 0 = default of 100 */
)

DESCRIPTION This routine begins data collection by enabling the auxiliary clock interrupts at a frequency
of intsPerSec interrupts per second. If intsPerSec is omitted or zero, the frequency will be 100.
Data from previous collections is cleared.

RETURNS OK, or ERROR if the CPU has no auxiliary clock, or if task create and delete hooks cannot be
installed.

ERRNO N/A

SEE ALSO usrLib, spyLib, sysAuxClkConnect(), the VxWorks programmer guides.

spyClkStop()

NAME spyClkStop() – stop collecting task activity data

SYNOPSIS void spyClkStop (void)

DESCRIPTION This routine disables the auxiliary clock interrupts. Data collected remains valid until the
next spyClkStart() call.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, spyLib, spyClkStart(), the VxWorks programmer guides.

2 Routines
spyLibInit()

905

2

spyHelp()

NAME spyHelp() – display task monitoring help menu

SYNOPSIS void spyHelp (void)

DESCRIPTION This routine displays a summary of spyLib utilities:

spyHelp Print this list
spyClkStart [ticksPerSec] Start task activity monitor running
 at ticksPerSec ticks per second
spyClkStop Stop collecting data
spyReport Prints display of task activity
 statistics
spyStop Stop collecting data and reports
spy [freq[,ticksPerSec]] Start spyClkStart and do a report
 every freq seconds

ticksPerSec defaults to 100. freq defaults to 5 seconds.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, spyLib, the VxWorks programmer guides.

spyLibInit()

NAME spyLibInit() – initialize task cpu utilization tool package

SYNOPSIS void spyLibInit (void)

DESCRIPTION This routine initializes the task cpu utilization tool package. If the configuration macro
INCLUDE_SPY is defined, it is called by the root task, usrRoot(), in usrConfig.c.

RETURNS N/A

ERRNO Not Available

SEE ALSO spyLib, usrLib

VxWorks Kernel API Reference, 6.6
spyReport()

906

spyReport()

NAME spyReport() – display task activity data

SYNOPSIS void spyReport (void)

DESCRIPTION This routine reports on data gathered at interrupt level for the amount of CPU time utilized
by each task, the amount of time spent at interrupt level, the amount of time spent in the
kernel, and the amount of idle time. Time is displayed in ticks and as a percentage, and the
data is shown since both the last call to spyClkStart() and the last spyReport(). If no
interrupts have occurred since the last spyReport(), nothing is displayed.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, spyLib, spyClkStart(), the VxWorks programmer guides.

spyStop()

NAME spyStop() – stop spying and reporting

SYNOPSIS void spyStop (void)

DESCRIPTION This routine calls spyClkStop(). Any periodic reporting by spyTask() is terminated.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, spyLib, spyClkStop(), spyTask(), the VxWorks programmer guides.

spyTask()

NAME spyTask() – run periodic task activity reports

SYNOPSIS void spyTask

2 Routines
sr()

907

2

 (
 int freq /* reporting frequency, in seconds */
)

DESCRIPTION This routine is spawned as a task by spy() to provide periodic task activity reports. It prints
a report, delays for the specified number of seconds, and repeats.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, spyLib, spy(), the VxWorks programmer guides.

sqrtf()

NAME sqrtf() – compute a non-negative square root (ANSI)

SYNOPSIS float sqrtf
 (
 float x /* value to compute the square root of */
)

DESCRIPTION This routine returns the non-negative square root of x in single precision.

RETURNS The single-precision square root of x.

ERRNO Not Available

SEE ALSO mathALib

sr()

NAME sr() – return the contents of the status register (SH)

SYNOPSIS int sr
 (
 int taskId /* task ID, 0 means default task */
)

VxWorks Kernel API Reference, 6.6
sr()

908

DESCRIPTION This command extracts the contents of the status register from the TCB of a specified task.
If taskId is omitted or zero, the last task referenced is assumed.

RETURNS The contents of the status register.

ERRNO Not Available

SEE ALSO dbgArchLib, the VxWorks programmer guides.

sr()

NAME sr() – return the contents of control register sr (also gbr, vbr) (SH)

SYNOPSIS int sr
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of register sr from the TCB of a specified task. If taskId
is omitted or zero, the last task referenced is assumed.

Similar routines are provided for all control registers (gbr, vbr): gbr(), vbr().

RETURNS The contents of register sr (or the requested control register).

ERRNO Not Available

SEE ALSO dbgArchLib, the VxWorks programmer guides.

sscanf()

NAME sscanf() – read and convert characters from an ASCII string (ANSI)

SYNOPSIS int sscanf
 (
 const char * str, /* string to scan */
 const char * fmt, /* format string */
 ... /* optional arguments to format string */
)

2 Routines
sscanf()

909

2

DESCRIPTION This routine reads characters from the string str, interprets them according to format
specifications in the string fmt, which specifies the admissible input sequences and how they
are to be converted for assignment, using subsequent arguments as pointers to the objects
to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is
exhausted while arguments remain, the excess arguments are evaluated but are otherwise
ignored.

The format is a multibyte character sequence, beginning and ending in its initial shift state.
The format is composed of zero or more directives: one or more white-space characters; an
ordinary multibyte character (neither % nor a white-space character); or a conversion
specification. Each conversion specification is introduced by the % character. After the %,
the following appear in sequence:

- An optional assignment-suppressing character *.

- An optional non-zero decimal integer that specifies the maximum field width.

- An optional h, l (ell) or ll (ell-ell) indicating the size of the receiving object. The
conversion specifiers d, i, and n should be preceded by h if the corresponding
argument is a pointer to `short int' rather than a pointer to int, or by l if it is a pointer to
long int, or by ll if it is a pointer to long long int. Similarly, the conversion specifiers
o, u, and x shall be preceded by h if the corresponding argument is a pointer to
unsigned short int rather than a pointer to unsigned int, or by l if it is a pointer to
unsigned long int, or by ll if it is a pointer to `unsigned long long int'. Finally, the
conversion specifiers e, f, and g shall be preceded by l if the corresponding argument
is a pointer to double rather than a pointer to float. If a h, l or ll appears with any other
conversion specifier, the behavior is undefined.

- WARNING: ANSI C also specifies an optional L in some of the same contexts as l
above, corresponding to a long double * argument. However, the current release of the
VxWorks libraries does not support long double data; using the optional L gives
unpredictable results.

- A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The sscanf() routine executes each directive of the format in turn. If a directive fails, as
detailed below, sscanf() returns. Failures are described as input failures (due to the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first
non-white-space character (which remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters
of the stream. If one of the characters differs from one comprising the directive, the directive
fails, and the differing and subsequent characters remain unread.

VxWorks Kernel API Reference, 6.6
sscanf()

910

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following
steps:

Input white-space characters (as specified by the isspace() function) are skipped, unless the
specification includes a [, c, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An
input item is defined as the longest matching sequence of input characters, unless that
exceeds a specified field width, in which case it is the initial subsequence of that length in
the sequence. The first character, if any, after the input item remains unread. If the length
of the input item is zero, the execution of the directive fails: this condition is a matching
failure, unless an error prevented input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item is converted to a type appropriate to the
conversion specifier. If the input item is not a matching sequence, the execution of the
directive fails: this condition is a matching failure. Unless assignment suppression was
indicated by a *, the result of the conversion is placed in the object pointed to by the first
argument following the fmt argument that has not already received a conversion result. If
this object does not have an appropriate type, or if the result of the conversion cannot be
represented in the space provided, the behavior is undefined.

The following conversion specifiers are valid:

d
Matches an optionally signed decimal integer whose format is the same as expected for
the subject sequence of the strtol() function with the value 10 for the base argument.
The corresponding argument should be a pointer to int.

i
Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the strtol() function with the value 0 for the base argument. The
corresponding argument should be a pointer to int.

o
Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of the strtoul() function with the value 8 for the base argument.
The corresponding argument should be a pointer to unsigned int.

u
Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul() function with the value 10 for the base argument.
The corresponding argument should be a pointer to unsigned int.

x
Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of the strtoul() function with the value 16 for the base
argument. The corresponding argument should be a pointer to unsigned int.

2 Routines
sscanf()

911

2

e, f, g
Match an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod() function. The corresponding argument
should be a pointer to float.

s
Matches a sequence of non-white-space characters. The corresponding argument
should be a pointer to the initial character of an array large enough to accept the
sequence and a terminating null character, which will be added automatically.

[
Matches a non-empty sequence of characters from a set of expected characters (the
scanset). The corresponding argument should be a pointer to the initial character of an
array large enough to accept the sequence and a terminating null character, which is
added automatically. The conversion specifier includes all subsequent character in the
format string, up to and including the matching right bracket (]). The characters
between the brackets (the scanlist) comprise the scanset, unless the character after the
left bracket is a circumflex (^) in which case the scanset contains all characters that do
not appear in the scanlist between the circumflex and the right bracket. If the
conversion specifier begins with "[]" or "[^]", the right bracket character is in the scanlist
and the next right bracket character is the matching right bracket that ends the
specification; otherwise the first right bracket character is the one that ends the
specification.

c
Matches a sequence of characters of the number specified by the field width (1 if no
field width is present in the directive). The corresponding argument should be a
pointer to the initial character of an array large enough to accept the sequence. No null
character is added.

p
Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fprintf() function.
The corresponding argument should be a pointer to a pointer to void. VxWorks defines
its pointer input field to be consistent with pointers written by the fprintf() function
("0x" hexadecimal notation). If the input item is a value converted earlier during the
same program execution, the pointer that results should compare equal to that value;
otherwise the behavior of the %p conversion is undefined.

n
No input is consumed. The corresponding argument should be a pointer to int into
which the number of characters read from the input stream so far by this call to sscanf()
is written. Execution of a %n directive does not increment the assignment count
returned when sscanf() completes execution.

%
Matches a single %; no conversion or assignment occurs. The complete conversion
specification is %%.

VxWorks Kernel API Reference, 6.6
ssiDbInit()

912

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G, and X are also valid and behave the same as e, g, and x,
respectively.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left
unread in the input stream. Trailing white space (including new-line characters) is left
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than via the %n directive.

RETURNS The number of input items assigned, which can be fewer than provided for, or even zero, in
the event of an early matching failure; or EOF if an input failure occurs before any
conversion.

ERRNO Not Available

SEE ALSO fioLib, fscanf(), scanf(), American National Standard for Information Systems -, Programming
Language - C, ANSI X3.159-1989: Input/Output (stdio.h)

ssiDbInit()

NAME ssiDbInit() – Initialize SSI database.

SYNOPSIS STATUS ssiDbInit
 (
 ssiCompRegInfo_t * pComps
)

DESCRIPTION This routine initializes the SSI database. If pComps is not NULL, it registers all the
components in pComps to its database. If the information provided by pComps is complete,
the SSI dependency tree is also genrated.

pComps points to component registration table, which is used to generate the dependency
tree. The component dependency table is considered complete if each of the components in
the table have either no dependency or if they have one or many, then all the dependency
components are also in the table.

RETURNS ERROR if event cannot be sent for one of the following reason:
- specified descriptor is not valid

2 Routines
ssmCompInfoGet()

913

2

- descriptor not specified and could not establish connection
- cnsWrite() fails

ERRNO N/A

SEE ALSO ssiDb

ssiShow()

NAME ssiShow() – Display SSI information

SYNOPSIS STATUS ssiShow
 (
 char * pArgs
)

DESCRIPTION This routine displays information of a specified or all component(s) registered with SSI. The
routine can be called with NULL argument or with an empty string, in which case all SSI
groups and components are displayed.

ERRNO N/A

RETURNS OK

ERRNO Not Available

SEE ALSO ssiDb

ssmCompInfoGet()

NAME ssmCompInfoGet() – Get component information.

SYNOPSIS STATUS ssmCompInfoGet
 (
 char * pName,
 ssmCompInfo_t ** ppInfo
)

VxWorks Kernel API Reference, 6.6
ssmCompRegister()

914

DESCRIPTION This routine retrieves the information of a component specified by pName.

ARGUMENTS pName - specifies the component.

ppInfo - points to a pointer to the component information structure.

RETURNS ERROR if the component cannot be found, OK otherwise.

ERRNO N/A

SEE ALSO ssiDb

ssmCompRegister()

NAME ssmCompRegister() – Register a component with SSI Manager.

SYNOPSIS STATUS ssmCompRegister
 (
 char * pName,
 char * pDependencyList,
 SSM_COMP_LAUNCH_FUNCPTR launchFunc,
 char * pArgs,
 char * pOpts,
 ssmCompInfo_t ** ppComp
)

DESCRIPTION This routine registers a component with the SSI manager.

To participate in the SSI process, components have to be registered with the SSI Manager.

ARGUMENTS pCompName is a NULL terminated ASCII string that uniquely identifies
the component in the system. The string has to be at least 2 byte long
(including the terminator) and can be up to SSM_NAME_LEN long.

pDependencyList is a list of zero or more names of components that the
component requires to wait on before being started. A comma (,)
separates each name from another.

launchFunc is a pointer to a function to launch or initialize component.
Depending upon whether the component is SSI-aware or not, this routine
either starts the component to interact with the CSM or it actually starts

2 Routines
ssmCompRegister()

915

2

the component.

The following is the optional usage of launchFunc.
o For an SSI-aware component, launchFunc can be NULL if the
component does not expect to be automatically launched by SSM. If
launchFunc is provided, SSM launches the component, which will then
wait until it receives CSM_EVENT_INIT before starting actual execution.

o For a non-compliant component, launchFunc does the actual
component initialization. There are two ways this can be implemented:

- If the SSM wrapper function is to be used (default for
non-compliant comps), the routine is passed to the wrapper
function to be called later when the CSM allows the component to
initialize.

- If the component opts not to use the wrapper routine,
SSM calls the routine directly when the CSM decides the component
can be started.

The following table summarizes this usage scenario:
/ts
SSI Aware	USE SSI Wrapper	Init Routine	Init Routine Usage
FALSE | FALSE | Required | SSM calls routine to

| | | initialize the component.
----------|-----------------|--------------|-----------------------------
FALSE | TRUE | Reuired | Wrapper task calls routine

| | | to initialize the component.
----------|-----------------|--------------|-----------------------------
TRUE | FALSE | TRUE | NULL | Component to be launched by

| | | some other means.
----------|-----------------|--------------|-----------------------------
TRUE | FALSE | TRUE | Defined | SSM calls routine to launch

| | | the component.
----------|-----------------|--------------|-----------------------------
/te

The routine should return its state after the initialization and should not
block even if the "ready" state is not returned. The implication of this
is that dependent components may not be able to proceed.

VxWorks Kernel API Reference, 6.6
ssmCompRegister()

916

If the component is running in its own thread, it should send the
CSM_EVENT_READY eventually. Otherwise, it is recommended that the
component uses the default SSM wrapper.

For RTPs, the launch routine is the name of the RTP executable.

For kernel components, if the registration data is obtained from a storage
medium, the launch routine field can be 0, in which case the process that
is parsing the data has to lookup the component's name in a symbol table
to get the initialization function address. If the registration data is
input dynamically, the caller of the registration routine may have to pass
a function pointer. This is especially true for downloadable kernel
modules.

The initialization routine has the following function prototype:

 STATUS compLaunch (csmStatus_t * pStatus);

pArgs points to an ASCCII character string. For kernel components,
string format varies from component to component. For RTP components, the
string format should include the RTP executable path and name and other
RTP attributes including initial arguments.

pOpts represents 0 or more comma-separated strings indicating options.
The strings could be one of the following:

"nowarpper" implies that the component does not opt to use the default
SSM wrapper routine. Unless the "ssmaware" option is specified, the
component's launch/initialization routine is directly called when the
CSM allows the component to initialize.

"compliant" implies that component is SSI aware, meaning that the
component is compliant with the rules of the SSI system. For SSI aware
components, the SSM will simply call the component's registered
initialization/launch routine when it is time to launch the component.
Subsequently, the initialization process proceeds in the component's own
thread or in the thread of the SSM.

"multinst" implies that the component can be started multiple times. This
option affects the component's state table. By default, the CSM considers
it an error if it receives a CSM_EV_CREATED event.

2 Routines
stat()

917

2

RETURNS ERROR if the component cannot be registered.

ERRNO N/A

SEE ALSO ssiDb

startupScriptFieldSplit()

NAME startupScriptFieldSplit() – Split the startup script field of the bootline

SYNOPSIS char * startupScriptFieldSplit
 (
 char * field
)

DESCRIPTION This routine splits the startup script field of the bootline at the first occurence of a #
character and null-terminates it at that location. The text before the # is the name of a
traditional startup script file containing shell commands. Everything following the first # is
part of a list of RTP's to startup.

RETURNS Pointer to a string containing the name of a shell startup script
or NULL.

ERRNO N/A.

SEE ALSO usrRtpStartup, the VxWorks programmer guides.

stat()

NAME stat() – get file status information using a pathname (POSIX)

SYNOPSIS STATUS stat
 (
 const char * name, /* name of file to check */
 struct stat *pStat /* pointer to stat structure */
)

VxWorks Kernel API Reference, 6.6
statfs()

918

DESCRIPTION This routine obtains various characteristics of a file (or directory). This routine is equivalent
to fstat(), except that the name of the file is specified, rather than an open file descriptor.

The pStat parameter is a pointer to a stat structure (defined in stat.h). This structure must
have already been allocated before this routine is called.

NOTE When used with netDrv devices (FTP or RSH), stat() returns the size of the file and always
sets the mode to regular; stat() does not distinguish between files, directories, links, etc.

Upon return, the fields in the stat structure are updated to reflect the characteristics of the
file.

RETURNS OK or ERROR, from the underlying io commands open(), ioctl(), or close().

ERRNO See open(), ioctl(), and close().

SEE ALSO dirLib, fstat(), ls()

statfs()

NAME statfs() – get file status information using a pathname (POSIX)

SYNOPSIS STATUS statfs
 (
 char *name, /* name of file to check */
 struct statfs *pStat /* pointer to statfs structure */
)

DESCRIPTION This routine obtains various characteristics of a file system. This routine is equivalent to
fstatfs(), except that the name of the file is specified, rather than an open file descriptor.

The pStat parameter is a pointer to a statfs structure (defined in stat.h). This structure must
have already been allocated before this routine is called.

Upon return, the fields in the statfs structure are updated to reflect the characteristics of the
file.

RETURNS OK or ERROR, from the underlying IO commands open(), ioctl(), close().

ERRNO EBADF
Bad file descriptor number.

S_ioLib_UNKNOWN_REQUEST (ENOSYS)
Device driver does not support the ioctl command.

2 Routines
swab()

919

2

ELOOP
Circular symbolic link, too many links.

EMFILE
Maximum number of files already open.

S_iosLib_DEVICE_NOT_FOUND (ENODEV)
No valid device name found in path.

Other
Other errors reported by device driver.

SEE ALSO dirLib, fstatfs(), ls()

strFree()

NAME strFree() – free shell strings

SYNOPSIS void strFree
 (
 char * string /* shell string pointer to free, or 0, or -1 */
)

DESCRIPTION This command free strings allocated within the shell. If string is NULL, all allocated strings
are displayed. If string is -1, all allocated strings are freed.

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, the VxWorks programmer guides.

swab()

NAME swab() – swap bytes

SYNOPSIS void swab
 (
 char *source, /* pointer to source buffer */
 char *destination, /* pointer to destination buffer */
 int nbytes /* number of bytes to exchange */
)

VxWorks Kernel API Reference, 6.6
symAdd()

920

DESCRIPTION This routine gets the specified number of bytes from source, exchanges the adjacent even and
odd bytes, and puts them in destination. The buffers source and destination should not
overlap.

NOTE: On some CPUs, swab() will cause an exception if the buffers are unaligned. In such
cases, use uswab() for unaligned swaps. On ARM family CPUs, swab() may reorder the
bytes incorrectly without causing an exception if the buffers are unaligned. Again, use
uswab() for unaligned swaps.

The value of nBytes must not be odd. Failure to adhere to this may yield incorrect results.

RETURNS N/A

ERRNO N/A

SEE ALSO bLib, uswab()

symAdd()

NAME symAdd() – create and add a symbol to a symbol table, including a group number

SYNOPSIS STATUS symAdd
 (
 SYMTAB_ID symTblId, /* symbol table to add symbol to */
 char *name, /* pointer to symbol name string */
 char *value, /* symbol address */
 SYM_TYPE type, /* symbol type */
 UINT16 group /* symbol group */
)

DESCRIPTION This routine allocates a symbol with the specified name, value, type, and group and adds it to
the symbol table specified by the symTblId parameter.

The group parameter specifies the group number assigned to a module when it is loaded; see
the manual entry for moduleLib.

RETURNS OK, or ERROR if the symbol table is invalid there is insufficient memory for the symbol to
be allocated, or any other fatal error occurs.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

+ S_symLib_INVALID_SYMBOL_NAME

+ S_symLib_NAME_CLASH

2 Routines
symByValueAndTypeFind()

921

2

For a complete description of the errnos, see the reference documentation for symLib.

SEE ALSO symLib, moduleLib

symByValueAndTypeFind()

NAME symByValueAndTypeFind() – look up a symbol by value and type

SYNOPSIS STATUS symByValueAndTypeFind
 (
 SYMTAB_ID symTblId, /* ID of symbol table to look in */
 UINT value, /* value of symbol to find */
 char ** pName, /* where to return symbol name string */
 int * pValue, /* where to put symbol value */
 SYM_TYPE * pType, /* where to put symbol type */
 SYM_TYPE sType, /* symbol type to look for */
 SYM_TYPE mask /* bits in <sType> to pay attention to */
)

DESCRIPTION This routine searches a symbol table for a symbol matching both the specified value and the
specified type (value and sType). If there is no matching entry, it returns the table entry with
the next lowest value (among entries with matching type). A pointer to the symbol name
string (with terminating EOS) is returned in pName. The actual value and the type are
copied to pValue and pType. The mask parameter can be used to match sub-classes of type.

pName is a pointer to memory allocated by symByValueAndTypeFind; the memory must
be freed by the caller after the use of pName.

To search the global VxWorks symbol table, specify sysSymTbl as the symTblId parameter.

RETURNS OK or ERROR if symTblId is invalid, pName is NULL, or value is less than the lowest value in
the table.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

+ S_symLib_INVALID_SYM_ID_PTR

+ S_symLib_SYMBOL_NOT_FOUND

For a complete description of the errnos, see the reference documentation for symLib.

SEE ALSO symLib, symFindSymbol()

VxWorks Kernel API Reference, 6.6
symByValueFind()

922

symByValueFind()

NAME symByValueFind() – look up a symbol by value

SYNOPSIS STATUS symByValueFind
 (
 SYMTAB_ID symTblId, /* ID of symbol table to look in */
 UINT value, /* value of symbol to find */
 char ** pName, /* where return symbol name string */
 int * pValue, /* where to put symbol value */
 SYM_TYPE * pType /* where to put symbol type */
)

DESCRIPTION This routine searches a symbol table for a symbol whose value matches the specified value.
If there is no matching entry, it chooses the table entry with the next lowest value. A pointer
to the symbol name string (with terminating EOS) is returned in pName. The actual value
and the type are copied to the memory pointed to by pValue and pType.

pName is a pointer to memory allocated by symByValueFind, not to an internal copy of the
symbol's name; the memory must be freed by the caller after the use of pName.

To search the global VxWorks symbol table, specify sysSymTbl as the symTblId parameter.

RETURNS OK or ERROR if symTblId is invalid, pName is NULL, or value is less than the lowest value in
the table.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

+ S_symLib_INVALID_SYM_ID_PTR

+ S_symLib_SYMBOL_NOT_FOUND

For a complete description of the errnos, see the reference documentation for symLib.

SEE ALSO symLib, symByValueAndTypeFind()

symEach()

NAME symEach() – call a routine to examine each entry in a symbol table

SYNOPSIS SYMBOL * symEach
 (
 SYMTAB_ID symTblId, /* pointer to symbol table */
 FUNCPTR routine, /* func to call for each tbl entry */

2 Routines
symFindByName()

923

2

 int routineArg /* arbitrary user-supplied arg */
)

DESCRIPTION This routine calls a user-supplied routine to examine each entry in the symbol table; it calls
the specified routine once for each entry. The routine should be declared as follows:

 BOOL routine
 (
 char * name, /* symbol/entry name */
 int val, /* symbol/entry value */
 SYM_TYPE type, /* symbol/entry type */
 int arg, /* arbitrary user-supplied arg */
 UINT16 group /* symbol/entry group number */
)

The user-supplied routine should return TRUE if symEach() is to continue calling it for each
entry, or FALSE if it is done and symEach() can exit.

RETURNS A pointer to the last symbol reached, or NULL if all symbols are reached or there is an error.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

For a complete description of the errnos, see the reference documentation for symLib.

SEE ALSO symLib

symFindByName()

NAME symFindByName() – look up a symbol by name

SYNOPSIS STATUS symFindByName
 (
 SYMTAB_ID symTblId, /* ID of symbol table to look in */
 char * name, /* symbol name to look for */
 char ** pValue, /* where to return symbol value */
 SYM_TYPE * pType /* where to return symbol type */
)

DESCRIPTION This routine searches a symbol table for a symbol matching the specified name. If a symbol
is found, its value and type are copied to the memory pointed to by pValue and pType.

If multiple symbols have the same name, the routine returns the matching symbol most
recently added to the symbol table.

To search the global VxWorks (kernel) symbol table, specify sysSymTbl as the symTblId.

VxWorks Kernel API Reference, 6.6
symFindByNameAndType()

924

RETURNS OK, or ERROR if the symbol table ID is invalid or the symbol cannot be found.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

+ S_symLib_INVALID_SYM_ID_PTR

+ S_symLib_SYMBOL_NOT_FOUND

For a complete description of the errnos, see the reference documentation for symLib.

SEE ALSO symLib

symFindByNameAndType()

NAME symFindByNameAndType() – look up a symbol by name and type

SYNOPSIS STATUS symFindByNameAndType
 (
 SYMTAB_ID symTblId, /* ID of symbol table to look in */
 char * name, /* symbol name to look for */
 char ** pValue, /* where to put symbol value */
 SYM_TYPE * pType, /* where to put symbol type */
 SYM_TYPE sType, /* symbol type to look for */
 SYM_TYPE mask /* bits in <sType> to pay attention to */
)

DESCRIPTION This routine searches a symbol table for a symbol with matching name and type (name and
sType). If the symbol is found, its value and type are copied to the memory pointed to by
the pointers pValue and pType. The mask parameter can be used to match sub-classes of
type.

To search the global VxWorks (kernel) symbol table, specify sysSymTbl as the symTblId
parameter.

RETURNS OK, or ERROR if the symbol table ID is invalid or the symbol is not found.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

+ S_symLib_INVALID_SYM_ID_PTR

+ S_symLib_SYMBOL_NOT_FOUND

For a complete description of the errnos, see the reference documentation for symLib.

2 Routines
symFindByValue()

925

2

SEE ALSO symLib

symFindByValue()

NAME symFindByValue() – look up a symbol by value

SYNOPSIS STATUS symFindByValue
 (
 SYMTAB_ID symTblId, /* ID of symbol table to look in */
 UINT value, /* value of symbol to find */
 char * name, /* where to put symbol name string */
 int * pValue, /* where to put symbol value */
 SYM_TYPE * pType /* where to put symbol type */
)

DESCRIPTION This routine is obsolete. It is replaced by symByValueFind() and will be removed in the
next version of VxWorks.

This routine searches a symbol table for a symbol matching a specified value. If there is no
matching entry, it chooses the table entry with the next lowest value. The symbol name
(with terminating EOS), the actual value, and the type are copied to name, pValue, and pType.

For the name buffer, allocate MAX_SYS_SYM_LEN + 1 bytes. The value MAX_SYS_SYM_LEN
is defined in sysSymTbl.h. If the name of the symbol is longer than MAX_SYS_SYM_LEN
bytes, it will be truncated to fit into the buffer. Whether or not the name was truncated, the
string returned in the buffer will be null-terminated.

To search the global VxWorks symbol table, specify sysSymTbl as the symTblId parameter.

RETURNS OK, or ERROR if symTblId is invalid or value is less than the lowest value in the table.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

+ S_symLib_INVALID_SYM_ID_PTR

+ S_symLib_SYMBOL_NOT_FOUND

For a complete description of the errnos, see the reference documentation for symLib.

SEE ALSO symLib

VxWorks Kernel API Reference, 6.6
symFindByValueAndType()

926

symFindByValueAndType()

NAME symFindByValueAndType() – look up a symbol by value and type

SYNOPSIS STATUS symFindByValueAndType
 (
 SYMTAB_ID symTblId, /* ID of symbol table to look in */
 UINT value, /* value of symbol to find */
 char * name, /* where to put symbol name string */
 int * pValue, /* where to put symbol value */
 SYM_TYPE * pType, /* where to put symbol type */
 SYM_TYPE sType, /* symbol type to look for */
 SYM_TYPE mask /* bits in <sType> to pay attention to */
)

DESCRIPTION This routine is obsolete. It is replaced by the routine symByValueAndTypeFind() and will
be removed in the next version of VxWorks.

This routine searches a symbol table for a symbol matching both the specified value and
type (value and sType). If there is no matching entry, it returns the symbol table entry with
the next lowest value. The symbol name (with terminating EOS), the actual value, and the
type are copied to the memory pointed to by name, pValue, and pType. The mask parameter
can be used to match sub-classes of type.

For the name buffer, allocate MAX_SYS_SYM_LEN + 1 bytes. The value MAX_SYS_SYM_LEN
is defined in sysSymTbl.h. If the name of the symbol is longer than MAX_SYS_SYM_LEN
bytes, it will be truncated to fit into the buffer. Whether or not the name was truncated, the
string returned in the buffer will be null-terminated.

To search the global VxWorks symbol table, specify sysSymTbl as the symTblId parameter.

RETURNS OK, or ERROR if symTblId is invalid or value is less than the lowest value in the table.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

+ S_symLib_INVALID_SYM_ID_PTR

+ S_symLib_SYMBOL_NOT_FOUND

For a complete description of the errnos, see the reference documentation for symLib.

SEE ALSO symLib

2 Routines
symRemove()

927

2

symLibInit()

NAME symLibInit() – initialize the symbol table library

SYNOPSIS STATUS symLibInit (void)

DESCRIPTION This routine initializes the symbol table library. If the configuration macro
INCLUDE_SYM_TBL is defined, symLibInit() is called by the root task, usrRoot(), in
usrConfig.c.

RETURNS OK, or ERROR if the library could not be initialized.

ERRNO Not Available

SEE ALSO symLib

symRemove()

NAME symRemove() – remove a symbol from a symbol table

SYNOPSIS STATUS symRemove
 (
 SYMTAB_ID symTblId, /* symbol tbl to remove symbol from */
 char *name, /* name of symbol to remove */
 SYM_TYPE type /* type of symbol to remove */
)

DESCRIPTION This routine removes a symbol with matching name and type from a specified symbol table.
The symbol is deallocated if found.

Note that VxWorks symbols in a standalone VxWorks image (where the symbol table is
linked in) cannot be removed.

RETURNS OK, or ERROR if the symbol is not found or could not be deallocated.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

+ S_symLib_INVALID_SYM_ID_PTR

+ S_symLib_SYMBOL_NOT_FOUND

For a complete description of the errnos, see the reference documentation for symLib.

VxWorks Kernel API Reference, 6.6
symShow()

928

SEE ALSO symLib

symShow()

NAME symShow() – show the symbols of specified symbol table with matching substring

SYNOPSIS STATUS symShow
 (
 SYMTAB_ID pSymTbl, /* ID of symbol table involved */
 char * substr /* substring to match */
)

DESCRIPTION This routine lists all symbols in the specified symbol table whose names contain the string
substr. If substr is an empty string (""), all symbols in the table will be listed. If substr is NULL
then the symbol table structure will be summarized

EXAMPLES The system symbol table ID is stored in the global variable sysSymTbl.

Look for a symbol containing the "vxWorks" substring (C shell):

-> symShow (sysSymTbl, "vxWorks")

Print out general information from the system symbol table (C shell):

-> symShow (sysSymTbl, 0)

Print all symbols contained in the system symbol table (C shell):

-> symShow (sysSymTbl,"")

RETURNS OK, or ERROR if the symbol table ID is invalid

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

For a complete description of the errnos, see the reference documentation for symShow.

SEE ALSO symShow, symLib, symEach()

2 Routines
symTblCreate()

929

2

symShowInit()

NAME symShowInit() – initialize symbol table show routine

SYNOPSIS void symShowInit (void)

DESCRIPTION This routine links the symbol table show facility into the VxWorks system. It is called
automatically when the symbol table show facility is configured into VxWorks by including
the INCLUDE_SYM_TBL_SHOW component.

RETURNS N/A

ERRNO Not Available

SEE ALSO symShow

symTblCreate()

NAME symTblCreate() – create a symbol table

SYNOPSIS SYMTAB_ID symTblCreate
 (
 int hashSizeLog2, /* size of hash table as a power of 2 */
 BOOL sameNameOk, /* allow 2 symbols of same name & type */
 PART_ID symPartId /* memory part ID for symbol allocation */
)

DESCRIPTION This routine creates and initializes a symbol table with a hash table of a specified size. The
size of the hash table is specified as a power of two. For example, if hashSizeLog2 is 6, a
64-entry hash table is created.

If the sameNameOk parameter is FALSE, attempting to add a symbol with the same name and
type as an already-existing symbol in the symbol table will result in an error. This behavior
cannot be changed once the symbol table has been created.

Memory for storing symbols as they are added to the symbol table will be allocated from the
memory partition symPartId. Note: the ID of the system memory partition is stored in the
global variable memSysPartId, which is declared in memLib.h.

RETURNS Symbol table ID, or NULL if sufficient memory is not available or another fatal error
occurred.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
symTblDelete()

930

SEE ALSO symLib

symTblDelete()

NAME symTblDelete() – delete a symbol table

SYNOPSIS STATUS symTblDelete
 (
 SYMTAB_ID symTblId /* ID of symbol table to delete */
)

DESCRIPTION This routine deletes a specified symbol table. It deallocates all associated memory,
including the hash table, and marks the table as invalid.

An attempt to delete a table that still contains symbols will return ERROR. Successful
deletion includes the deletion of the internal hash table and the deallocation of memory
associated with the table. The table is marked invalid to prohibit any future references.

RETURNS OK, or ERROR if the symbol table ID is invalid or if there was a problem.

ERRNO Possible errnos set by this routine include:

+ S_symLib_INVALID_SYMTAB_ID

+ S_symLib_TABLE_NOT_EMPTY

For a complete description of the errnos, see the reference documentation for symLib.

SEE ALSO symLib

sysAuxClkConnect()

NAME sysAuxClkConnect() – connect a routine to the auxiliary clock interrupt

SYNOPSIS STATUS sysAuxClkConnect
 (
 FUNCPTR routine, /* routine called at each aux clock interrupt */
 int arg /* argument to auxiliary clock interrupt routine */
)

DESCRIPTION This routine specifies the interrupt service routine to be called at each auxiliary clock
interrupt. It does not enable auxiliary clock interrupts.

2 Routines
sysAuxClkEnable()

931

2

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the routine cannot be connected to the interrupt.

ERRNO Not Available

SEE ALSO sysLib, intConnect(), sysAuxClkEnable(), and BSP-specific reference pages for this
routine.

sysAuxClkDisable()

NAME sysAuxClkDisable() – turn off auxiliary clock interrupts

SYNOPSIS void sysAuxClkDisable (void)

DESCRIPTION This routine disables auxiliary clock interrupts.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO sysLib, sysAuxClkEnable(), and BSP-specific reference pages for this routine.

sysAuxClkEnable()

NAME sysAuxClkEnable() – turn on auxiliary clock interrupts

SYNOPSIS void sysAuxClkEnable (void)

DESCRIPTION This routine enables auxiliary clock interrupts.

VxWorks Kernel API Reference, 6.6
sysAuxClkRateGet()

932

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO sysLib, sysAuxClkConnect(), sysAuxClkDisable(), sysAuxClkRateSet(), and
BSP-specific reference pages for this routine.

sysAuxClkRateGet()

NAME sysAuxClkRateGet() – get the auxiliary clock rate

SYNOPSIS int sysAuxClkRateGet (void)

DESCRIPTION This routine returns the interrupt rate of the auxiliary clock.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS The number of ticks per second of the auxiliary clock.

ERRNO Not Available

SEE ALSO sysLib, sysAuxClkEnable(), sysAuxClkRateSet(), and BSP-specific reference pages for
this routine.

sysAuxClkRateSet()

NAME sysAuxClkRateSet() – set the auxiliary clock rate

SYNOPSIS STATUS sysAuxClkRateSet
 (
 int ticksPerSecond /* number of clock interrupts per second */
)

2 Routines
sysBusIntAck()

933

2

DESCRIPTION This routine sets the interrupt rate of the auxiliary clock. It does not enable auxiliary clock
interrupts.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the tick rate is invalid or the timer cannot be set.

ERRNO Not Available

SEE ALSO sysLib, sysAuxClkEnable(), sysAuxClkRateGet(), and BSP-specific reference pages for
this routine.

sysBspRev()

NAME sysBspRev() – return the BSP version and revision number

SYNOPSIS char * sysBspRev (void)

DESCRIPTION This routine returns a pointer to a BSP version and revision number, for example, 1.0/1.
BSP_REV is concatenated to BSP_VERSION and returned.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS A pointer to the BSP version/revision string.

ERRNO Not Available

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysBusIntAck()

NAME sysBusIntAck() – acknowledge a bus interrupt

SYNOPSIS int sysBusIntAck

VxWorks Kernel API Reference, 6.6
sysBusIntGen()

934

 (
 int intLevel /* interrupt level to acknowledge */
)

DESCRIPTION This routine acknowledges a specified VMEbus interrupt level.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS NULL.

ERRNO Not Available

SEE ALSO sysLib, sysBusIntGen(), and BSP-specific reference pages for this routine.

sysBusIntGen()

NAME sysBusIntGen() – generate a bus interrupt

SYNOPSIS STATUS sysBusIntGen
 (
 int intLevel, /* bus interrupt level to generate */
 int vector /* interrupt vector to generate (0-255) */
)

DESCRIPTION This routine generates a bus interrupt for a specified level with a specified vector.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if intLevel is out of range or the board cannot generate a bus interrupt.

ERRNO Not Available

SEE ALSO sysLib, sysBusIntAck(), and BSP-specific reference pages for this routine.

2 Routines
sysBusToLocalAdrs()

935

2

sysBusTas()

NAME sysBusTas() – test and set a location across the bus

SYNOPSIS BOOL sysBusTas
 (
 char * adrs /* address to be tested and set */
)

DESCRIPTION This routine performs a test-and-set instruction across the backplane.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

NOTE This routine is equivalent to vxTas().

RETURNS TRUE if the value had not been set but is now, or FALSE if the value was set already.

ERRNO Not Available

SEE ALSO sysLib, vxTas(), and BSP-specific reference pages for this routine.

sysBusToLocalAdrs()

NAME sysBusToLocalAdrs() – convert a bus address to a local address

SYNOPSIS STATUS sysBusToLocalAdrs
 (
 int adrsSpace, /* bus address space in which busAdrs resides */
 char * busAdrs, /* bus address to convert */
 char ** pLocalAdrs /* where to return local address */
)

DESCRIPTION This routine gets the local address that accesses a specified bus memory address.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the address space is unknown or the mapping is not possible.

VxWorks Kernel API Reference, 6.6
sysClkConnect()

936

ERRNO Not Available

SEE ALSO sysLib, sysLocalToBusAdrs(), and BSP-specific reference pages for this routine.

sysClkConnect()

NAME sysClkConnect() – connect a routine to the system clock interrupt

SYNOPSIS STATUS sysClkConnect
 (
 FUNCPTR routine, /* routine called at each system clock interrupt */
 int arg /* argument with which to call routine */
)

DESCRIPTION This routine specifies the interrupt service routine to be called at each clock interrupt.
Normally, it is called from usrRoot() in usrConfig.c to connect usrClock() to the system
clock interrupt.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURN OK, or ERROR if the routine cannot be connected to the interrupt.

RETURNS Not Available

ERRNO Not Available

SEE ALSO sysLib, intConnect(), usrClock(), sysClkEnable(), and BSP-specific reference pages for
this routine.

sysClkDisable()

NAME sysClkDisable() – turn off system clock interrupts

SYNOPSIS void sysClkDisable (void)

DESCRIPTION This routine disables system clock interrupts.

2 Routines
sysClkRateGet()

937

2

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO sysLib, sysClkEnable(), and BSP-specific reference pages for this routine.

sysClkEnable()

NAME sysClkEnable() – turn on system clock interrupts

SYNOPSIS void sysClkEnable (void)

DESCRIPTION This routine enables system clock interrupts.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO sysLib, sysClkConnect(), sysClkDisable(), sysClkRateSet(), and BSP-specific reference
pages for this routine.

sysClkRateGet()

NAME sysClkRateGet() – get the system clock rate

SYNOPSIS int sysClkRateGet (void)

DESCRIPTION This routine returns the system clock rate.

VxWorks Kernel API Reference, 6.6
sysClkRateSet()

938

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS The number of ticks per second of the system clock.

ERRNO Not Available

SEE ALSO sysLib, sysClkEnable(), sysClkRateSet(), and BSP-specific reference pages for this
routine.

sysClkRateSet()

NAME sysClkRateSet() – set the system clock rate

SYNOPSIS STATUS sysClkRateSet
 (
 int ticksPerSecond /* number of clock interrupts per second */
)

DESCRIPTION This routine sets the interrupt rate of the system clock. It is called by usrRoot() in
usrConfig.c.

There may be interactions between this routine and the POSIX clockLib routines. Refer to
the clockLib reference entry.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the tick rate is invalid or the timer cannot be set.

ERRNO Not Available

SEE ALSO sysLib, sysClkEnable(), sysClkRateGet(), clockLib, and BSP-specific reference pages for
this routine.

2 Routines
sysIntDisable()

939

2

sysHwInit()

NAME sysHwInit() – initialize the system hardware

SYNOPSIS void sysHwInit (void)

DESCRIPTION This routine initializes various features of the board. It is called from usrInit() in
usrConfig.c.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

NOTE This routine should not be called directly by the user application.

RETURNS N/A

ERRNO Not Available

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysIntDisable()

NAME sysIntDisable() – disable a bus interrupt level

SYNOPSIS STATUS sysIntDisable
 (
 int intLevel /* interrupt level to disable */
)

DESCRIPTION This routine disables a specified bus interrupt level.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if intLevel is out of range.

ERRNO Not Available

SEE ALSO sysLib, sysIntEnable(), and BSP-specific reference pages for this routine.

VxWorks Kernel API Reference, 6.6
sysIntEnable()

940

sysIntEnable()

NAME sysIntEnable() – enable a bus interrupt level

SYNOPSIS STATUS sysIntEnable
 (
 int intLevel /* interrupt level to enable (1-7) */
)

DESCRIPTION This routine enables a specified bus interrupt level.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if intLevel is out of range.

ERRNO Not Available

SEE ALSO sysLib, sysIntDisable(), and BSP-specific reference pages for this routine.

sysLocalToBusAdrs()

NAME sysLocalToBusAdrs() – convert a local address to a bus address

SYNOPSIS STATUS sysLocalToBusAdrs
 (
 int adrsSpace, /* bus address space in which busAdrs resides */
 char * localAdrs, /* local address to convert */
 char ** pBusAdrs /* where to return bus address */
)

DESCRIPTION This routine gets the bus address that accesses a specified local memory address.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the address space is unknown or not mapped.

ERRNO Not Available

2 Routines
sysMailboxEnable()

941

2

SEE ALSO sysLib, sysBusToLocalAdrs(), and BSP-specific reference pages for this routine.

sysMailboxConnect()

NAME sysMailboxConnect() – connect a routine to the mailbox interrupt

SYNOPSIS STATUS sysMailboxConnect
 (
 FUNCPTR routine, /* routine called at each mailbox interrupt */
 int arg /* argument with which to call routine */
)

DESCRIPTION This routine specifies the interrupt service routine to be called at each mailbox interrupt.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the routine cannot be connected to the interrupt.

ERRNO Not Available

SEE ALSO sysLib, intConnect(), sysMailboxEnable(), and BSP-specific reference pages for this
routine.

sysMailboxEnable()

NAME sysMailboxEnable() – enable the mailbox interrupt

SYNOPSIS STATUS sysMailboxEnable
 (
 char * mailboxAdrs /* address of mailbox (ignored) */
)

DESCRIPTION This routine enables the mailbox interrupt.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

VxWorks Kernel API Reference, 6.6
sysMemTop()

942

RETURNS OK, always.

ERRNO Not Available

SEE ALSO sysLib, sysMailboxConnect(), and BSP-specific reference pages for this routine.

sysMemTop()

NAME sysMemTop() – get the address of the top of logical memory

SYNOPSIS char * sysMemTop (void)

DESCRIPTION This routine returns the address of the top of memory.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS The address of the top of memory.

ERRNO Not Available

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysModel()

NAME sysModel() – return the model name of the CPU board

SYNOPSIS char * sysModel (void)

DESCRIPTION This routine returns the model name of the CPU board.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS A pointer to a string containing the board name.

ERRNO Not Available

2 Routines
sysNetMacNVRamAddrGet()

943

2

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysNanoDelay()

NAME sysNanoDelay() – delay for specified number of nanoseconds

SYNOPSIS void sysNanoDelay
 (
 UINT32 nanoseconds /* nanoseconds to delay */
)

DESCRIPTION This is an optional API for BSPs to provide. Some, but not all, drivers do require the BSP to
implement this function.

When implemented, this function implements a spin loop type delay for at least the
specified number of nanoseconds. This is not a task delay, control of the processor is not
given up to another task. The actual delay must be equal to or greater than the requested
number of nanoseconds.

The purpose of this function is to provide a reasonably accurate time delay of very short
duration. It should not be used for any delays that are much greater than two system clock
ticks in length. For delays of a full clock tick, or more, the use of taskDelay() is
recommended.

This routine should be implemented as interrupt safe.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A.

ERRNO Not Available

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysNetMacNVRamAddrGet()

NAME sysNetMacNVRamAddrGet() – get network MAC address from NVRAM

SYNOPSIS STATUS sysNetMacNVRamAddrGet

VxWorks Kernel API Reference, 6.6
sysNvRamGet()

944

 (
 char * ifName,
 int ifUnit,
 UINT8 * ifMacAddr,
 int ifMacAddrLen
)

DESCRIPTION This routine gets the current MAC address from the
Non Volatile RAM, and store it in the ifMacAddr
buffer provided by the caller.

It is not required for the BSP to provide NVRAM to store
the MAC address. Also, some interfaces do not allow
the MAC address to be set by software. In either of
these cases, this routine simply returns ERROR.

Given a MAC address m0:m1:m2:m3:m4:m5, the byte order
of ifMacAddr is:

m0 @ ifMacAddr
m1 @ ifMacAddr + 1
m2 @ ifMacAddr + 2
m3 @ ifMacAddr + 3
m4 @ ifMacAddr + 4
m5 @ ifMacAddr + 5

RETURNS OK, if MAC address available, ERROR otherwise

ERRNO Not Available

SEE ALSO vxbNonVolLib

sysNvRamGet()

NAME sysNvRamGet() – get the contents of non-volatile RAM

SYNOPSIS STATUS sysNvRamGet
 (
 char * string, /* where to copy non-volatile RAM */
 int strLen, /* maximum number of bytes to copy */
 int offset /* byte offset into non-volatile RAM */
)

2 Routines
sysNvRamSet()

945

2

DESCRIPTION This routine copies the contents of non-volatile memory into a specified string. The string
will be terminated with an EOS.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if access is outside the non-volatile RAM address range.

ERRNO Not Available

SEE ALSO sysLib, sysNvRamSet(), and BSP-specific reference pages for this routine.

sysNvRamSet()

NAME sysNvRamSet() – write to non-volatile RAM

SYNOPSIS STATUS sysNvRamSet
 (
 char * string, /* string to be copied into non-volatile RAM */
 int strLen, /* maximum number of bytes to copy */
 int offset /* byte offset into non-volatile RAM */
)

DESCRIPTION This routine copies a specified string into non-volatile RAM.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if access is outside the non-volatile RAM address range.

ERRNO Not Available

SEE ALSO sysLib, sysNvRamGet(), and BSP-specific reference pages for this routine.

VxWorks Kernel API Reference, 6.6
sysPhysMemTop()

946

sysPhysMemTop()

NAME sysPhysMemTop() – get the address of the top of memory

SYNOPSIS char * sysPhysMemTop (void)

DESCRIPTION This routine returns the address of the first missing byte of memory, which indicates the top
of memory.

Normally, the amount of physical memory is specified with the macro LOCAL_MEM_SIZE.
BSPs that support run-time memory sizing do so only if the macro LOCAL_MEM_AUTOSIZE
is defined. If not defined, then LOCAL_MEM_SIZE is assumed to be, and must be, the true
size of physical memory.

NOTE Do no adjust LOCAL_MEM_SIZE to reserve memory for application use. See sysMemTop()
for more information on reserving memory.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS The address of the top of physical memory.

ERRNO Not Available

SEE ALSO sysLib, sysMemTop(), and BSP-specific reference pages for this routine.

sysProcNumGet()

NAME sysProcNumGet() – get the processor number

SYNOPSIS int sysProcNumGet (void)

DESCRIPTION This routine returns the processor number for the CPU board, which is set with
sysProcNumSet().

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS The processor number for the CPU board.

2 Routines
sysScsiBusReset()

947

2

ERRNO Not Available

SEE ALSO sysLib, sysProcNumSet(), and BSP-specific reference pages for this routine.

sysProcNumSet()

NAME sysProcNumSet() – set the processor number

SYNOPSIS void sysProcNumSet
 (
 int procNum /* processor number */
)

DESCRIPTION This routine sets the processor number for the CPU board. Processor numbers should be
unique on a single backplane.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO sysLib, sysProcNumGet(), and BSP-specific reference pages for this routine.

sysScsiBusReset()

NAME sysScsiBusReset() – assert the RST line on the SCSI bus (Western Digital WD33C93 only)

SYNOPSIS void sysScsiBusReset
 (
 FAST WD_33C93_SCSI_CTRL * pSbic /* ptr to SBIC info */
)

DESCRIPTION This routine asserts the RST line on the SCSI bus, which causes all connected devices to
return to a quiescent state.

VxWorks Kernel API Reference, 6.6
sysScsiConfig()

948

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysScsiConfig()

NAME sysScsiConfig() – system SCSI configuration

SYNOPSIS STATUS sysScsiConfig (void)

DESCRIPTION This is an example SCSI configuration routine.

Most of the code found here is an example of how to declare a SCSI peripheral
configuration. You must edit this routine to reflect the actual configuration of your SCSI
bus. This example can also be found in src/config/usrScsi.c.

If you are just getting started, you can test your hardware configuration by defining
SCSI_AUTO_CONFIG, which will probe the bus and display all devices found. No device
should have the same SCSI bus ID as your VxWorks SCSI port (default = 7), or the same as
any other device. Check for proper bus termination.

There are two configuration examples here. They demonstrate configuration of a SCSI hard
disk (any type) and an OMTI 3500 floppy disk.

Hard Disk The hard disk is divided into two 32-Mbyte partitions and a third partition with the
remainder of the disk.

It is recommended that the first partition (BLK_DEV) on a block device be a dosFs device, if
the intention is eventually to boot VxWorks from the device. This will simplify the task
considerably.

Floppy Disk

The floppy, since it is a removable medium device, is allowed to have only a single partition.

In contrast to the hard disk configuration, the floppy setup in this example is more intricate.
Note that the scsiPhysDevCreate() call is issued twice. The first time is merely to get a
"handle" to pass to scsiModeSelect(), since the default media type is sometimes
inappropriate (in the case of generic SCSI-to-floppy cards). After the hardware is correctly
configured, the handle is discarded via scsiPhysDevDelete(), after which the peripheral is

2 Routines
sysScsiInit()

949

2

correctly configured by a second call to scsiPhysDevCreate(). (Before the
scsiModeSelect() call, the configuration information was incorrect.) Note that after the
scsiBlkDevCreate() call, the correct values for sectorsPerTrack and nHeads must be set via
scsiBlkDevInit(). This is necessary for IBM PC compatibility.

NOTE The variable pSbdFloppy is global to allow the above calls to be made from the VxWorks
shell, for example:

 -> dosFsMkfs "/fd0", pSbdFloppy

If a disk is new, use diskFormat() to format it.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysScsiInit()

NAME sysScsiInit() – initialize an on-board SCSI port

SYNOPSIS STATUS sysScsiInit (void)

DESCRIPTION This routine creates and initializes a SCSI control structure, enabling use of the on-board
SCSI port. It also connects the proper interrupt service routine to the desired vector, and
enables the interrupt at the desired level.

If SCSI DMA is supported by the board and INCLUDE_SCSI_DMA is defined, the DMA is
also initialized.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS OK, or ERROR if the control structure cannot be connected, the controller cannot be
initialized, or the DMA's interrupt cannot be connected.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
sysSerialChanGet()

950

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysSerialChanGet()

NAME sysSerialChanGet() – get the SIO_CHAN device associated with a serial channel

SYNOPSIS SIO_CHAN * sysSerialChanGet
 (
 int channel /* serial channel */
)

DESCRIPTION This routine gets the SIO_CHAN device associated with a specified serial channel.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS A pointer to the SIO_CHAN structure for the channel, or ERROR if the channel is invalid.

ERRNO Not Available

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysSerialHwInit()

NAME sysSerialHwInit() – initialize the BSP serial devices to a quiesent state

SYNOPSIS void sysSerialHwInit (void)

DESCRIPTION This routine initializes the BSP serial device descriptors and puts the devices in a quiesent
state. It is called from sysHwInit() with interrupts locked.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A

ERRNO Not Available

2 Routines
sysSerialReset()

951

2

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysSerialHwInit2()

NAME sysSerialHwInit2() – connect BSP serial device interrupts

SYNOPSIS void sysSerialHwInit2 (void)

DESCRIPTION This routine connects the BSP serial device interrupts. It is called from sysHwInit2(). Serial
device interrupts could not be connected in sysSerialHwInit() because the kernel memory
allocator was not initialized at that point, and intConnect() calls malloc().

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysSerialReset()

NAME sysSerialReset() – reset all SIO devices to a quiet state

SYNOPSIS void sysSerialReset (void)

DESCRIPTION This routine is called from sysToMonitor() to reset all SIO device and prevent them from
generating interrupts or performing DMA cycles.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS N/A

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
sysToMonitor()

952

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

sysToMonitor()

NAME sysToMonitor() – transfer control to the ROM monitor

SYNOPSIS STATUS sysToMonitor
 (
 int startType /* parameter passed to ROM to tell it how to boot */
)

DESCRIPTION This routine transfers control to the ROM monitor. Normally, it is called only by
reboot()--which services ^X--and by bus errors at interrupt level. However, in some
circumstances, the user may wish to introduce a startType to enable special boot ROM
facilities.

NOTE This is a generic page for a BSP-specific routine; this description contains general
information only. To determine if this routine is supported by your BSP, or for information
specific to your BSP's version of this routine, see the reference pages for your BSP.

RETURNS Does not return.

ERRNO Not Available

SEE ALSO sysLib, and BSP-specific reference pages for this routine.

syscallDispatch()

NAME syscallDispatch() – dispatch a system call request to its system call handler

SYNOPSIS STATUS syscallDispatch
 (
 SYSCALL_ENTRY_STATE * pState
)

DESCRIPTION This routine is the system call dispatcher. It decodes a system call number into the group
and routine numbers, and locates the proper handler function to call for the given system
call request. The system call group must have been previously configured at build time, or
registered by calling syscallGroupRegister().

2 Routines
syscallEntryHookAdd()

953

2

Users can hook into the system call dispatch process by attaching entry and exit hook
funcitons. These hooks are installed via functions syscallEntryHookAdd() and
syscallExitHookAdd() respectively.

Entry hooks are called after decoding the system call number and verifying that this is a
valid system call, but before the handler is called. Entry hooks are passed a pointer to the
system call entry state structure as a parameter. Since the state structure contains vital
machine information about the trap conditions, it is recommended that its contents not be
changed. No explicit barriers prevent such a change from being made. However it is the
authors duty to warn you that an ill-considered hook modifying machine state information
can crash the system easily. So please do so only if you must, and with the utmost caution.
If an entry hook does modify state information, the system call handler function sees the
changed values. The state information is architecture-specific. Entry hook functions must
return a STATUS value. Any return value other than OK causes the dispatcher to return
ERROR back to user code instead of calling the system call handler function. Thus, entry
hooks can prevent an otherwise valid system call from being executed.

Exit hooks are called after the system call handler function returns. They are passed the
handler's return value as a parameter. Exit hooks are not expected to return anything.

RETURNS The return value from the system call handler called, or ERROR.

ERRNO ENOSYS
invalid system call request, or no handler function set.

SEE ALSO syscallLib, the VxWorks programmer guides.

syscallEntryHookAdd()

NAME syscallEntryHookAdd() – add a routine to be called on each system call entry

SYNOPSIS STATUS syscallEntryHookAdd
 (
 SYSCALL_ENTRY_HOOK hook, /* routine to call upon system call entry
*/
 BOOL addToHead /* add routine to head of list? */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called when a system
call is made. The hook routine should have the following prototype:

 STATUS syscallEntryHook
 (
 SYSCALL_ENTRY_STATE * pState /* system call entry state */
)

VxWorks Kernel API Reference, 6.6
syscallEntryHookDelete()

954

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,
the new hook is added to the head of the list (in other words, it will be the first hook to
execute).

System call entry hooks are called from the system call dispatcher after the system call is
decoded, but before the handler function is called. Hook functions should return either OK
or ERROR. If the return value from any hook is anything other than OK, the system call is
aborted and ERROR is returned back to the user. Entry hooks can be used to implement
rudimentary authentication schemes by rejecting otherwise valid system calls.

RETURNS OK, or ERROR if the table of hook routines table is full.

ERRNO N/A.

SEE ALSO syscallHookLib, syscallEntryHookDelete()

syscallEntryHookDelete()

NAME syscallEntryHookDelete() – delete a previously added entry hook

SYNOPSIS STATUS syscallEntryHookDelete
 (
 SYSCALL_ENTRY_HOOK hook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified hook routine from the list of system call entry hook
routines.

RETURNS OK on success, or ERROR if the hook routine was not found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO syscallHookLib, syscallPreCreateHookAdd()

syscallExitHookAdd()

NAME syscallExitHookAdd() – add a routine to be called on each system call exit

SYNOPSIS STATUS syscallExitHookAdd

2 Routines
syscallExitHookDelete()

955

2

 (
 SYSCALL_EXIT_HOOK hook, /* routine to call upon system call exit */
 BOOL addToHead /* add routine to head of list? */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called when a system
call is about to return back to the user. The hook routine should have the following
prototype:

 void syscallExitHook
 (
 int returnValue /* system call return value */
)

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,
the new hook is added to the head of the list (in other words, it will be the first hook to
execute).

System call exit hooks are called from the system call dispatcher before the system call exits
back to the user. Exit hooks are not expected to return anything (return values are not
checked).

RETURNS OK, or ERROR if the table of hook routines table is full.

ERRNO N/A.

SEE ALSO syscallHookLib, syscallExitHookDelete()

syscallExitHookDelete()

NAME syscallExitHookDelete() – delete a previously added exit hook

SYNOPSIS STATUS syscallExitHookDelete
 (
 SYSCALL_EXIT_HOOK hook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified hook routine from the list of system call exit hook routines.

RETURNS OK on success, or ERROR if the hook routine was not found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO syscallHookLib, syscallExitHookAdd()

VxWorks Kernel API Reference, 6.6
syscallGroupRegister()

956

syscallGroupRegister()

NAME syscallGroupRegister() – register a system call group with the SCI

SYNOPSIS STATUS syscallGroupRegister
 (
 int groupNum,
 char * groupName,
 int numRoutines,
 SYSCALL_RTN_TBL_ENTRY * pRoutineTbl,
 BOOL force /* forcibly overwrite an existing
*/
 /* entry helps when debugging */
)

DESCRIPTION This routine registers a system call group with the System Call Infrastructure. Registration
is a must, without which user-level code cannot make any system calls to the group in
question.

Users can hook into the registration process by adding a registration hook function using
syscallRegisterHookAdd(). Any attached hooks functions will be called prior to actually
registering the group in question. The hook functions are passed the same parameters as are
passed to this function with the exception of the force parameter. Hook functions are
expected to return a STATUS value. Any return value other than OK causes this function to
return ERROR instead of performing the actual registration. Thus, the registration hook can
prevent an otherwise valid registration operation from proceeding. This function performs
parameter validation prior to calling the registration hooks if any.

RETURNS OK on success, ERROR otherwise.

ERRNO S_syscallLib_UNKNOWN_GROUP

S_syscallLib_GROUP_EXISTS

S_syscallLib_TOO_MANY_ROUTINES

S_syscallLib_NO_ROUTINES_TBL

SEE ALSO syscallLib, syscallRegisterHookAdd(), syscallRegisterHookDelete(), the VxWorks
programmer guides.

2 Routines
syscallMonitor()

957

2

syscallHookShow()

NAME syscallHookShow() – display all installed system call infrastructure hooks

SYNOPSIS void syscallHookShow (void)

DESCRIPTION This routine displays the contents of all three system call infrastructure hook tables - the
entry, exit and registration hook tables.

EXAMPLE The following example shows hypothetical system call hook table contents:

 -> syscallHookShow

 System Call Entry Hook Table:

 entryHook1
 entryHook2
 entryHook3

 System Call Exit Hook Table:

 exitHook

 System Call Registration Hook Table:

 registrationHookA
 registrationHookB
 value = 1 = 0x1
 ->

RETURNS N/A

ERRNOS N/A

SEE ALSO syscallShow, rtpHookShow(), hookShow()

syscallMonitor()

NAME syscallMonitor() – monitor system call activity

SYNOPSIS void syscallMonitor
 (
 int level,
 RTP_ID rtpId
)

VxWorks Kernel API Reference, 6.6
syscallRegisterHookAdd()

958

DESCRIPTION This routine enables/disables system call monitoring activity. It behaves a little like the
BSD ktrace or Solaris truss utilities. Users can monitor either a single or all RTPs in the
system. When monitoring is turned on, all system calls made by the target RTP are
displayed on the console with their argument and return values. This helps monitor all
system calls made by applications.

syscallMonitor works via the system call hook facility (i.e. syscallHookLib) It preserves
other hooks previously installed. Enabling this facility more than once has no effect.

The first parameter enables monitoring (level = 1), or disables it (level = 0). The second
parameter is the RTP_ID of the RTP to monitor system calls for. If it is 0, all RTPs are
monitored.

In SMP version of VxWorks, all actions regarding system calls are guaranteed to be logged
only once syscallMonitor returns.

RETURNS N/A.

ERRNO None.

SEE ALSO syscallShow, the VxWorks programmer guides.

syscallRegisterHookAdd()

NAME syscallRegisterHookAdd() – add hook for system call group registration requests

SYNOPSIS STATUS syscallRegisterHookAdd
 (
 SYSCALL_REGISTER_HOOK hook, /* routine to call upon group
registration */
 BOOL addToHead /* add routine to head of list */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called just before an
system call group is registered. The hook routine should have the following prototype:

 STATUS syscallRegistrationHook
 (
 int groupNum, /* group number */
 char * groupName, /* group name */
 int numRoutines, /* num routines in group */
 SYSCALL_RTN_TBL_ENTRY ** ppRoutineTbl, /* addr of routine table */
)

The second parameter addToHead specifies the order in which the hook is added to the table.
If FALSE, the hook is appended to the list of hooks already installed. If addToHead is TRUE,

2 Routines
syscallShow()

959

2

the new hook is added to the head of the list (in other words, it will be the first hook to
execute).

System call registration hooks are called from syscallGroupRegister() before the
registration is actually done. Each hook function should return either OK or ERROR. If the
return value from any hook is anything other than OK, registration is aborted and ERROR
is returned from syscallGroupRegister(). Registration hooks can be used to implement
rudimentary authentication schemes by rejecting otherwise valid group registration
requests.

RETURNS OK, or ERROR if the table of hook routines table is full.

ERRNO N/A.

SEE ALSO syscallHookLib, syscallRegisterHookDelete()

syscallRegisterHookDelete()

NAME syscallRegisterHookDelete() – delete a previously added registration hook.

SYNOPSIS STATUS syscallRegisterHookDelete
 (
 SYSCALL_REGISTER_HOOK hook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified hook routine from the list of system call registration hook
routines.

RETURNS OK on success, or ERROR if the hook routine was not found.

ERRNO S_hookLib_HOOK_NOT_FOUND

SEE ALSO syscallHookLib, syscallRegisterHookAdd()

syscallShow()

NAME syscallShow() – show registered System Call Groups, or a specific group

SYNOPSIS void syscallShow

VxWorks Kernel API Reference, 6.6
syscallShow()

960

 (
 int grp,
 int level
)

DESCRIPTION This routine shows the registered System Call Groups, as well as details of routines
exported by a specific group. When the level parameter is 0, the grp parameter is ignored,
and all registered groups are shown. The level 0 output (equivalent to syscallShow (0,0)) on
a target shell looks like this:

-> syscallShow
Group Name GroupNo NumRtns Rtn Tbl Addr
-------------------- ------- ------- ------------
STANDARDGroup 8 49 0x00274bc0
VXWORKSGroup 9 51 0x00274ed0
value = 53 = 0x35 = '5'
->

When the level parameter is 1, details of the System Call Group grp are shown. The level 1
output for one the above group looks like this:

-> syscallShow 8,1
System Call Group name: STANDARDGroup
Group Number : 8

Routines provided :
Rtn# Name Address # Arguments
---- ---------------------- ---------- -----------
0 _exit 0x001f88fc 1
1 creat 0x001e631c 2
2 open 0x001e62b8 3
3 close 0x001e643c 1
4 read 0x001e6444 3
5 write 0x001e63d8 3
6 ioctl 0x001e64a8 3
7 dup 0x001e66d0 1
8 dup2 0x001e66d8 2
9 pipe 0x001e66f0 1
10 remove 0x001e637c 1
11 select 0x001e64c4 5
12 socket 0x001aa5e4 3
13 bind 0x001aa6e4 3
14 listen 0x001aa7c4 2
15 accept 0x001aa85c 3
16 connect 0x001aa9a0 3
17 sendto 0x001aac38 6
18 send 0x001aad58 4
19 sendmsg 0x001ab718 3
20 recvfrom 0x001aae34 6
21 recv 0x001aaf7c 4
22 recvmsg 0x001ab5c8 3
23 setsockopt 0x001ab064 5
24 getsockopt 0x001ab164 5
25 getsockname 0x001ab278 3
26 getpeername 0x001ab378 3

2 Routines
sysctl()

961

2

27 shutdown 0x001ab478 2
28 mmap 0x001ed47c 8
29 munmap 0x001ed4a4 2
30 mprotect 0x001ed4bc 3
31 kill 0x001f8c54 2
32 pause 0x001f8bdc 0
33 sigpending 0x001f8bcc 1
34 sigprocmask 0x001f8adc 3
35 _sigqueue 0x001f8cb0 3
36 sigsuspend 0x001f8bd4 1
37 sigtimedwait 0x001f8d34 3
38 _sigaction 0x001f8a2c 4
39 _sigreturn 0x001f8d10 0
40 chdir 0x001e65f4 1
41 _getcwd 0x001e6650 2
42 symlink 0x001e6584 2
43 getpid 0x001f8e64 0
44 getppid 0x001f8e88 0
45 waitpid 0x001f8dd8 3
46 sysctl 0x00164a34 6
47 _schedPxInfoGet 0x001dab00 2
48 sigaltstack 0x001f8af8 2
value = 50 = 0x32 = '2'
->

RETURNS N/A.

ERRNO None.

SEE ALSO syscallShow, the VxWorks programmer guide.

sysctl()

NAME sysctl() – get or set the the values of objects in the sysctl tree

SYNOPSIS int sysctl
 (
 int * pName, /* Name vector of object in MIB style */
 u_int nameLen, /* Number of elements in the name vector */
 void * pOld, /* Buffer to place the current value of object */
 size_t * pOldLen, /* Buffer for the size of current value */
 void * pNew, /* Buffer containing a value to set, if needed */
 size_t newLen /* Size of the buffer containing new value */
)

DESCRIPTION This routine retrieves system state information and allows the setting of system
information, provided that they have appropriate privileges. The information that sysctl
returns will be either an integer, string or table. The state description, hold by the pName

VxWorks Kernel API Reference, 6.6
sysctl()

962

parameter, is in a MIB or Management Information Base style: a vector of integers. The
number of elements in the name vector is specified via the nameLen parameter.

The information is copied into the buffer specified by pOld. The size of the buffer is given by
the location specified by pOldLen before the call, and that location gives the amount of data
copied after a successful call and after a call that returns with the error code ENOMEM. If
the amount of data available is greater than the size of the buffer supplied, the call supplies
as much data as fits in the buffer provided and returns with the error code ENOMEM. If the
old value is not desired, pOld and pOldLen should be set to NULL.

The size of the available data can be determined by calling sysctl() with a NULL parameter
for pOld. The size of the available data will be returned in the location pointed to by
pOldLen. For some operations, the amount of space may change often. For these operations,
the system attempts to round up so that the returned size is large enough for a call to return
the data shortly thereafter.

To set a new value, pNew is set to point to a buffer of length newLen.

If a new value doesn't need to be set, pNew should be set to NULL, and newLen should be set
to 0.

The name vector's elements correspond to a hierarchy of integer values which description
can be found in sys/sysctl.h. The top level names start with the CTL_ prefix, for instance
CTL_KERN. The second level names start with a prefix referring to the top level name they
are related to, for instance KERN_OSTYPE, etc.

For instance to get the name of the CPU family on a target board:

 int mib[4];
 char cpuFamily[10];
 int nameSize = sizeof (cpuFamily);

 /* Fill out the MIB-style name vector */

 mib[0] = CTL_HW;
 mib[1] = HW_PAL;
 mib[2] = HW_PAL_CPU;
 mib[3] = HW_PAL_CPU_FAMILY;

 /* Fetch and print the CPU family name */

 if (sysctl (mib, 4, (void *)&cpuFamily, (size_t *)&nameSize,
 NULL, 0) == -1)
 printf ("Failed getting the CPU family name\n");
 else
 printf ("CPU family name: %s\n", cpuFamily);

RETURNS 0 on success, or -1 if an error occurred.

ERRNO Beside the errnos possibly set by the OID's non-default handler the following errnos may be
set:

2 Routines
sysctl_add_oid()

963

2

EPERM
An attempt is made to set a read-only value.

EINVAL
The name vector has less than two or more than CTL_MAXNAME elements, or the OID
is not a node and has no handler, or the newLen size of the pNew buffer is too small.

ENOMEM
the pOldLen size of the pOld buffer is too small for the requested information to be
stored in this buffer.

ENOENT
The OID does not exist.

EISDIR
The OID is a node without a handler so no information can be set or retreived.

ENOTDIR
One of the OID numbers in the name vector, except for the last element, does not
correspond to a node OID.

SEE ALSO kern_sysctl, sysctlbyname(), sysctlnametomib()

sysctl_add_oid()

NAME sysctl_add_oid() – add a parameter into the sysctl tree during run-time

SYNOPSIS struct sysctl_oid * sysctl_add_oid
 (
 struct sysctl_ctx_list * clist,
 struct sysctl_oid_list * parent,
 int number,
 const char * name,
 int kind,
 void * arg1,
 int arg2,
 int (*handler)(SYSCTL_HANDLER_ARGS),
 const char * fmt,
 const char * descr
)

DESCRIPTION This routine allows the dynamic addition of a parameter that needs to be accessed via sysctl.
To use this API, the following arguments are needed.

clist
This is always set to NULL since user-defined contexts are currently not supported.

VxWorks Kernel API Reference, 6.6
sysctl_add_oid()

964

parent
The node under which this object is to be registered. When connecting to the static node
available for user extensions, usr_ext, use the SYSCTL_NODE_CHILDREN(usr_ext)
macro to get the pointer to this static OID. When connecting to a dynamic node use the
SYSCTL_CHILDREN() macro with the name of the pointer of type struct sysctl_oid
representing the parent OID.

number
the OID number that will be assigned to this object. It is highly recommended to use the
OID_AUTO macro to avoid conflict with already registered OIDs.

name
A user-specified name for this object.

kind
The kind of object this OID represents as well as the access permissions it holds. For
instance CTLTYPE_NODE | CTLFLAG_RD, CTLTYPE_STRING | CTLFLAG_RW,
CTLTYPE_INT | CTLFLAG_RW, etc. See sys/sysctl.h for the full list of the CTLTYPE_...
and CTLFLAG_... macros.

arg1
A pointer to any data that the OID should reference, or NULL. See the SYSCTL_ADD_...
macros below for specific details.

arg2
The size of arg1 or 0 if arg1 is NULL.

handler
A pointer to the function that will handle read and write requests to this OID. A set of
standard handlers are provided that support operations on integers
(sysctl_handle_int()), strings (sysctl_handle_string()) and opaque objects
(sysctl_handle_opaque()). New handlers can be created (see SYSCTL_ADD_PROC()
below).

fmt
A pointer to a string that specifies the format of this object. The string must hold "N" for
nodes, "A" for strings, "I" for integers, "IU" for unsigned integers, "L" for longs, "LU" for
unsigned longs and "S, <type>" for structures (see SYSCTL_ADD_STRUCT() below
for details).

descr
An optional description string.

Utility macros are provided to simplify the creation of OIDs. These macros are:

SYSCTL_ADD_OID()
Creates a raw OID. This is equivalent to calling sysctl_add_oid(). The parameters are
therefore the same as for the sysctl_add_oid() routine:

SYSCTL_ADD_OID (struct sysctl_ctx_list * clist, struct sysctl_oid_list *
 parent, int number, const char * name, int kind, void * arg1,

2 Routines
sysctl_add_oid()

965

2

 int arg2, int (*handler)(SYSCTL_HANDLER_ARGS), const char *
 fmt, const char * descr);

SYSCTL_ADD_NODE()
Creates an OID of type CTLTYPE_NODE. Other OIDs can be added to nodes, as
children:

SYSCTL_ADD_NODE (struct sysctl_ctx_list * clist, struct sysctl_oid_list *
 parent, int number, const char * name, int access,
 int (*handler)(SYSCTL_HANDLER_ARGS), const char * descr);

The access parameter represents a combination of access permission flags (CTLFLAG_
macros).

SYSCTL_ADD_STRING()
Creates an OID of type CTLTYPE_STRING that handles a null-terminated character
string:

SYSCTL_ADD_STRING (struct sysctl_ctx_list * clist, struct sysctl_oid_list *
 parent, int number, const char * name, int access,
 char * arg, int len, const char * descr);

The arg parameter is the address of the string variable and len is the maximum length
of the string referred to by this OID should it be changed later.

SYSCTL_ADD_INT()
Creates an OID of type CTLTYPE_INT that handles an integer type variable:

SYSCTL_ADD_INT (struct sysctl_ctx_list * clist, struct sysctl_oid_list *
 parent, int number, const char * name, int access, int * arg,
 int len, const char * descr);

The access parameter represents a combination of access permission flags (CTLFLAG_
macros). The arg parameter is the address of the integer variable and len is its length.

SYSCTL_ADD_UINT()
Creates an OID of type CTLTYPE_INT and format "IU" that handles an unsigned integer
type variable. The parameters are the same as for SYSCTL_ADD_INT() except for the
arg parameter which is of type "unsigned int *".

SYSCTL_ADD_LONG()
Creates an OID of type CTLTYPE_INT and format "L" that handles a long integer type
variable. The parameters are the same as for SYSCTL_ADD_INT() except for the arg
parameter which is of type "long *".

SYSCTL_ADD_ULONG()
Creates an OID of type CTLTYPE_INT and format "LU" that handles an unsigned long
integer type variable. The parameters are the same as for SYSCTL_ADD_INT() except
for the arg parameter which is of type "unsigned long *".

SYSCTL_ADD_OPAQUE()
Creates an OID of type CTLTYPE_OPAQUE that handles an unspecified block of data:

SYSCTL_ADD_OPAQUE (struct sysctl_ctx_list * clist, struct sysctl_oid_list *
 parent, int number, const char * name, int access,

VxWorks Kernel API Reference, 6.6
sysctl_add_oid()

966

 void * arg, int len, const char * format, const char *
 descr);

The access parameter represents a combination of access permission flags (CTLFLAG_
macros). The arg parameter is the address of the opaque data and len is its length.

SYSCTL_ADD_STRUCT()
Creates an OID that handles a structure type variable. The type of the OID will be
CTLTYPE_OPAQUE and its format will indicates the type name "S, <type>":

SYSCTL_ADD_STRUCT (struct sysctl_ctx_list * clist, struct sysctl_oid_list *
 parent, int number, const char * name, int access,
 void * arg, TYPE, const char * descr);

The access parameter represents a combination of access permission flags (CTLFLAG_
macros). The arg parameter is the address of the stucture variable data and TYPE is its
type name (without the struct keyword) used in the format string.

SYSCTL_ADD_PROC()
Creates an OID that specifies a handler routine:

SYSCTL_ADD_PROC (struct sysctl_ctx_list * clist, struct sysctl_oid_list *
 parent, int number, const char * name, int kind, void *
 arg1, int arg2, int (*handler)(SYSCTL_HANDLER_ARGS),
 const char * fmt, const char * descr);

The arg1 and arg2 parameters are passed to the handler routine and may be set to zero.

EXAMPLES Creation of a node OID:

 static struct sysctl_oid * myNode = NULL;

 myNode = sysctl_add_oid (0, SYSCTL_NODE_CHILDREN(usr_ext), OID_AUTO,
 "myNode", (int)(CTLTYPE_NODE | CTLFLAG_RD),
 NULL, 0, NULL, "N", "This is my own node OID");

Alternatively with SYSCTL_ADD_NODE():

 static struct sysctl_oid * myNode = NULL;

 myNode = SYSCTL_ADD_NODE (0, SYSCTL_NODE_CHILDREN(usr_ext), OID_AUTO,
 "myNode", (int)CTLFLAG_RD, NULL,
 "This is my own node OID");

Creation of a string OID under this node:

 #define MAX_STRING_LENGTH 40

 static struct sysctl_oid * myString = NULL;
 static char aString[MAX_STRING_LENGTH];

 strcpy (aString, "Initial string");
 myString = sysctl_add_oid (NULL, SYSCTL_CHILDREN (myNode), OID_AUTO,
 "myString", (int)(CTLTYPE_STRING |
CTLFLAG_RW),
 aString, MAX_STRING_LENGTH,
 sysctl_handle_string, "A",

2 Routines
sysctl_remove_oid()

967

2

 "This is my own string OID");

Note the usage of the aString variable. Its address will be stored in the OID. Since this OID
has the CTLFLAG_RW permission this address must be writable.

Alternatively with SYSCTL_ADD_STRING():

 #define MAX_STRING_LENGTH 40

 static struct sysctl_oid * myString = NULL;
 static char aString[MAX_STRING_LENGTH];

 strcpy (aString, "Initial string");
 myString = SYSCTL_ADD_STRING (NULL, SYSCTL_CHILDREN (myNode), OID_AUTO, \
 "myString", (int)CTLFLAG_RW, aString, \
 MAX_STRING_LENGTH, \
 "This is my own string OID");

This node and this string will be shown as follows by the Sysctl command:

-> Sysctl "usr_ext"
usr_ext.myNode.myString: Initial string

RETURNS Pointer to a sysctl_oid structure on success, or NULL if an error occurred

ERRNO EEXIST
An OID with the same name vector already exists.

EINVAL
The parent parameter is NULL.

ENOMEM
Not enough memoty available to create the OID.

SEE ALSO kern_sysctl, sysctl_remove_oid(), sysctl()

sysctl_remove_oid()

NAME sysctl_remove_oid() – remove dynamically created sysctl trees

SYNOPSIS int sysctl_remove_oid
 (
 struct sysctl_oid * oidp,
 int del,
 int recurse
)

DESCRIPTION This routine can be used to remove an object from the sysctl tree. It will only remove objects
that were registered dynamically.

VxWorks Kernel API Reference, 6.6
sysctlbyname()

968

oidp
Pointer to the object that needs to be removed

del
If 0, it just de-registers this object; otherwise it frees up all resources associated with the
object, such as memory for the name, and so on.

recurse
If the value is 0, this routine will return ENOTEMPTY for objects that are nodes and
have children.

RETURNS 0
If the entry was successfully removed.

EINVAL
If oidp is an invalid pointer or if this object was not registered dynamically.

ENOTEMPTY
If recurse is 0 and the object has children.

ERRNO N/A

SEE ALSO kern_sysctl

sysctlbyname()

NAME sysctlbyname() – get or set the values of objects in the sysctl tree by name

SYNOPSIS int sysctlbyname
 (
 char * pName, /* Name of object i.e "net.inet.tcp.delacktime" */
 void * pOld, /* Pointer to buffer to get the current values */
 size_t * pOldLen, /* Buffer to get the size of current values */
 void * pNew, /* Buffer containing the new values to be set */
 size_t newLen /* Size of buffer containing new values */
)

DESCRIPTION This function accepts an ASCII representation of the name and internally looks up the
integer name vector. Apart from that, it behaves the same as the standard sysctl() function.

The information is copied into the buffer specified by pOld. The size of the buffer is given
by the location specified by pOldLen before the call, and that location gives the amount of
data copied after a successful call and after a call that returns with the error code ENOMEM.
If the amount of data available is greater than the size of the buffer supplied, the call
supplies as much data as fits in the buffer provided and returns with the error code
ENOMEM. If the old value is not desired, pOld and pOldLen should be set to NULL.

2 Routines
sysctlnametomib()

969

2

To set a new value, pNew is set to point to a buffer of length newLen from which the
requested value is to be taken. If a new value is not to be set, pNew should be set to NULL
and newLen set to 0.

For more information, please refer sysctl()

RETURNS 0 on success, or -1 if an error occurred

ERRNO Beside the errnos possibly set by the OID's non-default handler the following errnos may be
set:

EPERM
An attempt is made to set a read-only value.

EINVAL
The name vector has less than two or more than CTL_MAXNAME elements, or the OID
is not a node and has no handler, or the newLen size of the pNew buffer is too small.

ENOMEM
the pOldLen size of the pOld buffer is too small for the requested information to be
stored in this buffer.

ENOENT
The OID does not exist.

EISDIR
The OID is a node without a handler so no information can be set or retreived.

ENOTDIR
One of the OID numbers in the name vector, except for the last element, does not
correspond to a node OID.

SEE ALSO kern_sysctl

sysctlnametomib()

NAME sysctlnametomib() – return the numeric representation of sysctl object

SYNOPSIS int sysctlnametomib
 (
 const char * name,
 int * mibp,
 size_t * sizep
)

DESCRIPTION This function accepts an ASCII representation of an object in name, looks up the integer
name vector, and returns the numeric representation in the mib array pointed to by mibp.

VxWorks Kernel API Reference, 6.6
tanf()

970

The number of elements in the mib array is given by the location specified by sizep before
the call, and that location gives the number of entries copied after a successful call. The
resulting mib and size may be used in subsequent sysctl() calls to get the data associated
with the requested ASCII name. This interface is intended for use by applications that want
to repeatedly request the same variable (the sysctl() function runs in about a third the time
as the same request made via the sysctlbyname() function).

RETURNS 0 on success, or -1 if an error occurred.

ERRNO ENOMEM
the sizep size of the mibp buffer is too small for the requested information to be stored
in this buffer.

ENOENT
No OID could be found for this ASCII representation of the name vector.

SEE ALSO kern_sysctl

tanf()

NAME tanf() – compute a tangent (ANSI)

SYNOPSIS float tanf
 (
 float x /* angle in radians */
)

DESCRIPTION This routine returns the tangent of x in single precision. The angle x is expressed in radians.

RETURNS The single-precision tangent of x.

ERRNO Not Available

SEE ALSO mathALib

tanhf()

NAME tanhf() – compute a hyperbolic tangent (ANSI)

SYNOPSIS float tanhf

2 Routines
tarArchive()

971

2

 (
 float x /* number whose hyperbolic tangent is required */
)

DESCRIPTION This routine returns the hyperbolic tangent of x in single precision.

RETURNS The single-precision hyperbolic tangent of x.

ERRNO Not Available

SEE ALSO mathALib

tarArchive()

NAME tarArchive() – archive named file/dir onto tape in tar format

SYNOPSIS STATUS tarArchive
 (
 char * pTape, /* tape device name */
 int bfactor, /* requested blocking factor */
 BOOL verbose, /* if TRUE print progress info */
 char * pName /* file/dir name to archive */
)

DESCRIPTION This function creates a UNIX compatible tar formatted archives which contain entire file
hierarchies from disk file systems. Files and directories are archived with mode and time
information as returned by stat().

The tape argument can be any tape drive device name or a name of any file that will be
created if necessary, and will contain the archive. If tape is set to "-", standard output will be
used. If tape is NULL (unspecified from Shell), the default archive file name stored in global
variable TAPE will be used.

Each write() of the archive file will be exactly bfactor*512 bytes long, hence on tapes in
variable mode, this will be the physical block size on the tape. With Fixed Mode tapes this
is only a performance matter. If bfactor is 0, or unspecified from Shell, it will be set to the
default value of 20.

The verbose argument is a boolean, if set to 1, will cause informative messages to be printed
to standard error whenever an action is taken, otherwise, only errors are reported.

The name argument is the path of the hierarchy to be archived. if NULL (or unspecified from
the Shell), the current directory path "." will be used. This is the path as seen from the target,
not from the Tornado host.

All informative and error message are printed to standard error.

VxWorks Kernel API Reference, 6.6
tarExtract()

972

NOTE Refrain from specifying absolute path names in path, such archives tend to be either difficult
to extract or can cause unexpected damage to existing files if such exist under the same
absolute name.

There is no way of specifying a number of hierarchies to dump.

RETURNS Not Available

ERRNO Not Available

SEE ALSO tarLib

tarExtract()

NAME tarExtract() – extract all files from a tar formatted tape

SYNOPSIS STATUS tarExtract
 (
 char * pTape, /* tape device name */
 int bfactor, /* requested blocking factor */
 BOOL verbose /* if TRUE print progress info */
)

DESCRIPTION This is a UNIX-tar compatible utility that extracts entire file hierarchies from tar-formatted
archive. The files are extracted with their original names and modes. In some cases a file
cannot be created on disk, for example if the name is too long for regular DOS file name
conventions, in such cases entire files are skipped, and this program will continue with the
next file. Directories are created in order to be able to create all files on tape.

The tape argument may be any tape device name or file name that contains a tar formatted
archive. If tape is equal "-", standard input is used. If tape is NULL (or unspecified from Shell)
the default archive file name stored in global variable TAPE is used.

The bfactor dictates the blocking factor the tape was written with. If 0, or unspecified from
the shell, a default of 20 is used.

The verbose argument is a boolean, if set to 1, will cause informative messages to be printed
to standard error whenever an action is taken, otherwise, only errors are reported.

All informative and error message are printed to standard error.

There is no way to selectively extract tar archives with this utility. It extracts entire archives.

RETURNS Not Available

ERRNO Not Available

2 Routines
taskActivate()

973

2

SEE ALSO tarLib

tarToc()

NAME tarToc() – display all contents of a tar formatted tape

SYNOPSIS STATUS tarToc
 (
 char * tape, /* tape device name */
 int bfactor /* requested blocking factor */
)

DESCRIPTION This is a UNIX-tar compatible utility that displays entire file hierarchies from tar-formatted
media, e.g. tape.

The tape argument may be any tape device name or file name that contains a tar formatted
archive. If tape is equal "-", standard input is used. If tape is NULL (or unspecified from Shell)
the default archive file name stored in global variable TAPE is used.

The bfactor dictates the blocking factor the tape was written with. If 0, or unspecified from
Shell, default of 20 is used.

Archive contents are displayed on standard output, while all informative and eror message
are printed to standard error.

RETURNS Not Available

ERRNO Not Available

SEE ALSO tarLib

taskActivate()

NAME taskActivate() – activate a task that has been initialized

SYNOPSIS STATUS taskActivate
 (
 int tid /* task ID of task to activate */
)

DESCRIPTION This routine activates tasks created by taskInit(). Without activation, a task is ineligible for
CPU allocation by the scheduler.

VxWorks Kernel API Reference, 6.6
taskClose()

974

The tid (task ID) argument is simply the address of the WIND_TCB for the task (the
taskInit() pTcb argument), cast to an integer:

tid = (int) pTcb;

The taskSpawn() routine is built from taskActivate() and taskInit(). Tasks created by
taskSpawn() do not require explicit task activation.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if the task cannot be activated.

ERRNO S_objLib_OBJ_ID_ERROR
The tid parameter is an invalid task ID.

SEE ALSO taskLib, taskInit()

taskClose()

NAME taskClose() – close a task

SYNOPSIS STATUS taskClose
 (
 int tid /* task to close */
)

DESCRIPTION This routine closes a task. It decrements the task's reference counter.

This routine does not delete a task. taskDelete() should be called to terminate and delete a
task.

This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if tid is invalid.

ERRNO S_objLib_OBJ_ID_ERROR
Task ID is invalid.

2 Routines
taskCpuAffinityGet()

975

2

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO taskOpen, taskOpen()

taskCpuAffinityGet()

NAME taskCpuAffinityGet() – get the CPU affinity of a task

SYNOPSIS STATUS taskCpuAffinityGet
 (
 int tid, /* task ID */
 cpuset_t* pAffinity /* address to store task's affinity */
)

DESCRIPTION This routine provides the caller with the CPU affinity of task tid. This affinity is represented
using a CPU set that is copied in the user supplied pAffinity. Passing a null task ID causes
the affinity of the caller to be provided. If tid has no affinity the resulting pAffinity CPU set
contains no CPU index. If tid has an affinity, the resulting pAffinity CPU set is identical to
the CPU set that was passed on the last invocation of taskCpuAffinitySet() for that task.
This behaviour also applies when calling this routine in the uniprocessor version of
VxWorks.

This routine must not be called from interrupt level.

The following code example shows how a task can determine if it has an affinity:

 {
 cpuset_t affinity;

 if (taskCpuAffinityGet (0, &affinity) == OK)
 {
 if (CPUSET_ISZERO(affinity))
 {
 /* Task has no affinity */
 }
 else
 {
 /* Task has an affinity */
 }
 }
 }

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

VxWorks Kernel API Reference, 6.6
taskCpuAffinitySet()

976

RETURNS OK or ERROR if the task ID is invalid.

ERRNO S_objLib_OBJ_ID_ERROR

S_intLib_NOT_ISR_CALLABLE

SEE ALSO taskLib, taskCpuAffinitySet(), cpuset

taskCpuAffinitySet()

NAME taskCpuAffinitySet() – set the CPU affinity of a task

SYNOPSIS STATUS taskCpuAffinitySet
 (
 int tid, /* task ID */
 cpuset_t newAffinity /* new affinity set */
)

DESCRIPTION This routine sets the CPU affinity of task tid to the CPU specified in newAffinity. From that
point on the scheduler ensures the task is only executed on the specified CPU. Passing a tid
equal to zero causes an affinity to be set for the calling task. Should the tid argument refer
to a task presently running on a CPU other than the one listed in the newAffinity argument,
this routine causes the task to cease execution and be rescheduled, based on its priority, on
the CPU it has an affinity for. Therefore calling this routine can cause a scheduling event to
take place. Calling this routine with an empty CPU set as the newAffinity argument
effectively removes any affinity for task tid. If the CPU set identifies a CPU index that is not
one of the CPUs configured in the system or if the set contains more than one CPU an error
is returned. Once a task has an affinity set, all other tasks it creates have the same affinity
except for the case where the child task is the init task of an RTP created using the
rtpSpawn() API.

Calling this routine in the uniprocessor version of VxWorks is permitted but the
newAffinity argument must specify that CPU 0 is the one the task has an affinity for. This
action has no effect whatsoever on the scheduling of the task. The only visible effect on
uniprocessor VxWorks is that a subsequent call to taskCpuAffinityGet() would indicate
the task has an affinity to CPU 0.

This routine must not be called from interrupt level.

The following sample code illustrates the sequence to set the affinity of a newly created task
to CPU 1:

STATUS affinitySetExample (void)
 {
 cpuset_t affinity;
 int tid;

2 Routines
taskCpuAffinitySet()

977

2

 /* Create the task but only activate it after setting its affinity */
 tid = taskCreate ("myCpu1Task", 100, 0, 5000, printf,
 (int) "myCpu1Task executed on CPU 1 !", 0, 0, 0,
 0, 0, 0, 0, 0, 0);

 if (tid == NULL)
 return (ERROR);

 /* Clear the affinity CPU set and set index for CPU 1 */
 CPUSET_ZERO (affinity);
 CPUSET_SET (affinity, 1);

 if (taskCpuAffinitySet (tid, affinity) == ERROR)
 {
 /* Ooops, looks like we're running on a uniprocessor */
 taskDelete (tid);
 return (ERROR);
 }

 /* Now let the task run on CPU 1 */
 taskActivate (tid);

 return (OK);
 }

The following example shows how a task can remove its affinity to a CPU:

 {
 cpuset_t affinity;

 CPUSET_ZERO (affinity);

 taskCpuAffinitySet (0, affinity);
 }

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if the task ID or affinity is invalid.

ERRNO S_taskLib_ILLEGAL_OPERATION

S_objLib_OBJ_ID_ERROR

S_intLib_NOT_ISR_CALLABLE

SEE ALSO taskLib, taskCpuAffinityGet(), vxCpuConfiguredGet(), cpuset

VxWorks Kernel API Reference, 6.6
taskCpuLock()

978

taskCpuLock()

NAME taskCpuLock() – disable local CPU task rescheduling

SYNOPSIS STATUS taskCpuLock (void)

DESCRIPTION This routine disables scheduling on the CPU the calling task is running on. This effectively
prevents any other task from running on the local CPU and prevents the calling task from
migrating to another CPU until the lock is released by calling taskCpuUnlock(). This could
prove useful when used in conjunction with the vxCpuIndexGet() to ensure a CPU index
stays valid for a short period of time while a per-CPU object needs to be read or modified.
This routine can be recursively called but there is no effect on scheduling other than an equal
number of calls to taskCpuUnlock() needs to be done to re-enable scheduling on the local
CPU. Execution on other CPUs in the SMP system is not affected by this routine. Because of
this behaviour this routine is not a suitable task mutual exclusion mechanism unless all
tasks participating in the mutual exclusion scenario have a single CPU affinity for the very
same CPU. A task that calls a blocking API such as semTake() after calling taskCpuLock()
constitutes an error condition that results in an error to be returned and reported through
ED&R regardless of the fact the task may not block at all. When a task is in a task locked
state, its priority cannot be modified by a task or ISR running on another CPU nor can it be
suspended or stopped by a task or ISR running on another CPU. Calling this routine on the
uniprocessor version of VxWorks is equivalent to calling taskLock().

This routine is not callable from interrupt level. This is not enforced and it is the user's
responsibility to adhere to this restriction.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR

ERRNO S_taskLib_ILLEGAL_OPERATION

S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, taskCpuUnlock(), vxCpuIndexGet()

2 Routines
taskCreate()

979

2

taskCpuUnlock()

NAME taskCpuUnlock() – enable local CPU task rescheduling

SYNOPSIS STATUS taskCpuUnlock (void)

DESCRIPTION This routine removes the lock established using taskCpuLock(). It re-enables context task
switching on the CPU the calling task is running on. Calling this routine on the uniprocessor
version of VxWorks is equivalent to calling taskUnlock().

This routine is not callable from interrupt level. This is not enforced and it is the user's
responsibility to adhere to this restriction.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR

ERRNO S_taskLib_ILLEGAL_OPERATION

S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, taskCpuLock()

taskCreate()

NAME taskCreate() – allocate and initialize a task without activation

SYNOPSIS int taskCreate
 (
 char * name, /* name of new task (stored at pStackBase) */
 int priority, /* priority of new task */
 int options, /* task option word */
 int stackSize, /* size (bytes) of stack needed */
 FUNCPTR entryPt, /* entry point of new task */
 int arg1, /* 1st of 10 req'd args to pass to entryPt */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8,

VxWorks Kernel API Reference, 6.6
taskCreateHookAdd()

980

 int arg9,
 int arg10
)

DESCRIPTION This routine creates, but does not activate, a new task with a specified priority and options
and returns a system-assigned ID. Activate the newly created task by invoking
taskActivate().

To create and activate a new task, use the taskSpawn() routine instead of taskCreate().

See taskSpawn() for an explanation of all the parameters.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS Task ID, or NULL if out of memory or unable to create task.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
There is not enough memory to spawn the task.

S_taskLib_ILLEGAL_PRIORITY
A priority outside the range 0 to 255 was specified.

S_taskLib_ILLEGAL_OPTIONS
The following illegal options were set: VX_DEALLOC_STACK,
VX_DEALLOC_EXC_STACK, or VX_DEALLOC_TCB for taskCreate().

S_taskLib_ILLEGAL_STACK_INFO
An invalid stack size has been specified

SEE ALSO taskLib, taskSpawn(), taskCreat(), taskActivate(), The VxWorks Programmer's Guide

taskCreateHookAdd()

NAME taskCreateHookAdd() – add a routine to be called at every task create

SYNOPSIS STATUS taskCreateHookAdd
 (
 FUNCPTR createHook /* routine to be called when a task is created */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called whenever a task
is created. Upon creation, all routines specified by taskCreateHookAdd() will be called in
the context of the creating task, so any objects created by a task create hook will be owned

2 Routines
taskCreateHookShow()

981

2

by the caller's RTP rather than the newly created task's RTP. To set the ownership of newly
created objects to the new task's RTP, objOwnerSet() should be used, e.g.

objOwnerSet (createdObjId, pNewTcb->rtpId)

The routine should be declared as follows:

 void createHook
 (
 WIND_TCB *pNewTcb /* pointer to new task's TCB */
)

RETURNS OK, or ERROR if the table of task create routines is full.

ERRNO Not Available

SEE ALSO taskHookLib, taskCreateHookDelete()

taskCreateHookDelete()

NAME taskCreateHookDelete() – delete a previously added task create routine

SYNOPSIS STATUS taskCreateHookDelete
 (
 FUNCPTR createHook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified routine from the list of routines to be called at each task
create.

RETURNS OK, or ERROR if the routine is not in the table of task create routines.

ERRNO Not Available

SEE ALSO taskHookLib, taskCreateHookAdd()

taskCreateHookShow()

NAME taskCreateHookShow() – show the list of task create routines

SYNOPSIS void taskCreateHookShow (void)

VxWorks Kernel API Reference, 6.6
taskDelay()

982

DESCRIPTION This routine shows all the task create routines installed in the task create hook table, in the
order in which they were installed.

RETURNS N/A

ERRNO Not Available

SEE ALSO taskHookShow, taskCreateHookAdd()

taskDelay()

NAME taskDelay() – delay a task from executing

SYNOPSIS STATUS taskDelay
 (
 int ticks /* number of ticks to delay task */
)

DESCRIPTION This routine causes the calling task to relinquish the CPU for the duration specified (in
ticks). This is commonly referred to as manual rescheduling, but it is also useful when
waiting for some external condition that does not have an interrupt associated with it.

If the calling task receives a signal that is not being blocked or ignored, taskDelay() returns
ERROR and sets errno to EINTR after the signal handler is run.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if called from interrupt level or if the calling task receives a signal that is not
blocked or ignored.

ERRNO S_intLib_NOT_ISR_CALLABLE

EINTR

SEE ALSO taskLib

2 Routines
taskDeleteForce()

983

2

taskDelete()

NAME taskDelete() – delete a task

SYNOPSIS STATUS taskDelete
 (
 int tid /* task ID of task to delete */
)

DESCRIPTION This routine causes a specified task to cease to exist and deallocates the stack and
WIND_TCB memory resources. Upon deletion, all routines specified by
taskDeleteHookAdd() will be called in the context of the deleting task. This routine is the
companion routine to taskSpawn().

WARNING Deleting individual user tasks, as opposed to deleting the entire RTP, may result in
unpredictable RTP behavior. The deletion of individual user tasks should only be
performed for debugging purposes.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if the task cannot be deleted.

ERRNO S_intLib_NOT_ISR_CALLABLE

S_objLib_OBJ_DELETED

S_objLib_OBJ_UNAVAILABLE

S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, excLib, taskDeleteHookAdd(), taskSpawn(), the VxWorks programmer's guides

taskDeleteForce()

NAME taskDeleteForce() – delete a task without restriction

SYNOPSIS STATUS taskDeleteForce
 (
 int tid /* task ID of task to delete */
)

VxWorks Kernel API Reference, 6.6
taskDeleteHookAdd()

984

DESCRIPTION This routine deletes a task even if the task is protected from deletion. It is similar to
taskDelete(). Upon deletion, all routines specified by taskDeleteHookAdd() will be called
in the context of the deleting task.

CAVEATS This routine is intended as a debugging aid, and is generally inappropriate for applications.
Disregarding a task's deletion protection could leave the the system in an unstable state or
lead to system deadlock.

The system does not protect against simultaneous taskDeleteForce() calls. Such a situation
could leave the system in an unstable state.

Deleting individual user tasks, as opposed to deleting the entire RTP, may result in
unpredictable RTP behavior.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if the task cannot be deleted.

ERRNO S_intLib_NOT_ISR_CALLABLE

S_objLib_OBJ_DELETED

S_objLib_OBJ_UNAVAILABLE

S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, taskDeleteHookAdd(), taskDelete()

taskDeleteHookAdd()

NAME taskDeleteHookAdd() – add a routine to be called at every task delete

SYNOPSIS STATUS taskDeleteHookAdd
 (
 FUNCPTR deleteHook /* routine to be called when a task is deleted */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called whenever a task
is deleted. Upon deletion, all routines specified by taskDeleteHookAdd() will be called in
the context of the deleting task.

The routine should be declared as follows:

 void deleteHook

2 Routines
taskDeleteHookShow()

985

2

 (
 WIND_TCB *pTcb /* pointer to deleted task's WIND_TCB */
)

RETURNS OK, or ERROR if the table of task delete routines is full.

ERRNO Not Available

SEE ALSO taskHookLib, taskDeleteHookDelete()

taskDeleteHookDelete()

NAME taskDeleteHookDelete() – delete a previously added task delete routine

SYNOPSIS STATUS taskDeleteHookDelete
 (
 FUNCPTR deleteHook /* routine to be deleted from list */
)

DESCRIPTION This routine removes a specified routine from the list of routines to be called at each task
delete.

RETURNS OK, or ERROR if the routine is not in the table of task delete routines.

ERRNO Not Available

SEE ALSO taskHookLib, taskDeleteHookAdd()

taskDeleteHookShow()

NAME taskDeleteHookShow() – show the list of task delete routines

SYNOPSIS void taskDeleteHookShow (void)

DESCRIPTION This routine shows all the delete routines installed in the task delete hook table, in the order
in which they were installed. Note that the delete routines will be run in reverse of the order
in which they were installed.

RETURNS N/A

VxWorks Kernel API Reference, 6.6
taskExit()

986

ERRNO Not Available

SEE ALSO taskHookShow, taskDeleteHookAdd()

taskExit()

NAME taskExit() – exit a task

SYNOPSIS void taskExit
 (
 int exitCode /* code stored in TCB for delete hooks */
)

DESCRIPTION This routine is called by a task to cease to exist as a task. The exitCode parameter will be
stored in the WIND_TCB for possible use by the delete hooks, or post-mortem debugging.

This function is currently aliased to exit(), and is provided as a convenience to achieve
uniform meaning across both kernel and user-mode code.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS N/A

ERRNO N/A

SEE ALSO taskLib, taskDelete(), "American National Standard for Information Systems - "Programming
Language - C, ANSI X3.159-1989: Input/Output (stdlib.h), ", the VxWorks programmer's
guides

taskHookShowInit()

NAME taskHookShowInit() – initialize the task hook show facility

SYNOPSIS void taskHookShowInit (void)

2 Routines
taskIdListGet()

987

2

DESCRIPTION This routine links the task hook show facility into the VxWorks system. It is called
automatically when the task hook show facility is configured into VxWorks using the
INCLUDE_TASK_HOOK_SHOW component.

RETURNS N/A

ERRNO Not Available

SEE ALSO taskHookShow

taskIdDefault()

NAME taskIdDefault() – set the default task ID

SYNOPSIS int taskIdDefault
 (
 int tid /* user supplied task ID; if 0, return default */
)

DESCRIPTION This routine maintains a global default task ID. This ID is used by libraries that want to
allow a task ID argument to take on a default value if the user did not explicitly supply one.

If tid is not zero (i.e., the user did specify a task ID), the default ID is set to that value, and
that value is returned. If tid is zero (i.e., the user did not specify a task ID), the default ID is
not changed and its value is returned. Thus the value returned is always the last task ID the
user specified.

RETURNS The most recent non-zero task ID.

ERRNOS N/A

SEE ALSO taskInfo, dbgLib, windsh, the VxWorks programmer guides, the, VxWorks Command-Line
Tools User's Guide.

taskIdListGet()

NAME taskIdListGet() – get a list of active task IDs

SYNOPSIS int taskIdListGet

VxWorks Kernel API Reference, 6.6
taskIdSelf()

988

 (
 int idList[], /* array of task IDs to be filled in */
 int maxTasks /* max tasks <idList> can accommodate */
)

DESCRIPTION This routine provides the calling task with a list of all active tasks. An unsorted list of task
IDs for no more than maxTasks tasks is put into idList.

The provided list is a snapshot of the system. There is no guarantee that this snapshot will
still represent the state of the system by the time execution returns to the caller. This is
especially true on VxWorks SMP because of the concurrent execution environment.

This routine is provided if the INCLUDE_TASK_LIST component is present in the
configuration.

RETURNS The number of tasks put into the ID list.

ERRNO N/A

SEE ALSO taskInfo, taskNameToId

taskIdSelf()

NAME taskIdSelf() – get the task ID of a running task

SYNOPSIS int taskIdSelf (void)

DESCRIPTION This routine gets the task ID of the calling task. The task ID will be invalid if called at
interrupt level.

RETURNS The task ID of the calling task.

ERRNO N/A

SEE ALSO taskLib

2 Routines
taskInfoGet()

989

2

taskIdVerify()

NAME taskIdVerify() – verify the existence of a task

SYNOPSIS STATUS taskIdVerify
 (
 int tid /* task ID */
)

DESCRIPTION This routine verifies the existence of a specified task by validating the specified ID as a task
ID. Note that an exception occurs if the task ID parameter points to an address not located
in physical memory.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib

taskInfoGet()

NAME taskInfoGet() – get information about a task

SYNOPSIS STATUS taskInfoGet
 (
 int tid, /* ID of task for which to get info */
 TASK_DESC * pTaskDesc /* task descriptor to be filled in */
)

DESCRIPTION This routine fills in a specified task descriptor (TASK_DESC) for a specified task. The
information in the task descriptor is, for the most part, a copy of information kept in the task
control block (WIND_TCB). The TASK_DESC structure is useful for common information
and avoids dealing directly with the unwieldy WIND_TCB.

NOTE Examination of WIND_TCBs should be restricted to debugging aids.

RETURNS OK, or ERROR if the task ID is invalid or access to task info denied.

ERRNO N/A

SEE ALSO taskShow

VxWorks Kernel API Reference, 6.6
taskInit()

990

taskInit()

NAME taskInit() – initialize a task with a stack at a specified address

SYNOPSIS STATUS taskInit
 (
 FAST WIND_TCB *pTcb, /* address of new task's TCB */
 char * name, /* name of new task (stored at pStackBase) */
 int priority, /* priority of new task */
 int options, /* task option word */
 char * pStackBase, /* base of new task's execution stack */
 int stackSize, /* size (bytes) of stack needed */
 FUNCPTR entryPt, /* entry point of new task */
 int arg1, /* 1st of 10 req'd args to pass to entryPt */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8,
 int arg9,
 int arg10
)

DESCRIPTION This routine initializes user-specified regions of memory for a task stack and control block
instead of allocating them from memory as taskSpawn() does. This routine will utilize the
specified pointers to the WIND_TCB and stack as the components of the task. This allows,
for example, the initialization of a static WIND_TCB variable. It also allows for special stack
positioning as a debugging aid.

As in taskSpawn(), a task may be given a name. While taskSpawn() automatically names
unnamed tasks, taskInit() permits the existence of tasks without names. The task ID
required by other task routines is simply the address pTcb, cast to an integer.

Unlike taskSpawn(), taskInit() allows one to control the activation of the
VX_DEALLOC_STACK bit in options; taskSpawn() always sets this bit. Setting this bit
causes the stack to be automatically deallocated when a taskDelete() is performed, or
when a return command is issued from the entry function.

It is not recommended to use the VX_DEALLOC_STACK option for taskInit() if RTP or
KERNEL_HARDENING is configured into the system. A system configured with RTP or
KERNEL_HARDENING expects the task stacks to have guard zones, governed by the
configuration parameters TASK_KERNEL_EXEC_STACK_UNDERFLOW_SIZE and
TASK_KERNEL_EXEC_STACK_OVERFLOW_SIZE. Setting the VX_DEALLOC_STACK option
but not set the appropriate guard zones in these configuration might cause corruption in the
system. If corruption occurs, use the Error Detection and Reporting mechanism to help you
detect the corruption.

2 Routines
taskInit()

991

2

If it is necessary to use the VX_DEALLOC_STACK option in the above configurations, the
user is responsible for setting up the guard zones corresponding to the same value of the
configuration parameters or the user can specify the VX_NO_PROTECT option for the task.

The pStackBase parameter specifies the base of the execution stack. The stack may grow up
or down from pStackBase depending on the target architecture. The caller is responsible for
setting up any guard zones around the specified stack area. The following code fragment
illustrates how to specify the stack base location:

For architectures where the stack grows down:

 pStackMem = (char *) memalign (_STACK_ALIGN_SIZE, stackSize);

 if (pStackMem != NULL)
 status = taskInit (... , pStackMem + stackSize, stackSize, ...);

For architectures where the stack grows up:

 pStackMem = (char *) memalign (_STACK_ALIGN_SIZE, stackSize);

 if (pStackMem != NULL)
 status = taskInit (... , pStackMem, stackSize, ...);

Please note that memalign() is used in the above code fragment for illustrative purposes
only since it's a well-known API. The stack memory can be obtained by any mechanism that
ensures allocation of aligned memory region.

The stackSize parameter specifies the size in bytes of the execution stack area. This API does
not check against illegal stack size, since it is assumed that the user has allocated the stack
memory with a valid stack size, before calling this API.

It is assumed that the caller passes valid pointers for pTcb, pStackBase and entryPt while
calling this API. No validity checks for these parameters are done here.

Other arguments are the same as in taskSpawn(). Unlike taskSpawn(), taskInit() does not
activate the task. This must be done by calling taskActivate() after calling taskInit().

Normally, tasks should be started using taskSpawn() rather than taskInit(), except when
additional control is required for task memory allocation or a separate task activation is
desired.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

NOTE For future releases of VxWorks, each task has an exception stack. To continue providing the
taskInit() API, this routine now carves memory for the exception stack of a task . To use a
specific region of memory for the exception stack, use the routine taskInitExcStk() instead.

RETURNS OK, or ERROR if the task cannot be initialized.

VxWorks Kernel API Reference, 6.6
taskInitExcStk()

992

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine is not callable from an ISR.

S_taskLib_ILLEGAL_PRIORITY
Priority specified is not within 0-255.

S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, taskActivate(), taskSpawn(), taskInitExcStk()

taskInitExcStk()

NAME taskInitExcStk() – initialize a task with stacks at specified addresses

SYNOPSIS STATUS taskInitExcStk
 (
 FAST WIND_TCB *pTcb, /* address of new task's TCB */
 char * name, /* name of new task (stored at pStackBase)
*/
 int priority, /* priority of new task */
 int options, /* task option word */
 char * pStackBase, /* base of new task's execution stack */
 int stackSize, /* size (bytes) of stack needed */
 char * pExcStackBase, /* base of new task's exception stack */
 int excStackSize, /* size (bytes) of exception stack needed
*/
 FUNCPTR entryPt, /* entry point of new task */
 int arg1, /* first of ten task args to pass to func
*/
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8,
 int arg9,
 int arg10
)

DESCRIPTION This routine initializes user-specified regions of memory for a task stack, exception stack,
and control block instead of allocating them from memory as taskSpawn() does. This
routine will utilize the specified pointers to the WIND_TCB and stacks as the components of
the task. This allows, for example, the initialization of a static WIND_TCB variable. It also
allows for special stack positioning as a debugging aid.

2 Routines
taskInitExcStk()

993

2

As in taskSpawn(), a task may be given a name. While taskSpawn() automatically names
unnamed tasks, taskInitExcStk() permits the existence of tasks without names. The task ID
required by other task routines is simply the address pTcb, cast to an integer.

Unlike taskSpawn(), taskInitExcStk() allows one to control the activation of both the
VX_DEALLOC_STACK and VX_DEALLOC_EXC_STACK bits in options; Setting the
VX_DEALLOC_STACK bit causes the stack (aka execution stack) to be automatically
deallocated when a taskDelete() is performed, or when a return command is issued from
the entry function. Setting the VX_DEALLOC_EXC_STACK bit causes the exception stack to
be automatically deallocated when a taskDelete() is performed, or when a return command
is issued from the the entry function.

It is not recommended to use the VX_DEALLOC_STACK option for taskInit() if RTP or
KERNEL_HARDENING is configured into the system. A system configured with RTP or
KERNEL_HARDENING expects the task stacks to have guard zones, governed by the
configuration parameters TASK_KERNEL_EXEC_STACK_UNDERFLOW_SIZE and
TASK_KERNEL_EXEC_STACK_OVERFLOW_SIZE. Setting the VX_DEALLOC_STACK option
but not set the appropriate guard zones in these configuration might cause corruption in the
system. If corruption occurs, use the Error Detection and Reporting mechanism to help you
detect the corruption.

If it is necessary to use the VX_DEALLOC_STACK option in the above configurations, the
user is responsible for setting up the guard zones corresponding to the same value of the
configuration parameters or the user can specify the VX_NO_PROTECT option for the task.

The pStackBase parameter specifies the base of the execution stack, and pExcStackBase
specified the base of the exception stack. The stacks may grow up or down from
pStackBase/pExcStackBase depending on the target architecture. The caller is responsible for
setting up any guard zones around the specified stack areas. The following code fragment
illustrates how to specify the stack base location:

For architectures where the stack grows down:

 pStackMem = (char *) memalign (_STACK_ALIGN_SIZE, stackSize);
 pExcStackMem = (char *) memalign (_STACK_ALIGN_SIZE, excStackSize);

 if ((pStackMem != NULL) && (pExcStackMem != NULL))
 status = taskInitExcStk (... , pStackMem + stackSize,
 stackSize,
 pExcStackMem + excStackSize,
 excStackSize, ...);

For architectures where the stack grows up:

 pStackMem = (char *) memalign (_STACK_ALIGN_SIZE, stackSize);
 pExcStackMem = (char *) memalign (_STACK_ALIGN_SIZE, excStackSize);

 if ((pStackMem != NULL) && (pExcStackMem != NULL))
 status = taskInitExcStk (... , pStackMem,
 stackSize,
 pExcStackMem,
 excStackSize, ...);

VxWorks Kernel API Reference, 6.6
taskIsPended()

994

Please note that memalign() is used in the above code fragment for illustrative purposes
only since it's a well-known API. Typically, the stack memory would be obtained by some
other mechanism.

Other arguments are the same as in taskSpawn(). Unlike taskSpawn(), taskInitExcStk()
does not activate the task. This must be done by calling taskActivate() after calling
taskInitExcStk().

Normally, tasks should be started using taskSpawn() rather than taskInit() or
taskInitExcStk(), except when additional control is required for task memory allocation or
a separate task activation is desired.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if the task cannot be initialized.

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine is not callable from an ISR.

S_taskLib_ILLEGAL_PRIORITY
Priority specified is not within 0-255.

S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, taskActivate(), taskSpawn(), taskInit()

taskIsPended()

NAME taskIsPended() – check if a task is pended

SYNOPSIS BOOL taskIsPended
 (
 int tid /* task ID */
)

DESCRIPTION This routine tests the status field of a task to determine if it is pended. No indication is given
regarding the timeout, if any, associated with the pending operation.

RETURNS TRUE if the task is pended, otherwise FALSE.

ERRNOS N/A

2 Routines
taskIsStopped()

995

2

SEE ALSO taskInfo

taskIsReady()

NAME taskIsReady() – check if a task is ready to run

SYNOPSIS BOOL taskIsReady
 (
 int tid /* task ID */
)

DESCRIPTION This routine tests the status field of a task to determine if it is ready to run.

RETURNS TRUE if the task is ready, otherwise FALSE.

ERRNOS N/A

SEE ALSO taskInfo

taskIsStopped()

NAME taskIsStopped() – check if a task is stopped by the debugger

SYNOPSIS BOOL taskIsStopped
 (
 int tid /* task ID */
)

DESCRIPTION This routine tests the status field of a task to determine if it is stopped by the debugger.

RETURNS TRUE if the task is stopped by the debugger, otherwise FALSE.

ERRNOS N/A

/NOMANUAL

SEE ALSO taskInfo

VxWorks Kernel API Reference, 6.6
taskIsSuspended()

996

taskIsSuspended()

NAME taskIsSuspended() – check if a task is suspended

SYNOPSIS BOOL taskIsSuspended
 (
 int tid /* task ID */
)

DESCRIPTION This routine tests the status field of a task to determine if it is suspended.

RETURNS TRUE if the task is suspended, otherwise FALSE.

ERRNOS N/A

SEE ALSO taskInfo

taskKill()

NAME taskKill() – send a signal to a task

SYNOPSIS int taskKill
 (
 int tid,
 int signo
)

DESCRIPTION This routine sends a signal signo to the task specified by tid. This function is currently aliased
to kill(), and is provided as a convenience to achieve uniform meaning across both kernel
and user-mode code.

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid.

ERRNO EINVAL

SEE ALSO sigLib, kill()

2 Routines
taskLock()

997

2

taskLock()

NAME taskLock() – disable task rescheduling

SYNOPSIS STATUS taskLock
 (
 void
)

DESCRIPTION This routine disables task context switching. The task that calls this routine will be the only
task that is allowed to execute, unless the task explicitly gives up the CPU by making itself
no longer ready. Typically this call is paired with taskUnlock(); together they surround a
critical section of code. These preemption locks are implemented with a counting variable
that allows nested preemption locks. Preemption will not be unlocked until taskUnlock()
has been called as many times as taskLock().

This routine does not lock out interrupts; use intLock() to lock out interrupts.

A taskLock() is preferable to intLock() as a means of mutual exclusion, because interrupt
lock-outs add interrupt latency to the system.

A semTake() is preferable to taskLock() as a means of mutual exclusion, because
preemption lock-outs add preemptive latency to the system.

WARNINGS The taskLock() routine is not callable from interrupt service routines.

Invoking a VxWorks system routine with preemption locked may result in preemption
being unlocked for an unspecified period of time. If the called routine blocks or suspends
the calling task, the scheduler will always select the highest priority ready task to execute
(or become idle) regardless of whether the task has locked preemption via taskLock().

The preemption lock state is an attribute of a task, i.e. it's part of the task context. Thus, if a
task disables preemption and subsequently invokes a VxWorks system routine that causes
the calling task to block or cause a higher priority task to be ready, the preemption lock state
will be restored when the task is later rescheduled for execution.

SMP CONSIDERATIONS

This API is not available in VxWorks SMP.

RETURNS N/A

RETURNS OK or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR

S_intLib_NOT_ISR_CALLABLE

SEE ALSO taskLib, taskUnlock(), taskCpuLock(), intLock(), taskSafe(), semTake()

VxWorks Kernel API Reference, 6.6
taskName()

998

taskName()

NAME taskName() – get the name associated with a task ID

SYNOPSIS char * taskName
 (
 int tid /* ID of task whose name is to be found */
)

DESCRIPTION This routine returns a pointer to the name of a task of a specified ID, if the task has a name.
If the task has no name, it returns an empty string.

RETURNS A pointer to the task name, or NULL if the task ID is invalid.

ERRNOS N/A

SEE ALSO taskInfo

taskNameToId()

NAME taskNameToId() – look up the task ID associated with a task name

SYNOPSIS int taskNameToId
 (
 char * name /* task name to look up */
)

DESCRIPTION This routine returns the ID of the task matching a specified name. Referencing a task in this
way is inefficient, since it involves a search of the task list.

This routine is provided if the INCLUDE_TASK_LIST component is present in the
configuration.

RETURNS The task ID, or ERROR if the task is not found.

ERRNO S_taskLib_NAME_NOT_FOUND

SEE ALSO taskInfo, taskName

2 Routines
taskOpen()

999

2

taskOpen()

NAME taskOpen() – open a task

SYNOPSIS int taskOpen
 (
 const char * name, /* task name - default name will be chosen */
 int priority, /* task priority */
 int options, /* VX_ task option bits */
 int mode, /* object management mode bits */
 char * pStackBase, /* base of new task's execution stack */
 int stackSize, /* execution stack size */
 void * context, /* context value */
 FUNCPTR entryPt, /* application entry point */
 int arg1, /* 1st of 10 req'd args to pass to entryPt */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8,
 int arg9,
 int arg10
)

DESCRIPTION The taskOpen() API is the most general purpose task creation routine. It can also be used
to obtain a task ID to an already existing task, typically a public task with an RTP. It searches
the task name space for a matching task. If a matching task is found, it returns the task ID
of the matched task. If a matching task is not found but the OM_CREATE flag is specified in
the mode parameter, then it creates a task. This routine is not ISR callable.

There are two name spaces available in which taskOpen() can perform the search. The
name space searched is dependent upon the first character in the name parameter. When this
character is a forward slash /, the public name space is searched; otherwise the private name
space is searched. Similarly, if a task is created, the name's first character specifies the name
space that contains the task.

Unlike other objects in VxWorks, private task names are not unique. Thus a search on a
private name space finds the first matching task. However, this task may not be the only
task with the specified name. Public task names on the other hand, are unique.

A description of the taskOpen() arguments follows:

name
This is a mandatory argument. Unlinke taskSpawn(), NULL or empty strings are not
allowed when using this routine. The task's name appears in various kernel shell
facilities such as i(). The name may be of arbitrary length and content. Public task
names are unique, private task names are not.

VxWorks Kernel API Reference, 6.6
taskOpen()

1000

priority
The VxWorks kernel schedules tasks on the basis of priority. Tasks may have priorities
ranging from 0 (highest) to 255 (lowest). The priority of a task in VxWorks is dynamic,
and the priority of an existing task can be changed using taskPrioritySet(). Also, a task
can inherit a priority as a result of the acquisition of a priority-inversion-safe mutex
semaphore.

options
Bits in the options argument may be set to run with the following modes:

mode
This parameter specifies the various object management attribute bits as follows:

OM_CREATE
Create a new task if a matching task name is not found.

OM_EXCL
When set jointly with OM_CREATE, create a new task immediately without
attempting to open an existing task. The call fails if the task is public and its name
causes a name clash. This flag has no effect if the OM_CREATE attribute is not
specified.

OM_DELETE_ON_LAST_CLOSE
This bit is ignored on tasks because it would allow a task to be deleted from
another RTP.

pStackBase
Base of the execution stack. When a NULL pointer is specified, the kernel allocates a
page-aligned stack area.

The stack may grow up or down from pStackBase depending on the target architecture.
The caller is responsible for setting up any guard zones around the specified stack area.
The following code fragment illustrates how to specify the stack base location:

For architectures where the stack grows down:

 pStackMem = (char *) malloc (stackSize);

 if (pStackMem != NULL)
 taskId = taskOpen (... , pStackMem + stackSize, stackSize, ...);

VX_UNBREAKABLE do not allow breakpoint debugging
VX_FP_TASK execute with floating-point coprocessor support
VX_ALTIVEC_TASK execute with Altivec support (PowerPC only)
VX_SPE_TASK execute with SPE support (PowerPC only)
VX_DSP_TASK execute with DSP support (SuperH only)
VX_PRIVATE_ENV the task has a private environment area
VX_NO_STACK_FILL do not fill the stack with 0xee (for debugging)
VX_TASK_NOACTIVATE do not activate the task upon creation
VX_NO_STACK_PROTECT do not provide overflow/underflow stack protection, stack

remains executable.

2 Routines
taskOpen()

1001

2

For architectures where the stack grows up:

 pStackMem = (char *) malloc (stackSize);

 if (pStackMem != NULL)
 taskId = taskOpen (... , pStackMem, stackSize, ...);

Please note that malloc() is used in the above code fragment for illustrative purposes
only since it's a well-known API. Typically, the stack memory would be obtained by
some other mechanism.

It is assumed that if the caller passes a non-NULL pointer as pStackBase, it is valid. No
validity check for this parameter is done here.

stackSize
The size in bytes of the execution stack area. If NULL pointer is specified as pStackBase
and a negative value is specified for this parameter, the API returns ERROR considering
it an illegal stack size. However, the API does not check against illegal stack size, if a
non-NULL pointer is specified as pStackBase, since it is assumed that the user has
allocated the stack memory with a valid stack size, before calling this API.

Every byte of the stack is filled with 0xee (unless the VX_NO_STACK_FILL option is
specifed or the global kernel configuration parameter VX_GLOBAL_NO_STACK_FILL is
set to TRUE) for the checkStack() kernel shell facility.

context
Context value assigned to the created task. This value is not actually used by VxWorks.
Instead, the context value can be used by OS extensions to implement object
permissions, for example.

entryPt
The entry point is the address of the main routine of the task. The routine is called once
the C environment has been set up. The specified routine is called with the ten
arguments arg1 to arg10. Should the specified main routine return, a call to exit() is
automatically made.

It is assumed that the caller passes a valid function pointer as entryPt. No validity check
for this parameter is done here.

To delete a task created via the taskOpen() API, taskDelete() must be called. A call to
taskClose() will not perform the task deletion.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS The task ID, or NULL if unsuccessful.

ERRNO S_memLib_NOT_ENOUGH_MEMORY
There is not enough memory to spawn the task.

VxWorks Kernel API Reference, 6.6
taskOpenInit()

1002

S_taskLib_ILLEGAL_PRIORITY
A priority outside the range 0 to 255 was specified.

S_taskLib_ILLEGAL_OPERATION
The operation attempted to specify a location for the stack (not supported in TAR).

S_taskLib_ILLEGAL_STACK_INFO
An invalid stack size has been specified.

S_objLib_OBJ_INVALID_ARGUMENT
An invalid option was specified in the mode argument or name is invalid.

S_objLib_OBJ_NOT_FOUND
The OM_CREATE flag was not set in the mode argument and a task matching name was
not found.

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO taskOpen, taskSpawn(), taskCreate(), taskActivate(), taskClose(), the VxWorks
programmer guides.

taskOpenInit()

NAME taskOpenInit() – initialize the task open facility

SYNOPSIS void taskOpenInit (void)

DESCRIPTION This routine links the task creation routine with the open facility into the VxWorks system.
It is called automatically when the task facility is configured into VxWorks by either
defining INCLUDE_OBJ_OPEN and INCLUDE_TASK_CREATE_DELETE in config.h or
selecting INCLUDE_OBJ_OPEN and INCLUDE_TASK_CREATE_DELETE in the project
facility.

RETURNS N/A

ERRNO N/A

SEE ALSO taskOpen

2 Routines
taskOptionsSet()

1003

2

taskOptionsGet()

NAME taskOptionsGet() – examine task options

SYNOPSIS STATUS taskOptionsGet
 (
 int tid, /* task ID */
 int * pOptions /* task's options */
)

DESCRIPTION This routine gets the current execution options of the specified task. The option bits returned
by this routine indicate the following modes:

VX_FP_TASK
execute with floating-point coprocessor support.

VX_PRIVATE_ENV
include private environment support (see envLib).

VX_NO_STACK_FILL
do not fill the stack for use by checkstack().

VX_UNBREAKABLE
do not allow breakpoint debugging.

For definitions, see taskLib.h.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNOS N/A

SEE ALSO taskInfo, taskOptionsSet()

taskOptionsSet()

NAME taskOptionsSet() – change task options

SYNOPSIS STATUS taskOptionsSet
 (
 int tid, /* task ID */
 int mask, /* bit mask of option bits to unset */
 int newOptions /* bit mask of option bits to set */
)

DESCRIPTION This routine changes the execution options of a task. The only option that can be changed
after a task has been created is:

VxWorks Kernel API Reference, 6.6
taskPriNormalGet()

1004

VX_UNBREAKABLE
do not allow breakpoint debugging.

For definitions, see taskLib.h.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNOS N/A

SEE ALSO taskInfo, taskOptionsGet()

taskPriNormalGet()

NAME taskPriNormalGet() – get the normal priority of the task

SYNOPSIS STATUS taskPriNormalGet
 (
 int tid, /* task ID */
 int* pPriNormal /* where to return priority */
)

DESCRIPTION This routine gets the normal priority of the specified task, which is the priority assigned at
task creation time or subsequently assigned using taskPrioritySet(). A task executes at its
normal assigned priority unless priority inheritance has occurred.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNO N/A

SEE ALSO taskInfo, taskSpawn(), taskCreate(), taskPrioritySet()

2 Routines
taskPrioritySet()

1005

2

taskPriorityGet()

NAME taskPriorityGet() – examine the priority of a task

SYNOPSIS STATUS taskPriorityGet
 (
 int tid, /* task ID */
 int * pPriority /* return priority here */
)

DESCRIPTION This routine determines the current priority of a specified task. The current priority is
copied to the integer pointed to by pPriority.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskstack remains executablestack remains executable skLib, taskPrioritySet()

taskPrioritySet()

NAME taskPrioritySet() – change the priority of a task

SYNOPSIS STATUS taskPrioritySet
 (
 int tid, /* task ID */
 int newPriority /* new priority */
)

DESCRIPTION This routine changes a task's priority to a specified priority. Priorities range from 0, the
highest priority, to 255, the lowest priority.

A request to lower the priority of a task that has acquired a priority inversion safe mutex
semaphore will not take immediate effect. To prevent a priority inversion situation, the
requested lower priority will take effect, in general, only after the task relinquishes all
priority inversion safe mutex semaphores.

A request to raise the priority of a task will take immediate effect.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

VxWorks Kernel API Reference, 6.6
taskRaise()

1006

RETURNS OK, or ERROR if the task ID is invalid.

ERRNO S_taskLib_ILLEGAL_PRIORITY

S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib, taskPriorityGet()

taskRaise()

NAME taskRaise() – send a signal to the caller's task

SYNOPSIS int taskRaise
 (
 int signo
)

DESCRIPTION This routine sends the signal signo to the task invoking the call. This function is currently
aliased to raise(), and is provided as a convenience to achieve uniform meaning across both
kernel and user-mode code.

RETURNS OK (0), or ERROR (-1) if the signal number or task ID is invalid.

ERRNO EINVAL

SEE ALSO sigLib, raise()

taskRegsGet()

NAME taskRegsGet() – get a task's registers from the TCB

SYNOPSIS STATUS taskRegsGet
 (
 int tid, /* task ID */
 REG_SET * pRegs /* put register contents here */
)

DESCRIPTION This routine gathers task information kept in the TCB. It copies the contents of the task's
registers to the register structure pRegs.

2 Routines
taskRegsSet()

1007

2

NOTE This routine only works well if the task is known to be in a stable, non-executing state.
Self-examination, for instance, is not advisable, as results are unpredictable.

SMP CONSIDERATIONS

Because of the concurrent execution environment of VxWorks SMP the specified task must
explicitely be put in a non-executing state before calling this routine.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNOS N/A

SEE ALSO taskInfo, taskSuspend(), taskRegsSet()

taskRegsSet()

NAME taskRegsSet() – set a task's registers

SYNOPSIS STATUS taskRegsSet
 (
 int tid, /* task ID */
 REG_SET * pRegs /* get register contents from here */
)

DESCRIPTION This routine loads a specified register set pRegs into a specified task's TCB.

NOTE This routine only works well if the task is known not to be in the ready state. Suspending
the task before changing the register set is recommended.

SMP CONSIDERATIONS

Because of the concurrent execution environment of VxWorks SMP the specified task must
explicitely be put in a non-executing state before calling this routine.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNOS N/A

SEE ALSO taskInfo, taskSuspend(), taskRegsGet()

VxWorks Kernel API Reference, 6.6
taskRegsShow()

1008

taskRegsShow()

NAME taskRegsShow() – display the contents of a task's registers

SYNOPSIS void taskRegsShow
 (
 int tid /* task ID */
)

DESCRIPTION This routine displays the register contents of a specified task on standard output.

EXAMPLE The following example displays the register of the shell task (PowerPC family):

-> taskRegsShow (taskNameToId ("tShell0"))

r0 = 0x00000000 sp = 0x00c30ae0 r2 = 0x00000000
r3 = 0x00000000 r4 = 0x00000000 r5 = 0x00000000
r6 = 0x00000000 r7 = 0x00000000 r8 = 0x00000000
r9 = 0x00000000 r10 = 0x00000000 r11 = 0x00000000
r12 = 0x00000000 r13 = 0x00000000 r14 = 0x00000000
r15 = 0x00000000 r16 = 0x00000000 r17 = 0x00000000
r18 = 0x00000000 r19 = 0x00c1c02c r20 = 0x02f93b20
r21 = 0x02f93c22 r22 = 0x0000005f r23 = 0x00000000
r24 = 0x02f93e24 r25 = 0x00000003 r26 = 0x00373f80
r27 = 0x00c30b88 r28 = 0x00348494 r29 = 0xffffffff
r30 = 0x007877a4 r31 = 0x0200b030 msr = 0x0200b030
lr = 0x00000000 ctr = 0x00000000 pc = 0x0025d66c
cr = 0x20000480 xer = 0x00000000 pgTblPtr = 0x00745000
scSrTblPtr = 0x007841f4 srTblPtr = 0x007841f4
value = 1 = 0x1

RETURNS N/A

ERRNO N/A

SEE ALSO taskShow

taskRestart()

NAME taskRestart() – restart a task

SYNOPSIS STATUS taskRestart
 (
 int tid /* task ID of task to restart */
)

2 Routines
taskResume()

1009

2

DESCRIPTION This routine "restarts" a task. The task is first terminated, and then reinitialized with the
same ID, priority, options, original entry point, stack size, and parameters it had when it
was terminated. Self-restarting of a calling task is performed by a newly spawned
"tRestart" task. The shell utilizes this routine to restart itself when aborted.

NOTE If the task has modified any of its start-up parameters, the restarted task will start with the
changed values.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

WARNING Restarting user mode tasks is not supported from kernel space, and may have unpredictable
behavior. User mode tasks may be restarted from within an RTP (except for the initial task).

RETURNS OK, or ERROR if the task ID is invalid or the task could not be restarted.

ERRNO S_intLib_NOT_ISR_CALLABLE

S_objLib_OBJ_DELETED

S_objLib_OBJ_UNAVAILABLE

S_objLib_OBJ_ID_ERROR

S_smObjLib_NOT_INITIALIZED

S_memLib_NOT_ENOUGH_MEMORY

S_memLib_BLOCK_ERROR

S_taskLib_ILLEGAL_PRIORITY

SEE ALSO taskLib

taskResume()

NAME taskResume() – resume a task

SYNOPSIS STATUS taskResume
 (
 int tid /* task ID of task to resume */
)

DESCRIPTION This routine resumes a specified task. Suspension is cleared, and the task operates in the
remaining state.

VxWorks Kernel API Reference, 6.6
taskRotate()

1010

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if the task cannot be resumed.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib

taskRotate()

NAME taskRotate() – rotate ready queue for a given task priority

SYNOPSIS STATUS taskRotate
 (
 int priority /* VX_TASK_PRIORITY_MIN to VX_TASK_PRIORITY_MAX */
)

DESCRIPTION This routine rotates the ready queue of tasks that are ready to run for the priority specified
by the priority parameter. In the special case that priority is set to TASK_PRIORITY_SELF, the
ready queue for the caller's normal (spawned) priority is rotated. If no tasks are ready, or
only one task is ready at the specified priority, no action is taken and this routine returns
OK and leaves errno unchanged.

SMP CONSIDERATIONS

This routine is not supported for SMP. This routine will return ERROR if called from a SMP
system.

NOTE The ITRON API rot_rdq() can be implemented using the following macro.

#define rot_rdq(p) taskRotate (p == 0 ? TASK_PRIORITY_SELF : p)

or using the following function definition.

STATUS rot_rdq
(
UINT priority
)
{
return taskRotate (priority == 0 ? TASK_PRIORITY_SELF: priority);

}

2 Routines
taskSRSet()

1011

2

RETURNS OK, or ERROR

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine is not callable from an ISR.

S_taskLib_ILLEGAL_PRIORITY
Priority specified is not within VX_TASK_PRIORITY_MIN to
VX_TASK_PRIORITY_MAX.

SEE ALSO taskRotate

taskSRInit()

NAME taskSRInit() – initialize the default task status register (MIPS)

SYNOPSIS ULONG taskSRInit
 (
 ULONG newSRValue /* new default task status register */
)

DESCRIPTION This routine sets the default status register for system-wide tasks. All tasks will be spawned
with the status register set to this value; thus, it must be called before kernelInit().

RETURNS The previous value of the default status register.

ERRNO Not Available

SEE ALSO taskArchLib

taskSRSet()

NAME taskSRSet() – set the task status register (MC680x0, MIPS, x86)

SYNOPSIS STATUS taskSRSet
 (
 int tid, /* task ID */
 UINT16 sr /* new SR */
)

VxWorks Kernel API Reference, 6.6
taskSafe()

1012

DESCRIPTION This routine sets the status register of a task that is not running (i.e., the TCB must not be
that of the calling task). Debugging facilities use this routine to set the trace bit in the status
register of a task that is being single-stepped.

x86:
The second parameter represents EFLAGS register and the size is 32 bit.

RETURNS OK, or ERROR if the task ID is invalid.

ERRNO Not Available

SEE ALSO taskArchLib

taskSafe()

NAME taskSafe() – make the calling task safe from deletion

SYNOPSIS STATUS taskSafe (void)

DESCRIPTION This routine protects the calling task from deletion. Tasks that attempt to delete a protected
task will block until the task is made unsafe, using taskUnsafe(). When a task becomes
unsafe, the deleter will be unblocked and allowed to delete the task.

The taskSafe() primitive utilizes a count to keep track of nested calls for task protection.
When nesting occurs, the task becomes unsafe only after the outermost taskUnsafe() is
executed.

RETURNS OK.

ERRNO N/A

SEE ALSO taskLib, taskUnsafe(), the VxWorks programmer guides.

taskShow()

NAME taskShow() – display task information from TCBs

SYNOPSIS STATUS taskShow
 (
 int tid, /* task ID */

2 Routines
taskShow()

1013

2

 int level /* 0 = summary, 1 = details, 2 = all tasks */
)

DESCRIPTION This routine displays the contents of a task control block (TCB) for a specified task. If level
is 1, it also displays task options and registers. If level is 2, it displays all tasks in sorted order
of the number of tasks are less than 500. If more than 500 tasks are in the system, level equal
to 2 will display all tasks in the system unsorted and in the order they are created.

The TCB display contains the following fields:

Stack and register information for the specified task are also displayed.

SMP CONSIDERATIONS

Specifying a level of 2 will display a "CPU #" column instead of "DELAY". Specifying a level
of 3 will result in the same output format as uniprocessor VxWorks, i.e. the "DELAY"
column will be displayed.

EXAMPLE The following example shows the TCB contents for the network task (PowerPC family):

UP version:

-> taskShow tNetTask, 1

 NAME ENTRY TID PRI STATUS PC SP ERRNO
DELAY
---------- ------------ -------- --- ---------- -------- -------- -------

tNetTask netTask 7b3c50 50 PEND 25d66c b056d0 0
0

task stack: base 0xb057a0 end 0xb03090 size 10000 high 1408 margin
8592
exc. stack: base 0xb067a0 end 0xb057b0 start 0xb067b0
exc. stack: size 4080 high 272 margin 3808

proc id: 0x36ffa8 ((null))
options: 0x9007
VX_SUPERVISOR_MODE VX_UNBREAKABLE VX_DEALLOC_STACK VX_DEALLOC_TCB

Field Meaning
NAME Task name (truncated, if ending with a > character)
ENTRY Symbol name or address where task began execution
TID Task ID
PRI Priority
STATUS Task status, as formatted by taskStatusString()
PC Program counter
SP Stack pointer
ERRNO Most recent error code for this task
DELAY If task is delayed, number of clock ticks remaining in delay (0 otherwise)
CPU # For SMP systems, CPU index the task is running on ("-" otherwise)

VxWorks Kernel API Reference, 6.6
taskShow()

1014

VX_DEALLOC_EXC_STACK

VxWorks Events

Events Pended on : Not Pended
Received Events : 0x0
Options : N/A

r0 = 0x00000000 sp = 0x00b056d0 r2 = 0x00000000
r3 = 0x00000000 r4 = 0x00000000 r5 = 0x00000000
r6 = 0x00000000 r7 = 0x00000000 r8 = 0x00000000
r9 = 0x00000000 r10 = 0x00000000 r11 = 0x00000000
r12 = 0x00000000 r13 = 0x00000000 r14 = 0x00000000
r15 = 0x00000000 r16 = 0x00000000 r17 = 0x00000000
r18 = 0x00000000 r19 = 0x00000000 r20 = 0x00000000
r21 = 0x00000000 r22 = 0x00000000 r23 = 0x00000000
r24 = 0x00000000 r25 = 0x00000000 r26 = 0x00371adc
r27 = 0x0000b030 r28 = 0x00348494 r29 = 0xffffffff
r30 = 0x00371a40 r31 = 0x0000b030 msr = 0x0000b030
lr = 0x00000000 ctr = 0x00000000 pc = 0x0025d66c
cr = 0x20000080 xer = 0x00000000 pgTblPtr = 0x00745000
scSrTblPtr = 0x007841f4 srTblPtr = 0x007841f4
coprocTaskShow: TaskId 0x7b3c50 has no coprocessors selected
value = 0 = 0x0

SMP version (shows TCB contents for the log task):

-> taskShow tLogTask, 1

 NAME ENTRY TID PRI STATUS PC SP ERRNO
DELAY
---------- ------------ -------- --- ---------- -------- -------- -------

tLogTask logTask 2ce5a0 0 PEND 1ecad8 2ce480 0
0

task affinity: 0x0 task cpuIndex: -1 (Task Not Running)

task stack: base 0x2ce5a0 end 0x2cd210 size 5008 high 384 margin
4624
exc. stack: base 0x2cf7d0 end 0x2ce840 start 0x2cf840
exc. stack: size 3984 high 0 margin 3984

proc id: 0x245910 ((null))
options: 0x9003
VX_SUPERVISOR_MODE VX_UNBREAKABLE VX_DEALLOC_TCB
VX_DEALLOC_EXC_STACK

VxWorks Events

Events Pended on : Not Pended
Received Events : 0x0
Options : N/A

r0 = 0x00000000 sp = 0x002ce480 r2 = 0x00000000

2 Routines
taskShow()

1015

2

r3 = 0x00000000 r4 = 0x00000000 r5 = 0x00000000
r6 = 0x00000000 r7 = 0x00000000 r8 = 0x00000000
r9 = 0x00000000 r10 = 0x00000000 r11 = 0x00000000
r12 = 0x00000000 r13 = 0x00000000 r14 = 0x00000000
r15 = 0x00000000 r16 = 0x00000000 r17 = 0x00000000
r18 = 0x00000000 r19 = 0x00000000 r20 = 0x00000000
r21 = 0x00000000 r22 = 0x00000000 r23 = 0x00000000
r24 = 0x00000000 r25 = 0x002ce4b8 r26 = 0x00000000
r27 = 0xffffffff r28 = 0x00000001 r29 = 0x002cc830
r30 = 0x002cc7f0 r31 = 0xffffffff msr = 0x0000b030
lr = 0x00000000 ctr = 0x00000000 pc = 0x001ecad8
cr = 0x20000000 xer = 0x00000000 pgTblPtr = 0x00279000
scSrTblPtr = 0x00278154 srTblPtr = 0x00278154
coprocTaskShow: TaskId 0x2ce5a0 has no coprocessors selected
value = 0 = 0x0

SMP level 3 taskShow example:

-> taskShow 0, 3

 NAME ENTRY TID PRI STATUS PC SP ERRNO
DELAY
---------- ------------ -------- --- ---------- -------- -------- -------

tExcTask 192c6c 26ce00 0 PEND 1ef424 26ef80 0
0
tJobTask 193bc4 2cb440 0 PEND 1ef424 2cb380 0
0
tLogTask logTask 2ce5a0 0 PEND 1ecad8 2ce480 0
0
tNbioLog 19507c 2d1e20 0 PEND 1ef424 2d1d10 0
0
tShell0 shellTask 2e4130 1 READY 1f8164 2e23e0 0
0
miiBusMoni> 140fc8 2c3010 254 DELAY 1f5844 2c2f80 0
50
tIdleTask0 idleTaskEntr 272c30 287 READY 1eeda8 272bb0 0
0
tIdleTask1 idleTaskEntr 276250 287 READY 1eedb4 2761d0 0
0
value = 0 = 0x0

If the specified task uses coprocessors, such as a floating point coprocessor, this routine will
also display the registers for the corresponding coprocessor.

If this routine is called with the current task as the argument, register information will not
be displayed. Use taskRegsShow() to display the register information for the calling task
instead.

RETURNS N/A

ERRNO N/A

VxWorks Kernel API Reference, 6.6
taskShowInit()

1016

SEE ALSO taskShow, taskStatusString(), windsh, the VxWorks programmer guides, the, VxWorks
Command-Line Tools User's Guide.

taskShowInit()

NAME taskShowInit() – initialize the task show routine facility

SYNOPSIS void taskShowInit (void)

DESCRIPTION This routine links the task show routines into the VxWorks system. It is called automatically
when the task show facility is configured into VxWorks using either of the following
methods:

- If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

- If you use the project facility, select INCLUDE_TASK_SHOW.

RETURNS N/A

ERRNO N/A

SEE ALSO taskShow

taskSigqueue()

NAME taskSigqueue() – send a queued signal to a task

SYNOPSIS int taskSigqueue
 (
 int tid,
 int signo,
 const union sigval value
)

DESCRIPTION The function sigqueue() sends the signal specified by signo with the signal-parameter value
specified by value to the process specified by tid.

This function is currently aliased to sigqueue(), and is provided as a convenience to
achieve uniform meaning across both kernel and user-mode code.

2 Routines
taskSpareFieldSet()

1017

2

RETURNS OK (0), or ERROR (-1) if the task ID or signal number is invalid, or if there are no
queued-signal buffers available.

ERRNO EINVAL

EAGAIN

SEE ALSO sigLib, sigqueue()

taskSpareFieldGet()

NAME taskSpareFieldGet() – get the spare field of a TCB

SYNOPSIS int taskSpareFieldGet
 (
 int tid, /* task ID */
 SPARE_NUM numAllotted /* spare field to get */
)

DESCRIPTION This routine gets the value of a spare field. The spare field was gotten by calling
taskSpareNumAllot() to get the available spare field to use.

RETURNS value of the spare field, or ERROR if task or numAllotted is invalid

ERRNO N/A

SEE ALSO taskUtilLib, taskSpareNumAllot(), taskSpareFieldSet()

taskSpareFieldSet()

NAME taskSpareFieldSet() – set the spare field of a TCB

SYNOPSIS STATUS taskSpareFieldSet
 (
 int tid, /* task ID */
 SPARE_NUM numAllotted, /* spare field to set */
 int value /* value to set */
)

DESCRIPTION This routine sets the value of a spare field. The spare field is gotten by calling
taskSpareNumAllot() to get the available spare field to use.

VxWorks Kernel API Reference, 6.6
taskSpareNumAllot()

1018

An example:

int spareNum;
taskSpareNumAllot (t1, &spareNum);
if (spareNum != ERROR)
 taskSpareFieldSet (t1, spareNum, 0x12345678);

RETURNS OK, or ERROR if task is invalid or numAllotted is invalid

ERRNOS N/A

SEE ALSO taskUtilLib, taskSpareFieldGet(), taskSpareNumAllot()

taskSpareNumAllot()

NAME taskSpareNumAllot() – Allocate the first available spare field in the TCB

SYNOPSIS void taskSpareNumAllot
 (
 int tid, /* task ID */
 SPARE_NUM * numAllotted /* where to return SPARE_NUM */
)

DESCRIPTION This routine allots the first available spare field in the TCB. Once a spare field is allotted, this
same number is used to reference the same spare field on all WIND_TCBs in the system. In
other words, two different tasks, t1 and t2, will get different SPARE_NUM values when
called.

Once a field has been allotted, the field is reserved for the life of the system. A field may not
be un-allotted or unreserved.

RETURNS SPARE_NUM, or ERROR if fields are not available

ERRNOS N/A

SEE ALSO taskUtilLib, taskSpareFieldGet(), taskSpareFieldSet()

2 Routines
taskSpawn()

1019

2

taskSpawn()

NAME taskSpawn() – spawn a task

SYNOPSIS int taskSpawn
 (
 char * name, /* name of new task (stored at pStackBase) */
 int priority, /* priority of new task */
 int options, /* task option word */
 int stackSize, /* size (bytes) of stack needed plus name */
 FUNCPTR entryPt, /* entry point of new task */
 int arg1, /* 1st of 10 req'd args to pass to entryPt */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8,
 int arg9,
 int arg10
)

DESCRIPTION This routine creates and activates a new task with a specified priority and options and
returns a system-assigned ID. See taskInit() and taskActivate() for the building blocks of
this routine.

A task may be assigned a name as a debugging aid. This name will appear in displays
generated by various system information facilities such as i(). The name may be of arbitrary
length and content, but the current VxWorks convention is to limit task names to ten
characters and prefix them with a "t". If name is specified as NULL, an ASCII name will be
assigned to the task of the form "tn" where n is an integer which increments as new tasks are
spawned.

VxWorks schedules tasks on the basis of priority. Tasks may have priorities ranging from
0, the highest priority, to 255, the lowest priority. The priority of a task in VxWorks in
dynamic and one may change an existing task's priority with taskPrioritySet().

The only resource allocated to a spawned task is a stack of a specified size stackSize, which
is allocated from the system memory partition. Stack size should be an even integer. A task
control block (TCB) is carved from the stack, as well as any memory required by the task
name. The remaining memory is the task's stack and every byte is filled with the value 0xEE
(unless the VX_NO_STACK_FILL option is specifed or the global kernel configuration
parameter VX_GLOBAL_NO_STACK_FILL is set to TRUE) for the checkStack() facility. See
the manual entry for checkStack() for stack-size checking aids.

The entry address entryPt is the address of the "main" routine of the task. The routine will
be called once the C environment has been set up. The specified routine will be called with
the ten given arguments. Should the specified main routine return, a call to exit() will
automatically be made.

VxWorks Kernel API Reference, 6.6
taskSpawn()

1020

Note that ten (and only ten) arguments must be passed for the spawned function.

Bits in the options argument may be set to run with the following modes:

VX_FP_TASK
execute with floating-point coprocessor support. A task which performs floating point
operations or calls any functions which either return or take a floating point value as
arguments must be created with this option. Some routines perform floating point
operations internally. The VxWorks documentation for these clearly state the need to
use the VX_FP_TASK option.

VX_ALTIVEC_TASK
execute with Altivec support (PowerPC only)

VX_SPE_TASK
execute with SPE support (PowerPC only)

VX_DSP_TASK
execute with DSP support (SuperH only)

VX_PRIVATE_ENV
include private environment support (see envLib).

VX_NO_STACK_FILL
do not fill the stack for use by checkStack().

VX_UNBREAKABLE
do not allow breakpoint debugging.

VX_NO_STACK_PROTECT
do not provide stack protection: no overflow or underflow detection, stack remains
executable.

The option bits VX_DEALLOC_STACK and VX_DEALLOC_EXC_STACK are not options
available for the taskSpawn() API. taskSpawn() internally sets these option bits by default
depending on the configuration of the system. Specifying these options to taskSpawn()
results in an ERROR and the ERRNO, S_taskLib_ILLEGAL_OPTIONS, will be returned. See
the definitions in taskLib.h.

It is assumed that the caller passes a valid function pointer as entryPt while calling this API.
No validity check for this parameter is done here.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS The task ID, or ERROR if memory is insufficient or the task cannot be created.

ERRNO S_intLib_NOT_ISR_CALLABLE
Routine is not callable from an ISR.

2 Routines
taskStackAllot()

1021

2

S_objLib_OBJ_ID_ERROR

S_smObjLib_NOT_INITIALIZED

S_memLib_NOT_ENOUGH_MEMORY
Out of memory for allocation of stack or TCB.

S_memLib_BLOCK_ERROR

S_taskLib_ILLEGAL_PRIORITY
Priority specified is not within 0-255.

S_taskLib_ILLEGAL_OPTIONS
The following illegal options were set: VX_DEALLOC_STACK,
VX_DEALLOC_EXC_STACK, or VX_DEALLOC_TCB for taskSpawn().

S_taskLib_ILLEGAL_STACK_INFO
An invalid stack size has been specified

SEE ALSO taskLib, taskInit(), taskActivate(), sp(), the VxWorks programmer guides.

taskStackAllot()

NAME taskStackAllot() – allot memory from a task's exception stack

SYNOPSIS void * taskStackAllot
 (
 int tid, /* task whose stack will be allotted from */
 unsigned nBytes /* number of bytes to allot */
)

DESCRIPTION This routine allots the specified amount of memory from the start of the exception stack of
the task specified by tid. This is a non-blocking operation meant to be used by task create
hooks that need to allocate small amounts of memory on a per-task basis. Since the memory
is carved from the exception stack calling this routine essentially causes the amount of stack
space available for execution to be reduced. Hence the requirement to only allocate small
amounts of memory. The exception stack size of a kernel task cannot be modified. The
exception stack size of tasks that run in real-time processes is controlled by the
USER_TASK_EXC_STACK_SIZE configuration parameter of the INCLUDE_KERNEL
component.

It is an error condition for a task to call this routine to attempt to allocate memory from its
own exception stack. Attempting to do this results in this routine returning NULL.
Attempting to allocate memory from the exception stack of a task that has started execution
has undefined results. This routine is meant to only ever be called before a task initially
starts executing.

VxWorks Kernel API Reference, 6.6
taskStatusString()

1022

The memory allocated with this routine cannot be added back to the task's exception stack.
It will be reclaimed as part of the reclamation of the exception stack when the task is deleted.

Note that an exception stack underrun will overwrite the allotments made from this routine
because all portions are carved from the start of the exception stack.

This routine returns NULL if the requested size exceeds available stack memory.

RETURNS pointer to block, or NULL if unsuccessful.

ERRNO N/A

SEE ALSO taskLib, taskCreateHookAdd()

taskStatusString()

NAME taskStatusString() – get a task's status as a string

SYNOPSIS STATUS taskStatusString
 (
 int tid, /* task to get string for */
 char * pString /* where to return string */
)

DESCRIPTION This routine deciphers the WIND task status word in the TCB for a specified task, and copies
the appropriate string to pString.

The formatted string is one of the following:

String Meaning
READY Task is not waiting for any resource other than the CPU.
PEND Task is blocked due to the unavailability of some resource.
DELAY Task is asleep for some duration.
SUSPEND Task is unavailable for execution (but not delayed, or pended).
STOP Task is stopped by the debugger.
DELAY+S Task is both delayed and suspended.
PEND+S Task is both pended and suspended.
PEND+T Task is pended with a timeout.
STOP+P Task is both pended and stopped by the debugger.
STOP+S Task is both stopped by the debugger and suspended.
STOP+T Task is both delayed and stopped by the debugger.
PEND+S+T Task is pended with a timeout, and also suspended.
STOP+P+S Task is pended, suspended, and also stopped by the debugger.
STOP+P+T Task is pended with a timeout, and also stopped by the debugger.
STOP+S+T Task is suspended with a timeout, and also stopped by the debugger.

2 Routines
taskSuspend()

1023

2

EXAMPLE -> taskStatusString (taskNameToId ("tShell0"), xx=malloc (10))
 new symbol "xx" added to symbol table.
 value = 0 = 0x0
 -> printf ("shell status = <%s>\n", xx)
 shell status = <READY>
 value = 2 = 0x2

RETURNS OK, or ERROR if the task ID is invalid.

ERRNO N/A

SEE ALSO taskShow

taskSuspend()

NAME taskSuspend() – suspend a task

SYNOPSIS STATUS taskSuspend
 (
 int tid /* task ID of task to suspend */
)

DESCRIPTION This routine suspends a specified task. A task ID of zero results in the suspension of the
calling task. Suspension is additive, thus tasks can be delayed and suspended, or pended
and suspended. Suspended, delayed tasks whose delays expire remain suspended.
Likewise, suspended, pended tasks that unblock remain suspended only.

Care should be taken with asynchronous use of this facility. The specified task is suspended
regardless of its current state. The task could, for instance, have mutual exclusion to some
system resource, such as the network or system memory partition. If suspended during
such a time, the facilities engaged are unavailable, and the situation often ends in deadlock.

This facility should be rejected as a synchronization mechanism in favor of the more general
semaphore facility.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

ST+P+S+T Task is pended with a timeout, suspended, and stopped by the debugger.
...+I Task has inherited priority (+I may be appended to any string above).
DEAD Task no longer exists.

String Meaning

VxWorks Kernel API Reference, 6.6
taskSwitchHookAdd()

1024

RETURNS OK, or ERROR if the task cannot be suspended.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib

taskSwitchHookAdd()

NAME taskSwitchHookAdd() – add a routine to be called at every task switch

SYNOPSIS STATUS taskSwitchHookAdd
 (
 FUNCPTR switchHook /* routine to be called at every task switch */
)

DESCRIPTION This routine adds a specified routine to a list of routines that will be called at every task
switch. The routine should be declared as follows:

 void switchHook
 (
 WIND_TCB *pOldTcb, /* pointer to old task's WIND_TCB */
 WIND_TCB *pNewTcb /* pointer to new task's WIND_TCB */
)

NOTE User-installed switch hooks are called within the kernel context. Therefore, switch hooks do
not have access to all VxWorks facilities. The following routines can be called from within
a task switch hook:

RETURNS OK, or ERROR if the table of task switch routines is full.

ERRNO Not Available

SEE ALSO taskHookLib, taskSwitchHookDelete()

Library Routines
bLib All routines
fppArchLib fppSave(), fppRestore()
intLib intContext(), intCount(), intVecSet(), intVecGet()
lstLib All routines
mathALib All routines, if fppSave()/fppRestore() are used
rngLib All routines except rngCreate()
taskLib taskIdVerify(), taskIdDefault(), taskIsReady()

taskIsSuspended(), taskTcb()
vxLib vxTas()

2 Routines
taskTcb()

1025

2

taskSwitchHookDelete()

NAME taskSwitchHookDelete() – delete a previously added task switch routine

SYNOPSIS STATUS taskSwitchHookDelete
 (
 FUNCPTR switchHook /* routine to be deleted from list */
)

DESCRIPTION This routine removes the specified routine from the list of routines to be called at each task
switch.

RETURNS OK, or ERROR if the routine is not in the table of task switch routines.

ERRNO Not Available

SEE ALSO taskHookLib, taskSwitchHookAdd()

taskSwitchHookShow()

NAME taskSwitchHookShow() – show the list of task switch routines

SYNOPSIS void taskSwitchHookShow (void)

DESCRIPTION This routine shows all the switch routines installed in the task switch hook table, in the order
in which they were installed.

RETURNS N/A

ERRNO Not Available

SEE ALSO taskHookShow, taskSwitchHookAdd()

taskTcb()

NAME taskTcb() – get the task control block for a task ID

SYNOPSIS WIND_TCB * taskTcb

VxWorks Kernel API Reference, 6.6
taskUnlink()

1026

 (
 int tid /* task ID */
)

DESCRIPTION This routine returns a pointer to the task control block (WIND_TCB) for a specified task.
Although all task state information is contained in the TCB, users must not modify it
directly. To change registers, for instance, use taskRegsSet() and taskRegsGet().

RETURNS A pointer to a WIND_TCB, or NULL if the task ID is invalid.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO taskLib

taskUnlink()

NAME taskUnlink() – unlink a task

SYNOPSIS STATUS taskUnlink
 (
 const char * name /* name of task to unlink */
)

DESCRIPTION This routine removes a task from its name space. The use of this routine on private tasks,
which support duplicate names, is not recomended. After a task is unlinked, subsequent
calls to taskOpen() using name will not be able to find the task, even if it has not been
deleted yet. Instead, a new task could be created if taskOpen() is called with the
OM_CREATE flag.

This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_objLib_OBJ_INVALID_ARGUMENT
name is NULL or empty.

S_objLib_OBJ_NOT_FOUND
No task with name was found.

2 Routines
taskUnsafe()

1027

2

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO taskOpen, taskOpen(), taskClose()

taskUnlock()

NAME taskUnlock() – enable task rescheduling

SYNOPSIS STATUS taskUnlock
 (
 void
)

DESCRIPTION This routine decrements the preemption lock count. Typically this call is paired with
taskLock() and concludes a critical section of code. Preemption will not be unlocked until
taskUnlock() has been called as many times as taskLock(). When the lock count is
decremented to zero, any tasks that were eligible to preempt the current task will execute.

The taskUnlock() routine is not callable from interrupt service routines.

SMP CONSIDERATIONS

This API is not available in VxWorks SMP.

RETURNS OK or ERROR.

ERRNO S_intLib_NOT_ISR_CALLABLE

SEE ALSO taskLib, taskLock(), taskCpuUnlock()

taskUnsafe()

NAME taskUnsafe() – make the calling task unsafe from deletion

SYNOPSIS STATUS taskUnsafe (void)

DESCRIPTION This routine removes the calling task's protection from deletion. Tasks that attempt to
delete a protected task will block until the task is unsafe. When a task becomes unsafe, the
deleter will be unblocked and allowed to delete the task.

VxWorks Kernel API Reference, 6.6
taskVarAdd()

1028

The taskUnsafe() primitive utilizes a count to keep track of nested calls for task protection.
When nesting occurs, the task becomes unsafe only after the outermost taskUnsafe() is
executed.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK.

ERRNO N/A

SEE ALSO taskLib, taskSafe(), the VxWorks programmer's guides

taskVarAdd()

NAME taskVarAdd() – add a task variable to a task

SYNOPSIS STATUS taskVarAdd
 (
 int tid, /* ID of task to have new variable */
 int *pVar /* pointer to variable to be switched for task */
)

DESCRIPTION This routine adds a specified variable pVar (4-byte memory location) to a specified task's
context. After calling this routine, the variable will be private to the task. The task can
access and modify the variable, but the modifications will not appear to other tasks, and
other tasks' modifications to that variable will not affect the value seen by the task. This is
accomplished by saving and restoring the variable's initial value each time a task switch
occurs to or from the calling task.

This facility can be used when a routine is to be spawned repeatedly as several independent
tasks. Although each task will have its own stack, and thus separate stack variables, they
will all share the same static and global variables. To make a variable not shareable, the
routine can call taskVarAdd() to make a separate copy of the variable for each task, but all
at the same physical address.

Note that task variables increase the task switch time to and from the tasks that own them.
Therefore, it is desirable to limit the number of task variables that a task uses. One efficient
way to use task variables is to have a single task variable that is a pointer to a dynamically
allocated structure containing the task's private data.

2 Routines
taskVarDelete()

1029

2

EXAMPLE Assume that three identical tasks were spawned with a routine called operator(). All three
use the structure OP_GLOBAL for all variables that are specific to a particular incarnation of
the task. The following code fragment shows how this is set up:

OP_GLOBAL *opGlobal; /* ptr to operator task's global variables */

void operator
 (
 int opNum /* number of this operator task */
)
 {
 if (taskVarAdd (0, (int *)&opGlobal) != OK)
 {
 printErr ("operator%d: can't taskVarAdd opGlobal\\n", opNum);
 taskSuspend (0);
 }

 if ((opGlobal = (OP_GLOBAL *) malloc (sizeof (OP_GLOBAL))) == NULL)
 {
 printErr ("operator%d: can't malloc opGlobal\\n", opNum);
 taskSuspend (0);
 }
 ...
 }

SMP CONSIDERATIONS

This routine is not available in VxWorks SMP. Use __thread variables instead

RETURNS OK, or ERROR if memory is insufficient for the task variable descriptor or semaphore.

ERRNOS no errnos for this routine

SEE ALSO taskVarLib, taskVarDelete(), taskVarGet(), taskVarSet()

taskVarDelete()

NAME taskVarDelete() – remove a task variable from a task

SYNOPSIS STATUS taskVarDelete
 (
 int tid, /* ID of task whose variable is to be removed */
 int *pVar /* pointer to task variable to be removed */
)

DESCRIPTION This routine removes a specified task variable, pVar, from the specified task's context. The
private value of that variable is lost.

VxWorks Kernel API Reference, 6.6
taskVarGet()

1030

SMP CONSIDERATIONS

This routine is not available in VxWorks SMP. Use __thread variables instead.

RETURNS OK, or ERROR if the task variable does not exist for the specified task.

ERRNOS Possible errno values set by this routine are:

S_taskLib_TASK_VAR_NOT_FOUND - address specified in pVar is not a task variable for tid

SEE ALSO taskVarLib, taskVarAdd(), taskVarGet(), taskVarSet()

taskVarGet()

NAME taskVarGet() – get the value of a task variable

SYNOPSIS int taskVarGet
 (
 int tid, /* ID of task whose task variable is to be retrieved */
 int *pVar /* pointer to task variable */
)

DESCRIPTION This routine returns the private value of a task variable for a specified task. The specified
task is usually not the calling task, which can get its private value by directly accessing the
variable. This routine is provided primarily for debugging purposes.

SMP CONSIDERATIONS

This routine is not available in VxWorks SMP. Use __thread variables instead.

RETURNS The private value of the task variable, or ERROR if the task is not found or it does not own
the task variable.

ERRNOS Possible errno values set by this routine are:

S_taskLib_TASK_VAR_NOT_FOUND - address specified in pVar is not a task variable for tid

SEE ALSO taskVarLib, taskVarAdd(), taskVarDelete(), taskVarSet()

2 Routines
taskVarInit()

1031

2

taskVarInfo()

NAME taskVarInfo() – get a list of task variables of a task

SYNOPSIS int taskVarInfo
 (
 int tid, /* ID of task whose task variable is to be set */
 TASK_VAR varList[], /* array to hold task variable addresses */
 int maxVars /* maximum variables varList can accommodate */
)

DESCRIPTION This routine provides the calling task with a list of all of the task variables of a specified task.
The unsorted array of task variables is copied to varList.

SMP CONSIDERATIONS

This routine is not available in VxWorks SMP.

RETURNS The number of task variables in the list or ERROR if the specified task ID is not valid.

ERRNOS no errnos for this routine

SEE ALSO taskVarLib

taskVarInit()

NAME taskVarInit() – initialize the task variables facility

SYNOPSIS STATUS taskVarInit (void)

DESCRIPTION This routine initializes the task variables facility. It installs task switch and delete hooks
used for implementing task variables. If taskVarInit() is not called explicitly,
taskVarAdd() will call it automatically when the first task variable is added.

After the first invocation of this routine, subsequent invocations have no effect.

WARNING Order dependencies in task delete hooks often involve task variables. If a facility uses task
variables and has a task delete hook that expects to use those task variables, the facility's
delete hook must run before the task variables' delete hook. Otherwise, the task variables
will be deleted by the time the facility's delete hook runs.

VxWorks is careful to run the delete hooks in reverse of the order in which they were
installed. Any facility that has a delete hook that will use task variables can guarantee
proper ordering by calling taskVarInit() before adding its own delete hook.

VxWorks Kernel API Reference, 6.6
taskVarSet()

1032

Note that this is not an issue in normal use of task variables. The issue only arises when
adding another task delete hook that uses task variables.

Caution should also be taken when adding task variables from within create hooks. If the
task variable package has not been installed via taskVarInit(), the create hook attempts to
create a create hook, and that may cause system failure. To avoid this situation,
taskVarInit() should be called during system initialization from the root task, usrRoot(),
in usrConfig.c.

SMP CONSIDERATIONS

This routine is not available in VxWorks SMP.

RETURNS OK, or ERROR if the task switch/delete hooks could not be installed.

ERRNOS no errnos for this routine

SEE ALSO taskVarLib

taskVarSet()

NAME taskVarSet() – set the value of a task variable

SYNOPSIS STATUS taskVarSet
 (
 int tid, /* ID of task whose task variable is to be set */
 int *pVar, /* pointer to task variable to be set for this task */
 int value /* new value of task variable */
)

DESCRIPTION This routine sets the private value of the task variable for a specified task. The specified task
is usually not the calling task, which can set its private value by directly modifying the
variable. This routine is provided primarily for debugging purposes.

SMP CONSIDERATIONS

This routine is not available in VxWorks SMP. Use __thread variables instead.

RETURNS OK, or ERROR if the task is not found or it does not own the task variable.

ERRNOS Possible errno values set by this routine are:

S_taskLib_TASK_VAR_NOT_FOUND - address specified in pVar is not a task variable for tid

SEE ALSO taskVarLib, taskVarAdd(), taskVarDelete(), taskVarGet()

2 Routines
tffsDevCreate()

1033

2

td()

NAME td() – delete a task

SYNOPSIS void td
 (
 int taskNameOrId /* task name or task ID */
)

DESCRIPTION This command deletes a specified task. It simply calls taskDelete().

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, taskDelete(), the VxWorks programmer guides.

tffsDevCreate()

NAME tffsDevCreate() – create a TrueFFS block device suitable for use with dosFs

SYNOPSIS BLK_DEV * tffsDevCreate
 (
 int tffsDriveNo, /* TFFS drive number (0 - DRIVES-1) */
 int removableMediaFlag /* 0 - nonremovable flash media */
)

DESCRIPTION This routine creates a TFFS block device on top of a flash device. It takes as arguments a
drive number, determined from the order in which the socket components were registered,
and a flag integer that indicates whether the medium is removable or not. A zero indicates
a non removable medium. A one indicates a removable medium. If you intend to mount
dosFs on this block device, you probably do not want to call tffsDevCreate(), but should
call usrTffsConfig() instead. Internally, usrTffsConfig() calls tffsDevCreate() for you. It
then does everything necessary (such as calling the dosFsDevInit() routine) to mount
dosFs on the just created block device.

RETURNS BLK_DEV pointer, or NULL if it failed.

ERRNO Not Available

SEE ALSO tffsDrv

VxWorks Kernel API Reference, 6.6
tffsDevFormat()

1034

tffsDevFormat()

NAME tffsDevFormat() – format a flash device for use with TrueFFS

SYNOPSIS STATUS tffsDevFormat
 (
 int tffsDriveNo, /* TrueFFS drive number (0 - DRIVES-1) */
 int arg /* pointer to tffsDevFormatParams structure */
)

DESCRIPTION This routine formats a flash device for use with TrueFFS. It takes two parameters, a drive
number and a pointer to a device format structure. This structure describes how the volume
should be formatted. The structure is defined in dosformt.h. The drive number is assigned
in the order that the socket component for the device was registered.

The format process marks each erase unit with an Erase Unit Header (EUH) and creates the
physical and virtual Block Allocation Maps (BAM) for the device. The erase units reserved
for the "boot-image" are skipped and the first EUH is placed at number (boot-image length
- 1). To write to the boot-image region, call tffsBootImagePut().

WARNING If any of the erase units in the boot-image region contains an erase unit header from a
previous format call (this can happen if you reformat a flash device specifying a larger boot
region) TrueFFS fails to mount the device. To fix this problem, use tffsRawio() to erase the
problem erase units (thus removing the outdated EUH).

The macro TFFS_STD_FORMAT_PARAMS defines the default values used for formatting a
flask disk device. If the second argument to this routine is zero, tffsDevFormat() uses these
default values.

RETURNS OK, or ERROR if it failed.

ERRNO Not Available

SEE ALSO tffsDrv

tffsDevOptionsSet()

NAME tffsDevOptionsSet() – set TrueFFS volume options

SYNOPSIS STATUS tffsDevOptionsSet
 (
 TFFS_DEV * pTffsDev /* pointer to device descriptor */
)

2 Routines
tffsDrvOptionsSet()

1035

2

DESCRIPTION This routine is intended to set various TrueFFS volume options. At present it only disables
FAT monitoring. If VxWorks long file names are to be used with TrueFFS, FAT monitoring
must be turned off.

RETURNS OK, or ERROR if it failed.

ERRNO Not Available

SEE ALSO tffsDrv

tffsDrv()

NAME tffsDrv() – initialize the TrueFFS system

SYNOPSIS STATUS tffsDrv (void)

DESCRIPTION This routine sets up the structures, the global variables, and the mutual exclusion
semaphore needed to manage TrueFFS. This call also registers socket component drivers
for all the flash devices attached to your target.

Because tffsDrv() is the call that initializes the TrueFFS system, this function must be called
(exactly once) before calling any other TrueFFS utilities, such as tffsDevFormat() or
tffsDevCreate(). Typically, the call to tffsDrv() is handled for you automatically. If you
defined INCLUDE_TFFS in your BSP's config.h, the call to tffsDrv() is made from
usrRoot(). If your BSP's config.h defines INCLUDE_PCMCIA, the call to tffsDrv() is made
from pccardTffsEnabler().

RETURNS OK, or ERROR if it fails.

ERRNO Not Available

SEE ALSO tffsDrv

tffsDrvOptionsSet()

NAME tffsDrvOptionsSet() – set TrueFFS volume options

SYNOPSIS STATUS tffsDrvOptionsSet

VxWorks Kernel API Reference, 6.6
tffsRawio()

1036

 (
 int tffsDriveNo /* TFFS drive number (0 - DRIVES-1) */
)

DESCRIPTION This routine is intended to set various TrueFFS volume options. At present it only disables
FAT monitoring. If VxWorks long file names are to be used with TrueFFS, FAT monitoring
must be turned off. If Datalite's Reliance file file system is to be used with TrueFFS, FAT
monitoring must be turned off.

RETURNS OK, or ERROR if it failed.

ERRNO Not Available

SEE ALSO tffsDrv

tffsRawio()

NAME tffsRawio() – low level I/O access to flash components

SYNOPSIS STATUS tffsRawio
 (
 int tffsDriveNo, /* TrueFFS drive number (0 - DRIVES-1) */
 int functionNo, /* TrueFFS function code */
 int arg0, /* argument 0 */
 int arg1, /* argument 1 */
 int arg2 /* argument 2 */
)

DESCRIPTION Use the utilities provided by thisroutine with the utmost care. If you use these routines
carelessly, you risk data loss as well as permanent physical damage to the flash device.

This routine is a gateway to a series of utilities (listed below). Functions such as
mkbootTffs() and tffsBootImagePut() use these tffsRawio() utilities to write boot sector
information. The functions for physical read, write, and erase are made available with the
intention that they be used on erase units allocated to the boot-image region by
tffsDevFormat(). Using these functions elsewhere could be dangerous.

The arg0, arg1, and arg2 parameters to tffsRawio() are interpreted differently depending
on the function number you specify for functionNo. The drive number is determined by the
order in which the socket components were registered.

Function Name arg0 arg1 arg2
TFFS_GET_PHYSICAL_INFO user buffer

address
N/A N/A

2 Routines
tffsRawio()

1037

2

TFFS_GET_PHYSICAL_INFO
writes the flash type, erasable block size, and media size to the user buffer specified in
arg0.

TFFS_PHYSICAL_READ
reads arg1 bytes from arg0 and writes them to the buffer specified by arg2.

TFFS_PHYSICAL_WRITE
copies arg1 bytes from the arg2 buffer and writes them to the flash memory location
specified by arg0. This aborts if the volume is already mounted to prevent the versions
of translation data in memory and in flash from going out of synchronization.

TFFS_PHYSICAL_ERASE
erases arg1 erase units, starting at the erase unit specified in arg0. This aborts if the
volume is already mounted to prevent the versions of translation data in memory and
in flash from going out of synchronization.

TFFS_ABS_READ
reads arg1 sectors, starting at sector arg0, and writes them to the user buffer specified in
arg2.

TFFS_ABS_WRITE
takes data from the arg2 user buffer and writes arg1 sectors of it to the flash location
starting at sector arg0.

TFFS_ABS_DELETE
deletes arg1 sectors of data starting at sector arg0.

TFFS_DEFRAGMENT_VOLUME
calls the defragmentation routine with the minimum number of sectors to be reclaimed,
arg0, and writes the actual number reclaimed in the user buffer by arg1. Calling this
function through some low priority task will make writes more deterministic. No
validation is done of the user specified address fields, so the functions assume they are
writable. If the address is invalid, you could see bus errors or segmentation faults.

TFFS_PHYSICAL_READ address to read byte count user buffer
address

TFFS_PHYSICAL_WRITE address to write byte count user buffer
address

TFFS_PHYSICAL_ERASE first unit number of units N/A
TFFS_ABS_READ sector number number of sectors user buffer

address
TFFS_ABS_WRITE sector number number of sectors user buffer

address
TFFS_ABS_DELETE sector number number of sectors N/A
TFFS_DEFRAGMENT_VOLUME number of sectors user buffer

address
N/A

Function Name arg0 arg1 arg2

VxWorks Kernel API Reference, 6.6
ti()

1038

RETURNS OK, or ERROR if it failed.

ERRNO Not Available

SEE ALSO tffsDrv

ti()

NAME ti() – print complete information from a task's TCB

SYNOPSIS void ti
 (
 int taskNameOrId /* task name or task ID; 0 = use default */
)

DESCRIPTION This command prints the task control block (TCB) contents, including registers, for a
specified task. If taskNameOrId is omitted or zero, the last task referenced is assumed.

The ti() routine uses taskShow(); see the documentation for taskShow() for a description
of the output format.

EXAMPLE The following shows the TCB contents for the shell task:

-> ti

 NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ----------- -------- --- ---------- -------- -------- ------- -----
tShell0 shellTask 60351ba8 1 READY 6015fe68 603508d0 ad0007 0

task stack: base 0x60351ba8 end 0x6033eba8 size 77824 high 14144 margin
63680
exc. stack: base 0x60354f18 end 0x60351fd8 start 0x60354fd8
exc. stack: size 12096 high 4600 margin 7496

proc id: 0x60187008 ((null))
options: 0x1001007
VX_SUPERVISOR_MODE VX_UNBREAKABLE VX_DEALLOC_STACK
VX_DEALLOC_EXC_STACK VX_FP_TASK

VxWorks Events

Events Pended on : Not Pended
Received Events : 0x0
Options : N/A
value = 0 = 0x0

RETURNS N/A

2 Routines
tick64Set()

1039

2

ERRNO N/A

SEE ALSO usrLib, taskShow(), the VxWorks programmer guides.

tick64Get()

NAME tick64Get() – get the value of the kernel's tick counter as a 64 bit value

SYNOPSIS UINT64 tick64Get (void)

DESCRIPTION This routine returns the current value of the 64 bit absolute tick counter. This value is set to
zero at startup, incremented by tickAnnounce(), and can be changed using tickSet() or
tick64Set().

SMP CONSIDERATIONS

In SMP configuration this API is spinLock restricted meaning that calling this API while
holding a spinLock is not allowed. Not comforming to this restriction will potentially lead
to a live-lock scenerio.

RETURNS The most recent tickSet()/tick64Set() value, plus all tickAnnounce() calls since.

ERRNO N/A

SEE ALSO tickLib, tickGet(), tick64Set(), tickSet(), tickAnnounce()

tick64Set()

NAME tick64Set() – set the value of the kernel's tick counter in 64 bits

SYNOPSIS void tick64Set
 (
 UINT64 ticks /* new time in ticks */
)

DESCRIPTION This routine sets the internal tick counter to a specified value in ticks. The new count will
be reflected by tick64Get() and tickGet() (only the lower 32 bits), but will not change any
delay fields or timeouts selected for any tasks. For example, if a task is delayed for ten ticks,
and this routine is called to advance time, the delayed task will still be delayed until ten
tickAnnounce() calls have been made.

VxWorks Kernel API Reference, 6.6
tickAnnounce()

1040

SMP CONSIDERATIONS

In SMP configuration this API is spinLock restricted meaning that calling this API while
holding a spinLock is not allowed. Not comforming to this restriction will potentially lead
to a live-lock scenerio.

RETURNS N/A

ERRNO N/A

SEE ALSO tickLib, tick64Get(), tickGet(), tickSet(), tickAnnounce()

tickAnnounce()

NAME tickAnnounce() – announce a clock tick to the kernel

SYNOPSIS void tickAnnounce (void)

DESCRIPTION This routine informs the kernel of the passing of time. It should be called from an interrupt
service routine that is connected to the system clock. The most common frequencies are
60Hz or 100Hz. Frequencies in excess of 600Hz are an inefficient use of processor power
because the system will spend most of its time advancing the clock. By default, this routine
is called by usrClock() in usrConfig.c.

RETURNS N/A

ERRNO N/A

SEE ALSO tickLib, kernelLib, taskLib, semLib, wdLib, the VxWorks programmer's guides

tickAnnounceHookAdd()

NAME tickAnnounceHookAdd() – add a hook routine to be called at each tick interrupt

SYNOPSIS STATUS tickAnnounceHookAdd
 (
 FUNCPTR pFunc
)

2 Routines
tickGet()

1041

2

DESCRIPTION This routine adds a hook to perform operations, such as round robin policy
implementation, at each tick interrupt. The hooked function must follow the same ISR
restrictions and must be callable at interrupt context. The user provided hook routine
should be declared as follows:

void mySchedulerTickHook
 (
 int tid /* interrupt task ID */
)

The user specified hook routines must not access the task structure fields directly. Access
routines, such as taskPriorityGet(), should be used to access data structure fields.

RETURNS OK, or ERROR if the hook has been installed

ERRNO N/A

SEE ALSO tickLib

tickGet()

NAME tickGet() – get the value of the kernel's tick counter

SYNOPSIS ULONG tickGet (void)

DESCRIPTION This routine returns the current value of the tick counter. This value is set to zero at startup,
incremented by tickAnnounce(), and can be changed using tickSet().

SMP CONSIDERATIONS

In SMP configuration this API is spinLock restricted meaning that calling this API while
holding a spinLock is not allowed. Not comforming to this restriction will potentially lead
to a live-lock scenerio.

RETURNS The most recent tickSet() value, plus all tickAnnounce() calls since.

ERRNO N/A

SEE ALSO tickLib, tickSet(), tickAnnounce()

VxWorks Kernel API Reference, 6.6
tickSet()

1042

tickSet()

NAME tickSet() – set the value of the kernel's tick counter

SYNOPSIS void tickSet
 (
 ULONG ticks /* new time in ticks */
)

DESCRIPTION This routine sets the internal tick counter to a specified value in ticks. The new count will
be reflected by tickGet(), but will not change any delay fields or timeouts selected for any
tasks. For example, if a task is delayed for ten ticks, and this routine is called to advance
time, the delayed task will still be delayed until ten tickAnnounce() calls have been made.

SMP CONSIDERATIONS

In SMP configuration this API is spinLock restricted meaning that calling this API while
holding a spinLock is not allowed. Not comforming to this restriction will potentially lead
to a live-lock scenerio.

RETURNS N/A

ERRNO N/A

SEE ALSO tickLib, tickGet(), tickAnnounce()

timerOpenInit()

NAME timerOpenInit() – initialize the timer open facility

SYNOPSIS void timerOpenInit (void)

DESCRIPTION This routine links the timer creation routine with the open facility into the VxWorks
system. It is called automatically when the timer facility is configured into VxWorks by
either defining INCLUDE_OBJ_OPEN INCLUDE_POSIX_TIMERS in config.h or selecting
INCLUDE_OBJ_OPEN and INCLUDE_POSIX_TIMERS in the project facility.

RETURNS N/A

ERRNO N/A

SEE ALSO timerOpen

2 Routines
timer_cancel()

1043

2

timerShowInit()

NAME timerShowInit() – initialize the timer show routine facility

SYNOPSIS void timerShowInit (void)

DESCRIPTION This routine links the timer show routines into the VxWorks system. It is called
automatically when the timer show facility is configured into VxWorks using either of the
following methods:

- If you use the configuration header files, define INCLUDE_POSIX_TIMER_SHOW in
config.h.

- If you use the project facility, select INCLUDE_POSIX_TIMER_SHOW.

RETURNS N/A

ERRNO N/A

SEE ALSO timerShow

timer_cancel()

NAME timer_cancel() – cancel a timer

SYNOPSIS int timer_cancel
 (
 timer_t timerid /* timer ID */
)

DESCRIPTION This routine is a shorthand method of invoking timer_settime(), which stops a timer.

NOTE This is a non-POSIX API.

RETURNS 0 (OK), or -1 (ERROR) if timerid is invalid.

ERRNO EINVAL

SEE ALSO timerLib

VxWorks Kernel API Reference, 6.6
timer_close()

1044

timer_close()

NAME timer_close() – close a named timer

SYNOPSIS STATUS timer_close
 (
 timer_t timerId /* timer ID to close */
)

DESCRIPTION This routine closes a named timer and decrements its reference counter. In case where the
counter becomes zero, the timer is deleted if:

- It has been already removed from the name space by a call to timer_unlink().

- It was created with the OM_DESTROY_ON_LAST_CALL option.

NOTE This is a non-POSIX API. This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if unsuccessful.

ERRNO S_objLib_OBJ_ID_ERROR
The timer ID is invalid.

S_objLib_OBJ_OPERATION_UNSUPPORTED
The timer is not named.

S_objLib_OBJ_DESTROY_ERROR
An error was detected while deleting the timer.

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO timerOpen, timer_open(), timer_unlink()

timer_connect()

NAME timer_connect() – connect a user routine to the timer signal

SYNOPSIS int timer_connect

2 Routines
timer_create()

1045

2

 (
 timer_t timerid, /* timer ID */
 VOIDFUNCPTR routine, /* user routine */
 int arg /* user argument */
)

DESCRIPTION This routine sets the specified routine to be invoked with arg when fielding a signal indicated
by the timer's evp signal number, or if evp is NULL, when fielding the default signal
(SIGALRM).

The signal handling routine should be declared as:

 void my_handler
 (
 timer_t timerid, /* expired timer ID */
 int arg /* user argument */
)

NOTE This is a non-POSIX API.

RETURNS 0 (OK), or -1 (ERROR) if the timer is invalid or cannot bind the signal handler.

ERRNO EINVAL

SEE ALSO timerLib

timer_create()

NAME timer_create() – allocate a timer using the specified clock for a timing base (POSIX)

SYNOPSIS int timer_create
 (
 clockid_t clock_id, /* clock ID */
 struct sigevent * evp, /* user event handler */
 timer_t * pTimer /* ptr to return value */
)

DESCRIPTION This routine returns a value in pTimer that identifies the timer in subsequent timer requests.
The evp argument, if non-NULL, points to a sigevent structure, which is allocated by the
application and defines the signal number and application-specific data to be sent to the
task when the timer expires. If evp is NULL, a default signal (SIGALRM) is queued to the
task, and the signal data is set to the timer ID. Initially, the timer is disarmed.

NOTE If the task that created the timer goes away before the timer expires, the timer expiration
process will display a warning message. However, if INCLUDE_OBJ_OWNERSHIP is

VxWorks Kernel API Reference, 6.6
timer_delete()

1046

configured, the timer will be deleted at the time the task is deleted and the message will not
be displayed.

RETURNS 0 (OK), or -1 (ERROR) if too many timers already are allocated or the signal number is
invalid.

ERRNO EINVAL

ENOSYS

EAGAIN

S_memLib_NOT_ENOUGH_MEMORY

SEE ALSO timerLib, timer_delete()

timer_delete()

NAME timer_delete() – remove a previously created timer (POSIX)

SYNOPSIS STATUS timer_delete
 (
 timer_t timerid /* timer ID */
)

DESCRIPTION This routine removes a timer.

RETURNS 0 (OK), or -1 (ERROR) if timerid is invalid.

ERRNO EINVAL

SEE ALSO timerLib, timer_create()

timer_getoverrun()

NAME timer_getoverrun() – return the timer expiration overrun (POSIX)

SYNOPSIS int timer_getoverrun
 (
 timer_t timerid /* timer ID */
)

2 Routines
timer_modify()

1047

2

DESCRIPTION This routine returns the timer expiration overrun count for timerid, when called from a timer
expiration signal catcher. The overrun count is the number of extra timer expirations that
have occurred, up to the implementation-defined maximum DELAYTIMER_MAX. If the
count is greater than the maximum, it returns the maximum.

RETURNS The number of overruns, or DELAYTIMER_MAX if the count equals or is greater than
DELAYTIMER_MAX, or -1 (ERROR) if timerid is invalid.

ERRNO EINVAL

ENOSYS

SEE ALSO timerLib

timer_gettime()

NAME timer_gettime() – get the remaining time before expiration and the reload value (POSIX)

SYNOPSIS int timer_gettime
 (
 timer_t timerid, /* timer ID */
 struct itimerspec * value /* where to return remaining time */
)

DESCRIPTION This routine gets the remaining time and reload value of a specified timer. Both values are
copied to the value structure.

RETURNS 0 (OK), or -1 (ERROR) if timerid is invalid.

ERRNO EINVAL

SEE ALSO timerLib

timer_modify()

NAME timer_modify() – modify a timer

SYNOPSIS STATUS timer_modify
 (
 timer_t timerId, /* timer ID */

VxWorks Kernel API Reference, 6.6
timer_open()

1048

 struct sigevent * pSigev /* sigevent describing the notification */
)

DESCRIPTION This routine updates the timer timerId with the new notification mechanism as indicated by
pSigev. This routine should be called in the context of RTP task only, that is, as a system call.
This routine should be called with the timer disarmed.

NOTE This is a non-POSIX API.

RETURNS ERROR if the timerId is invalid or armed, or if there is an error in the notification
mechanisim. Otherwise OK.

ERRNO EINVAL

SEE ALSO timerLib

timer_open()

NAME timer_open() – open a timer

SYNOPSIS timer_t timer_open
 (
 const char * name, /* name of timer */
 int mode, /* OM_CREATE, ... */
 clockid_t clockId, /* clock ID */
 struct sigevent * evp, /* user event handler */
 void * context /* context value */
)

DESCRIPTION This routine opens a timer, which means that it will search the name space and will return
the timer_id of an existent timer with same name as name, and if none is found, then creates
a new one with that name depending on the flags set in the mode parameter. Note that there
are two name spaces available to the calling routine in which timer_open() can perform the
search, and which are selected depending on the first character in the name parameter. When
this character is a forward slash /, the public name space is searched; otherwise the private
name space is searched. Similarly, if a timer is created, the first character in name specifies
the name space that contains the timer.

The argument name is mandatory. NULL or empty strings are not allowed.

Timers created by this routine can not be deleted with timer_delete(). Instead, a
timer_close() must be issued for every timer_open(). Then the timer is deleted when it is
removed from the name space by a call to timer_unlink(). Alternatively, the timer can be
previously removed from the name space, and deleted during the last timer_close().

2 Routines
timer_open()

1049

2

A description of the mode and context arguments follows. See the reference entry for
timer_create() for a description of the remaining arguments.

mode
This parameter specifies the timer permissions (not implemented) along with various
object management attribute bits as follows:

OM_CREATE
Create a new timer if a matching timer name is not found.

OM_EXCL
When set jointly with OM_CREATE, create a new timer immediately without
attempting to open an existing timer. An error condition is returned if a timer with
name already exists. This attribute has no effect if the OM_CREATE attribute is not
specified.

OM_DELETE_ON_LAST_CLOSE
Only used when a timer is created. If set, the timer will be deleted during the last
timer_close() call, independently on whether timer_unlink() was previously
called or not.

context
Context value assigned to the created timer. This value is not actually used by
VxWorks. Instead, the context value can be used by OS extensions to implement object
permissions, for example.

The clockId and evp are used only when creating a new timer. The clock used by the timer
clockId is the one defined in time.h. The evp argument, if non-NULL, points to a sigevent
structure, which is allocated by the application and defines the signal number and
application-specific data to be sent to the task when the timer expires. If evp is NULL, a
default signal (SIGALRM) is queued to the task, and the signal data is set to the timer ID.
Initially, the timer is disarmed.

NOTE This is a non-POSIX API. This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS The timer ID on success; otherwise ERROR.

ERRNO EINVAL

EAGAIN

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO timerOpen, timer_close(), timer_unlink()

VxWorks Kernel API Reference, 6.6
timer_settime()

1050

timer_settime()

NAME timer_settime() – set the time until the next expiration and arm timer (POSIX)

SYNOPSIS int timer_settime
 (
 timer_t timerid, /* timer ID */
 int flags, /* absolute or relative */
 const struct itimerspec * value, /* time to be set */
 struct itimerspec * ovalue /* prev time set (NULL=no result) */
)

DESCRIPTION This routine sets the next expiration of the timer, using the .it_value of value, thus arming
the timer. If the timer is already armed, this call resets the time until the next expiration. If
.it_value is zero, the timer is disarmed.

If flags is not equal to TIMER_ABSTIME, the interval is relative to the current time, the
interval being the .it_value of the value parameter. If flags is equal to TIMER_ABSTIME, the
expiration is set to the difference between the absolute time of .it_value and the current
value of the clock associated with timerid. If the time has already passed, then the timer
expiration notification is made immediately with the signal delivered to the task that
created the timer.

The reload value of the timer is set to the value specified by the .it_interval field of value.
When a timer is armed with a nonzero .it_interval a periodic timer is set up.

Time values that are between two consecutive non-negative integer multiples of the
resolution of the specified timer are rounded up to the larger multiple of the resolution.

If ovalue is non-NULL, the routine stores a value representing the previous amount of time
before the timer would have expired. Or if the timer is disarmed, the routine stores zero,
together with the previous timer reload value. The ovalue parameter is the same value as
that returned by timer_gettime() and is subject to the timer resolution.

WARNING If clock_settime() is called to reset the absolute clock time after a timer has been set with
timer_settime(), and if flags is equal to TIMER_ABSTIME, then the timer will behave
unpredictably. If you must reset the absolute clock time after setting a timer, do not use flags
equal to TIMER_ABSTIME.

RETURNS 0 (OK), or -1 (ERROR) if timerid is invalid, the number of nanoseconds specified by value is
less than 0 or greater than or equal to 1,000,000,000, or the time specified by value exceeds
the maximum allowed by the timer.

ERRNO EINVAL

SEE ALSO timerLib

2 Routines
timer_show()

1051

2

timer_show()

NAME timer_show() – show information on a specified timer

SYNOPSIS int timer_show
 (
 timer_t timerid, /* timer ID */
 int verbose /* Verbose mode: 0, 1 */
)

DESCRIPTION This routine shows information about the timer specified in timerid. If timerid is 0 then a list
of all timers will be printed. Verbose mode will show additional information about timerid
including the owner's task name, the timers type, and the state of the timer.

EXAMPLE ->timer_show (0,0)

timerid taskId evp routine arg Remaining Period
---------- ---------- ---------- ---------- ----- ---------- ---------- 0x6170bf20 0x6170bba0 0x6170bf74
0x604ce330 1617182668 0.000000 0.000000 0x603b56b8 0x6170bba0 0x603b570c 0x604ce330
1617182668 0.000000 0.000000 0x617115e0 0x6170bba0 0x61711634 0x604ce330 1617182668
0.000000 0.000000

->timer_show (0x6170bf20,0)

timerid taskId evp routine arg Remaining Period
---------- ---------- ---------- ---------- ----- ---------- ---------- 0x6170bf20 0x6170bba0 0x6170bf74
0x604ce330 1617182668 0.000000 0.000000

->timer_show (0x6170bf20,1)

timerid taskId evp routine arg Remaining Period
---------- ---------- ---------- ---------- ----- ---------- ---------- 0x6170bf20 0x6170bba0 0x6170bf74
0x604ce330 1617182668 0.000000 0.000000 Owners Task Name: tTimer_gettimeTest3 Type
of Timer: CLOCK_REALTIME State: Active

WARNING This is a non-POSIX API.

RETURNS 0 (OK), or -1 (ERROR) if timerid is invalid, or the context is invalid.

ERRNO N/A

SEE ALSO timerShow

VxWorks Kernel API Reference, 6.6
timer_unlink()

1052

timer_unlink()

NAME timer_unlink() – unlink a named timer

SYNOPSIS STATUS timer_unlink
 (
 const char * name /* name of the timer to unlink */
)

DESCRIPTION This routine removes a timer from the name space, and marks it as ready for deletion on
the last timer_close(). In case there are already no outstanding timer_open() calls, the
timer is deleted. After a timer is unlinked, subsequent calls to timer_open() using name will
not be able to find the timer, even if it has not been deleted yet. Instead, a new timer could
be created if timer_open() is called with the OM_CREATE flag.

NOTE This is a non-POSIX API. This routine is not ISR callable.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted. These restrictions are not enforced by the
implementation so it is the responsibility of the caller to ensure they are complied with.
Future implementations may enforce these restrictions.

RETURNS OK, or ERROR if unsuccessful

ERRNO S_objLib_OBJ_INVALID_ARGUMENT
name is NULL or empty.

S_objLib_OBJ_NOT_FOUND
No timer with name was found.

S_objLib_OBJ_DESTROY_ERROR
Error while deleting the timer.

S_intLib_NOT_ISR_CALLABLE
This routine must not be called from an ISR.

SEE ALSO timerOpen, timer_open(), timer_close()

timex()

NAME timex() – time a single execution of a function or functions

SYNOPSIS void timex

2 Routines
timexClear()

1053

2

 (
 FUNCPTR func, /* function to time (optional) */
 int arg1, /* first of up to 8 args to call function with (opt) */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8
)

DESCRIPTION This routine times a single execution of a specified function with up to eight of the function's
arguments. If no function is specified, it times the execution of the current list of functions
to be timed, which is created using timexFunc(), timexPre(), and timexPost(). If timex() is
executed with a function argument, the entire current list is replaced with the single
specified function.

When execution is complete, timex() displays the execution time. If the execution was so
fast relative to the clock rate that the time is meaningless (error > 50%), a warning message
is printed instead. In such cases, use timexN().

RETURNS N/A

ERRNO Not Available

SEE ALSO timexLib, timexFunc(), timexPre(), timexPost(), timexN()

timexClear()

NAME timexClear() – clear the list of function calls to be timed

SYNOPSIS void timexClear (void)

DESCRIPTION This routine clears the current list of functions to be timed.

RETURNS N/A

ERRNO Not Available

SEE ALSO timexLib

VxWorks Kernel API Reference, 6.6
timexFunc()

1054

timexFunc()

NAME timexFunc() – specify functions to be timed

SYNOPSIS void timexFunc
 (
 int i, /* function number in list (0..3) */
 FUNCPTR func, /* function to be added (NULL if to be deleted) */
 int arg1, /* first of up to 8 args to call function with */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8
)

DESCRIPTION This routine adds or deletes functions in the list of functions to be timed as a group by calls
to timex() or timexN(). Up to four functions can be included in the list. The argument i
specifies the function's position in the sequence of execution (0, 1, 2, or 3). A function is
deleted by specifying its sequence number i and NULL for the function argument func.

RETURNS N/A

ERRNO Not Available

SEE ALSO timexLib, timex(), timexN()

timexHelp()

NAME timexHelp() – display synopsis of execution timer facilities

SYNOPSIS void timexHelp (void)

DESCRIPTION This routine displays the following summary of the available execution timer functions:

 timexHelp Print this list.
 timex [func,[args...]] Time a single execution.
 timexN [func,[args...]] Time repeated executions.
 timexClear Clear all functions.
 timexFunc i,func,[args...] Add timed function number i (0,1,2,3).
 timexPre i,func,[args...] Add pre-timing function number i.
 timexPost i,func,[args...] Add post-timing function number i.
 timexShow Show all functions to be called.

2 Routines
timexN()

1055

2

 Notes:
 1) timexN() will repeat calls enough times to get
 timing accuracy to approximately 2%.
 2) A single function can be specified with timex() and timexN();
 or, multiple functions can be pre-set with timexFunc().
 3) Up to 4 functions can be pre-set with timexFunc(),
 timexPre(), and timexPost(), i.e., i in the range 0 - 3.
 4) timexPre() and timexPost() allow locking/unlocking, or
 raising/lowering priority before/after timing.

RETURNS N/A

ERRNO Not Available

SEE ALSO timexLib

timexInit()

NAME timexInit() – include the execution timer library

SYNOPSIS void timexInit (void)

DESCRIPTION This null routine is provided so that timexLib can be linked into the system. If the
configuration macro INCLUDE_TIMEX is defined, it is called by the root task, usrRoot(), in
usrConfig.c.

RETURNS N/A

ERRNO Not Available

SEE ALSO timexLib

timexN()

NAME timexN() – time repeated executions of a function or group of functions

SYNOPSIS void timexN
 (
 FUNCPTR func, /* function to time (optional) */
 int arg1, /* first of up to 8 args to call function with */

VxWorks Kernel API Reference, 6.6
timexPost()

1056

 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8
)

DESCRIPTION This routine times the execution of the current list of functions to be timed in the same
manner as timex(); however, the list of functions is called a variable number of times until
sufficient resolution is achieved to establish the time with an error less than 2%. (Since each
iteration of the list may be measured to a resolution of +/- 1 clock tick, repetitive timings
decrease this error to 1/N ticks, where N is the number of repetitions.)

RETURNS N/A

ERRNO Not Available

SEE ALSO timexLib, timexFunc(), timex()

timexPost()

NAME timexPost() – specify functions to be called after timing

SYNOPSIS void timexPost
 (
 int i, /* function number in list (0..3) */
 FUNCPTR func, /* function to be added (NULL if to be deleted) */
 int arg1, /* first of up to 8 args to call function with */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8
)

DESCRIPTION This routine adds or deletes functions in the list of functions to be called immediately
following the timed functions. A maximum of four functions may be included. Up to eight
arguments may be passed to each function.

RETURNS N/A

ERRNO Not Available

2 Routines
timexShow()

1057

2

SEE ALSO timexLib

timexPre()

NAME timexPre() – specify functions to be called prior to timing

SYNOPSIS void timexPre
 (
 int i, /* function number in list (0..3) */
 FUNCPTR func, /* function to be added (NULL if to be deleted) */
 int arg1, /* first of up to 8 args to call function with */
 int arg2,
 int arg3,
 int arg4,
 int arg5,
 int arg6,
 int arg7,
 int arg8
)

DESCRIPTION This routine adds or deletes functions in the list of functions to be called immediately prior
to the timed functions. A maximum of four functions may be included. Up to eight
arguments may be passed to each function.

RETURNS N/A

ERRNO Not Available

SEE ALSO timexLib

timexShow()

NAME timexShow() – display the list of function calls to be timed

SYNOPSIS void timexShow (void)

DESCRIPTION This routine displays the current list of function calls to be timed. These lists are created by
calls to timexPre(), timexFunc(), and timexPost().

RETURNS N/A

VxWorks Kernel API Reference, 6.6
tlsTaskInit()

1058

ERRNO Not Available

SEE ALSO timexLib, timexPre(), timexFunc(), timexPost()

tlsTaskInit()

NAME tlsTaskInit() – Thread Local Storage init routine

SYNOPSIS STATUS tlsTaskInit (void)

DESCRIPTION This routine initializes the current task thread local storage for all available modules. Once
this is called, any access of a __thread variable of any of those modules will be deterministic.
If this routine is not called, access to the __thread variable of a module may take longer the
first time because of time needed to allocate memory to manage the module's __thread
variables.

RETURNS OK, or ERROR

ERRNO N/A

SEE ALSO tlsLib

tr()

NAME tr() – resume a task

SYNOPSIS void tr
 (
 int taskNameOrId /* task name or task ID */
)

DESCRIPTION This command resumes the execution of a suspended task. It simply calls taskResume().

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, ts(), taskResume(), the VxWorks programmer guides.

2 Routines
transCommit()

1059

2

traceTmrResolutionGet()

NAME traceTmrResolutionGet() – get resolution of timestamp source, in nanoseconds

SYNOPSIS STATUS traceTmrResolutionGet
 (
 struct timespec * pTimestamp /* destination for resolution */
)

DESCRIPTION Write the resolution of the timestamp source into the supplied timespec. If the timestamp
resolution cannot be obtained (maybe the timestamp driver is not available) then the
timespec structure will be filled with zeroes.

RETURNS OK, or ERROR.

ERRNO Not Available

SEE ALSO wvTmrLib

transCommit()

NAME transCommit() – externally-callable function to do a commit

SYNOPSIS int transCommit
 (
 TRANS_XBD * pDev
)

DESCRIPTION The pDev argument is the device handle (as provided to the warning and panic hooks).

This function is only for special cases (such as "automatic commits" on a
WARN_OUT_OF_UNITS warning, which are generally advised against for data-control
reasons).

RETURNS error number, or 0 (OK) on success.

ERRNO N/A

SEE ALSO xbdTrans, usrTransCommit(), usrTransCommitFd().

VxWorks Kernel API Reference, 6.6
transDevCreate()

1060

transDevCreate()

NAME transDevCreate() – create a transactional XBD.

SYNOPSIS TRANS_XBD *transDevCreate
 (
 device_t subDev /* lower level device */
)

DESCRIPTION THIS ROUTINE IS EXTERNALLY-VISIBLE FOR BACKWARDS COMPATIBILITY ONLY.

This is essentially an internal version that gives you the pointer to the device. The pointer
becomes invalid when the device is ejected, so one should use xbdTransDevCreate instead
(to get a device_t that can be checked).

RETURNS TRANS_XBD *, or NULL on failure.

ERRNO Not Available

SEE ALSO xbdTrans

trgAdd()

NAME trgAdd() – add a new trigger to the trigger list

SYNOPSIS TRIGGER_ID trgAdd
 (
 event_t event,
 int status,
 int contextType,
 UINT32 contextId,
 OBJ_ID objId,
 int conditional,
 int condType,
 int * condEx1,
 int condOp,
 int condEx2,
 BOOL disable,
 TRIGGER * chain,
 int actionType,
 FUNCPTR actionFunc,
 BOOL actionDef,
 int actionArg
)

2 Routines
trgAdd()

1061

2

DESCRIPTION This routine creates a new trigger and adds it to the proper trigger list. It takes the following
parameters:

event
as defined in eventP.h for System Viewer, if given.

status
the initial status of the trigger (enabled or disabled).

contextType
the type of context where the event occurs.

contextId
the ID (if any) of the context where the event occurs.

objectId
if given and applicable.

conditional
the indicator that there is a condition on the trigger.

condType
the indicator that the condition is either a variable or a function.

condEx1
the first element in the comparison.

condOp
the type of operator (==, !=, , <=,, >=, |, &).

condEx2
the second element in the comparison (a constant).

disable
the indicator of whether the trigger must be disabled once it is hit.

chain
a pointer to another trigger associated to this one (if any).

actionType
the type of action associated with the trigger (none, func, lib).

actionFunc
the action associated with the trigger (the function).

actionDef
the indicator of whether the action can be deferred (deferred is the default).

actionArg
the argument passed to the function, if any.

Attempting to call trgAdd whilst triggering is enabled is not allowed and will return NULL.

VxWorks Kernel API Reference, 6.6
trgChainSet()

1062

RETURNS TRIGGER_ID, or NULL if either the trigger ID can not be allocated, or if called whilst
triggering is enabled.

ERRNO S_intLib_NOT_ISR_CALLABLE
S_objLib_OBJ_ID_ERROR
S_memLib_NOT_ENOUGH_MEMORY
S_memLib_BLOCK_ERROR
S_taskLib_ILLEGAL_PRIORITY

SEE ALSO trgLib, trgDelete()

trgChainSet()

NAME trgChainSet() – chains two triggers

SYNOPSIS STATUS trgChainSet
 (
 TRIGGER_ID fromId,
 TRIGGER_ID toId
)

DESCRIPTION This routine chains two triggers together. When the first trigger fires, it calls trgEnable()
for the second trigger. The second trigger must be created disabled in order to maintain the
correct sequence.

RETURNS OK or ERROR.

ERRNO

SEE ALSO trgLib, trgEnable()

trgDelete()

NAME trgDelete() – delete a trigger from the trigger list

SYNOPSIS STATUS trgDelete
 (
 TRIGGER_ID trgId
)

2 Routines
trgEnable()

1063

2

DESCRIPTION This routine deletes a trigger by removing it from the trigger list. It also checks that no other
triggers are still active. If there are no active triggers and triggering is still on, it turns
triggering off.

RETURNS OK, or ERROR if the trigger is not found.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO trgLib, trgAdd()

trgDisable()

NAME trgDisable() – turn a trigger off

SYNOPSIS STATUS trgDisable
 (
 TRIGGER_ID trgId
)

DESCRIPTION This routine disables a trigger. It also checks to see if there are triggers still active. If this is
the last active trigger it sets triggering off.

RETURNS OK, or ERROR if the trigger ID is not found.

ERRNO

SEE ALSO trgLib, trgEnable()

trgEnable()

NAME trgEnable() – enable a trigger

SYNOPSIS STATUS trgEnable
 (
 TRIGGER_ID trgId
)

DESCRIPTION This routine enables a trigger that has been created with trgAdd(). A counter is incremented
to keep track of the total number of enabled triggers so that trgDisable() knows when to

VxWorks Kernel API Reference, 6.6
trgEvent()

1064

set triggering off. If the maximum number of enabled triggers is reached, an error is
returned.

RETURNS OK, or ERROR if the trigger ID is not found or if the maximum number of triggers has
already been enabled.

ERRNO

SEE ALSO trgLib, trgDisable()

trgEvent()

NAME trgEvent() – trigger a user-defined event

SYNOPSIS void trgEvent
 (
 event_t evtId /* event */
)

DESCRIPTION This routine triggers a user event. A trigger must exist and triggering must have been
started with trgOn() or from the triggering GUI to use this routine. The evtId should be in
the range 40000-65535.

RETURNS N/A

ERRNO

SEE ALSO trgLib, dbgLib, e()

trgLibInit()

NAME trgLibInit() – initialize the triggering library

SYNOPSIS STATUS trgLibInit (void)

DESCRIPTION This routine initializes the trigger class. Triggers are VxWorks objects and therefore require
a class to be initialized.

RETURNS OK or ERROR.

2 Routines
trgOn()

1065

2

ERRNO

SEE ALSO trgLib

trgOff()

NAME trgOff() – set triggering off

SYNOPSIS void trgOff (void)

DESCRIPTION This routine turns triggering off. From this time on, when an event point is hit, no search
on triggers is performed.

RETURNS N/A

ERRNO

SEE ALSO trgLib, trgOn()

trgOn()

NAME trgOn() – set triggering on

SYNOPSIS STATUS trgOn (void)

DESCRIPTION This routine activates triggering. From this time on, any time an event point is hit, a check
for the presence of possible triggers is performed. Start triggering only when needed since
some overhead is introduced.

NOTE If trgOn() is called when there are no triggers in the trigger list, it immediately sets
triggering off again. If trgOn() is called with at least one trigger in the list, triggering begins.
Triggers should not be added to the list while triggering is on since this can create
instability.

RETURNS OK or ERROR.

ERRNO

SEE ALSO trgLib, trgOff()

VxWorks Kernel API Reference, 6.6
trgReset()

1066

trgReset()

NAME trgReset() – Reset a trigger in the trigger list

SYNOPSIS STATUS trgReset
 (
 TRIGGER_ID trgId
)

DESCRIPTION This routine resets a trigger. It sets the triggers hit count to zero and sets its state back to the
initial state saved when the trigger was downloaded

RETURNS OK, or ERROR if the trigger is not found.

ERRNO S_objLib_OBJ_ID_ERROR

SEE ALSO trgLib

trgShow()

NAME trgShow() – show trigger information

SYNOPSIS STATUS trgShow
 (
 TRIGGER_ID trgId, /* trigger id to show, or NULL for all triggers */
 int level /* detail level: 1 gives more detail */
)

DESCRIPTION This routine displays trigger information. If trgId is passed, only the summary for that
trigger is displayed. If no parameter is passed, the list of existing triggers is displayed with
a summary of their state. For example:

 trgID Status EvtID ActType Action Dis Chain

 0xffedfc disabled 101 3 0x14e7a4 Y 0xffe088
 0xffe088 enabled 55 1 0x10db58 Y 0x0

If level is 1, then more detailed information is displayed.

EXAMPLE -> trgShow trgId, 1

RETURNS OK.

ERRNO Not Available

2 Routines
trgWorkQReset()

1067

2

SEE ALSO trgShow, trgLib

trgShowInit()

NAME trgShowInit() – initialize the trigger show facility

SYNOPSIS void trgShowInit (void)

DESCRIPTION This routine links the trigger show facility into the VxWorks system. These routines are
included automatically when INCLUDE_TRIGGER_SHOW is defined.

RETURNS N/A

ERRNO Not Available

SEE ALSO trgShow

trgWorkQReset()

NAME trgWorkQReset() – Resets the trigger work queue task and queue

SYNOPSIS STATUS trgWorkQReset (void)

DESCRIPTION When a trigger fires, if the assocated action requires a function to be called in "safe" mode,
a pointer to the required function will be placed on a queue known as the "triggering work
queue". A system task "tActDef" is spawned to action these requests at task level. Should the
user have need to reset this work queue (e.g. if a called task causes an exception which
causes the trgActDef task to be SUSPENDED, or if the queue gets out of sync and becomes
unresponsive), trgWorkQReset() may be called.

Its effect is to delete the trigger work queue task and its associated resources and then
recreate them. Any entries pending on the triggering work queue will be lost. Calling this
function with triggering on will result in triggering being turned off before the queue reset
takes place. It is the responsibility of the user to turn triggering back on.

This function may not be called from interrupt.

RETURNS OK, or ERROR if the triggering task and its associated resources cannot be deleted and
recreated.

VxWorks Kernel API Reference, 6.6
trunc()

1068

ERRNO S_taskLib_NAME_NOT_FOUND
S_taskLib_ILLEGAL_PRIORITY
S_intLib_NOT_ISR_CALLABLE
S_objLib_OBJ_ID_ERROR
S_memLib_NOT_ENOUGH_MEMORY
S_memLib_BLOCK_ERROR

SEE ALSO trgLib

trunc()

NAME trunc() – truncate to integer

SYNOPSIS double trunc
 (
 double x /* value to truncate */
)

DESCRIPTION This routine discards the fractional part of a double-precision value x.

RETURNS The integer portion of x, represented in double-precision.

ERRNO Not Available

SEE ALSO mathALib

truncf()

NAME truncf() – truncate to integer

SYNOPSIS float truncf
 (
 float x /* value to truncate */
)

DESCRIPTION This routine discards the fractional part of a single-precision value x.

RETURNS The integer portion of x, represented in single precision.

ERRNO Not Available

2 Routines
tsecRegister()

1069

2

SEE ALSO mathALib

ts()

NAME ts() – suspend a task

SYNOPSIS void ts
 (
 int taskNameOrId /* task name or task ID */
)

DESCRIPTION This command suspends the execution of a specified task. It simply calls taskSuspend().

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, tr(), taskSuspend(), the VxWorks programmer guides.

tsecRegister()

NAME tsecRegister() – register with the VxBus subsystem

SYNOPSIS void tsecRegister(void)

DESCRIPTION This routine registers the TSEC driver with VxBus as a child of the PLB bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO tsecVxbEnd

VxWorks Kernel API Reference, 6.6
tt()

1070

tt()

NAME tt() – display a stack trace of a task

SYNOPSIS STATUS tt
 (
 int taskNameOrId /* task name or task ID */
)

DESCRIPTION This routine displays a list of the nested routine calls that the specified task is in. Each
routine call and its parameters are shown.

If taskNameOrId is not specified or zero, the last task referenced is assumed. The tt() routine
can only trace the stack of a task other than itself and unbreakable tasks. For instance, when
tt() is called from the shell, it cannot trace the shell's stack.

EXAMPLE -> tt "tAioIoTask1"
 0x600f5cb6 aioIoTask +0x16: 0x60129c34 ([0x60459b08, 0xffffffff, 0, 0,
0])
 0x60129d33 semTake +0x123: 0x601291d3 (0x60459b08, 0xffffffff)
 value = 0 = 0x0

This indicates that tAioIoTask1() is currently in semTake() (with two parameters) and was
called by aioIoTask() (with five parameters).

CAVEAT In order to do the trace, some assumptions are made. In general, the trace will work for all
C language routines and for assembly language routines. Depending of the architecture and
at which point the task is suspended, the trace facility may produce inaccurate results or
fail completely. Moreover, if the routine is written in a language other than C, the routine's
entry point is non-standard, or the task's stack is corrupted, the trace facility may produce
inaccurate results too. Also, all parameters are assumed to be 32-bit quantities, so
structures passed as parameters will be displayed as long integers.

RETURNS OK, or ERROR if the task does not exist.

ERRNO N/A

SEE ALSO dbgLib, the VxWorks programmer guides, VxWorks Command-Line Tools User's Guide.

2 Routines
ttyDrv()

1071

2

ttyDevCreate()

NAME ttyDevCreate() – create a VxWorks device for a serial channel

SYNOPSIS STATUS ttyDevCreate
 (
 char * name, /* name to use for this device */
 SIO_CHAN * pSioChan, /* pointer to core driver structure */
 int rdBufSize, /* read buffer size, in bytes */
 int wrtBufSize /* write buffer size, in bytes */
)

DESCRIPTION This routine creates a device on a specified serial channel. Each channel to be used should
have exactly one device associated with it by calling this routine.

For instance, to create the device "/tyCo/0", with buffer sizes of 512 bytes, the proper call
would be:

 ttyDevCreate ("/tyCo/0", pSioChan, 512, 512);

Where pSioChan is the address of the underlying SIO_CHAN serial channel descriptor
(defined in sioLib.h). This routine is called automatically when INCLUDE_TTY_DEV is
configured in VxWorks. It initializes two channels using the default names /tyCo/0 and
/tyCo/1.

RETURNS OK, or ERROR if the driver is not installed, or the device already exists.

ERRNO S_ioLib_NO_DRIVER (ENXIO)
The ttyDrv driver is not installed in system.

S_iosLib_DUPLICATE_DEVICE_NAME (EINVAL)
Device name already in use.

SEE ALSO ttyDrv

ttyDrv()

NAME ttyDrv() – initialize the tty driver

SYNOPSIS STATUS ttyDrv (void)

DESCRIPTION This routine initializes the tty driver, which is the OS interface to core serial channel(s). It is
called automatically when INCLUDE_TTY_DEV is configured in VxWorks.

VxWorks Kernel API Reference, 6.6
tw()

1072

After this routine is called, ttyDevCreate() is typically called to bind serial channels to
VxWorks devices.

RETURNS OK, or ERROR if the driver cannot be installed.

ERRNO N/A

SEE ALSO ttyDrv

tw()

NAME tw() – print info about the object the given task is pending on

SYNOPSIS void tw
 (
 int taskNameOrId /* task name or task ID */
)

DESCRIPTION This routine shows task's pending information of the task taskNameOrId.

This routine doesn't support POSIX semaphores and message queues. This command
doesn't support pending signals.

List of object types that are recognized:

RETURNS N/A

ERRNO Not Available

SEE ALSO usrLib, w(), the VxWorks programmer guides.

tyAbortFuncSet()

NAME tyAbortFuncSet() – set the abort function

SYNOPSIS void tyAbortFuncSet
 (
 FUNCPTR func /* routine to call when abort char received */
)

2 Routines
tyAbortSet()

1073

2

DESCRIPTION This routine sets the function that will be called when the abort character is received on a
tty. There is only one global abort function, used for any tty on which OPT_ABORT is
enabled. When the abort character is received from a tty with OPT_ABORT set, the function
specified in func will be called, with no parameters, from interrupt level.

Setting an abort function of NULL will disable the abort function.

RETURNS N/A

ERRNO N/A

SEE ALSO tyLib, tyAbortSet()

tyAbortGet()

NAME tyAbortGet() – get the abort character

SYNOPSIS char tyAbortGet (void)

DESCRIPTION This routine returns the abort character.

RETURNS N/A

ERRNO N/A

SEE ALSO tyLib, tyAbortFuncSet(), tyAbortSet()

tyAbortSet()

NAME tyAbortSet() – change the abort character

SYNOPSIS void tyAbortSet
 (
 char ch /* char to be abort */
)

DESCRIPTION This routine sets the abort character to ch. The default abort character is CTRL-C.

VxWorks Kernel API Reference, 6.6
tyBackspaceSet()

1074

Typing the abort character to any device whose OPT_ABORT option is set will cause the
shell task to be killed and restarted. Note that the character set by this routine applies to all
devices whose handlers use the standard tty package tyLib.

RETURNS N/A

ERRNO N/A

SEE ALSO tyLib, tyAbortFuncSet(), tyAbortGet()

tyBackspaceSet()

NAME tyBackspaceSet() – change the backspace character

SYNOPSIS void tyBackspaceSet
 (
 char ch /* char to be backspace */
)

DESCRIPTION This routine sets the backspace character to ch. The default backspace character is CTRL-H.

Typing the backspace character to any device operating in line protocol mode (OPT_LINE
set) will cause the previous character typed to be deleted, up to the beginning of the current
line. Note that the character set by this routine applies to all devices whose handlers use the
standard tty package tyLib.

RETURNS N/A

ERRNO N/A

SEE ALSO tyLib

tyDeleteLineSet()

NAME tyDeleteLineSet() – change the line-delete character

SYNOPSIS void tyDeleteLineSet
 (
 char ch /* char to be line-delete */
)

2 Routines
tyDevInit()

1075

2

DESCRIPTION This routine sets the line-delete character to ch. The default line-delete character is CTRL-U.

Typing the delete character to any device operating in line protocol mode (OPT_LINE set)
will cause all characters in the current line to be deleted. Note that the character set by this
routine applies to all devices whose handlers use the standard tty package tyLib.

RETURNS N/A

ERRNO N/A

SEE ALSO tyLib

tyDevInit()

NAME tyDevInit() – initialize the tty device descriptor

SYNOPSIS STATUS tyDevInit
 (
 FAST TY_DEV_ID pTyDev, /* ptr to tty dev descriptor to init */
 int rdBufSize, /* size of read buffer in bytes */
 int wrtBufSize, /* size of write buffer in bytes */
 FUNCPTR txStartup /* device transmit start-up routine */
)

DESCRIPTION This routine initializes a tty device descriptor according to the specified parameters. The
initialization includes allocating read and write buffers of the specified sizes from the
memory pool, and initializing their respective buffer descriptors. The semaphores are
initialized and the write semaphore is given to enable writers. Also, the transmitter start-up
routine pointer is set to the specified routine. All other fields in the descriptor are zeroed.

This routine should be called only by serial drivers.

RETURNS OK, or ERROR if there is not enough memory to allocate data structures.

ERRNO N/A

SEE ALSO tyLib

VxWorks Kernel API Reference, 6.6
tyDevRemove()

1076

tyDevRemove()

NAME tyDevRemove() – remove the tty device descriptor

SYNOPSIS STATUS tyDevRemove
 (
 TY_DEV_ID pTyDev /* ptr to tty dev descriptor to remove */
)

DESCRIPTION This routine removes an existing tty device descriptor. It releases the read and write buffers
and the descriptor data structure.

RETURNS OK, or ERROR if expected data structures are not found

ERRNO N/A.

SEE ALSO tyLib

tyDevTerminate()

NAME tyDevTerminate() – terminate the tty device descriptor

SYNOPSIS STATUS tyDevTerminate
 (
 TY_DEV_ID pTyDev /* ptr to tty dev descriptor to terminate */
)

DESCRIPTION This routine terminates a tty device descriptor. The termination includes freeing memory
for the read and write buffers, and terminating the various semaphores.

This routine should be called only by serial drivers.

RETURNS OK

ERRNO Not Available

SEE ALSO tyLib

2 Routines
tyEOFSet()

1077

2

tyEOFGet()

NAME tyEOFGet() – get the current end-of-file character

SYNOPSIS char tyEOFGet (void)

DESCRIPTION This routine returns the current end-of-file character.

RETURNS N/A

ERRNO N/A

SEE ALSO tyLib, tyEOFSet()

tyEOFSet()

NAME tyEOFSet() – change the end-of-file character

SYNOPSIS void tyEOFSet
 (
 char ch /* char to be EOF */
)

DESCRIPTION This routine sets the EOF character to ch. The default EOF character is CTRL-D.

Typing the EOF character to any device operating in line protocol mode (OPT_LINE set) will
cause no character to be entered in the current line, but will cause the current line to be
terminated (thus without a newline character). The line is made available to reading tasks.
Thus, if the EOF character is the first character input on a line, a line length of zero characters
is returned to the reader. This is the standard end-of-file indication on a read call. Note that
the EOF character set by this routine will apply to all devices whose handlers use the
standard tty package tyLib.

RETURNS N/A

ERRNO N/A

SEE ALSO tyLib

VxWorks Kernel API Reference, 6.6
tyIRd()

1078

tyIRd()

NAME tyIRd() – interrupt-level input

SYNOPSIS STATUS tyIRd
 (
 FAST TY_DEV_ID pTyDev, /* ptr to tty device descriptor */
 FAST char inchar /* character read */
)

DESCRIPTION This routine handles interrupt-level character input for tty devices. A device driver calls
this routine when it has received a character. This routine adds the character to the ring
buffer for the specified device, and gives a semaphore if a task is waiting for it.

This routine also handles all the special characters, as specified in the option word for the
device, such as X-on, X-off, NEWLINE, or backspace.

RETURNS OK, or ERROR if the ring buffer is full.

ERRNO N/A

SEE ALSO tyLib

tyITx()

NAME tyITx() – interrupt-level output

SYNOPSIS STATUS tyITx
 (
 FAST TY_DEV_ID pTyDev, /* pointer to tty device descriptor */
 char *pChar /* where to put character to be output */
)

DESCRIPTION This routine gets a single character to be output to a device. It looks at the ring buffer for
pTyDev and gives the caller the next available character, if there is one. The character to be
output is copied to pChar.

RETURNS OK if there are more characters to send, or ERROR if there are no more characters.

ERRNO N/A

SEE ALSO tyLib

2 Routines
tyLibInit()

1079

2

tyIoctl()

NAME tyIoctl() – handle device control requests

SYNOPSIS STATUS tyIoctl
 (
 FAST TY_DEV_ID pTyDev, /* ptr to device to control */
 int request, /* request code */
 int arg /* some argument */
)

DESCRIPTION This routine handles ioctl() requests for tty devices. The I/O control functions for tty
devices are described in the reference entry for tyLib.

BUGS In line protocol mode (OPT_LINE option set), the FIONREAD function actually returns the
number of characters available plus the number of lines in the buffer. Thus, if five lines
consisting of just NEWLINEs were in the input buffer, the FIONREAD function would
return the value ten (five characters + five lines).

RETURNS OK or ERROR.

ERRNO N/A

SEE ALSO tyLib

tyLibInit()

NAME tyLibInit() – initialize the tty library

SYNOPSIS STATUS tyLibInit
 (
 int xoffPercent, /* default Buffer percentage for sending XOFF */
 int xonPercent, /* default Buffer percentage for sending XON */
 int wrtThreshold /* default Buffer count for enabling other senders */
)

DESCRIPTION This routine initialized the library, and set the threshold values that will be used for
xoff/xon control and for enabling new writer tasks.

The xoff/xon threshold values are specified as percentages of buffer fill when the related
action will occur. Normally xoff is sent out the transmit port when the receive buffer is 85%
full. The xon character will be sent to the transmit port when the buffer has drained down
to 50% the normal default value for the xonThreshold.

VxWorks Kernel API Reference, 6.6
tyMonitorTrapSet()

1080

The wrtThreshold is specified in the number of free bytes that must exist in the transmit
buffer before a new writer task will be awakened. If the transmit buffer is very full, enabling
a new transmit task can potentially awaken all waiting tasks and cause them all to priority
arbitrate for the device only to find it blocked again. This threshold prevents the waking up
of all pended tasks unless there is some minimum amount of space left in the transmit
buffer. Pending tasks will be awakened when the buffer has drained to a point below the
threshold number of characters.

RETURNS OK or ERROR if arguments are invalid. The xon percentage must be smaller than the xoff
percentage. Both must be in the range of 1 to 99.

ERRNO Not Available

SEE ALSO tyLib

tyMonitorTrapSet()

NAME tyMonitorTrapSet() – change the trap-to-monitor character

SYNOPSIS void tyMonitorTrapSet
 (
 char ch /* char to be monitor trap */
)

DESCRIPTION This routine sets the trap-to-monitor character to ch. The default trap-to-monitor character
is CTRL-X.

Typing the trap-to-monitor character to any device whose OPT_MON_TRAP option is set
will cause the resident ROM monitor to be entered, if one is present. Once the ROM monitor
is entered, the normal multitasking system is halted.

Note that the trap-to-monitor character set by this routine will apply to all devices whose
handlers use the standard tty package tyLib. Also note that not all systems have a monitor
trap available.

RETURNS N/A

ERRNO N/A

SEE ALSO tyLib

2 Routines
tyWrite()

1081

2

tyRead()

NAME tyRead() – do a task-level read for a tty device

SYNOPSIS int tyRead
 (
 FAST TY_DEV_ID pTyDev, /* device to read */
 char *buffer, /* buffer to read into */
 int maxbytes /* maximum length of read */
)

DESCRIPTION This routine handles the task-level portion of the tty handler's read function. It reads into
the buffer up to maxbytes available bytes.

This routine should only be called from serial device drivers.

RETURNS The number of bytes actually read into the buffer.

ERRNO N/A

SEE ALSO tyLib

tyWrite()

NAME tyWrite() – do a task-level write for a tty device

SYNOPSIS int tyWrite
 (
 FAST TY_DEV_ID pTyDev, /* ptr to device structure */
 char *buffer, /* buffer of data to write */
 FAST int nbytes /* number of bytes in buffer */
)

DESCRIPTION This routine handles the task-level portion of the tty handler's write function.

RETURNS The number of bytes actually written to the device.

ERRNO N/A

SEE ALSO tyLib

VxWorks Kernel API Reference, 6.6
tyXoffHookSet()

1082

tyXoffHookSet()

NAME tyXoffHookSet() – install a hardware flow control function

SYNOPSIS STATUS tyXoffHookSet
 (
 TY_DEV_ID pTyDev, /* pointer to device structure */
 FUNCPTR func, /* Hardware flow control routine */
 int arg /* First argument to func routine */
)

DESCRIPTION This routine installs a hook routine to implement incoming flow control, to replace the
default software XOFF/XON flow control method.

The installed function will be called with two arguments. The first is the arg provided when
the hook is set, and the second is a boolean value to indicate that incoming characters should
be stopped (TRUE means to disable input, FALSE means to allow input).

 VOID func (int arg, BOOLEAN xoffValue);

Installing a NULL function pointer will restore the default software XOFF/XON method.
This will nullify any previous XoffHook installation.

With any change to the flow control routine, the old flow control routine is invoked to
enable flow, before the new routine is actually installed. This insures that the incoming flow
is not locked up when the method is changed.

RETURNS OK if successful, or ERROR if the TY_DEV_ID is invalid.

ERRNO Not Available

SEE ALSO tyLib

unixDiskDevCreate()

NAME unixDiskDevCreate() – create a UNIX disk device

SYNOPSIS BLK_DEV * unixDiskDevCreate
 (
 char * unixFile, /* name of the UNIX file */
 int bytesPerBlk, /* number of bytes per block */
 int blksPerTrack, /* number of blocks per track */
 int nBlocks /* number of blocks on this device */
)

2 Routines
unixDiskInit()

1083

2

DESCRIPTION This routine creates a UNIX disk device.

The unixFile parameter specifies the name of the UNIX file to use for the disk device.

The bytesPerBlk parameter specifies the size of each logical block on the disk. If bytesPerBlk
is zero, 512 is the default.

The blksPerTrack parameter specifies the number of blocks on each logical track of the disk.
If blksPerTrack is zero, the count of blocks per track is set to nBlocks (i.e., the disk is defined
as having only one track).

The nBlocks parameter specifies the size of the disk, in blocks. If nBlocks is zero, a default size
is used. The default is calculated as the size of the UNIX disk divided by the number of
bytes per block.

This routine is only applicable to VxSim for Solaris.

IMPORTANT NOTE This routine is obsolete, but is kept for backward compatibility with previous version.

RETURNS A pointer to block device (BLK_DEV) structure, or NULL, if unable to open the UNIX disk.

ERRNO Not Available

SEE ALSO unixDrv

unixDiskInit()

NAME unixDiskInit() – initialize a dosFs disk on top of UNIX

SYNOPSIS void unixDiskInit
 (
 char * unixFile, /* UNIX file name */
 char * volName, /* dosFs name */
 int diskSize /* number of bytes */
)

DESCRIPTION This routine provides some convenience for a user wanting to create a UNIX disk-based
dosFs file system under VxWorks. The user only specifes the UNIX file to use, the dosFs
volume name, and the size of the volume in bytes, if the UNIX file needs to be created.

This routine is only applicable to VxSim for Solaris.

IMPORTANT NOTE This routine is obsolete, but is kept for backward compatibility with previous version.

RETURNS N/A

VxWorks Kernel API Reference, 6.6
unixDrv()

1084

ERRNO Not Available

SEE ALSO unixDrv

unixDrv()

NAME unixDrv() – install UNIX disk driver

SYNOPSIS STATUS unixDrv (void)

DESCRIPTION This routine is to cause the UNIX disk driver to be linked in when building VxWorks when
INCLUDE_DOS_DISK component is included in VxWorks image. Otherwise, it is not
necessary to call this routine before using the UNIX disk driver.

This routine is only applicable to VxSim for Solaris.

IMPORTANT NOTE This routine is obsolete, but is kept for backward compatibility.

RETURNS OK (always).

ERRNO Not Available

SEE ALSO unixDrv

unld()

NAME unld() – unload an object module by specifying a file name or module ID (shell command)

SYNOPSIS STATUS unld
 (
 void * nameOrId, /* name or ID of the object module file */
 int options /* Options to control behavior */
)

DESCRIPTION This routine unloads the specified object module from the system. The module can be
specified by name or by module ID. Unloading does the following:

(1) It frees the space allocated for text, data, and BSS segments, unless the module was
loaded using loadModuleAt() with user-specified addresses, in which case the user is
responsible for freeing the space.

2 Routines
unldByGroup()

1085

2

(2) It removes all symbols associated with the object module from the system symbol table.

(3) It removes the module descriptor from the module list.

Before any modules are unloaded, all breakpoints in the system are deleted. If you need to
keep breakpoints, set the options parameter to UNLD_KEEP_BREAKPOINTS. To use this
option successfully, no breakpoints can be set in the code that is being unloaded.

This routine is a shell command. That is, it is designed to be used only in the shell, and not
in code running on the target. In future releases, calling unld() directly from code may not
be supported.

Note that using this command with an argument that is neither a module name or an ID can
cause unpredictable behavior.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO usrLib, loadLib, ld(), reld(), the VxWorks programmer guides.

unldByGroup()

NAME unldByGroup() – unload an object module by specifying a group number

SYNOPSIS STATUS unldByGroup
 (
 UINT16 group, /* group number to unload */
 int options /* options */
)

DESCRIPTION This routine unloads an object module that has a group number matching the group
parameter.

The options parameter may be set to any of the options that are available to the
unldByModuleId() API. See its reference for more information.

See the manual entries for unldLib for more information on module unloading.

RETURNS OK, or ERROR if there is a problem.

ERRNO Not Available

SEE ALSO unldLib, symLib, unldByModuleId()

VxWorks Kernel API Reference, 6.6
unldByModuleId()

1086

unldByModuleId()

NAME unldByModuleId() – unload an object module by specifying a module ID

SYNOPSIS STATUS unldByModuleId
 (
 MODULE_ID moduleId, /* module ID to unload */
 int options /* options */
)

DESCRIPTION This routine unloads an object module that has a module ID matching the moduleId
parameter.

Unloading does the following:

(1) Frees the space allocated for the code module segments (text, data, and BSS), unless
loadModuleAt() was used to specify the locations where the segments were to be
loaded, in which case the user is responsible for freeing the space.

(2) It removes all symbols associated with the code module from the symbol table.

(3) It removes the code module descriptor, its list of segment descriptors, and its list of
section descriptors from the kernel's code module list.

The unloader accepts the following options which may be combined by a binary OR
(UNLD_CPLUS_XTOR_AUTO and UNLD_CPLUS_XTOR_MANUAL are mutually exclusive):

UNLD_KEEP_BREAKPOINTS
Before any modules are unloaded, all breakpoints in the system are deleted. If you need
to keep breakpoints, set the options parameter to UNLD_KEEP_BREAKPOINTS. To use
this option safely, there should be no breakpoints set in the code that is being unloaded.

UNLD_FORCE
By default, the unloader does not remove the text sections when they are used by some
hooks in the system (see the manual of unldLib for the list of hooks). Using
UNLD_FORCE will force the unloader to remove the sections anyway, at the risk of
unpredictable results.

UNLD_CPLUS_XTOR_AUTO
This option specifies that the unloader should call the code module's C++ destructor
routines.

UNLD_CPLUS_XTOR_MANUAL
This option prevents the unloader from calling the code module's C++ destructor
routines. If using this option, the user should be sure that the destructor routines do
not perform the release of any resources back to the system, such as memory or
semaphores. Or the caller may first cause any static destructors to be run by using the
function cplusDtors().

RETURNS OK, or ERROR if there is a problem.

2 Routines
unldByNameAndPath()

1087

2

ERRNO Possible errnos set by this routine include:

+ S_moduleLib_INVALID_MODULE_ID

For a complete description of the errnos, see the reference documentation for moduleLib.

SEE ALSO unldLib

unldByNameAndPath()

NAME unldByNameAndPath() – unload an object module by specifying a name and path

SYNOPSIS STATUS unldByNameAndPath
 (
 char * name, /* name of the object module to unload */
 char * path, /* path to the object module to unload */
 int options /* options */
)

DESCRIPTION This routine unloads an object module specified by the name and path parameters. The name
and path correspond to the parameters that were passed to the load routine when the module
was loaded.

The options parameter may be set to any of the options that are available to the
unldByModuleId() API. See its reference for more information.

See the manual entries for unldLib for more information on module unloading.

EXAMPLES If the module was loaded using the following name and path:

fd = open ("path/to/the/module/to/load/moduleName", O_RDONLY);
moduleLoad (fd, LOAD_GLOBAL_SYMBOLS);

then the call to unldByNameAndPath() would be done as:

unldByNameAndPath ("moduleName", "path/to/the/module/to/load", 0);

The path field should be left empty if the module was loaded without any path specified:

fd = open ("moduleName", O_RDONLY);
moduleLoad (fd, LOAD_GLOBAL_SYMBOLS);
unldByNameAndPath ("moduleName", "", 0);

RETURNS OK, or ERROR if there is a problem.

ERRNO Not Available

SEE ALSO unldLib, unldByModuleId()

VxWorks Kernel API Reference, 6.6
unlink()

1088

unlink()

NAME unlink() – unlink a file

SYNOPSIS int unlink
 (
 const char *name /* name of the file to remove */
)

DESCRIPTION This routine removes a link to a file. It shall remove the link named by name and decrease
the link count of the file referenced by the link.

RETURNS OK if successful; ERROR otherwise.

ERRNO

SEE ALSO fsPxLib, link()

unstatShow()

NAME unstatShow() – display all AF_LOCAL sockets

SYNOPSIS void unstatShow (void)

DESCRIPTION This routine displays a list of all AF_LOCAL family sockets in a format similar to the UNIX
netstat -f unix command.

Sample output:

AF_LOCAL/COMP protocol sockets
 pending
 address bytes high packets connections
so# (self/peer) State of data watermark dropped (cur/max)
--
 7 0001/NONE LISTENING 0 N/A N/A 1/ 20
 9 0001/0002 EXCHANGING 30012 65535 10 N/A
 8 0002/0001 EXCHANGING 20014 20014 0 N/A
 10 0003/NONE LISTENING 0 N/A N/A 5/ 5
 12 0003/0004 DONE_RECV 0 65535 132 N/A
 11 0004/0003 DONE_SEND 16 16 0 N/A
 4 0405/NONE LISTENING 0 N/A N/A 0/ 5
 5 0000/NONE CLOSED 0 0 0 N/A
 6 0000/NONE CLOSED 0 0 0 N/A

2 Routines
usrClock()

1089

2

so#
Socket identifier, relative to owner's RTP.

address
Socket's and peer's addresses (/comp/socket/0xWXYZ). peer is only valid in the
following state: EXCHANGING, DONE_RECV, DONE_SEND. NONE is printed
otherwise.

state

CLOSEDstarting and ending state: no data can flow

LISTENINGsocket is a listening one, cannot be used to transfer data

EXCHANGINGdata can be sent in either direction

DONE_SENDsocket can only receive, shutdown(write) has been called on it

DONE_RECVsocket can only send, shutdown(write) has been done on peer

bytes of data
Amount of data that is pending on the socket, waiting to be received.

high watermark
Largest amount of pending data at one given time.

dropped packets
Number of packets dropped due to lack of space in the receiver's buffer space.

pending connections
Current and maximum number of unaccepted connections on a listening socket, i.e.:
(number of connect() calls) - (number of accept() calls). N/A is printed if not in the
LISTENING state.

RETURNS N/A

ERRNO Not Available

SEE ALSO unShow

usrClock()

NAME usrClock() – user-defined system clock interrupt routine

SYNOPSIS void usrClock (void)

VxWorks Kernel API Reference, 6.6
usrFdiskPartCreate()

1090

DESCRIPTION This routine is called at interrupt level on each clock interrupt. It is installed by usrRoot()
with a sysClkConnect() call. It calls all the other packages that need to know about clock
ticks, including the kernel itself.

If the application needs anything to happen at the system clock interrupt level, it can be
added to this routine.

RETURNS N/A

ERRNO Not Available

SEE ALSO usrConfig

usrFdiskPartCreate()

NAME usrFdiskPartCreate() – create an FDISK-like partition table on a disk

SYNOPSIS STATUS usrFdiskPartCreate
 (
 CBIO_DEV_ID cDev, /* device representing the entire disk */
 int nPart, /* how many partitions needed, default=1, max=4 */
 int size1, /* space percentage for second partition */
 int size2, /* space percentage for third partition */
 int size3 /* space percentage for fourth partition */
)

DESCRIPTION This function may be used to create a basic PC partition table. Such a partition table is not
intended to be compatible with other operating systems; it is intended for disks connected
to a VxWorks target, but without the access to a PC which may be used to create the
partition table.

This function is capable of creating only one partition table - the MBR, and will not create
any Bootable or Extended partitions. Therefore, only 4 partitions are supported.

cDev is a CBIO device handle for an entire disk, e.g. a handle returned by
dcacheDevCreate(), or if dpartCbio is used, it can be either the Master partition manager
handle, or the one of the 0th partition if the disk does not contain a partition table at all.

The nPart argument contains the number of partitions to create. If nPart is 0 or 1, a single
partition covering the entire disk is created. If nPart is between 2 and 4, the arguments size1,
size2 and size3 contain (as integers) the percentage of disk space to be assigned to the 2nd,
3rd, and 4th partitions respectively. The first partition (partition 0) will be assigned the
remaining space. Thus, the sum of the three sizes should be less than 100.

Partition sizes will be rounded down to be multiple of whole tracks so that partition
Cylinder/Head/Track fields will be initialized as well as the LBA fields. Although the CHS

2 Routines
usrFdiskPartRead()

1091

2

fields are written they are not used in VxWorks, and can not be guaranteed to work correctly
on other systems.

RETURNS OK or ERROR writing a partition table to disk

ERRNO Not Available

SEE ALSO usrFdiskPartLib

usrFdiskPartRead()

NAME usrFdiskPartRead() – read an FDISK-style partition table

SYNOPSIS STATUS usrFdiskPartRead
 (
 CBIO_DEV_ID cDev, /* device from which to read blocks */
 PART_TABLE_ENTRY * pPartTab, /* table where to fill results */
 int nPart /* # of entries in <pPartTable> */
)

DESCRIPTION This function will read and decode a PC formatted partition table on a disk, and fill the
appropriate partition table array with the resulting geometry, which should be used by the
dpartCbio partition manager to access a partitioned disk with a shared disk cache.

EXAMPLE The following example shows how a hard disk which is expected to have up to two
partitions might be configured, assuming the physical level initialization resulted in the
blkIoDevId handle:

devCbio = dcacheDevCreate(blkIoDevId, 0, 0x20000, "Hard Disk");
mainDevId = dpartDevCreate(devCbio, 2, usrFdiskPartRead)
dosFsDevCreate("/disk0a", dpartPartGet (mainDevId, 0), 0,0,0);
dosFsDevCreate("/disk0b", dpartPartGet (mainDevId, 1), 0,0,0);

RETURNS OK or ERROR if partition table is corrupt

ERRNO Not Available

SEE ALSO usrFdiskPartLib

VxWorks Kernel API Reference, 6.6
usrFdiskPartShow()

1092

usrFdiskPartShow()

NAME usrFdiskPartShow() – parse and display partition data

SYNOPSIS STATUS usrFdiskPartShow
 (
 CBIO_DEV_ID cbio, /* device CBIO handle */
 block_t extPartOffset, /* user should pass zero */
 block_t currentOffset, /* user should pass zero */
 int extPartLevel /* user should pass zero */
)

DESCRIPTION This routine is intended to be user callable.

A device dependent partition table show routine, this routine outputs formatted data for
all partition table fields for every partition table found on a given disk, starting with the
MBR sectors partition table. This code can be removed to reduce code size by undefining:
INCLUDE_PART_SHOW and rebuilding this library and linking to the new library.

This routine takes three arguments. First, a CBIO pointer (assigned for the entire physical
disk) usually obtained from dcacheDevCreate(). It also takes two block_t type arguments
and one signed int. The user shall pass zero in these paramaters.

For example:

sp usrFdiskPartShow (pCbio,0,0,0)

Developers may use sizearch to view code size.

RETURNS OK or ERROR

ERRNO Not Available

SEE ALSO usrFdiskPartLib

usrFormatTrans()

NAME usrFormatTrans() – Perform a low-level trans XBD format operation

SYNOPSIS STATUS usrFormatTrans
 (
 char *dev,
 int overhead,
 int type
)

2 Routines
usrIdeConfig()

1093

2

DESCRIPTION This routine formats a trans XBD with the specified parameters.

The dev parameter is the path name of the device (which will have any existing file system
ejected and a rawFS put on it during formatting). The overhead parameter specifies the
amount of media to use for uncommitted workspace, in parts-per-thousand. The type
parameter specifies the type of format to use. The value of this parameter will be either
FORMAT_REGULAR (0) or FORMAT_TFFS (1). FORMAT_REGULAR initializes a system with
2 master records at the beginning and end of the disk. FORMAT_TFFS initializes a system
with the first sector unused, and a master record at the end of the disk.

This routine then waits for the device to re-instantiate as a TRFS device, at which point it is
safe to format it for dosFs.

EXAMPLE usrFormatTrans ("/trans", 100, 0);
This formats the device referred to by "/trans" to use 10% of the disk as workspace, and
places master records on the first and last sectors of the disk.

RETURNS OK, or ERROR if an error occurs formatting the device.

ERRNO Not Available

SEE ALSO usrTransLib

usrIdeConfig()

NAME usrIdeConfig() – mount a DOS file system from an IDE hard disk

SYNOPSIS STATUS usrIdeConfig
 (
 int drive, /* drive number of hard disk (0 or 1) */
 char * fileName /* mount point */
)

DESCRIPTION This routine mounts a DOS file system from an IDE hard disk.

The drive parameter is the drive number of the hard disk; 0 is C: and 1 is D:.

The fileName parameter is the mount point, e.g., /ide0/.

NOTE Because VxWorks does not support partitioning, hard disks formatted and initialized on
VxWorks are not compatible with DOS machines. This routine does not refuse to mount a
hard disk that was initialized on VxWorks. The hard disk is assumed to have only one
partition with a partition record in sector 0.

RETURNS OK or ERROR.

VxWorks Kernel API Reference, 6.6
usrInit()

1094

ERRNO Not Available

SEE ALSO usrIde, the VxWorks programmer guides, the architecture supplement.

usrInit()

NAME usrInit() – user-defined system initialization routine

SYNOPSIS void usrInit
 (
 int startType
)

DESCRIPTION This is the first C code executed after the system boots. This routine is called by the
assembly language start-up routine sysInit() which is in the sysALib module of the
target-specific directory. It is called with interrupts locked out. The kernel is not
multitasking at this point.

This routine starts by clearing BSS; thus all variables are initialized to 0, as per the C
specification. It then initializes the hardware by calling sysHwInit(), sets up the
interrupt/exception vectors, and starts kernel multitasking with usrRoot() as the root task.

RETURNS N/A

ERRNO Not Available

SEE ALSO usrConfig, kernelLib

usrRoot()

NAME usrRoot() – the root task

SYNOPSIS void usrRoot
 (
 char * pMemPoolStart, /* start of system memory partition */
 unsigned memPoolSize /* initial size of mem pool */
)

DESCRIPTION This is the first task to run under the multitasking kernel. It performs all final initialization
and then starts other tasks.

2 Routines
usrScsiConfig()

1095

2

It initializes the I/O system, installs drivers, creates devices, and sets up the network, etc.,
as necessary for a particular configuration. It may also create and load the system symbol
table, if one is to be included. It may then load and spawn additional tasks as needed. In the
default configuration, it simply initializes the VxWorks shell.

RETURNS N/A

ERRNO Not Available

SEE ALSO usrConfig

usrScsiConfig()

NAME usrScsiConfig() – configure SCSI peripherals

SYNOPSIS STATUS usrScsiConfig (void)

DESCRIPTION This code configures the SCSI disks and other peripherals on a SCSI controller chain.

The macro SCSI_AUTO_CONFIG will include code to scan all possible device/lun id's and
to configure a scsiPhysDev structure for each device found. Of course this doesn't include
final configuration for disk partitions, floppy configuration parameters, or tape system
setup. All of these actions must be performed by user code, either through sysScsiConfig(),
the startup script, or by the application program.

The user may customize this code on a per BSP basis using the SYS_SCSI_CONFIG macro. If
defined, then this routine will call the routine sysScsiConfig(). That routine is to be
provided by the BSP, either in sysLib.c or sysScsi.c. If SYS_SCSI_CONFIG is not defined,
then sysScsiConfig() will not be called as part of this routine.

An example sysScsiConfig() routine can be found in target/src/config/usrScsi.c. The
example code contains sample configurations for a hard disk, a floppy disk and a tape unit.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO usrScsi, VxWorks Programmer's Guide: I/O System, Local File Systems

VxWorks Kernel API Reference, 6.6
usrTransCommit()

1096

usrTransCommit()

NAME usrTransCommit() – Set a transaction point on a trans XBD

SYNOPSIS STATUS usrTransCommit
 (
 char *volume
)

DESCRIPTION This routine sets a transaction point using the volume name of the device.

The volume parameter is the name of the device on which TRFS is instantiated.

RETURNS OK, or ERROR if the transaction point is not set.

ERRNO Not Available

SEE ALSO usrTransLib

usrTransCommitFd()

NAME usrTransCommitFd() – set a transaction point using a file descriptor

SYNOPSIS STATUS usrTransCommitFd
 (
 int fd
)

DESCRIPTION This routine sets a transaction point on the device which contains the filesystem containing
the file to which the parameter refers.

The fd parameter is a file descriptor, which must refer to a file whose backing media uses a
TRFS XBD.

RETURNS OK, or ERROR if the transaction point is not set.

ERRNO Not Available

SEE ALSO usrTransLib

2 Routines
utf16ToCP()

1097

2

uswab()

NAME uswab() – swap bytes with buffers that are not necessarily aligned

SYNOPSIS void uswab
 (
 char *source, /* pointer to source buffer */
 char *destination, /* pointer to destination buffer */
 int nbytes /* number of bytes to exchange */
)

DESCRIPTION This routine gets the specified number of bytes from source, exchanges the adjacent even and
odd bytes, and puts them in destination.

NOTE: Due to speed considerations, this routine should only be used when absolutely
necessary. Use swab() for aligned swaps.

The value of nBytes must not be odd. Failure to adhere to this may yield incorrect results.

RETURNS N/A

ERRNO N/A

SEE ALSO bLib, swab()

utf16ToCP()

NAME utf16ToCP() – Convert a UTF-16 encoded Unicode character to a codepoint.

SYNOPSIS int utf16ToCP
 (
 const unsigned short * utf16,
 const int length, /* length is in 16-bit words */
 const int littleEndian,
 unsigned long * codePoint
)

DESCRIPTION This routine converts a character encoded as UTF-16 to an unsigned long which represents
the value of a Unicode characters codepoint.

RETURNS If positive, the return value is the number of UTF-16 words converted. If negative, the value
UC_NOSRC indicates that insufficient words were given to represent a codepoint. The value
UC_FORMAT indicates that the UTF-16 vector was of an invalid format.

VxWorks Kernel API Reference, 6.6
utf16ToUtf8String()

1098

ERRNO Not Available

SEE ALSO utfLib

utf16ToUtf8String()

NAME utf16ToUtf8String() – Convert a UTF-16 string to a UTF-8 String

SYNOPSIS int utf16ToUtf8String
 (
 const unsigned short * utf16,
 int littleEndian,
 unsigned char * utf8,
 const int len8
)

DESCRIPTION This routine converts a Zero terminated, UTF-16 encoded string of the indicated endianess
to a NULL terminated UTF-8 encoded string.

RETURNS If positive, returns the number of bytes used by the resulting UTF-8 encoded string. If
non-positive, UC_FORMAT indicates that the UTF-16 string is of an invalid format;
UC_BUFFER indicates that the buffer provided for the UTF-8 string is too small.

ERRNO Not Available

SEE ALSO utfLib

utf16ToUtf8StringBOM()

NAME utf16ToUtf8StringBOM() – Convert UTF-16 to UTF-8 based on a Byte Order Mark

SYNOPSIS int utf16ToUtf8StringBOM
 (
 const unsigned short * utf16,
 unsigned char * utf8,
 const int len8
)

DESCRIPTION This routine handles UTF-16 in its standard form. If the first word is a Byte Order Mark -
Code Point 0xFEFF, then it is examined for endianness, and the rest of the string is
interpreted accordingly. If there is no Byte Order Mark, then the string is interpreted as

2 Routines
utf8ToUtf16String()

1099

2

big-endian representation. Note that the Byte Order Mark is a legitimate, though
deprecated, character.

RETURNS If positive, returns the number of bytes used by the resulting UTF-8 encoded string. If
non-positive, UC_FORMAT indicates that the UTF-16 string is of an invalid format;
UC_BUFFER indicates that the buffer provided for the UTF-8 string is too small.

ERRNO Not Available

SEE ALSO utfLib

utf8ToCP()

NAME utf8ToCP() – Convert a UTF-8 encoded Unicode character to the Unicode codepoint.

SYNOPSIS int utf8ToCP
 (
 const unsigned char * utf8,
 const int length,
 unsigned long * codePoint
)

DESCRIPTION This routine converts UTF-8 to an unsigned long which represents the value of the Unicode
codepoint.

RETURNS If positive, the return value is the number of characters converted to this codepoint. If
non-positive, the return value of UC_NOSRC indicates that there are insufficient characters
for a valid conversion, and a return value of UC_FORMAT indicates that the format of the
input string is not valid UTF-8.

ERRNO Not Available

SEE ALSO utfLib

utf8ToUtf16String()

NAME utf8ToUtf16String() – convert a UTF-8 string to a UTF-16 string

SYNOPSIS int utf8ToUtf16String

VxWorks Kernel API Reference, 6.6
utf8ToUtf16StringBOM()

1100

 (
 const unsigned char * utf8,
 unsigned short * utf16,
 const int len16,
 int littleEndian
)

DESCRIPTION This routine converts a NULL terminated UTF-8 encoded string to a ZERO terminated
UTF-16 string of the indicated endianess. It does not prepend a Byte Order Marker to the
beginning of the string - this must be done before conversion if it is required.

RETURNS If positive the number of 16-bit words actually converted, including the terminating Zero.
If non-positive, UC_FORMAT indicates that the UTF-8 string is not of a legal format, and
UC_BUFFER indicates that the provided buffer for containing the UTF-16 string is too small
to perform the conversion

ERRNO Not Available

SEE ALSO utfLib

utf8ToUtf16StringBOM()

NAME utf8ToUtf16StringBOM() – Convert UTF-8 to UTF16 with a Byte Order Mark

SYNOPSIS int utf8ToUtf16StringBOM
 (
 const unsigned char * utf8,
 unsigned short * utf16,
 const int len16,
 int littleEndian
)

DESCRIPTION This routine first writes out the Unicode Byte Order Mark Character, and then converts the
UTF-8 encoded string to UTF-16 based on the given endianness

RETURNS If positive the number of 16-bit words actually converted, including the terminating Zero
and the Byte Order Marker . If non-positive, UC_FORMAT indicates that the UTF-8 string is
not of a legal format, and UC_BUFFER indicates that the provided buffer for containing the
UTF-16 string is too small to perform the conversion.

ERRNO Not Available

SEE ALSO utfLib

2 Routines
utflen8()

1101

2

utfLibInit()

NAME utfLibInit() – initialize the UTF library

SYNOPSIS void utfLibInit (void)

DESCRIPTION none

RETURNS Not Available

ERRNO Not Available

SEE ALSO utfLib

utflen16()

NAME utflen16() – Return the number of 16-bit words used by a UTF-16 encoding.

SYNOPSIS int utflen16
 (
 const unsigned short * utf16
)

DESCRIPTION This routine returns the number of 16-bit words, including the terminating Zero, used by a
Zero terminated UTF-16 encoded string.

RETURNS Then number of 16-bit words utilized by a UTF-16 encoding.

ERRNO Not Available

SEE ALSO utfLib

utflen8()

NAME utflen8() – return the encoding length of a NULL terminated UTF-8 string

SYNOPSIS int utflen8

VxWorks Kernel API Reference, 6.6
utime()

1102

 (
 const unsigned char * utf8
)

DESCRIPTION This routine returns the length occupied by the encoding, as opposed to the number of
Unicode characters actually encoded, including the terminating NULL

RETURNS The total number of chars up to and including the terminating NULL.

ERRNO Not Available

SEE ALSO utfLib

utime()

NAME utime() – update time on a file

SYNOPSIS int utime
 (
 const char * file,
 const struct utimbuf * newTimes
)

DESCRIPTION Update the timestamp on a file. For filesystems that support this command, the timestamp
of the file is updated to the current time.

RETURNS OK or ERROR.

ERRNO N/A

SEE ALSO dirLib, stat(), fstat(), ls()

valloc()

NAME valloc() – allocate memory on a page boundary from the kernel heap

SYNOPSIS void * valloc
 (
 unsigned size /* number of bytes to allocate */
)

2 Routines
version()

1103

2

DESCRIPTION This routine allocates a buffer of size bytes from the system memory partition (kernel heap).
Additionally, it insures that the allocated buffer begins on a page boundary. Page sizes are
architecture-dependent.

RETURNS A pointer to the newly allocated block, or NULL if the buffer could not be allocated or the
memory management unit (MMU) support library has not been initialized.

ERRNO S_memLib_PAGE_SIZE_UNAVAILABLE
Could not obtain the size of a virtual page. Possible error is that virtual memory
support is not included (INCLUDE_MMU_BASIC).

S_memLib_NOT_ENOUGH_MEMORY
There is no free block large enough to satisfy the allocation request.

SEE ALSO memLib

version()

NAME version() – print VxWorks version information

SYNOPSIS void version (void)

DESCRIPTION This command prints the VxWorks version number, the date this copy of VxWorks was
made, and other pertinent information.

EXAMPLE -> version
VxWorks (for SunOS 5.8 [sun4u]) version 6.0.
Kernel: WIND version 2.7.
Made on May 13 2004, 13:23:14.
Boot line:
passDev(0,0)river:/wind/river/target/proj/solaris_diab/default/vxWorks u=user
tn=vxTarget
value = 0 = 0x0

RETURNS N/A

ERRNO N/A

SEE ALSO usrLib, the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
vfdprintf()

1104

vfdprintf()

NAME vfdprintf() – write a string formatted with a variable argument list to a file descriptor

SYNOPSIS int vfdprintf
 (
 int fd, /* file descriptor to print to */
 const char * fmt, /* format string for print */
 va_list vaList /* optional arguments to format */
)

DESCRIPTION This routine prints a string formatted with a variable argument list to a specified file
descriptor. It is identical to fdprintf(), except that it takes the variable arguments to be
formatted as a list vaList of type va_list rather than as in-line arguments.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The number of characters output, or ERROR if there is an error during output.

ERRNO Not Available

SEE ALSO fioLib, fdprintf()

virtualDiskClose()

NAME virtualDiskClose() – close a virtual disk block device.

SYNOPSIS STATUS virtualDiskClose
 (
 BLK_DEV * blkDev /* virtual disk block device */
)

DESCRIPTION This routine closes a virtual disk block device by closing the host file associated with the
virtual disk.

The blkDev parameter specifies the virtual disk to close.

RETURNS OK on success, else ERROR.

ERRNO Not Available

SEE ALSO virtualDiskLib

2 Routines
virtualDiskInit()

1105

2

virtualDiskCreate()

NAME virtualDiskCreate() – create a virtual disk device.

SYNOPSIS BLK_DEV * virtualDiskCreate
 (
 char * hostFile, /* name of the host file */
 int bytesPerBlk, /* number of bytes per block */
 int blksPerTrack, /* number of blocks per track */
 int nBlocks /* number of blocks on this device */
)

DESCRIPTION This routine creates a virtual disk device. The host file is created if it does not exist. If it
already exists, only the hostFile parameter is taken in account, the others parameters are
extracted from the host file.

The hostFile parameter specifies the name of the host file used for the virtual disk. The host
file pathname is a standard host pathname without the host name. For Windows VxSim, the
path separator to use is \ or / (i.e. c:/myDir/myFile or c:\myDir\myFile).

The bytesPerBlk parameter specifies the size of each logical block on the disk. If bytesPerBlk
is zero, 512 is the default.

The blksPerTrack parameter specifies the number of blocks on each logical track of the disk.
If blksPerTrack is zero, the count of blocks per track is set to nBlocks (i.e., the disk is defined
as having only one track).

The nBlocks parameter specifies the size of the disk, in blocks. If nBlocks is zero, 512 is the
default.

RETURNS A pointer to block device (BLK_DEV) structure, or NULL if the virtual disk creation failed.

ERRNO Not Available

SEE ALSO virtualDiskLib

virtualDiskInit()

NAME virtualDiskInit() – install the virtual disk driver

SYNOPSIS STATUS virtualDiskInit (void)

DESCRIPTION This routine is used to initialize the virtual disk driver. This routine is automatically called
when the INCLUDE_VIRTUAL_DISK component is included.

VxWorks Kernel API Reference, 6.6
vmArch32LibInit()

1106

RETURNS OK, always.

ERRNO Not Available

SEE ALSO virtualDiskLib

vmArch32LibInit()

NAME vmArch32LibInit() – initialize the arch specific unbundled VM library (VxVMI Option)

SYNOPSIS void vmArch32LibInit (void)

DESCRIPTION This routine links the arch specific unbundled VM library into the VxWorks system. It is
called automatically when INCLUDE_MMU_FULL and INCLUDE_MMU_P6_32BIT are both
defined in the BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO vmArch32Lib

vmArch32Map()

NAME vmArch32Map() – map 32bit physical space into 32bit virtual space (VxVMI Option)

SYNOPSIS STATUS vmArch32Map
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 void * virtAddr, /* virtual address */
 void * physAddr, /* physical address */
 UINT32 stateMask, /* state mask */
 UINT32 state, /* state */
 UINT32 len /* len of virtual and physical spaces */
)

DESCRIPTION vmArch32Map maps 32bit physical pages into a contiguous block of 32bit virtual memory.
virtAddr and physAddr must be on page boundaries, and len must be evenly divisible by the
page size. After the mapping the specified state is set to all pages in the newly mapped
virtual memory.

2 Routines
vmArch32Translate()

1107

2

The vmArch32Map() routine can fail if the specified virtual address space conflicts with the
translation tables of the global virtual memory space. The global virtual address space is
initialized at boot time. If a conflict results, errno is set to
S_vmLib_ADDR_IN_GLOBAL_SPACE. To avoid this conflict, use vmGlobalInfoGet() to
ascertain which portions of the virtual address space are reserved for the global virtual
address space. If context is specified as NULL, the current virtual memory context is used.

This routine should not be called from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if virtAddr or physAddr are not on page boundaries, len is not a multiple of
the page size, the validation fails, or the mapping fails.

ERRNO S_vmLib_NOT_PAGE_ALIGNED
S_vmLib_ADDR_IN_GLOBAL_SPACE

SEE ALSO vmArch32Lib

vmArch32Translate()

NAME vmArch32Translate() – translate a 32bit virtual address to a 32bit physical address (VxVMI
Option)

SYNOPSIS STATUS vmArch32Translate
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 void * virtAddr, /* virtual address */
 void ** physAddr /* place to put result */
)

DESCRIPTION vmArch32Translate retrieves mapping information for a 32bit virtual address from the
page translation tables. If the specified virtual address has never been mapped, the
returned status is ERROR. If context is specified as NULL, the current context is used.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if the validation or translation fails.

ERRNO Not Available

VxWorks Kernel API Reference, 6.6
vmArch36LibInit()

1108

SEE ALSO vmArch32Lib

vmArch36LibInit()

NAME vmArch36LibInit() – initialize the arch specific unbundled VM library (VxVMI Option)

SYNOPSIS void vmArch36LibInit (void)

DESCRIPTION This routine links the arch specific unbundled VM library into the VxWorks system. It is
called automatically when INCLUDE_MMU_FULL and INCLUDE_MMU_P6_36BIT are both
defined in the BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO vmArch36Lib

vmArch36Map()

NAME vmArch36Map() – map 36bit physical space into 32bit virtual space (VxVMI Option)

SYNOPSIS STATUS vmArch36Map
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 void * virtAddr, /* 32bit virtual address */
 LL_INT physAddr, /* 36bit physical address */
 UINT32 stateMask, /* state mask */
 UINT32 state, /* state */
 UINT32 len /* len of virtual and physical spaces */
)

DESCRIPTION vmArch36Map maps 36bit physical pages into a contiguous block of 32bit virtual memory.
virtAddr and physAddr must be on page boundaries, and len must be evenly divisible by the
page size. After the mapping the specified state is set to all pages in the newly mapped
virtual memory.

The vmArch36Map() routine can fail if the specified virtual address space conflicts with the
translation tables of the global virtual memory space. The global virtual address space is
initialized at boot time. If a conflict results, errno is set to
S_vmLib_ADDR_IN_GLOBAL_SPACE. To avoid this conflict, use vmGlobalInfoGet() to

2 Routines
vmArch36Translate()

1109

2

ascertain which portions of the virtual address space are reserved for the global virtual
address space. If context is specified as NULL, the current virtual memory context is used.

This routine should not be called from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if virtAddr or physAddr are not on page boundaries, len is not a multiple of
the page size, the validation fails, or the mapping fails.

ERRNO S_vmLib_NOT_PAGE_ALIGNED
S_vmLib_ADDR_IN_GLOBAL_SPACE

SEE ALSO vmArch36Lib

vmArch36Translate()

NAME vmArch36Translate() – translate a 32bit virtual address to a 36bit physical address (VxVMI
Option)

SYNOPSIS STATUS vmArch36Translate
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 void * virtAddr, /* 32bit virtual address */
 LL_INT * physAddr /* place to put 36bit result */
)

DESCRIPTION vmArch36Translate retrieves mapping information for a 32bit virtual address from the
page translation tables. If the specified virtual address has never been mapped, the
returned status is ERROR. If context is specified as NULL, the current context is used.

This routine is callable from interrupt level.

AVAILABILITY This routine is distributed as a component of the unbundled virtual memory support
option, VxVMI.

RETURNS OK, or ERROR if the validation or translation fails.

ERRNO Not Available

SEE ALSO vmArch36Lib

VxWorks Kernel API Reference, 6.6
vmAttrShow()

1110

vmAttrShow()

NAME vmAttrShow() – display the text representation of a MMU attribute value

SYNOPSIS STATUS vmAttrShow
 (
 UINT pgAttr, /* MMU attributes */
 UINT pgAttrMask /* MMU attributes mask */
)

DESCRIPTION This routine will display the text value of the attributes passed in pgAttr. This information
includes the supervisor and user RWX values, cache mode (CB/WT/OFF), coherency, and
I/O settings.

Note that this routine cannot report non-standard architecture-dependent states.

RETURNS ERROR if pgAttrMask is not a valid mask or NULL, else OK.

ERRNO Not Available

SEE ALSO vmShow

vmBaseArch32LibInit()

NAME vmBaseArch32LibInit() – initialize the arch specific bundled VM library

SYNOPSIS void vmBaseArch32LibInit (void)

DESCRIPTION This routine links the arch specific bundled VM library into the VxWorks system. It is
called automatically when INCLUDE_MMU_BASIC and INCLUDE_MMU_P6_32BIT are both
defined in the BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO vmBaseArch32Lib

2 Routines
vmBaseArch32Translate()

1111

2

vmBaseArch32Map()

NAME vmBaseArch32Map() – map 32bit physical to the 32bit virtual memory

SYNOPSIS STATUS vmBaseArch32Map
 (
 void * virtAddr, /* 32bit virtual address */
 void * physAddr, /* 32bit physical address */
 UINT32 stateMask, /* state mask */
 UINT32 state, /* state */
 UINT32 len /* length */
)

DESCRIPTION vmBaseArch32Map maps 32bit physical pages into a contiguous block of 32bit virtual
memory. virtAddr and physAddr must be on page boundaries, and len must be evenly
divisible by the page size. After the mapping the specified state is set to all pages in the
newly mapped virtual memory.

This routine should not be called from interrupt level.

RETURNS OK, or ERROR if virtAddr or physAddr are not on page boundaries, len is not a multiple of the
page size, the validation fails, or the mapping fails.

ERRNO S_vmLib_NOT_PAGE_ALIGNED

SEE ALSO vmBaseArch32Lib

vmBaseArch32Translate()

NAME vmBaseArch32Translate() – translate a 32bit virtual address to a 32bit physical address

SYNOPSIS STATUS vmBaseArch32Translate
 (
 void * virtAddr, /* virtual address */
 void ** physAddr /* place to put result */
)

DESCRIPTION vmBaseArch32Translate retrieves mapping information for a 32bit virtual address from the
page translation tables. If the specified virtual address has never been mapped, the
returned status is ERROR.

This routine is callable from interrupt level.

RETURNS OK, or ERROR if validation or translation fails.

VxWorks Kernel API Reference, 6.6
vmBaseArch36LibInit()

1112

ERRNO Not Available

SEE ALSO vmBaseArch32Lib

vmBaseArch36LibInit()

NAME vmBaseArch36LibInit() – initialize the arch specific bundled VM library

SYNOPSIS void vmBaseArch36LibInit (void)

DESCRIPTION This routine links the arch specific bundled VM library into the VxWorks system. It is
called automatically when INCLUDE_MMU_BASIC and INCLUDE_MMU_P6_36BIT are both
defined in the BSP.

RETURNS N/A

ERRNO Not Available

SEE ALSO vmBaseArch36Lib

vmBaseArch36Map()

NAME vmBaseArch36Map() – map 36bit physical to the 32bit virtual memory

SYNOPSIS STATUS vmBaseArch36Map
 (
 void * virtAddr, /* 32bit virtual address */
 LL_INT physAddr, /* 36bit physical address */
 UINT32 stateMask, /* state mask */
 UINT32 state, /* state */
 UINT32 len /* length */
)

DESCRIPTION vmBaseArch36Map maps 36bit physical pages into a contiguous block of 32bit virtual
memory. virtAddr and physAddr must be on page boundaries, and len must be evenly
divisible by the page size. After the mapping the specified state is set to all pages in the
newly mapped virtual memory.

This routine should not be called from interrupt level.

2 Routines
vmBaseGlobalMapInit()

1113

2

RETURNS OK, or ERROR if virtAddr or physAddr are not on page boundaries, len is not a multiple of the
page size, the validation fails, or the mapping fails.

ERRNO S_vmLib_NOT_PAGE_ALIGNED

SEE ALSO vmBaseArch36Lib

vmBaseArch36Translate()

NAME vmBaseArch36Translate() – translate a 32bit virtual address to a 36bit physical address

SYNOPSIS STATUS vmBaseArch36Translate
 (
 void * virtAddr, /* 32bit virtual address */
 LL_INT * physAddr /* place to put 36bit result */
)

DESCRIPTION vmBaseArch36Translate retrieves mapping information for a 32bit virtual address from the
page translation tables. If the specified virtual address has never been mapped, the
returned status is ERROR.

This routine is callable from interrupt level.

RETURNS OK, or ERROR if validation or translation fails.

ERRNO Not Available

SEE ALSO vmBaseArch36Lib

vmBaseGlobalMapInit()

NAME vmBaseGlobalMapInit() – initialize global mapping (obsolete)

SYNOPSIS VM_CONTEXT_ID vmBaseGlobalMapInit
 (
 PHYS_MEM_DESC *pMemDescArray, /* pointer to array of mem descs */
 int numDescArrayElements, /* no. of elements in pMemDescArray
*/
 BOOL enable, /* enable virtual memory */
 int cacheDefault /* default data cache mode */
)

VxWorks Kernel API Reference, 6.6
vmBasePageSizeGet()

1114

DESCRIPTION This function will be replaced by vmGlobalMapInit()

RETURNS A pointer to a newly created virtual memory context, or NULL if memory cannot be
mapped.

ERRNO Not Available

SEE ALSO vmGlobalMap, vmBaseLibInit(), vmGlobalMapInit()

vmBasePageSizeGet()

NAME vmBasePageSizeGet() – return the MMU page size (obsolete)

SYNOPSIS int vmBasePageSizeGet (void)

DESCRIPTION This routine is to be replaced by vmPageSizeGet().

RETURNS The MMU page size of the current architecture.

ERRNO Not Available

SEE ALSO vmBaseLib, vmPageSizeGet()

vmBaseStateSet()

NAME vmBaseStateSet() – change the state of a block of virtual memory (obsolete)

SYNOPSIS STATUS vmBaseStateSet
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 VIRT_ADDR virtAdrs, /* virtual address to modify state of */
 msize_t len, /* len of virtual space to modify state of */
 UINT stateMask, /* state mask */
 UINT state /* state */
)

DESCRIPTION This function will be replaced by vmStateSet().

RETURNS OK, or ERROR if the validation fails, virtAdrs is not on a page boundary, len is not a multiple
of the page size, or the architecture-dependent state set fails for the specified virtual address.

2 Routines
vmContextShow()

1115

2

ERRNO S_vmLib_NOT_PAGE_ALIGNED
virtualAddr must be aligned on a page boundary.

S_vmLib_BAD_STATE_PARAM
state is not a valid combination of MMU states.

S_vmLib_BAD_MASK_PARAM
stateMask is not a valid combination of MMU state masks.

SEE ALSO vmBaseLib, vmStateSet()

vmContextShow()

NAME vmContextShow() – display the translation table for a context

SYNOPSIS STATUS vmContextShow
 (
 VM_CONTEXT_ID context /* VM context - NULL == currentContext */
)

DESCRIPTION This routine displays the translation table for a specified context. If context is specified as
NULL, the current context is displayed. Output is formatted to show blocks of virtual
memory with consecutive physical addresses and the same state. State information shows
the read/write/execute status for both USR and SUP modes as well as the cacheablity.
Only virtual memory that has its valid state bit set is displayed.

This routine should be used for debugging purposes only.

EXAMPLE The following example shows the output of vmContextShow() using the shell's
C-interpreter:

-> vmContextShow
VIRTUAL ADDR BLOCK LENGTH PHYSICAL ADDR PROT (S/U) CACHE SPECIAL
------------ ------------ ------------- ---------- ------- ------------
0x60000000 0x00010000 0x60000000 RWX / --- CB-/--/- --
0x60010000 0x0014c000 0x60010000 R-X / --- CB-/--/- --
0x6015c000 0x0040e000 0x6015c000 RWX / --- CB-/--/- --
0x6056a000 0x00004000 0x6056a000 R-X / --- CB-/--/G --
0x6056e000 0x00002000 0x6056e000 RWX / --- CB-/CO/- --
0x60570000 0x00001000 0x60570000 RWX / --- WT-/--/- --
0x60571000 0x00001000 0x60571000 RWX / --- OFF/--/- NB

For the command-interpreter shell, use the vm context command.

The protection attributes (Read/Write/eXecute) are listed separately for supervisor and
user mode (S/U).

VxWorks Kernel API Reference, 6.6
vmGlobalMapInit()

1116

Cache attributes are listed with the following notation:

Special attributes are listed with the following notation:

The no-block attribute has meaning only on systems where page optimization is used. For
more information see vmPageOptimize().

AVAILABILITY This routine is distributed as a component of the bundled virtual memory support option.

RETURNS OK, or ERROR if the virtual memory context is invalid.

ERRNO Not Available

SEE ALSO vmShow

vmGlobalMapInit()

NAME vmGlobalMapInit() – initialize global mapping

SYNOPSIS VM_CONTEXT_ID vmGlobalMapInit
 (
 PHYS_MEM_DESC * pMemDescArray, /* pointer to array of mem descs
*/
 int numDescArrayElements, /* no. of elements in
pMemDescArray */
 BOOL enable, /* enable virtual memory */
 int cacheDefault /* default data cache mode */
)

DESCRIPTION This routine creates and installs a virtual memory context with mappings defined for each
contiguous memory segment defined in pMemDescArray. In the standard VxWorks
configuration, an instance of PHYS_MEM_DESC (called sysPhysMemDesc) is defined in
sysLib.c; the variable is passed to vmGlobalMapInit() by the system configuration
mechanism.

Attribute Meaning
CB Copyback
WT Write-through
OFF Cache disabled
CO Coherency enabled
G Guarded

Attribute Meaning
NB No-block. See note blow.
S0-S6 Special attributes 0 to 6. See the Architecure Supplement for usage.

2 Routines
vmMap()

1117

2

This routine is called only once during system initialization. It should never be called by
application code.

If enable is TRUE, the MMU is enabled upon return.

RETURNS A pointer to a newly created virtual memory context, or NULL if memory cannot be
mapped.

ERRNO Not Available

SEE ALSO vmGlobalMap, vmBaseLibInit()

vmMap()

NAME vmMap() – map physical space into virtual space

SYNOPSIS STATUS vmMap
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 VIRT_ADDR virtualAddr, /* virtual address */
 PHYS_ADDR physicalAddr, /* physical address */
 msize_t len /* len of virtual and physical spaces */
)

DESCRIPTION This routine maps physical pages into a contiguous block of virtual memory. virtualAddr
and physicalAddr must be on page boundaries, and len must be evenly divisible by the page
size. After the call to vmMap(), the state of all pages in the the newly mapped virtual
memory is valid, accessible in SUP mode, and cacheable. Note: If mapping a particular page
within the given range fails , then the pages that have already been mapped is not restored
back.

If context is specified as NULL, the current virtual memory context is used.

The physicalAddr has to be of type (PHYS_ADDR) since on some architectures the physical
address could represent more than 32 bits.

This routine should not be called from interrupt level.

RETURNS OK, or ERROR if virtualAddr or physicalAddr are not on page boundaries, len is not a multiple
of the page size, the validation fails, or the mapping fails.

ERRNO S_vmLib_NOT_PAGE_ALIGNED
virtualAddr must be aligned on a page boundary.

SEE ALSO vmBaseLib

VxWorks Kernel API Reference, 6.6
vmPageLock()

1118

vmPageLock()

NAME vmPageLock() – lock the pages.

SYNOPSIS STATUS vmPageLock
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 VIRT_ADDR virtualAddr, /* virtual address */
 msize_t len, /* len of virtual address */
 UINT option /* unused. (for future if needed) */
)

DESCRIPTION This routine will lock the pages by using a static TLB entry if possible.

If context is specified as NULL, the current virtual memory context is used.

This routine should not be called from interrupt level.

IMPORTANT The support for this routine is not available on many CPUs and architectures. You should
reference your architecture supplement to see if this is available.

Locking of the vxWorks image text section is configurable by using
INCLUDE_LOCK_TEXT_SECTION.

This routine currently only will lock a valid page present in the kernel context. It will return
an ERROR if this is not the case. Also if a page is locked, it can no longer can have its state
changed; therefore if a call from vmStateSet is made on a locked page it will return an
ERROR. Finally, there is an additional errno for vmStateSet if a page is locked:
S_mmuLib_TLB_LOCKED_PAGE.

RETURNS OK, or ERROR if virtualAddr is not on page boundaries, len is not a multiple of the page size
or if the locking of the pages cannot be done.

ERRNO S_vmLib_FUNCTION_UNSUPPORTED
page locking function not supported.

S_vmLib_NOT_PAGE_ALIGNED
virtualAddr must be aligned on a page boundary.

S_mmuLib_TLB_LOCKED_PAGE
Already a locked page

S_mmuLib_NOT_CONTIGUOUS_ADDR
Requires contiguous phys addr

S_mmuLib_NOT_CONTIGUOUS_STATE
Requires contiguous MMU state

S_mmuLib_INVALID_DESCRIPTOR
Bad address

2 Routines
vmPageMap()

1119

2

S_mmuLib_NOT_GLOBAL_PAGE
Page must be shared by all contexts

S_mmuLib_LOCK_NO_MORE_TLB_RESOURCES
No more TLB entries available

SEE ALSO vmBaseLib

vmPageMap()

NAME vmPageMap() – map physical space into virtual space

SYNOPSIS STATUS vmPageMap
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 VIRT_ADDR virtualAddr, /* virtual address */
 PHYS_ADDR physicalAddr, /* physical address */
 msize_t len, /* len of virtual and physical spaces */
 UINT stateMask, /* combination of MMU state masks. */
 UINT state /* combination of MMU states. */
)

DESCRIPTION This routine maps physical pages into a contiguous block of virtual memory. virtualAddr
and physicalAddr must be on page boundaries, and len must be evenly divisible by the page
size. After the call to vmMap(), the state of all pages in the the newly mapped virtual
memory is set to the default value (valid, sup rwx & cache default) if stateMask is passed
as NULL , or else it is set to whatever is passed via statMask/state Note: If mapping a
particular page within the given range fails , then the pages that have already been mapped
is not restored back.

If context is specified as NULL, the current virtual memory context is used.

The physicalAddr has to be of type (PHYS_ADDR) since on some architectures the physical
address could represent more than 32 bits.

This routine should not be called from interrupt level. This routine cannot be called via the
macro VM_PAGE_MAP.

RETURNS OK, or ERROR if virtualAddr or physicalAddr are not on page boundaries, len is not a multiple
of the page size, the validation fails, or the mapping fails, or if invalid state or stateMask are
passed.

ERRNO S_vmLib_NOT_PAGE_ALIGNED
virtualAddr must be aligned on a page boundary.

SEE ALSO vmBaseLib

VxWorks Kernel API Reference, 6.6
vmPageOptimize()

1120

vmPageOptimize()

NAME vmPageOptimize() – Optimize the address range if possible.

SYNOPSIS STATUS vmPageOptimize
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 VIRT_ADDR virtualAddr, /* virtual address */
 msize_t len, /* len of address range in bytes */
 UINT option /* unused. for future if needed */
)

DESCRIPTION This routine will try to optimize the passed address range by modifing pages to use MMU
page sizes larger than the default one VM_PAGE_SIZE, if possible.

If context is specified as NULL, the current virtual memory context is used.

This routine should not be called from interrupt level.

The support for this routine is not available on many CPUs and architectures.

IMPORTANT You should reference your architecture supplement to see if this is available.

WARNING One side affect after using this routine, when supported, is that vmStateSet will possibly
block with a semaphore except in interrupt where it returns ERROR. To prevent a call to
vmStateSet from returning an ERROR when in an ISR you must preempt with a call, for the
same address range, to vmStateSet setting the special state MMU_ATTR_NO_BLOCK. This
should be treated as a special purpose attribute.

There is an additional errno for vmStateSet if optimization is enabled:
S_mmuLib_ISR_CALL_BLOCKED - StateSet needed to block because of optimization so
returned error. Should have used MMU_ATTR_NO_BLOCK state set on address.

Initial optimization of the whole of kernel context can be done by just configuring in
INCLUDE_PAGE_SIZE_OPTIMIZATION.

RETURNS OK, or ERROR if virtualAddr is not on page boundary, len is not a multiple of the page size
or if the optimization is not possible.

ERRNO S_vmLib_FUNCTION_UNSUPPORTED
page optimization function not supported.

S_vmLib_NOT_PAGE_ALIGNED
virtualAddr must be aligned on a page boundary.

SEE ALSO vmBaseLib

2 Routines
vmPageUnlock()

1121

2

vmPageSizeGet()

NAME vmPageSizeGet() – return the page size

SYNOPSIS int vmPageSizeGet (void)

DESCRIPTION This routine returns the architecture-dependent MMU page size.

This routine is callable from interrupt level.

RETURNS The page size of the current architecture.

ERRNO Not Available

SEE ALSO vmBaseLib

vmPageUnlock()

NAME vmPageUnlock() – unlock the pages.

SYNOPSIS STATUS vmPageUnlock
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 VIRT_ADDR virtualAddr /* virtual address */
)

DESCRIPTION This routine will lock the pages that were locked by a previous vmPageLock.

If context is specified as NULL, the current virtual memory context is used.

This routine should not be called from interrupt level.

RETURNS OK, or ERROR if virtualAddr is not on page boundaries, if the pages were not previously
locked.

ERRNO S_vmLib_FUNCTION_UNSUPPORTED
page unlocking function not supported.

S_vmLib_NOT_PAGE_ALIGNED
virtualAddr must be aligned on a page boundary.

S_mmuLib_TLB_PAGE_NOT_LOCKED
Can only unlock a locked page.

VxWorks Kernel API Reference, 6.6
vmPhysTranslate()

1122

SEE ALSO vmBaseLib

vmPhysTranslate()

NAME vmPhysTranslate() – translate a physical address to a virtual address

SYNOPSIS STATUS vmPhysTranslate
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 PHYS_ADDR physicalAddr, /* physical address */
 VIRT_ADDR * virtualAddr /* place to put result */
)

DESCRIPTION This routine retrieves mapping information for a physical address from the page translation
tables. If context is specified as NULL, the current context is used.

The physicalAddr has to be of type (PHYS_ADDR) since on some architectures the physical
address could represent more than 32 bits.

This routine is callable from interrupt level.

RETURNS OK, or ERROR if the validation or translation failed.

ERRNO Not Available

SEE ALSO vmBaseLib

vmStateGet()

NAME vmStateGet() – get the state of a page of virtual memory

SYNOPSIS STATUS vmStateGet
 (
 VM_CONTEXT_ID context, /* VM context; use NULL for current context */
 VIRT_ADDR pageAddr, /* virtual page addr */
 UINT * pState /* where to return state */
)

DESCRIPTION This routine gets the MMU attributes of a page mapped in a virtual memory context. For a
description of the supported page attributes see the vmStateSet() API guide.

If context is NULL, the current virtual memory context is used.

2 Routines
vmStateSet()

1123

2

This routine is callable from interrupt level.

For example, to see if a page is writable in supervisor mode, the following code may be used:

 if (vmStateGet (context, pageAddr, &attr) == OK)
 {
 if (((attr & MMU_ATTR_VALID_MSK) == MMU_ATTR_VALID) &&
 ((attr & MMU_ATTR_PROT_SUP_WRITE) == MMU_ATTR_PROT_SUP_WRITE))
 ...

RETURNS OK, or ERROR if pageAddr is not on a page boundary, the validity check fails, or the
architecture-dependent state get fails for the specified virtual address.

ERRNO S_vmLib_NOT_PAGE_ALIGNED
pageAddr is not aligned on a page boundary.

SEE ALSO vmBaseLib, vmStateSet()

vmStateSet()

NAME vmStateSet() – change the state of a block of virtual memory

SYNOPSIS STATUS vmStateSet
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */
 VIRT_ADDR virtAdrs, /* virtual address to modify state of */
 msize_t len, /* len of virtual space to modify state of */
 UINT stateMask, /* state mask */
 UINT state /* state */
)

DESCRIPTION This routine changes the MMU attributes of a block of virtual memory. Each page of virtual
memory has at least three types of state information: validity, protection, and cacheability.
Some architectures define additional state information.

The following MMU attributes are supported and may be OR'ed together in the state
parameter:

Protection attributes:

Attribute Description
MMU_ATTR_PROT_SUP_READ read access in supervisor mode
MMU_ATTR_PROT_SUP_WRITE write access in supervisor mode
MMU_ATTR_PROT_SUP_EXE executable access in supervisor mode
MMU_ATTR_PROT_USR_READ read access in user mode
MMU_ATTR_PROT_USR_WRITE write access in user mode
MMU_ATTR_PROT_USR_EXE executable access in user mode

VxWorks Kernel API Reference, 6.6
vmStateSet()

1124

Validity attribute. Memory accesses to a page set invalid will result in an exception.

Cache attributes:

The stateMask parameter is used to specify which MMU attribute groups are being
modified. This should be an inclusive OR of one or more of the following masks:

The following restrictions must be respected when setting page attributes:

- only one of MMU_ATTR_CACHE_OFF, MMU_ATTR_CACHE_COPYBACK,
MMU_ATTR_CACHE_WRITETHRU or MMU_ATTR_CACHE_DEFAULT can be set at any
time.

- not all combinations of the protection attributes are supported by various architectures.
For more information see the respective Architecture Supplement documentation.

Refer to the archecture specific mmuLib man pages for specific details.

If context is NULL, the current context is used.

This routine is callable from interrupt level.

RETURNS OK, or ERROR if the validation fails, virtAdrs is not on a page boundary, len is not a multiple
of the page size, or the architecture-dependent state set fails for the specified virtual address.

ERRNO S_vmLib_NOT_PAGE_ALIGNED
virtAdrs is not aligned on a page boundary.

S_vmLib_BAD_STATE_PARAM
state is not a valid combination of MMU attributes.

S_vmLib_BAD_MASK_PARAM
stateMask is not a valid combination of MMU attribute masks.

Attribute Description
MMU_ATTR_VALID page is valid
MMU_ATTR_VALID_NOT page is not valid

Attribute Description
MMU_ATTR_CACHE_OFF cache turned off
MMU_ATTR_CACHE_COPYBACK cache in copy-back mode
MMU_ATTR_CACHE_WRITETHRU cache set in writethrough mode
MMU_ATTR_CACHE_DEFAULT default cache value, USER_D_CACHE_MODE
MMU_ATTR_CACHE_GUARDED page access set to guarded
MMU_ATTR_CACHE_COHERENCY page access set to cache coherent

Mask Description
MMU_ATTR_PROT_MSK set protection attributes
MMU_ATTR_VALID_MSK set valid attribute
MMU_ATTR_CACHE_MSK set cache attributes
MMU_ATTR_SPL_MSK set architecture specific attributes

2 Routines
vmTranslate()

1125

2

SEE ALSO vmBaseLib, vmStateGet()

vmTextProtect()

NAME vmTextProtect() – write-protect kernel text segment

SYNOPSIS STATUS vmTextProtect
 (
 BOOL setState
)

DESCRIPTION This routine enables write-protection of text segments in the VxWorks kernel. This function
should not be called by application code; instead, this routine is called automatically at boot
time when the INCLUDE_PROTECT_TEXT component is included.

If the start of the text segment is not page aligned, text protection starts from the next page
boundary. This routine expects that the data segment follows the text segment after a proper
alignment padding. The VxWorks build system ensures this condition except for
ROM-resident images (i.e. images for which the text segment is directly executed out of
ROM or flash memory). For ROM-resident images, if detection of an attempt to write in the
ROM is desired, protection should be enabled via the corresponding sysPhysMemDesc[]
entry in the BSP.

This routine is not setting protection attributes for the MIPS architecture. Text protection
for MIPS, when INCLUDE_PROTECT_TEXT is included, is enabled when the initial
mappings are created.

RETURNS OK, or ERROR if the text segment cannot be write-protected.

ERRNO S_vmLib_TEXT_PROTECTION_UNAVAILABLE
write-protecting the kernel text segment is not supported.

SEE ALSO vmBaseLib

vmTranslate()

NAME vmTranslate() – translate a virtual address to a physical address

SYNOPSIS STATUS vmTranslate
 (
 VM_CONTEXT_ID context, /* context - NULL == currentContext */

VxWorks Kernel API Reference, 6.6
voprintf()

1126

 VIRT_ADDR virtualAddr, /* virtual address */
 PHYS_ADDR * physicalAddr /* place to put result */
)

DESCRIPTION This routine retrieves mapping information for a virtual address from the page translation
tables. If context is specified as NULL, the current context is used.

The physicalAddr has to be of type (PHYS_ADDR *) since on some architectures the physical
address could represent more than 32 bits.

This routine is callable from interrupt level.

RETURNS OK, or ERROR if the validation or translation failed.

ERRNO Not Available

SEE ALSO vmBaseLib

voprintf()

NAME voprintf() – write a formatted string to an output function

SYNOPSIS int voprintf
 (
 FUNCPTR prtFunc, /* pointer to output function */
 int prtArg, /* argument for output function */
 const char * fmt, /* format string to write */
 va_list vaList /* optional arguments to format */
)

DESCRIPTION This routine prints a formatted string via the function specified by prtFunc. The function
will receive as parameters a pointer to a buffer, an integer indicating the length of the buffer,
and the argument prtArg. If NULL is specified as the output function, the output will be sent
to stdout.

This routine is identical to oprintf(), except that it takes the variable arguments to be
formatted as a list vaList of type va_list rather than as in-line arguments.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.\

RETURNS The number of characters output, not including the NULL terminator.

ERRNO Not Available

2 Routines
vrfsDevCreate()

1127

2

SEE ALSO fioLib, oprintf(), printf()

vprintf()

NAME vprintf() – write a string formatted with a variable argument list to standard output (ANSI)

SYNOPSIS int vprintf
 (
 const char * fmt, /* format string to write */
 va_list vaList /* arguments to format */
)

DESCRIPTION This routine prints a string formatted with a variable argument list to standard output. It is
identical to printf(), except that it takes the variable arguments to be formatted as a list
vaList of type va_list rather than as in-line arguments.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The number of characters output, or ERROR if there is an error during output.

ERRNO Not Available

SEE ALSO fioLib, printf(), American National Standard for Information Systems -, Programming Language
- C, ANSI X3.159-1989: Input/Output (stdio.h)

vrfsDevCreate()

NAME vrfsDevCreate() – Instantiate the VRFS

SYNOPSIS STATUS vrfsDevCreate
 (
)

DESCRIPTION This routine creates an instance of the VRFS if one does not exist. That instance will always
be installed as device "/".

RETURNS OK on success, ERROR if failure

ERRNO EEXIST if this FS is already instantiated.

VxWorks Kernel API Reference, 6.6
vrfsInit()

1128

SEE ALSO vrfsLib

vrfsInit()

NAME vrfsInit() – Initialize the Virtual Root File System Library

SYNOPSIS STATUS vrfsInit(void)

DESCRIPTION This routine initializes the Virtual Root File System. It should be called only once, and
initializes the vrfs Core IO driver as well as data structures for the library.

RETURNS Not Available

ERRNO Not Available

SEE ALSO vrfsLib

vsnprintf()

NAME vsnprintf() – write a string formatted with a variable argument list to a buffer, not
exceeding buffer size (ANSI)

SYNOPSIS int vsnprintf
 (
 char * buffer, /* buffer to write to */
 size_t count, /* max number of characters to store in buffer */
 const char * fmt, /* format string */
 va_list vaList /* optional arguments to format */
)

DESCRIPTION This routine copies a string formatted with a variable argument list to a specified buffer, up
to a given number of characters. The formatted string will be null terminated. This routine
guarantees never to write beyond the provided buffer regardless of the format specifier or
the arguments to be formatted. The count argument specifies the maximum number of
characters to store in the buffer, including the null terminator.

This routine is identical to snprintf(), except that it takes the variable arguments to be
formatted as a list vaList of type va_list rather than as in-line arguments.

RETURNS The number of characters copied to buffer, not including the NULL terminator.

2 Routines
vxAtomicAdd()

1129

2

Even when the supplied buffer is too small to hold the complete formatted string, the return
value represents the number of characters that would have been written to buffer if count
was sufficiently large.

ERRNO Not Available

SEE ALSO fioLib, sprintf(), printf(), "International Organization for Standardization, ISO/IEC 9899:1999,
Programming languages - C: Input/output (stdio.h)"

vsprintf()

NAME vsprintf() – write a string formatted with a variable argument list to a buffer (ANSI)

SYNOPSIS int vsprintf
 (
 char * buffer, /* buffer to write to */
 const char * fmt, /* format string */
 va_list vaList /* optional arguments to format */
)

DESCRIPTION This routine copies a string formatted with a variable argument list to a specified buffer.
This routine is identical to sprintf(), except that it takes the variable arguments to be
formatted as a list vaList of type va_list rather than as in-line arguments.

RETURNS The number of characters copied to buffer, not including the NULL terminator.

ERRNO Not Available

SEE ALSO fioLib, sprintf(), American National Standard for Information Systems -, Programming Language
- C, ANSI X3.159-1989: Input/Output (stdio.h)

vxAtomicAdd()

NAME vxAtomicAdd() – atomically add a value to a memory location

SYNOPSIS atomicVal_t vxAtomicAdd
 (
 atomic_t * target, /* memory location to add to */
 atomicVal_t value /* value to add */
)

VxWorks Kernel API Reference, 6.6
vxAtomicAnd()

1130

DESCRIPTION This routine atomically adds *target and value, placing the result in *target. The operation is
done using signed integer arithmetic. Various CPU architectures may impose restrictions
with regards to the alignment and cache attributes of the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

ERRNO N/A

SEE ALSO vxAtomicLib

vxAtomicAnd()

NAME vxAtomicAnd() – atomically perform a bitwise AND on a memory location

SYNOPSIS atomicVal_t vxAtomicAnd
 (
 atomic_t * target, /* memory location to AND */
 atomicVal_t value /* AND with this value */
)

DESCRIPTION This routine atomically performs a bitwise AND operation of *target and value, placing the
result in *target. Various CPU architectures may impose restrictions with regards to the
alignment and cache attributes of the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

ERRNO N/A

SEE ALSO vxAtomicLib

vxAtomicClear()

NAME vxAtomicClear() – atomically clear a memory location

SYNOPSIS atomicVal_t vxAtomicClear

2 Routines
vxAtomicDec()

1131

2

 (
 atomic_t * target /* memory location to clear */
)

DESCRIPTION This routine atomically clears *target and returns the old value that was in *target. Note that
all CPU architectures supported by VxWorks can atomically clear a variable of size
atomic_t without the need to use this routine. This routine is intended for software that
needs to atomically fetch and clear the value of a memory location. Various CPU
architectures may impose restrictions with regards to the alignment and cache attributes of
the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

ERRNO N/A

SEE ALSO vxAtomicLib

vxAtomicDec()

NAME vxAtomicDec() – atomically decrement a memory location

SYNOPSIS atomicVal_t vxAtomicDec
 (
 atomic_t * target /* memory location to decrement */
)

DESCRIPTION This routine atomically decrements the value in *target. The operation is done using
unsigned integer arithmetic. Various CPU architectures may impose restrictions with
regards to the alignment and cache attributes of the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

ERRNO N/A

SEE ALSO vxAtomicLib

VxWorks Kernel API Reference, 6.6
vxAtomicGet()

1132

vxAtomicGet()

NAME vxAtomicGet() – atomically get a memory location

SYNOPSIS atomicVal_t vxAtomicGet
 (
 atomic_t * target /* memory location to get */
)

DESCRIPTION This routine atomically reads *target and returns the value. This routine is intended for
software that needs to atomically fetch and replace the value of a memory location.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target.

ERRNO N/A

SEE ALSO vxAtomicLib

vxAtomicInc()

NAME vxAtomicInc() – atomically increment a memory location

SYNOPSIS atomicVal_t vxAtomicInc
 (
 atomic_t * target /* memory location to increment */
)

DESCRIPTION This routine atomically increments the value in *target. The operation is done using
unsigned integer arithmetic. Various CPU architectures may impose restrictions with
regards to the alignment and cache attributes of the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

ERRNO N/A

SEE ALSO vxAtomicLib

2 Routines
vxAtomicOr()

1133

2

vxAtomicNand()

NAME vxAtomicNand() – atomically perform a bitwise NAND on a memory location

SYNOPSIS atomicVal_t vxAtomicNand
 (
 atomic_t * target, /* memory location to NAND */
 atomicVal_t value /* NAND with this value */
)

DESCRIPTION This routine atomically performs a bitwise NAND operation of *target and value, placing
the result in *target. Various CPU architectures may impose restrictions with regards to the
alignment and cache attributes of the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

ERRNO N/A

SEE ALSO vxAtomicLib

vxAtomicOr()

NAME vxAtomicOr() – atomically perform a bitwise OR on memory location

SYNOPSIS atomicVal_t vxAtomicOr
 (
 atomic_t * target, /* memory location to OR */
 atomicVal_t value /* OR with this value */
)

DESCRIPTION This routine atomically performs a bitwise OR operation of *target and value, placing the
result in *target. Various CPU architectures may impose restrictions with regards to the
alignment and cache attributes of the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

ERRNO N/A

SEE ALSO vxAtomicLib

VxWorks Kernel API Reference, 6.6
vxAtomicSet()

1134

vxAtomicSet()

NAME vxAtomicSet() – atomically set a memory location

SYNOPSIS atomicVal_t vxAtomicSet
 (
 atomic_t * target, /* memory location to set */
 atomicVal_t value /* set with this value */
)

DESCRIPTION This routine atomically sets *target to value and returns the old value that was in *target.
Note that all CPU architectures supported by VxWorks can atomically write to a variable
of size atomic_t without the need to use this routine. This routine is intended for software
that needs to atomically fetch and replace the value of a memory location. Various CPU
architectures may impose restrictions with regards to the alignment and cache attributes of
the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

ERRNO N/A

SEE ALSO vxAtomicLib

vxAtomicSub()

NAME vxAtomicSub() – atomically subtract a value from a memory location

SYNOPSIS atomicVal_t vxAtomicSub
 (
 atomic_t * target, /* memory location to subtract from */
 atomicVal_t value /* value to sub */
)

DESCRIPTION This routine atomically subtracts value from *target, placing the result in *target. The
operation is done using signed integer arithmetic. Various CPU architectures may impose
restrictions with regards to the alignment and cache attributes of the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

2 Routines
vxCas()

1135

2

ERRNO N/A

SEE ALSO vxAtomicLib

vxAtomicXor()

NAME vxAtomicXor() – atomically perform a bitwise XOR on a memory location

SYNOPSIS atomicVal_t vxAtomicXor
 (
 atomic_t * target, /* memory location to XOR */
 atomicVal_t value /* XOR with this value */
)

DESCRIPTION This routine atomically performs a bitwise XOR operation of *target and value, placing the
result in *target. Various CPU architectures may impose restrictions with regards to the
alignment and cache attributes of the atomic_t type.

This routine can be used from both task and interrupt level.

RETURNS Contents of *target before the atomic operation

ERRNO N/A

SEE ALSO vxAtomicLib

vxCas()

NAME vxCas() – atomically compare-and-swap the contents of a memory location

SYNOPSIS BOOL vxCas
 (
 atomic_t * target, /* memory location to compare-and-swap */
 atomicVal_t oldValue, /* compare to this value */
 atomicVal_t newValue /* swap with this value */
)

DESCRIPTION This routine performs an atomic compare-and-swap; testing that *target contains oldValue,
and if it does, setting the value of *target to newValue. Various CPU architectures may
impose restrictions with regards to the alignment and cache attributes of the atomic_t type.

This routine can be used from both task and interrupt level.

VxWorks Kernel API Reference, 6.6
vxCpuConfiguredGet()

1136

RETURNS TRUE if the swap is actually executed, FALSE otherwise.

ERRNO N/A

SEE ALSO vxAtomicLib

vxCpuConfiguredGet()

NAME vxCpuConfiguredGet() – get the number of configured CPUs in the system

SYNOPSIS unsigned int vxCpuConfiguredGet (void)

DESCRIPTION This routine returns the number of CPUs that have been configured in the SMP system,
whether they have been enabled or not. This number is set at compile time and stays
constant for as long as the system is up and running. This routine can therefore be called
at any time, even during the booting sequence of the system. Its purpose is to assist
initialization code of a kernel application in determining how many per-CPU objects would
need to be allocated in an SMP system.

This routine exists because VxWorks SMP has the flexibility to allow the number of CPUs
configured in a VxWorks SMP system to be different than the number of available CPUs on
the hardware platform. For example, it would be possible to dedicate two cores of a
quad-core platform to run VxWorks SMP while the other two cores are used for another
purpose.

Calling this routine in the uniprocessor version of VxWorks returns 1, always. This routine
can be called from both task an interrupt level.

RETURNS The number of CPUs configured in the system.

ERRNO N/A

SEE ALSO vxCpuLib, vxCpuEnabledGet()

vxCpuEnabledGet()

NAME vxCpuEnabledGet() – get a set of running CPUs

SYNOPSIS cpuset_t vxCpuEnabledGet (void)

2 Routines
vxCpuEnabledGet()

1137

2

DESCRIPTION This routine returns the set of CPUs that are running in the VxWorks SMP system. This set
is updated at run-time as CPUs are enabled by the bootstrap CPU but the number of CPUs
in the set can never be larger than the number of CPUs configured in the system. That is,
the number of CPUs in the set cannot exceed the value returned by
vxCpuConfiguredGet().

The default behaviour of VxWorks SMP is to take all configured CPUs out of reset at boot
time. However this behaviour can be modified to only enable additional CPUs at a later
point in time. This routine can therefore be used to obtain a true representation of the
enabled CPUs as opposed to the number of configured CPUs.

Calling this routine in the uniprocessor version of VxWorks always returns a set that shows
CPU0 as being the only enabled CPU. The coding example below shows a test case that
could be used to test the expected behaviour of this routine in a uniprocessor environment.

STATUS test (void)
{
cpuset_t uniprocessorCpuSet;

/* Get the set of enabled CPUs */
uniprocessorCpuSet = vxCpuEnabledGet();

/* CPU 0 is supposed to be enabled. Check it! */
if (CPUSET_ISSET(uniprocessorCpuSet, 0))
 {
 /*
 * First part of the test passed. Now check that no other CPUs
 * are in the set.
 */

 CPUSET_CLR(uniprocessorCpuSet, 0);
 if (CPUSET_ISZERO(uniprocessorCpuSet))
 {
 /* No other CPUs in the set. Test passed. */
 return (OK);
 }
 }

/*
 * Test failed. Either CPU 0 was not in the set or other CPUs
 * were in the set.
 */
return (ERROR);
}

This routine can be called from both task or interrupt level.

RETURNS A set of CPUs that have been enabled.

ERRNO N/A

SEE ALSO vxCpuLib, vxCpuConfiguredGet(), cpuset

VxWorks Kernel API Reference, 6.6
vxCpuIndexGet()

1138

vxCpuIndexGet()

NAME vxCpuIndexGet() – get the index of the calling CPU

SYNOPSIS unsigned int vxCpuIndexGet (void)

DESCRIPTION This routine returns the index of the CPU on which the calling task or ISR is running. The
index is a number between 0 and N-1, where N is the number of CPUs configured in the
SMP system. N is also the figure returned by vxCpuConfiguredGet(). Calling this routine
in the uniprocessor version of VxWorks returns 0, always. The value returned by this
routine can easily be used as an index into an array of per-CPU objects that would have
previously been allocated with the help of the vxCpuConfiguredGet() routine.

Since tasks can migrate from one CPU to another in an SMP system, no guarantees are
provided that the index is valid by the time program execution returns to the caller of this
routine. For example, if a scheduling event takes place immediately after this call returns,
it is possible for the caller to be running on a different CPU than it was at the time of the
call. It is the responsibility of the caller to prevent task migration to another CPU while the
index is being used. This can be done using taskCpuLock(). If this routine is called from
interrupt context the caller is guaranteed the index will be valid until the ISR returns. This
is because ISRs do not migrate from one CPU to the other while they are running.

The purpose of this routine is different than that of sysProcNumGet(), which is used to
uniquely identify a node in an asymmetric multiprocessing environment. Should a node
running VxWorks SMP exist in such an environment, sysProcNumGet() on that node
would always return the same value regardless of the CPU on which the calling thread is
running.

RETURNS The index of the CPU on which the calling thread executes

ERRNO N/A

SEE ALSO vxCpuLib, vxCpuConfiguredGet()

vxCr0Get()

NAME vxCr0Get() – get a content of the Control Register 0 (x86)

SYNOPSIS int vxCr0Get (void)

DESCRIPTION This routine gets a content of the Control Register 0.

2 Routines
vxCr2Get()

1139

2

RETURNS a value of the Control Register 0

ERRNO Not Available

SEE ALSO vxLib

vxCr0Set()

NAME vxCr0Set() – set a value to the Control Register 0 (x86)

SYNOPSIS void vxCr0Set
 (
 int value /* CR0 value */
)

DESCRIPTION This routine sets a value to the Control Register 0.

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxCr2Get()

NAME vxCr2Get() – get a content of the Control Register 2 (x86)

SYNOPSIS int vxCr2Get (void)

DESCRIPTION This routine gets a content of the Control Register 2.

RETURNS a value of the Control Register 2

ERRNO Not Available

SEE ALSO vxLib

VxWorks Kernel API Reference, 6.6
vxCr2Set()

1140

vxCr2Set()

NAME vxCr2Set() – set a value to the Control Register 2 (x86)

SYNOPSIS void vxCr2Set
 (
 int value /* CR2 value */
)

DESCRIPTION This routine sets a value to the Control Register 2.

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxCr3Get()

NAME vxCr3Get() – get a content of the Control Register 3 (x86)

SYNOPSIS int vxCr3Get (void)

DESCRIPTION This routine gets a content of the Control Register 3.

RETURNS a value of the Control Register 3

ERRNO Not Available

SEE ALSO vxLib

vxCr3Set()

NAME vxCr3Set() – set a value to the Control Register 3 (x86)

SYNOPSIS void vxCr3Set
 (
 int value /* CR3 value */
)

2 Routines
vxCr4Set()

1141

2

DESCRIPTION This routine sets a value to the Control Register 3.

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxCr4Get()

NAME vxCr4Get() – get a content of the Control Register 4 (x86)

SYNOPSIS int vxCr4Get (void)

DESCRIPTION This routine gets a content of the Control Register 4.

RETURNS a value of the Control Register 4

ERRNO Not Available

SEE ALSO vxLib

vxCr4Set()

NAME vxCr4Set() – set a value to the Control Register 4 (x86)

SYNOPSIS void vxCr4Set
 (
 int value /* CR4 value */
)

DESCRIPTION This routine sets a value to the Control Register 4.

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

VxWorks Kernel API Reference, 6.6
vxDrGet()

1142

vxDrGet()

NAME vxDrGet() – get a content of the Debug Register 0 to 7 (x86)

SYNOPSIS void vxDrGet
 (
 int * pDr0, /* DR0 */
 int * pDr1, /* DR1 */
 int * pDr2, /* DR2 */
 int * pDr3, /* DR3 */
 int * pDr4, /* DR4 */
 int * pDr5, /* DR5 */
 int * pDr6, /* DR6 */
 int * pDr7 /* DR7 */
)

DESCRIPTION This routine gets a content of the Debug Register 0 to 7.

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxDrSet()

NAME vxDrSet() – set a value to the Debug Register 0 to 7 (x86)

SYNOPSIS void vxDrSet
 (
 int dr0, /* DR0 */
 int dr1, /* DR1 */
 int dr2, /* DR2 */
 int dr3, /* DR3 */
 int dr4, /* DR4 */
 int dr5, /* DR5 */
 int dr6, /* DR6 */
 int dr7 /* DR7 */
)

DESCRIPTION This routine sets a value to the Debug Register 0 to 7.

RETURNS N/A

ERRNO Not Available

2 Routines
vxEflagsSet()

1143

2

SEE ALSO vxLib

vxEflagsGet()

NAME vxEflagsGet() – get a content of the EFLAGS register (x86)

SYNOPSIS int vxEflagsGet (void)

DESCRIPTION This routine gets a content of the EFLAGS register

RETURNS a value of the EFLAGS register

ERRNO Not Available

SEE ALSO vxLib

vxEflagsSet()

NAME vxEflagsSet() – set a value to the EFLAGS register (x86)

SYNOPSIS void vxEflagsSet
 (
 int value /* EFLAGS value */
)

DESCRIPTION This routine sets a value to the EFLAGS register

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

VxWorks Kernel API Reference, 6.6
vxGdtrGet()

1144

vxGdtrGet()

NAME vxGdtrGet() – get a content of the Global Descriptor Table Register (x86)

SYNOPSIS void vxGdtrGet
 (
 long long int * pGdtr /* memory to store GDTR */
)

DESCRIPTION This routine gets a content of the Global Descriptor Table Register

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxIdtrGet()

NAME vxIdtrGet() – get a content of the Interrupt Descriptor Table Register (x86)

SYNOPSIS void vxIdtrGet
 (
 long long int * pIdtr /* memory to store IDTR */
)

DESCRIPTION This routine gets a content of the Interrupt Descriptor Table Register

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxLdtrGet()

NAME vxLdtrGet() – get a content of the Local Descriptor Table Register (x86)

SYNOPSIS void vxLdtrGet

2 Routines
vxMemProbe()

1145

2

 (
 long long int * pLdtr /* memory to store LDTR */
)

DESCRIPTION This routine gets a content of the Local Descriptor Table Register

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxMemArchProbe()

NAME vxMemArchProbe() – architecture specific part of vxMemProbe

SYNOPSIS STATUS vxMemArchProbe
 (
 FAST char * adrs, /* address to be probed */
 int mode, /* VX_READ or VX_WRITE */
 int length, /* 1, 2, 4, or 8 */
 FAST char * pVal /* where to return value, */
 /* or ptr to value to be written */
)

DESCRIPTION This is the routine implementing the architecture specific part of the vxMemProbe routine.
It traps the relevant exceptions while accessing the specified address. If an exception occurs,
then the result will be ERROR. If no exception occurs then the result will be OK.

RETURNS OK or ERROR if an exception occurred during access.

ERRNO Not Available

SEE ALSO vxLib

vxMemProbe()

NAME vxMemProbe() – probe an address for a bus error

SYNOPSIS STATUS vxMemProbe

VxWorks Kernel API Reference, 6.6
vxMemProbe()

1146

 (
 FAST char * adrs, /* address to be probed */
 int mode, /* VX_READ or VX_WRITE */
 int length, /* 1, 2, 4, or 8 */
 FAST char * pVal /* where to return value, */
 /* or ptr to value to be written */
)

DESCRIPTION This routine probes a specified address to see if it is readable or writable, as specified by
mode. The address is read or written as 1, 2, or 4 bytes, as specified by length (values other
than 1, 2, or 4 yield unpredictable results). If the probe is a VX_READ (0), the value read is
copied to the location pointed to by pVal. If the probe is a VX_WRITE (1), the value written
is taken from the location pointed to by pVal. In either case, pVal should point to a value of
1, 2, or 4 bytes, as specified by length.

Note that only bus errors are trapped during the probe, and that the access must otherwise
be valid (i.e., it must not generate an address error).

EXAMPLE testMem (adrs)
 char *adrs;
 {
 char testW = 1;
 char testR;

 if (vxMemProbe (adrs, VX_WRITE, 1, &testW) == OK)
 printf ("value %d written to adrs %x\en", testW, adrs);

 if (vxMemProbe (adrs, VX_READ, 1, &testR) == OK)
 printf ("value %d read from adrs %x\en", testR, adrs);
 }

MODIFICATION The BSP can modify the behaviour of vxMemProbe() by supplying an alternate routine and
placing the address in the global variable _func_vxMemProbeHook. The BSP routine will
be called instead of the architecture specific routine vxMemArchProbe().

RETURNS OK, or ERROR if the probe caused a bus error or was misaligned.

ERRNO Not Available

SEE ALSO vxLib, vxMemArchProbe()

vxMemProbe()

NAME vxMemProbe() – probe an address for a bus error

SYNOPSIS STATUS vxMemProbe

2 Routines
vxMemProbe()

1147

2

 (
 FAST char * pAdrs, /* address to be probed */
 int mode, /* VX_READ or VX_WRITE */
 int length, /* 1, 2, or 4 */
 char * pVal /* Data source if VX_WRITE; destination if VX_READ
*/
)

DESCRIPTION This routine probes a specified address to see if it is readable or writable, as specified by
mode. The address will be read or written according to the requested length. The provided
pointer must be naturally aligned to the requested length.

If the requested mode is VX_READ, the value read will be copied to the location pointed to
by pVal. If the requested mode is VX_WRITE, the value written will be taken from the
location pointed to by pVal. In either case, pVal should point to a value of length length.

Note that only data bus errors (machine check exception, data access exception) are trapped
during the probe, and that the access must be otherwise valid (i.e., not generate an address
error).

EXAMPLE testMem (adrs)
 char *adrs;
 {
 char testW = 1;
 char testR;

 if (vxMemProbe (adrs, VX_WRITE, 1, &testW) == OK)
 printf ("value %d written to adrs %x\en", testW, adrs);

 if (vxMemProbe (adrs, VX_READ, 1, &testR) == OK)
 printf ("value %d read from adrs %x\en", testR, adrs);
 }

MODIFICATION The BSP can modify the behaviour of this routine by supplying an alternate routine and
placing the address of the routine in the global variable _func_vxMemProbeHook. The BSP
routine will be called instead of the architecture specific routine vxMemArchProbe().

RETURNS OK if the probe is successful, or
ERROR if the probe caused a bus error.

ERRNO Not Available

SEE ALSO vxMemProbeLib, vxMemArchProbe()

VxWorks Kernel API Reference, 6.6
vxMemProbeInit()

1148

vxMemProbeInit()

NAME vxMemProbeInit() – add vxMemProbeTrap exception handler to exc handler chain

SYNOPSIS STATUS vxMemProbeInit (void)

DESCRIPTION Add the vxMemProbe exception handler hook to the exception handler chain called by
excExcHandle

RETURNS OK if initialization OK else ERROR

ERRNO Not Available

SEE ALSO vxMemProbeLib

vxPowerDown()

NAME vxPowerDown() – place the processor in reduced-power mode (PowerPC, SH)

SYNOPSIS UINT32 vxPowerDown (void)

DESCRIPTION This routine activates the reduced-power mode if power management is enabled. It is called
by the scheduler when the kernel enters the idle loop. The power management mode is
selected by vxPowerModeSet().

RETURNS OK, or ERROR if power management is not supported or if external interrupts are disabled.

ERRNO Not Available

SEE ALSO vxLib, vxPowerModeSet(), vxPowerModeGet()

vxPowerModeGet()

NAME vxPowerModeGet() – get the power management mode (PowerPC, SH, x86)

SYNOPSIS UINT32 vxPowerModeGet (void)

DESCRIPTION This routine returns the power management mode set by vxPowerModeSet().

2 Routines
vxPowerModeSet()

1149

2

RETURNS The power management mode, or ERROR if no mode has been selected or if power
management is not supported.

ERRNO Not Available

SEE ALSO vxLib, vxPowerModeSet(), vxPowerDown()

vxPowerModeSet()

NAME vxPowerModeSet() – set the power management mode (PowerPC, SH, x86)

SYNOPSIS STATUS vxPowerModeSet
 (
 UINT32 mode /* power management mode to select */
)

DESCRIPTION This routine selects the power management mode to be activated when vxPowerDown() is
called. vxPowerModeSet() is normally called in the BSP initialization routine sysHwInit().

USAGE PPC Power management modes include the following:

VX_POWER_MODE_DISABLE (0x1)
Power management is disabled; this prevents the MSR(POW) bit from being set (all
PPC).

VX_POWER_MODE_FULL (0x2)
All CPU units are active while the kernel is idle (PPC603, PPCEC603 and PPC860 only).

VX_POWER_MODE_DOZE (0x4)
Only the decrementer, data cache, and bus snooping are active while the kernel is idle
(PPC603, PPCEC603 and PPC860).

VX_POWER_MODE_NAP (0x8)
Only the decrementer is active while the kernel is idle (PPC603, PPCEC603 and PPC604
).

VX_POWER_MODE_SLEEP (0x10)
All CPU units are inactive while the kernel is idle (PPC603, PPCEC603 and PPC860 -
not recommended for the PPC603 and PPCEC603 architecture).

VX_POWER_MODE_DEEP_SLEEP (0x20)
All CPU units are inactive while the kernel is idle (PPC860 only - not recommended).

VX_POWER_MODE_DPM (0x40)
Dynamic Power Management Mode (PPC603 and PPCEC603 only).

VxWorks Kernel API Reference, 6.6
vxSSDisable()

1150

VX_POWER_MODE_DOWN (0x80)
Only a hard reset causes an exit from power-down low power mode (PPC860 only - not
recommended).

USAGE SH Power management modes include the following:

VX_POWER_MODE_DISABLE (0x0)
Power management is disabled.

VX_POWER_MODE_SLEEP (0x1)
The core CPU is halted, on-chip peripherals operating, external memory refreshing.

VX_POWER_MODE_DEEP_SLEEP (0x2)
The core CPU is halted, on-chip peripherals operating, external memory self-refreshing
(SH-4 only).

VX_POWER_MODE_USER (0xff)
Set up to three 8-bit standby registers with user-specified values:

 vxPowerModeSet (VX_POWER_MODE_USER | sbr1<<8 | sbr2<<16 | sbr3<<24);

The sbr1 value is written to the STBCR or SBYCR1, sbr2 is written to the STBCR2 or
SBYCR2, and sbr3 is written to the STBCR3 register (when available), depending on the
SH processor type.

USAGE X86 vxPowerModeSet() is called in the BSP initialization routine sysHwInit(). Power
management modes include the following:

VX_POWER_MODE_DISABLE (0x1)
Power management is disable: this prevents halting the CPU.

VX_POWER_MODE_AUTOHALT (0x4)
Power management is enable: this allows halting the CPU.

RETURNS OK, or ERROR if mode is incorrect or not supported by the processor.

ERRNO Not Available

SEE ALSO vxLib, vxPowerModeGet(), vxPowerDown()

vxSSDisable()

NAME vxSSDisable() – disable the superscalar dispatch (MC68060)

SYNOPSIS void vxSSDisable (void)

2 Routines
vxTas()

1151

2

DESCRIPTION This function resets the ESS bit of the Processor Configuration Register (PCR) to disable the
superscalar dispatch.

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxSSEnable()

NAME vxSSEnable() – enable the superscalar dispatch (MC68060)

SYNOPSIS void vxSSEnable (void)

DESCRIPTION This function sets the ESS bit of the Processor Configuration Register (PCR) to enable the
superscalar dispatch.

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxTas()

NAME vxTas() – C-callable atomic test-and-set primitive

SYNOPSIS BOOL vxTas
 (
 void * address /* address to test and set */
)

DESCRIPTION This routine provides a C-callable interface to a test-and-set instruction. The test-and-set
instruction is executed on the specified address. The architecture test-and-set instruction is:

68K tas
x86 lock bts
SH tas.b
ARM swpb

VxWorks Kernel API Reference, 6.6
vxTssGet()

1152

This routine is equivalent to sysBusTas() in sysLib.

MIPS Because VxWorks does not support the MIPS MMU, only kseg0 and kseg1 addresses are
accepted; other addresses return FALSE.

NOTE X86 BTS "Bit Test and Set" instruction is executed with LOCK instruction prefix to lock the Bus
during the execution. The bit position 0 is toggled.

NOTE SH The SH version of vxTas() simply executes the tas.b instruction, and the test-and-set
(atomic read-modify-write) operation may require an external bus locking mechanism on
some hardware. In this case, wrap the vxTas() with a bus locking and unlocking code in
the sysBusTas().

RETURNS TRUE if the value had not been set (but is now), or FALSE if the value was set already.

ERRNO Not Available

SEE ALSO vxLib, sysBusTas()

vxTssGet()

NAME vxTssGet() – get a content of the TASK register (x86)

SYNOPSIS int vxTssGet (void)

DESCRIPTION This routine gets a content of the TASK register

RETURNS a value of the TASK register

ERRNO Not Available

SEE ALSO vxLib

vxTssSet()

NAME vxTssSet() – set a value to the TASK register (x86)

SYNOPSIS void vxTssSet

2 Routines
vxbFileNvRamGet()

1153

2

 (
 int value /* TASK register value */
)

DESCRIPTION This routine sets a value to the TASK register

RETURNS N/A

ERRNO Not Available

SEE ALSO vxLib

vxbFileNvRamGet()

NAME vxbFileNvRamGet() – get the contents of non-volatile RAM

SYNOPSIS STATUS vxbFileNvRamGet
 (
 char * fileName, /* name of NVRam file */
 char *string, /* where to copy non-volatile RAM */
 int strLen, /* maximum number of bytes to copy */
 int offset /* byte offset into non-volatile RAM */
)

DESCRIPTION This routine copies the contents of non-volatile memory into a
specified string. The string is terminated with an EOS.

RETURNS OK, or ERROR if parameters are invalid, the file cannot
be opened, or cannot read from the file

ERRNO Not Available

SEE ALSO vxbFileNvRam, vxbFileNvRamSet()

VxWorks Kernel API Reference, 6.6
vxbFileNvRamRegister()

1154

vxbFileNvRamRegister()

NAME vxbFileNvRamRegister() – register vxbFileNvRam driver

SYNOPSIS void vxbFileNvRamRegister(void)

DESCRIPTION This routine registers the vxbFileNvRam driver and device recognition data with the vxBus
subsystem.

RETURNS none

ERRNO Not Available

SEE ALSO vxbFileNvRam

vxbFileNvRamSet()

NAME vxbFileNvRamSet() – write to non-volatile RAM

SYNOPSIS STATUS vxbFileNvRamSet
 (
 char *fileName, /* name of NVRam file */
 char *string, /* string to be copied into non-volatile RAM */
 int strLen, /* maximum number of bytes to copy */
 int offset /* byte offset into non-volatile RAM */
)

DESCRIPTION This routine copies a specified string into non-volatile RAM.

RETURNS OK, or ERROR if parameters are invalid, cannot open the
nvram file, or cannot write to the nvram file.

ERRNO Not Available

SEE ALSO vxbFileNvRam, vxbFileNvRamGet()

2 Routines
vxbIntelIchStorageRegister()

1155

2

vxbFileNvRampDrvCtrlShow()

NAME vxbFileNvRampDrvCtrlShow() – show pDrvCtrl for template controller

SYNOPSIS int vxbFileNvRampDrvCtrlShow
 (
 VXB_DEVICE_ID pInst,
 int verboseLevel
)

DESCRIPTION This routine prints information about the instance to to system
console. This is not integrated with vxBusShow.

RETURNS: 0, always

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbFileNvRam

vxbIntelIchStorageRegister()

NAME vxbIntelIchStorageRegister() – register driver with vxbus

SYNOPSIS void vxbIntelIchStorageRegister (void)

DESCRIPTION none

RETURNS N/A

ERRNO

SEE ALSO vxbIntelIchStorage

VxWorks Kernel API Reference, 6.6
vxbNonVolGet()

1156

vxbNonVolGet()

NAME vxbNonVolGet() – get the contents of non-volatile RAM

SYNOPSIS STATUS vxbNonVolGet
 (
 char * drvName, /* requestor's name */
 int drvUnit, /* requestor's unit number */
 char * buff, /* buffer to copy non-volatile RAM into */
 int offset, /* offset from start of allocation unit */
 int strLen /* maximum number of bytes to copy */
)

DESCRIPTION This routine reads information from a non-volatile memory device and stores it in the
caller-provided buffer.

The caller identifies itself by name and unit number. This routine is typically called by a
device driver. In this case, the specified name is the name of the device driver, and the unit
number is the unit number of the device/driver instance. However, other modules which
use NVRam may make use of this routine as well, such as BOOTLINE. In this case, unit
number should be set to zero or a number specific to the module.

The amount of data copied is the size specified. If the specified size is greater than the size
of the NVram segment allocated to the device, the behavior is undefined.

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbNonVolLib, vxbNonVolSet()

vxbNonVolLibInit()

NAME vxbNonVolLibInit() – Non Volatile RAM library initialization

SYNOPSIS void vxbNonVolLibInit(void)

DESCRIPTION none

RETURNS Not Available

ERRNO Not Available

2 Routines
vxbSI31xxStorageRegister()

1157

2

SEE ALSO vxbNonVolLib

vxbNonVolSet()

NAME vxbNonVolSet() – write to non-volatile memory

SYNOPSIS STATUS vxbNonVolSet
 (
 char * drvName, /* requestor's name */
 int drvUnit, /* requestor's unit number */
 char * buff, /* buffer to copy from, into non-volatile RAM */
 int offset, /* offset from start of allocation unit */
 int strLen /* maximum number of bytes to copy */
)

DESCRIPTION This routine reads information from the caller-provided buffer and stores it in a non-volatile
memory device.

The caller identifies itself by name and unit number. This routine is typically called by a
device driver. In this case, the specified name is the name of the device driver, and the unit
number is the unit number of the device/driver instance. However, other modules which
use NVRam may make use of this routine as well, such as BOOTLINE. In this case, unit
number should be set to zero or a number specific to the module.

The amount of data copied is the size specified. If the specified size is greater than the size
of the NVram segment allocated to the device, the behavior is undefined.

RETURNS Not Available

ERRNO Not Available

SEE ALSO vxbNonVolLib, vxbNonVolGet()

vxbSI31xxStorageRegister()

NAME vxbSI31xxStorageRegister() – register driver with vxbus

SYNOPSIS void vxbSI31xxStorageRegister (void)

DESCRIPTION none

VxWorks Kernel API Reference, 6.6
vxsimHostCpuVarsInit()

1158

RETURNS N/A

ERRNO

SEE ALSO vxbSI31xxStorage

vxsimHostCpuVarsInit()

NAME vxsimHostCpuVarsInit() – intialize per cpu variable pointers

SYNOPSIS void vxsimHostCpuVarsInit (void)

DESCRIPTION This routine initializes VxWorks pointer to addresses in host binary in orde address is the
same on every cpu but the value can be different.

RETURNS N/A

ERRNO Not Available

SEE ALSO vxsimHostArchLib

vxsimHostDllLoad()

NAME vxsimHostDllLoad() – load the given Dll to VxSim.

SYNOPSIS STATUS vxsimHostDllLoad
 (
 char * dllName /* name of the DLL to load */
)

DESCRIPTION This routine loads the given Dll to VxSim. The Dll is loaded from current directory, using
an absolute path name, from the System Dll search path, or from VxSim Dll path
WIND_BASE/host/HOST_TYPE/lib/vxsim.

SMP CONSIDERATIONS

dllName parameter must be in kernel memory. DLL is only loaded on CPU0.

RETURNS OK, or ERROR if load failed.

2 Routines
vxsimHostMmuProtect()

1159

2

ERRNO N/A

SEE ALSO vxsimHostArchLib

vxsimHostMmuCurrentSet()

NAME vxsimHostMmuCurrentSet() – set current translation table mapping

SYNOPSIS STATUS vxsimHostMmuCurrentSet
 (
 MMU_TRANS_TBL * pTransTbl /* translation table to set */
)

DESCRIPTION Set mapping corresponding to specified translation table. This routine only affects the
current CPU. Vxsim host binary makes sure the translation table can not be updated while
beeing read.

RETURNS OK always

ERRNO Not Available

SEE ALSO vxsimHostArchLib

vxsimHostMmuProtect()

NAME vxsimHostMmuProtect() – set/clear protection on mmu pages

SYNOPSIS STATUS vxsimHostMmuProtect
 (
 MMU_TRANS_TBL * pTransTbl, /* translation table */
 VIRT_ADDR addr, /* address to check */
 UINT32 state, /* protection state */
 UINT32 numPages /* number of pages */
)

DESCRIPTION This routine sets or clear protection flags on mmu pages. It does not updtae corresponding
PTE.

RETURNS OK or ERROR

VxWorks Kernel API Reference, 6.6
vxsimHostProcAddrGet()

1160

ERRNO Not Available

SEE ALSO vxsimHostArchLib

vxsimHostProcAddrGet()

NAME vxsimHostProcAddrGet() – return the address of a host API

SYNOPSIS FUNCPTR vxsimHostProcAddrGet
 (
 char * routineName /* host API name */
)

DESCRIPTION This routine returns the address of a host API which name is given in parameter. No error
message are displayed if the host API is not found.

SMP CONSIDERATIONS

routineName parameter must be in kernel memory.

RETURNS The address of the routine, or NULL if not found.

ERRNO N/A

SEE ALSO vxsimHostArchLib

vxsimHostProcCall()

NAME vxsimHostProcCall() – call a host routine

SYNOPSIS UINT32 vxsimHostProcCall
 (
 FUNCPTR rtnAddr, /* routine to be called */
 UINT32 arg0, /* routine arguments */
 UINT32 arg1,
 UINT32 arg2,
 UINT32 arg3,
 UINT32 arg4,
 UINT32 arg5,
 UINT32 arg6,
 UINT32 arg7,

2 Routines
vxsimHostSioClose()

1161

2

 UINT32 arg8
)

DESCRIPTION This routine calls a host routine whose address was previously retrieved through
vxsimHostProcAddrGet(). On a SMP system it is the only way to use safely the value
returned by vxsimHostProcAddrGet() as this value is only guaranteed to be correct on
CPUi that performed vxsimHostProcAddrGet().

RETURNS routine return value as an UINT32

ERRNO Not Available

SEE ALSO vxsimHostArchLib

vxsimHostSioBaudRateSet()

NAME vxsimHostSioBaudRateSet() – set SIO device transfert rate

SYNOPSIS STATUS vxsimHostSioBaudRateSet
 (
 SIO_ID sioId,
 int baudRate
)

DESCRIPTION This routine sets SIO device transfert rate

RETURNS OK or ERROR

ERRNO N/A

SEE ALSO vxsimHostArchLib

vxsimHostSioClose()

NAME vxsimHostSioClose() – close SIO device

SYNOPSIS STATUS vxsimHostSioClose
 (
 SIO_ID sioId /* sio descriptor */
)

VxWorks Kernel API Reference, 6.6
vxsimHostSioIntVecGet()

1162

DESCRIPTION This routine closes specified SIO device.

RETURNS number of bytes read

ERRNO N/A

SEE ALSO vxsimHostArchLib

vxsimHostSioIntVecGet()

NAME vxsimHostSioIntVecGet() – get SIO device interrupt vector

SYNOPSIS int vxsimHostSioIntVecGet
 (
 SIO_ID sioId /* sio descriptor */
)

DESCRIPTION This routine gets interrupt vector associated with a SIO device.

RETURNS interrupt vector

ERRNO N/A

SEE ALSO vxsimHostArchLib

vxsimHostSioModeSet()

NAME vxsimHostSioModeSet() – set SIO device mode (poll/interrupt)

SYNOPSIS STATUS vxsimHostSioModeSet
 (
 SIO_ID sioId, /* sio descriptor */
 int mode /* 0 = poll, 1 = interrupt */
)

DESCRIPTION This routine sets SIO device interrupt mode.

RETURNS OK or ERROR

ERRNO N/A

2 Routines
vxsimHostSioRead()

1163

2

SEE ALSO vxsimHostArchLib

vxsimHostSioOpen()

NAME vxsimHostSioOpen() – open SIO device

SYNOPSIS STATUS vxsimHostSioOpen
 (
 SIO_ID sioId /* sio descriptor */
)

DESCRIPTION This routine opens specified SIO device.

RETURNS OK or ERROR

ERRNO N/A

SEE ALSO vxsimHostArchLib

vxsimHostSioRead()

NAME vxsimHostSioRead() – read SIO device into buffer

SYNOPSIS int vxsimHostSioRead
 (
 SIO_ID sioId,
 char * buf,
 int len
)

DESCRIPTION This routine reads specified SIO device.

RETURNS number of bytes read

ERRNO N/A

SEE ALSO vxsimHostArchLib

VxWorks Kernel API Reference, 6.6
vxsimHostSioWrite()

1164

vxsimHostSioWrite()

NAME vxsimHostSioWrite() – write buffer to SIO device

SYNOPSIS int vxsimHostSioWrite
 (
 SIO_ID sioId,
 char * buf,
 int len
)

DESCRIPTION This routine writes specified buffer to specified SIO device.

RETURNS number of bytes written

ERRNO N/A

SEE ALSO vxsimHostArchLib

w()

NAME w() – print a summary of each task's pending information, task by task

SYNOPSIS void w
 (
 int taskNameOrId /* task name or task ID */
)

DESCRIPTION This routine shows a summary of each task's pending information, if taskNameOrId is equal
to 0. Otherwise, it shows a summary for the specified task.

This routine doesn't support POSIX semaphores and message queues. This command
doesn't support pending signals.

List of object types that are recognized:

RETURNS N/A

ERRNO Not Available

SEE ALSO usrLib, tw(), the VxWorks programmer guides.

2 Routines
wdCreate()

1165

2

wdCancel()

NAME wdCancel() – cancel a currently counting watchdog

SYNOPSIS STATUS wdCancel
 (
 WDOG_ID wdId /* ID of watchdog to cancel */
)

DESCRIPTION This routine cancels a currently running watchdog timer by zeroing its delay count.
Watchdog timers may be canceled from interrupt level.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK, or ERROR if the watchdog timer cannot be canceled.

ERRNO Not Available

SEE ALSO wdLib, wdStart()

wdCreate()

NAME wdCreate() – create a watchdog timer

SYNOPSIS WDOG_ID wdCreate (void)

DESCRIPTION This routine creates a watchdog timer by allocating a WDOG structure in memory.

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The ID for the watchdog created, or NULL if memory is insufficient.

ERRNO Not Available

SEE ALSO wdLib, wdDelete()

VxWorks Kernel API Reference, 6.6
wdDelete()

1166

wdDelete()

NAME wdDelete() – delete a watchdog timer

SYNOPSIS STATUS wdDelete
 (
 WDOG_ID wdId /* ID of watchdog to delete */
)

DESCRIPTION This routine de-allocates a watchdog timer. The watchdog will be removed from the timer
queue if it has been started. This routine complements wdCreate().

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK, or ERROR if the watchdog timer cannot be de-allocated.

ERRNO Not Available

SEE ALSO wdLib, wdCreate()

wdInitialize()

NAME wdInitialize() – initialize a pre-allocated watchdog.

SYNOPSIS WDOG_ID wdInitialize
 (
 char * pWdMem
)

DESCRIPTION This routine initializes a watchdog that has been pre-allocated (i.e. by the VX_WDOG
macro).

The following example illustrates use of the VX_WDOG macro and this function together to
instantiate a watchdog statically (without using any dynamic memory allocation):

 #include <vxWorks.h>
 #include <wdLib.h>

 VX_WDOG(myWdog); /* declare the watchdog */
 WDOG_ID myWdogId; /* watchdog ID for further operations */

 STATUS initializeFunction (void)
 {
 if ((myWdogId = wdInitialize (myWdog)) == NULL)

2 Routines
wdShow()

1167

2

 return (ERROR); /* initialization failed */
 else
 return (OK);
 }

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS The watchdog ID, or NULL on error.

ERRNO N/A

SEE ALSO wdLib

wdShow()

NAME wdShow() – show information about a watchdog

SYNOPSIS STATUS wdShow
 (
 WDOG_ID wdId /* watchdog to display */
)

DESCRIPTION This routine displays the state of a watchdog.

EXAMPLE A summary of the state of a watchdog is displayed as follows:

 -> wdShow myWdId
 Watchdog Id : 0x3dd46c
 State : OUT_OF_Q
 Ticks Remaining : 0
 Routine : 0
 Parameter : 0

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK or ERROR.

ERRNO Not Available

SEE ALSO wdShow, windsh, the VxWorks programmer guides, the, VxWorks Command-Line Tools
User's Guide.

VxWorks Kernel API Reference, 6.6
wdShowInit()

1168

wdShowInit()

NAME wdShowInit() – initialize the watchdog show facility

SYNOPSIS void wdShowInit (void)

DESCRIPTION This routine links the watchdog show facility into the VxWorks system. It is called
automatically when the watchdog show facility is configured into VxWorks using either of
the following methods:

- If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

- If you use the Tornado project facility, select INCLUDE_WATCHDOGS_SHOW.

RETURNS N/A

ERRNO Not Available

SEE ALSO wdShow

wdStart()

NAME wdStart() – start a watchdog timer

SYNOPSIS STATUS wdStart
 (
 WDOG_ID wdId, /* watchdog ID */
 int delay, /* delay count, in ticks */
 FUNCPTR pRoutine, /* routine to call on time-out */
 int parameter /* parameter with which to call routine */
)

DESCRIPTION This routine adds a watchdog timer to the system tick queue. The specified watchdog
routine will be called from interrupt level after the specified number of ticks has elapsed.
Watchdog timers may be started from interrupt level.

To replace either the timeout delay or the routine to be executed, call wdStart() again with
the same wdId; only the most recent wdStart() on a given watchdog ID has any effect. (If
your application requires multiple watchdog routines, use wdCreate() to generate separate
a watchdog ID for each.) To cancel a watchdog timer before the specified tick count is
reached, call wdCancel().

2 Routines
wdbSystemSuspend()

1169

2

Watchdog timers execute only once, but some applications require periodically executing
timers. To achieve this effect, the timer routine itself must call wdStart() to restart the timer
on each invocation.

WARNING The watchdog routine runs in the context of the system-clock ISR; thus, it is subject to all ISR
restrictions.

NOTE watchdog routine invocation can be deferred. As such isrIdCurrent is either a valid ISR_ID
or is NULL in the case of deferral

SMP CONSIDERATIONS

This API is spinlock and intCpuLock restricted.

RETURNS OK, or ERROR if the watchdog timer cannot be started.

ERRNO Not Available

SEE ALSO wdLib, wdCancel()

wdbMdlSymSyncLibInit()

NAME wdbMdlSymSyncLibInit() – initialize modules and symbols synchronization library

SYNOPSIS void wdbMdlSymSyncLibInit (void)

DESCRIPTION This routine initializes the stuff needed by the modules and symbols synchronization.

RETURNS N/A

ERRNO N/A

SEE ALSO wdbMdlSymSyncLib

wdbSystemSuspend()

NAME wdbSystemSuspend() – suspend the system

SYNOPSIS STATUS wdbSystemSuspend (void)

VxWorks Kernel API Reference, 6.6
wdbUserEvtLibInit()

1170

DESCRIPTION This routine transfers control from the run time system to the WDB agent running in
external mode. In order to give back the control to the system it must be resumed by the
external WDB agent.

EXAMPLE The code below, called in a vxWorks application, suspends the system :

 if (wdbSystemSuspend () != OK)
 printf ("External mode is not supported by the WDB agent.\n");

From a host tool, we can detect that the system is suspended.

First, attach to the target server :

 wtxtcl> wtxToolAttach EP960CX
 EP960CX_ps@sevre

Then, you can get the agent mode :

 wtxtcl> wtxAgentModeGet
 AGENT_MODE_EXTERN

To get the status of the system context, execute :

 wtxtcl> wtxContextStatusGet CONTEXT_SYSTEM 0
 CONTEXT_SUSPENDED

In order to resume the system, simply execute :

 wtxtcl> wtxContextResume CONTEXT_SYSTEM 0
 0

You will see that the system is now running :

 wtxtcl> wtxContextStatusGet CONTEXT_SYSTEM 0
 CONTEXT_RUNNING

RETURNS OK upon successful completion, ERROR if external mode is not supported by the WDB
agent.

ERRNO Not Available

SEE ALSO wdbLib

wdbUserEvtLibInit()

NAME wdbUserEvtLibInit() – include the WDB user event library

SYNOPSIS void wdbUserEvtLibInit (void)

2 Routines
wdbUserEvtPost()

1171

2

DESCRIPTION This null routine is provided so that wdbUserEvtLib can be linked into the system. If the
component INCLUDE_WDB_USER_EVENT is included at configuration time,
wdbUserEvtLibInit() is automatically called.

RETURNS N/A

ERRNO Not Available

SEE ALSO wdbUserEvtLib

wdbUserEvtPost()

NAME wdbUserEvtPost() – post a user event string to host tools

SYNOPSIS STATUS wdbUserEvtPost
 (
 char * event /* event string to send */
)

DESCRIPTION This routine posts the string event to host tools that have registered for it. Host tools will
receive a USER WTX event string. The maximum size of the event is
WDB_MAX_USER_EVT_SIZE (defined in $WIND_BASE/target/h/wdb/wdbLib.h).

EXAMPLE The code below sends a WDB user event to host tools :

 char * message = "Alarm: reactor overheating !!!";

 if (wdbUserEvtPost (message) != OK)
 printf ("Can't send alarm message to host tools");

This event will be received by host tools that have registered for it. For example a WTX TCL
based tool would do :

 wtxtcl> wtxToolAttach EP960CX
 EP960CX_ps@sevre
 wtxtcl> wtxRegisterForEvent "USER.*"
 0
 wtxtcl> wtxEventGet
 USER Alarm: reactor overheating !!!

Host tools can register for more specific user events :

 wtxtcl> wtxToolAttach EP960CX
 EP960CX_ps@sevre
 wtxtcl> wtxRegisterForEvent "USER Alarm.*"
 0
 wtxtcl> wtxEventGet
 USER Alarm: reactor overheating !!!

VxWorks Kernel API Reference, 6.6
wim()

1172

In this piece of code, only the USER events beginning with "Alarm" will be received.

RETURNS OK upon successful completion or ERROR if unable to send the event to the host or if the
size of the event is greater than WDB_MAX_USER_EVT_SIZE.

ERRNO Not Available

SEE ALSO wdbUserEvtLib

wim()

NAME wim() – return the contents of the window invalid mask register (SimSolaris)

SYNOPSIS int wim
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of the window invalid mask register from the TCB of a
specified task. If taskId is omitted or 0, the default task is assumed.

RETURNS The contents of the window invalid mask register.

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

windPwrDownRtnSet()

NAME windPwrDownRtnSet() – register a BSP power-down function

SYNOPSIS void windPwrDownRtnSet
 (
 WIND_PWR_DOWN_RTN dRtn /* power down function pointer from BSP */
)

WARNING This routine is deprecated. Calling this function is a nop.

This routine registers a BSP power-down function with WIND CPU power management.
The function registered will be called when the WIND kernel decides that the CPU can be

2 Routines
windPwrModeGet()

1173

2

powered off. Note that the power-down function will not be invoked while the CPU power
mode is set to windPwrModeOff.

The power-down function is passed two parameters: a WIND_PWR_MODE power mode
and a ULONG nTicks.

The power mode parameter is the current kernel power mode that is in effect (as set by
windPwrModeSet()) when the WIND kernel goes idle. nTicks is the maximum number of
ticks that the WIND kernel is willing to sleep for before it must wake up and perform some
work, such as scheduling a task. nTicks may be passed as WAIT_FOREVER (0L), which
indicates that the kernel has requirements as to when it is woken up next.

The routine registered is invoked with interrupts locked and is not allowed to make any
WIND kernel calls either directly or indirectly. If these must be made, the only option is for
the power-down function to perform a windPwrModeSet (windPwrModeOff) and arrange
for an interrupt (a software or hardware interrupt) to occur to make the WIND kernel calls
on its behalf. Such an interrupt will occur after the WIND kernel unlocks interrupts which
it does after invoking the registered power-down routine, aborting its subsequent call to
vxArchPowerDown() to run the interrupt and process any kernel work the interrupt
makes.

SMP CONSIDERATIONS

In an SMP environment it is possible for some CPUs to be idle and others to be executing
tasks or ISRs. The registered power-down routine is called when a CPU goes idle
regardless of the state of other CPUs in the SMP system. The routine is executed by the CPU
that is going idle. The routine must ensure it does not perform any power-down actions that
would disrupt execution on non-idle CPUs.

RETURNS N/A

ERRNO N/A

SEE ALSO windPwrLib, kernelIsCpuIdle(), kernelIsSystemIdle()

windPwrModeGet()

NAME windPwrModeGet() – Get the current power mode

SYNOPSIS WIND_PWR_MODE windPwrModeGet(void)

DESCRIPTION This routine is called whenever the BSP needs the current power mode.

RETURNS WIND_PWR_MODE

VxWorks Kernel API Reference, 6.6
windPwrModeSet()

1174

ERRNO N/A

SEE ALSO windPwrLib, windPwrModeSet()

windPwrModeSet()

NAME windPwrModeSet() – Set the BSP power mode

SYNOPSIS void windPwrModeSet
 (
 WIND_PWR_MODE mode /* new power mode */
)

DESCRIPTION This routine is called during initialization and whenever the power mode is set by the BSP.

RETURNS N/A

ERRNO N/A

SEE ALSO windPwrLib, windPwrModeGet()

windPwrUpRtnSet()

NAME windPwrUpRtnSet() – register a BSP power-up function

SYNOPSIS void windPwrUpRtnSet
 (
 WIND_PWR_UP_RTN uRtn
)

WARNING This routine is deprecated. Calling this function is a nop.

This routine registers a BSP power-up function with WIND CPU power management. The
function registered will be called whenever an interrupt exception occurs to wake up the
CPU while it was powered off (or it was in the process of powering off).

The power-up function is passed two parameters: a WIND_PWR_MODE power mode and a
pointer to a ULONG nTicks.

2 Routines
write()

1175

2

The power mode parameter is the current WIND kernel power mode that is in effect (as set
by windPwrModeSet()) when the kernel wakes up. The pointer to nTicks is to be set by the
power-up function to inform the kernel how long it has slept, in ticks.

The routine registered is invoked with interrupts locked and is not allowed to make any
WIND kernel calls either directly or indirectly. If these must be made, the only option is for
the power-up function to arrange for an interrupt (a software or hardware interrupt) to
occur to make the WIND kernel calls on its behalf. Such an interrupt will occur after the
WIND kernel unlocks interrupts which it does after invoking the registered power-up
routine. If the arranged interrupt is at a higher priority than the interrupt that is waking up
the CPU, it will execute immediately, otherwise it will run afterwards.

SMP CONSIDERATIONS

In an SMP environment it is possible for some CPUs to be idle and others to be executing
tasks or ISRs. The registered power-up routine is called when a CPU is awakened
regardless of the state of other CPUs in the SMP system. The routine is executed by the CPU
that is awakened. The routine must ensure it does not perform any power-up actions that
would disrupt execution on other CPUs.

RETURNS N/A

ERRNO N/A

SEE ALSO windPwrLib, kernelIsCpuIdle(), kernelIsSystemIdle()

write()

NAME write() – write bytes to a file

SYNOPSIS int write
 (
 int fd, /* file descriptor on which to write */
 char *buffer, /* buffer containing bytes to be written */
 size_t nbytes /* number of bytes to write */
)

DESCRIPTION This routine writes nbytes bytes from buffer to a specified file descriptor fd. It calls the device
driver to do the work.

RETURNS The number of bytes written (if not equal to nbytes, an error has occurred), or ERROR if the
file descriptor does not exist, the driver does not have a write routine, or the driver returns
ERROR. If the driver does not have a write routine, errno is set to ENOTSUP.

VxWorks Kernel API Reference, 6.6
wvAllObjsSet()

1176

ERRNO EBADF
Bad file descriptor number.

ENOTSUP
Device driver does not support the write command.

ENXIO
Device and its driver are removed. close() should be called to release this file
descriptor.

Other
Other errors reported by device driver.

SEE ALSO ioLib

wvAllObjsSet()

NAME wvAllObjsSet() – set instrumented state for all objects and classes

SYNOPSIS void wvAllObjsSet
 (
 int mode /* INSTRUMENT_ON or INSTRUMENT_OFF */
)

DESCRIPTION This routine enables or disables instrumentation for all object classes and instances in the
system.

If mode is INSTRUMENT_ON, instrumentation is turned on; if it is INSTRUMENT_OFF,
instrumentation is turned off. Any other value has no effect

This routine has effect only if INCLUDE_WINDVIEW is defined in configAll.h and event
logging has been enabled for system objects.

RETURNS N/A

ERRNO

SEE ALSO wvLib, wvSigInst(), wvEventInst(), wvObjInstAllClear(), wvObjInst()

2 Routines
wvCurrentLogListSet()

1177

2

wvCurrentLogGet()

NAME wvCurrentLogGet() – return a pointer to the currently active System Viewer log

SYNOPSIS WV_LOG * wvCurrentLogGet (void)

DESCRIPTION This routine returns a pointer to the currently active System Viewer log.

RETURNS Pointer to the log, or NULL

ERRNO

SEE ALSO wvLib, wvCurrentLogSet()

wvCurrentLogListGet()

NAME wvCurrentLogListGet() – return a pointer to the System Viewer log list

SYNOPSIS WV_LOG_LIST * wvCurrentLogListGet (void)

DESCRIPTION This routine returns a pointer to the System Viewer log list. It is not expected that there
would be more than one list at any one time.

RETURNS Pointer to the log list, or NULL

ERRNO

SEE ALSO wvLib, wvCurrentLogListSet()

wvCurrentLogListSet()

NAME wvCurrentLogListSet() – set the current log list

SYNOPSIS void wvCurrentLogListSet
 (
 WV_LOG_LIST * pWvLogList
)

VxWorks Kernel API Reference, 6.6
wvCurrentLogSet()

1178

DESCRIPTION This routine selects a System Viewer log list for subsequent operations. It could be used
after reboot, to choose a log in a persistent memory area.

RETURNS N/A

ERRNO

SEE ALSO wvLib, wvCurrentLogListGet()

wvCurrentLogSet()

NAME wvCurrentLogSet() – select a System Viewer log as currently active

SYNOPSIS void wvCurrentLogSet
 (
 WV_LOG * pWvLog
)

DESCRIPTION This routine selects a System Viewer log as the active one.

RETURNS N/A

ERRNO

SEE ALSO wvLib, wvCurrentLogGet()

wvEdrInst()

NAME wvEdrInst() – instrument ED&R Events

SYNOPSIS STATUS wvEdrInst
 (
 WV_INSTRUMENTATION_MODE mode /* instrumentation mode */
)

DESCRIPTION This routine instruments ED&R Event activity.

If mode is INSTRUMENT_ON, instrumentation for ED&R events is turned on; if mode is
INSTRUMENT_OFF, instrumentation for ED&R Events is turned off. Any other value causes
the current instrumentation state to be returned.

2 Routines
wvEventInst()

1179

2

RETURNS OK or ERROR.

ERRNO

SEE ALSO wvLib

wvEvent()

NAME wvEvent() – log a user-defined event

SYNOPSIS STATUS wvEvent
 (
 event_t usrEventId, /* event */
 char * buffer, /* buffer */
 size_t bufSize /* buffer size */
)

DESCRIPTION This routine logs a user event. Event logging must have been started with wvEvtLogStart()
or from the System Viewer GUI to use this routine. The usrEventId should be in the range
0-25535. A buffer of data can be associated with the event; buffer is a pointer to the start of
the data block, and bufSize is its length in bytes.

SMP CONSIDERATIONS

This API is spinlock restricted.

RETURNS OK, or ERROR if the event can not be logged.

ERRNO

SEE ALSO wvLib, dbgLib, e()

wvEventInst()

NAME wvEventInst() – instrument VxWorks Events

SYNOPSIS int wvEventInst
 (
 WV_INSTRUMENTATION_MODE mode /* INSTRUMENT_ON, INSTRUMENT_OFF */
)

DESCRIPTION This routine instruments VxWorks Event activity.

VxWorks Kernel API Reference, 6.6
wvEvtClassClear()

1180

If mode is INSTRUMENT_ON, instrumentation for VxWorks events is turned on; if it is any
other value (including INSTRUMENT_OFF), instrumentation for VxWorks Events is turned
off.

This routine has effect only if INCLUDE_WINDVIEW is defined in configAll.h and event
logging has been enabled for system objects.

Parameters:

mode
The required instrumentation mode. The value INSTRUMENT_ON enables
instrumentation for events, INSTRUMENT_OFF disables it, and any other value causes
the current state to be returned.

RETURNS The mode (INSTRUMENT_ON or INSTRUMENT_OFF) currently in force.

ERRNO

SEE ALSO wvLib

wvEvtClassClear()

NAME wvEvtClassClear() – clear the specified class of events from those being logged

SYNOPSIS void wvEvtClassClear
 (
 UINT32 classDescription /* description of evt classes to clear */
)

DESCRIPTION This routine clears the class or classes described by classDescription from the set of classes
currently being logged.

RETURNS N/A

ERRNO

SEE ALSO wvLib

2 Routines
wvEvtClassSet()

1181

2

wvEvtClassClearAll()

NAME wvEvtClassClearAll() – clear all classes of events from those logged

SYNOPSIS void wvEvtClassClearAll (void)

DESCRIPTION This routine clears all classes of events so that no classes are logged if event logging is
started.

RETURNS N/A

ERRNO

SEE ALSO wvLib

wvEvtClassGet()

NAME wvEvtClassGet() – get the current set of classes being logged

SYNOPSIS UINT32 wvEvtClassGet (void)

DESCRIPTION This routine returns the set of classes currently being logged.

RETURNS The class description.

ERRNO

SEE ALSO wvLib

wvEvtClassSet()

NAME wvEvtClassSet() – set the class of events to log

SYNOPSIS void wvEvtClassSet
 (
 UINT32 classDescription /* description of evt classes to set */
)

VxWorks Kernel API Reference, 6.6
wvEvtLogStart()

1182

DESCRIPTION This routine sets the class of events which are logged when event logging is started.
classDescription can take the following values:

 WV_CLASS_1 /* Events causing context switches */
 WV_CLASS_2 /* Events causing task-state transitions */
 WV_CLASS_3 /* Events from object and system libraries */

See wvLib for more information about these classes, particularly Class 3.

RETURNS N/A

ERRNO

SEE ALSO wvLib, wvObjInst(), wvSigInst(), wvEventInst(), wvSalInst().

wvEvtLogStart()

NAME wvEvtLogStart() – start logging events to the buffer

SYNOPSIS STATUS wvEvtLogStart (void)

DESCRIPTION This routine starts event logging. It also resets the timestamp mechanism so that it can be
called more than once without stopping event logging.

RETURNS OK, or ERROR if no buffer in use

ERRNO

SEE ALSO wvLib

wvEvtLogStop()

NAME wvEvtLogStop() – stop logging events to the buffer

SYNOPSIS void wvEvtLogStop (void)

DESCRIPTION This routine turns off all event logging, including event-logging of objects and signals
specifically requested by the user. In addition, it disables the timestamp facility.

RETURNS N/A

2 Routines
wvFileUploadPathLibInit()

1183

2

ERRNO

SEE ALSO wvLib

wvFileUploadPathCreate()

NAME wvFileUploadPathCreate() – create a file for depositing event data

SYNOPSIS UPLOAD_ID wvFileUploadPathCreate
 (
 char *fname, /* name of file to create */
 int openFlags /* O_CREAT, O_TRUNC */
)

DESCRIPTION This routine opens and initializes a file to receive uploaded events. The openFlags argument
is passed on as the flags argument to the actual open call so that the caller can specify things
like O_TRUNC and O_CREAT. The file is always opened as O_WRONLY, regardless of the
value of openFlags.

RETURNS The UPLOAD_ID, or NULL if the file can not be opened or memory for the ID is not available.

ERRNO Not Available

SEE ALSO wvFileUploadPathLib, wvFileUploadPathClose()

wvFileUploadPathLibInit()

NAME wvFileUploadPathLibInit() – initialize the wvFileUploadPathLib library

SYNOPSIS STATUS wvFileUploadPathLibInit (void)

DESCRIPTION This routine initializes the library by pulling in the routines in this file for use with
WindView. It is called during system configuration from usrWindview.c.

RETURNS OK.

ERRNO Not Available

SEE ALSO wvFileUploadPathLib

VxWorks Kernel API Reference, 6.6
wvFileUploadPathWrite()

1184

wvFileUploadPathWrite()

NAME wvFileUploadPathWrite() – write to the event-destination file

SYNOPSIS int wvFileUploadPathWrite
 (
 UPLOAD_ID pathId, /* generic upload-path descriptor */
 char * pStart, /* address of data to write */
 size_t size /* number of bytes of data at pStart */
)

DESCRIPTION This routine writes size bytes of data beginning at pStart to the file indicated by pathId.

RETURNS The number of bytes written, or ERROR.

ERRNO Not Available

SEE ALSO wvFileUploadPathLib

wvLibInit()

NAME wvLibInit() – initialize wvLib - first step

SYNOPSIS void wvLibInit (void)

DESCRIPTION This routine starts initializing wvLib. Its actions should be performed before object
creation, so it is called from usrKernelInit() in usrKernel.c.

RETURNS N/A

ERRNO

SEE ALSO wvLib

wvLibInit2()

NAME wvLibInit2() – initialize wvLib - final step

SYNOPSIS void wvLibInit2 (void)

2 Routines
wvLogCreate()

1185

2

DESCRIPTION This routine is called after wvLibInit() to complete the initialization of wvLib. It should be
called before starting any event logging.

RETURNS N/A

ERRNO

SEE ALSO wvLib

wvLogCountGet()

NAME wvLogCountGet() – return the number of logs in the curent log list

SYNOPSIS int wvLogCountGet (void)

DESCRIPTION This routine returns the number of System Viewer logs in the current log list.

RETURNS number of logs

ERRNO

SEE ALSO wvLib, wvLogFirstGet(), wvLogNextGet()

wvLogCreate()

NAME wvLogCreate() – Create a System Viewer log

SYNOPSIS WV_LOG * wvLogCreate
 (
 BUFFER_ID evtBuffer /* event buffer to use */
)

DESCRIPTION This routine creates a System Viewer log, and then inserts it into the System Viewer log list.
If the routine encounters an error, then the insertion is not done, a node is not created, and
the caller should delete the event buffer passed in.

RETURNS Pointer to new log, or NULL if no buffer or log list supplied, or an error occured while
allocating memory.

VxWorks Kernel API Reference, 6.6
wvLogDelete()

1186

ERRNO S_smObjLib_NOT_INITIALIZED
S_memLib_NOT_ENOUGH_MEMORY

SEE ALSO wvLib, wvLogDelete()

wvLogDelete()

NAME wvLogDelete() – Delete a System Viewer log

SYNOPSIS STATUS wvLogDelete
 (
 WV_LOG_LIST * pLogList, /* log list in which log appears */
 WV_LOG * pWvLog /* System Viewer log to delete */
)

DESCRIPTION This routine deletes a System Viewer log, and removes it from the log list. If the chosen log
is the current one, and logging is enabled, the operation fails

RETURNS OK, or ERROR if NULL log or log list supplied, or an error occured freeing memory

ERRNO S_smObjLib_NOT_INITIALIZED
S_memLib_NOT_ENOUGH_MEMORY

SEE ALSO wvLib, wvLogCreate()

wvLogFirstGet()

NAME wvLogFirstGet() – return a pointer to the first log in the System Viewer log list

SYNOPSIS WV_LOG * wvLogFirstGet (void)

DESCRIPTION This routine returns a pointer to the first System Viewer log in the list of logs. If there is no
log list, the function returns NULL

RETURNS Pointer to the log, or NULL

ERRNO

SEE ALSO wvLib, wvLogNextGet(), logCountGet()

2 Routines
wvLogListDelete()

1187

2

wvLogListCreate()

NAME wvLogListCreate() – create a list to hold System Viewer logs

SYNOPSIS WV_LOG_LIST * wvLogListCreate (void)

DESCRIPTION This routine creates a list to hold System Viewer logs. The list is created in the memory
partition returned by wvPartitionGet(). If the partition has not been set, or the required
memory could not be allocated, the routine returns NULL. If a log list has already been
created, the function returns NULL, so the old list should be deleted before a new one is
created. Otherwise, it returns a pointer to the newly-created list.

RETURNS pointer to the created WV_LOG_LIST, or NULL

ERRNO S_smObjLib_NOT_INITIALIZED
S_memLib_NOT_ENOUGH_MEMORY

SEE ALSO wvLib, wvLogListDelete()

wvLogListDelete()

NAME wvLogListDelete() – delete a System Viewer log list

SYNOPSIS STATUS wvLogListDelete
 (
 WV_LOG_LIST * pLogList
)

DESCRIPTION This function deletes a System Viewer log list, and all its contents. If logging is enabled, it
returns ERROR.

RETURNS Ok, or ERROR if no log list supplied, or an error occured while freeing memory

ERRNO S_smObjLib_NOT_INITIALIZED
S_memLib_NOT_ENOUGH_MEMORY

SEE ALSO wvLib, wvLogListCreate()

VxWorks Kernel API Reference, 6.6
wvLogNextGet()

1188

wvLogNextGet()

NAME wvLogNextGet() – return a pointer to the next log in the System Viewer log list

SYNOPSIS WV_LOG * wvLogNextGet
 (
 WV_LOG * pWvLog
)

DESCRIPTION This routine returns a pointer to the next System Viewer log in the list of logs.

RETURNS Pointer to the log, or NULL

ERRNO

SEE ALSO wvLib, wvLogFirstGet(), wvLogCountGet()

wvObjInst()

NAME wvObjInst() – instrument objects

SYNOPSIS int wvObjInst
 (
 enum windObjClassType objType, /* object type */
 void * objId, /* obj ID or NULL for all objs */
 WV_INSTRUMENTATION_MODE mode /* instrumentation mode */
)

DESCRIPTION This routine instruments a specified object or set of objects and has effect when system
objects have been enabled for event logging. objType could be set to any type of recognized
WIND objects as listed in the types/vxWind.h enum list, provided they have been
instrumented:

 windInvalidClass = 0 invalid class type class
 1 windSemClass * Wind native semaphore
 2 windSemPxClass POSIX semaphore
 3 windMsgQClass * Wind native message queue
 4 windMqPxClass POSIX message queue
 5 windRtpClass * realtime process
 6 windTaskClass * task
 7 windWdClass * watchdog
 8 windFdClass * file descriptor
 9 windPgPoolClass page pool
 10 windPgMgrClass page manager
 11 windGrpClass group
 12 windVmContextClass virtual memory context

2 Routines
wvObjInstModeSet()

1189

2

 13 windTrgClass trigger
 14 windMemPartClass * memory partition
 15 windI2oClass I2O
 16 windDmsClass device management system
 17 windOmsClass object management system (HA/FT)
 18 windSetClass set
 19 windIsrClass * ISR objects
 20 windTimerClass timer services
 21 windSdClass Shared data region

In the list above, the instrumented objects are marked with an asterisk. objId specifies the
identifier of the particular object to be instrumented. If objId is NULL, then all objects of
objType have instrumentation turned on or off depending on the value of mode.

If mode is INSTRUMENT_ON, instrumentation is turned on; if it is INSTRUMENT_OFF then
instrumentation is turned off. Any other value has no effect, but the current mode
(INSTRUMENTATION_ON or INSTRUMENTATION_OFF) is returned.

Use wvSigInst() if you want to enable instrumentation for all signal activity,
wvEventInst() for vxWorks Event activity, wvSalInst for all SAL call activities.

This routine has effect only if the component INCLUDE_WINDVIEW is included in the
project.

RETURNS INSTRUMENT_ON, INSTRUMENT_OFF, or ERROR.

ERRNO S_objLib_OBJ_ID_ERROR
S_objLib_OBJ_ILLEGAL_CLASS_TYPE

SEE ALSO wvLib, wvSigInst(), wvEventInst(), wvObjInstAllClear(), wvAllObjsSet()

wvObjInstModeSet()

NAME wvObjInstModeSet() – set object instrumentation on/off

SYNOPSIS STATUS wvObjInstModeSet
 (
 int mode /* object instrumentation on/off */
)

DESCRIPTION This routine causes objects to be created either instrumented or not depending on the value
of mode, which can be INSTRUMENT_ON or INSTRUMENT_OFF. All objects created after
wvObjInstModeSet() is called with INSTRUMENT_ON and before it is called with
INSTRUMENT_OFF are created as instrumented objects.

VxWorks Kernel API Reference, 6.6
wvPartitionGet()

1190

Use wvObjInst() if you want to enable instrumentation for a specific object or set of objects.
Use wvSigInst() if you want to enable instrumentation for all signal activity, and
wvEventInst() to enable instrumentation for VxWorks Event activity.

This routine has effect only if INCLUDE_WINDVIEW is defined in configAll.h.

RETURNS The previous value of mode or ERROR.

ERRNO

SEE ALSO wvLib, wvObjInst(), wvSigInst(), wvEventInst(), wvEdrInst()

wvPartitionGet()

NAME wvPartitionGet() – determine partition in use for System Viewer logging

SYNOPSIS PART_ID wvPartitionGet (void)

DESCRIPTION This routine returns the mamory partition id being used for System Viewer logs.

RETURNS partition id

ERRNO

SEE ALSO wvLib, wvPartitionSet()

wvPartitionSet()

NAME wvPartitionSet() – specify a partition for use by System Viewer logging

SYNOPSIS void wvPartitionSet
 (
 PART_ID memPart
)

DESCRIPTION This routine allows the user to specify a memory partition to be used for System Viewer
logging. Subsequent calls to create System Viewer log lists will result in the logs being
created in this partition.

If using a post-mortem log, this routine should be called before a new log is created. Then
the logs can be read, and a new partition and log list created, if required. Note that in

2 Routines
wvSalInst()

1191

2

post-mortem mode, if the target has rebooted, then a log list in the preserved memory
should not be deleted, because the memory partition was not created during this run of the
target.

RETURNS n/a

ERRNO

SEE ALSO wvLib, wvPartitionGet()

wvRBuffMgrPrioritySet()

NAME wvRBuffMgrPrioritySet() – set the priority of the System Viewer rBuff manager

SYNOPSIS STATUS wvRBuffMgrPrioritySet
 (
 int priority /* new priority */
)

DESCRIPTION This routine changes the priority of the tWvRBuffMgr task to the value of priority.
Priorities range from 0, the highest priority, to 255, the lowest priority. If the task is not yet
running, this priority is used when it is spawned.

RETURNS OK, or ERROR if the priority can not be set.

ERRNO Not Available

SEE ALSO rBuffLib, taskPrioritySet(), the VxWorks programmer guides.

wvSalInst()

NAME wvSalInst() – instrument SAL

SYNOPSIS int wvSalInst
 (
 WV_INSTRUMENTATION_MODE mode /* INSTRUMENT_ON, INSTRUMENT_OFF */
)

DESCRIPTION This routine instruments all SAL activity.

VxWorks Kernel API Reference, 6.6
wvSigInst()

1192

If mode is INSTRUMENT_ON, instrumentation for SAL call is turned on; if it is
INSTRUMENT_OFF, instrumentation for SAL call is turned off.

This routine has effect only if INCLUDE_WINDVIEW is defined in configAll.h and event
logging has been enabled for system objects.

Parameters:

mode
The required instrumentation mode. The value INSTRUMENT_ON enables
instrumentation for SAL, INSTRUMENT_OFF disables it, and any other value causes the
current state to be returned.

RETURNS The mode (INSTRUMENT_ON or INSTRUMENT_OFF) currently in force.

ERRNO Not Available

SEE ALSO wvLib

wvSigInst()

NAME wvSigInst() – instrument signals

SYNOPSIS int wvSigInst
 (
 WV_INSTRUMENTATION_MODE mode /* INSTRUMENT_ON, INSTRUMENT_OFF */
)

DESCRIPTION This routine instruments all signal activity.

If mode is INSTRUMENT_ON, instrumentation for signals is turned on; if it is
INSTRUMENT_OFF, instrumentation for signals is turned off.

This routine has effect only if INCLUDE_WINDVIEW is defined in configAll.h and event
logging has been enabled for system objects.

Parameters:

mode
The required instrumentation mode. The value INSTRUMENT_ON enables
instrumentation for signals, INSTRUMENT_OFF disables it, and any other value causes
the current state to be returned.

RETURNS The mode (INSTRUMENT_ON or INSTRUMENT_OFF) currently in force.

2 Routines
wvSockUploadPathCreate()

1193

2

ERRNO

SEE ALSO wvLib

wvSockUploadPathClose()

NAME wvSockUploadPathClose() – close the socket upload path

SYNOPSIS void wvSockUploadPathClose
 (
 UPLOAD_ID upId /* generic upload-path descriptor */
)

DESCRIPTION This routine closes the socket connection to the event receiver on the host.

RETURNS N/A

ERRNO Not Available

SEE ALSO wvSockUploadPathLib, sockUploadPathCreate()

wvSockUploadPathCreate()

NAME wvSockUploadPathCreate() – establish an upload path to the host using a socket

SYNOPSIS UPLOAD_ID wvSockUploadPathCreate
 (
 char *ipAddress, /* server's hostname or IP address in .-notation */
 short port /* port number to bind to */
)

DESCRIPTION This routine initializes the TCP/IP connection to the host process that receives uploaded
events. It can be retried if the connection attempt fails.

RETURNS The UPLOAD_ID, or NULL if the connection cannot be completed or memory for the ID is
not available.

ERRNO Not Available

SEE ALSO wvSockUploadPathLib, sockUploadPathClose()

VxWorks Kernel API Reference, 6.6
wvSockUploadPathLibInit()

1194

wvSockUploadPathLibInit()

NAME wvSockUploadPathLibInit() – initialize wvSockUploadPathLib library

SYNOPSIS STATUS wvSockUploadPathLibInit (void)

DESCRIPTION This routine initializes wvSockUploadPathLib by pulling in the routines in this file for use
with Wind River System Viewer. It is called during system configuration from
usrWindview.c.

RETURN OK.

RETURNS Not Available

ERRNO Not Available

SEE ALSO wvSockUploadPathLib

wvSockUploadPathWrite()

NAME wvSockUploadPathWrite() – write to the socket upload path

SYNOPSIS int wvSockUploadPathWrite
 (
 UPLOAD_ID upId, /* generic upload-path descriptor */
 char * pStart, /* address of data to write */
 size_t size /* number of bytes of data at pStart */
)

DESCRIPTION This routine writes size bytes of data beginning at pStart to the upload path between the
target and the event receiver on the host.

RETURNS The number of bytes written, or ERROR.

ERRNO Not Available

SEE ALSO wvSockUploadPathLib, wvSockUploadPathCreate()

2 Routines
wvTmrRegister()

1195

2

wvTmrRegister()

NAME wvTmrRegister() – register a timestamp timer

SYNOPSIS void wvTmrRegister
 (
 UINTFUNCPTR wvTmrRtn, /* timestamp routine */
 UINTFUNCPTR wvTmrLockRtn, /* locked timestamp routine */
 FUNCPTR wvTmrEnable, /* enable timer routine */
 FUNCPTR wvTmrDisable, /* disable timer routine */
 FUNCPTR wvTmrConnect, /* connect to timer routine */
 UINTFUNCPTR wvTmrPeriod, /* period of timer routine */
 UINTFUNCPTR wvTmrFreq /* frequency of timer routine */
)

DESCRIPTION This routine registers a timestamp routine for each of the following:

wvTmrRtn
a timestamp routine, which returns a timestamp when called (must be called with
interrupts locked).

wvTmrLockRtn
a timestamp routine, which returns a timestamp when called (locks interrupts).

wvTmrEnable
an enable-timer routine, which enables the timestamp timer.

wvTmrDisable
a disable-timer routine, which disables the timestamp timer.

wvTmrConnect
a connect-to-timer routine, which connects a handler to be run when the timer rolls
over; this routine should return ERROR if the system clock tick is to be used.

wvTmrPeriod
a period-of-timer routine, which returns the period of the timer.

wvTmrFreq
a frequency-of-timer routine, which returns the frequency of the timer.

If any of these routines is set to NULL, the behavior of instrumented code is undefined.

RETURNS N/A

ERRNO

SEE ALSO wvTmrLib

VxWorks Kernel API Reference, 6.6
wvTsfsUploadPathClose()

1196

wvTsfsUploadPathClose()

NAME wvTsfsUploadPathClose() – close the TSFS-socket upload path

SYNOPSIS void wvTsfsUploadPathClose
 (
 UPLOAD_ID upId /* generic upload-path descriptor */
)

DESCRIPTION This routine closes the TSFS-socket connection to the event receiver on the host.

RETURNS N/A

ERRNO Not Available

SEE ALSO wvTsfsUploadPathLib, wvTsfsUploadPathCreate()

wvTsfsUploadPathCreate()

NAME wvTsfsUploadPathCreate() – open an upload path to the host using a TSFS socket

SYNOPSIS UPLOAD_ID wvTsfsUploadPathCreate
 (
 char *ipAddress, /* server's IP address in .-notation */
 short port /* port number to bind to */
)

DESCRIPTION This routine opens a TSFS socket to the host to be used for uploading event data. After
successfully establishing this connection, an UPLOAD_ID is returned which points to the
TSFS_UPLOAD_DESC that is passed to open(), close(), read(), etc. for future operations.

RETURNS The UPLOAD_ID, or NULL if the connection cannot be completed or not enough memory is
available.

ERRNO Not Available

SEE ALSO wvTsfsUploadPathLib, wvTsfsUploadPathClose()

2 Routines
wvTsfsUploadPathWrite()

1197

2

wvTsfsUploadPathLibInit()

NAME wvTsfsUploadPathLibInit() – initialize wvTsfsUploadPathLib library

SYNOPSIS STATUS wvTsfsUploadPathLibInit (void)

DESCRIPTION This routine initializes wvTsfsUploadPathLib by pulling in the routines in this file for use
with the Wind River System Viewer. It is called during system configuration from
usrWindview.c.

RETURNS OK.

ERRNO Not Available

SEE ALSO wvTsfsUploadPathLib

wvTsfsUploadPathWrite()

NAME wvTsfsUploadPathWrite() – write to the TSFS upload path

SYNOPSIS int wvTsfsUploadPathWrite
 (
 UPLOAD_ID upId, /* generic upload-path descriptor */
 char * pStart, /* address of data to write */
 size_t size /* number of bytes of data at pStart */
)

DESCRIPTION This routine writes size bytes of data beginning at pStart to the upload path connecting the
target with the host receiver.

RETURNS The number of bytes written, or ERROR.

ERRNO Not Available

SEE ALSO wvTsfsUploadPathLib, wvTsfsUploadPathCreate()

VxWorks Kernel API Reference, 6.6
wvUploadStart()

1198

wvUploadStart()

NAME wvUploadStart() – start upload of events to the host

SYNOPSIS WV_UPLOADTASK_ID wvUploadStart
 (
 WV_LOG * pWvLog, /* System Viewer log */
 UPLOAD_ID pathId, /* upload path to host */
 BOOL uploadContinuously /* upload continuously if true */
)

DESCRIPTION This routine starts uploading events from the System Viewer log to the host. Events can be
uploaded either continuously or in one pass until the log is emptied. If uploadContinuously
is set to TRUE, the task uploading events pends until more data arrives in the buffer. If
FALSE, the buffer is flushed without waiting, but this routine returns immediately with an
ID that can be used to kill the upload task. Upload is done by spawning the task
tWVUpload. The log to upload is identified by pWvLog, and the upload path to use is
identified by pathId.

This routine blocks if no event data is in the buffer, so it should be called before event
logging is started to ensure the buffer does not overflow.

RETURNS A valid WV_UPLOADTASK_ID if started for continuous upload, a non-NULL value if started
for one-pass upload, and NULL if the task can not be spawned or memory for the descriptor
can not be allocated.

ERRNO S_memLib_NOT_ENOUGH_MEMORY

SEE ALSO wvLib

wvUploadStop()

NAME wvUploadStop() – stop upload of events to host

SYNOPSIS STATUS wvUploadStop
 (
 WV_UPLOADTASK_ID upTaskId
)

DESCRIPTION This routine stops continuous upload of events to the host. It does this by making a request
to the upload task to terminate after it has emptied the buffer. For this reason it is important
to make sure data is no longer being logged to the buffer before calling this routine.

2 Routines
xattrib()

1199

2

This task blocks until the buffer is emptied, and then frees memory associated with
upTaskId.

RETURNS OK if the upload task terminates successfully, or ERROR either if upTaskId is invalid or if the
upload task terminates with an ERROR.

ERRNO Not Available

SEE ALSO wvLib

wvUploadTaskConfig()

NAME wvUploadTaskConfig() – set priority and stacksize of tWVUpload task

SYNOPSIS void wvUploadTaskConfig
 (
 int stackSize, /* the new stack size for tWVUpload */
 int priority /* the new priority for tWVUpload */
)

DESCRIPTION This routine sets the stack size and priority of future instances of the event-data upload task,
created by calling wvUploadStart(). The default stack size for this task is 5000 bytes, and
the default priority is 150.

RETURNS N/A

ERRNO

SEE ALSO wvLib

xattrib()

NAME xattrib() – modify MS-DOS file attributes of many files

SYNOPSIS STATUS xattrib
 (
 const char * source, /* file or dir name on which to change flags */
 const char * attr /* flag settings to change */
)

VxWorks Kernel API Reference, 6.6
xbdBlkDevCreate()

1200

DESCRIPTION This function is essentially the same as attrib(), but it accepts wildcards in fileName, and
traverses subdirectories in order to modify attributes of entire file hierarchies.

The attr argument string may contain must start with either "+" or "-", meaning the attribute
flags which will follow should be either set or cleared. After "+" or "-" any of these four letter
will signify their respective attribute flags - "A", "S", "H" and "R".

EXAMPLE -> xattrib("/sd0/sysfiles", "+RS") /* write protect "sysfiles" */
-> xattrib("/sd0/logfiles", "-R") /* unprotect logfiles before deletion */
-> xdelete("/sd0/logfiles")

CAVEAT This function may call itself in accordance with the depth of the source directory, and
allocates 2 kB of heap memory per stack frame, meaning that to accommodate the maximum
depth of subdirectories which is 20, at least 40 kB of heap memory should be available.

RETURNS OK, or ERROR if the file can not be opened.

ERRNO Not Available

SEE ALSO usrFsLib, dosFsLib, the VxWorks programmer guides.

xbdBlkDevCreate()

NAME xbdBlkDevCreate() – create an XBD block device wrapper

SYNOPSIS device_t xbdBlkDevCreate
 (
 BLK_DEV * bd, /* pointer to block device */
 const char * name /* pointer to device name */
)

DESCRIPTION This routine creates an XBD block device wrapper.

RETURNS a device identifier upon success, or NULLDEV otherwise

ERRNO

SEE ALSO xbdBlkDev

2 Routines
xbdBlkDevDelete()

1201

2

xbdBlkDevCreateSync()

NAME xbdBlkDevCreateSync() – synchronously create an XBD block device wrapper

SYNOPSIS device_t xbdBlkDevCreateSync
 (
 BLK_DEV * bd, /* pointer to block device */
 const char * name /* pointer to device name */
)

DESCRIPTION This routine creates an XBD block device wrapper. It returns after the entire XBD stack has
been created/initialized.

RETURNS a device identifier upon success, or NULLDEV otherwise

ERRNO

SEE ALSO xbdBlkDev

xbdBlkDevDelete()

NAME xbdBlkDevDelete() – deletes an XBD block device wrapper

SYNOPSIS STATUS xbdBlkDevDelete
 (
 device_t d, /* device_t returned from xbdBlkDevCreate */
 BLK_DEV ** ppbd /* pointer to block device pointer */
)

DESCRIPTION This routine deletes or destroys an XBD block device wrapper.

The d parameter specifies the XBD block wrapper to delete. This should be the same value
that was returned from xbdBlkDevCreate()

The ppbd parameter is an out parameter that can be used to return the block device pointer
used in xbdBlkDevCreate(). If specified as NULL no attempt to return the block device
pointer is attempted.

RETURNS a device identifier upon success, or NULLDEV otherwise

ERRNO

SEE ALSO xbdBlkDev

VxWorks Kernel API Reference, 6.6
xbdBlkDevLibInit()

1202

xbdBlkDevLibInit()

NAME xbdBlkDevLibInit() – initialize the XBD block device wrapper

SYNOPSIS STATUS xbdBlkDevLibInit
 (
 int xbdServiceTskPri
)

DESCRIPTION This routine initializes the XBD block device wrapper.

RETURNS OK

ERRNO N/A

SEE ALSO xbdBlkDev

xbdCbioDevCreate()

NAME xbdCbioDevCreate() – create an XBD CBIO device wrapper

SYNOPSIS device_t xbdCbioDevCreate
 (
 CBIO_DEV_ID cbio, /* handle to CBIO device */
 const char * name, /* pointer to device name */
 unsigned int opts /* options for device */
)

DESCRIPTION This routine creates an XBD CBIO device wrapper. It returns after the entire XBD stack has
been created/initialized.

cbio handle to previously created CBIO device

name base name of the XBD/CBIO wrapper

The opts argument is a bit-wise or'ed combination of options controlling the operation of this
routine as follows:

XBD_CBIO_NOWAIT
Function will not wait until path(s) are instantiated and will return immediately

XBD_CBIO_NOPART
Wrapper is not capabable of supporting partitions. Device will be viewed as one
partition spanning the entire media.

2 Routines
xbdCbioLibInit()

1203

2

XBD_CBIO_DEFAULT
The default behaviour. Partitions are supported and xbdCbioDevCreate will not return
until all paths are instantiated.

RETURNS a device identifier upon success, or NULLDEV otherwise

ERRNO

SEE ALSO xbdCbioDev

xbdCbioDevDelete()

NAME xbdCbioDevDelete() – deletes an XBD CBIO device wrapper

SYNOPSIS STATUS xbdCbioDelete
 (
 device_t d, /* device_t returned from xbdCbioDevCreate */
 CBIO_DEV_ID* pCbio /* pointer to CBIO handle */
)

DESCRIPTION This routine deletes or destroys an XBD CBIO device wrapper.

The d parameter specifies the XBD CBIO wrapper to delete. This should be the same value
that was returned from xbdCbioDevCreate()

The ppbd parameter is an out parameter that can be used to return the CBIO handle used in
xbdCbioDevCreate(). If specified as NULL no attempt to return the handle is attempted.

RETURNS OK upon success, or ERROR otherwise

ERRNO

SEE ALSO xbdCbioDev

xbdCbioLibInit()

NAME xbdCbioLibInit() – initialize the XBD block device wrapper

SYNOPSIS STATUS xbdCbioDevLibInit (void)

DESCRIPTION This routine initializes the XBD block device wrapper.

VxWorks Kernel API Reference, 6.6
xbdCreatePartition()

1204

RETURNS OK

ERRNO N/A

SEE ALSO xbdCbioDev

xbdCreatePartition()

NAME xbdCreatePartition() – partition an XBD device

SYNOPSIS STATUS xbdCreatePartition
 (
 char *pathName, /* name of device to partition */
 int nPart, /* number of partitions */
 int size1, /* space percentage for second partition */
 int size2, /* space percentage for third partition */
 int size3 /* space percentage for fourth partition */
)

DESCRIPTION This function is capable of creating only one partition table - the MBR, and will not create
any Bootable or Extended partitions. Therefore, only 4 primary partitions are supported.

pathName is the name the device to be partitioned.

The nPart argument contains the number of partitions to create. If nPart is 0 or 1, a single
partition covering the entire disk is created. If nPart is between 2 and 4, the arguments size1,
size2 and size3 contain (as integers) the percentage of disk space to be assigned to the 2nd,
3rd, and 4th partitions respectively. The first partition (partition 0) will be assigned the
remaining space. Thus, the sum of the three sizes should be less than 100.

Partition sizes will be rounded down to be multiple of whole tracks so that partition
Cylinder/Head/Track fields will be initialized as well as the LBA fields. Although the CHS
fields are written they are not used in VxWorks, and can not be guaranteed to work correctly
on other systems.

RETURNS OK upon success, ERROR otherwise

ERRNO Not Available

SEE ALSO partLib

2 Routines
xbdRamDiskDevDelete()

1205

2

xbdRamDiskDevCreate()

NAME xbdRamDiskDevCreate() – create an XBD ram disk

SYNOPSIS device_t xbdRamDiskDevCreate
 (
 unsigned blockSize, /* block size in bytes */
 unsigned totalSize, /* disk size in bytes */
 BOOL flag, /* should the disk support partitions? */
 const char * name /* name of ram disk */
)

DESCRIPTION This routine creates an XBD ram disk. The ram disk links into the file system monitor and
eventing framework.

RETURNS The ID of the XBD created(device_t) or NULLDEV if the routine fails

ERRNO Not Available

SEE ALSO xbdRamDisk

xbdRamDiskDevDelete()

NAME xbdRamDiskDevDelete() – XBD Ram Disk Deletion routine

SYNOPSIS STATUS xbdRamDiskDevDelete
 (
 device_t d /* device_t returned from xbdRamDiskDevCreate */
)

DESCRIPTION This routine deletes or destroy an instantion of an XBD ram disk. The ram disk to be deleted
is identified by the supplied device_t. This value must have been previously returned from
the corresponding xbdRamDiskDevCreate function. All resource associated with the ram
disk are freed. Any file systems sitting on top of the ram disk are ejected.

RETURNS OK on success or ERROR if the supplied device_t doesn't map to an existing and valid XBD.

ERRNO Not Available

SEE ALSO xbdRamDisk

VxWorks Kernel API Reference, 6.6
xbdTransDevCreate()

1206

xbdTransDevCreate()

NAME xbdTransDevCreate() – create a transactional XBD.

SYNOPSIS device_t xbdTransDevCreate
 (
 device_t subDev /* lower level device */
)

RETURNS device_t, or NULLDEV on failure.

ERRNO Not Available

SEE ALSO xbdTrans, dosFsDevCreate().

xbdTransInit()

NAME xbdTransInit() – initialize the transactional XBD subsystem.

SYNOPSIS STATUS xbdTransInit
 (
 void
)

DESCRIPTION We just plug ourselves in to the file system monitor so that we get called to probe partitions
as they are instantiated.

RETURNS OK if all went well, ERROR otherwise.

ERRNO N/A

SEE ALSO xbdTrans

xcopy()

NAME xcopy() – copy a hierarchy of files with wildcards

SYNOPSIS STATUS xcopy

2 Routines
xdelete()

1207

2

 (
 const char * source, /* source directory or wildcard name */
 const char * dest /* destination directory */
)

DESCRIPTION source is a string containing a name of a directory, or a wildcard or both which will cause
this function to make a recursive copy of all files residing in that directory and matching the
wildcard pattern into the dest directory, preserving the file names and subdirectories.

CAVEAT This function may call itself in accordance with the depth of the source directory, and
allocates 3 kB of heap memory per stack frame, meaning that to accommodate the maximum
depth of subdirectories which is 20, at least 60 kB of heap memory should be available.

RETURNS OK, or ERROR if any operation has failed.

ERRNO Not Available

SEE ALSO usrFsLib, tarLib, cp(), the VxWorks programmer guides.

xdelete()

NAME xdelete() – delete a hierarchy of files with wildcards

SYNOPSIS STATUS xdelete
 (
 const char * source /* source directory or wildcard name */
)

DESCRIPTION source is a string containing a name of a directory, or a wildcard or both which will cause
this function to recursively remove all files and subdirectories residing in that directory and
matching the wildcard pattern. When a directory is encountered, all its contents are
removed, and then the directory itself is deleted.

Note that the wildcard matching is limited to a single directory level.

 dir is valid
 *.c is valid
 dir/*.c is valid
 a/.c is not valid

RETURNS OK or ERROR if any operation has failed.

ERRNO Not Available

SEE ALSO usrFsLib, cp(), copy(), xcopy(), tarLib, the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
y()

1208

y()

NAME y() – return the contents of the y register (SimSolaris)

SYNOPSIS int y
 (
 int taskId /* task ID, 0 means default task */
)

DESCRIPTION This command extracts the contents of the y register from the TCB of a specified task. If
taskId is omitted or 0, the default task is assumed.

RETURNS The contents of the y register.

ERRNO Not Available

SEE ALSO dbgArchLib, VxWorks Programmer's Guide: Debugging

ykRegister()

NAME ykRegister() – register with the VxBus subsystem

SYNOPSIS void ykRegister(void)

DESCRIPTION This routine registers the Template driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO mvYukonVxbEnd

ynRegister()

NAME ynRegister() – register with the VxBus subsystem

SYNOPSIS void ynRegister(void)

2 Routines
ynRegister()

1209

2

DESCRIPTION This routine registers the Yukon II driver with VxBus as a child of the PCI bus type.

RETURNS N/A

ERRNO N/A

SEE ALSO mvYukonIIVxbEnd

	VxWorks Kernel API Reference, 6.6
	Contents
	2 Routines
	CPToUtf16()
	CPToUtf8()
	CPUSET_ATOMICCLR()
	CPUSET_ATOMICCOPY()
	CPUSET_ATOMICSET()
	CPUSET_CLR()
	CPUSET_ISSET()
	CPUSET_ISZERO()
	CPUSET_SET()
	CPUSET_SETALL()
	CPUSET_SETALL_BUT_SELF()
	CPUSET_ZERO()
	Sysctl()
	VX_MEM_BARRIER_R()
	VX_MEM_BARRIER_RW()
	VX_MEM_BARRIER_W()
	a0()
	access()
	acosf()
	adrSpaceInfoGet()
	adrSpacePageUnmap()
	adrSpaceRAMAddToPool()
	adrSpaceRAMReserve()
	adrSpaceShow()
	adrSpaceVirtReserve()
	aimCacheInit()
	aimFppLibInit()
	aimMmuLibInit()
	aioShow()
	aioSysInit()
	aio_cancel()
	aio_error()
	aio_fsync()
	aio_read()
	aio_return()
	aio_suspend()
	aio_write()
	alarm()
	anRegister()
	asinf()
	atan2f()
	atanf()
	atapiParamsPrint()
	attrib()
	b()
	bcmp()
	bcopy()
	bcopyBytes()
	bcopyLongs()
	bcopyWords()
	bd()
	bdall()
	bfStrSearch()
	bfill()
	bfillBytes()
	bh()
	binvert()
	bmsStrSearch()
	bmtPhyRegister()
	bootBpAnchorExtract()
	bootChange()
	bootLeaseExtract()
	bootNetmaskExtract()
	bootParamsPrompt()
	bootParamsShow()
	bootStringToStruct()
	bootStringToStructAdd()
	bootStructToString()
	bswap()
	bzero()
	c()
	cacheArchClearEntry()
	cacheArchLibInit()
	cacheAuLibInit()
	cacheClear()
	cacheDisable()
	cacheDmaFree()
	cacheDmaMalloc()
	cacheDrvFlush()
	cacheDrvInvalidate()
	cacheDrvPhysToVirt()
	cacheDrvVirtToPhys()
	cacheEnable()
	cacheFlush()
	cacheForeignClear()
	cacheForeignFlush()
	cacheForeignInvalidate()
	cacheInvalidate()
	cacheLibInit()
	cacheLock()
	cachePipeFlush()
	cacheR10kLibInit()
	cacheR4kLibInit()
	cacheR5kLibInit()
	cacheR7kLibInit()
	cacheSh7750LibInit()
	cacheStoreBufDisable()
	cacheStoreBufEnable()
	cacheTextLocalUpdate()
	cacheTextUpdate()
	cacheTx49LibInit()
	cacheUnlock()
	calloc()
	cbioBlkCopy()
	cbioBlkRW()
	cbioBytesRW()
	cbioDevCreate()
	cbioDevVerify()
	cbioIoctl()
	cbioLibInit()
	cbioLock()
	cbioModeGet()
	cbioModeSet()
	cbioParamsGet()
	cbioRdyChgdGet()
	cbioRdyChgdSet()
	cbioShow()
	cbioUnlock()
	cbioWrapBlkDev()
	cbrt()
	cbrtf()
	cd()
	cdromFsDevCreate()
	cdromFsDevDelete()
	cdromFsInit()
	cdromFsVersionDisplay()
	cdromFsVersionNumGet()
	cdromFsVolConfigShow()
	ceilf()
	cfree()
	checkStack()
	chkdsk()
	chmod()
	clock_getres()
	clock_gettime()
	clock_nanosleep()
	clock_setres()
	clock_settime()
	close()
	closedir()
	cnsAppRegister()
	cnsClose()
	cnsCompLibInit()
	cnsDefaultMediaTypeSet()
	cnsLibInit()
	cnsMediaRegister()
	cnsMediaTypeRemove()
	cnsMediumTypeNext()
	cnsMsgEncode()
	cnsOpen()
	cnsRead()
	cnsWrite()
	commit()
	copy()
	copyStreams()
	coreDumpClose()
	coreDumpCopy()
	coreDumpCreateHookAdd()
	coreDumpCreateHookDelete()
	coreDumpDevFormat()
	coreDumpDevShow()
	coreDumpInfoGet()
	coreDumpIsAvailable()
	coreDumpMemDump()
	coreDumpMemFilterAdd()
	coreDumpMemFilterDelete()
	coreDumpNextGet()
	coreDumpOpen()
	coreDumpRead()
	coreDumpShow()
	coreDumpUsrGenerate()
	cosf()
	coshf()
	cp()
	cplusCallNewHandler()
	cplusCtors()
	cplusCtorsLink()
	cplusDemanglerSet()
	cplusDemanglerStyleSet()
	cplusDtors()
	cplusDtorsLink()
	cplusLibInit()
	cplusXtorGet()
	cplusXtorSet()
	cpsr()
	cpuPwrMgrEnable()
	cpuPwrMgrIsEnabled()
	creat()
	cret()
	d()
	d0()
	dbgBpTypeBind()
	dbgHelp()
	dbgInit()
	dcacheDevCreate()
	dcacheDevDisable()
	dcacheDevEnable()
	dcacheDevMemResize()
	dcacheDevTune()
	dcacheHashTest()
	dcacheShow()
	devs()
	dirList()
	diskFormat()
	diskInit()
	dosFsCacheCreate()
	dosFsCacheDelete()
	dosFsCacheInfo()
	dosFsCacheLibInit()
	dosFsCacheOptionsGet()
	dosFsCacheOptionsSet()
	dosFsCacheShow()
	dosFsCacheTune()
	dosFsChkDsk()
	dosFsClose()
	dosFsDefaultCacheSizeSet()
	dosFsDefaultDataCacheSizeGet()
	dosFsDefaultDirCacheSizeGet()
	dosFsDefaultFatCacheSizeGet()
	dosFsDevCreate()
	dosFsDevDelete()
	dosFsDiskProbe()
	dosFsFdFree()
	dosFsFdGet()
	dosFsFmtLibInit()
	dosFsFmtTest()
	dosFsHdlrInstall()
	dosFsIoctl()
	dosFsLastAccessDateEnable()
	dosFsLibInit()
	dosFsMonitorDevCreate()
	dosFsOpen()
	dosFsShow()
	dosFsVolDescGet()
	dosFsVolFormat()
	dosFsVolFormatFd()
	dosFsVolIsFat12()
	dosFsVolUnmount()
	dosFsVolumeOptionsGet()
	dosFsVolumeOptionsSet()
	dosFsXbdBlkCopy()
	dosFsXbdBlkRead()
	dosFsXbdBlkWrite()
	dosFsXbdBytesRW()
	dosFsXbdIoctl()
	dosPathParse()
	dosSetVolCaseSens()
	dosfsDiskFormat()
	dosfsDiskToHost16()
	dosfsDiskToHost32()
	dosfsHostToDisk16()
	dosfsHostToDisk32()
	dpartDevCreate()
	dpartPartGet()
	dshmMuxHwAddrToOff()
	dshmMuxHwGet()
	dshmMuxHwLocalAddrGet()
	dshmMuxHwNodesNumGet()
	dshmMuxHwOffToAddr()
	dshmMuxHwRegister()
	dshmMuxHwTasClearGet()
	dshmMuxHwTasGet()
	dshmMuxLibInit()
	dshmMuxMemAlloc()
	dshmMuxMemFree()
	dshmMuxMsgRecv()
	dshmMuxMsgSend()
	dshmMuxSvcNodeJoin()
	dshmMuxSvcNodeLeave()
	dshmMuxSvcObjGet()
	dshmMuxSvcObjRelease()
	dshmMuxSvcRegister()
	dshmMuxSvcWithdraw()
	dshmMuxWidtdrawComplete()
	dsiDataPoolShow()
	dsiSysPoolShow()
	e()
	edi()
	edi()
	edrBootCountGet()
	edrBootShow()
	edrClear()
	edrErrLogAttach()
	edrErrLogClear()
	edrErrLogCreate()
	edrErrLogIterCreate()
	edrErrLogIterNext()
	edrErrLogMaxNodeCount()
	edrErrLogNodeAlloc()
	edrErrLogNodeCommit()
	edrErrLogNodeCount()
	edrErrorInject()
	edrErrorInjectHookAdd()
	edrErrorInjectHookDelete()
	edrErrorInjectPrePostHookAdd()
	edrErrorInjectPrePostHookDelete()
	edrErrorInjectTextHookAdd()
	edrErrorInjectTextHookDelete()
	edrErrorLogClear()
	edrErrorRecordCount()
	edrErrorRecordDecode()
	edrFatalShow()
	edrFlagsGet()
	edrHelp()
	edrHookShow()
	edrInfoShow()
	edrInitShow()
	edrInjectHookShow()
	edrInjectPrePostHookShow()
	edrInjectTextHookShow()
	edrIntShow()
	edrIsDebugMode()
	edrKernelShow()
	edrLibInit()
	edrRebootShow()
	edrRtpShow()
	edrShow()
	edrSystemDebugModeGet()
	edrSystemDebugModeInit()
	edrSystemDebugModeSet()
	edrUserShow()
	eflags()
	eflags()
	elPciRegister()
	eneRegister()
	envGet()
	envLibInit()
	envPrivateCreate()
	envPrivateDestroy()
	envShow()
	errnoGet()
	errnoOfTaskGet()
	errnoOfTaskSet()
	errnoSet()
	etsecRegister()
	eventClear()
	eventReceive()
	eventSend()
	excConnect()
	excCrtConnect()
	excHookAdd()
	excInit()
	excIntConnect()
	excIntCrtConnect()
	excJobAdd()
	excVecGet()
	excVecInit()
	excVecSet()
	exit()
	expf()
	fabsf()
	fastStrSearch()
	fccRegister()
	fchmod()
	fcntl()
	fdatasync()
	fdprintf()
	fecRegister()
	feiRegister()
	ffsLsb()
	ffsMsb()
	fileUploadPathClose()
	fioBaseLibInit()
	fioFormatV()
	fioLibInit()
	fioRdString()
	fioRead()
	floorf()
	fmodf()
	formatTrans()
	fpathconf()
	fppInit()
	fppProbe()
	fppRestore()
	fppSave()
	fppShowInit()
	fppTaskRegsGet()
	fppTaskRegsGet()
	fppTaskRegsSet()
	fppTaskRegsSet()
	fppTaskRegsShow()
	free()
	fsEventUtilInit()
	fsMonitorInit()
	fsPathAddedEventRaise()
	fsPathAddedEventSetup()
	fsWaitForPath()
	fsmGetDriver()
	fsmGetVolume()
	fsmNameInstall()
	fsmNameMap()
	fsmNameUninstall()
	fsmProbeInstall()
	fsmProbeUninstall()
	fsmUnmountHookAdd()
	fsmUnmountHookDelete()
	fsmUnmountHookRun()
	fstat()
	fstatfs()
	fsync()
	ftruncate()
	g0()
	geiRegister()
	getOptServ()
	getenv()
	getopt()
	getoptInit()
	getopt_r()
	h()
	hashFuncIterScale()
	hashFuncModulo()
	hashFuncMultiply()
	hashKeyCmp()
	hashKeyStrCmp()
	hashTblCreate()
	hashTblDelete()
	hashTblDestroy()
	hashTblEach()
	hashTblFind()
	hashTblInit()
	hashTblPut()
	hashTblRemove()
	hashTblTerminate()
	help()
	histLoad()
	histSave()
	hookAddToHead()
	hookAddToTail()
	hookDelete()
	hookFind()
	hookShow()
	hrfsAdvFormat()
	hrfsAdvFormatFd()
	hrfsAscTime()
	hrfsChkDsk()
	hrfsDevCreate()
	hrfsDiskFormat()
	hrfsFormat()
	hrfsFormatFd()
	hrfsFormatLibInit()
	hrfsTimeCondense()
	hrfsTimeGet()
	hrfsTimeSplit()
	hrfsUpgrade()
	i()
	i0()
	i8042vxbRegister()
	ichAtaBlkRW()
	ichAtaCmd()
	ichAtaConfig()
	ichAtaConfigInit()
	ichAtaCtrlReset()
	ichAtaDevCreate()
	ichAtaDevIdentify()
	ichAtaDmaRW()
	ichAtaDmaToggle()
	ichAtaDrv()
	ichAtaDumptest()
	ichAtaInit()
	ichAtaParamRead()
	ichAtaPiInit()
	ichAtaRW()
	ichAtaRawio()
	ichAtaShow()
	ichAtaShowInit()
	ichAtaStatusChk()
	ichAtaXbdDevCreate()
	ichAtaXbdRawio()
	ichAtapiBytesPerSectorGet()
	ichAtapiBytesPerTrackGet()
	ichAtapiCtrlMediumRemoval()
	ichAtapiCurrentCylinderCountGet()
	ichAtapiCurrentHeadCountGet()
	ichAtapiCurrentMDmaModeGet()
	ichAtapiCurrentPioModeGet()
	ichAtapiCurrentRwModeGet()
	ichAtapiCurrentSDmaModeGet()
	ichAtapiCurrentUDmaModeGet()
	ichAtapiCylinderCountGet()
	ichAtapiDriveSerialNumberGet()
	ichAtapiDriveTypeGet()
	ichAtapiFeatureEnabledGet()
	ichAtapiFeatureSupportedGet()
	ichAtapiFirmwareRevisionGet()
	ichAtapiHeadCountGet()
	ichAtapiInit()
	ichAtapiIoctl()
	ichAtapiMaxMDmaModeGet()
	ichAtapiMaxPioModeGet()
	ichAtapiMaxSDmaModeGet()
	ichAtapiMaxUDmaModeGet()
	ichAtapiModelNumberGet()
	ichAtapiPktCmd()
	ichAtapiPktCmdSend()
	ichAtapiRead10()
	ichAtapiReadCapacity()
	ichAtapiReadTocPmaAtip()
	ichAtapiRemovMediaStatusNotifyVerGet()
	ichAtapiScan()
	ichAtapiSeek()
	ichAtapiSetCDSpeed()
	ichAtapiStartStopUnit()
	ichAtapiStopPlayScan()
	ichAtapiTestUnitRdy()
	ichAtapiVersionNumberGet()
	index()
	infinity()
	infinityf()
	inflate()
	intCRGet()
	intCRSet()
	intConnect()
	intContext()
	intCount()
	intCpuLock()
	intCpuUnlock()
	intDisable()
	intDisconnect()
	intEnable()
	intHandlerCreate()
	intHandlerCreateI86()
	intLevelSet()
	intLock()
	intLockLevelGet()
	intLockLevelSet()
	intSRGet()
	intSRSet()
	intStackEnable()
	intUninitVecSet()
	intUnlock()
	intVecBaseGet()
	intVecBaseSet()
	intVecGet()
	intVecGet2()
	intVecSet()
	intVecSet2()
	intVecTableWriteProtect()
	ioGlobalStdGet()
	ioGlobalStdSet()
	ioHelp()
	ioTaskStdGet()
	ioTaskStdSet()
	ioctl()
	iosDevAdd()
	iosDevDelDrv()
	iosDevDelete()
	iosDevFind()
	iosDevShow()
	iosDrvInstall()
	iosDrvRemove()
	iosDrvShow()
	iosFdEntryGet()
	iosFdEntryReturn()
	iosFdMaxFiles()
	iosFdShow()
	iosInit()
	iosRtpFdShow()
	iosShowInit()
	irint()
	irintf()
	iround()
	iroundf()
	isatty()
	isrCreate()
	isrDelete()
	isrIdSelf()
	isrInfoGet()
	isrInvoke()
	isrShow()
	kernelCpuEnable()
	kernelInit()
	kernelIsCpuIdle()
	kernelIsSystemIdle()
	kernelRoundRobinInstall()
	kernelTimeSlice()
	kernelVersion()
	kill()
	l()
	l0()
	ld()
	ledClose()
	ledControl()
	ledLibInit()
	ledOpen()
	ledRead()
	link()
	lio_listio()
	lkAddr()
	lkup()
	ll()
	llr()
	lnPciRegister()
	loadModule()
	loadModuleAt()
	log10f()
	log2()
	log2f()
	logFdAdd()
	logFdDelete()
	logFdSet()
	logInit()
	logMsg()
	logTask()
	logf()
	loginDefaultEncrypt()
	loginEncryptInstall()
	loginInit()
	loginPrompt()
	loginStringSet()
	loginUserAdd()
	loginUserDelete()
	loginUserShow()
	loginUserVerify()
	logout()
	ls()
	lseek()
	lsr()
	lstAdd()
	lstConcat()
	lstCount()
	lstDelete()
	lstExtract()
	lstFind()
	lstFirst()
	lstFree()
	lstGet()
	lstInit()
	lstInsert()
	lstLast()
	lstNStep()
	lstNext()
	lstNth()
	lstPrevious()
	m()
	m6845vxbRegister()
	m85xxCCSRRegister()
	mRegs()
	mach()
	malloc()
	memAddToPool()
	memDevCreate()
	memDevCreateDir()
	memDevDelete()
	memDrv()
	memEdrBlockMark()
	memEdrBlockShow()
	memEdrFreeQueueFlush()
	memEdrPartShow()
	memEdrRtpBlockMark()
	memEdrRtpBlockShow()
	memEdrRtpPartShow()
	memFindMax()
	memInfoGet()
	memOptionsGet()
	memOptionsSet()
	memPartAddToPool()
	memPartAlignedAlloc()
	memPartAlloc()
	memPartCreate()
	memPartDelete()
	memPartFindMax()
	memPartFree()
	memPartInfoGet()
	memPartOptionsGet()
	memPartOptionsSet()
	memPartRealloc()
	memPartShow()
	memPartSmCreate()
	memShow()
	memShowInit()
	memalign()
	miiBusCreate()
	miiBusDelete()
	miiBusGet()
	miiBusListAdd()
	miiBusListDel()
	miiBusMediaAdd()
	miiBusMediaDefaultSet()
	miiBusMediaDel()
	miiBusMediaListGet()
	miiBusMediaUpdate()
	miiBusModeGet()
	miiBusModeSet()
	miiBusRead()
	miiBusRegister()
	miiBusWrite()
	mkdir()
	mlock()
	mlockall()
	mmapShow()
	mmuPhysToVirt()
	mmuPro32LibInit()
	mmuPro32Page0UnMap()
	mmuPro36LibInit()
	mmuPro36Page0UnMap()
	mmuPro36PageMap()
	mmuPro36Translate()
	mmuShLibInit()
	mmuVirtToPhys()
	moduleCheck()
	moduleCreate()
	moduleCreateHookAdd()
	moduleCreateHookDelete()
	moduleDelete()
	moduleFindByGroup()
	moduleFindByName()
	moduleFindByNameAndPath()
	moduleFlagsGet()
	moduleIdListGet()
	moduleInfoGet()
	moduleNameGet()
	moduleSegFirst()
	moduleSegGet()
	moduleSegNext()
	moduleShow()
	mountdInit()
	mqPxDescObjIdGet()
	mqPxLibInit()
	mqPxShow()
	mqPxShowInit()
	mq_close()
	mq_getattr()
	mq_notify()
	mq_open()
	mq_receive()
	mq_send()
	mq_setattr()
	mq_unlink()
	msgQClose()
	msgQCreate()
	msgQDelete()
	msgQEvStart()
	msgQEvStop()
	msgQInfoGet()
	msgQInitialize()
	msgQNumMsgs()
	msgQOpen()
	msgQOpenInit()
	msgQReceive()
	msgQSend()
	msgQShow()
	msgQShowInit()
	msgQSmCreate()
	msgQUnlink()
	munlock()
	munlockall()
	mv()
	nanosleep()
	netHelp()
	nfsAuthUnixGet()
	nfsAuthUnixPrompt()
	nfsAuthUnixSet()
	nfsAuthUnixShow()
	nfsChkFilePerms()
	nfsDevInfoGet()
	nfsDevListGet()
	nfsDevShow()
	nfsDrvNumGet()
	nfsErrnoSet()
	nfsExport()
	nfsExportShow()
	nfsHelp()
	nfsIdSet()
	nfsMntDump()
	nfsMount()
	nfsMountAll()
	nfsStatusGet()
	nfsUnexport()
	nfsUnmount()
	nfsdHashTableParamsSet()
	nfsdInit()
	nfsdStatusShow()
	nicRegister()
	npc()
	nseRegister()
	nvRamSegDefGet()
	o0()
	objClassTypeGet()
	objContextGet()
	objContextSet()
	objHandleShow()
	objHandleTblShow()
	objNameGet()
	objNameLenGet()
	objNameToId()
	objOwnerGet()
	objOwnerSet()
	objShow()
	objShowAll()
	open()
	opendir()
	operator_delete()
	operator_new()
	operator_new()
	operator_new()
	oprintf()
	partLibCreate()
	passFsDevInit()
	passFsInit()
	pathconf()
	pause()
	pc()
	pcConDevBind()
	pcConDevCreate()
	pcConDrv()
	pentiumBtc()
	pentiumBts()
	pentiumCr4Get()
	pentiumCr4Set()
	pentiumMcaEnable()
	pentiumMcaShow()
	pentiumMsrGet()
	pentiumMsrInit()
	pentiumMsrSet()
	pentiumMsrShow()
	pentiumMtrrDisable()
	pentiumMtrrEnable()
	pentiumMtrrGet()
	pentiumMtrrSet()
	pentiumP5PmcGet()
	pentiumP5PmcGet0()
	pentiumP5PmcGet1()
	pentiumP5PmcReset()
	pentiumP5PmcReset0()
	pentiumP5PmcReset1()
	pentiumP5PmcStart0()
	pentiumP5PmcStart1()
	pentiumP5PmcStop()
	pentiumP5PmcStop0()
	pentiumP5PmcStop1()
	pentiumP6PmcGet()
	pentiumP6PmcGet0()
	pentiumP6PmcGet1()
	pentiumP6PmcReset()
	pentiumP6PmcReset0()
	pentiumP6PmcReset1()
	pentiumP6PmcStart()
	pentiumP6PmcStop()
	pentiumP6PmcStop1()
	pentiumPmcGet()
	pentiumPmcGet0()
	pentiumPmcGet1()
	pentiumPmcReset()
	pentiumPmcReset0()
	pentiumPmcReset1()
	pentiumPmcShow()
	pentiumPmcStart()
	pentiumPmcStart0()
	pentiumPmcStart1()
	pentiumPmcStop()
	pentiumPmcStop0()
	pentiumPmcStop1()
	pentiumSerialize()
	pentiumTlbFlush()
	pentiumTscGet32()
	pentiumTscGet64()
	pentiumTscReset()
	period()
	periodRun()
	philDemo()
	pipeDevCreate()
	pipeDevDelete()
	pipeDrv()
	pmFreeSpace()
	pmInvalidate()
	pmRegionAddr()
	pmRegionClose()
	pmRegionCreate()
	pmRegionOpen()
	pmRegionProtect()
	pmRegionSize()
	pmShow()
	pmValidate()
	poolBlockAdd()
	poolCreate()
	poolDelete()
	poolFreeCount()
	poolIncrementGet()
	poolIncrementSet()
	poolItemGet()
	poolItemReturn()
	poolShow()
	poolTotalCount()
	poolUnusedBlocksFree()
	powf()
	primesCompute()
	printErr()
	printErrno()
	printLogo()
	printf()
	proofUtf8()
	proofUtf8String()
	psr()
	psrShow()
	pthread_attr_destroy()
	pthread_attr_getdetachstate()
	pthread_attr_getinheritsched()
	pthread_attr_getname()
	pthread_attr_getopt()
	pthread_attr_getschedparam()
	pthread_attr_getschedpolicy()
	pthread_attr_getscope()
	pthread_attr_getstackaddr()
	pthread_attr_getstacksize()
	pthread_attr_init()
	pthread_attr_setdetachstate()
	pthread_attr_setinheritsched()
	pthread_attr_setname()
	pthread_attr_setopt()
	pthread_attr_setschedparam()
	pthread_attr_setschedpolicy()
	pthread_attr_setscope()
	pthread_attr_setstackaddr()
	pthread_attr_setstacksize()
	pthread_cancel()
	pthread_cleanup_pop()
	pthread_cleanup_push()
	pthread_cond_broadcast()
	pthread_cond_destroy()
	pthread_cond_init()
	pthread_cond_signal()
	pthread_cond_timedwait()
	pthread_cond_wait()
	pthread_condattr_destroy()
	pthread_condattr_init()
	pthread_create()
	pthread_detach()
	pthread_equal()
	pthread_exit()
	pthread_getschedparam()
	pthread_getspecific()
	pthread_join()
	pthread_key_create()
	pthread_key_delete()
	pthread_kill()
	pthread_mutex_destroy()
	pthread_mutex_getprioceiling()
	pthread_mutex_init()
	pthread_mutex_lock()
	pthread_mutex_setprioceiling()
	pthread_mutex_trylock()
	pthread_mutex_unlock()
	pthread_mutexattr_destroy()
	pthread_mutexattr_getprioceiling()
	pthread_mutexattr_getprotocol()
	pthread_mutexattr_init()
	pthread_mutexattr_setprioceiling()
	pthread_mutexattr_setprotocol()
	pthread_once()
	pthread_self()
	pthread_setcancelstate()
	pthread_setcanceltype()
	pthread_setschedparam()
	pthread_setspecific()
	pthread_sigmask()
	pthread_testcancel()
	ptyDevCreate()
	ptyDevRemove()
	ptyDrv()
	putenv()
	pwd()
	quiccEngineDrvCtrlShow()
	quiccEngineRegister()
	r0()
	r0()
	raise()
	ramDevCreate()
	ramDiskDevCreate()
	ramDrv()
	rawFsDevInit()
	rawFsInit()
	rawPerfDemo()
	read()
	readdir()
	readdir_r()
	realloc()
	reboot()
	rebootHookAdd()
	reld()
	rename()
	repeat()
	repeatRun()
	rewinddir()
	rindex()
	rm()
	rmdir()
	rngBufGet()
	rngBufPut()
	rngCreate()
	rngDelete()
	rngFlush()
	rngFreeBytes()
	rngIsEmpty()
	rngIsFull()
	rngMoveAhead()
	rngNBytes()
	rngPutAhead()
	romStart()
	round()
	roundf()
	rtgRegister()
	rtlRegister()
	rtpDelete()
	rtpDeleteHookAdd()
	rtpDeleteHookDelete()
	rtpHelp()
	rtpHookShow()
	rtpInfoGet()
	rtpInitCompleteHookAdd()
	rtpInitCompleteHookDelete()
	rtpKill()
	rtpLkAddr()
	rtpLkup()
	rtpMemShow()
	rtpPostCreateHookAdd()
	rtpPostCreateHookDelete()
	rtpPreCreateHookAdd()
	rtpPreCreateHookDelete()
	rtpShlShow()
	rtpShow()
	rtpSigqueue()
	rtpSp()
	rtpSpawn()
	rtpSymTblIdGet()
	rtpSymsAdd()
	rtpSymsOverride()
	rtpSymsRemove()
	rtpTaskKill()
	rtpTaskSigqueue()
	rtpi()
	s()
	salCall()
	salCreate()
	salDelete()
	salNameFind()
	salOpen()
	salRemove()
	salRun()
	salServerRtnSet()
	salSocketFind()
	sbeRegister()
	scMemValEnable()
	scMemValidate()
	sched_get_priority_max()
	sched_get_priority_min()
	sched_getparam()
	sched_getscheduler()
	sched_rr_get_interval()
	sched_setparam()
	sched_setscheduler()
	sched_yield()
	scsi2IfInit()
	scsiAutoConfig()
	scsiBlkDevCreate()
	scsiBlkDevInit()
	scsiBlkDevShow()
	scsiBusReset()
	scsiCacheSnoopDisable()
	scsiCacheSnoopEnable()
	scsiCacheSynchronize()
	scsiErase()
	scsiFormatUnit()
	scsiIdentMsgBuild()
	scsiIdentMsgParse()
	scsiInquiry()
	scsiIoctl()
	scsiLoadUnit()
	scsiMgrBusReset()
	scsiMgrCtrlEvent()
	scsiMgrEventNotify()
	scsiMgrShow()
	scsiMgrThreadEvent()
	scsiModeSelect()
	scsiModeSense()
	scsiMsgInComplete()
	scsiMsgOutComplete()
	scsiMsgOutReject()
	scsiPhysDevCreate()
	scsiPhysDevDelete()
	scsiPhysDevIdGet()
	scsiPhysDevShow()
	scsiRdSecs()
	scsiRdTape()
	scsiReadCapacity()
	scsiRelease()
	scsiReleaseUnit()
	scsiReqSense()
	scsiReserve()
	scsiReserveUnit()
	scsiRewind()
	scsiSeqDevCreate()
	scsiSeqIoctl()
	scsiSeqReadBlockLimits()
	scsiSeqStatusCheck()
	scsiShow()
	scsiSpace()
	scsiStartStopUnit()
	scsiSyncXferNegotiate()
	scsiTapeModeSelect()
	scsiTapeModeSense()
	scsiTargetOptionsGet()
	scsiTargetOptionsSet()
	scsiTargetOptionsShow()
	scsiTestUnitRdy()
	scsiThreadInit()
	scsiWideXferNegotiate()
	scsiWrtFileMarks()
	scsiWrtSecs()
	scsiWrtTape()
	sdCreate()
	sdCreateHookAdd()
	sdCreateHookDelete()
	sdDelete()
	sdDeleteHookAdd()
	sdDeleteHookDelete()
	sdGenericHookAdd()
	sdGenericHookDelete()
	sdInfoGet()
	sdMap()
	sdOpen()
	sdProtect()
	sdShow()
	sdUnmap()
	selNodeAdd()
	selNodeDelete()
	selWakeup()
	selWakeupAll()
	selWakeupListInit()
	selWakeupListLen()
	selWakeupListTerm()
	selWakeupType()
	select()
	selectInit()
	semBCreate()
	semBInitialize()
	semBSmCreate()
	semCCreate()
	semCInitialize()
	semCSmCreate()
	semClose()
	semDelete()
	semEvStart()
	semEvStop()
	semExchange()
	semFlush()
	semGive()
	semInfo()
	semInfoGet()
	semMCreate()
	semMGiveForce()
	semMInitialize()
	semOpen()
	semOpenInit()
	semPxLibInit()
	semPxShow()
	semPxShowInit()
	semRTake()
	semRWCreate()
	semRWGiveForce()
	semRWInitialize()
	semShow()
	semTake()
	semUnlink()
	semWTake()
	sem_close()
	sem_destroy()
	sem_getvalue()
	sem_init()
	sem_open()
	sem_post()
	sem_timedwait()
	sem_trywait()
	sem_unlink()
	sem_wait()
	set_new_handler()
	set_terminate()
	shConfig()
	shellAbort()
	shellCmdAdd()
	shellCmdAliasAdd()
	shellCmdAliasArrayAdd()
	shellCmdAliasDelete()
	shellCmdArrayAdd()
	shellCmdExec()
	shellCmdMemRegister()
	shellCmdMemUnregister()
	shellCmdPreParseAdd()
	shellCmdSymTabIdGet()
	shellCmdTopicAdd()
	shellCompatibleCheck()
	shellConfigDefaultGet()
	shellConfigDefaultSet()
	shellConfigDefaultValueGet()
	shellConfigDefaultValueSet()
	shellConfigDefaultValueUnset()
	shellConfigGet()
	shellConfigSet()
	shellConfigValueGet()
	shellConfigValueSet()
	shellConfigValueUnset()
	shellDataAdd()
	shellDataFirst()
	shellDataFromNameAdd()
	shellDataFromNameGet()
	shellDataGet()
	shellDataNext()
	shellDataRemove()
	shellErrnoGet()
	shellErrnoSet()
	shellFirst()
	shellFromNameGet()
	shellFromTaskGet()
	shellGenericInit()
	shellHistory()
	shellIdVerify()
	shellInterpByNameFind()
	shellInterpCtxGet()
	shellInterpDefaultNameGet()
	shellInterpEvaluate()
	shellInterpNameGet()
	shellInterpRegister()
	shellLock()
	shellNext()
	shellPromptFmtDftSet()
	shellPromptFmtSet()
	shellPromptFmtStrAdd()
	shellPromptSet()
	shellResourceReleaseHookAdd()
	shellRestart()
	shellScriptAbort()
	shellTaskGet()
	shellTaskIdDefault()
	shellTerminate()
	shlShow()
	shlSymsAdd()
	shlSymsRemove()
	show()
	sigInit()
	sigaction()
	sigaddset()
	sigblock()
	sigdelset()
	sigemptyset()
	sigfillset()
	sigismember()
	signal()
	sigpending()
	sigprocmask()
	sigqueue()
	sigqueueInit()
	sigsetmask()
	sigsuspend()
	sigtimedwait()
	sigvec()
	sigwait()
	sigwaitinfo()
	sil31xxBIST()
	sil31xxBISTShow()
	sil31xxDiskPresent()
	sil31xxDrvVxbInit()
	sil31xxIsr()
	sil31xxRegisterPortCallback()
	sil31xxSectorRW()
	sil31xxXbdCreate()
	sil31xxXbdDelete()
	sincos()
	sincosf()
	sinf()
	sinhf()
	sleep()
	smMemAddToPool()
	smMemCalloc()
	smMemFindMax()
	smMemFree()
	smMemMalloc()
	smMemOptionsSet()
	smMemRealloc()
	smMemShow()
	smNameAdd()
	smNameFind()
	smNameFindByValue()
	smNameRemove()
	smNameShow()
	smObjAttach()
	smObjGlobalToLocal()
	smObjInit()
	smObjLibInit()
	smObjLocalToGlobal()
	smObjSetup()
	smObjShow()
	smObjTimeoutLogEnable()
	smeRegister()
	smpLockDemo()
	snprintf()
	snsShow()
	so()
	sp()
	spinLockIsrGive()
	spinLockIsrHeld()
	spinLockIsrInit()
	spinLockIsrTake()
	spinLockTaskInit()
	spinLockTaskTake()
	sprintf()
	spy()
	spyClkStart()
	spyClkStop()
	spyHelp()
	spyLibInit()
	spyReport()
	spyStop()
	spyTask()
	sqrtf()
	sr()
	sr()
	sscanf()
	ssiDbInit()
	ssiShow()
	ssmCompInfoGet()
	ssmCompRegister()
	startupScriptFieldSplit()
	stat()
	statfs()
	strFree()
	swab()
	symAdd()
	symByValueAndTypeFind()
	symByValueFind()
	symEach()
	symFindByName()
	symFindByNameAndType()
	symFindByValue()
	symFindByValueAndType()
	symLibInit()
	symRemove()
	symShow()
	symShowInit()
	symTblCreate()
	symTblDelete()
	sysAuxClkConnect()
	sysAuxClkDisable()
	sysAuxClkEnable()
	sysAuxClkRateGet()
	sysAuxClkRateSet()
	sysBspRev()
	sysBusIntAck()
	sysBusIntGen()
	sysBusTas()
	sysBusToLocalAdrs()
	sysClkConnect()
	sysClkDisable()
	sysClkEnable()
	sysClkRateGet()
	sysClkRateSet()
	sysHwInit()
	sysIntDisable()
	sysIntEnable()
	sysLocalToBusAdrs()
	sysMailboxConnect()
	sysMailboxEnable()
	sysMemTop()
	sysModel()
	sysNanoDelay()
	sysNetMacNVRamAddrGet()
	sysNvRamGet()
	sysNvRamSet()
	sysPhysMemTop()
	sysProcNumGet()
	sysProcNumSet()
	sysScsiBusReset()
	sysScsiConfig()
	sysScsiInit()
	sysSerialChanGet()
	sysSerialHwInit()
	sysSerialHwInit2()
	sysSerialReset()
	sysToMonitor()
	syscallDispatch()
	syscallEntryHookAdd()
	syscallEntryHookDelete()
	syscallExitHookAdd()
	syscallExitHookDelete()
	syscallGroupRegister()
	syscallHookShow()
	syscallMonitor()
	syscallRegisterHookAdd()
	syscallRegisterHookDelete()
	syscallShow()
	sysctl()
	sysctl_add_oid()
	sysctl_remove_oid()
	sysctlbyname()
	sysctlnametomib()
	tanf()
	tanhf()
	tarArchive()
	tarExtract()
	tarToc()
	taskActivate()
	taskClose()
	taskCpuAffinityGet()
	taskCpuAffinitySet()
	taskCpuLock()
	taskCpuUnlock()
	taskCreate()
	taskCreateHookAdd()
	taskCreateHookDelete()
	taskCreateHookShow()
	taskDelay()
	taskDelete()
	taskDeleteForce()
	taskDeleteHookAdd()
	taskDeleteHookDelete()
	taskDeleteHookShow()
	taskExit()
	taskHookShowInit()
	taskIdDefault()
	taskIdListGet()
	taskIdSelf()
	taskIdVerify()
	taskInfoGet()
	taskInit()
	taskInitExcStk()
	taskIsPended()
	taskIsReady()
	taskIsStopped()
	taskIsSuspended()
	taskKill()
	taskLock()
	taskName()
	taskNameToId()
	taskOpen()
	taskOpenInit()
	taskOptionsGet()
	taskOptionsSet()
	taskPriNormalGet()
	taskPriorityGet()
	taskPrioritySet()
	taskRaise()
	taskRegsGet()
	taskRegsSet()
	taskRegsShow()
	taskRestart()
	taskResume()
	taskRotate()
	taskSRInit()
	taskSRSet()
	taskSafe()
	taskShow()
	taskShowInit()
	taskSigqueue()
	taskSpareFieldGet()
	taskSpareFieldSet()
	taskSpareNumAllot()
	taskSpawn()
	taskStackAllot()
	taskStatusString()
	taskSuspend()
	taskSwitchHookAdd()
	taskSwitchHookDelete()
	taskSwitchHookShow()
	taskTcb()
	taskUnlink()
	taskUnlock()
	taskUnsafe()
	taskVarAdd()
	taskVarDelete()
	taskVarGet()
	taskVarInfo()
	taskVarInit()
	taskVarSet()
	td()
	tffsDevCreate()
	tffsDevFormat()
	tffsDevOptionsSet()
	tffsDrv()
	tffsDrvOptionsSet()
	tffsRawio()
	ti()
	tick64Get()
	tick64Set()
	tickAnnounce()
	tickAnnounceHookAdd()
	tickGet()
	tickSet()
	timerOpenInit()
	timerShowInit()
	timer_cancel()
	timer_close()
	timer_connect()
	timer_create()
	timer_delete()
	timer_getoverrun()
	timer_gettime()
	timer_modify()
	timer_open()
	timer_settime()
	timer_show()
	timer_unlink()
	timex()
	timexClear()
	timexFunc()
	timexHelp()
	timexInit()
	timexN()
	timexPost()
	timexPre()
	timexShow()
	tlsTaskInit()
	tr()
	traceTmrResolutionGet()
	transCommit()
	transDevCreate()
	trgAdd()
	trgChainSet()
	trgDelete()
	trgDisable()
	trgEnable()
	trgEvent()
	trgLibInit()
	trgOff()
	trgOn()
	trgReset()
	trgShow()
	trgShowInit()
	trgWorkQReset()
	trunc()
	truncf()
	ts()
	tsecRegister()
	tt()
	ttyDevCreate()
	ttyDrv()
	tw()
	tyAbortFuncSet()
	tyAbortGet()
	tyAbortSet()
	tyBackspaceSet()
	tyDeleteLineSet()
	tyDevInit()
	tyDevRemove()
	tyDevTerminate()
	tyEOFGet()
	tyEOFSet()
	tyIRd()
	tyITx()
	tyIoctl()
	tyLibInit()
	tyMonitorTrapSet()
	tyRead()
	tyWrite()
	tyXoffHookSet()
	unixDiskDevCreate()
	unixDiskInit()
	unixDrv()
	unld()
	unldByGroup()
	unldByModuleId()
	unldByNameAndPath()
	unlink()
	unstatShow()
	usrClock()
	usrFdiskPartCreate()
	usrFdiskPartRead()
	usrFdiskPartShow()
	usrFormatTrans()
	usrIdeConfig()
	usrInit()
	usrRoot()
	usrScsiConfig()
	usrTransCommit()
	usrTransCommitFd()
	uswab()
	utf16ToCP()
	utf16ToUtf8String()
	utf16ToUtf8StringBOM()
	utf8ToCP()
	utf8ToUtf16String()
	utf8ToUtf16StringBOM()
	utfLibInit()
	utflen16()
	utflen8()
	utime()
	valloc()
	version()
	vfdprintf()
	virtualDiskClose()
	virtualDiskCreate()
	virtualDiskInit()
	vmArch32LibInit()
	vmArch32Map()
	vmArch32Translate()
	vmArch36LibInit()
	vmArch36Map()
	vmArch36Translate()
	vmAttrShow()
	vmBaseArch32LibInit()
	vmBaseArch32Map()
	vmBaseArch32Translate()
	vmBaseArch36LibInit()
	vmBaseArch36Map()
	vmBaseArch36Translate()
	vmBaseGlobalMapInit()
	vmBasePageSizeGet()
	vmBaseStateSet()
	vmContextShow()
	vmGlobalMapInit()
	vmMap()
	vmPageLock()
	vmPageMap()
	vmPageOptimize()
	vmPageSizeGet()
	vmPageUnlock()
	vmPhysTranslate()
	vmStateGet()
	vmStateSet()
	vmTextProtect()
	vmTranslate()
	voprintf()
	vprintf()
	vrfsDevCreate()
	vrfsInit()
	vsnprintf()
	vsprintf()
	vxAtomicAdd()
	vxAtomicAnd()
	vxAtomicClear()
	vxAtomicDec()
	vxAtomicGet()
	vxAtomicInc()
	vxAtomicNand()
	vxAtomicOr()
	vxAtomicSet()
	vxAtomicSub()
	vxAtomicXor()
	vxCas()
	vxCpuConfiguredGet()
	vxCpuEnabledGet()
	vxCpuIndexGet()
	vxCr0Get()
	vxCr0Set()
	vxCr2Get()
	vxCr2Set()
	vxCr3Get()
	vxCr3Set()
	vxCr4Get()
	vxCr4Set()
	vxDrGet()
	vxDrSet()
	vxEflagsGet()
	vxEflagsSet()
	vxGdtrGet()
	vxIdtrGet()
	vxLdtrGet()
	vxMemArchProbe()
	vxMemProbe()
	vxMemProbe()
	vxMemProbeInit()
	vxPowerDown()
	vxPowerModeGet()
	vxPowerModeSet()
	vxSSDisable()
	vxSSEnable()
	vxTas()
	vxTssGet()
	vxTssSet()
	vxbFileNvRamGet()
	vxbFileNvRamRegister()
	vxbFileNvRamSet()
	vxbFileNvRampDrvCtrlShow()
	vxbIntelIchStorageRegister()
	vxbNonVolGet()
	vxbNonVolLibInit()
	vxbNonVolSet()
	vxbSI31xxStorageRegister()
	vxsimHostCpuVarsInit()
	vxsimHostDllLoad()
	vxsimHostMmuCurrentSet()
	vxsimHostMmuProtect()
	vxsimHostProcAddrGet()
	vxsimHostProcCall()
	vxsimHostSioBaudRateSet()
	vxsimHostSioClose()
	vxsimHostSioIntVecGet()
	vxsimHostSioModeSet()
	vxsimHostSioOpen()
	vxsimHostSioRead()
	vxsimHostSioWrite()
	w()
	wdCancel()
	wdCreate()
	wdDelete()
	wdInitialize()
	wdShow()
	wdShowInit()
	wdStart()
	wdbMdlSymSyncLibInit()
	wdbSystemSuspend()
	wdbUserEvtLibInit()
	wdbUserEvtPost()
	wim()
	windPwrDownRtnSet()
	windPwrModeGet()
	windPwrModeSet()
	windPwrUpRtnSet()
	write()
	wvAllObjsSet()
	wvCurrentLogGet()
	wvCurrentLogListGet()
	wvCurrentLogListSet()
	wvCurrentLogSet()
	wvEdrInst()
	wvEvent()
	wvEventInst()
	wvEvtClassClear()
	wvEvtClassClearAll()
	wvEvtClassGet()
	wvEvtClassSet()
	wvEvtLogStart()
	wvEvtLogStop()
	wvFileUploadPathCreate()
	wvFileUploadPathLibInit()
	wvFileUploadPathWrite()
	wvLibInit()
	wvLibInit2()
	wvLogCountGet()
	wvLogCreate()
	wvLogDelete()
	wvLogFirstGet()
	wvLogListCreate()
	wvLogListDelete()
	wvLogNextGet()
	wvObjInst()
	wvObjInstModeSet()
	wvPartitionGet()
	wvPartitionSet()
	wvRBuffMgrPrioritySet()
	wvSalInst()
	wvSigInst()
	wvSockUploadPathClose()
	wvSockUploadPathCreate()
	wvSockUploadPathLibInit()
	wvSockUploadPathWrite()
	wvTmrRegister()
	wvTsfsUploadPathClose()
	wvTsfsUploadPathCreate()
	wvTsfsUploadPathLibInit()
	wvTsfsUploadPathWrite()
	wvUploadStart()
	wvUploadStop()
	wvUploadTaskConfig()
	xattrib()
	xbdBlkDevCreate()
	xbdBlkDevCreateSync()
	xbdBlkDevDelete()
	xbdBlkDevLibInit()
	xbdCbioDevCreate()
	xbdCbioDevDelete()
	xbdCbioLibInit()
	xbdCreatePartition()
	xbdRamDiskDevCreate()
	xbdRamDiskDevDelete()
	xbdTransDevCreate()
	xbdTransInit()
	xcopy()
	xdelete()
	y()
	ykRegister()
	ynRegister()

