
VxWorks

KERNEL API REFERENCE
Volume 1: Libraries

®

6.6

VxWorks Kernel API Reference, 6.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Kernel API Reference, Volume 1: Libraries, 6.6

16 Nov 07
Part #: DOC-16101-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

The VxWorks Kernel API Reference is a two-volume set that provides reference
entries describing the facilities available in the VxWorks kernel. For reference
entries that describe facilities for VxWorks process-based application
development, see the VxWorks Application API Reference. For reference entries that
describe VxWorks drivers, see the VxWorks Drivers API Reference.

Volume 1: Libraries

Volume 1 (this book) provides reference entries for each of the VxWorks kernel
libraries, arranged alphabetically. Each entry lists the routines found in the library,
including a one-line synopsis of each and a general description of their use.

Individual reference entries for each of the available functions in these libraries is
provided in Volume 2.

Volume 2: Routines

Volume 2 provides reference entries for each of the routines found in the VxWorks
kernel libraries documented in Volume 1.

VxWorks Kernel API Reference, 6.6

iv

1

Volume 1
Libraries

adrSpaceLib – address space allocator 9
adrSpaceShow – address space show library 10
aimCacheLib – cache library of the Architecture Independent Manager 10
aimFppLib – floating-point unit support library for AIM 13
aimMmuLib – MMU Architecture Independent Manager 13
aioPxLib – asynchronous I/O (AIO) library (POSIX) 14
aioPxShow – asynchronous I/O (AIO) show library 18
aioSysDrv – AIO system driver 18
am79c97xVxbEnd – AMD Am79c97x PCnet/PCI VxBus END driver 18
an983VxbEnd – Infineon AN983B/BX VxBus END driver 19
bLib – buffer manipulation library 20
bcm52xxPhy – driver for Broadcom bcm52xx 10/100 ethernet PHY chips 21
bootInit – ROM initialization module 21
bootLib – boot ROM subroutine library 23
bootParseLib – boot ROM bootline interpreter library 24
cacheArchLib – architecture-specific cache management library 25
cacheAuLib – Alchemy Au cache management library 26
cacheLib – cache management library 26
cacheR10kLib – MIPS R10000 cache management library 35
cacheR4kLib – MIPS R4000 cache management library 35
cacheR5kLib – MIPS R5000 cache management library 36
cacheR7kLib – MIPS R7000 cache management library 36
cacheSh7750Lib – Renesas SH7750 cache management library 37
cacheTx49Lib – Toshiba Tx49 cache management library 37
cbioLib – Cached Block I/O library 38
cdromFsLib – ISO 9660 CD-ROM read-only file system library 42
clockLib – clock library (POSIX) 46
cnsCompLib – Media type comp library 47
cnsLib – Component notification system library 47
coreDumpHookLib – core dump hook library 49

VxWorks Kernel API Reference, 6.6

2

coreDumpLib – core dump library 49
coreDumpMemFilterLib – core dump memory filtering library 53
coreDumpShow – core dump show routines 54
coreDumpUtilLib – core dump utility library 54
cplusLib – basic run-time support for C++ 55
cpuPwrLightLib – light power manager library (x86, PPC and VxSim) 56
cpuPwrUtilLib – utilization-based CPU power manager (x86 only) 58
cpuset – cpuset_t type manipulation macros 59
dbgArchLib – architecture-dependent debugger library 59
dbgLib – shell debugging facilities 61
dcacheCbio – Disk Cache Driver 63
dirLib – directory handling library (POSIX) 67
dosFsCacheLib – MS-DOS media-compatible Cache library 69
dosFsFmtLib – MS-DOS media-compatible file system formatting library 71
dosFsLib – MS-DOS media-compatible file system library 71
dosFsShow – DosFS Show routines 84
dpartCbio – generic disk partition manager 84
dshmMuxLib – DSHM service/hardware bus multiplexer 85
dsiSockLib – DSI sockets library 88
edrErrLogLib – the ED&R error log library 88
edrLib – Error Detection and Reporting subsystem 90
edrShow – ED&R Show Routines 92
edrSysDbgLib – ED&R system-debug flag 92
envLib – environment variable library 93
errnoLib – error status library 94
eventLib – VxWorks events library 96
excArchLib – architecture-specific exception-handling facilities 100
excLib – generic exception handling facilities 100
fccVxbEnd – fcc VxBus END driver 101
fecVxbEnd – Motorola/Freescale FEC VxBus END driver 102
fei8255xVxbEnd – Intel PRO/100 VxBus END driver 104
ffsLib – find first bit set library 106
fioBaseLib – formatted I/O library 106
fioLib – formatted I/O library 107
fppArchLib – architecture-dependent floating-point coprocessor support 108
fppLib – floating-point coprocessor support library 112
fppShow – floating-point show routines 113
fsEventUtilLib – Event Utility functions for different file systems 114
fsMonitor – The File System Monitor 114
fsPxLib – I/O, file system API library (POSIX) 114
ftruncate – POSIX file truncation 115
gei825xxVxbEnd – Intel PRO/1000 VxBus END driver 115
getopt – getopt facility 117
hashLib – generic hashing library 117
hookLib – generic hook library for VxWorks 120

1 Libraries

3

1
hookShow – hook show routines 121
hrFsLib – highly reliable file system library 122
hrFsTimeLib – time routines for HRFS 122
hrfsChkDskLib – HRFS Check disk library - Readonly version 122
hrfsFormatLib – HRFS format library 123
inflateLib – inflate code using public domain zlib functions 123
intArchLib – architecture-dependent interrupt library 127
intLib – architecture-independent interrupt subroutine library 129
ioLib – I/O interface library 130
iosLib – I/O system library 131
iosShow – I/O system show routines 132
isrLib – isr objects library 132
isrShow – isr objects show library 135
kern_sysctl – sysctl kernel routines 136
kernelLib – VxWorks kernel library 136
ledLib – line-editing library 138
loadLib – generic object module loader 141
logLib – message logging library 143
loginLib – user login/password subroutine library 144
lstLib – doubly linked list subroutine library 146
m85xxCCSR – VxBus driver for PowerPC 85xx CCSR resource allocation 147
mathALib – C interface library to high-level math functions 147
memDrv – pseudo memory device driver 149
memEdrLib – memory manager error detection and reporting library 151
memEdrRtpShow – memory error detection show routines for RTPs 154
memEdrShow – memory error detection show routines 154
memInfo – memory partition info routines 154
memLib – full-featured memory partition manager 155
memPartLib – core memory partition manager 157
memShow – memory show routines 159
miiBus – MII bus controller and API library 159
mmanPxLib – memory management library (POSIX) 161
mmanShow – mmap manager show library 161
mmuMapLib – MMU mapping library for ARM Ltd. processors 161
mmuPro32Lib – MMU library for Pentium II 162
mmuPro36Lib – MMU library for PentiumPro/2/3/4 36 bit mode 164
mmuShLib – Memory Management Unit Library for Renesas SH77xx 168
moduleLib – code module list management library 168
mountd – Mount protocol library 170
mqPxLib – message queue library (POSIX) 171
mqPxShow – POSIX message queue show 172
msgQEvLib – VxWorks events support for message queues 173
msgQInfo – message queue information routines 173
msgQLib – message queue library 174
msgQOpen – extended message queue library 176

VxWorks Kernel API Reference, 6.6

4

msgQShow – message queue show routines 177
msgQSmLib – shared memory message queue library (VxMP Option) 177
mvYukonIIVxbEnd – Marvell Yukon II VxBus END driver 178
mvYukonVxbEnd – Marvell Yukon I VxBus END driver 180
ne2000VxbEnd – NE2000 Compatible VxBus END driver 181
nfsCommon – Network File System (NFS) I/O driver 183
nfsHash – file based hash table for file handle to file name and reverse 184
nfsd – NFS Server Init routines 184
nfsdCommon – Common functions for v2 and v3 185
ns8381xVxbEnd – National Semiconductor DP83815/6 VxBus END driver 186
ns83902VxbEnd – NatSemi DP83902A ST-NIC VxBus END driver 187
objLib – generic object management library 188
objShow – wind objects show library 189
partLib – routines to create disk partitions on a rawFS 189
passFsLib – pass-through file system library (VxSim) 190
pentiumALib – P5, P6 and P7 family processor specific routines 192
pentiumLib – Pentium and Pentium[234] library 197
pentiumShow – Pentium and Pentium[234] specific show routines 200
phil – VxWorks/SMP Dijkstra's dining philosophers demo 201
pipeDrv – pipe I/O driver 203
pmLib – persistent memory library 205
poolLib – Memory Pool Library 207
poolShow – Wind Memory Pool Show Library 208
primesDemo – VxWorks SMP prime number computation demo 208
pthreadLib – POSIX 1003.1c thread library interfaces 212
ptyDrv – pseudo-terminal driver 219
quiccEngineUtils – qeuiic engine resource allocation 220
rBuffLib – dynamic ring buffer (rBuff) library 220
ramDiskCbio – RAM Disk Cached Block Driver 220
ramDrv – RAM disk driver 221
rawFsLib – raw block device file system library 222
rawPerfDemo – VxWorks/SMP raw performance demo 224
rebootLib – reboot support library 226
rngLib – ring buffer subroutine library 226
rtl8139VxbEnd – RealTek 8139/8100 10/100 VxBus END driver 227
rtl8169VxbEnd – RealTek 8139C+/8101E/816x/811x VxBus Ethernet driver 228
rtpHookLib – RTP Hook Support library 230
rtpLib – Real Time Process library 231
rtpShow – Real Time Process show routine 238
rtpSigLib – RTP software signal facility library 239
rtpUtilLib – Real Time Process Utility library 239
salClient – socket application client library 240
salServer – socket application server library 242
sbeVxbEnd – Broadcom/Sibyte BCM1250 VxBus END driver 246
scMemVal – helper routines to validate system call parameters 248

1 Libraries

5

1
schedPxLib – scheduling library (POSIX) 248
scsi1Lib – Small Computer System Interface (SCSI) library (SCSI-1) 249
scsi2Lib – Small Computer System Interface (SCSI) library (SCSI-2) 253
scsiCommonLib – SCSI library common commands for all devices (SCSI-2) 259
scsiCtrlLib – SCSI thread-level controller library (SCSI-2) 260
scsiDirectLib – SCSI library for direct access devices (SCSI-2) 260
scsiLib – Small Computer System Interface (SCSI) library 261
scsiMgrLib – SCSI manager library (SCSI-2) 262
scsiSeqLib – SCSI sequential access device library (SCSI-2) 263
sdLib – shared data API layer 265
sdShow – Shared Data region show routine 267
selectLib – UNIX BSD select library 268
semBLib – binary semaphore library 269
semCLib – counting semaphore library 271
semEvLib – VxWorks events support for semaphores 273
semExchange – semaphore exchange library 273
semInfo – semaphore information routines 274
semLib – general semaphore library 275
semMLib – mutual-exclusion semaphore library 277
semOpen – extended semaphore library 280
semPxLib – semaphore synchronization library (POSIX) 280
semPxShow – POSIX semaphore show library 282
semRWLib – reader/writer semaphore library 282
semShow – semaphore show routines 284
semSmLib – shared memory semaphore library (VxMP Option) 285
shellConfigLib – the shell configuration management module 286
shellDataLib – the shell data management module 287
shellInterpCmdLib – the command interpreter library 288
shellInterpLib – the shell interpreters management module 289
shellLib – the kernel shell module 289
shellPromptLib – the shell prompt management module 292
shlShow – Shared Library Show Routine 293
sigLib – software signal facility library 294
smMemLib – shared memory management library (VxMP Option) 301
smMemShow – shared memory management show routines (VxMP Option) 303
smNameLib – shared memory objects name database library (VxMP Option) 304
smNameShow – shared memory objects name database show routines (VxMP Option) 306
smObjLib – shared memory objects library (VxMP Option) 307
smObjShow – shared memory objects show routines (VxMP Option) 309
smpLockDemo – synchronization mechanism demo for VxWorks SMP 310
snsLib – Socket Name Service library 312
snsShow – Socket Name Service show routines 315
spinLockLib – spinlock library 315
spyLib – spy CPU activity library 319
ssiDb – SSI database module 321

VxWorks Kernel API Reference, 6.6

6

strSearchLib – Efficient string search library 321
symLib – symbol table subroutine library 322
symShow – symbol table show routines 325
sysLib – system-dependent library 325
syscallHookLib – SYSCALL Hook Support library 327
syscallLib – VxWorks System Call Infrastructure management library 328
syscallShow – VxWorks System Call Infrastructure management library 330
sysctl – sysctl command 331
tarLib – UNIX tar compatible library 331
taskArchLib – architecture-specific task management routines 332
taskHookLib – task hook library 332
taskHookShow – task hook show routines 334
taskInfo – task information library 334
taskLib – task management library 335
taskOpen – extended task management library 338
taskRotate – taskRotate functionality 339
taskShow – task show routines 339
taskUtilLib – task utility library 340
taskVarLib – task variables support library 341
tc3c905VxbEnd – 3Com 3c905/B/C VxBus END driver 341
tffsDrv – TrueFFS interface for VxWorks 343
tickLib – clock tick support library 346
timerLib – timer library (POSIX) 347
timerOpen – extended timer library 348
timerShow – POSIX timer show library 349
timexLib – execution timer facilities 349
tlsLib – thread local storage support library 350
trgLib – trigger events control library 352
trgShow – trigger show routine 352
tsecVxbEnd – Freescale TSEC VxBus END driver 353
ttyDrv – provide terminal device access to serial channels 354
tyLib – tty driver support library 355
unShow – information display routines for AF_LOCAL 360
unixDrv – UNIX-file disk driver (VxSim for Solaris) 360
unldLib – object module unloading library 362
usrConfig – user-defined system configuration library 364
usrFdiskPartLib – FDISK-style partition handler 364
usrFsLib – file system user interface subroutine library 366
usrLib – user interface subroutine library 368
usrRtpLib – Real Time Process user interface subroutine library 370
usrRtpStartup – RTP Startup Facility Support Code 370
usrShellHistLib – shell history user interface subroutine library 371
usrTransLib – Transaction Device Access Library 371
utfLib – Library to manage Unicode characters encoded in UTF-8 and UTF-16 372
virtualDiskLib – virtual disk driver library (vxSim) 372

1 Libraries

7

1
vmArch32Lib – VM (VxVMI) library for PentiumPro/2/3/4 32 bit mode 374
vmArch36Lib – VM (VxVMI) library for PentiumPro/2/3/4 36 bit mode 375
vmBaseArch32Lib – VM (bundled) library for PentiumPro/2/3/4 32 bit mode 376
vmBaseArch36Lib – VM (bundled) library for PentiumPro/2/3/4 36 bit mode 376
vmBaseLib – base virtual memory support library 377
vmGlobalMap – virtual memory global mapping library 379
vmShow – virtual memory show routines 380
vrfsLib – the Virtual Root File System 380
vxAtomicLib – atomic operations library 381
vxCpuLib – CPU utility routines 383
vxLib – miscellaneous support routines 384
vxMemProbeLib – miscellaneous support routines 384
vxbEtsecEnd – Freescale Enhanced TSEC VxBus END driver 385
vxbFileNvRam – VxBus driver for NVRam on a filesystem file 390
vxbI8042Kbd – Intel 8042 keyboard driver routines 390
vxbIntelIchStorage – Intel ICH0/1 (82801) ATA/IDE and ATAPI CDROM 391
vxbIntelIchStorageShow – ICH ATA disk device driver show routine 397
vxbM6845Vga – motorola 6845 VGA console driver 398
vxbNonVolLib – non-volatile RAM to non-volatile memory routine mapping 398
vxbPcConsole – console handler 399
vxbSI31xxStorage – PCI bus header file for vxBus 399
vxbSmscLan9118End – SMSC LAN9118 VxBus END driver 401
vxsimHostArchLib – VxSim host side interface library 403
wdLib – watchdog timer library 404
wdShow – watchdog show routines 405
wdbLib – WDB agent context management library 406
wdbMdlSymSyncLib – target-host modules and symbols synchronization 406
wdbUserEvtLib – WDB user event library 408
windPwrLib – Power Management Library 408
wvFileUploadPathLib – file destination for event data 409
wvLib – event logging control library (System Viewer) 409
wvSockUploadPathLib – socket upload path library 417
wvTmrLib – timer library (System Viewer) 417
wvTsfsUploadPathLib – target host connection library using TSFS 418
xbdBlkDev – XBD / BLK_DEV Converter 418
xbdCbioDev – XBD / CBIO Converter 419
xbdRamDisk – XBD Ramdisk Implementation 419
xbdTrans – Transaction extended-block-device 420

VxWorks Kernel API Reference, 6.6

8

1 Libraries
adrSpaceLib

9

1adrSpaceLib

NAME adrSpaceLib – address space allocator

ROUTINES adrSpacePageUnmap() – unmap a set of virtual pages
adrSpaceRAMAddToPool() – add specified memory block to RAM pool
adrSpaceRAMReserve() – reserve memory from the RAM pool
adrSpaceVirtReserve() – reserve memory from the virtual space
adrSpaceInfoGet() – get status of the address space library

DESCRIPTION The Address Space Allocator provides the functionality for managing virtual and physical
RAM space for the kernel and user applications. It is used (and automatically included)
when Real Time Process support (INCLUDE_RTP) is included in the kernel.

The physical and address space management is initialized based on the BSPs memory
configuration (LOCAL_MEM_LOCAL_ADRS, KERNEL_HEAP_SIZE, 'sysPhysMemDesc[]`
and for PPC the sysBatDesc[]), and based on the the processor architecture's specific
segmentation requirements (such as MIPS segments). During initialization, the following
types of memory configuration errors are detected:

- Virtual space overlaps between multiple sysPhysMemDesc[] entries.

- Physical space overlaps between multiple sysPhysMemDesc[] entries.

- Virtual or physical start address of sysPhysMemDesc[] entry not page aligned.

- Length of sysPhysMemDesc[] entry not page aligned.

- Entry in sysPhysMemDesc[] defines memory range in a user-only segment.

- Entry in sysPhysMemDesc[] defines memory range that overflows either the physical
or the virtual address space

- Could not create all resources. This could happens if there is not enough memory in the
kernel heap.

Note that in case of an overlap, the error will indicate the second of the overlaping entries,
but not the first one.

A special case is the configuration with MMU disabled. In this case the BSPs
sysPhysMemDesc[] - if it exists - is ignored. In this case the address space managed by this
library is restricted to the system RAM, allowing identity mapping only.

The physical RAM pool is the collection of all RAM described in sysPhysMemDesc[] in the
range LOCAL_MEM_LOCAL_ADRS to sysPhysMemTop(), managed with page size
granularity. RAM memory outside of the range LOCAL_MEM_LOCAL_ADRS to
sysPhysMemTop() can be added to the RAM pool by calling the routine
adrSpaceRAMAddToPool().

INCLUDE FILES adrSpaceLib.h

VxWorks Kernel API Reference, 6.6
adrSpaceShow

10

SEE ALSO adrSpaceShow

adrSpaceShow

NAME adrSpaceShow – address space show library

ROUTINES adrSpaceShow() – display information about address spaces managed by adrSpaceLib

DESCRIPTION This library provides routines to display information about the physical and virtual address
spaces managed by adrSpaceLib. This library is included whenever the component
INCLUDE_ADR_SPACE_SHOW is added to the kernel configuration.

INCLUDE_FILES: adrSpaceShow.h

INCLUDE FILES none

SEE ALSO adrSpaceLib

aimCacheLib

NAME aimCacheLib – cache library of the Architecture Independent Manager

ROUTINES aimCacheInit() – initialize cache aim with supplied parameters

DESCRIPTION This library contains the support routines for the cache portion of the Architecture
Independent Manager.

aimCacheInit()
Is called by the bsp via an architecture specific initialization routine. It collects attribute
infomation for all caches and publishes the attributes. It decides which AIM functions
are to be called from the vxWorks API. It calculates maximum indices, counts,
rounding factors, and so on, and creates local copies specific to the AIM routines in use.

aimCacheEnable()
Calls the appropriate cache enable primitive (Icache, Dcache, etc) and maintains a local
copy of the enabled state.

aimCacheDisable()
Calls the appropriate cache disable primitive (Icache, Dcache, etc) and maintains a local
copy of the enabled state.

1 Libraries
aimCacheLib

11

1
aimCacheLock()

Rounds the address and count and calls the correct primitive. Optionally, it maintains
a database of locked regions of cache, preventing invalidate commands from operating
on locked regions.

If lock protection has been enabled by the specification of the C_FLG_LOCKPRTKT flag
when the cacheAimxxxLock was declared in the CACHECONFIG structure, then the
lock database is maintained by the cache AIM, identifying locked regions within cache.

This locked database is queried by the AIM prior to calling the invalidate or clear
primitivers. An error is returned if any locks are active in the described cache region.

Assumptions made using cache AIM database:

(1) There can be no overlap/subsets of locked regions with regions to be invalidated
or cleared; if so we return ERROR.

(2) On a lock request, if the record is found to already exist within the cache AIM
database, assume the region is already set; do nothing but return OK.

(3) On an unlock request, if the record is found not to exist within cache AIM database,
assume the region is not set; do nothing but return OK.

aimCacheUnlock()
Rounds the address and count and calls the correct primitive. Optionally, it can update
a database of locked regions.

aimCacheIndexFlush()
Calculates the proper index and count and calls the flush primitive for the specified
cache. In the case where the entire cache is specified, size == ENTIRE_CACHE, and a
primitive to flush the entire cache exists, the index and count calculations are not
required and the xxxXcacheFlushAll primitive is called.

aimCacheVirtFlush()
Rounds the virtual address and count as necessary and calls the flush primitive for the
specified cache. In the case where the entire cache is specified, size == ENTIRE_CACHE,
and a primitive to flush the entire cache exists, address and count rounding are not
required and the xxxXcacheFlushAll primitive is called.

aimCachePhysFlush()
Rounds the virtual address and count as necessary, computes the correct physical
address from the virtual address, and calls the flush primitive for the specified cache.
In the case where the entire cache is specified, size == ENTIRE_CACHE, and a primitive
to flush the entire cache exists, address and count rounding are not required and the
xxxXcacheFlushAll primitive is called.

aimCacheIndexInvalidate()
Calculates the proper index and count and calls the invalidate primitive for the
specified cache. In the case where the entire cache is specified, size == ENTIRE_CACHE,
and a primitive to invalidate the entire cache exists, the index and count calculations
are not required and the xxxXcacheInvalidateAll primitive is called.

VxWorks Kernel API Reference, 6.6
aimCacheLib

12

aimCacheVirtInvalidate()
Rounds the virtual address and count as necessary and calls the invalidate primitive for
the specified cache. In the case where the entire cache is specified, size ==
ENTIRE_CACHE, and a primitive to flush the entire cache exists, address and count
rounding are not required and the xxxXcacheInvalidateAll primitive is called.

aimCachePhysInvalidate()
Rounds the virtual address and count as necessary, computes the correct physical
address from the virtual address, and calls the invalidate primitive for the specified
cache. In the case where the entire cache is specified, size == ENTIRE_CACHE, and a
primitive to flush the entire cache exists, address and count rounding are not required
and the xxxXcacheInvalidateAll primitive is called.

aimCacheIndexClear()
Calculates the proper index and count and calls the clear primitive for the specified
cache. In the case where the entire cache is specified, size == ENTIRE_CACHE, and a
primitive to invalidate the entire cache exists, the index and count calculations are not
required and the xxxXcacheClearAll primitive is called. In the case where a Clear
primitive does not exist, the appropriate Flush primitive is called, followed by a call to
the Invalidate primitive.

aimCacheVirtClear()
Rounds the virtual address and count as necessary and calls the Clear primitive for the
specified cache. In the case where the entire cache is specified, size == ENTIRE_CACHE,
and a primitive to Clear the entire cache exists, address and count rounding are not
required and the xxxXcacheClearAll primitive is called. In the case where a Clear
primitive does not exist, the Flush primitive is called, followed by a call to the
Invalidate primitive.

aimCachePhysClear()
Rounds the virtual address and count as necessary, computes the correct physical
address from the virtual address, and calls the Clear primitive for the specified cache.
In the case where the entire cache is specified, size == ENTIRE_CACHE, and a primitive
to Clear the entire cache exists, address and count rounding are not required and the
xxxXcacheClearAll primitive is called. In the case where a Clear primitive does not
exist, the Flush primitive is called, followed by a call to the Invalidate primitive.

aimCacheTextUpdate()
This routine flushes the data cache, then invalidates the instruction cache. This
operation forces the instruction cache to fetch code that may have been created via the
data path. This is accomplished by calling the appropriate aimCacheFlush and
aimCacheInvalidate routines.

There are no AIM-specific routines for the following functions. They map directly to the
architecture-dependent primitive (if provided).

cacheDmaMalloc()
cacheDmaFree()
cacheDmaVirtToPhys()

1 Libraries
aimMmuLib

13

1
cacheDmaPhysToVirt()

CONFIGURATION The cache portion of the Architecture Independent Manager is automatically included in
VxWorks when cache is enabled.

INCLUDE FILES aimCacheLib.h, cacheLib.h

aimFppLib

NAME aimFppLib – floating-point unit support library for AIM

ROUTINES aimFppLibInit() – Initialize the AIM FPU library
fppTaskRegsSet() – Sets FPU context for a task
fppTaskRegsGet() – Gets FPU context for a task

DESCRIPTION This is the Architecture Independant Manager (AIM) for VxWorks floating point support.
It contains floating point routines that are common to all CPU architectures supported by
VxWorks.

INCLUDE FILES none

SEE ALSO fppArchLib, coprocLib

aimMmuLib

NAME aimMmuLib – MMU Architecture Independent Manager

ROUTINES aimMmuLibInit() – initialize the AIM

DESCRIPTION This library contains the Architecture Independent Manager (AIM) for the VxWorks MMU
subsystem. This library creates generic structures for the AD-MMU to use in managing the
hardware MMU. Because the structures are generic a lot of the code that manipulates the
structures is generic. So the AIM is designed to do that manipulation for several different
AD-MMUs. Specifically software TLB Miss MMUs. A lot of the complex code is now in this
layer so the multiple AD-MMUs become simpler. HW restrictions mean some features
supplied by the AIM are only available if the HW allows, such as variable size pages for
dynamic TLBs and locking of regions of memory.

VxWorks Kernel API Reference, 6.6
aioPxLib

14

CONFIGURING VXWORKS

AIM for the VxWorks MMU subsystem is automatically included when the MMU is
enabled.

INCLUDE FILES vmLib.h, aimMmuLib.h

aioPxLib

NAME aioPxLib – asynchronous I/O (AIO) library (POSIX)

ROUTINES aio_read() – initiate an asynchronous read (POSIX)
aio_write() – initiate an asynchronous write (POSIX)
lio_listio() – initiate a list of asynchronous I/O requests (POSIX)
aio_suspend() – wait for asynchronous I/O request(s) (POSIX)
aio_cancel() – cancel an asynchronous I/O request (POSIX)
aio_fsync() – asynchronous file synchronization (POSIX)
aio_error() – retrieve error status of asynchronous I/O operation (POSIX)
aio_return() – retrieve return status of asynchronous I/O operation (POSIX)

DESCRIPTION This library implements asynchronous I/O (AIO) according to the definition given by the
POSIX standard 1003.1b (formerly 1003.4, Draft 14). AIO provides the ability to overlap
application processing and I/O operations initiated by the application. With AIO, a task
can perform I/O simultaneously to a single file multiple times or to multiple files.

After an AIO operation has been initiated, the AIO proceeds in logical parallel with the
processing done by the application. The effect of issuing an asynchronous I/O request is as
if a separate thread of execution were performing the requested I/O.

AIO LIBRARY The AIO library is initialized by calling aioPxLibInit(), which should be called once
(typically at system start-up) after the I/O system has already been initialized.

AIO COMMANDS The file to be accessed asynchronously is opened via the standard open call. Open returns
a file descriptor which is used in subsequent AIO calls.

The caller initiates asynchronous I/O via one of the following routines:

aio_read()
initiates an asynchronous read

aio_write()
initiates an asynchronous write

lio_listio()
initiates a list of asynchronous I/O requests

1 Libraries
aioPxLib

15

1
Each of these routines has a return value and error value associated with it; however, these
values indicate only whether the AIO request was successfully submitted (queued), not the
ultimate success or failure of the AIO operation itself.

There are separate return and error values associated with the success or failure of the AIO
operation itself. The error status can be retrieved using aio_error(); however, until the AIO
operation completes, the error status will be EINPROGRESS. After the AIO operation
completes, the return status can be retrieved with aio_return().

The aio_cancel() call cancels a previously submitted AIO request. The aio_suspend() call
waits for an AIO operation to complete.

Finally, the aioShow() call (not a standard POSIX function) displays outstanding AIO
requests.

AIO CONTROL BLOCK

Each of the calls described above takes an AIO control block (aiocb) as an argument. The
calling routine must allocate space for the aiocb, and this space must remain available for
the duration of the AIO operation. (Thus the aiocb must not be created on the task's stack
unless the calling routine will not return until after the AIO operation is complete and
aio_return() has been called.) Each aiocb describes a single AIO operation. Therefore,
simultaneous asynchronous I/O operations using the same aiocb are not valid and produce
undefined results.

The aiocb structure and the data buffers referenced by it are used by the system to perform
the AIO request. Therefore, once the aiocb has been submitted to the system, the
application must not modify the aiocb structure until after a subsequent call to
aio_return(). The aio_return() call retrieves the previously submitted AIO data structures
from the system. After the aio_return() call, the calling application can modify the aiocb,
free the memory it occupies, or reuse it for another AIO call.

As a result, if space for the aiocb is allocated off the stack the task should not be deleted (or
complete running) until the aiocb has been retrieved from the system via an aio_return().

The aiocb is defined in aio.h. It has the following elements:

 struct
 {
 int aio_fildes;
 off_t aio_offset;
 volatile void * aio_buf;
 size_t aio_nbytes;
 int aio_reqprio;
 struct sigevent aio_sigevent;
 int aio_lio_opcode;
 AIO_SYS aio_sys;
 } aiocb

aio_fildes
file descriptor for I/O.

VxWorks Kernel API Reference, 6.6
aioPxLib

16

aio_offset
offset from the beginning of the file where the AIO takes place. Note that performing
AIO on the file does not cause the offset location to automatically increase as in read
and write; the caller must therefore keep track of the location of reads and writes made
to the file and set aio_offset to correct value every time. AIO lib does not manage this
offset for its applications.

aio_buf
address of the buffer from/to which AIO is requested.

aio_nbytes
number of bytes to read or write.

aio_reqprio
amount by which to lower the priority of an AIO request. Each AIO request is assigned
a priority; this priority, based on the calling task's priority, indicates the desired order
of execution relative to other AIO requests for the file. The aio_reqprio member allows
the caller to lower (but not raise) the AIO operation priority by the specified value.
Valid values for aio_reqprio are in the range of zero through AIO_PRIO_DELTA_MAX.
If the value specified by aio_req_prio results in a priority lower than the lowest
possible task priority, the lowest valid task priority is used.

aio_sigevent
(optional) if nonzero, the signal to return on completion of an operation.

aio_lio_opcode
operation to be performed by a lio_listio() call; valid entries include LIO_READ,
LIO_WRITE, and LIO_NOP.

aio_sys
a Wind River Systems addition to the aiocb structure; it is used internally by the system
and must not be modified by the user.

EXAMPLES A writer could be implemented as follows:

 if ((pAioWrite = calloc (1, sizeof (struct aiocb))) == NULL)
 {
 printf ("calloc failed\en");
 return (ERROR);
 }

 pAioWrite->aio_fildes = fd;
 pAioWrite->aio_buf = buffer;
 pAioWrite->aio_offset = 0;
 strcpy (pAioWrite->aio_buf, "test string");
 pAioWrite->aio_nbytes = strlen ("test string");
 pAioWrite->aio_sigevent.sigev_notify = SIGEV_NONE;

 aio_write (pAioWrite);

 /* .
 .

1 Libraries
aioPxLib

17

1 do other work
 .
 .
 */

 /* now wait until I/O finishes */

 while (aio_error (pAioWrite) == EINPROGRESS)
 taskDelay (1);

 aio_return (pAioWrite);
 free (pAioWrite);

A reader could be implemented as follows:

 /* initialize signal handler */

 action1.sa_sigaction = sigHandler;
 action1.sa_flags = SA_SIGINFO;
 sigemptyset(&action1.sa_mask);
 sigaction (TEST_RT_SIG1, &action1, NULL);

 if ((pAioRead = calloc (1, sizeof (struct aiocb))) == NULL)
 {
 printf ("calloc failed\en");
 return (ERROR);
 }

 pAioRead->aio_fildes = fd;
 pAioRead->aio_buf = buffer;
 pAioRead->aio_nbytes = BUF_SIZE;
 pAioRead->aio_sigevent.sigev_signo = TEST_RT_SIG1;
 pAioRead->aio_sigevent.sigev_notify = SIGEV_SIGNAL;
 pAioRead->aio_sigevent.sigev_value.sival_ptr = (void *)pAioRead;

 aio_read (pAioRead);

 /*
 .
 .

 do other work
 .
 .
 */

The signal handler might look like the following:

void sigHandler
 (
 int sig,
 struct siginfo info,
 void * pContext
)
 {
 struct aiocb * pAioDone;

VxWorks Kernel API Reference, 6.6
aioPxShow

18

 pAioDone = (struct aiocb *) info.si_value.sival_ptr;
 aio_return (pAioDone);
 free (pAioDone);
 }

INCLUDE FILES aio.h

SEE ALSO POSIX 1003.1b document

aioPxShow

NAME aioPxShow – asynchronous I/O (AIO) show library

ROUTINES aioShow() – show AIO requests

DESCRIPTION This library implements the show routine for aioPxLib.

INCLUDE FILES aio.h

aioSysDrv

NAME aioSysDrv – AIO system driver

ROUTINES aioSysInit() – initialize the AIO system driver

DESCRIPTION This library is the AIO system driver. The system driver implements asynchronous I/O
with system AIO tasks performing the AIO requests in a synchronous manner. It is installed
as the default driver for AIO.

INCLUDE FILES aioSysDrv.h

SEE ALSO POSIX 1003.1b document

am79c97xVxbEnd

NAME am79c97xVxbEnd – AMD Am79c97x PCnet/PCI VxBus END driver

1 Libraries
an983VxbEnd

19

1
ROUTINES lnPciRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the AMD Am79C97x PCnet/PCI family of PCI 10/100
ethernet controllers. The Am79C97x family is fully compliant with the IEEE 802.3 10Base-T
and 100Base-T specifications.

The PCnet/PCI family encompasses several controllers with different media options. The
original Am79C970 and the Am79C970A are 10Mbps only devices capable of supporting
10baseT (TP), 10base2 (coax) and 10base5 (AUI) media. The Am79C978 supports only
1Mbps HomePNA media. The Am79C974 is a dual-function SCSI/ethernet chip which is
compatible with original Am79C970. All other devices in the family support 10/100Mbps
via an internal or external MII PHY.

BOARD LAYOUT The Am97c97x PCI devices are available in both standalone PCI card format and integrated
directly onto the system main board. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
lnPciRegister() function, which registers the driver with VxBus.

INCLUDE FILES am79c97xVxbEnd.h end.h endLib.h netBufLib.h muxLib.h

SEE ALSO vxBus, ifLib, AMD PCnet/PCI programming manuals, http://www.amd.com

an983VxbEnd

NAME an983VxbEnd – Infineon AN983B/BX VxBus END driver

ROUTINES anRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the Infineon AN983B/BX PCI 10/100 ethernet
controller. The AN983B/BX is fully compliant with the IEEE 802.3 10Base-T and 100Base-T
specifications. The controller has an embedded 10/100 PHY, with MII management
interface.

The AN983B controller is designed to be programmed much like the DEC 2114x "tulip"
family. It uses the same descriptor layout and RX and TX DMA handling scheme. It differs
from the tulip design in two major ways:

- The AN983B supports MII-based transceivers only (the 2114x supports
MII and serial PHYs)

VxWorks Kernel API Reference, 6.6
bLib

20

- The AN983B uses a simplfied RX filter scheme. The 2114x allowed for
several complex filtering schemes using the TX DMA channel to load
the multicast hash filter and/or CAM filter table, and it has a
512 bit hash filter. The AN983B's RX filter is programmed entirely
through registers, and it has only a 64 bit hash table.

Like the tulip, the AN983B supports both a linked list descriptor mode and a contiguous
block mode. In the latter mode, the next pointer field can be used as a second data buffer
pointer, which can reduce overhead by allowing two packet fragments to be transfered
using a single descriptor. This driver uses the contiguous block mode both for the reduction
in transfer overhead, and for code simplicity.

The AN983B is often available on consumer NICs, such as the Linksys LNE100TX v4.x.

Note that like the tulip on which it's based, the AN983B can only perform RX DMA to
buffers that are 32-bit aligned. Because the ethernet frame header is only 14 bytes in size, this
causes the payload to be misaligned, which can lead to unaligned accesses within the
VxWorks TCP/IP stack (which uses 32-bit loads and stores to access the address fields in
the IP header). On the x86, PPC and Coldfire architectures, these misaligned accesses can be
safely ignored, but on all other architectures, the driver is forced to copy received buffers to
fix up the alignment before passing them to the stack.

BOARD LAYOUT

EXTERNAL INTERFACE

INCLUDE FILES none

SEE ALSO vxBus, ifLib, "Infineon AN983B/BX Datasheet,
http://www.infineon.com/upload/Document/AN983B_X_DS_green_version_PQFP_1.pd
f"

bLib

NAME bLib – buffer manipulation library

ROUTINES bcmp() – compare one buffer to another
binvert() – invert the order of bytes in a buffer
bswap() – swap buffers
swab() – swap bytes
uswab() – swap bytes with buffers that are not necessarily aligned
bzero() – zero out a buffer
bcopy() – copy one buffer to another

1 Libraries
bootInit

21

1
bcopyBytes() – copy one buffer to another one byte at a time
bcopyWords() – copy one buffer to another one word at a time
bcopyLongs() – copy one buffer to another one long word at a time
bfill() – fill a buffer with a specified character
bfillBytes() – fill buffer with a specified character one byte at a time
index() – find the first occurrence of a character in a string
rindex() – find the last occurrence of a character in a string

DESCRIPTION This library contains routines to manipulate buffers of variable-length byte arrays.
Operations are performed on long words when possible, even though the buffer lengths are
specified in bytes. This occurs only when source and destination buffers start on addresses
that are both odd or both even. If one buffer is even and the other is odd, operations must
be done one byte at a time, thereby slowing down the process.

Certain applications, such as byte-wide memory-mapped peripherals, may require that
only byte operations be performed. For this purpose, the routines bcopyBytes() and
bfillBytes() provide the same functions as bcopy() and bfill(), but use only byte-at-a-time
operations. These routines do not check for null termination.

INCLUDE FILES string.h

SEE ALSO ansiString

bcm52xxPhy

NAME bcm52xxPhy – driver for Broadcom bcm52xx 10/100 ethernet PHY chips

ROUTINES bmtPhyRegister() – register with the VxBus subsystem

DESCRIPTION This file implements the vxBus driver for Broadcom bcm52xx ethernet PHY device. It
provides the initialization and functionality routines for this device.

INCLUDE FILES none

bootInit

NAME bootInit – ROM initialization module

ROUTINES romStart() – generic ROM initialization

VxWorks Kernel API Reference, 6.6
bootInit

22

DESCRIPTION This module provides a generic boot ROM facility. The target-specific romInit.s module
performs the minimal preliminary board initialization and then jumps to the C routine
romStart(). This routine, still executing out of ROM, copies the first stage of the startup
code to a RAM address and jumps to it. The next stage clears memory and then
uncompresses the remainder of ROM into the final VxWorks ROM image in RAM.

A modified version of the Public Domain zlib library is used to uncompress the VxWorks
boot ROM executable linked with it. Compressing object code typically achieves over 55%
compression, permitting much larger systems to be burned into ROM. The only expense is
the added few seconds delay while the first two stages complete.

ROM AND RAM MEMORY LAYOUT

Example memory layout for a 1-megabyte board:

 -------------- 0x00100000 = LOCAL_MEM_SIZE = sysMemTop()
 | |
 | RAM |
 | 0 filled |
 | |
 |------------| = (romInit+ROM_COPY_SIZE) or binArrayStart
 | ROM image |
 |----------- | 0x00090000 = RAM_HIGH_ADRS
 | STACK_SAVE |
 |------------|
 | | 0x00080000 = 0.5 Megabytes
 | |
 | |
 | 0 filled |
 | |
 | | 0x00001000 = RAM_ADRS & RAM_LOW_ADRS
 | |
 | | exc vectors, bp anchor, exc msg, bootline
 | |
 | |
 -------------- 0x00000000 = LOCAL_MEM_LOCAL_ADRS

 | ROM |
 | | 0xff8xxxxx = binArrayStart
 | |
 | | 0xff800008 = ROM_TEXT_ADRS
 -------------- 0xff800000 = ROM_BASE_ADRS

AUTHOR The original compression software for zlib was written by Jean-loup Gailly and Mark Adler.
See the manual pages of inflate and deflate for more information on their freely available
compression software.

INCLUDE FILES none

SEE ALSO inflate(), romInit(), and deflate

1 Libraries
bootLib

23

1bootLib

NAME bootLib – boot ROM subroutine library

ROUTINES bootStructToString() – construct a boot line
bootParamsShow() – display boot line parameters
bootParamsPrompt() – prompt for boot line parameters

DESCRIPTION This library contains routines for manipulating a boot line. Routines are provided to
construct, print, and prompt for a boot line.

When VxWorks is first booted, certain parameters can be specified, such as network
addresses, boot device, host, and start-up file. This information is encoded into a single
ASCII string known as the boot line. The boot line is placed at a known address (specified
in config.h) by the boot ROMs so that the system being booted can discover the parameters
that were used to boot the system. The boot line is the only means of communication from
the boot ROMs to the booted system.

The boot line is of the form:

bootdev(unitnum,procnum)hostname:filename e=# b=# h=# g=# u=userid pw=passwd
f=#
tn=targetname s=startupscript#rtp.vxe o=other

where:

bootdev
the boot device (required); for example, "ex" for Excelan Ethernet, "bp" for backplane.
For the backplane, this field can have an optional anchor address specification of the
form "bp=adrs" (see bootBpAnchorExtract()).

unitnum
the unit number of the boot device (0..n).

procnum
the processor number on the backplane, 0..n (required for VME boards).

hostname
the name of the boot host (required).

filename
the file to be booted (required).

e
the Internet address of the Ethernet interface. This field can have an optional subnet
mask of the form inet_adrs:subnet_mask. If DHCP is used to obtain the configuration
parameters, lease timing information may also be present. This information takes the
form lease_duration:lease_origin and is appended to the end of the field. (see
bootNetmaskExtract() and bootLeaseExtract()).

VxWorks Kernel API Reference, 6.6
bootParseLib

24

b
the Internet address of the backplane interface. This field can have an optional subnet
mask and/or lease timing information as "e".

h
the Internet address of the boot host.

g
the Internet address of the gateway to the boot host. Leave this parameter blank if the
host is on same network.

u
a valid user name on the boot host.

pw
the password for the user on the host. This parameter is usually left blank. If specified,
FTP is used for file transfers.

f
the system-dependent configuration flags. This parameter contains an or of option bits
defined in sysLib.h.

tn
the name of the system being booted

s
the name of a file to be executed as a start-up script. In addition, if a # separator is used,
this parameter can contain a list of RTPs to start.

o
"other" string for use by the application.

The Internet addresses are specified in "dot" notation (e.g., 90.0.0.2). The order of assigned
values is arbitrary.

EXAMPLE enp(0,0)host:/usr/wpwr/target/config/mz7122/vxWorks e=90.0.0.2 b=91.0.0.2
 h=100.0.0.4 g=90.0.0.3 u=bob pw=realtime f=2 tn=target
 s=host:/usr/bob/startup#/romfs/helloworld.vxe o=any_string

INCLUDE FILES bootLib.h

SEE ALSO bootConfig, bootParseLib.c, usrRtpAppInitBootline.c

bootParseLib

NAME bootParseLib – boot ROM bootline interpreter library

1 Libraries
cacheArchLib

25

1
ROUTINES bootStringToStructAdd() – interpret the boot parameters from the boot line

bootStringToStruct() – interpret the boot parameters from the boot line
bootLeaseExtract() – extract the lease information from an Internet address
bootNetmaskExtract() – extract the net mask field from an Internet address
bootBpAnchorExtract() – extract a backplane address from a device field

DESCRIPTION This library contains routines for interpreting a boot line.

INCLUDE FILES bootLib.h

SEE ALSO bootLib.c

cacheArchLib

NAME cacheArchLib – architecture-specific cache management library

ROUTINES cacheArchLibInit() – initialize the cache library
cacheArchClearEntry() – clear an entry from a cache (68K, x86)
cacheStoreBufEnable() – enable the store buffer (MC68060 only)
cacheStoreBufDisable() – disable the store buffer (MC68060 only)

DESCRIPTION This library contains architecture-specific cache library functions for the following
processor cache families: Motorola 68K, Intel x86, PowerPC, ARM, and the Solaris and
Windows simulators. Each routine description indicates which architecture families
support it. Within families, different members support different cache mechanisms; thus,
some operations cannot be performed by certain processors because they lack particular
functionalities. In such cases, the routines in this library return ERROR. Processor-specific
constraints are addressed in the manual entries for routines in this library. If the caches are
unavailable or uncontrollable, the routines return ERROR. The exception to this rule is the
68020; although the 68020 has no cache, data cache operations return OK.

The MIPS architecture family has cache-related routines in individual BSP libraries. See the
reference pages for the individual libraries and routines.

INCLUDE FILES cacheLib.h, mmuLib.h (ARM only)

SEE ALSO cacheLib, vmLib

VxWorks Kernel API Reference, 6.6
cacheAuLib

26

cacheAuLib

NAME cacheAuLib – Alchemy Au cache management library

ROUTINES cacheAuLibInit() – initialize the Au cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Alchemy Au
architecture. The Au utilizes a variable-size instruction and data cache that operates in
write-through mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheLib

NAME cacheLib – cache management library

ROUTINES cacheLibInit() – initialize the cache library for a processor architecture
cacheEnable() – enable the specified cache
cacheDisable() – disable the specified cache
cacheLock() – lock all or part of a specified cache
cacheUnlock() – unlock all or part of a specified cache
cacheFlush() – flush all or some of a specified cache
cacheInvalidate() – invalidate all or some of a specified cache
cacheClear() – clear all or some entries from a cache
cachePipeFlush() – flush processor write buffers to memory
cacheTextLocalUpdate() – synchronize the caches on local cpu only
cacheTextUpdate() – synchronize the instruction and data caches
cacheDmaMalloc() – allocate a cache-safe buffer for DMA devices and drivers
cacheDmaFree() – free the buffer acquired with cacheDmaMalloc()
cacheDrvFlush() – flush the data cache for drivers
cacheDrvInvalidate() – invalidate data cache for drivers
cacheDrvVirtToPhys() – translate a virtual address for drivers
cacheDrvPhysToVirt() – translate a physical address for drivers
cacheForeignFlush() – flush foreign data from selected cache
cacheForeignClear() – clear foreign data from selected cache
cacheForeignInvalidate() – invalidate foreign data from selected cache

1 Libraries
cacheLib

27

1
DESCRIPTION This library provides architecture-independent routines for managing the instruction and

data caches. Architecture-dependent routines are documented in the architecture-specific
libraries.

The cache library is initialized by cacheLibInit() in usrInit(). The cacheLibInit() routine
typically calls an architecture-specific initialization routine in one of the
architecture-specific libraries. The initialization routine places the cache in a known and
quiescent state, ready for use, but not yet enabled. Cache devices are enabled and disabled
by calls to cacheEnable() and cacheDisable(), respectively.

The structure CACHE_LIB in cacheLib.h provides a function pointer that allows for the
installation of different cache implementations in an architecture-independent manner. If
the processor family allows more than one cache implementation, the board support
package (BSP) must select the appropriate cache library using the function pointer
sysCacheLibInit. The cacheLibInit() routine calls the initialization function attached to
sysCacheLibInit to perform the actual CACHE_LIB function pointer initialization (see
cacheLib.h). Note that sysCacheLibInit must be initialized when declared; it need not exist
for architectures with a single cache design. Systems without caches have all NULL pointers
in the CACHE_LIB structure. For systems with bus snooping, NULLifying the flush and
invalidate function pointers in sysHwInit() improves overall system and driver
performance.

Function pointers also provide a way to supplement the cache library or attach user-defined
cache functions for managing secondary cache systems.

Parameters specified by cacheLibInit() are used to select the cache mode, either
write-through (CACHE_WRITETHROUGH) or copyback (CACHE_COPYBACK), as well as to
implement all other cache configuration features via software bit-flags. Note that
combinations, such as setting copyback and write-through at the same time, do not make
sense.

Typically, the first argument passed to cache routines after initialization is the
CACHE_TYPE, which selects the data cache (DATA_CACHE) or the instruction cache
(INSTRUCTION_CACHE).

Several routines accept two additional arguments: an address and the number of bytes.
Some cache operations can be applied to the entire cache (bytes = ENTIRE_CACHE) or to a
portion of the cache. This range specification allows the cache to be selectively locked,
unlocked, flushed, invalidated, and cleared. The two complementary routines,
cacheDmaMalloc() and cacheDmaFree(), are tailored for efficient driver writing. The
cacheDmaMalloc() routine attempts to return a "cache-safe" buffer, which is created by the
MMU and a set of flush and invalidate function pointers. Examples are provided below in
the section "Using the Cache Library."

Most routines in this library return a STATUS value of OK, or ERROR if the cache selection
is invalid or the cache operation fails.

VxWorks Kernel API Reference, 6.6
cacheLib

28

CONFIGURING VXWORKS

To use the cache library, configure VxWorks with the INCLUDE_CACHE_SUPPORT and
INCLUDE_CACHE_ENABLE components.

BACKGROUND The emergence of RISC processors and effective CISC caches has made cache and MMU
support a key enhancement to VxWorks. The VxWorks cache strategy is to maintain
coherency between the data cache and RAM and between the instruction and data caches.
VxWorks also preserves overall system performance. The product is designed to support
several architectures and board designs, to have a high-performance implementation for
drivers, and to make routines functional for users, as well as within the entire operating
system. The lack of a consistent cache design, even within architectures, has required
designing for the case with the greatest number of coherency issues (Harvard architecture,
copyback mode, DMA devices, multiple bus masters, and no hardware coherency support).

Caches run in two basic modes, write-through and copyback. The write-through mode
forces all writes to the cache and to RAM, providing partial coherency. Writing to RAM
every time, however, slows down the processor and uses bus bandwidth. The copyback
mode conserves processor performance time and bus bandwidth by writing only to the
cache, not RAM. Copyback cache entries are only written to memory on demand. A Least
Recently Used (LRU) algorithm is typically used to determine which cache line to displace
and flush. Copyback provides higher system performance, but requires more coherency
support. Below is a logical diagram of a cached system to aid in the visualization of the
coherency issues.

 +---------------+ +-----------------+ +--------------+
 | | | | | |
 | INSTRUCTION |---->| PROCESSOR |<--->| DATA CACHE | (3)
 | CACHE | | | | (copyback) |
 | | | | | |
 +---------------+ +-----------------+ +--------------+
 ^ (2) ^
 | |
 | +-----------------+ |
 | | | (1) |
 +-------------| RAM |<------------+
 | |
 +-----------------+
 ^ ^
 | |
 +-------------+ | | +-------------+
 | | | | | |
 | DMA Devices |<--+ +-->| VMEbus, etc.|
 | | | |
 +-------------+ +-------------+

The loss of cache coherency for a VxWorks system occurs in three places:

(1) data cache / RAM

(2) instruction cache / data cache

(3) shared cache lines

1 Libraries
cacheLib

29

1
A problem between the data cache and RAM (1) results from asynchronous accesses (reads
and writes) to the RAM by the processor and other masters. Accesses by DMA devices and
alternate bus masters (shared memory) are the primary causes of incoherency, which can be
remedied with minor code additions to the drivers.

The instruction cache and data cache (2) can get out of sync when the loader, the debugger,
and the interrupt connection routines are being used. The instructions resulting from these
operations are loaded into the data cache, but not necessarily the instruction cache, in which
case there is a coherency problem. This can be fixed by "flushing" the data cache entries to
RAM, then "invalidating" the instruction cache entries. The invalid instruction cache tags
will force the retrieval of the new instructions that the data cache has just flushed to RAM.

Cache lines that are shared (3) by more than one task create coherency problems. These are
manifest when one thread of execution invalidates a cache line in which entries may belong
to another thread. This can be avoided by allocating memory on a cache line boundary, then
rounding up to a multiple of the cache line size.

The best way to preserve cache coherency with optimal performance (Harvard architecture,
copyback mode, no software intervention) is to use hardware with bus snooping
capabilities. The caches, the RAM, the DMA devices, and all other bus masters are tied to a
physical bus where the caches can "snoop" or watch the bus transactions. The address cycle
and control (read/write) bits are broadcast on the bus to allow snooping. Data transfer
cycles are deferred until absolutely necessary. When one of the entries on the physical side
of the cache is modified by an asynchronous action, the cache(s) marks its entry(s) as
invalid. If an access is made by the processor (logical side) to the now invalid cached entry,
it is forced to retrieve the valid entry from RAM. If while in copyback mode the processor
writes to a cached entry, the RAM version becomes stale. If another master attempts to
access that stale entry in RAM, the cache with the valid version pre-empts the access and
writes the valid data to RAM. The interrupted access then restarts and retrieves the
now-valid data in RAM. Note that this configuration allows only one valid entry at any
time. At this time, only a few boards provide the snooping capability; therefore, cache
support software must be designed to handle incoherency hazards without degrading
performance.

The determinism, interrupt latency, and benchmarks for a cached system are exceedingly
difficult to specify (best case, worst case, average case) due to cache hits and misses, line
flushes and fills, atomic burst cycles, global and local instruction and data cache locking,
copyback versus write-through modes, hardware coherency support (or lack of), and MMU
operations (table walks, TLB locking).

USING THE CACHE LIBRARY

The coherency problems described above can be overcome by adding cache support to
existing software. For code segments that are not time-critical (loader, debugger, interrupt
connection), the following sequence should be used first to flush the data cache entries and
then to invalidate the corresponding instruction cache entries.

 cacheFlush (DATA_CACHE, address, bytes);
 cacheInvalidate (INSTRUCTION_CACHE, address, bytes);

VxWorks Kernel API Reference, 6.6
cacheLib

30

For time-critical code, implementation is up to the driver writer. The following are tips for
using the VxWorks cache library effectively.

Incorporate cache calls in the driver program to maintain overall system performance. The
cache may be disabled to facilitate driver development; however, high-performance
production systems should operate with the cache enabled. A disabled cache will
dramatically reduce system performance for a completed application.

Buffers can be static or dynamic. Mark buffers "non-cacheable" to avoid cache coherency
problems. This usually requires MMU support. Dynamic buffers are typically smaller than
their static counterparts, and they are allocated and freed often. When allocating either type
of buffer, it should be designated non-cacheable; however, dynamic buffers should be
marked "cacheable" before being freed. Otherwise, memory becomes fragmented with
numerous non-cacheable dynamic buffers.

Alternatively, use the following flush/invalidate scheme to maintain cache coherency.

 cacheInvalidate (DATA_CACHE, address, bytes); /* input buffer */
 cacheFlush (DATA_CACHE, address, bytes); /* output buffer */

The principle is to flush output buffers before each use and invalidate input buffers before
each use. Flushing only writes modified entries back to RAM, and instruction cache entries
never get modified.

Several flush and invalidate macros are defined in cacheLib.h. Since optimized code uses
these macros, they provide a mechanism to avoid unnecessary cache calls and accomplish
the necessary work (return OK). Needless work includes flushing a write-through cache,
flushing or invalidating cache entries in a system with bus snooping, and flushing or
invalidating cache entries in a system without caches. The macros are set to reflect the state
of the cache system hardware and software.

Example 1

The following example is of a simple driver that uses cacheFlush() and cacheInvalidate()
from the cache library to maintain coherency and performance. There are two buffers (lines
3 and 4), one for input and one for output. The output buffer is obtained by the call to
memalign(), a special version of the well-known malloc() routine (line 6). It returns a
pointer that is rounded down and up to the alignment parameter's specification. Note that
cache lines should not be shared, therefore _CACHE_ALIGN_SIZE is used to force
alignment. If the memory allocator fails (line 8), the driver will typically return ERROR (line
9) and quit.

The driver fills the output buffer with initialization information, device commands, and
data (line 11), and is prepared to pass the buffer to the device. Before doing so the driver
must flush the data cache (line 13) to ensure that the buffer is in memory, not hidden in the
cache. The drvWrite() routine lets the device know that the data is ready and where in
memory it is located (line 14).

More driver code is executed (line 16), then the driver is ready to receive data that the device
has placed in an input buffer in memory (line 18). Before the driver can work with the
incoming data, it must invalidate the data cache entries (line 19) that correspond to the input

1 Libraries
cacheLib

31

1
buffer's data in order to eliminate stale entries. That done, it is safe for the driver to retrieve
the input data from memory (line 21). Remember to free (line 23) the buffer acquired from
the memory allocator. The driver will return OK (line 24) to distinguish a successful from
an unsuccessful operation.

STATUS drvExample1 () /* simple driver - good performance */
 {
3: void * pInBuf; /* input buffer */
4: void * pOutBuf; /* output buffer */

6: pOutBuf = memalign (_CACHE_ALIGN_SIZE, BUF_SIZE);

8: if (pOutBuf == NULL)
9: return (ERROR); /* memory allocator failed */

11: /* other driver initialization and buffer filling */

13: cacheFlush (DATA_CACHE, pOutBuf, BUF_SIZE);
14: drvWrite (pOutBuf); /* output data to device */

16: /* more driver code */

18: cacheClear (DATA_CACHE, pInBuf, BUF_SIZE);
19: pInBuf = drvRead (); /* wait for device data */

21: /* handle input data from device */

23: free (pOutBuf); /* return buffer to memory pool */
24: return (OK);
 }

Extending this flush/invalidate concept further, individual buffers can be treated this way,
not just the entire cache system. The idea is to avoid unnecessary flush and/or invalidate
operations on a per-buffer basis by allocating cache-safe buffers. Calls to
cacheDmaMalloc() optimize the flush and invalidate function pointers to NULL, if possible,
while maintaining data integrity.

Example 2

The following example is of a high-performance driver that takes advantage of the cache
library to maintain coherency. It uses cacheDmaMalloc() and the macros
CACHE_DMA_FLUSH and CACHE_DMA_INVALIDATE. A buffer pointer is passed as a
parameter (line 2). If the pointer is not NULL (line 7), it is assumed that the buffer will not
experience any cache coherency problems. If the driver was not provided with a cache-safe
buffer, it will get one (line 11) from cacheDmaMalloc(). A CACHE_FUNCS structure (see
cacheLib.h) is used to create a buffer that will not suffer from cache coherency problems. If
the memory allocator fails (line 13), the driver will typically return ERROR (line 14) and quit.

The driver fills the output buffer with initialization information, device commands, and
data (line 17), and is prepared to pass the buffer to the device. Before doing so, the driver
must flush the data cache (line 19) to ensure that the buffer is in memory, not hidden in the

VxWorks Kernel API Reference, 6.6
cacheLib

32

cache. The routine drvWrite() lets the device know that the data is ready and where in
memory it is located (line 20).

More driver code is executed (line 22), and the driver is then ready to initiate a device
operation to read data into the buffer in memory (line 25). Before doing so, it must
invalidate the data cache entries (line 25) that correspond to the input buffer`s data in order
to eliminate stale entries. That done, it is safe for the driver to handle the input data (line
31), which the driver retrieves from memory. Remember to free the buffer (line 33) acquired
from the memory allocator. The driver will return OK (line 34) to distinguish a successful
from an unsuccessful operation.

STATUS drvExample2 (pBuf) /* simple driver - great performance */
2: void * pBuf; /* buffer pointer parameter */

 {
5: if (pBuf != NULL)
 {
7: /* no cache coherency problems with buffer passed to driver */
 }
 else
 {
11: pBuf = cacheDmaMalloc (BUF_SIZE);

13: if (pBuf == NULL)
14: return (ERROR); /* memory allocator failed */
 }

17: /* other driver initialization and buffer filling */

19: CACHE_DMA_FLUSH (pBuf, BUF_SIZE);
20: drvWrite (pBuf); /* output data to device */

22: /* more driver code */

24: CACHE_DMA_INVALIDATE (pBuf, BUF_SIZE);
25: drvStartRead (); /* start input operation */

27: /* more driver code */

29: drvWait (); /* wait for device data */

31: /* handle input data from device */

33: cacheDmaFree (pBuf); /* return buffer to memory pool */
34: return (OK);
 }

Do not use CACHE_DMA_FLUSH or CACHE_DMA_INVALIDATE without first calling
cacheDmaMalloc(), otherwise the function pointers may not be initialized correctly. Note
that this driver scheme assumes all cache coherency modes have been set before driver
initialization, and that the modes do not change after driver initialization. The
cacheFlush() and cacheInvalidate() functions can be used at any time throughout the
system since they are affiliated with the hardware, not the malloc/free buffer.

1 Libraries
cacheLib

33

1
A call to cacheLibInit() in write-through mode makes the flush function pointers NULL.
Setting the caches in copyback mode (if supported) should set the pointer to and call an
architecture-specific flush routine. The invalidate and flush macros may be NULLified if
the hardware provides bus snooping and there are no cache coherency problems.

Example 3

The next example shows a more complex driver that requires address translations to assist
in the cache coherency scheme. The previous example had a priori knowledge of the system
memory map and/or the device interaction with the memory system. This next driver
demonstrates a case in which the virtual address returned by cacheDmaMalloc() might
differ from the physical address seen by the device. It uses the
CACHE_DMA_VIRT_TO_PHYS and CACHE_DMA_PHYS_TO_VIRT macros in addition to the
CACHE_DMA_FLUSH and CACHE_DMA_INVALIDATE macros.

The cacheDmaMalloc() routine initializes the buffer pointer (line 3). If the memory
allocator fails (line 5), the driver will typically return ERROR (line 6) and quit. The driver
fills the output buffer with initialization information, device commands, and data (line 8),
and is prepared to pass the buffer to the device. Before doing so, the driver must flush the
data cache (line 10) to ensure that the buffer is in memory, not hidden in the cache. The flush
is based on the virtual address since the processor filled in the buffer. The drvWrite()
routine lets the device know that the data is ready and where in memory it is located (line
11). Note that the CACHE_DMA_VIRT_TO_PHYS macro converts the buffer's virtual address
to the corresponding physical address for the device.

More driver code is executed (line 13), and the driver is then ready to initiate a device
operation to read data into a buffer in memory (line 18). Before doing so, it must invalidate
the data cache entries (line 17) that correspond to the input buffer's data in order to eliminate
stale entries. Note the use of the CACHE_DMA_PHYS_TO_VIRT macro (line 16) on the buffer
pointer received from the device. That done, it is safe for the driver to perform the operation
(line 18) and handle the input data (line 20), which it retrieves from memory. Remember to
free (line 22) the buffer acquired from the memory allocator. The driver will return OK (line
23) to distinguish a successful from an unsuccessful operation.

STATUS drvExample3 () /* complex driver - great performance */ {
2: void * pBufP;
3: void * pBufV = cacheDmaMalloc (BUF_SIZE);

5: if (pBufV == NULL)
6: return (ERROR); /* memory allocator failed */

8: /* other driver initialization and buffer filling */

10: CACHE_DMA_FLUSH (pBufV, BUF_SIZE);
11: drvWrite (CACHE_DMA_VIRT_TO_PHYS (pBufV));

13: /* more driver code */

15: pBufP = drvLocateInputBuffer ();
16: pBufV = CACHE_DMA_PHYS_TO_VIRT (pBufP);
17: CACHE_DMA_INVALIDATE (pBufV, BUF_SIZE);

VxWorks Kernel API Reference, 6.6
cacheLib

34

18: drvRead (pBufP);

20: /* handle input data from device */

22: cacheDmaFree (pBufV); /* return buffer to memory pool */
23: return (OK);
 }

Driver Summary

The virtual-to-physical and physical-to-virtual function pointers associated with
cacheDmaMalloc() are supplements to a cache-safe buffer. Since the processor operates on
virtual addresses and the devices access physical addresses, discrepant addresses can occur
and might prevent DMA-type devices from being able to access the allocated buffer.
Typically, the MMU is used to return a buffer that has pages marked as non-cacheable. An
MMU is used to translate virtual addresses into physical addresses, but it is not guaranteed
that this will be a "transparent" translation.

When cacheDmaMalloc() does something that makes the virtual address different from the
physical address needed by the device, it provides the translation procedures. This is often
the case when using translation lookaside buffers (TLB) or a segmented address space to
inhibit caching (e.g., by creating a different virtual address for the same physical space.) If
the virtual address returned by cacheDmaMalloc() is the same as the physical address, the
function pointers are made NULL so that no calls are made when the macros are expanded.

Board Support Packages

Each board for an architecture with more than one cache implementation has the potential
for a different cache system. Hence the BSP for selecting the appropriate cache library. The
function pointer sysCacheLibInit is set to cacheXxxLibInit() ("Xxx" refers to the
chip-specific name of a library or function) so that the function pointers for that cache
system will be initialized and the linker will pull in only the desired cache library. Below is
an example of cacheXxxLib being linked in by sysLib.c. For systems without caches and for
those architectures with only one cache design, there is no need for the sysCacheLibInit
variable.

 FUNCPTR sysCacheLibInit = (FUNCPTR) cacheXxxLibInit;

For cache systems with bus snooping, the flush and invalidate macros should be NULLified
to enhance system and driver performance in sysHwInit().

 void sysHwInit ()
 {
 ...
 cacheLib.flushRtn = NULL; /* no flush necessary */
 cacheLib.invalidateRtn = NULL; /* no invalidate necessary */
 ...
 }

There may be some drivers that require numerous cache calls, so many that they interfere
with the code clarity. Additional checking can be done at the initialization stage to
determine if cacheDmaMalloc() returned a buffer in non-cacheable space. Remember that

1 Libraries
cacheR4kLib

35

1
it will return a cache-safe buffer by virtue of the function pointers. Ideally, these are NULL,
since the MMU was used to mark the pages as non-cacheable. The macros
CACHE_XXX_IS_WRITE_COHERENT and CACHE_XXX_IS_READ_COHERENT can be used to
check the flush and invalidate function pointers, respectively.

Write buffers are used to allow the processor to continue execution while the bus interface
unit moves the data to the external device. In theory, the write buffer should be smart
enough to flush itself when there is a write to non-cacheable space or a read of an item that
is in the buffer. In those cases where the hardware does not support this, the software must
flush the buffer manually. This often is accomplished by a read to non-cacheable space or a
NOP instruction that serializes the chip's pipelines and buffers. This is not really a caching
issue; however, the cache library provides a CACHE_PIPE_FLUSH macro. External write
buffers may still need to be handled in a board-specific manner.

INCLUDE FILES cacheLib.h

SEE ALSO Architecture-specific cache-management libraries (cacheXxxLib), and the VxWorks
programmer guides.

cacheR10kLib

NAME cacheR10kLib – MIPS R10000 cache management library

ROUTINES cacheR10kLibInit() – initialize the R10000 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R10000
architecture. The R10000 utilizes a variable-size instruction and data cache that operates in
write-back mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheR4kLib

NAME cacheR4kLib – MIPS R4000 cache management library

ROUTINES cacheR4kLibInit() – initialize the R4000 cache library

VxWorks Kernel API Reference, 6.6
cacheR5kLib

36

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R4000
architecture. The R4000 utilizes a variable-size instruction and data cache that operates in
write-back mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheR5kLib

NAME cacheR5kLib – MIPS R5000 cache management library

ROUTINES cacheR5kLibInit() – initialize the R5000 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R5000
architecture. The R5000 utilizes a variable-size instruction and data cache that operates in
write-back mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheR7kLib

NAME cacheR7kLib – MIPS R7000 cache management library

ROUTINES cacheR7kLibInit() – initialize the R7000 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the MIPS R7000
architecture. The R7000 utilizes a variable-size instruction and data cache that operates in
write-back mode. Cache line size also varies.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

1 Libraries
cacheTx49Lib

37

1
SEE ALSO cacheLib

cacheSh7750Lib

NAME cacheSh7750Lib – Renesas SH7750 cache management library

ROUTINES cacheSh7750LibInit() – initialize the SH7750 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Renesas SH7750,
SH7750R and SH7770 architectures. There is a 8-Kbyte instruction cache and 16-Kbyte
operand cache on SH7750 and SH7750R. The 16-Kbyte operand can be divided into 8-Kbyte
cache and 8-Kbyte memory. The enhanced cache 2-Way mode supports a 16-Kbyte
instruction cache and 32-Kbyte operand cache on SH7750R. The 32-Kbyte operand can be
divided into 16-Kbyte cache and 16-Kbyte memory. There is a 32-Kbyte instruction cache
and 32-Kbyte operand cache on SH7770. The cache 2-Way mode supports a 16-Kbyte
instruction cache and 16-Kbyte operand cache for reducing power consumption. The
operand cache operates in write-through or write-back (copyback) mode. Cache line size is
fixed at 32 bytes, and the cache address array holds physical addresses as cache tags. Cache
entries may be "flushed" by accesses to the address array in privileged mode. There is a
write-back buffer which can hold one line of cache entry, and the completion of write-back
cycle is assured by accessing to any cache through region on SH7750 and by issuing synco
instruction on SH7770.

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cacheTx49Lib

NAME cacheTx49Lib – Toshiba Tx49 cache management library

ROUTINES cacheTx49LibInit() – initialize the Tx49 cache library

DESCRIPTION This library contains architecture-specific cache library functions for the Toshiba Tx49
architecture. The Tx49 utilizes a variable-size instruction and data cache that operates in
write-back mode. The cache is four-way set associative and the library allows the cache line
size to vary.

VxWorks Kernel API Reference, 6.6
cbioLib

38

For general information about caching, see the manual entry for cacheLib.

INCLUDE FILES cacheLib.h

SEE ALSO cacheLib

cbioLib

NAME cbioLib – Cached Block I/O library

ROUTINES cbioLibInit() – Initialize CBIO Library
cbioBlkRW() – transfer blocks to or from memory
cbioBytesRW() – transfer bytes to or from memory
cbioBlkCopy() – block to block (sector to sector) transfer routine
cbioIoctl() – perform ioctl operation on device
cbioModeGet() – return the mode setting for CBIO device
cbioModeSet() – set mode for CBIO device
cbioRdyChgdGet() – determine ready status of CBIO device
cbioRdyChgdSet() – force a change in ready status of CBIO device
cbioLock() – obtain CBIO device semaphore.
cbioUnlock() – release CBIO device semaphore.
cbioParamsGet() – fill in CBIO_PARAMS structure with CBIO device parameters
cbioShow() – print information about a CBIO device
cbioDevVerify() – verify CBIO_DEV_ID
cbioWrapBlkDev() – create CBIO wrapper atop a BLK_DEV device
cbioDevCreate() – Initialize a CBIO device (Generic)

DESCRIPTION This library provides the Cached Block Input Output Application Programmers Interface
(CBIO API). Libraries such as dosFsLib, rawFsLib, and usrFdiskPartLib use the CBIO API
for I/O operations to underlying devices.

This library also provides generic services for CBIO modules. The libraries dpartCbio,
dcacheCbio, and ramDiskCbio are examples of CBIO modules that make use of these
generic services.

This library also provides a CBIO module that converts blkIo driver BLK_DEV (blkIo.h)
interface into CBIO API compliant interface using minimal memory overhead. This lean
module is known as the basic BLK_DEV to CBIO wrapper module.

CBIO MODULES AND DEVICES

A CBIO module contains code for supporting CBIO devices. The libraries cbioLib,
dcacheCbio, dpartCbio, and ramDiskCbio are examples of CBIO modules.

1 Libraries
cbioLib

39

1
A CBIO device is a software layer that provide its master control of I/O to its subordinate.
CBIO device layers typicaly reside logically below a file system and above a storage device.
CBIO devices conform to the CBIO API on their master (upper) interface.

CBIO modules provide a CBIO device creation routine used to instantiate a CBIO device.
The CBIO modules device creation routine returns a CBIO_DEV_ID handle. The
CBIO_DEV_ID handle is used to uniquely identify the CBIO device layer instance. The user
of the CBIO device passes this handle to the CBIO API routines when accessing the device.

The libraries dosFsLib, rawFsLib, and usrFdiskPartLib are considered users of CBIO
devices because they use the CBIO API on their subordinate (lower) interface. They do not
conform to the CBIO API on their master interface, therefore they are not CBIO modules.
They are users of CBIO devices and always reside above CBIO devices in the logical stack.

TYPES OF CBIO DEVICES

A "CBIO to CBIO device" uses the CBIO API for both its master and its subordinate
interface. Typically, some type of module specific I/O processing occurs during the
interface between the master and subordinate layers. The libraries dpartCbio and
dcacheCbio are examples of CBIO to CBIO devices. CBIO to CBIO device layers are
stackable. Care should be taken to assemble the stack properly. Refer to each modules
reference manual entry for recommendations about the optimum stacking order.

A "CBIO API device driver" is a device driver which provides the CBIO API as the interface
between the hardware and its upper layer. The ramDiskCbio.c RAM DISK driver is an
example of a simple CBIO API device driver.

A "basic BLK_DEV to CBIO wrapper device" wraps a subordinate BLK_DEV layer with a
CBIO API compatible layer. The wrapper is provided via the cbioWrapBlkDev() function.

The logical layers of a typical system using a CBIO RAM DISK appear:

 +--------------------+
 | Application module |
 +--------------------+ <-- read(), write(), ioctl()
 |
 +--------------------+
 | VxWorks I/O System |
 +--------------------+ <-- IOS layer iosRead,Write,ioctl
 | (iosDrvInstall rtns from dosFsLib)
 +--------------- -----------+
 | File System (DOSFS/RAWFS) |
 +---------------------------+ <-- CBIO API (cbioBlkRW, cbioIoctl, etc.)
 |
+--+
| CBIO API device driver module (ramDiskCbio.c)|
+--+
 |
 +----------+
 | Hardware |
 +----------+

VxWorks Kernel API Reference, 6.6
cbioLib

40

The logical layers of a typical system with a fixed disk using CBIO partitioning layer and a
CBIO caching layer appears:

 +--------------------+
 | Application module |
 +--------------------+ <-- read(), write(), ioctl()
 |
 +-------------------+
 | VxWorks IO System |
 +-------------------+ <-- IOS layer Read,Write, ioctl
 | (iosDrvInstall rtns from dosFsLib)
 +---------------------------+
 | File System (DOSFS/RAWFS) |
 +---------------------------+ <-- CBIO API RTNS (cbioLib.h)
 |
 +---------------------------------+
 | CBIO to CBIO device (dpartCbio) |
 +---------------------------------+ <-- CBIO API RTNS
 |
 +----------------------------------+
 | CBIO to CBIO device (dcacheCbio) |
 +----------------------------------+ <-- CBIO API RTNS
 |
 +--+
 | basic CBIO to BLK_DEV wrapper device (cbioLib) |
 +--+ <-- BLK_DEV (blkIo.h)
 |
+---+
| BLK_DEV API device driver. scsiLib, ataDrv, fdDrv,etc |
+---+
 |
 +-------------------------+
 | Storage Device Hardware |
 +-------------------------+

PUBLIC CBIO API

The CBIO API provides user access to CBIO devices. Users of CBIO devices are typically
either file systems or other CBIO devices.

The CBIO API is exposed via cbioLib.h. Users of CBIO modules include the cbioLib.h
header file. The libraries dosFsLib, dosFsFat, dosVDirLib, dosDirOldLib,
usrFdiskPartLib, and rawFsLib all use the CBIO API to access CBIO modules beneath
them.

The following functions make up the public CBIO API:

- cbioLibInit() - Library initialization routine

- cbioBlkRW() - Transfer blocks (sectors) from/to a memory buffer

- cbioBytesRW() - Transfer bytes from/to a memory buffer

- cbioBlkCopy() - Copy directly from block to block (sector to sector)

- cbioIoctl() - Perform I/O control operations on the CBIO device

1 Libraries
cbioLib

41

1
- cbioModeGet() - Get the CBIO device mode (O_RDONLY, O_WRONLY, or O_RDWR)

- cbioModeSet() - Set the CBIO device mode (O_RDONLY, O_WRONLY, or O_RDWR)

- cbioRdyChgdGet() - Determine the CBIO device ready status state

- cbioRdyChgdSet() - Force a change in the CBIO device ready status state

- cbioLock() - Obtain exclusive ownership of the CBIO device

- cbioUnlock() - Release exclusive ownership of the CBIO device

- cbioParamsGet() - Fill a CBIO_PARAMS structure with data from the CBIO device

- cbioDevVerify() - Verify valid CBIO device

- cbioWrapBlkDev() - Create CBIO wrapper atop a BLK_DEV

- cbioShow() - Display information about a CBIO device

These CBIO API functions (except cbioLibInit()) are passed a CBIO_DEV_ID handle in the
first argument. This handle (obtained from the subordinate CBIO modules device creation
routine) is used by the routine to verify the CBIO device is valid and then to perform the
requested operation on the specific CBIO device.

When the CBIO_DEV_ID passed to the CBIO API routine is not a valid CBIO handle, ERROR
will be returned with the errno set to S_cbioLib_INVALID_CBIO_DEV_ID (cbioLib.h).

Refer to the individual manual entries for each function for a complete description.

THE BASIC CBIO TO BLK_DEV WRAPPER MODULE

The basic CBIO to BLK_DEV wrapper is a minimized disk cache using simplified
algorithms. It is used to convert a legacy BLK_DEV device into as CBIO device. It may be
used standalone with solid state disks which do not have mechanical seek and rotational
latency delays, such flash cards. It may also be used in conjunction with the dpartCbio and
dcacheCbio libraries. The DOS file system dosFsDevCreate routine will call
cbioWrapBlkDev() internally, so the file system may be installed directly on top of a block
driver BLK_DEV or it can be used with cache and partitioning support.

The function cbioWrapBlkDev() is used to create the CBIO wrapper atop a BLK_DEV
device.

The functions dcacheDevCreate and dpartDevCreate also both internally use
cbioDevVerify() and cbioWrapBlkDev() to either stack the new CBIO device atop a
validated CBIO device or to create a basic CBIO to BLK_DEV wrapper as needed. The user
typically never needs to manually invoke the cbioWrapBlkDev() or cbioDevVerify()
functions.

Please note that the basic CBIO BLK_DEV wrapper is inappropriate for rotational media
without the disk caching layer. The services provided by the dcacheCbio module are more
appropriate for use on rotational disk devices and will yield superior performance when
used.

VxWorks Kernel API Reference, 6.6
cdromFsLib

42

INCLUDE FILES cbioLib.h

SEE ALSO VxWorks Kernel Programmers Guide: I/O System

cdromFsLib

NAME cdromFsLib – ISO 9660 CD-ROM read-only file system library

ROUTINES cdromFsInit() – initialize the VxWorks CD-ROM file system
cdromFsVolConfigShow() – show the volume configuration information
cdromFsVersionDisplay() – display the cdromFs version number
cdromFsVersionNumGet() – return the cdromFs version number
cdromFsDevDelete() – delete a CD-ROM filesystem (cdromFs) I/O device
cdromFsDevCreate() – create a CD-ROM filesystem (cdromFs) I/O device.

DESCRIPTION This library implements the VxWorks CD-ROM file system (cdromFs). This file system
permits the usage of standard POSIX I/O calls, e.g. open(), read(), ioctl(), and close(), to
read data from a CD-ROM, CD-R, or CD-RW disk formatted according to the ISO 9660
specification. This library supports multiple devices, concurrent access from multiple tasks,
and multiple open files.

The component INCLUDE_CDROMFS must be configured into the system to obtain the
VxWorks CD-ROM file system (cdromFs).

This file system provides access to CD file systems using any standard eXtended Block
Device (XBD). Note that the old-style block device (BLK_DEV) is no longer directly
supported by cdromFsLib.

The creation and deletion of individual instances of cdromFs file systems are typically
handled by the file system monitor (FSM). The file system monitor component
(INCLUDE_FS_MONITOR) is automatically included in the system when
INCLUDE_CDROMFS is included.

The underlying XBD driver will raise an insertion event when a CD-ROM device is
connected to the target, via a USB port for example, or when media is present in the tray.
The file system monitor will handle the insertion event and invoke the appropriate cdromFs
create routine to instantiate a cdromFs on the device.

Likewise, when the CD-ROM device is disconnected from the target, or when the media is
removed, the XBD driver will raise a removal event. This event is handled directly by
cdromFsLib, and will result in the deletion of the associated cdromFs.

As an example, assume that a target has a CD-ROM drive connected as the master device
on the primary ATA controller. In order to instantiate a CD-ROM file system (cdromFs) on
this device named "/cdrom", the INCLUDE_ATA component should be included in the

1 Libraries
cdromFsLib

43

1
system, and the FS_NAMES_ATA_PRIMARY_MASTER configuration parameter should be
set to "/cdrom".

MANUAL INSTANTIATION OF CD-ROM FILE SYSTEMS

The following steps can be followed to "manually" instantiate a CD-ROM file system. For
example, this procedure will be required if a custom XBD driver doesn't support the raising
of insertion and removal events as described above.

1. Create an XXX block device (XBD) on the physical device:

 device_t xxxXbd = xxxXbdDevCreate (...);

2. Create a CD-ROM file system (cdromFs) on the XBD device:

 CDROM_VOL_DESC_ID cdVolDescId = cdromFsDevCreate ("/cdrom", xxxXbd);

This will result in the creation of the "/cdrom" I/O device, as shown by the output of the
devs target shell command:

-> devs
drv name
 0 /null
 1 /tyCo/0
 2 /aioPipe/0x61723b98
 6 /vio
 7 /tgtsvr
 4 /cdrom
value = 0 = 0x0

The CD-ROM file system can be subsequently deleted by the following step.

1. Delete the CD-ROM file system (cdromFs)

 STATUS status = cdromFsDevDelete (cdVolDescId);

In the event that an old-style block device driver (BLK_DEV) is being utilized, the "XBD
Block Device Wrapper" can be used to translate the BLK_DEV interface to an XBD interface.
The component INCLUDE_XBD_BLK_DEV must be included in a system to obtain the "XBD
Block Device Wrapper". The following steps can be followed to "manually" instantiate a
CD-ROM using an old-style block device driver.

1. Create an XXX block device (BLK_DEV) on the physical device:

 BLK_DEV * xxxBlkDevId = xxxBlkDevCreate (...);

2. Associate an I/O device name with a block device name

 fsmNameInstall ("xxxDisk0:0", "/cdrom");

3. Create an XBD wrapper device around the BLK_DEV device:

 device_t xxxXbd = xbdBlkDevCreate (xxxBlkDevId, "xxxDisk0");

The xbdBlkDevCreate() invocation will result in the raising of an insertion event, i.e. an
explicit cdromFsDevCreate() is not required.

VxWorks Kernel API Reference, 6.6
cdromFsLib

44

ISO 9660 FILE AND DIRECTORY NAMING

The strict ISO 9660 specification allows only uppercase file names consisting of 8 characters
plus a 3 character suffix.

To accommodate users familiar with MS-DOS, cdromFsLib lets you use lowercase name
arguments to access files with names consisting entirely of uppercase characters.
Mixed-case file and directory names are accessible only if you specify their exact
case-correct names.

JOLIET EXTENSIONS FILE AND DIRECTORY NAMING

The Joliet extensions to the ISO 9660 specification are designed to handle long file names up
to 340 characters long.

File names must be case correct. The above use of lowercase characters to access files named
entirely with uppercase characters is not supported.

The Joliet extensions to cdromFsLib do support Unicode file names. Filenames and other
identifiers are encoded in 16 bit Unicode (UCS-2) on the media. These are converted to
UTF-8 by cdromFsLib before being passed back "up" to the I/O system, or before being
compared with a string passed "down" from the I/O system.

FILE AND DIRECTORY NAMING COMMON TO ISO 9660 AND THE JOLIET EXTENSIONS

To support multiple versions of the same file, the ISO 9660 specification also supports
version numbers. When specifying a file name in an open() call, you can select the file
version by appending the file name with a semicolon (;) followed by a decimal number
indicating the file version. If you omit the version number, cdromFsLib opens the latest
version of the file.

For the time being, cdromFsLib further accommodates MS-DOS users by allowing "\"
(backslash) instead of "/" in pathnames. However, the use of the backslash is discouraged
because it may not be supported in future versions of cdromFsLib.

Finally, cdromFsLib uses an 8-bit clean implementation of ISO 9660. Thus, cdromFsLib is
compatible with CDs using either Latin or Asian characters in the file names.

IOCTL CODES SUPPORTED

FIOGETNAME
Returns the file name for a specific file descriptor.

FIOLABELGET
Retrieves the volume label. This code can be used to verify that a particular volume has
been inserted into the drive.

FIOWHERE
Determines the current file position.

FIOWHERE64
Determines the current file position. This is the 64 bit version.

1 Libraries
cdromFsLib

45

1
FIOSEEK

Changes the current file position.

FIOSEEK64
Changes the current file position. This is the 64 bit version.

FIONREAD
Tells you the number of bytes between the current location and the end of this file.

FIONREAD64
Tells you the number of bytes between the current location and the end of this file. This
is the 64 bit version.

FIOREADDIR
Reads the next directory entry.

FIOUNMOUNT
Announces that the a disk has been removed (all currently open file descriptors are
invalidated).

FIOFSTATGET
Gets the file status information (directory entry data).

CDROMFS_DIR_MODE_SET
This is part of the Joliet extensions. It sets the directory mode to the ioctl() arg value.
That controls whether a file is opened with or without the Joliet extensions. Settings
MODE_ISO9660, MODE_JOLIET, and MODE_AUTO do not use Joliet, use Joliet, or try
opening the directory first without Joliet and then with Joliet, respectively.

This ioctl() unmounts the file system. Thus any open file descriptors are marked
obsolete.

CDROMFS_DIR_MODE_GET
This is part of the Joliet extensions. It gets and returns the directory mode set by
CDROMFS_DIR_MODE_SET.

CDROMFS_STRIP_SEMICOLON
This sets the readdir() strip semicolon setting to FALSE if arg is 0, and TRUE otherwise.
If TRUE, readdir() removes the semicolon and following version number from the
directory entries returned.

CDROMFS_GET_VOL_DESC
This returns the primary or supplementary volume descriptor by which the volume is
mounted in arg. arg must be type T_ISO_PVD_SVD_ID as defined in cdromFsLib.h.
The result is the volume descriptor adjusted for the endianness of the processor, not the
raw volume descriptor from the CD. The result is directly usable by the processor. The
result also includes some information not in the volume descriptor, for example which
volume descriptor is in-use.

CAVEATS The VxWorks CD-ROM file system does not support CD sets containing multiple disks.

VxWorks Kernel API Reference, 6.6
clockLib

46

INCLUDE FILES cdromFsLib.h

SEE ALSO ioLib, ISO 9660 Specification, Joliet extension Specification

clockLib

NAME clockLib – clock library (POSIX)

ROUTINES clock_getres() – get the clock resolution (POSIX)
clock_setres() – set the clock resolution
clock_gettime() – get the current time of the clock (POSIX)
clock_settime() – set the clock to a specified time (POSIX)
clock_nanosleep() – high resolution sleep with specifiable clock

DESCRIPTION This library provides a clock interface, as defined in the IEEE standard, POSIX 1003.1b.

A clock is a software construct that keeps time in seconds and nanoseconds. The clock has
a simple interface with three routines: clock_settime(), clock_gettime(), and
clock_getres(). The non-POSIX routine clock_setres() that was provided so that clockLib
could be informed if there were changes in the system clock rate is no longer necessary. This
routine is still present for backward compatibility, but does nothing.

Times used in these routines are stored in the timespec structure:

struct timespec
 {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds (0 -1,000,000,000) */
 };

IMPLEMENTATION The supported clock_id values are CLOCK_REALTIME, CLOCK_MONOTONIC and
CLOCK_THREAD_CPUTIME_ID. Conceivably, additional "virtual" clocks could be
supported, or support for additional auxiliary clock hardware (if available) could be added.

CONFIGURATION To use the POSIX clock library, configure VxWorks with the INCLUDE_POSIX_CLOCKS
component.

INCLUDE FILES timers.h

SEE ALSO IEEE, the VxWorks programmer guides, and, POSIX 1003.1b documentation.

1 Libraries
cnsLib

47

1cnsCompLib

NAME cnsCompLib – Media type comp library

ROUTINES cnsCompLibInit() – Initialize the CNS COMP library.

DESCRIPTION This library is provided to support CNS media type COMP: Connection-Oriented Message
Passing protocol which provides a fast method for transferring message across memory
boundaries on a single node.

INCLUDE FILES none

cnsLib

NAME cnsLib – Component notification system library

ROUTINES cnsDefaultMediaTypeSet() – Set the default media type.
cnsMediumTypeNext() – Return the name of the media type next in the list.
cnsAppRegister() – Registers an application with the CNS library.
cnsOpen() – Open or create and open named communication medium for read/write.
cnsMsgEncode() – Encode a message as understood by CNS.
cnsRead() – Read from a communication medium.
cnsWrite() – Write to a communication medium.
cnsClose() – Close or create and open named communication medium for read/write.
cnsMediaRegister() – Registers a communication media with the CNS.
cnsLibInit() – Initialize the CNS library.
cnsMediaTypeRemove() – Remove a media type from an application's media list.

DESCRIPTION The component notification system provides a means by which components communicate
with each other to exchange events and status information at runtime. Since communicating
components could be running in different spaces or in different task contexts or even on
different targets, and also on different operating systems, the CNS allows for the
configuration of the media type and for distributed messaging services.

cnsLib defines two important publicly accessible structures: cnsMediaId_t and
cnsMediaInfo_t. Both structures are defined in cnsLib.h and are described below:

typedef struct
{
 char * pName; /* Identifies the media to be used */
 long mediaTypeId; /* Media Type - returned by cnsOpen() */
 long connId; /* Connection ID - returned by cnsOpen */
} cnsMediaId_t;

VxWorks Kernel API Reference, 6.6
cnsLib

48

Members of cnsMediaId_t are used to identify the media being used during open/close,
and read/write accesses.

pName specifies the name of the media together with the address and the name of the
component to which the media is bound. The below example illustrates how pName can be
used:

cnsOpen (&mediaId, TRUE);

'mediaId can take one of the following forms

mediaId.compInfo = "compInfo"; /* Caller assumed to be local.
 Use registered local API call */
mediaId.compInfo = "local:/compInfo"; /* Local caller.
 Use registered local API call */
mediaId.compInfo = "/compInfo"; /* Caller intra-target.
 Use default intra-target media */
mediaId.compInfo = "comp:/compInfo"; /* Use the "comp" media */

mediaId.compInfo = "tipc:/<tipcAddress>/compInfo"
 /* External caller using the tipc
 media. */
mediaId.compInfo = "tcpip:/<IP-Address>/compInfo"
 /* External caller using the tipc
 media. */

connId is returned by cnsOpen() and it identifies a specific connection via the media.

typedef struct
{
 char * pName;
 CNS_OPEN_FUNCPTR openFunc;
 CNS_READ_FUNCPTR readFunc;
 CNS_WRITE_FUNCPTR writeFunc;
 CNS_CLOSE_FUNCPTR closeFunc;
 CNS_ACCEPT_FUNCPTR acceptFunc;
 CNS_IOCTL_FUNCPTR ioctlFunc;
 CNS_CONN_VALID_FUNCPTR connIsValid;

} cnsMediaInfo_t;

Members of the cnsMediaInfo_t structure represent the information passed when
registering the communication media.

pName identifies the media type.

openFunc is a pointer to the routine to open the media.

readFunc is a pointer to the routine used to read from the media.

writeFunc is a pointer to the routine to wtite to the media.

closeFunc is a pointer to the routine to close the media.

INCLUDE FILES cnsLib.h

1 Libraries
coreDumpLib

49

1coreDumpHookLib

NAME coreDumpHookLib – core dump hook library

ROUTINES coreDumpCreateHookAdd() – add a routine to be called at every core dump create
coreDumpCreateHookDelete() – delete a previously added core dump create routine

DESCRIPTION This library provides routines for adding extensions to the VxWorks core dump facility. To
allow core dump-related facilities to be added to the system without modifying the core
dump library, the core dump library provides call-outs every time a core dump is created.
The call-outs allow additional routines, or "hooks" to be invoked whenever this event occur.
Those routines can be used to add additional core dump memory filters or to dump
additional areas of memory within core dump. Note that those hooks will be called before
VxWorks memory is stored within core dump. If one of the core dump creation hooks return
an error, the core dump generation is aborted.

The hook management routines below allow hooks to be dynamically added to and deleted
from the current lists of create hooks:

coreDumpCreateHookAdd()
Add a routine to be called when a core dump is created.

coreDumpCreateHookDelete()
Delete a routine from core dump create hook list that was previously added with
coreDumpCreateHookAdd()

CONFIGURATION The core dump hook library is configured in VxWorks whenever core dump facility is
included. The maximum number of hooks that can be added is configured by the
CORE_DUMP_MAX_HOOKS parameter.

INCLUDE FILES coreDumpLib.h

SEE ALSO coreDumpLib, coreDumMemFilterLib, coreDumpShow, the VxWorks Kernel
programmer's guide.

coreDumpLib

NAME coreDumpLib – core dump library

ROUTINES coreDumpUsrGenerate() – generate a user (on-demand) core dump
coreDumpMemDump() – dump an area of memory in VxWorks core dump
coreDumpDevFormat() – format the core dump device

VxWorks Kernel API Reference, 6.6
coreDumpLib

50

DESCRIPTION This library provides the interfaces to the VxWorks Core Dump feature.

The VxWorks Core Dump is an optional feature of the VxWorks kernel that provides the
ability to generate a core dump than can be analyzed later by host tools. VxWorks kernel
core dumps can be generated in the following situations:

- Fatal System Exception: When an exception occurs during kernel initialization, at
interrupt level, or while in VxWorks scheduler. This kind of exception usually causes a
system reboot.

- Kernel Panic situations: Unrecoverable situation that is detected by the kernel itself.
This kind of error usually causes a system reboot.

- Kernel Task Level Exception: When an exception occurs in a kernel task, but is not fatal
to the system (not leading to a target reboot).

- User core dump: on demand user core dump.

CONFIGURATION To enable VxWorks core dump support, configure VxWorks with the
INCLUDE_CORE_DUMP component.

CORE DUMP SUPPORT CONFIGURATION

By default, the kernel core dump is configured to generate core dumps to persistent
memory. The size of the persistent memory reserved for the core dump storage is defined
using CORE_DUMP_MEM_REGION_SIZE parameter. By default, the
CORE_DUMP_MEM_REGION_SIZE parameter is set to use all the remaining persistent
memory, but it can be adjusted according to your configuration.

The persistent memory must be increased to add the memory core dump storage area. Note
that increasing PM_RESERVED_MEM reduces the size of memory available for VxWorks
execution, so you must make sure that it remains enough memory for VxWorks and
application(s). The pmShow() routine can be used to check if the persistent memory
configuration is correct:

-> pmShow
Arena base address: 0x62000000
Arena raw size: 0x06000000
Arena data size: 0x05ffe000
Arena free space: 0x00000000
Region 0 [edrErrorLog]
 offset: 0x00002000
 size: 0x00080000
 address: 0x62002000
Region 1 [CoreDumpStorage]
 offset: 0x00082000
 size: 0x05f7e000
 address: 0x62082000
value = 0 = 0x0
->

1 Libraries
coreDumpLib

51

1
CORE DUMP COMPRESSION

The core dump facility provides two core dump compression methods: An RLE based
compression which can be added by selecting INCLUDE_CORE_DUMP_COMPRESS_RLE
component (Default compression method). This algorithm has the advantage of being faster
than the other method, but it provides lower compression rate. The other compression
method is based on ZLIB, and can be added by selecting
INCLUDE_CORE_DUMP_COMPRESS component. The Zlib compression level can be
specified using CORE_DUMP_COMPRESSION_LEVEL parameter.

CORE DUMP AUTOMATIC GENERATION

By default, when core dump support is included, core dumps will be generated for the
exceptions that are fatal to the system (Leading to a target reboot). This facility can be
disabled by setting FATAL_SYSTEM_CORE_DUMP_ENABLE parameter to FALSE.

By default, the exceptions that are not fatal to the system do not generates core dumps. This
feature can be enabled by setting KERNEL_APPL_CORE_DUMP_ENABLE parameter to TRUE.

CORE DUMP CHECKSUMING FACILITY

The core dump checksuming facility can be used to verify that a core dump has not been
corrupted on device after its generation. To enable the core dump checksum generation the
CORE_DUMP_CKSUM_ENABLE parameter must be set to TRUE. The core dump checksum
can then be verified using coreDumpInfoGet() or coreDumpShow() routines.

CONFIGURING THE GENERIC RAW DEVICE STORAGE LAYER

It is possible to configure core dump support to store core dump in devices like flash devices
or ATA disks. In order to use this kind of device, you must include the
INCLUDE_CORE_DUMP_RAW_DEV component and provide a driver to access this device.
For more information, please refer to the Wind River Diagnostic Programmer's Guide.

CORE DUMP STORAGE DEVICE FORMATING

Before being able to generate core dumps, the core dump storage device must be formatted.
This must be done using coreDumpDevFormat() routine. If the
INCLUDE_CORE_DUMP_SHOW component is included, the coreDumpShow() routine can
then be used to display information on the generated core dumps.

CORE DUMP RETRIEVAL

The core dump can be retrieved using the following set of APIs:

coreDumpIsAvailable()
is a core dump available for retrieval

coreDumpNextGet()
get the next core dump on device

coreDumpInfoGet()
get information on a core dump

VxWorks Kernel API Reference, 6.6
coreDumpLib

52

coreDumpOpen()
open an existing core dump for retrieval

coreDumpClose()
close a core dump

coreDumpRead()
read from a core file

coreDumpCopy()
copy a core dump to the given path

INCLUDE FILES coreDumpLib.h

ERRNOS Routines from this library can return the following core dump specific errnos:

S_coreDumpLib_CORE_DUMP_COMPRESSION_ERROR
There was an error while compressing core dump image

S_coreDumpLib_CORE_DUMP_DEVICE_READ_ERROR
There was an error reading from core dump device.

S_coreDumpLib_CORE_DUMP_DEVICE_WRITE_ERROR
There was an error writing to core dump device.

S_coreDumpLib_CORE_DUMP_DEVICE_ERASE_ERROR
There was an error erasing the core dump device.

S_coreDumpLib_CORE_DUMP_DEVICE_OPEN_ERROR
There was an error opening a core dump on core dump device.

S_coreDumpLib_CORE_DUMP_DEVICE_CLOSE_ERROR
There was an error closing a core dump on core dump device.

S_coreDumpLib_CORE_DUMP_DEVICE_NOT_INITIALIZED
Core dump storage device is not initialized

S_coreDumpLib_CORE_DUMP_DEVICE_TOO_SMALL
Core dump storage device is full or too small

S_coreDumpLib_CORE_DUMP_GENERATE_ALREADY_RUNNING
Core dump generator is already running.

S_coreDumpLib_CORE_DUMP_GENERATE_NOT_RUNNING
Core dump generator is not running

S_coreDumpLib_CORE_DUMP_INVALID_ARGS
Invalid arguments was provided to core dump interface

S_coreDumpLib_CORE_DUMP_INVALID_DEVICE
Device provided to core dump library is not valid.

S_coreDumpLib_CORE_DUMP_STORAGE_NOT_FORMATED
Core dump storage is not formatted

1 Libraries
coreDumpMemFilterLib

53

1
S_coreDumpLib_CORE_DUMP_TOO_MANY_CORE_DUMP

Too many core dumps are already stored in core dump storage

Note that other errnos, not listed here, may come from libraries internally used by the core
dump library.

SEE ALSO coreDumpShow, coreDumpHookLib, coreDumpMemFilterLib, coreDumpUtilLib, Wind
River Diagnostic Programmer's Guide

coreDumpMemFilterLib

NAME coreDumpMemFilterLib – core dump memory filtering library

ROUTINES coreDumpMemFilterAdd() – add a memory region filter
coreDumpMemFilterDelete() – delete a memory region filter

DESCRIPTION This library provides the interface to the VxWorks core dump memory filtering facility.

The VxWorks core dump memory filtering allows a user to avoid dumping an area of
memory in the core dump. This is useful to limit the size of a generated core dump by
removing useless information.

A VxWorks core dump memory filter can be added either at VxWorks startup time or
during core dump generation using VxWorks core dump creation hooks.

CONFIGURATION The VxWorks core dump memory filtering facility is included whenever VxWorks core
dump support is included.

The number of core dump memory filter than can be added is limited by the value of
CORE_DUMP_MEM_FILTER_MAX that can be set at build time. The default value for this
parameter is 10.

INCLUDE FILES coreDumpLib.h

ERRNOS Routines from this library can return the following core dump specific errnos:

S_coreDumpLib_CORE_DUMP_FILTER_TABLE_FULL
Core dump memory filter table is full

S_coreDumpLib_CORE_DUMP_FILTER_NOT_FOUND
Filter not found in core dump filter table

Note that other errnos, not listed here, may come from libraries internally used by the core
dump library.

SEE ALSO coreDumpLib, coreDumpHookLib, VxWorks Kernel Programmer's Guide

VxWorks Kernel API Reference, 6.6
coreDumpShow

54

coreDumpShow

NAME coreDumpShow – core dump show routines

ROUTINES coreDumpShow() – display information on core dumps
coreDumpDevShow() – display information on core dump device

DESCRIPTION This library provides routines to show VxWorks core dump related information such as
generated core dumps available on the core dump storage device and information o the core
dump storage device itself.

CONFIGURATION The routines in this library are included if the INCLUDE_CORE_DUMP_SHOW component is
configured into VxWorks.

INCLUDE FILES coreDumpLib.h

SEE ALSO coreDumpLib, VxWorks Kernel Programmer's Guide

coreDumpUtilLib

NAME coreDumpUtilLib – core dump utility library

ROUTINES coreDumpIsAvailable() – is a core dump available for retrieval
coreDumpNextGet() – get the next core dump on device
coreDumpInfoGet() – get information on a core dump
coreDumpOpen() – open an existing core dump for retrieval
coreDumpClose() – close a core dump
coreDumpRead() – read from a core file
coreDumpCopy() – copy a core dump to the given path

DESCRIPTION This library provides some core dump utilities to manipulate core dumps available on core
dump storage device.

INFORMATION ROUTINES

The coreDumpIsAvailable() routine can be used to determine if at least one core dump is
available for retrieval. The list of core dumps available on device can be parsed using
coreDumpNextGet(), and coreDumpInfoGet() can be used to get information on each
core dump.

1 Libraries
cplusLib

55

1
RETRIEVAL ROUTINES

If a file system visible from Wind River development tools is available on your VxWorks
system, then coreDumpCopy() routine can be used to copy the specified core dump or all
core dumps to a given directory. If this file system is not available, the coreDumpOpen(),
coreDumpRead() and coreDumpClose() routines can be used to read core dumps and
transfer them using your prefered method.

INCLUDE FILES coreDumpLib.h

ERRNOS Routines from this library can return the following core dump specific errnos:

S_coreDumpLib_CORE_DUMP_INVALID_ARGS
Invalid arguments was provided to core dump interface

S_coreDumpLib_CORE_DUMP_INVALID_CORE_DUMP
Accessed core dump is invalid or corrupted

S_coreDumpLib_CORE_DUMP_PATH_TOO_LONG
Core dump copy path is too long.

S_coreDumpLib_CORE_DUMP_STORAGE_NOT_FORMATED
Device provided to core dump library is not valid.

Note that other errnos, not listed here, may come from libraries internally used by the core
dump library.

SEE ALSO coreDumpLib, coreDumpShow, coreDumpHookLib, coreDumpMemFilterLib, VxWorks
Kernel Programmer's Guide

cplusLib

NAME cplusLib – basic run-time support for C++

ROUTINES cplusCallNewHandler() – call the allocation failure handler (C++)
cplusCtors() – call static constructors (C++)
cplusCtorsLink() – call all linked static constructors (C++)
cplusDemanglerSet() – change C++ demangling mode (C++)
cplusDemanglerStyleSet() – change C++ demangling style (C++)
cplusDtors() – call static destructors (C++)
cplusDtorsLink() – call all linked static destructors (C++)
cplusXtorGet() – get the c++ Xtors strategy
cplusLibInit() – initialize the C++ library (C++)
cplusXtorSet() – change C++ static constructor calling strategy (C++)
operator_delete() – default run-time support for memory deallocation (C++)
operator_new() – default run-time support for operator new (C++)

VxWorks Kernel API Reference, 6.6
cpuPwrLightLib

56

operator_new() – default run-time support for operator new (nothrow) (C++)
operator_new() – run-time support for operator new with placement (C++)
set_new_handler() – set new_handler to user-defined function (C++)
set_terminate() – set terminate to user-defined function (C++)

DESCRIPTION This library provides run-time support and shell utilities that support the development of
VxWorks applications in C++. The run-time support can be broken into three categories:

- Support for C++ new and delete operators.

- Support for initialization and cleanup of static objects.

Shell utilities are provided for:

- Resolving overloaded C++ function names.

- Hiding C++ name mangling, with support for terse or complete name demangling.

- Manual or automatic invocation of static constructors and destructors.

The usage of cplusLib is more fully described in the "VxWorks Kernel Programmer's Guide:
C++ Development."

INCLUDE FILES none

SEE ALSO "VxWorks Kernel Programmer's Guide: C++ Development"

cpuPwrLightLib

NAME cpuPwrLightLib – light power manager library (x86, PPC and VxSim)

ROUTINES cpuPwrMgrEnable() – Set the CPU light power management to ON/OFF
cpuPwrMgrIsEnabled() – Get the CPU power management status

DESCRIPTION This module provides a light CPU power manager for the x86, PPC and VxSim CPU
architectures. The windPwrLib library provides similar capability for ARM. The
vxPowerModeSet() and vxPowerModeGet() APIs of the vxLib library provide similar
functionality for SH.

The light power manager allows a kernel application to control whether or not the CPU is
put in a non-executing state when the VxWorks kernel becomes idle. A non-executing state
is a state where the CPU stops fetching and executing instructions. It is often referred to as
a sleep state. By putting the CPU to sleep when there are no ISRs to process or tasks to
dispatch the light power manager effectively reduces the power consumption of the CPU.
The behaviour of this power manager is the same as the power management scheme
present in previous versions of VxWorks. For this release of VxWorks the light power

1 Libraries
cpuPwrLightLib

57

1
manager is only available for Pentium processors. Power management for other processors
continues to be provided by libraries that exist in previous versions of VxWorks.

This module contains two callable APIs. cpuPwrMgrEnable() is used to enable and disable
the power manager. When enabled the power manager puts the CPU in the C1 state when
the VxWorks kernel becomes idle. The "C1 state" is a term borrowed from the Advance
Configuration and Power Interface (ACPI) specification. It is a non-executing state. Refer
to the VxWorks Kernel Programmer's guide for more details on this subject. When the CPU
is in a non-executing state, only an interrupt or another type of asynchronous exception can
typically wake up the CPU. Details regarding the events that cause a CPU to wake up and
the latency associated with this process can be found in the relevant processor user's
manual. The other callable API is cpuPwrMgrIsEnabled(). This routine allows the caller
to determine the state (enabled/disabled) of the lite power manager.

Kernel applications wishing to migrate from the vxPowerModeSet() and
vxPowerModeGet() API to the API provided by this module can do so in the following
manner:

- Replace calls to vxPowerModeSet(VX_POWER_MODE_DISABLE) with
cpuPwrMgrEnable(FALSE).

- Replace calls to vxPowerModeSet(VX_POWER_MODE_AUTOHALT) with
cpuPwrMgrEnable(TRUE).

- Replace calls to vxPowerModeGet() with cpuPwrMgrIsEnabled(). Note that the
return value for these two routines are not the same.

The light power manager is configured into VxWorks using either of the following
methods:

Using Workbench
With the kernel configurator include the INCLUDE_CPU_PWR_MGMT component
under the FOLDER_CPU_PWR_MGMT folder and select the
INCLUDE_CPU_LIGHT_PWR_MGR from the SELECT_CPU_PWR_MGR selection.

Using the vxprj Command Line Tool
Use the add command to include the INCLUDE_CPU_LIGHT_PWR_MGR component.

This power manager handles the following event:

CPU_PWR_EVENT_IDLE_ENTER
Power manager does not handle the event directly. It simply tells the framework to set
the power state of the CPU to cpuPwrC1State when the kernel is idle.

The following power management events are not handled by this power manager:

CPU_PWR_EVENT_INT_ENTER
CPU_PWR_EVENT_INT_EXIT
CPU_PWR_EVENT_IDLE_EXIT
CPU_PWR_EVENT_TASK_SWITCH
CPU_PWR_EVENT_CPU_UTIL
CPU_PWR_EVENT_THRES_CROSS

VxWorks Kernel API Reference, 6.6
cpuPwrUtilLib

58

CPU_PWR_EVENT_PRIORITY_CHANGE

INCLUDE FILES cpuPwrLib.h, cpuPwrMgr.h

SEE ALSO windPwrLib, vxLib, VxWorks Programmer's Guide

cpuPwrUtilLib

NAME cpuPwrUtilLib – utilization-based CPU power manager (x86 only)

ROUTINES

DESCRIPTION This library provides a CPU-utilization based CPU power manager for the x86 CPU
architecture. This power manager monitors CPU utilization and adjusts the performance
state of the silicon to keep the CPU utilization between a low and high threshold.
Depending on the hardware, this is achieved by modifying the operating frequency and/or
voltage of the processor.

There are no callable APIs provided by this library. To make use of this power manager
simply configure it into VxWorks using either of the following methods:

Using Workbench
With the kernel configurator include the INCLUDE_CPU_PWR_MGMT component
under the FOLDER_CPU_PWR_MGMT folder and select the
INCLUDE_CPU_UTIL_PWR_MGR from the SELECT_CPU_PWR_MGR selection.

Using the vxprj Command Line Tool
Use the add command to include the INCLUDE_CPU_UTIL_PWR_MGR component.

The low and high CPU utilization thresholds are defined using the CPU_PWR_DOWN_UTIL
and CPU_PWR_UP_UTIL configuration parameters of the INCLUDE_CPU_UTIL_PWR_MGR
component.

PERFORMANCE CONSIDERATIONS

A non-negligeable amount of processing is required for this power manager to monitor the
CPU-utilization of the system. This may cause performance degradation that is
unacceptable for some systems. Users may want to consider using the light power manager
for performance critical systems. See reference entry for cpuPwrLightLib for more
information.

SMP CONSIDERATIONS

This library is not supported on VxWorks SMP

1 Libraries
dbgArchLib

59

1
INCLUDE FILES cpuPwrLib.h

SEE ALSO cpuPwrLightLib, VxWorks Programmmer's Guide

cpuset

NAME cpuset – cpuset_t type manipulation macros

ROUTINES CPUSET_SET() – set a CPU in a CPU set
CPUSET_SETALL() – set all CPUs in a CPU set
CPUSET_SETALL_BUT_SELF() – set all CPUs except self in CPU set
CPUSET_CLR() – clear a CPU from a CPU set
CPUSET_ZERO() – clear all CPUs from a CPU set
CPUSET_ISSET() – determine if a CPU is set in a CPU set
CPUSET_ISZERO() – determine if all CPUs are cleared from a CPU set
CPUSET_ATOMICSET() – atomically set a CPU in a CPU set
CPUSET_ATOMICCLR() – atomically clear a CPU from a CPU set
CPUSET_ATOMICCOPY() – atomically copy a CPU set value

DESCRIPTION This module provides a set of macros to manipulate cpuset_t variables. These are opaque
variables and must therefore be read and written to using the macros in this module. The
cpuset_t type variable is used to identify CPUs in a set of CPUs. It is used in a number of
VxWorks SMP APIs.

INCLUDE FILES cpuset.h

SEE ALSO vxCpuLib

dbgArchLib

NAME dbgArchLib – architecture-dependent debugger library

ROUTINES a0() – return the contents of register a0 (also a1 - a7) (MC680x0)
d0() – return the contents of register d0 (also d1 - d7) (MC680x0)
sr() – return the contents of the status register (SH)
dbgBpTypeBind() – bind a breakpoint handler to a breakpoint type (MIPS R3000, R4000,
R4650)
edi() – return the contents of register edi (also esi - eax) (x86)
eflags() – return the contents of the status register (x86)

VxWorks Kernel API Reference, 6.6
dbgArchLib

60

r0() – return the contents of register r0 (also r1 - r14) (ARM)
cpsr() – return the contents of the current processor status register (ARM)
psrShow() – display the meaning of a specified PSR value, symbolically (ARM)
r0() – return the contents of general register r0 (also r1-`r15') (SH)
sr() – return the contents of control register sr (also gbr, vbr) (SH)
mach() – return the contents of system register mach (also macl, pr) (SH)
g0() – return the contents of register g0 (also g1-g7) (SimSolaris)
o0() – return the contents of register o0 (also o1-o7) (SimSolaris)
l0() – return the contents of register l0 (also l1-l7) (SimSolaris)
i0() – return the contents of register i0 (also i1-i7) (SimSolaris)
npc() – return the contents of the next program counter (SimSolaris)
psr() – return the contents of the processor status register (SimSolaris)
wim() – return the contents of the window invalid mask register (SimSolaris)
y() – return the contents of the y register (SimSolaris)
edi() – return the contents of register edi (also esi - eax) (x86/SimNT)
eflags() – return the contents of the status register (x86/SimNT)

DESCRIPTION This module provides architecture-specific support functions for dbgLib. It also includes
user-callable functions for accessing the contents of registers in a task's TCB (task control
block). These routines include:

MIPS:
dbgBpTypeBind() - bind a breakpoint handler to a breakpoint type

x86/SimNT:
edi() - eax() - named register values
eflags() - status register value

SH:
r0() - r15() - general registers (r0 - r15)
sr() - status register (sr)
gbr() - global base register (gbr)
vbr() - vector base register (vbr)
mach() - multiply and accumulate register high (mach)
macl() - multiply and accumulate register low (macl)
pr() - procedure register (pr)

ARM:
r0() - r14() - general-purpose registers (r0 - r14)
cpsr() - current processor status reg (cpsr)
psrShow() - psr value, symbolically

SimSolaris:
g0() - g7() - global registers (g0 - g7)
o0() - o7() - out registers (o0 - o7, note lower-case "o")
l0() - l7() - local registers (l0 - l7, note lower-case "l")
i0() - i7() - in registers (i0 - i7)
npc() - next program counter (npc)
psr() - processor status register (psr)
wim() - window invalid mask (wim)

1 Libraries
dbgLib

61

1

NOTE The routine pc(), for accessing the program counter, is found in usrLib.

INCLUDE FILES none

SEE ALSO dbgLib

dbgLib

NAME dbgLib – shell debugging facilities

ROUTINES dbgInit() – initialize the shell debugging package
dbgHelp() – display debugging help menu
b() – set or display breakpoints
e() – set or display eventpoints (WindView)
bh() – set a hardware breakpoint
bd() – delete a breakpoint
bdall() – delete all breakpoints
c() – continue from a breakpoint
cret() – continue until the current subroutine returns
s() – single-step a task
so() – single-step, but step over a subroutine
l() – disassemble and display a specified number of instructions
tt() – display a stack trace of a task

DESCRIPTION This library contains VxWorks's primary interactive debugging routines, which provide the
following facilities:

- task breakpoints
- task single-stepping
- symbolic disassembly
- symbolic task stack tracing

In addition, dbgLib provides the facilities necessary for enhanced use of other VxWorks
functions, including:

- enhanced shell abort
- exception handling (via tyLib and excLib)

The facilities of excLib are used by dbgLib to support breakpoints, single-stepping, and
additional exception handling functions.

y() - y register

VxWorks Kernel API Reference, 6.6
dbgLib

62

INITIALIZATION The debugging facilities provided by this module are optional. In the standard VxWorks
development configuration as distributed, the debugging package is included. The
configuration macro is INCLUDE_DEBUG. When defined, it enables the call to dbgInit() in
the VxWorks initialisation task. The dbgInit() routine initializes dbgLib and must be made
before any other routines in the module are called.

BREAKPOINTS Use the routine b() or bh() to set breakpoints. Breakpoints can be set to be hit by a specific
task or all tasks. Multiple breakpoints for different tasks can be set at the same address.
Clear breakpoints with bd() and bdall().

When a task hits a breakpoint, the task is suspended and a message is displayed on the
console. At this point, the task can be examined, traced, deleted, its variables changed, etc.
If you examine the task at this point (using the i() routine), you will see that it is in a
suspended state. The instruction at the breakpoint address has not yet been executed.

To continue executing the task, use the c() routine. The breakpoint remains until it is
explicitly removed.

EVENTPOINTS (WINDVIEW)

When WindView is installed, dbgLib supports eventpoints. Use the routine e() to set
eventpoints. Eventpoints can be set to be hit by a specific task or all tasks. Multiple
eventpoints for different tasks can be set at the same address.

When a task hits an eventpoint, an event is logged and is displayed by VxWorks kernel
instrumentation.

You can manage eventpoints with the same facilities that manage breakpoints: for example,
unbreakable tasks (discussed below) ignore eventpoints, and the b() command (without
arguments) displays eventpoints as well as breakpoints. As with breakpoints, you can clear
eventpoints with bd() and bdall().

UNBREAKABLE TASKS

An unbreakable task ignores all breakpoints. Tasks can be spawned unbreakable by
specifying the task option VX_UNBREAKABLE. Tasks can subsequently be set unbreakable
or breakable by resetting VX_UNBREAKABLE with taskOptionsSet(). Several VxWorks
tasks are spawned unbreakable, such as the shell, the exception support task excTask(), and
several network-related tasks.

DISASSEMBLER AND STACK TRACER

The l() routine provides a symbolic disassembler. The tt() routine provides a symbolic
stack tracer.

SHELL ABORT AND EXCEPTION HANDLING

This package includes enhanced support for the shell in a debugging environment. The
terminal abort function, which restarts the shell, is invoked with the abort key if the
OPT_ABORT option has been set. By default, the abort key is CTRL-C. For more information,
see the manual entries for tyAbortSet() and tyAbortFuncSet().

1 Libraries
dcacheCbio

63

1
THE DEFAULT TASK AND TASK REFERENCING

Many routines in this module take an optional task name or ID as an argument. If this
argument is omitted or zero, the "current" task is used. The current task (or "default" task)
is the last task referenced. The dbgLib library uses taskIdDefault() to set and get the
last-referenced task ID, as do many other VxWorks routines.

All VxWorks shell expressions can reference a task by either ID or name. The shell attempts
to resolve a task argument to a task ID; if no match is found in the system symbol table, it
searches for the argument in the list of active tasks. When it finds a match, it substitutes the
task name with its matching task ID. In symbol lookup, symbol names take precedence over
task names.

INCLUDE FILES dbgLib.h

SEE ALSO excLib, tyLib, taskIdDefault(), taskOptionsSet(), tyAbortSet(), tyAbortFuncSet(),
windsh, VxWorks Kernel Programmer's Guide: Kernel Shell, VxWorks Command-Line Tools
User's Guide 2.2: Host Shell

dcacheCbio

NAME dcacheCbio – Disk Cache Driver

ROUTINES dcacheDevCreate() – Create a disk cache
dcacheDevDisable() – Disable the disk cache for this device
dcacheDevEnable() – Reenable the disk cache
dcacheDevTune() – modify tunable disk cache parameters
dcacheDevMemResize() – set a new size to a disk cache device
dcacheShow() – print information about disk cache
dcacheHashTest() – test hash table integrity

DESCRIPTION This module implements a disk cache mechanism via the CBIO API. This is intended for use
by the VxWorks DOS file system, to store frequently used disk blocks in memory. The disk
cache is unaware of the particular file system format on the disk, and handles the disk as a
collection of blocks of a fixed size, typically the sector size of 512 bytes.

The disk cache may be used with SCSI, IDE, ATA, Floppy or any other type of disk
controllers. The underlying device driver may be either comply with the CBIO API or with
the older block device API.

This library interfaces to device drivers implementing the block device API via the basic
CBIO BLK_DEV wrapper provided by cbioLib.

VxWorks Kernel API Reference, 6.6
dcacheCbio

64

Because the disk cache complies with the CBIO programming interface on both its upper
and lower layers, it is both an optional and a stackable module. It can be used or omitted
depending on resources available and performance required.

The disk cache module implements the CBIO API, which is used by the file system module
to access the disk blocks, or to access bytes within a particular disk block. This allows the
file system to use the disk cache to store file data as well as Directory and File Allocation
Table blocks, on a Most Recently Used basis, thus keeping a controllable subset of these disk
structures in memory. This results in minimized memory requirements for the file system,
while avoiding any significant performance degradation.

The size of the disk cache, and thus the memory consumption of the disk subsystem, is
configured at the time of initialization (see dcacheDevCreate()), allowing the user to
trade-off memory consumption versus performance. Additional performance tuning
capabilities are available through dcacheDevTune().

Briefly, here are the main techniques deployed by the disk cache:

- Least Recently Used block re-use policy

- Read-ahead

- Write-behind with sorting and grouping

- Hidden writes

- Disk cache bypass for large requests

- Background disk updating (flushing changes to disk) with an adjustable update period
(ioctl flushes occur without delay.)

Some of these techniques are discussed in more detail below; others are described in
varrious professional and academic publications.

DISK CACHE ALGORITHM

The disk cache is composed internally of a number cache blocks, of the same size as the disk
physical block (sector). These cache blocks are maintained in a list in "Most Recently Used"
order, that is, blocks which are used are moved to the top of this list. When a block needs to
be relinquished, and made available to contain a new disk block, the Least Recently Used
block will be used for this purpose.

In addition to the regular cache blocks, some of the memory allocated for cache is set aside
for a "big buffer", which may range from 1/4 of the overall cache size up to 64KB. This
buffer is used for:

- Combining cache blocks with adjacent disk block numbers, in order to write them to
disk in groups, and save on latency and overhead

- Reading ahead a group of blocks, and then converting them to normal cache blocks.

Because there is significant overhead involved in accessing the disk drive, read-ahead
improves performance significantly by reading groups of blocks at once.

1 Libraries
dcacheCbio

65

1
TUNABLE PARAMETERS

There are certain operational parameters that control the disk cache operation which are
tunable. A number of preset parameter sets is provided, dependent on the size of the cache.
These should suffice for most purposes, but under certain types of workload, it may be
desirable to tune these parameters to better suite the particular workload patterns.

See dcacheDevTune() for description of the tunable parameters. It is recommended to call
dcacheShow() after calling dcacheTune() in order to verify that the parameters where set
as requested, and to inspect the cache statistics which may change dramatically. Note that
the hit ratio is a principal indicator of cache efficiency, and should be inspected during such
tuning.

BACKGROUND UPDATING

A dedicated task will be created to take care of updating the disk with blocks that have been
modified in cache. The time period between updates is controlled with the tunable
parameter syncInterval. Its priority should be set above the priority of any CPU-bound tasks
so as to assure it can wake up frequently enough to keep the disk synchronized with the
cache. There is only one such task for all cache devices configured. The task name is
tDcacheUpd

The updating task also has the responsibility to invalidate disk cache blocks for removable
devices which have not been used for 2 seconds or more.

There are a few global variables which control the parameters of this task, namely:

dcacheUpdTaskPriority
controls the default priority of the update task, and is set by default to 250.

dcacheUpdTaskStack
is used to set the update task stack size.

dcacheUpdTaskOptions
controls the task options for the update task.

All the above global parameters must be set prior to calling dcacheDevCreate() for the first
time, with the exception of dcacheUpdTaskPriority, which may be modified in run-time,
and takes effect almost immediately. It should be noted that this priority is not entirely
fixed, at times when critical disk operations are performed, and FIOFLUSH ioctl is called,
the caller task will temporarily loan its priority to the update task, to insure the completion
of the flushing operation.

REMOVABLE DEVICES

For removable devices, disk cache provides these additional features:

disk updating
is performed such that modified blocks will be written to disk within one second, so as
to minimize the risk of losing data in case of a failure or disk removal.

VxWorks Kernel API Reference, 6.6
dcacheCbio

66

error handling
includes a test for disk removal, so that if a disk is removed from the drive while an I/O
operation is in progress, the disk removal event will be set immediately.

disk signature
which is a checksum of the disk's boot block, is maintained by the cache control
structure, and it will be verified against the disk if it was idle for 2 seconds or more.
Hence if during that idle time a disk was replaced, the change will be detected on the
next disk access, and the condition will be flagged to the file system.

NOTE
It is very important that removable disks should all have a unique volume label, or
volume serial number, which are stored in the disk's boot sector during formatting.
Changing disks which have an identical boot sector may result in failure to detect the
change, resulting in unpredictable behavior, possible file system corruption.

CACHE IMPLEMENTATION

Most Recently Used (MRU) disk blocks are stored in a collection of memory buffers called
the disk cache. The purpose of the disk cache is to reduce the number of disk accesses and
to accelerate disk read and write operations, by means of the following techniques:

- Most Recently Used blocks are stored in RAM, which results in the most frequently
accessed data being retrieved from memory rather than from disk.

- Reading data from disk is performed in large units, relying on the read-ahead feature,
one of the disk cache's tunable parameters.

- Write operations are optimized because they occur to memory first. Then updating the
disk happens in an orderly manner, by delayed write, another tunable parameter.

Overall, the main performance advantage arises from a dramatic reduction in the amount
of time spent by the disk drive seeking, thus maximizing the time available for the disk to
read and write actual data. In other words, you get efficient use of the disk drive£s available
throughput. The disk cache offers a number of operational parameters that can be tuned
by the user to suit a particular file system workload pattern, for example, delayed write,
read ahead, and bypass threshold.

The technique of delaying writes to disk means that if the system is turned off unexpectedly,
updates that have not yet been written to the disk are lost. To minimize the effect of a
possible crash, the disk cache periodically updates the disk. Modified blocks of data are not
kept in memory more then a specified period of time. By specifying a small update period,
the possible worst-case loss of data from a crash is the sum of changes possible during that
specified period. For example, it is assumed that an update period of 2 seconds is
sufficiently large to effectively optimize disk writes, yet small enough to make the potential
loss of data a reasonably minor concern. It is possible to set the update period to 0, in which
case, all updates are flushed to disk immediately. This is essentially the equivalent of using
the DOS_OPT_AUTOSYNC option in earlier dosFsLib implementations. The disk cache
allows you to negotiate between disk performance and memory consumption: The more
memory allocated to the disk cache, the higher the "hit ratio" observed, which means

1 Libraries
dirLib

67

1
increasingly better performance of file system operations. Another tunable parameter is the
bypass threshold, which defines how much data constitutes a request large enough to
justify bypassing the disk cache. When significantly large read or write requests are made
by the application, the disk cache is circumvented and there is a direct transfer of data
between the disk controller and the user data buffer. The use of bypassing, in conjunction
with support for contiguous file allocation and access (via the FIOCONTIG ioctl()
command and the DOS_O_CONTIG open() flag), should provide performance equivalent
to that offered by the raw file system (rawFs).

PARTITION INTERACTION

The dcache CBIO layer is intended to operate atop an entire fixed disk device. When using
the dcache layer with the dpart CBIO partition layer, it is important to place the dcache layer
below the partition layer.

For example:

+----------+
| dosFsLib |
+----------+
 |
+----------+
| dpart |
+----------+
 |
+----------+
| dcache |
+----------+
 |
+----------+
| blkIoDev |
+----------+

ENABLE/DISABLE THE DISK CACHE

The function dcacheDevEnable is used to enable the disk cache. The function
dcacheDevDisable is used to disable the disk cache. When the disk cache is disabled, all IO
will bypass the cache layer.

INCLUDE FILES none

SEE ALSO dosFsLib, cbioLib, dpartCbio

dirLib

NAME dirLib – directory handling library (POSIX)

VxWorks Kernel API Reference, 6.6
dirLib

68

ROUTINES opendir() – open a directory for searching (POSIX)
readdir() – read one entry from a directory (POSIX)
readdir_r() – read one entry from a directory (POSIX)
rewinddir() – reset position to the start of a directory (POSIX)
closedir() – close a directory (POSIX)
fstat() – get file status information (POSIX)
stat() – get file status information using a pathname (POSIX)
fstatfs() – get file status information (POSIX)
statfs() – get file status information using a pathname (POSIX)
utime() – update time on a file

DESCRIPTION This library provides POSIX-defined routines for opening, reading, and closing directories
on a file system. It also provides routines to obtain more detailed information on a file or
directory.

CONFIGURATION To use the POSIX directory-handling library, configure VxWorks with the
INCLUDE_POSIX_DIRLIB component.

SEARCHING DIRECTORIES

Basic directory operations, including opendir(), readdir(), rewinddir(), and closedir(),
determine the names of files and subdirectories in a directory.

A directory is opened for reading using opendir(), specifying the name of the directory to
be opened. The opendir() call returns a pointer to a directory descriptor, which identifies
a directory stream. The stream is initially positioned at the first entry in the directory.

Once a directory stream is opened, readdir() is used to obtain individual entries from it.
Each call to readdir() returns one directory entry, in sequence from the start of the directory.
The readdir() routine returns a pointer to a dirent structure, which contains the name of the
file (or subdirectory) in the d_name field.

The rewinddir() routine resets the directory stream to the start of the directory. After
rewinddir() has been called, the next readdir() will cause the current directory state to be
read in, just as if a new opendir() had occurred. The first entry in the directory will be
returned by the first readdir().

The directory stream is closed by calling closedir().

GETTING FILE INFORMATION

The directory stream operations described above provide a mechanism to determine the
names of the entries in a directory, but they do not provide any other information about
those entries. More detailed information is provided by stat() and fstat().

The stat() and fstat() routines are essentially the same, except for how the file is specified.
The stat() routine takes the name of the file as an input parameter, while fstat() takes a file
descriptor number as returned by open() or creat(). Both routines place the information
from a directory entry in a stat structure whose address is passed as an input parameter.
This structure is defined in the include file stat.h. The fields in the structure include the file

1 Libraries
dosFsCacheLib

69

1
size, modification date/time, whether it is a directory or regular file, and various other
values.

The st_mode field contains the file type; several macro functions are provided to test the
type easily. These macros operate on the st_mode field and evaluate to TRUE or FALSE
depending on whether the file is a specific type. The macro names are:

S_ISREG
test if the file is a regular file

S_ISDIR
test if the file is a directory

S_ISCHR
test if the file is a character special file

S_ISBLK
test if the file is a block special file

S_ISFIFO
test if the file is a FIFO special file

Only the regular file and directory types are used for VxWorks local file systems. However,
the other file types may appear when getting file status from a remote file system (using
NFS).

As an example, the S_ISDIR macro tests whether a particular entry describes a directory. It
is used as follows:

 char *filename;
 struct stat fileStat;

 stat (filename, &fileStat);

 if (S_ISDIR (fileStat.st_mode))
 printf ("%s is a directory.\\n", filename);
 else
 printf ("%s is not a directory.\\n", filename);

See the ls() routine in usrLib for an illustration of how to combine the directory stream
operations with the stat() routine.

INCLUDE FILES dirent.h, stat.h

dosFsCacheLib

NAME dosFsCacheLib – MS-DOS media-compatible Cache library

ROUTINES dosFsCacheLibInit() – initialize dosFsCache library.

VxWorks Kernel API Reference, 6.6
dosFsCacheLib

70

dosFsDefaultDataCacheSizeGet() – get the default data cache size
dosFsDefaultDirCacheSizeGet() – get the default directory cache size
dosFsDefaultFatCacheSizeGet() – get the default FAT cache size
dosFsDefaultCacheSizeSet() – set the default disk cache size
dosFsCacheOptionsSet() – set this dosFs volume's disk cache options
dosFsCacheOptionsGet() – get this dosFs volume's disk cache options
dosFsCacheCreate() – create cache for a DosFS volume
dosFsCacheDelete() – delete the disk cache for a dosFs volume
dosFsCacheTune() – tune a cache's settings
dosFsCacheInfo() – retrieve a cache's settings

DESCRIPTION This library implements a disk cache mechanism for the VxWorks MS-DOS compatible file
system.

Disk cache is created on a per volume basis. This cache is used as a read/write cache for the
File Allocation Table, directory entries, and data blocks.

To have dosFs cache support on a VxWorks image, the component
INCLUDE_DOSFS_CACHE must be included. Also, the parameters
DOSFS_DEFAULT_DATA_CACHE_SIZE, DOSFS_DEFAULT_DIR_CACHE_SIZE and
DOSFS_DEFAULT_FAT_CACHE_SIZE should be set to appropriate values. Note that the
values of these parameters will be used when automatically creating a disk cache for all the
dosFs volumes in the system.

This automatic cache creation is done by the file system monitor (please refer to the FS
monitor documentation for details), either at boot time or whenever a storage device with
a MS-DOS compatible file system is detected, like for example when a FAT formatted floppy
disk or USB device is inserted and accessed for the first time. If this behavior is not desired,
the DOSFS_DEFAULT_DATA_CACHE_SIZE, DOSFS_DEFAULT_DIR_CACHE_SIZE and
DOSFS_DEFAULT_FAT_CACHE_SIZE parameters can then be set to zero, or alternatively the
cache for a specific volume can be removed using the API dosFsCacheDelete(), and a disk
cache for every dosFs instantiation can be created manually using the API
dosFsCacheCreate(). The value of this parameter can be get/set at runtime using the APIs
dosFsDefaultDataCacheSizeGet(), dosFsDefaultDirCacheSizeGet(),
dosFsDefaultFatCacheSizeGet().

The dosFsCacheShow() routine gives a description of an specific cache in terms of its size,
its current allocation status, and its hit/miss ratio.

DISK CACHE ALGORITHM

The disk cache is composed internally of a number cache blocks, of the same size as the disk
physical block (sector). These cache blocks are maintained in a list in "Most Recently Used"
order, that is, blocks which are used are moved to the top of this list. When a block needs to
be relinquished, and made available to contain a new disk block, the Least Recently Used
block will be used for this purpose.

INCLUDE FILES dosFsLib.h

1 Libraries
dosFsLib

71

1dosFsFmtLib

NAME dosFsFmtLib – MS-DOS media-compatible file system formatting library

ROUTINES dosFsVolFormat() – format an MS-DOS compatible volume
dosFsVolFormatFd() – format an MS-DOS compatible volume via an opened FD
dosFsFmtLibInit() – initialize the MS-DOS formatting library
dosFsFmtTest() – UNITEST CODE

DESCRIPTION This module is a scaleable companion module for dosFsLib, and is intended to facilitate
high level formatting of disk volumes.

Calling dosFsVolFormat() routine allows complete control over the format used,
parameters and allows one to supply a hook routine which could, for instance, interactively
prompt the user to modify disk parameters.

AVAILABILITY This routine is an optional part of the MS-DOS file system, and may be included in a target
system if it is required to be able to format new volumes.

In order to include this option, the following function needs to be invoked during system
initialization:

void dosFsFmtLibInit(void);

See reference page dosFsVolFormat() for complete description of supported formats,
options and arguments.

INCLUDE FILES none

SEE ALSO dosFsLib

dosFsLib

NAME dosFsLib – MS-DOS media-compatible file system library

ROUTINES dosfsHostToDisk32() – convert uint32_t from host to on-disk format
dosfsHostToDisk16() – convert uint16_t from host to on-disk format
dosfsDiskToHost32() – convert uint32_t from on-disk to host format
dosfsDiskToHost16() – convert uint16_t from on-disk to host format
dosFsVolumeOptionsSet() – set this volume's disk options
dosFsVolumeOptionsGet() – get this volume's disk options
dosSetVolCaseSens() – set case sensitivity of volume
dosFsVolDescGet() – convert a device name into a DOS volume descriptor pointer.

VxWorks Kernel API Reference, 6.6
dosFsLib

72

dosFsVolUnmount() – unmount a dosFs volume
dosFsChkDsk() – make volume integrity checking.
dosFsVolIsFat12() – determine if a MSDOS volume is FAT12 or FAT16
dosFsFdFree() – free a file descriptor
dosFsFdGet() – get an available file descriptor
dosPathParse() – parse a full pathname into an array of names.
dosFsOpen() – open a file on a dosFs volume
dosFsClose() – close a dosFs file
dosFsIoctl() – do device specific control function
dosFsLastAccessDateEnable() – enable last access date updating for this volume
dosFsLibInit() – prepare to use the dosFs library
dosFsDevCreate() – create file system device.
dosFsDevDelete() – delete a dosFs volume
dosFsMonitorDevCreate() – create a dosFs volume through the fs monitor
dosFsDiskProbe() – probe if a device contains a valid dosFs
dosFsHdlrInstall() – install handler.
dosFsXbdBlkRead() – read blocks from the underlying XBD block device.
dosFsXbdBlkWrite() – write blocks to the underlying XBD block device.
dosFsXbdBytesRW() – read/write bytes to/from the underlying XBD block device.
dosFsXbdBlkCopy() – copy blocks on the underlying XBD block device.
dosFsXbdIoctl() – Misc control operations

DESCRIPTION This library implements the MS-DOS compatible file system. This is a multi-module library,
which depends on sub-modules to perform certain parts of the file system functionality. A
number of different file system format variations are supported.

USING THIS LIBRARY

The various routines provided by the VxWorks DOS file system (dosFs) may be separated
into three broad groups: general initialization, device initialization, and file system
operation.

The dosFsLibInit() routine is the principal initialization function; it should be called once
during system initialization, regardless of how many dosFs devices are to be used.

Another dosFs routine is used for device initialization. For each dosFs device,
dosFsDevCreate() must be called to install the device in VxWorks device list. In the case
where partitioned disks are used, dosFsDevCreate() must be called for each partition that
is anticipated, thereby it is associated with a logical device name, so it can be later accessed
via the I/O system. Note that starting from VxWorks 6.2, the job of instantiating file systems
is done automatically by the File System Monitor module, either at boot time or whenever
removable media is inseted in the system (such as a floppy disk or a USB device). Please
refer to the File System Monitor documentation for further details.

In case of a removable media, device access and file system instantiation will be done only
when the logical device is first accessed by the application.

More detailed information on all of these routines is provided below.

1 Libraries
dosFsLib

73

1
INITIALIZING DOSFSLIB

To enable this file system in a particular VxWorks configuration, a library initialization
routine must be called for each sub-module of the file system, as well as for the underlying
disk cache, partition manager and drivers. This is usually done at system initialization time,
within the usrRoot task context.

Following is the list of initialization routines that need to be called:

dosFsLibInit
(mandatory) initialize the principle dosFs module. Must be called first.

dosFsFatInit
(mandatory) initialize the File Allocation Table handler, which supports 12-bit, 16-bit
and 32-bit FATs.

dosVDirLibInit
(choice) install the variable size directory handler supporting Windows-compatible
Long File Names (VFAT) Directory Handler.

dosDirOldLibInit
(choice) install the fixed size directory handler which supports read-only access to
old-fashioned 8.3 MS-DOS file names, and Wind River Systems proprietary long file
names (VXLONG).

dosFsFmtLibInit
(optional) install the volume formatting module.

dosChkLibInit
(optional) install the file system consistency checking module.

dosFsCacheLibInit
(optional) install the file system cacheing module.

The two Directory handlers which are marked choice are installed in accordance with the
system requirements, either one of these modules could be installed or both, in which case
the VFAT will take precedence for MS-DOS compatible volumes.

DEFINING A DOSFS DEVICE

The dosFsDevCreate() routine associates a device with the dosFsLib functions. It expects
four parameters:

(1) A pointer to a name string, to be used to identify the device - logical device name. This
will be part of the pathname for I/O operations which operate on the device. This name
will appear in the I/O system device table, which may be displayed using the
iosDevShow() routine.

(2) device_t - a XBD for the device on which to create the file system. It could be a partition
XBD, an XBD block wrapper, or an ATA device XBD for example.

(3) A maximum number of files can be simultaneously opened on a particular device.

VxWorks Kernel API Reference, 6.6
dosFsLib

74

(4) Flags for volume checking, metadata integrity, and file name interpretation. Because
volume integrity check utility can be automatically invoked every time a device is
mounted, this parameter indicates whether the consistency check needs to be
performed automatically on a given device, and on what level of verbosity is required.
In any event, the consistency check may be invoked at a later time e.g. by calling
chkdsk(). See description for FIOCHKDSK ioctl command for more information.

For example:

 dosFsDevCreate
 (
 "/sd0", /* name to be used for volume */
 device, /* underlying XBD device */
 10, /* max no. of simultaneously open files */
 DOS_CHK_REPAIR | DOS_CHK_VERB_1
 /* check volume during mounting and repair */
 /* errors, and display volume statistics */
)

Once dosFsDevCreate() has been called, the device can be accessed using ioLib generic I/O
routines: open(), read(), write(), close(), ioctl(), remove(). Also, the user-level utility
functions may be used to access the device at a higher level (See usrFsLib reference page for
more details).

DEVICE AND PATH NAMES

On true MS-DOS machines, disk device names are typically of the form "A:", that is, a single
letter designator followed by a colon. Such names may be used with the VxWorks dosFs file
system. However, it is possible (and desirable) to use longer, more mnemonic device
names, such as "DOS1:", or "/floppy0". The name is specified during the dosFsDevCreate()
call. Since most of the time the call to this routine is done automatically by the File System
Monitor module, fsmNameInstall() can be called prviously to specify the desired name for
the device. Please refer to the fsMonitor documentation for further details.

The pathnames used to specify dosFs files and directories may use either forward slashes
("/") or backslashes ("\") as separators. These may be freely mixed. The choice of forward
slashes or backslashes has absolutely no effect on the directory data written to the disk.
(Note, however, that forward slashes are not allowed within VxWorks dosFs filenames,
although they are normally legal for pure MS-DOS implementations.)

Use of forward slashes ("/") is recommended at all times.

The leading slash of a dosFs pathname following the device name is optional. For example,
both "DOS1:newfile.new" and "DOS1:/newfile.new" refer to the same file.

USING EXTENDED DIRECTORY STRUCTURE

This library supports DOS4.0 standard file names which fit the restrictions of eight
upper-case characters optionally followed by a three-character extension, as well as
Windows style VFAT standard long file names that are stored mixed cased on disk, but are
case insensitive when searched and matched (e.g. during open() call). The VFAT long file

1 Libraries
dosFsLib

75

1
name is stored in a variable number of consecutive directory entries. Both standards restrict
file size to 4 GB (32 bit value).

To provide additional flexibility, this implementation of the DOS file system provides
proprietary long file name format (VXLONGNAMES), which uses a simpler directory
structure: the directory entry is of fixed size. When this option is used, file names may
consist of any sequence of up to 40 ASCII characters. No case conversion is performed, and
file name match is case-sensitive. With this directory format the file maximum size is
expanded to 1 Terabyte (40 bit value). This option only supports read-only access to files in
the VxWorks 6.2 version though.

NOTE Because special directory entries are used on the disk, disks which use the extended names
are not compatible with other implementation of the MS-DOS systems, and cannot be read
on MS-DOS or Windows machines.

To enable the extended file names, set the DOS_OPT_VXLONGNAMES flag when calling
dosFsVolFormat().

USING UNICODE CHARACTERS

When Unicode characters are in use, they are encoded in UTF-8 through the the open() and
readdir() interface, and in Windows-compatible UTF-16 format on-disk. The translation
between external (UTF-8) and internal (UTF-16) encodings is automatic, avoiding all the
byte-order problems associated with UTF-16 encodings.

Existing VxWorks file systems that use "high bit" characters (such as ISO Latin 1 character
sets) are not compatible with Unicode encodings. For this reason, Unicode file names must
currently be enabled explicitly using the DOS_FILENAMES_UNICODE flag.

Unicode is only supported on VFAT (variable-length file name) volumes.

READING DIRECTORY ENTRIES

Directories on VxWorks dosFs volumes may be searched using the opendir(), readdir(),
rewinddir(), and closedir() routines. These calls allow the names of files and
subdirectories to be determined.

To obtain more detailed information about a specific file, use the fstat() or stat() routine.
Along with standard file information, the structure used by these routines also returns the
file attribute byte from a dosFs directory entry.

For more information, see the manual entry for dirLib.

SYNCHRONOUS FILES

Files can be opened with the O_SYNC flag, indicating that each write should be immediately
written to the backing media. This includes synchronizing the FAT and the directory
entries.

VxWorks Kernel API Reference, 6.6
dosFsLib

76

FILE DATE AND TIME

Directory entries on dosFs volumes contain creation, last modification time and date, and
the last access date for each file or subdirectory. Directory last modification time and date
fields are set only when a new entry is created, but not when any directory entries are
deleted. The last access date field indicates the date of the last read or write. The last access
date field is an optional field, per Microsoft. By default, file open-read-close operations do
not update the last access date field. This default avoids media writes (writing out the date
field) during read only operations. In order to enable the updating of the optional last
access date field for open-read-close operations, you must call
dosFsLastAccessDateEnable(), passing it the volumes DOS_VOLUME_DESC_ID and
TRUE.

The dosFs file system uses the ANSI time() function, that returns system clock value to
obtain date and time. It is recommended that the target system should set the system time
during system initialization time from a network server or from an embedded Calendar /
Clock hardware component, so that all files on the file system would be associated with a
correct date and time.

The file system consistency checker (see below) sets system clock to value following the
latest date-time field stored on the disk, if it discovers, that function time() returns a date
earlier then Jan 1, 1998, meaning that the target system does not have a source of valid date
and time to synchronize with.

See also the reference manual entry for ansiTime.

FILE ATTRIBUTES

Directory entries on dosFs volumes contain an attribute byte consisting of bit-flags which
specify various characteristics of the entry. The attributes which are identified are:
read-only file, hidden file, system file, volume label, directory, and archive. The VxWorks
symbols for these attribute bit-flags are:

DOS_ATTR_RDONLY
File is write-protected, can not be modified or deleted.

DOS_ATTR_HIDDEN
this attribute is not used by VxWorks.

DOS_ATTR_SYSTEM
this attribute is not used by VxWorks.

DOS_ATTR_VOL_LABEL
directory entry describes a volume label, this attribute can not be set or used directly,
see ioctl() command FIOLABELGET and FIOLABELSET below for volume label
manipulation.

DOS_ATTR_DIRECTORY
directory entry is a subdirectory, this attribute can not be set directly.

DOS_ATTR_ARCHIVE
this attribute is not used by VxWorks.

1 Libraries
dosFsLib

77

1
All the flags in the attribute byte, except the directory and volume label flags, may be set or
cleared using the ioctl() FIOATTRIBSET function. This function is called after opening the
specific file whose attributes are to be changed. The attribute byte value specified in the
FIOATTRIBSET call is copied directly. To preserve existing flag settings, the current
attributes should first be determined via fstat(), and the appropriate flag(s) changed using
bitwise AND or OR operations. For example, to make a file read-only, while leaving other
attributes intact:

 struct stat fileStat;

 fd = open ("file", O_RDONLY, 0); /* open file */
 fstat (fd, &fileStat); /* get file status */

 ioctl (fd, FIOATTRIBSET, (fileStat.st_attrib | DOS_ATTR_RDONLY));
 /* set read-only flag */
 close (fd); /* close file */

See also the reference manual entry for attrib() and xattrib() for user-level utility routines
which control the attributes of files or file hierarchy.

CONTIGOUS FILE SUPPORT

The VxWorks dosFs file system provides efficient files storage: space will be allocated in
groups of clusters (also termed extents) so that a file will be composed of relatively large
contiguous units. This nearly contiguous allocation technique is designed to effectively
eliminate the effects of disk space fragmentation, keeping throughput very close to the
maximum of which the hardware is capable.

However dosFs provides mechanism to allocate truly contiguous files, meaning files which
are made up of a consecutive series of disk sectors. This support includes both the ability to
allocate contiguous space to a file and optimized access to such a file when it is used.
Usually this will somewhat improve performance when compared to Nearly Contiguous
allocation, at the price of disk space fragmentation.

To allocate a contiguous area to a file, the file is first created in the normal fashion, using
open() or creat(). The file descriptor returned during the creation of the file is then used to
make an ioctl() call, specifying the FIOCONTIG or FIOCONTIG64 function. The last
parameter to the FIOCONTIG function is the size of the requested contiguous area in bytes,
If the FIOCONTIG64 is used, the last parameter is pointer to 64-bit integer variable, which
contains the required file size. It is also possible to request that the largest contiguous free
area on the disk be obtained. In this case, the size value CONTIG_MAX (-1) is used instead
of an actual size. These ioctl() codes are not supported for directories. The volume is
searched for a contiguous area of free space, which is assigned to the file. If a segment of
contiguous free space large enough for the request was not found, ERROR is returned, with
errno set to S_dosFsLib_NO_CONTIG_SPACE.

When contiguous space is allocated to a file, the file remains empty, while the newly
allocated space has not been initialized. The data should be then written to the file, and
eventually, when all data has been written, the file is closed. When file is closed, its space is
truncated to reflect the amount of data actually written to the file. This file may then be again

VxWorks Kernel API Reference, 6.6
dosFsLib

78

opened and used for further I/O operations read() or write(), but it can not be guaranteed
that appended data will be contiguous to the initially written data segment.

For example, the following will create a file and allocate 85 Mbytes of contiguous space:

 fd = creat ("file", O_RDWR, 0); /* open file */
 status = ioctl (fd, FIOCONTIG, 85*0x100000);/* get contiguous area */
 if (status != OK)
 ... /* do error handling */
 close (fd); /* close file */

In contrast, the following example will create a file and allocate the largest contiguous area
on the disk to it:

 fd = creat ("file", O_RDWR, 0); /* open file */
 status = ioctl (fd, FIOCONTIG, CONTIG_MAX); /* get contiguous area */
 if (status != OK)
 ... /* do error handling */
 close (fd); /* close file */

NOTE
the FIOCONTIG operation should take place right after the file has been created, before
any data is written to the file. Directories may not be allocated a contiguous disk area.

To determine the actual amount of contiguous space obtained when CONTIG_MAX is
specified as the size, use fstat() to examine the number of blocks and block size for the file.

When any file is opened, it may be checked for contiguity. Use the extended flag
DOS_O_CONTIG_CHK when calling open() to access an existing file which may have been
allocated contiguous space. If a file is detected as contiguous, all subsequent operations on
the file will not require access to the File Allocation Table, thus eliminating any disk Seek
operations. The down side however is that if this option is used, open() will take an amount
of time which is linearly proportional of the file size.

CHANGING, UNMOUNTING, AND SYNCHRONIZING DISKS

Buffering of disk data in RAM, and synchronization of these buffers with the disk are
handled by the disk cache. See reference manual on dosFsCacheLib for more details.
Detection of removable disk replacement is done by the File System Monitor subsystem.

If a disk is physically removed, the File System Monitor subsystem will delete the
filesystem entry from coreIO and free all its allocated resources, including disk cache
buffers.

If a new DOS FS formatted disk is inserted, it will be detected by the File System Monitor
subsystem and a DOS FS filesystem will be automatically created with the name previously
registered through a call to fsmNameInstall() (or a default name will be assigned), and
with the global parameters DOSFS_DEFAULT_MAX_FILES,
DOSFS_DEFAULT_CREATE_OPTIONS, and if disk cache is supported (see dosFsCacheLib
for details), with a DOSFS_DEFAULT_CACHE_SIZE cache.

1 Libraries
dosFsLib

79

1
IOCTL FUNCTIONS

The dosFs file system supports the following ioctl() functions. The functions listed are
defined in the header ioLib.h. Unless stated otherwise, the file descriptor used for these
functions may be any file descriptor which is opened to a file or directory on the volume or
to the volume itself. There are some ioctl() commands, that expect a 32-bit integer result
(FIONFREE, FIOWHERE, etc.). However, disks and files which are greater than 4GB are
supported. In order to solve this problem, new ioctl() functions have been added to support
64-bit integer results. They have the same name as basic functions, but with suffix 64,
namely: FIONFREE64, FIOWHERE64 and so on. These commands expect a pointer to a
64-bit integer, i.e.:

long long *arg ;

as the 3rd argument to the ioctl() function. If a value which is requested with a 32-bit ioctl()
command is too large to be represented in the 32-bit variable, ioctl() will return ERROR, and
errno will be set to S_dosFsLib_32BIT_OVERFLOW.

FIOUNMOUNT
Unmounts a disk volume. It performs the same function as dosFsVolUnmount(). This
function must not be called from interrupt level:

 status = ioctl (fd, FIOUNMOUNT, 0);

FIOGETNAME
Gets the file name of the file descriptor and copies it to the buffer nameBuf. Note that
nameBuf must be large enough to contain the largest possible path name.

 status = ioctl (fd, FIOGETNAME, &nameBuf);

FIORENAME
Renames the file or directory to the string newname:

 fd = open("oldname", O_RDONLY, 0);
 status = ioctl (fd, FIORENAME, "newname");

FIOUPDATE
Updates the dosFs create options to the new value newoptions

 int newOptions;
 status = ioctl (fd, FIOUPDATE, newOptions);

FIOMOVE
Moves the file or directory to the string newname:

 fd = open("oldname", O_RDONLY, 0);
 status = ioctl (fd, FIOMOVE, "newname");

FIOSEEK
Sets the current byte offset in the file to the position specified by newOffset. This
function supports offsets in 32-bit value range. Use FIOSEEK64 for larger position
values:

 status = ioctl (fd, FIOSEEK, newOffset);

VxWorks Kernel API Reference, 6.6
dosFsLib

80

FIOSEEK64
Sets the current byte offset in the file to the position specified by newOffset. This
function supports offsets in 64-bit value range:

 long long newOffset;
 status = ioctl (fd, FIOSEEK64, (int) & newOffset);

FIOWHERE
Returns the current byte position in the file. This is the byte offset of the next byte to be
read or written. This function returns a 32-bit value. It takes no additional argument:

 position = ioctl (fd, FIOWHERE, 0);

FIOWHERE64
Returns the current byte position in the file. This is the byte offset of the next byte to be
read or written. This function returns a 64-bit value in position:

 long long position;
 status = ioctl (fd, FIOWHERE64, (int) & position);

FIOFLUSH
Flushes disk cache buffers. It guarantees that any output that has been requested is
actually written to the device:

 status = ioctl (fd, FIOFLUSH, 0);

FIOSYNC
Updates the FAT copy for the passed file descriptor, then flushes and invalidates the
dosFs cache buffers for the file descriptor's volume. FIOSYNC ensures that any
outstanding output requests for the passed file descriptor are written to the device
and a subsequent I/O operation will fetch data directly from the physical medium.
To safely sync a volume for shutdown, all open file descriptor's should at the least
be FIOSYNC'd by the application. Better, all open FD's should be closed by the
application and the volume should be unmounted via FIOUNMOUNT.

 status = ioctl (fd, FIOSYNC, 0);

FIOTRUNC
Sets the specified file's length to newLength bytes. Any disk clusters which had been
allocated to the file but are now unused are deallocated while additional clusters are
zeroed, and the directory entry for the file is updated to reflect the new length. Only
regular files may be truncated; attempts to use FIOTRUNC on directories will return an
error.

 status = ioctl (fd, FIOTRUNC, newLength);

FIOTRUNC64
Similar to FIOTRUNC, but can be used for files lager, than 4GB.

 long long newLength =;
 status = ioctl (fd, FIOTRUNC, (int) & newLength);

FIONREAD
Copies to unreadCount the number of unread bytes in the file:

1 Libraries
dosFsLib

81

1
 unsigned long unreadCount;
 status = ioctl (fd, FIONREAD, &unreadCount);

FIONREAD64
Copies to unreadCount the number of unread bytes in the file. This function returns a
64-bit integer value:

 long long unreadCount;
 status = ioctl (fd, FIONREAD64, &unreadCount);

FIONFREE
Copies to freeCount the amount of free space, in bytes, on the volume:

 unsigned long freeCount;
 status = ioctl (fd, FIONFREE, &freeCount);

FIONFREE64
Copies to freeCount the amount of free space, in bytes, on the volume. This function can
return value in 64-bit range:

 long long freeCount;
 status = ioctl (fd, FIONFREE64, &freeCount);

FIOMKDIR
Creates a new directory with the name specified as dirName:

 status = ioctl (fd, FIOMKDIR, "dirName");

FIORMDIR
Removes the directory whose name is specified as dirName:

 status = ioctl (fd, FIORMDIR, "dirName");

FIOLABELGET
Gets the volume label (located in root directory) and copies the string to labelBuffer. If
the label contains DOS_VOL_LABEL_LEN significant characters, resulting string is not
NULL terminated:

 char labelBuffer [DOS_VOL_LABEL_LEN];
 status = ioctl (fd, FIOLABELGET, (int)labelBuffer);

FIOLABELSET
Sets the volume label to the string specified as newLabel. The string may consist of up
to eleven ASCII characters:

 status = ioctl (fd, FIOLABELSET, (int)"newLabel");

FIOATTRIBSET
Sets the file attribute byte in the DOS directory entry to the new value newAttrib. The
file descriptor refers to the file whose entry is to be modified:

 status = ioctl (fd, FIOATTRIBSET, newAttrib);

FIOCONTIG
Allocates contiguous disk space for a file or directory. The number of bytes of
requested space is specified in bytesRequested. In general, contiguous space should be
allocated immediately after the file is created:

VxWorks Kernel API Reference, 6.6
dosFsLib

82

 status = ioctl (fd, FIOCONTIG, bytesRequested);

FIOCONTIG64
Allocates contiguous disk space for a file or directory. The number of bytes of
requested space is specified in bytesRequested. In general, contiguous space should be
allocated immediately after the file is created. This function accepts a 64-bit value:

 long long bytesRequested;
 status = ioctl (fd, FIOCONTIG64, &bytesRequested);

FIONCONTIG
Copies to maxContigBytes the size of the largest contiguous free space, in bytes, on the
volume:

 status = ioctl (fd, FIONCONTIG, &maxContigBytes);

FIONCONTIG64
Copies to maxContigBytes the size of the largest contiguous free space, in bytes, on the
volume. This function returns a 64-bit value:

 long long maxContigBytes;
 status = ioctl (fd, FIONCONTIG64, &maxContigBytes);

FIOREADDIR
Reads the next directory entry. The argument dirStruct is a DIR directory descriptor.
Normally, the readdir() routine is used to read a directory, rather than using the
FIOREADDIR function directly. See dirLib.

 DIR dirStruct;
 fd = open ("directory", O_RDONLY);
 status = ioctl (fd, FIOREADDIR, &dirStruct);

FIOFSTATGET
Gets file status information (directory entry data). The argument statStruct is a pointer
to a stat structure that is filled with data describing the specified file. Normally, the
stat() or fstat() routine is used to obtain file information, rather than using the
FIOFSTATGET function directly. See dirLib.

 struct stat statStruct;
 fd = open ("file", O_RDONLY);
 status = ioctl (fd, FIOFSTATGET, (int)&statStruct);

FIOTIMESET
Update time on a file. arg shall be a pointer to a utimbuf structure, see utime.h. If arg
is value NULL, the current system time is used for both actime and modtime members.
If arg is not NULL then the utimbuf structure members actime and modtime are used
as passed. If actime is zero value, the file access time is not updated (the operation is
ignored). If modtime is zero, the file modification time is not updated (the operation
is ignored). See also utime()

 struct utimbuf newTimeBuf;;
 newTimeBuf.modtime = newTimeBuf.actime = fileNewTime;
 fd = open ("file", O_RDONLY);
 status = ioctl (fd, FIOTIMESET, (int)&newTimeBuf);

1 Libraries
dosFsLib

83

1
FIOCHKDSK

This function invokes the integral consistency checking. During the test, the file system
will be blocked from application code access, and will emit messages describing any
inconsistencies found on the disk, as well as some statistics, depending on the verbosity
level in the flags argument. Depending on the repair permission value in flags
argument, the inconsistencies will be repaired, and changes written to disk or only
reported. Argument flags should be composed of bitwise or-ed verbosity level value
and repair permission value. Possible repair levels are:

DOS_CHK_ONLY (1)
Only report errors, do not modify disk.

DOS_CHK_REPAIR (2)
Repair any errors found.

Possible verbosity levels are:

DOS_CHK_VERB_SILENT (0xff00)
Do not emit any messages, except errors encountered.

DOS_CHK_VERB_1 (0x0100)
Display some volume statistics when done testing, as well

DOS_CHK_VERB_2 (0x0200)
In addition to the above option, display path of every file, while it is being checked. This
option may significantly slow down the test process.

NOTE
In environments with reduced RAM size check disk uses reserved FAT copy as
temporary buffer, it can cause respectively long time of execution on a slow CPU
architectures..

See also the reference manual usrFsLib for the chkdsk() user level utility which may be
used to invoke the FIOCHKDSK ioctl(). The volume root directory should be opened, and
the resulting file descriptor should be used:

 int fd = open (device_name, O_RDONLY, 0);
 status = ioctl (fd, FIOCHKDSK, DOS_CHK_REPAIR | DOS_CHK_VERB_1);
 close (fd);

Any other ioctl() function codes are passed to the underlying XBD modules for handling.

INCLUDE FILES dosFsLib.h

SEE ALSO ioLib, iosLib, dirLib, usrFsLib, dosFsCacheLib, dosFsFmtLib, dosChkLib, Microsoft
MS-DOS Programmer's Reference, (Microsoft Press), Advanced MS-DOS Programming, (Ray
Duncan, Microsoft Press), VxWorks Programmer's Guide: I/O System, Local File Systems

VxWorks Kernel API Reference, 6.6
dosFsShow

84

dosFsShow

NAME dosFsShow – DosFS Show routines

ROUTINES dosFsShow() – display dosFs volume configuration data.
dosFsCacheShow() – show information regarding a dosFs volume's cache

DESCRIPTION This library implements the DosFS Show routines.

INCLUDE FILES none

dpartCbio

NAME dpartCbio – generic disk partition manager

ROUTINES dpartDevCreate() – Initialize a partitioned disk
dpartPartGet() – retrieve handle for a partition

DESCRIPTION This module implements a generic partition manager using the CBIO API (see cbioLib) It
supports creating a separate file system device for each of its partitions.

This partition manager depends upon an external library to decode a particular disk
partition table format, and report the resulting partition layout information back to this
module. This module is responsible for maintaining the partition logic during operation.

When using this module with the dcacheCbio module, it is recommened this module be the
master CBIO device. This module should be above the cache CBIO module layer. This is
because the cache layer is optimized to fuction efficently atop a single physical disk drive.
One should call dcacheDevCreate before dpartDevCreate.

An implementation of the de-facto standard partition table format which is created by the
MSDOS FDISK program is provided with the usrFdiskPartLib module, which should be
used to handle PC-style partitioned hard or removable drives.

EXAMPLE The following code will initialize a disk which is expected to have up to 4 partitions:

 usrPartDiskFsInit(BLK_DEV * blkDevId)
 {
 const char * devNames[] = { "/sd0a", "/sd0b", "/sd0c", "/sd0d" };
 CBIO_DEV_ID cbioCache;
 CBIO_DEV_ID cbioParts;

 /* create a disk cache atop the entire BLK_DEV */

1 Libraries
dshmMuxLib

85

1
 cbioCache = dcacheDevCreate (blkDevId, NULL, 0, "/sd0");

 if (NULL == cbioCache)
 {
 return (ERROR);
 }

 /* create a partition manager with a FDISK style decoder */

 cbioParts = dpartDevCreate(cbioCache, 4, usrFdiskPartRead);

 if (NULL == cbioParts)
 {
 return (ERROR);
 }

 /* create file systems atop each partition */

 dosFsDevCreate(devNames[0], dpartPartGet(cbioParts,0), 0x10, NONE);
 dosFsDevCreate(devNames[1], dpartPartGet(cbioParts,1), 0x10, NONE);
 dosFsDevCreate(devNames[2], dpartPartGet(cbioParts,2), 0x10, NONE);
 dosFsDevCreate(devNames[3], dpartPartGet(cbioParts,3), 0x10, NONE);
 }

Because this module complies with the CBIO programming interface on both its upper and
lower layers, it is both an optional and a stackable module.

INCLUDE FILES none

SEE ALSO dcacheLib, dosFsLib, usrFdiskPartLib

dshmMuxLib

NAME dshmMuxLib – DSHM service/hardware bus multiplexer

ROUTINES dshmMuxLibInit() – initialize the DSHM MUX
dshmMuxHwRegister() – register a hardware bus with the MUX
dshmMuxHwGet() – obtain an hardware registration handle based on name
dshmMuxHwNodesNumGet() – obtain the maximum number of nodes on a hardware bus
dshmMuxHwTasGet() – obtain the test-and-set routine on this bus
dshmMuxHwTasClearGet() – obtain the TAS clear routine on this bus
dshmMuxHwOffToAddr() – translate a shared memory offset to a local address
dshmMuxHwAddrToOff() – translate a local address to a shared memory offset
dshmMuxHwLocalAddrGet() – obtain address of the local node
dshmMuxSvcNodeJoin() – signal services that a node has joined the system
dshmMuxSvcNodeLeave() – signal services that a node has left the system
dshmMuxSvcRegister() – register a service with the MUX

VxWorks Kernel API Reference, 6.6
dshmMuxLib

86

dshmMuxSvcObjGet() – retrieve a service object and protect it against deletion
dshmMuxSvcObjRelease() – allows modifications to be made on a service object
dshmMuxSvcWithdraw() – remove service from MUX
dshmMuxWidtdrawComplete() – signal service has finished withdrawing
dshmMuxMsgSend() – transmit a message
dshmMuxMsgRecv() – receive a message
dshmMuxMemAlloc() – allocate shared memory from a specific hardware
dshmMuxMemFree() – free allocated shared memory from a specific hardware

DESCRIPTION The DSHM multiplexer allows for multiple hardware and services registration and thus
usage of the DSHM system. Outgoing messages find the correct hardware bus on which to
be transmitted and incoming messages are routed to the correct service for processing.

Registration

Both services and buses must register to be able to use the DSHM system. First, a bus
register via a call to the dshmMuxHwRegister() function, providing a set of callbacks
routines for implementation of functionalities that are specific to it. This is performed in the
hardware interface bring-up sequence. Buses must register by providing a unique string
identifying them, normally specifying the bus type. Once the bus has registered, all other
operations access its functionalities by providing a unique hardware identifier that has been
linked with the bus at registration time. This identifier is obtained via a call to
dshmMuxHwGet(), by passing in the bus name used during registration.

When a bus has registered, services can then register to provide functionality on it. This is
done through the dshmMuxSvcRegister() call. The service must provide callback routines
as well for handling of events directed to it, such as incoming message handling, nodes
leaving and joining, and stopping the service. Once registered, the service then should
obtain the bus identifier via a call to dshmMuxHwGet(). From that point on, the service can
make usage of the bus functionalities, such as sending messages to remote nodes.

Node joining

The services are responsible to track resources they use that are per-node. When a node
joins, the dshmMuxSvcNodeJoin() routine is called, calling all join callbacks provided by
services registered on the bus. This callback can provide such functionalities such as
sending a message to the remote node telling it the service is provided on this node, creating
data structures that represent the remote node, allocating shared memory buffers to the
remote node, etc.

Node leaving

As for the node joining event, services are responsible for handling of per-node resources
they provide. When a node leaves, the dshmMuxSvcNodeLeave() routine is called, which
in turn calls all leave callbacks provided by services registered on the bus. These callbacks
should normally take the reverse action the join callback performed.

Service leaving

1 Libraries
dshmMuxLib

87

1
A service can decide to leave willingly the DSHM system. If so, it must call the
dshmMuxSvcWithdraw() routine. This places the service in a quitting state. While in this
state, the service can perform different actions, such as telling the remote nodes that it does
not provide its functionality anymore. This is left to the discretion of the service. All of it can
be performed in the stop callback that can be registered with the service. When the service
is satified that it has finished shutting down completely, it must then call the
dshmMuxSvcWithdrawComplete() routine that removes the service registration from the
MUX and allows another service with the same name to register in its place. This routine
cannot be called from within the stop callback for various reasons.

Using the service

A service can provide to the MUX, at registration time, an object that contains all its
pertinent information. When incoming messages intended for the service are received, a
lock on the object is obtained. The service callback for the reception of messages must then
release the lock when it has finished using the object. This assymetry of having a different
module acquiring and releasing the object allows the service to release the lock when
deemed necessary rather than waiting to return control to the MUX to have that operation
performed.

When making downcalls to the MUX, or simply using their object, services must obtain the
lock via a call to the dshmMuxSvcObjGet() routine. The lock is release by a call to
dshmMuxSvcObjRelease(). This prevents it from deletion.

Acquiring bus-specific information and functionalities

If needed by services, these can be acquired from the bus: atomic-set/clear routines,
maximum number of nodes on the bus and address of local node on the bus. These
functionalities can be called upon: local address to shared memory offset translation and
vice-versa, as well as allocation and freeing of shared memory that is managed by the local
node, on that particular bus.

Sending of messages

Messages must be built by declaring a message via the DSHM() macro. Then the header is
built via the DSHM_BUILD() macro in dshm.h. The message body can be built via the
DSHM_DAT8_SET(), DSHM_DAT16_SET() and DSHM_DAT32_SET() macros, in
dshm.h as well. These take care of endiannes issues. If the message body is a byte stream, it
can be set by accessing the data portion of the message with DSHM_DAT_GET(), and
treating it as a byte array of size DSHM_SIZE_DAT. When the message is built, it is sent by
a call to dshmMuxMsgSend().

Receiving a message

When a message is received on the bus, the hardware interface calls dshmMuxMsgRecv(),
which is responsible for calling the rx callback provided by the service the message is
intended for. From that point on, the service is reponsible for handling the message.

INCLUDE FILES none

VxWorks Kernel API Reference, 6.6
dsiSockLib

88

SEE ALSO dshm/dshm.h, dshm/dshmMuxLib.h

dsiSockLib

NAME dsiSockLib – DSI sockets library

ROUTINES dsiSysPoolShow() – display DSI's system pool statistics
dsiDataPoolShow() – display DSI's data pool statistics

ADDRESS FAMILY DSI sockets support only the AF_LOCAL/AF_UNIX Domain address family; use
AF_LOCAL/AF_UNIX for the domain argument in subroutines that require it.

IOCTL FUNCTIONS

Sockets respond to the following ioctl() functions. These functions are defined in the
header files ioLib.h and ioctl.h.

FIONBIO
Turns on/off non-blocking I/O.

 on = TRUE;
 status = ioctl (sFd, FIONBIO, &on);

FIONREAD
Reports the number of bytes available to read on the socket. On the return of ioctl(),
bytesAvailable has the number of bytes available to read on the socket.

 status = ioctl (sFd, FIONREAD, &bytesAvailable);

INCLUDE FILES dsiSockLib.h, un.h

SEE ALSO netLib, sockLib, the VxWorks programmer's guides

edrErrLogLib

NAME edrErrLogLib – the ED&R error log library

ROUTINES edrErrLogCreate() – create a new log
edrErrLogIterCreate() – create an iterator for traversing the log
edrErrLogIterNext() – returns the next committed node
edrErrLogAttach() – attach to an existing log

1 Libraries
edrErrLogLib

89

1
edrErrLogClear() – clear the log's contents
edrErrLogNodeCommit() – commits a previously allocated node
edrErrLogNodeAlloc() – allocate a node from the error log
edrErrLogNodeCount() – return the number of committed nodes in the log
edrErrLogMaxNodeCount() – return the maximum number of nodes in the log

DESCRIPTION This library provides facilities for managing the error-log; the error-log is an integral part of
the edrLib() library and as such it is primarily a private API but may be used to examine
the ED&R log. The error-log acts as a ring buffer for a set of error-records and the minimum
and maximum size of one node is fixed at creation time.

This library manipulates its internal data structures using only intLock() and intUnlock()
to guarantee the integrity of the log. The log iterator uses a lock-free algorithm to iterate
over the set of error-records thus allowing records to be added or removed while iterating
over the log.

This library makes no use of any dynamically allocated memory.

CONSTRUCTION An error-log is created by overlaying its structure onto an existing area of memory. To
create a log you should call edrErrLogCreate() with the address and size of the memory
region you have previously set aside. The area of memory could simply come from
malloc(), or from a region reserved by pmLib(), for example.

For example, here's how to create a new log with 4K records and add 1 node to it.

 void * pAddr = malloc (12000);
 EDR_ERR_LOG * pLog = edrErrLogCreate (pAddr, 12000, 4096);

 if (pLog != NULL)
 {
 EDR_ERR_LOG_NODE * pNode;

 pNode = edrErrLogNodeAlloc (pLog);

 if (pNode != NULL)
 {
 memcpy (pNode->data, "foo", 3);
 }

 if (! edrErrLogNodeCommit (pLog, pNode))
 printf ("commit failed!\n");
 }

ENUMERATION The set of nodes can be accessed by creating a log iterator; edrErrLogIterCreate(). For each
node retrieved the client should take a snapshot of the node's generation count, copy the
payload to a separate buffer, and reevaluate that the generation-count didn't change during
the copy. Using this approach it is possible to use multiple iterator-instances without
requiring any mutual-exclusion barriers (or other locking primitives) leaving the log open
to other concurrent writers. For example, the injection of errors from ISR routines, via
edrLib().

VxWorks Kernel API Reference, 6.6
edrLib

90

 EDR_ERR_LOG_ITER iter;
 EDR_ERR_LOG_NODE *pNode;
 char *buf;

 edrErrLogIterCreate (pLog, &iter, start, count);

 if ((buf = malloc (pLog->header.payloadSize)) == NULL)
 return (ERROR);

 while ((pNode = edrErrLogIterNext (&iter)) != NULL)
 {
 int genCount = pNode->genCount;

 memcpy (buf, pNode->data, pLog->header.payloadSize);

 if (genCount == pNode->genCount)
 {
 /* The node wasn't changed asynchronously therefore
 @ its payload is still valid.
 */
 }
 }

 free (buf);

CONFIGURATION To use the EDR error log library, configure VxWorks with the INCLUDE_EDR_ERRLOG
component.

INCLUDE edrErrLogLib.h

edrLib

NAME edrLib – Error Detection and Reporting subsystem

ROUTINES edrLibInit() – initializes edrLib
edrErrorInject() – injects an error into the ED&R subsystem
edrErrorLogClear() – clears the ED&R error log
edrErrorRecordCount() – returns the number of error-records in the log
edrErrorInjectHookAdd() – adds a hook which gets called on error-injection
edrErrorInjectHookDelete() – removes an existing error-inject hook
edrErrorInjectPrePostHookAdd() – adds a hook which gets called before and after
error-injection
edrErrorInjectPrePostHookDelete() – removes the existing pre/post hook
edrErrorInjectTextHookAdd() – adds a hook which gets called on record creation
edrErrorInjectTextHookDelete() – removes the existing text writing hook
edrBootCountGet() – returns the current boot count

1 Libraries
edrLib

91

1
DESCRIPTION This library provides the public API for the ED&R subsystem, covering error injection, and

the manipulation of error records within the error log.

It implements a circular log containing error-records (see struct EDR_ERROR_RECORD in
file edrLib.h) that capture certain specific events within the VxWorks operating system.
Each of these events is specifically instrumented with a call to edrErrorInject(), usually
wrapped up in one of the macros in edrLib.h such as EDR_KERNEL_FATAL_INJECT()
for fatal kernel-space errors.

The error-log is protected against being over-written by use of the MMU / vmLib facilities
within VxWorks. However, from system initialisation to the time edrLibInit() is called, the
log is not yet protected, and so does not need to be unprotected/re-protected. At all other
times, the log is write-protected, except for the brief periods when an instance of
edrErrorInject() is writing a record to the log.

This library uses the edrErrLogLib library to provide the implementation of the actual error
log data structure. This implementation takes care of log integrity (w.r.t. interrupt locking,
etc) but not memory protection -- that is handled by edrLib itself.

The information stored in the error record is dependent on some other VxWorks
components to provide certain functionality for creating parts of the error-records.
Specifically, the following components are required:

- INCLUDE_EXC_SHOW must be included to get a full detailed description of exception
error-records.

- INCLUDE_SHOW_ROUTINES (or INCLUDE_TASK_SHOW in the project facility) must
be included to get a full register dump from each error-record.

- INCLUDE_DEBUG must be included to get a code disassembly and traceback.

In the abscense of these components, simple hex values for the information will be stored.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES edrLib.h

VxWorks Kernel API Reference, 6.6
edrShow

92

edrShow

NAME edrShow – ED&R Show Routines

ROUTINES edrErrorRecordDecode() – decode one error-record
edrShow() – displays the ED&R error log to stdout
edrFatalShow() – show all stored fatal type ED&R records
edrInfoShow() – show all stored info type ED&R records
edrIntShow() – show all stored interrupt type ED&R records
edrInitShow() – show all stored init type ED&R records
edrRebootShow() – show all stored reboot type ED&R records
edrBootShow() – show all stored boot type ED&R records
edrKernelShow() – show all stored kernel type ED&R records
edrUserShow() – show all stored user type ED&R records
edrRtpShow() – show all stored rtp type ED&R records
edrClear() – a synonym for edrErrorLogClear
edrInjectHookShow() – show the list of error injection hook routines
edrInjectTextHookShow() – show the list of text injection hook routines
edrInjectPrePostHookShow() – show the list of pre/post injection hook routines
edrHookShow() – show the list of installed ED&R hook routines
edrHelp() – prints helpful information on ED&R

DESCRIPTION This module implements the show routines for the ED&R subsystem. The commands
provided allow for displaying all or part of the stored ED&R log. It should be noted that not
all error-record types have a complete ED&R record stored. For example, the BOOT and
REBOOT records do not have a register set included in them and as a result the show
routines will not display this information. All show commands will always display all
stored information for a record.

The function edrClear() will clear out the entire error-log, and should be used with utmost
care. This is a destructive operation, and should be used sparingly, if at all.

CONFIGURATION To use the ED&R show routines, configure VxWorks with the INCLUDE_EDR_SHOW
component.

INCLUDE FILES edrLib.h

edrSysDbgLib

NAME edrSysDbgLib – ED&R system-debug flag

1 Libraries
envLib

93

1
ROUTINES edrSystemDebugModeInit() – initialise the system mode debug flag

edrSystemDebugModeGet() – indicates if the system is in debug mode
edrSystemDebugModeSet() – modifies the system debug mode flag
edrFlagsGet() – return the ED&R flags which are currently set
edrIsDebugMode() – is the ED&R debug mode flag set?

DESCRIPTION This library provides access to the system debug flag.

This flag indicates whether the system is in debug (also known as lab) mode, or in field (or
deployed) mode.

Certain system behaviours (see edrLib) are modified when in lab mode, specifically the
system's response to exceptions in kernel and user mode. By default, the lab mode response
is to put the failing component into a debuggable state, whereas the deployed mode
response is to terminate (and attempt to restart) the failing component.

CONFIGURATION To use the ED&R system-debug flag, configure VxWorks with the
INCLUDE_EDR_SYSDBG_FLAG component.

INCLUDE FILES none

envLib

NAME envLib – environment variable library

ROUTINES envLibInit() – initialize environment variable facility
envPrivateCreate() – create a private environment
envPrivateDestroy() – destroy a private environment
putenv() – set an environment variable
getenv() – get an environment variable (ANSI)
envShow() – display the environment for a task
envGet() – return a pointer to the environment of a task

DESCRIPTION This library provides a UNIX-compatible environment variable facility. Environment
variables are created or modified with a call to putenv():

 putenv ("variableName=value");

The value of a variable may be retrieved with a call to getenv(), which returns a pointer to
the value string.

Tasks may share a common set of environment variables, or they may optionally create their
own private environments, either automatically when the task create hook is installed, or by
an explicit call to envPrivateCreate(). The task must be spawned with the
VX_PRIVATE_ENV option set to receive a private set of environment variables. Private

VxWorks Kernel API Reference, 6.6
errnoLib

94

environments created by the task creation hook inherit the values of the environment of the
task that called taskSpawn() (since task create hooks run in the context of the calling task).

INCLUDE FILES envLib.h

SEE ALSO UNIX BSD 4.3 manual entry for environ(5V), American National Standard for Information
Systems -, Programming Language - C, ANSI X3.159-1989: General Utilities (stdlib.h)

errnoLib

NAME errnoLib – error status library

ROUTINES errnoGet() – get the error status value of the calling task
errnoOfTaskGet() – get the error status value of a specified task
errnoSet() – set the error status value of the calling task
errnoOfTaskSet() – set the error status value of a specified task

DESCRIPTION This library contains routines for setting and examining the error status values of tasks and
interrupts. Most VxWorks functions return ERROR when they detect an error, or NULL in
the case of functions returning pointers. In addition, they set an error status that elaborates
the nature of the error.

This facility is compatible with the UNIX error status mechanism in which error status
values are set in the global variable errno. However, in VxWorks there are many task and
interrupt contexts that share common memory space and therefore conflict in their use of
this global variable. VxWorks resolves this in two ways:

(1)` For tasks, VxWorks maintains the errno value for each context separately. The value of
errno for a task is stored in the task TCB. Regardless of task context code can always
reference or modify errno directly, and only the currently executing task's value will
be affected.

(2) For interrupt service routines, VxWorks maintains a seperate errno. Interrupt service
routines can also reference or modify errno directly, and only the seperate interrupt
service routine value of errno will be affected.

The errno facility is used throughout VxWorks for error reporting. In situations where a
lower-level routine has generated an error, by convention, higher-level routines propagate
the same error status, leaving errno with the value set at the deepest level. Developers are
encouraged to use the same mechanism for application modules where appropriate.

An error status is a 4-byte integer. By convention, the most significant two bytes are the
module number, which indicates the module in which the error occurred. The lower two
bytes indicate the specific error within that module. Module number 0 is reserved for UNIX
error numbers so that values from the UNIX errno.h header file can be set and tested

1 Libraries
errnoLib

95

1
without modification. Module numbers 1-500 decimal are reserved for VxWorks modules.
These are defined in vwModNum.h. All other module numbers are available to
applications.

VxWorks can include a special symbol table called statSymTbl which printErrno() uses to
print human-readable error messages.

This table is created with the tool makeStatTbl, found in host/hostOs/bin. This tool reads
all the .h files in a specified directory and generates a C-language file, which generates a
symbol table when compiled. Each symbol consists of an error status value and its
definition, which was obtained from the header file.

For example, suppose the header file target/h/myFile.h contains the line:

 #define S_myFile_ERROR_TOO_MANY_COOKS 0x230003

The table statSymTbl is created by first running:

On UNIX:

 makeStatTbl target/h > statTbl.c

On Windows:

 makeStatTbl target/h

This creates a file statTbl.c in the current directory, which, when compiled, generates
statSymTbl. The table is then linked with VxWorks. Normally, these steps are performed
automatically by the makefile in target/src/usr.

If the user now types from the VxWorks shell:

 -> printErrno 0x230003

The printErrno() routine would respond:

 S_myFile_ERROR_TOO_MANY_COOKS

The makeStatTbl tool looks for error status lines of the form:

 #define S_xxx <n>

where xxx is any string, and n is any number. All VxWorks status lines are of the form:

 #define S_thisFile_MEANINGFUL_ERROR_MESSAGE 0xnnnn

where thisFile is the name of the module.

CONFIGURATION This facility is always available without any additional configuration. To use it, add header
files with status lines of the appropriate form and rebuild VxWorks.

INCLUDE FILES errnoLib.h, The file vwModNum.h contains the module numbers for every VxWorks
module., The include file for each module contains the error numbers which that module,
can generate.

SEE ALSO printErrno(), makeStatTbl

VxWorks Kernel API Reference, 6.6
eventLib

96

eventLib

NAME eventLib – VxWorks events library

ROUTINES eventReceive() – Wait for event(s)
eventSend() – Send event(s)
eventClear() – Clear the calling task's events register

DESCRIPTION Events are a means of communication and synchronization between tasks and interrupt
service routines. Only tasks can receive events but both tasks and ISRs can send them.
Events are an attractive lighter weight alternative to binary semaphores to perform
task-to-task or ISR-to-task synchronization. The functionality provided by this library can
be included/removed from the VxWorks kernel using the INCLUDE_VXEVENTS
component.

Events are similar to signals in that they are directed at one task and can be sent at any time
regardless of the state of the said task. However they differ from signals in that the receiving
task's execution is not altered by the arrival of events. The receiving task must explicitly
check its event register to determine if it has received events.

Each task has its own events register that can be filled by having tasks (even itself) and/or
ISRs send events to the task. Events are generic in nature in that VxWorks does not assign
specific meaning to any events. The parties communicating using events must have an a
priori agreement on the meaning of individual events.

Events are not accumulated. If the same event is received several times, it is treated as if it
were received only once. It is not possible to track how many times each event has been
received by a task.

An event is actually a bit in a 32 bit word. Therefore up to 32 distinct events can be sent to
a task.

Semaphore and message queues can also send events automatically when they become
available. For example, when a semaphore becomes free it can send events to a task that has
requested to be notified of the semaphore's change of state. This functionality is not
described in this library. Please refer to the documentation for semEvLib and msgQEvLib.

EXAMPLE An ISR defers device error handling to a worker task that is capable of identifying which
device suffered the error based on the event number it received from the ISR. This example
assumes the ISR is already connected to the proper interrupt vector and the workerTask has
already been spawned. It is also assumed that various initialization steps have already been
taken such as variables and list initializations.

#include <vxWorks.h>
#include <device.h> /* Fictitious library for DEVICE related
definitions */
#include <dllLib.h>

1 Libraries
eventLib

97

1
#include <eventLib.h>

/* externs */

extern int ffsLsb (UINT32 i); /* find first set bit in 32 bit-word */

/* forward declarations */

DEVICE * devEventNumToDevPtr (UINT32 * pEvent);

/* globals */

int workerTaskId; /* Worker task ID. Initialized before */
 /* devIntHandler ever runs */

DL_LIST devList; /* Device list. Initialized before */
 /* the workerTask ever runs */

void devIntHandler /* Device interrupt handler */
 (
 DEVICE * pDevice /* device that needs servicing */
)
 {

 if ((pDevice->state & DEVICE_ERROR_MASK) == 0)
 {
 /* Device not in error state. Process interrupt now */

 }
 else
 {
 /*
 * Defer processing of error to task by sending events to
 * the worker task. It is assumed the device was assigned
 * a unique power-of-two eventNumber at creation so the
 * worker task can identify it amongst a number of similar
 * devices present in the system.
 *
 * Passing pDevice as an event directly is not a good
 * solution because this interrupt handler could run
 * again before the worker task has a chance to read its
 * events register.
 */

 eventSend (workerTaskId, pDevice->eventNumber);

 /*
 * DO NOT re-enable the device until the worker task has
 * dealt with the error condition.
 */
 }
 }

void workerTask ()
 {

VxWorks Kernel API Reference, 6.6
eventLib

98

 UINT32 events; /* where event are copied */
 STATUS result; /* eventReceive() call result */
 DEVICE * pDevice; /* failed device */

 while (TRUE)
 {

 /*
 * Wait for any of 32 events. It is possible that more than
 * one event be received if two or more devices are found
 * to have errors before this task gets the CPU.
 */
 result = eventReceive (0xffffffff, EVENTS_WAIT_ANY,
 WAIT_FOREVER, &events);

 if (result != OK)
 {
 /*
 * Failed to receive events. Perform some sort of
 * error handling
 */
 }

 /* Process every event in events */
 while ((pDevice = devEventNumToDevPtr (&events)) != NULL)
 {
 /* Process error on pDevice. Perhaps re-enable the device */
 }

 if (events != 0)
 {
 /* An error has occurred since events should be 0 at
 * this point. Somehow devEventNumToDevPtr() could
 * not map a device to the last value of event it
 * received.
 */
 }
 }
 }

DEVICE * devEventNumToDevPtr
 (
 UINT32 * pEvents /* events to process */
)
 {
 UINT32 eventNumber; /* stores one and one event only */
 DEVICE * pDevice = NULL; /* returned value */

 /* Find an event in pEvents */

 if ((eventNumber = ffsLsb (*pEvents)) != 0)
 {
 eventNumber = 1 << (eventNumber - 1);
 }

 /* Find the device which maps to eventNumber */

1 Libraries
eventLib

99

1 if (eventNumber != 0)
 {
 devListLock(); /* Lock the device list. Fictitious rtn */

 /* Get the first device in the list */

 pDevice = (DEVICE *) DLL_FIRST (&devList);

 while (pDevice != NULL)
 {
 if (pDevice->eventNumber == eventNumber)
 {
 /*
 * Found the device in the list. Stop searching
 * and clear the event number so next time this
 * routine is called the next event in pEvent will
 * be processed.
 */
 *pEvents = *pEvents & ~(1 << (eventNumber - 1))
 break;
 }

 pDevice = (DEVICE *) DLL_NEXT (pDevice);

 }
 devListUnlock(); /* Unlock the device list. Fictitious rtn */
 }

 return (pDevice);
 }

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES eventLib.h

SEE ALSO eventShow, semEvLib, msgQEvLib, the VxWorks programmer's guides

VxWorks Kernel API Reference, 6.6
excArchLib

100

excArchLib

NAME excArchLib – architecture-specific exception-handling facilities

ROUTINES excVecInit() – initialize the exception/interrupt vectors
excConnect() – connect a C routine to an exception vector (PowerPC)
excIntConnect() – connect a C routine to an asynchronous exception vector (PowerPC,
ARM)
excCrtConnect() – connect a C routine to a critical exception vector (PowerPC 403)
excIntCrtConnect() – connect a C routine to a critical interrupt vector (PowerPC 403)
excVecSet() – set a CPU exception vector (PowerPC, ARM)
excVecGet() – get a CPU exception vector (PowerPC, ARM)

DESCRIPTION This library contains exception-handling facilities that are architecture dependent. For
information about generic (architecture-independent) exception-handling, see the manual
entry for excLib.

INCLUDE FILES excLib.h

SEE ALSO excLib, dbgLib, sigLib, intLib

excLib

NAME excLib – generic exception handling facilities

ROUTINES excInit() – initialize the exception handling package
excJobAdd() – request a task-level function call from interrupt level
excHookAdd() – specify a routine to be called with exceptions

CONFIGURATION To use this functionality, configure the INCLUDE_EXC_TASK component. This component
also takes a configuration parameter MAX_ISR_JOBS which must always be a power of 2,
and no larger than 64K.

ADDITIONAL EXCEPTION HANDLING ROUTINE

The excHookAdd() routine adds a routine that will be called when a hardware exception
occurs. This routine is called at the end of normal exception handling.

DBGLIB The facilities of excLib, including excTask(), are used by dbgLib to support breakpoints,
single-stepping, and additional exception handling functions.

1 Libraries
fccVxbEnd

101

1
SIGLIB A higher-level, UNIX-compatible interface for hardware and software exceptions is

provided by sigLib. If sigvec() is used to initialize the appropriate hardware
exception/interrupt (e.g., BUS ERROR == SIGSEGV), excLib will use the signal mechanism
instead.

INCLUDE FILES excLib.h

SEE ALSO dbgLib, sigLib, intLib

fccVxbEnd

NAME fccVxbEnd – fcc VxBus END driver

ROUTINES fccRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the Motorola/Freescale Fast Communications
Controller (FCC) Ethernet network interface. The FCC supports several communication
protocols. This driver supports the FCC operating in Ethernet mode, which is fully
compliant with the IEEE 802.3u 10Base-T and 100Base-T specifications. When programmed
for ethernet mode, the FCC is used in conjunction with an external MII-compliant PHY.

The FCC exists in various Freescale CPUs that contain a Communications Processor Module
(CPM), including the MPC8260, MPC8272, and MPC8560. There may be up to 3 FCCs, each
of which may be programmed for different modes, including ethernet, HDLC and
transparent mode. Using the FCC for ethernet requires access to 5 different resources within
the processor:

- A region of dual port RAM containing various configuration registers (PRAM) - A region
of internal memory mapped registers (IRAM) - The CP command register (CPCR) - Various
parallel I/O registers (used for RX/TX signals and MDIO/PHY access) - A single interrupt
vector

This VxBus driver manages access only to the PRAM and IRAM register regions and the
interrupt vector. Access to the CP command register is managed through a separate VxBus
cpm driver, and access to the PHY is provided through a separete VxBus mdio driver. (The
PHY on the mdio driver's MII bus is remapped to the FCC port via the BSP's hwconf.c file.)

BOARD LAYOUT The FCC is directly integrated into the CPU. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
fccRegister() function, which registers the driver with VxBus.

VxWorks Kernel API Reference, 6.6
fecVxbEnd

102

In order to enable the FCC, several of the parallel I/O pins must be programmed to connect
the FCC's RX and TX signals to the external PHY, and to supply the necessary clock signals.
This setup is board-specific, and is not handled directly by this driver. Instead, the driver
will query its parent bus (which will always be the PLB, since the FCC is a processor local
bus device) for enable and disable methods. These methods should be registered with the
PLB by the BSP during VxBus initialization. If an enable method is found, it will be called
by the fccInstInit() routine. If a disable method is found, it will be called during the
fccInstUnlink() routine.

INCLUDE FILES none

SEE ALSO vxBus, ifLib, "Writing an Enhanced Network Driver", "MPC8260 PowerQUICC II Family
Reference Manual, http://www.freescale.com/files/product/doc/MPC8260UM.pdf"

fecVxbEnd

NAME fecVxbEnd – Motorola/Freescale FEC VxBus END driver

ROUTINES fecRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the Motorola/Freescale Fast Ethernet Controller (FEC)
found on PowerPC 8xx and Coldfire embedded processors. The FEC is fully compliant with
the IEEE 802.3 10Base-T and 100Base-T specifications and supports both 7 wire serial mode
(10Mbps only) and MII transceivers (10/100 Mbps in full or half duplex).

The FEC is a processor local bus device. Each controller has a bank of control/status
registers (CSR) which is mapped into host address space. Packet transfers are performed
through DMA using separate receive and transmit DMA rings. Each ring is constructed
from descriptors that are 8 bytes in size and can address a single data buffer at any 32-bit
address within host RAM. Multiple descriptors can be chained together to perform
scatter/gather DMA.

The PowerPC 8xx version of the FEC is a bus master: all DMA operations are performed
through the FEC itself. The Coldfire FEC requires the use of the Multi-Channel DMA
controller, which is accessed through the VxBus slave DMA API. (A VxBus slave DMA
driver is provided.)

BOARD LAYOUT The FEC is directly integrated into the CPU. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides the standard VxBus external interface, fecRegister(). This function
registers the driver with the VxBus subsystem, and instances will be created as needed.

1 Libraries
fecVxbEnd

103

1
Since the FEC is a processor local bus device, each device instance must be specified in the
hwconf.c file in a BSP. The hwconf entry must specify the following parameters:

regBase
Specifies the base address where the controller's CSR registers are mapped into the
host's address space. All register offsets are computed relative to this address. For the
PPC 8xx architecture, the base address is usually MBAR + 0xE00. For the Coldfire FEC,
the base address can be MBAR + 0x9000 and (for Coldfire boards with two FEC ports)
MBAR + 0x9800.

intr
Specifies the interrupt vector for the FEC. For the PPC FEC, this designates which bit in
the SIPEND register in the SIU will be assigned to the FEC.

intrLevel
Specifies the interrupt level for the FEC. Currently, this is the same value as interrupt
vector.

phyAddr
The MII management address (0-31) of the PHY for this particular FEC device. Each
FEC typically has at least one PHY allocated to it (unless it's in serial mode).

miiIfName
The name of the driver that provides the MII interface for this FEC unit. On boards that
have multiple FEC devices (e.g. the ads885), the management pins for all of the PHYs
will all be wired to the MDIO pins on just one controller. The miiIfName resource (and
the miiIfUnit resource below) are used to tell each FEC instance which one is the
management controller. If a device is not the management controller, it will just
forward its PHY register read and write requests to the one that is.

miiIfUnit
The unit number of the device that provides the MII management methods for this FEC
instance.

An example hwconf entry is shown below:

const struct hcfResource motFecHEnd0Resources[] = {
 { "regBase", HCF_RES_INT, { (void *)(MBAR_VAL + 0x9000) } },
 { "intr", HCF_RES_INT, { (void *)67 } },
 { "intrLevel", HCF_RES_INT, { (void *)67 } },
 { "phyAddr", HCF_RES_INT, { (void *)0 } },
 { "miiIfName", HCF_RES_STRING, { (void *)"motfec" } },
 { "miiIfUnit", HCF_RES_INT, { (void *)0 } }
};

The FEC driver uses the ifmedia interface, which allows media selection to be controller by
the ifconfig utility, or the SIOCGIFMEDIA/SIOCSIFMEDIA ioctl API. It also uses the
miiBus subsystem to manage its PHYs, so no MII handling code is needed within the FEC
driver itself.

VxWorks Kernel API Reference, 6.6
fei8255xVxbEnd

104

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one external support function on the PPC and the Coldfire
architectures:

sysFecEnetAddrGet()
 STATUS sysFecEnetAddrGet (UINT32, UINT8 *)

This function is used on both the PPC and Coldfire FEC, and is the only one required
for the PPC FEC. This routine queries the BSP to provide the ethernet address for a
given FEC unit. (For PPC, the unit number is always 0, since the PPC 8xx devices only
have one FEC port.)

INCLUDE FILES none

SEE ALSO vxBus, miiBus, ifLib, endLib, "Writing an Enhanced Network Driver", "MPC885 PowerQUICC
Family Reference Manual
http://www.freescale.com/files/32bit/doc/ref_manual/MPC885RM.pdf", "MCF5475
Reference Manual http://www.freescale.com/files/32bit/doc/ref_manual/MCF5475RM.pdf"

fei8255xVxbEnd

NAME fei8255xVxbEnd – Intel PRO/100 VxBus END driver

ROUTINES feiRegister() – register with the VxBus subsystem

DESCRIPTION This module provides driver support for the Intel PRO/100 series of 10/100 ethernet
controllers. This includes the i82557, i82558, i82559, i82550, i82551, and the embedded
PRO/100 interfaces in several Intel motherboard chipsets. The 8255x family is compatible
with the IEEE 802.3 10Base-T and 100base-T specifications. It features a glueless 32-bit PCI
bus master interface that complies with the PCI v2.1 specification. An interface to MII
compliant physical layer devices is built-in to the controller. The 8255x also includes Flash
support up to 1 MByte and EEPROM support. The flash module is not used in this driver.

The 8255x has two DMA channels. One of them, the RX DMA channel, is used exclusively
for reception of ethernet frames. The other is the command DMA channel, which is used by
the host to execute commands on the controller. One of these commands happens to be the
'transmit ethernet frame' command, however it's a mistake to think of the command DMA
channel as the TX DMA ring only. The same channel is used to issue configuration
commands, to set the station address, and to program the multicast filter. This aspect of the
controller makes the driver design a little tricky, since access to the command DMA channel
is effectively shared between the driver's data and control planes.

For frame reception and transmission, the 8255x offers two types of DMA descriptor
schemes, refered to as simple mode and flexible mode. In simple mode, a frame must be

1 Libraries
fei8255xVxbEnd

105

1
contained in a single contiguous buffer, both for reception and transmission. With flexible
transmit mode, each TX descriptor uses a fragment array that allows for in-place
scatter/gather DMA of an arbitrary number of fragments. Flexible receive mode is not quite
as straightforward to use as flexible transmit mode, however it has the advantage of
allowing RX buffers to be placed at arbitrarily aligned locations in memory (by contrast,
simple RX mode imposes certain alignment restrictions).

In simple RX mode, each RX descriptor has a packet data region immediately following it,
into which the chip will deposit incoming frames. In effect, the RX descriptor is treated as a
header attached to the packet. This makes managing the RFDs tricky since the entire RFD
must be removed from the RX DMA ring in order to loan the packet out to the stack for
processing.

In flexible RX mode, the RFD has no frame data area. Instead, the RFD ring is accompanied
by a second ring of descriptors knows as RBDs. The first RBD pointer in the first RFD in the
ring is used to tell the chip the location of the start of the RBD list. It's possible to have a
different number of RBDs than RFDs. Each entry in the RBD list is basically just a data buffer
that the chip will fill in with received packet data. If the RBD happens to be large enough to
hold a full size ethernet frame, only one RBD per packet will be needed.

To keep things simple, the driver uses the convention that each RFD has one accompanying
RBD associated with it. The RBD buffers are all large enough to contain a full size frame, so
the chip should always consume one RFD and one RBD per packet. The RFD and RBD
structures together are treated as a single descriptor structure by the driver, even though
technically the chip treats them as separate entities.

The 82550 and 82551 offer additional features including TCP/IP checksum offload and
VLAN tag stripping and insertion. Using these features involes the use of extended RX and
TX descriptor formats, which must be enabled via special bits in the configuration block.

The 82550 appears to have an erratum that causes it to miscalculate IP header checksums for
certain very small datagrams, particularly IP fragemnts from 1 to 3 bytes in size. These may
occur if you transmit an IP datagram that's slightly larger than your MTU size. It's possible
to work around this problem by checking for IP packets of this size and calculating the
checksum in software, however this approach has a couple of drawbacks: it introduces a
linker dependency on the in_cksum() routine in the TCP/IP stack, and it's possible that the
extra processing needed to test for the error case might negate the benefit of the IP header
checksum offload in the first place. By default, the driver is compiled such that it will not
enable transmit IP header checksum support for the 82550 device. If the driver is compiled
with the FEI_IP_HDR_CSUM_WAR macro defined, the software workaround will be
enabled. The workaround is unnecessary for the 82551 chip, in which the erratum appears
to have been corrected.

The 82557, 82558 and 82559 do not support the special checksum offload and VLAN
features. For those chips, the this driver will use the flexible TX and RX DMA mode, but
checksum offload and VLAN stripping/insertion are disabled. For the 82550 and 82551, the
driver will use the extended TxCB and extended RFD formats instead. The chip type will be
automatically detected and the features enabled without any intervention from the user.

VxWorks Kernel API Reference, 6.6
ffsLib

106

The checksum offload and VLAN features can be disabled at runtime using the ENDIFCAP
ioctls, if desired.

BOARD LAYOUT The 8255x controllers are available in standalone PCI and cardbus adapter formats, and may
also be directly integrated onto the system main board. There are also Intel x86 motherboard
chipsets with built-in PRO/100 ethernet devices. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a VxBus external interface. The only exported routine is the
feiRegister() function, which registers the driver with VxBus.

INCLUDE FILES fei8255xVxbEnd.h end.h endLib.h netBufLib.h muxLib.h

SEE ALSO vxBusLib, ifLib, endLib, "Writing an Enhanced Network Driver", "Intel(r) 8255x 10/100 Mbps
Ethernet Controller Family Open Source Software Developer Manual,
http://developer.intel.com/design/network/manuals/8255x_opensdm.htm"

ffsLib

NAME ffsLib – find first bit set library

ROUTINES ffsMsb() – find most significant bit set
ffsLsb() – find least significant bit set

DESCRIPTION This library contains routines to find the first bit set in a 32 bit field. It is utilized by bit
mapped priority queues and hashing functions.

INCLUDE FILES ffsLib.h

fioBaseLib

NAME fioBaseLib – formatted I/O library

ROUTINES fioBaseLibInit() – initialize the formatted I/O support library
printf() – write a formatted string to the standard output stream (ANSI)
oprintf() – write a formatted string to an output function
printErr() – write a formatted string to the standard error stream
sprintf() – write a formatted string to a buffer (ANSI)

1 Libraries
fioLib

107

1
snprintf() – write a formatted string to a buffer, not exceeding buffer size (ANSI)
fioFormatV() – convert a format string

DESCRIPTION This library provides the basic formatting and scanning I/O functions. It includes some
routines from the ANSI-compliant printf()/scanf() family of routines. It also includes
several utility routines.

If the floating-point format specifications e, E, f, g, and G are to be used with these routines,
the routine floatInit() must be called first. If the configuration macro
INCLUDE_FLOATING_POINT is defined, floatInit() is called by the root task, usrRoot(), in
usrConfig.c.

These routines do not use the buffered I/O facilities provided by the standard I/O facility.
Thus, they can be invoked even if the standard I/O package has not been included. This
includes printf(), which in most UNIX systems is part of the buffered standard I/O
facilities. Because printf() is so commonly used, it has been implemented as an unbuffered
I/O function. This allows minimal formatted I/O to be achieved without the overhead of
the entire standard I/O package. For more information, see the manual entry for ansiStdio.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES fioLib.h, stdio.h

SEE ALSO ansiStdio, floatLib, "VxWorks Kernel Programmer's Guide: I/O System"

fioLib

NAME fioLib – formatted I/O library

ROUTINES fioLibInit() – initialize the formatted I/O support library
voprintf() – write a formatted string to an output function
fdprintf() – write a formatted string to a file descriptor
vprintf() – write a string formatted with a variable argument list to standard output (ANSI)
vfdprintf() – write a string formatted with a variable argument list to a file descriptor
vsprintf() – write a string formatted with a variable argument list to a buffer (ANSI)

VxWorks Kernel API Reference, 6.6
fppArchLib

108

vsnprintf() – write a string formatted with a variable argument list to a buffer, not
exceeding buffer size (ANSI)
fioRead() – read a buffer
fioRdString() – read a string from a file
sscanf() – read and convert characters from an ASCII string (ANSI)

DESCRIPTION This library provides the basic formatting and scanning I/O functions. It includes some
routines from the ANSI-compliant printf()/scanf() family of routines. It also includes
several utility routines.

If the floating-point format specifications e, E, f, g, and G are to be used with these routines,
the routine floatInit() must be called first. If the configuration macro
INCLUDE_FLOATING_POINT is defined, floatInit() is called by the root task, usrRoot(), in
usrConfig.c for BSP builds or in prjConfig.c in project builds.

These routines do not use the buffered I/O facilities provided by the standard I/O facility.
Thus, they can be invoked even if the standard I/O package has not been included. This
includes printf(), which in most UNIX systems is part of the buffered standard I/O
facilities. Because printf() is so commonly used, it has been implemented as an unbuffered
I/O function. This allows minimal formatted I/O to be achieved without the overhead of
the entire standard I/O package. For more information, see the manual entry for ansiStdio.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES fioLib.h, stdio.h

SEE ALSO ansiStdio, floatLib, "VxWorks Programmer's Guide: I/O System"

fppArchLib

NAME fppArchLib – architecture-dependent floating-point coprocessor support

ROUTINES fppSave() – save the floating-point coprocessor context
fppRestore() – restore the floating-point coprocessor context
fppProbe() – probe for the presence of a floating-point coprocessor
fppTaskRegsGet() – get the floating-point registers from a task TCB

1 Libraries
fppArchLib

109

1
fppTaskRegsSet() – set the floating-point registers of a task

DESCRIPTION This library contains architecture-dependent routines to support the floating-point
coprocessor. The routines fppSave() and fppRestore() save and restore all the task
floating-point context information. The routine fppProbe() checks for the presence of the
floating-point coprocessor. The routines fppTaskRegsSet() and fppTaskRegsGet()
inspect and set coprocessor registers on a per-task basis.

With the exception of fppProbe(), the higher-level facilities in dbgLib and usrLib should
be used instead of these routines. For information about architecture-independent access
mechanisms, see the manual entry for fppLib.

INITIALIZATION To activate floating-point support, fppInit() must be called before any tasks using the
coprocessor are spawned. This is done by the root task, usrRoot(), in usrConfig.c. See the
manual entry for fppLib.

NOTE X86 There are two kind of floating-point contexts and set of routines for each kind. One is 108
bytes for older FPU (i80387, i80487, Pentium) and older MMX technology and fppSave(),
fppRestore(), fppRegsToCtx(), and fppCtxToRegs() are used to save and restore the
context, convert to or from the FPPREG_SET. The other is 512 bytes for newer FPU, newer
MMX technology and streaming SIMD technology (PentiumII, III, 4) and fppXsave(),
fppXrestore(), fppXregsToCtx(), and fppXctxToRegs() are used to save and restore the
context, convert to or from the FPPREG_SET. Which to use is automatically detected by
checking CPUID information in fppArchInit(). And fppTaskRegsSet() and
fppTaskRegsGet() access the appropriate floating-point context. The bit interrogated for
the automatic detection is the "Fast Save and Restore" feature flag.

NOTE X86 INITIALIZATION

To activate floating-point support, fppInit() must be called before any tasks using the
coprocessor are spawned. If INCLUDE_FLOATING_POINT is defined in configAll.h, this is
done by the root task, usrRoot(), in usrConfig.c.

NOTE X86 VX FP TASK OPTION

Saving and restoring floating-point registers adds to the context switch time of a task.
Therefore, floating-point registers are not saved and restored for every task. Only those
tasks spawned with the task option VX_FP_TASK will have floating-point state, MMX
technology state, and streaming SIMD state saved and restored.

NOTE: If a task does any floating-point operations, MMX operations, and streaming SIMD
operation, it must be spawned with VX_FP_TASK. It is deadly to execute any floating-point
operations in a task spawned without VX_FP_TASK option, and very difficult to find. To
detect that illegal/unintentional/accidental floating-point operations, a new API and
mechanism is added. The mechanism is to enable or disable the FPU by toggling the TS flag
in the CR0 in the new task switch hook routine - fppArchSwitchHook() - respecting the
VX_FP_TASK option. If VX_FP_TASK option is not set in the switching-in task, the FPU is
disabled. Thus the device-not-available exception will be raised if that task does any

VxWorks Kernel API Reference, 6.6
fppArchLib

110

floating-point operations. This mechanism is disabled in the default. To enable, call the
enabler - fppArchSwitchHookEnable() - with a parameter TRUE(1). A parameter
FALSE(0) disables the mechanism.

NOTE X86 MIXING MMX AND FPU INSTRUCTIONS

A task with VX_FP_TASK option saves and restores the FPU and MMX state when
performing a context switch. Therefore, the application does not have to save or restore the
FPU and MMX state if the FPU and MMX instructions are not mixed within a task. Because
the MMX registers are aliased to the FPU registers, care must be taken when making
transitions between FPU instructions and MMX instructions to prevent the loss of data in
the FPU and MMX registers and to prevent incoherent or unexpected result. When mixing
MMX and FPU instructions within a task, follow these guidelines from Intel:

- Keep the code in separate modules, procedures, or routines.

- Do not rely on register contents across transitions between FPU and MMX code
modules.

- When transitioning between MMX code and FPU code, save the MMX register state (if
it will be needed in the future) and execute an EMMS instruction to empty the MMX
state.

- When transitioning between FPU and MMX code, save the FPU state, if it will be
needed in the future.

NOTE X86 MIXING SSE SSE2 FPU AND MMX INSTRUCTIONS

The XMM registers and the FPU/MMX registers represent separate execution
environments, which has certain ramifications when executing SSE, SSE2, MMX and FPU
instructions in the same task context:

- Those SSE and SSE2 instruction that operate only on the XMM registers (such as the
packed and scalar floating-point instructions and the 128-bit SIMD integer instructions)
can be executed in the same instruction stream with 64-bit SIMD integer or FPU
instructions without any restrictions. For example, an application can perform the
majority of its floating-point computations in the XMM registers, using the packed and
scalar floating-point instructions, and at the same time use the FPU to perform
trigonometric and other transcendental computations. Likewise, an application can
perform packed 64-bit and 128-bit SIMD integer operations can be executed together
without restrictions.

- Those SSE and SSE2 instructions that operate on MMX registers (such as the CVTPS2PI,
CVTTPS2PI, CVTPI2PS, CVTPD2PI, CVTTPD2PI, CVTPI2PD, MOVDQ2Q,
MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be executed in the same
instruction stream as 64-bit SIMD integer or FPU instructions, however, here they
subject to the restrictions on the simultaneous use of MMX and FPU instructions, which
mentioned in the previous paragraph.

1 Libraries
fppArchLib

111

1
NOTE X86 INTERRUPT LEVEL

Floating-point registers are not saved and restored for interrupt service routines connected
with intConnect(). However, if necessary, an interrupt service routine can save and restore
floating-point registers by calling routines in fppALib. See the manual entry for
intConnect() for more information.

NOTE X86 EXCEPTIONS

There are six FPU exceptions that can send an exception to the CPU. They are controlled
by Exception Mask bits of the Control Word register. VxWorks disables them in the default
configuration. They are:

- Precision
- Overflow
- Underflow
- Division by zero
- Denormalized operand
- Invalid Operation

The FPU in 486 or later IA32 processors provide two different modes to handle a FPU
floating-point exceptions. MSDOS compatibility mode and native mode. The mode of
operation is selected with the NE flag of control register CR0. The MSDOS compatibility
mode is not supported, because it is old and requires external signal handling. The native
mode for handling FPU exceptions is used by setting the NE flag in the control register CR0.
In this mode, if the FPU detects an exception condition while executing a floating-point
instruction and the exception is unmasked (the mask bit for the exception is cleared), the
FPU sets the flag for the exception and the ES flag in the FPU status word. It then invokes
the software exception handler through the floating-point-error exception (vector number
16), immediately before execution of any of the following instructions in the processor's
instruction stream:

- The next floating-point instruction, unless it is one of the non-waiting instructions
(FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV and FNSAVE).

- The next WAIT/FWAIT instruction.

- The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting instruction,
the FPU executes the instruction without invoking the software exception handler. There is
a well known FPU exception synchronization problems that occur in the time frame
between the moment when the exception is signaled and when it is actually handled.
Because of concurrent execution (integer unit and FPU), integer or system instructions can
be executed during this time frame. It is thus possible for the source or destination operands
for a floating- point instruction that faulted to be overwritten in memory, making it
impossible for the exception handler to analyze or recover from the exception. To solve this
problem, an exception synchronizing instruction (either a floating-point instruction or a
WAIT/FWAIT instruction) can be placed immediately after any floating-point instruction
that might present a situation where state information pertaining to a floating-point

VxWorks Kernel API Reference, 6.6
fppLib

112

exception might be lost or corrupted. The preemption could happen at any instruction
boundary that maybe right after the faulting instruction, and could result in the task context
switch. The task context switch does not perform the FPU context switch always for
optimization, and the FPU context switch maybe done in other task context. To make the
pending unmasked exceptions to be handled in the task context that it happened, the FPU
context switch does not check pending unmasked exceptions, and preserves the exception
flags in the status register. It may not be useful to re-execute the faulting instruction, if the
faulting floating-point instruction is followed by one or more non-floating-point
instructions. The return instruction pointer on the stack (exception stack frame) may not
point to the faulting instruction. The faulting instruction pointer is contained in the saved
FPU state information. The default exception handler does not replace the return
instruction pointer with the faulting instruction pointer. fppCwSet() and fppCwGet(), sets
and gets the X86 FPU control word. fppSwGet() gets the X86 FPU status word. fppWait()
checks for pending unmasked FPU exceptions. fppClex() clears FPU exception flags after
checking unmasked FPU pending exceptions. fppNclex() clears FPU exception flags
without checking unmasked FPU pending exceptions.

NOTE ARM This architecture does not currently support floating-point coprocessors.

INCLUDE FILES fppLib.h

SEE ALSO fppLib, intConnect(), "Motorola MC68881/882 Floating-Point Coprocessor User's Manual",
"Intel 387 DX User's Manual", "Intel Architecture Software Developer's Manual", "Renesas
SH7750 Hardware Manual", Gerry Kane and Joe Heinrich, "MIPS RISC Architecture Manual"

fppLib

NAME fppLib – floating-point coprocessor support library

ROUTINES fppInit() – initialize floating-point coprocessor support

DESCRIPTION This library provides a general interface to the floating-point coprocessor. To activate
floating-point support, fppInit() must be called before any tasks using the coprocessor are
spawned. This is done automatically by the root task, usrRoot(), in usrConfig.c when the
configuration macro INCLUDE_HW_FP is defined.

For information about architecture-dependent floating-point routines, see the manual entry
for fppArchLib.

The fppShow() routine displays coprocessor registers on a per-task basis. For information
on this facility, see the manual entries for fppShow and fppShow().

1 Libraries
fppShow

113

1
VX_FP_TASK OPTION Saving and restoring floating-point registers adds to the context
switch time of a task. Therefore, floating-point registers are not saved and restored for every
task. Only those tasks spawned with the task option VX_FP_TASK will have floating-point
registers saved and restored.

NOTE If a task does any floating-point operations, it must be spawned with VX_FP_TASK.

INTERRUPT LEVEL

Floating-point registers are not saved and restored for interrupt service routines connected
with intConnect(). However, if necessary, an interrupt service routine can save and restore
floating-point registers by calling routines in fppArchLib.

INCLUDE FILES fppLib.h

SEE ALSO fppArchLib, fppShow, intConnect(), "VxWorks Kernel Programmer's Guide: Basic OS"

fppShow

NAME fppShow – floating-point show routines

ROUTINES fppShowInit() – initialize the floating-point show facility
fppTaskRegsShow() – print the contents of a task's floating-point registers

DESCRIPTION This library provides the routines necessary to show a task's optional floating-point context.
To use this facility, it must first be installed using fppShowInit(), which is called
automatically when the floating-point show facility is configured into VxWorks using either
of the following methods:

- If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

- If you use the Tornado project facility, select INCLUDE_HW_FP_SHOW.

This library enhances task information routines, such as ti(), to display the floating-point
context.

INCLUDE FILES fppLib.h

SEE ALSO fppLib

VxWorks Kernel API Reference, 6.6
fsEventUtilLib

114

fsEventUtilLib

NAME fsEventUtilLib – Event Utility functions for different file systems

ROUTINES fsEventUtilInit() – Initialize the file system event utlility library
fsPathAddedEventSetup() – Setup to wait for a path
fsPathAddedEventRaise() – Raise a "path added" event
fsWaitForPath() – wait for a path

DESCRIPTION This library contains file systems event utility routines.

INCLUDE FILES fsEventUtilLib.h

fsMonitor

NAME fsMonitor – The File System Monitor

ROUTINES fsMonitorInit() – Initialize the fsMonitor
fsmNameMap() – map an XBD name to a Core I/O path
fsmProbeInstall() – install F/S probe and instantiator functions
fsmProbeUninstall() – remove a file system probe
fsmNameInstall() – Add a mapping between an XBD name and a pathname
fsmNameUninstall() – remove an XBD name to pathname mapping
fsmGetDriver() – Get the XBD name of a mapping based on the path
fsmGetVolume() – get the pathname based on an XBD name mapping
fsmUnmountHookAdd() – Add an unmount hook function
fsmUnmountHookDelete() – Remove an unmount hook function
fsmUnmountHookRun() – Runs the unmount hook functions

DESCRIPTION This library implements the File System Monitor, which controls the autodetection and
instantiation of File Systems.

INCLUDE FILES fsMonitor.h

fsPxLib

NAME fsPxLib – I/O, file system API library (POSIX)

1 Libraries
gei825xxVxbEnd

115

1
ROUTINES unlink() – unlink a file

link() – link a file
fsync() – synchronize a file
fdatasync() – synchronize a file data
rename() – change the name of a file
fpathconf() – determine the current value of a configurable limit
pathconf() – determine the current value of a configurable limit
access() – determine accessibility of a file
chmod() – change the permission mode of a file
fchmod() – change the permission mode of a file

DESCRIPTION This library contains POSIX APIs which are applicable to I/O, file system.

INCLUDE FILES ioLib.h, stdio.h

SEE ALSO ioLib, iosLib, "VxWorks Kernel Programmer's Guide: I/O System"

ftruncate

NAME ftruncate – POSIX file truncation

ROUTINES ftruncate() – truncate a file (POSIX)

DESCRIPTION This module contains the POSIX compliant ftruncate() routine for truncating a file.

INCLUDE FILES unistd.h

SEE ALSO

gei825xxVxbEnd

NAME gei825xxVxbEnd – Intel PRO/1000 VxBus END driver

ROUTINES geiRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the Intel PRO/1000 series of gigabit ethernet
controllers. The PRO/1000 family includes PCI, PCI-X, PCIe and CSA adapters.

VxWorks Kernel API Reference, 6.6
gei825xxVxbEnd

116

The PRO/1000 controllers implement all IEEE 802.3 receive and transmit MAC functions.
They provide a Ten-Bit Interface (TBI) as specified in the IEEE 802.3z standard for
1000Mb/s full-duplex operation with 1.25 GHz Ethernet transceivers (SERDES), as well as
a GMII interface as specified in IEEE 802.3ab for 10/100/1000 BASE-T transceivers, and also
an MII interface as specified in IEEE 802.3u for 10/100 BASE-T transceivers.

Enhanced features available in the PRO/1000 family include TCP/IP checksum offload for
both IPv4 and IPv6, VLAN tag insertion and stripping, VLAN tag filtering, TCP
segmentation offload, interrupt coalescing, hardware RMON statistics counters, 64-bit
addressing and jumbo frames. This driver makes use of the checksum offload, VLAN tag
insertion/stripping and jumbo frames features, as available.

Note that not all features are available on all devices. The 82543 does not support IPv4 RX
checksum offload due to a hardware bug. IPv6 checksum offload is available on transmit for
all adaprers, but only available on receive with adapters newer than the 82544.

Currently, this driver supports the 82543, 82544, 82540, 82541, 82545, 82546, 82571, 82572,
and 82573 controllers with copper UTP and TBI multimode fiber media only (SERDES
adapters have not been tested).

BOARD LAYOUT The PRO/1000 is available on standalone PCI, PCI-X and PCIe NICs as well as integrated
onto various system boards. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
geiRegister() function, which registers the driver with VxBus.

The PRO/1000 devices also support jumbo frames. This driver has jumbo frame support,
which is disabled by default in order to conserve memory (jumbo frames require the use of
a buffer pool with larger clusters). Jumbo frames can be enabled on a per-interface basis
using a parameter override entry in the hwconf.c file in the BSP. For example, to enable
jumbo frame support for interface gei0, the following entry should be added to the
VXB_INST_PARAM_OVERRIDE table:

{ "gei", 0, "jumboEnable", VXB_PARAM_INT32, {(void *)1} }

INCLUDE FILES gei825xxVxbEnd.h geiTbiPhy.h end.h endLib.h netBufLib.h muxLib.h

SEE ALSO vxBus, ifLib, endLib, netBufLib, miiBus, "Intel PCI/PCI-X Family of Gigabit Ethernet
Controllers Software Developer's Manual
http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf", "Intel PCIe
GbE Controllers Open Source Software Developer's Manual
http://download.intel.com/design/network/manuals/31608001.pdf", "Intel
82544EI/82544GC Gigabit Ethernet Controller Specification Update
http://download.intel.com/design/network/specupdt/82544_a4.pdf", "Intel 82540EM
Gigabit Ethernet Controller Specification Update
http://download.intel.com/design/network/specupdt/82540em_a2.pdf", "Intel 82545EM
Gigabit Ethernet Controller Specification Update

1 Libraries
hashLib

117

1
http://download.intel.com/design/network/specupdt/82545em.pdf", "Intel 82573 Family
Gigabit Ethernet Controllers Specification Update and Sighting Information
http://download.intel.com/design/network/specupdt/82573.pdf"

getopt

NAME getopt – getopt facility

ROUTINES getopt() – parse argc/argv argument vector (POSIX)
getoptInit() – initialize the getopt state structure
getopt_r() – parse argc/argv argument vector (POSIX)
getOptServ() – parse parameter string into argc, argv format

DESCRIPTION This library supplies both a POSIX compliant getopt() which is a command line parser, as
well as a rentrant version of the same command named getopt_r(). Prior to calling
getopt_r(), the caller needs to initialize the getopt state structure by calling getoptInit().
This explicit initialization is not needed while calling getopt() as the system is setup as if
the initialization has already been done.

The user can modify getopt() behavior by setting the the getopt variables like optind,
opterr, etc. For getopt_r(), the value needs to be updated in the getopt state structure.

INCLUDE FILES none

hashLib

NAME hashLib – generic hashing library

ROUTINES hashTblCreate() – create a hash table
hashTblInit() – initialize a hash table
hashTblDelete() – delete a hash table
hashTblTerminate() – terminate a hash table
hashTblDestroy() – destroy a hash table
hashTblPut() – put a hash node into the specified hash table
hashTblFind() – find a hash node that matches the specified key
hashTblRemove() – remove a hash node from a hash table
hashTblEach() – call a routine for each node in a hash table
hashFuncIterScale() – iterative scaling hashing function for strings
hashFuncModulo() – hashing function using remainder technique

VxWorks Kernel API Reference, 6.6
hashLib

118

hashFuncMultiply() – multiplicative hashing function
hashKeyCmp() – compare keys as 32 bit identifiers
hashKeyStrCmp() – compare keys based on strings they point to

DESCRIPTION This subroutine library supports the creation and maintenance of a chained hash table.
Hash tables efficiently store hash nodes for fast access. They are frequently used for symbol
tables, or other name to identifier functions. A chained hash table is an array of singly
linked list heads, with one list head per element of the hash table. During creation, a hash
table is passed two user-definable functions, the hashing function, and the hash node
comparator.

CONFIGURATION To use the generic hashing library, configure VxWorks with the INCLUDE_HASH
component.

HASH NODES A hash node is a structure used for chaining nodes together in the table. The defined
structure HASH_NODE is not complete because it contains no field for the key for
referencing, and no place to store data. The user completes the hash node by including a
HASH_NODE in a structure containing the necessary key and data fields. This flexibility
allows hash tables to better suit varying data representations of the key and data fields. The
hashing function and the hash node comparator determine the full hash node
representation. Refer to the defined structures H_NODE_INT and H_NODE_STRING for
examples of the general purpose hash nodes used by the hashing functions and hash node
comparators defined in this library.

HASHING FUNCTIONS

One function, called the hashing function, controls the distribution of nodes in the table.
This library provides a number of standard hashing functions, but applications can specify
their own. Desirable properties of a hashing function are that they execute quickly, and
evenly distribute the nodes throughout the table. The worst hashing function imaginable
would be: h(k) = 0. This function would put all nodes in a list associated with the zero
element in the hash table. Most hashing functions find their origin in random number
generators.

Hashing functions must return an index between zero and (elements - 1). They take the
following form:

int hashFuncXXX
 (
 int elements, /* number of elements in hash table
*/
 HASH_NODE * pHashNode, /* hash node to pass through hash function */
 int keyArg /* optional argument to hash function
*/
)

1 Libraries
hashLib

119

1
HASH NODE COMPARATOR FUNCTIONS

The second function required is a key comparator. Different hash tables may choose to
compare hash nodes in different ways. For example, the hash node could contain a key
which is a pointer to a string, or simply an integer. The comparator compares the hash node
on the basis of some criteria, and returns a boolean as to the nodes equivalence.
Additionally, the key comparator can use the keyCmpArg for additional information to the
comparator. The keyCmpArg is passed from all the hashLib functions which use the
comparator. The keyCmpArg is usually not needed except for advanced hash table
querying.

symLib is a good example of the utilization of the keyCmpArg parameter. symLib hashes
the name of the symbol. It finds the id based on the name using hashTblFind(), but for the
purposes of putting and removing symbols from the symbol's hash table, an additional
comparison restriction applies. Symbols have types, and while symbols of equivalent
names can exist, no symbols of equivalent name and type can exist. So symLib utilizes the
keyCmpArg as a flag to denote which operation is being performed on the hash table:
symbol name matching, or complete symbol name and type matching.

Key comparator functions must return a boolean. They take the following form:

BOOL hashKeyCmpXXX
 (
 HASH_NODE * pMatchNode, /* hash node to match */
 HASH_NODE * pHashNode, /* hash node in table being compared to */
 int keyCmpArg /* parameter passed to hashTblFind (2) */
)

HASHING COLLISIONS

Hashing collisions occur when the hashing function returns the same index when given two
unique keys. This is unavoidable in cases where there are more nodes in the hash table than
there are elements in the hash table. In a chained hash table, collisions are resolved by
treating each element of the table as the head of a linked list. Nodes are simply added to an
appropriate list regardless of other nodes already in the list. The list is not sorted, but new
nodes are added at the head of the list because newer entries are usually searched for before
older entries. When nodes are removed or searched for, the list is traversed from the head
until a match is found.

STRUCTURE HASH_HEAD 0 HASH_NODE HASH_NODE
 --------- -------- --------
 | head--------------->| next----------->| next---------
 | | |......| |......| |
 | tail------ | key | | key | |
 | | | | data | | data | v
 --------- | -------- -------- ---
 | ^ -
 | |

 HASH_HEAD 1 HASH_NODE

VxWorks Kernel API Reference, 6.6
hookLib

120

 --------- --------
 | head--------------->| next---------
 | | |......| |
 | tail------ | key | |
 | | | | data | v
 --------- | -------- ---
 | ^ -
 | |

 ...
 ...

 HASH_HEAD N

 | head-----------------
 | | |
 | tail--------- |
 | | | v
 --------- --- ---
 - -

CAVEATS Hash tables must have a number of elements equal to a power of two.

INCLUDE FILE hashLib.h

hookLib

NAME hookLib – generic hook library for VxWorks

ROUTINES hookAddToTail() – add a hook routine to the end of a hook table
hookAddToHead() – add a hook routine at the start of a hook table
hookDelete() – delete a hook from a hook table
hookFind() – Search a hook table for a given hook

DESCRIPTION This library provides generic functions to add and delete hooks. Hooks are function
pointers, that when set to a non-NULL value are called by VxWorks at specific points in time.
The hook primitives provided by this module are used by many VxWorks facilities such as
taskLib, rtpLib, syscallLib etc.

A hook table is an array of function pointers. The size of the array is decided by the various
facilities using this library. The head of a hook table is the first element in the table (i.e. offset
0), while the tail is the last element (i.e. highest offset). Hooks can be added either to the
head or the tail of a given hook table. When added to the tail, a new routine is added after
the last non-NULL entry in the table. When added to the head of a table, new routines are

1 Libraries
hookShow

121

1
added at the head of the table (index 0) after existing routines have been shifted down to
make room.

Hook execution always proceeds starting with the head (index 0) till a NULL entry is
reached. Thus adding routines to the head of a table achieves a LIFO-like effect where the
most recently added routine is executed first. In contrast, routines added to the tail of a table
are executed in the order in which they were added. For example, task creation hooks are
examples of hooks added to the tail, while task deletion hooks are an example of hooks
added to the head of their respective table. Hook execution macros
HOOK_INVOKE_VOID_RETURN and HOOK_INVOKE_CHECK_RETURN (defined in
hookLib.h) are handy in calling hook funcitons. Alternatively, users may write their own
invocations.

NOTE It is possible to have dependencies among hook routines. For example, a delete hook may
use facilities that are cleaned up and deleted by another delete hook. In such cases, the order
in which the hooks run is important. VxWorks runs the create and switch hooks in the order
in which they were added, and runs the delete hooks in reverse of the order in which they
were added. Thus, if the hooks are added in "hierarchical" order, such that they rely only on
facilities whose hook routines have already been added, then the required facilities will be
initialized before any other facilities need them, and will be deleted after all facilities are
finished with them.

VxWorks facilities guarantee this by having each facility's initialization routine first call any
prerequisite facility's initialization routine before adding its own hooks. Thus, the hooks are
always added in the correct order. Each initialization routine protects itself from multiple
invocations, allowing only the first invocation to have any effect.

INCLUDE FILES hookLib.h

SEE ALSO dbgLib, taskLib, taskVarLib, rtpLib, the VxWorks programmer, guides.

hookShow

NAME hookShow – hook show routines

ROUTINES hookShow() – show the hooks in the given hook table

DESCRIPTION This library provides routines which summarize the installed kernel hook routines in a
given hook table. These routines are generic, and can be used to display any kind of hooks.

To include this library, select the INCLUDE_HOOK_SHOW component.

INCLUDE FILES hookLib.h

VxWorks Kernel API Reference, 6.6
hrFsLib

122

SEE ALSO hookLib, "VxWorks Kernel Programmer's Guide: Basic OS"

hrFsLib

NAME hrFsLib – highly reliable file system library

ROUTINES hrfsDevCreate() – create an HRFS device

DESCRIPTION This library contains routines for creating and using the Highly Reliable File System (HRFS).

INCLUDE FILES hrFsLib.h

hrFsTimeLib

NAME hrFsTimeLib – time routines for HRFS

ROUTINES hrfsTimeGet() – return # of milliseconds since midnight Jan 1, 1970
hrfsAscTime() – convert "broken-down" HRFS time to string
hrfsTimeSplit() – split time in msec into HRFS_TM format
hrfsTimeCondense() – condense time in HRFS_TM to time in msec

DESCRIPTION This library contains routines for handling the HRFS timestamps.

INCLUDE FILES none

hrfsChkDskLib

NAME hrfsChkDskLib – HRFS Check disk library - Readonly version

ROUTINES hrfsChkDsk() – check the HRFS file system
hrfsUpgrade() – upgrade the HRFS file system to the latest version

DESCRIPTION This library contains routines for the Highly Reliable File System (HRFS) consistency disk
checker or check disk. This is a read-only utility in that it does not attempt to correct any
errors it detects but simply reports them.

1 Libraries
inflateLib

123

1
INCLUDE FILES none

hrfsFormatLib

NAME hrfsFormatLib – HRFS format library

ROUTINES hrfsFormatLibInit() – prepare to use the HRFS formatter
hrfsFormatFd() – format the HRFS file system via a file descriptor
hrfsAdvFormatFd() – format the HRFS file system using advanced options via a file
descriptor
hrfsFormat() – format the HRFS file system via a path
hrfsAdvFormat() – format the HRFS file system using advanced options

DESCRIPTION This library contains routines for formatting the Highly Reliable File System (HRFS).

INCLUDE FILES none

inflateLib

NAME inflateLib – inflate code using public domain zlib functions

ROUTINES inflate() – inflate compressed code

DESCRIPTION This library is used to inflate a compressed data stream, primarily for boot ROM
decompression. Compressed boot ROMs contain a compressed executable in the data
segment between the symbols binArrayStart and binArrayEnd (the compressed data is
generated by deflate() and binToAsm). The boot ROM startup code (in
target/src/config/all/bootInit.c) calls inflate() to decompress the executable and then jump
to it.

This library is based on the public domain zlib code, which has been modified by Wind
River Systems. For more information, see the zlib home page at http://www.gzip.org/zlib/.

OVERVIEW OF THE COMPRESSION/DECOMPRESSION

1. Compression algorithm (deflate)

The deflation algorithm used by zlib (also zip and gzip) is a variation of LZ77 (Lempel-Ziv
1977, see reference below). It finds duplicated strings in the input data. The second
occurrence of a string is replaced by a pointer to the previous string, in the form of a pair

VxWorks Kernel API Reference, 6.6
inflateLib

124

(distance, length). Distances are limited to 32K bytes, and lengths are limited to 258 bytes.
When a string does not occur anywhere in the previous 32K bytes, it is emitted as a sequence
of literal bytes. (In this description, string must be taken as an arbitrary sequence of bytes,
and is not restricted to printable characters.)

Literals or match lengths are compressed with one Huffman tree, and match distances are
compressed with another tree. The trees are stored in a compact form at the start of each
block. The blocks can have any size (except that the compressed data for one block must fit
in available memory). A block is terminated when deflate() determines that it would be
useful to start another block with fresh trees. (This is somewhat similar to the behavior of
LZW-based _compress_.)

Duplicated strings are found using a hash table. All input strings of length 3 are inserted in
the hash table. A hash index is computed for the next 3 bytes. If the hash chain for this index
is not empty, all strings in the chain are compared with the current input string, and the
longest match is selected.

The hash chains are searched starting with the most recent strings, to favor small distances
and thus take advantage of the Huffman encoding. The hash chains are singly linked. There
are no deletions from the hash chains, the algorithm simply discards matches that are too
old.

To avoid a worst-case situation, very long hash chains are arbitrarily truncated at a certain
length, determined by a runtime option (level parameter of deflateInit). So deflate() does
not always find the longest possible match but generally finds a match which is long
enough.

deflate() also defers the selection of matches with a lazy evaluation mechanism. After a
match of length N has been found, deflate() searches for a longer match at the next input
byte. If a longer match is found, the previous match is truncated to a length of one (thus
producing a single literal byte) and the longer match is emitted afterwards. Otherwise, the
original match is kept, and the next match search is attempted only N steps later.

The lazy match evaluation is also subject to a runtime parameter. If the current match is long
enough, deflate() reduces the search for a longer match, thus speeding up the whole
process. If compression ratio is more important than speed, deflate() attempts a complete
second search even if the first match is already long enough.

The lazy match evaluation is not performed for the fastest compression modes (level
parameter 1 to 3). For these fast modes, new strings are inserted in the hash table only when
no match was found, or when the match is not too long. This degrades the compression ratio
but saves time since there are both fewer insertions and fewer searches.

2. Decompression algorithm (zinflate)

The real question is, given a Huffman tree, how to decode fast. The most important
realization is that shorter codes are much more common than longer codes, so pay attention
to decoding the short codes fast, and let the long codes take longer to decode.

1 Libraries
inflateLib

125

1
zinflate() sets up a first level table that covers some number of bits of input less than the
length of longest code. It gets that many bits from the stream, and looks it up in the table.
The table will tell if the next code is that many bits or less and how many, and if it is, it will
tell the value, else it will point to the next level table for which zinflate() grabs more bits
and tries to decode a longer code.

How many bits to make the first lookup is a tradeoff between the time it takes to decode and
the time it takes to build the table. If building the table took no time (and if you had infinite
memory), then there would only be a first level table to cover all the way to the longest code.
However, building the table ends up taking a lot longer for more bits since short codes are
replicated many times in such a table. What zinflate() does is simply to make the number
of bits in the first table a variable, and set it for the maximum speed.

zinflate() sends new trees relatively often, so it is possibly set for a smaller first level table
than an application that has only one tree for all the data. For zinflate, which has 286
possible codes for the literal/length tree, the size of the first table is nine bits. Also the
distance trees have 30 possible values, and the size of the first table is six bits. Note that for
each of those cases, the table ended up one bit longer than the average code length, i.e. the
code length of an approximately flat code which would be a little more than eight bits for
286 symbols and a little less than five bits for 30 symbols. It would be interesting to see if
optimizing the first level table for other applications gave values within a bit or two of the
flat code size.

Jean-loup Gailly Mark Adler gzip@prep.ai.mit.edu madler@alumni.caltech.edu

References:

[LZ77] Ziv J., Lempel A., `A Universal Algorithm for Sequential Data Compression,' IEEE
Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343.

DEFLATE Compressed Data Format Specification available in
ftp://ds.internic.net/rfc/rfc1951.txt

MORE INTERNAL DETAILS

Huffman code decoding is performed using a multi-level table lookup. The fastest way to
decode is to simply build a lookup table whose size is determined by the longest code.
However, the time it takes to build this table can also be a factor if the data being decoded
is not very long. The most common codes are necessarily the shortest codes, so those codes
dominate the decoding time, and hence the speed. The idea is you can have a shorter table
that decodes the shorter, more probable codes, and then point to subsidiary tables for the
longer codes. The time it costs to decode the longer codes is then traded against the time it
takes to make longer tables.

This results of this trade are in the variables lbits and dbits below. lbits is the number of bits
the first level table for literal/ length codes can decode in one step, and dbits is the same
thing for the distance codes. Subsequent tables are also less than or equal to those sizes.
These values may be adjusted either when all of the codes are shorter than that, in which
case the longest code length in bits is used, or when the shortest code is *longer* than the
requested table size, in which case the length of the shortest code in bits is used.

VxWorks Kernel API Reference, 6.6
inflateLib

126

There are two different values for the two tables, since they code a different number of
possibilities each. The literal/length table codes 286 possible values, or in a flat code, a little
over eight bits. The distance table codes 30 possible values, or a little less than five bits, flat.
The optimum values for speed end up being about one bit more than those, so lbits is 8+1
and dbits is 5+1. The optimum values may differ though from machine to machine, and
possibly even between compilers. Your mileage may vary.

Notes beyond the 1.93a appnote.txt:

1. Distance pointers never point before the beginning of the output stream.

2. Distance pointers can point back across blocks, up to 32k away.

3. There is an implied maximum of 7 bits for the bit length table and 15 bits for the actual
data.

4. If only one code exists, then it is encoded using one bit. (Zero would be more efficient,
but perhaps a little confusing.) If two codes exist, they are coded using one bit each (0
and 1).

5. There is no way of sending zero distance codes--a dummy must be sent if there are
none. (History: a pre 2.0 version of PKZIP would store blocks with no distance codes,
but this was discovered to be too harsh a criterion.) Valid only for 1.93a. 2.04c does
allow zero distance codes, which is sent as one code of zero bits in length.

6. There are up to 286 literal/length codes. Code 256 represents the end-of-block. Note
however that the static length tree defines 288 codes just to fill out the Huffman codes.
Codes 286 and 287 cannot be used though, since there is no length base or extra bits
defined for them. Similarily, there are up to 30 distance codes. However, static trees
define 32 codes (all 5 bits) to fill out the Huffman codes, but the last two had better not
show up in the data.

7. Unzip can check dynamic Huffman blocks for complete code sets. The exception is that
a single code would not be complete (see #4).

8. The five bits following the block type is really the number of literal codes sent minus
257.

9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits (1+6+6). Therefore, to
output three times the length, you output three codes (1+1+1), whereas to output four
times the same length, you only need two codes (1+3). Hmm.

10. In the tree reconstruction algorithm, Code = Code + Increment only if BitLength(i) is
not zero. (Pretty obvious.)

11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)

12. Note: length code 284 can represent 227-258, but length code 285 really is 258. The last
length deserves its own, short code since it gets used a lot in very redundant files. The
length 258 is special since 258 - 3 (the min match length) is 255.

1 Libraries
intArchLib

127

1
13. The literal/length and distance code bit lengths are read as a single stream of lengths.

It is possible (and advantageous) for a repeat code (16, 17, or 18) to go across the
boundary between the two sets of lengths.

INCLUDE FILES none

intArchLib

NAME intArchLib – architecture-dependent interrupt library

ROUTINES intLevelSet() – set the interrupt level (MC680X0, x86, ARM, SimSolaris, SimNT and SH)
intLock() – lock out interrupts
intUnlock() – cancel interrupt locks
intCpuLock() – lock out interrupts on local CPU
intCpuUnlock() – cancel local CPU interrupt lock
intEnable() – enable corresponding interrupt bits (MIPS, PowerPC, ARM)
intDisable() – disable corresponding interrupt bits (MIPS, PowerPC, ARM)
intCRGet() – read the contents of the cause register (MIPS)
intCRSet() – write the contents of the cause register (MIPS)
intSRGet() – read the contents of the status register (MIPS)
intSRSet() – update the contents of the status register (MIPS)
intConnect() – connect a C routine to a hardware interrupt
intHandlerCreate() – construct an interrupt handler for a C routine (MC680x0, x86, MIPS,
SimSolaris)
intLockLevelSet() – set the current interrupt lock-out level (MC680x0, x86, ARM, SH,
SimSolaris, SimNT)
intLockLevelGet() – get the current interrupt lock-out level (MC680x0, x86, ARM, SH,
SimSolaris, SimNT)
intVecBaseSet() – set the vector (trap) base address (MC680x0, x86, MIPS, ARM,
SimSolaris, SimNT)
intVecBaseGet() – get the vector (trap) base address (MC680x0, x86, MIPS, ARM,
SimSolaris, SimNT)
intVecSet() – set a CPU vector (trap) (MC680x0, x86, MIPS, SH, SimSolaris, SimNT)
intVecGet() – get an interrupt vector (MC680x0, x86, MIPS, SH, SimSolaris, SimNT)
intVecTableWriteProtect() – write-protect exception vector table (MC680x0, x86, ARM,
SimSolaris, SimNT)
intUninitVecSet() – set the uninitialized vector handler (ARM)
intHandlerCreateI86() – construct an interrupt handler for a C routine (x86)
intVecSet2() – set a CPU vector, gate type(int/trap), and selector (x86)
intVecGet2() – get a CPU vector, gate type(int/trap), and gate selector (x86)
intStackEnable() – enable or disable the interrupt stack usage (x86)

VxWorks Kernel API Reference, 6.6
intArchLib

128

DESCRIPTION This library provides architecture-dependent routines to manipulate and connect to
hardware interrupts. Any C language routine can be connected to any interrupt by calling
intConnect(). Vectors can be accessed directly by intVecSet() and intVecGet(). The
vector (trap) base register (if present) can be accessed by the routines intVecBaseSet() and
intVecBaseGet().

Tasks can lock and unlock interrupts by calling intLock(), intCpuLock(), intUnlock() and
intCpuUnlock(). The lock-out level can be set and reported by intLockLevelSet() and
intLockLevelGet() (MC680x0, x86, ARM and SH only). The routine intLevelSet() changes
the current interrupt level of the processor (MC680x0, ARM, SimSolaris and SH).

LOCAL CPU INTERRUPT LOCKING

The VxWorks SMP kernel does not allow locking of interrupts on all CPUs that make up the
system. Therefore the intLock() and intUnlock() APIs are not available in VxWorks SMP.
However interrupt locking is permitted on the local CPU, which is the CPU the task or ISR
is running on when it calls intCpuLock() to lock interrupts. The intCpuUnlock() routine
is used to re-enable interrupts on the local CPU. The intCpuLock()/intCpuUnlock() pair
is available on the uniprocessor version of VxWorks but since the local CPU is the only CPU
in that situation, the behaviour of these routines is identical to the behaviour of the
intLock()/intUnlock() routines.

INVOKING VxWorks SYSTEM ROUTINES WITH INTERRUPTS LOCKED

Invoking a VxWorks system routine after having locked interrupts using intLock() may
result in interrupts being re-enabled for an unspecified period of time. See the reference
entry for intLock() for more details.

Invoking a VxWorks system routine after having locked interrupts using intCpuLock() on
VxWorks SMP is not permitted and will cause the call to abort and an error to be reported.
Not all VxWorks APIs enforce this restriction. Only those that are intCpuLock restricted. The
reference entries in the VxWorks Kernel API Reference manual specifies when this
restriction applies. Since the intCpuLock() behaviour in the uniprocessor version of
VxWorks is identical to the intLock() API behaviour, the concept of intCpuLock restricted
APIs only applies to VxWorks SMP.

INTERRUPT VECTORS AND NUMBERS

Most of the routines in this library take an interrupt vector as a parameter, which is
generally the byte offset into the vector table. Macros are provided to convert between
interrupt vectors and interrupt numbers:

IVEC_TO_INUM(intVector) 10
converts a vector to a number.

INUM_TO_IVEC(intNumber)
converts a number to a vector.

TRAPNUM_TO_IVEC(trapNumber)
converts a trap number to a vector.

1 Libraries
intLib

129

1
EXAMPLE To switch between one of several routines for a particular interrupt, the following code

fragment is one alternative:

 vector = INUM_TO_IVEC(some_int_vec_num);
 oldfunc = intVecGet (vector);
 newfunc = intHandlerCreate (routine, parameter);
 intVecSet (vector, newfunc);
 ...
 intVecSet (vector, oldfunc); /* use original routine */
 ...
 intVecSet (vector, newfunc); /* reconnect new routine */

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES iv.h, intLib.h

SEE ALSO intLib

intLib

NAME intLib – architecture-independent interrupt subroutine library

ROUTINES intContext() – determine if executing in interrupt context
intCount() – get the current interrupt nesting depth
intDisconnect() – disconnect a C routine from a hardware interrupt

DESCRIPTION This library provides generic routines for interrupts. Any C language routine can be
connected (disconnect) to (from) any interrupt (trap) by calling intConnect()
(intDisconnect()), which resides in intArchLib. The intCount() and intContext()
routines are used to determine whether the CPU is running in an interrupt context or in a
normal task context. For information about architecture-dependent interrupt handling, see
the reference entry for intArchLib.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the

VxWorks Kernel API Reference, 6.6
ioLib

130

ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

CONFIGURATION The interrupt subroutine library is always included in the VxWorks kernel.

INCLUDE FILES intLib.h

SEE ALSO intArchLib, The VxWorks Programmer Guides.

ioLib

NAME ioLib – I/O interface library

ROUTINES creat() – create a file
open() – open a file
close() – close a file
read() – read bytes from a file or device
write() – write bytes to a file
lseek() – set a file read/write pointer
ioctl() – perform an I/O control function
ioGlobalStdSet() – set file descriptor for global input/output/error
ioGlobalStdGet() – get the file descriptor for global input/output/error
ioTaskStdSet() – set the file descriptor for task standard input/output/error
ioTaskStdGet() – get the file descriptor for task standard input/output/error
isatty() – return whether the underlying driver is a tty device
fcntl() – perform control functions over open files

DESCRIPTION This library contains the interface to the basic I/O system. It includes:

- Interfaces to the seven basic driver-provided functions: creat(), remove(), open(),
close(), read(), write(), and ioctl().

- Interfaces to several file system functions, including rename() and lseek().

- Routines to set and get the current working directory.

- Routines to assign task and global standard file descriptors.

FILE DESCRIPTORS

At the basic I/O level, files are referred to by a file descriptor. A file descriptor is a small
integer returned by a call to open() or creat(). The other basic I/O calls take a file
descriptor as a parameter to specify the intended file.

1 Libraries
iosLib

131

1
Three file descriptors are reserved and have special meanings:

 0 (`STD_IN') - standard input
 1 (`STD_OUT') - standard output
 2 (`STD_ERR') - standard error output

VxWorks allows two levels of redirection. First, there is a global assignment of the three
standard file descriptors. By default, new tasks use this global assignment. The global
assignment of the three standard file descriptors is controlled by the routines
ioGlobalStdSet() and ioGlobalStdGet().

Second, individual tasks may override the global assignment of these file descriptors with
their own assignments that apply only to that task. The assignment of task-specific
standard file descriptors is controlled by the routines ioTaskStdSet() and ioTaskStdGet().

CONFIGURATION To include the I/O interface library, configure VxWorks with the INCLUDE_IO_SYSTEM
component.

INCLUDE FILES ioLib.h, stdio.h

SEE ALSO iosLib, ansiStdio, the VxWorks programmer guides.

iosLib

NAME iosLib – I/O system library

ROUTINES iosInit() – initialize the kernel I/O system
iosDrvInstall() – install a kernel I/O driver
iosDevAdd() – add a device to the kernel I/O system
iosDevDelete() – delete a device from the kernel I/O system
iosDevDelDrv() – invoke device delete driver if reference counter reaches 0.
iosDrvRemove() – remove a kernel I/O driver
iosDevFind() – find an I/O device in the kernel device list
iosFdMaxFiles() – return maximum files for current RTP
iosFdEntryGet() – get an unused FD_ENTRY from the pool
iosFdEntryReturn() – return an FD_ENTRY to the pool

DESCRIPTION This library is the driver-level interface to the I/O system. Its primary purpose is to route
user I/O requests to the proper drivers, using the proper parameters. To do this, iosLib
keeps tables describing the available drivers (e.g., names, open files).

The I/O system should be initialized by calling iosInit(), before calling any other routines
in iosLib. Each driver then installs itself by calling iosDrvInstall(). The devices serviced
by each driver are added to the I/O system with iosDevAdd().

VxWorks Kernel API Reference, 6.6
iosShow

132

The I/O system is described more fully in the VxWorks programmer guides.

CONFIGURATION To use the driver-level I/O interface, configure VxWorks with the INCLUDE_IO_SYSTEM
component.

INCLUDE FILES iosLib.h

SEE ALSO intLib, ioLib, the VxWorks programmer guides.

iosShow

NAME iosShow – I/O system show routines

ROUTINES iosShowInit() – initialize the I/O system show facility
iosDrvShow() – display a list of system drivers
iosDevShow() – display the list of devices in the system
iosFdShow() – display a list of file descriptor names in the system
iosRtpFdShow() – show the per-RTP fd table

DESCRIPTION This library contains I/O system information display routines.

The routine iosShowInit() links the I/O system information show facility into the VxWorks
system. It is called automatically when the I/O show routines are included.

CONFIGURATION To use the I/O system show routines, configure VxWorks with the INCLUDE_IO_SYSTEM
and INCLUDE_SHOW_ROUTINES components.

INCLUDE FILES ioLib.h, stdio.h

SEE ALSO intLib, ioLib, windsh, the VxWorks programmer guides, and the IDE and host tools guides.

isrLib

NAME isrLib – isr objects library

ROUTINES isrCreate() – create an ISR object
isrDelete() – delete an ISR object
isrInvoke() – invoke the handler routine of an ISR object
isrIdSelf() – get the ISR ID of the currently running ISR

1 Libraries
isrLib

133

1
isrInfoGet() – get information about an ISR object

DESCRIPTION This library contains routines to manage ISR objects. Specifically it provides the ability to
create, delete and obtain information about ISR objects. It can also be used to invoke the
handler associated with an ISR object and to determine which ISR is currently being
processed. There is no configuration component associated with ISR objects since the
functionality is always present in the VxWorks kernel.

This library is not a replacement for intLib. It is complementary to it and is in fact used by
intLib to create ISR objects when a routine is connected to an interrupt vector via
intConnect() as explained in more details below.

ISR objects are WIND object hence they can also be managed using the objLib API. For
example, the name of an ISR object can be obtained using objNameGet().

The vast majority of users need not be concerned with the isrCreate(), isrDelete() and
isrInvoke() routines. These are meant to be used by interrupt controller drivers and BSPs
that use chaining or multiplexing of interrupts so that a true representation of the interrupt
architecture can be maintained by this library.

Creation of ISR Objects

Can be done in one of two ways:

1) Implicit creation by calling intConnect()
This creation method allows an interrupt service routine provider to not be concerned
with the creation of an ISR object since one is automatically created when the routine is
connected to a vector using intConnect(). Recall that rules apply regarding how early
in the booting sequence intConnect() can be called. Refer to the BSP Developer's
Guide for more details on this subject.

1) Explicitly calling isrCreate()
This creation method is meant to be used by code that connects interrupt service
routines to vectors using a routine other than intConnect(). For example, an auxiliary
clock driver that connects a handler to the programmable interval timer exception on
PPC using excIntConnect() would need to explicitly create an ISR object to represent
the handler otherwise this library would be unaware of its existence. Failure to create
an ISR object under these circumstances does not affect the ability of the system to
handle interrupts. It simply causes a discrepancy between the actual interrupt
architecture of the system and the representation isrLib has of this architecture.

Destruction of ISR Objects

The destruction model is very similar to the creation model in that an isrDelete() call is
performed automatically when intDisconnect() is called. Code which disconnects an
interrupt service routine from a vector by other means must ensure isrDelete() is called to
delete the associated ISR object.

Invocation of an Interrupt Handler

VxWorks Kernel API Reference, 6.6
isrLib

134

The creation process of an ISR object requires that a handler be specified. This information
is stored in the ISR object itself and the handler is automatically invoked when the
associated interrupt occurs if the creation of the ISR object was done implicitly. That is, done
through intConnect() as described above. However, in the case of an ISR object that is
explicitly created, the creator must arrange for the isrInvoke() routine to be called when the
associated interrupt occurs. This can be done by installing isrInvoke() as the interrupt
handler or by having the interrupt handler call isrInvoke() directly. Routine isrInvoke()
then ensures the handler associated with the ISR object is invoked. See the coding example
below for more details on this subject.

Obtaining Information about ISR Objects

Routine isrInfoGet() allows one to obtain information about a specific ISR object. Routine
isrShow(), which is provided by and documented in library isrShow, can also be used for
information gathering purposes.

Determining the Currently Running ISR

Routine isrIdSelf() allows the calling ISR to determine its ID. This is similar in principle to
routine taskIdSelf().

CODING EXAMPLE

This example illustrates how a PPC-based BSP can make use of isrLib to create an ISR object
when connecting the auxiliary clock handler to the _EXC_OFF_FIT exception. The
advantage of doing so is that the interrupt becomes visible to the system when isrShow()
is used for example.

The reason sysHwInit2() has to explicitly create an ISR object to represent the auxiliary
clock interrupt is because the handler is connected by a means other than intConnect(). In
this case routine excIntConnect() is used.

#include <vxWorks.h>
#include <excLib.h>
#include <isrLib.h>

/* Forward declarations */
LOCAL void sysBaseAuxClkInt (void);

/* Externs */
extern void sysAuxClkInt (void);

/* Local variables */
LOCAL ISR_ID auxClkIsrId;

void sysHwInit2 (void)
 {
 static BOOL configured = FALSE;

 if (!configured)
 {

1 Libraries
isrShow

135

1
 /*
 * Create an ISR object specifying <sysAuxClkInt> as the <handlerRtn>
 * and 0 as the <parameter>. This is because sysAuxClkInt()
 * does not expect an argument.
 */
 auxClkIsrId = isrCreate ("sysAuxClk", 0, (FUNCPTR) &sysAuxClkInt,
 0, 0);

 if (auxClkIsrId != NULL)
 {
 /*
 * ISR object created successfully. Install wrapper routine as
 * the FIT exception handler.
 */
 excIntConnect ((VOIDFUNCPTR *) _EXC_OFF_FIT, &sysBaseAuxClkInt);
 }
 else
 {
 /*
 * ISR object creation failed. Install sysAuxClkInt() directly as
 * the FIT exception handler. This is how it was done before
 * ISR objects came to existence.
 */
 excIntConnect ((VOIDFUNCPTR *) _EXC_OFF_FIT, &sysAuxClkInt);
 }

 /* Do other types of hardware initialization */

 configured = TRUE;
 }
 }

LOCAL void sysBaseAuxClkInt (void)
 {
 isrInvoke (auxClkIsrId);
 }

INCLUDE FILES isrLib.h

SEE ALSO intLib

isrShow

NAME isrShow – isr objects show library

ROUTINES isrShow() – show information about an ISR object

DESCRIPTION This library provides the routine isrShow() to show the contents of ISR objects.

VxWorks Kernel API Reference, 6.6
kern_sysctl

136

CONFIGURATION The routines in this library are included if the INCLUDE_ISR_SHOW component is
configured into VxWorks.

INCLUDE FILES none

SEE ALSO isrLib

kern_sysctl

NAME kern_sysctl – sysctl kernel routines

ROUTINES sysctl_remove_oid() – remove dynamically created sysctl trees
sysctl_add_oid() – add a parameter into the sysctl tree during run-time
sysctl() – get or set the the values of objects in the sysctl tree
sysctlbyname() – get or set the values of objects in the sysctl tree by name
sysctlnametomib() – return the numeric representation of sysctl object

DESCRIPTION This module contains the definitions of various sysctl related functions. Although, there are
a number of functions in this module, the ones that are are of significant importance are
sysctl() and syctlbyname().

sysctl() and sysctlbyname() basically accomplish the same task. sysctlbyname() is a more
user friendly routine. sysctl() expects the caller to have mapped the name of the variable to
the corresponding sysctl MIB OID. sysctlbyname() expects the caller to provide the name
of the variable (including the path in dot format) and maps it internally to the OID.

INCLUDE FILES sys/sysctl.h

kernelLib

NAME kernelLib – VxWorks kernel library

ROUTINES kernelInit() – initialize the kernel
kernelVersion() – return the WIND kernel revision string
kernelTimeSlice() – enable round-robin selection
kernelRoundRobinInstall() – install VxWorks Round Robin implementation
kernelCpuEnable() – enable a CPU
kernelIsCpuIdle() – determine whether the specified CPU is idle
kernelIsSystemIdle() – determine whether all enabled processors are idle

1 Libraries
kernelLib

137

1
DESCRIPTION The VxWorks kernel provides tasking control services to an application. The libraries

kernelLib, taskLib, semLib, tickLib, and wdLib comprise the kernel functionality. This
library is the interface to the VxWorks kernel initialization, revision information, and
scheduling control.

KERNEL INITIALIZATION

The kernel must be initialized before any other kernel operation is performed. Normally
kernel initialization is taken care of by the system configuration code in usrInit() in
usrConfig.c or prjConfig.c.

Kernel initialization consists of the following:

(1) Defining the starting address and size of the system memory partition. The malloc()
routine uses this partition to satisfy memory allocation requests of other facilities in
VxWorks.

(2) Allocating the specified memory size for an interrupt stack. Interrupt service routines
will use this stack unless the underlying architecture does not support a separate
interrupt stack, in which case the service routine will use the stack of the interrupted
task.

(3) Specifying the interrupt lock-out level. VxWorks will not exceed the specified level
during any operation. The lock-out level is normally defined to mask the highest
priority possible. However, in situations where extremely low interrupt latency is
required, the lock-out level may be set to ensure timely response to the interrupt in
question. Interrupt service routines handling interrupts of priority greater than the
interrupt lock-out level may not call any VxWorks routine.

Once the kernel initialization is complete, a root task is spawned with the specified entry
point and stack size. The root entry point is normally usrRoot() of the usrConfig.c or
prjConfig.c module. The remaining VxWorks initialization takes place in usrRoot().

ROUND-ROBIN SCHEDULING

Round-robin scheduling allows the processor to be shared fairly by all tasks of the same
priority. Without round-robin scheduling, when multiple tasks of equal priority must share
the processor, a single non-blocking task can usurp the processor until preempted by a task
of higher priority, thus never giving the other equal-priority tasks a chance to run.

Round-robin scheduling is disabled by default. It can be enabled or disabled with the
routine kernelTimeSlice(), which takes a parameter for the "time slice" (or interval) that
each task will be allowed to run before relinquishing the processor to another equal-priority
task. If the parameter is zero, round-robin scheduling is turned off. If round-robin
scheduling is enabled and preemption is enabled for the executing task, the system tick
handler will increment the task's time-slice count. When the specified time-slice interval is
completed, the system tick handler clears the counter and the task is placed at the tail of the
list of tasks at its priority. New tasks joining a given priority group are placed at the tail of
the group with a run-time counter initialized to zero.

VxWorks Kernel API Reference, 6.6
ledLib

138

Enabling round-robin scheduling does not affect the performance of task context switches,
nor is additional memory allocated.

If a task blocks or is preempted by a higher priority task during its interval, its time-slice
count is saved and then restored when the task is eligible for execution. In the case of
preemption, the task will resume execution once the higher priority task completes,
assuming no other task of a higher priority is ready to run. For the case when the task
blocks, it is placed at the tail of the list of tasks at its priority. If preemption is disabled
during round-robin scheduling, the time-slice count of the executing task is not
incremented.

Time-slice counts are accrued against the task that is executing when a system tick occurs
regardless of whether the task has executed for the entire tick interval. Due to preemption
by higher priority tasks or ISRs stealing CPU time from the task, scenarios exist where a task
can execute for less or more total CPU time than it's allotted time slice.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES kernelLib.h

SEE ALSO taskLib, intLib, "VxWorks Kernel Programmer's Guide: Basic OS"

ledLib

NAME ledLib – line-editing library

ROUTINES ledLibInit() – initialize the line editing facilities
ledOpen() – create a new line-editor ID
ledClose() – discard the line-editor ID
ledRead() – read a line with line-editing
ledControl() – change the line-editor ID parameters

DESCRIPTION This library provides a line-editing layer on top of a tty device. The shell uses this interface
for its history-editing features.

The editing mode of the shell can be configured using the project tool:

1 Libraries
ledLib

139

1
- vi-like editing mode (INCLUDE_SHELL_VI_MODE)

- emacs-like editing mode (INCLUDE_SHELL_EMACS_MODE)

VI-LIKE EDITING MODE

The shell history mechanism is similar to the UNIX Korn shell history facility, with a built-in
line-editor similar to UNIX vi that allows previously typed commands to be edited. The
command h() displays the 20 most recent commands typed into the shell; old commands
fall off the top as new ones are entered.

To edit a command, type ESC to enter edit mode, and use the commands listed below. The
ESC key switches the shell to edit mode. The RETURN key always gives the line to the shell
from either editing or input mode.

The following list is a summary of the commands available in edit mode.

Movement and search commands
nG Go to command number n.
/s Search for string s backward in history.
?s Search for string s forward in history.
n Repeat last search.
N Repeat last search in opposite direction.
nk Get nth previous shell command in history.
n- Same as "k".
nj Get nth next shell command in history.
n+ Same as "j".
nh Move left n characters.
CTRL-H Same as "h".
nl Move right n characters.
SPACE Same as "l".
nw Move n words forward.
nW Move n blank-separated words forward.
ne Move to end of the nth next word.
nE Move to end of the nth next blank-separated word.
nb Move back n words.
nB Move back n blank-separated words.
fc Find character c, searching forward.
Fc Find character c, searching backward.
^ Move cursor to first non-blank character in line.
$ Go to end of line.
0 Go to beginning of line.

Insert commands (input is expected until an ESC is typed).
a Append.
A Append at end of line.
c SPACE Change character.
cl Change character.
cw Change word.

VxWorks Kernel API Reference, 6.6
ledLib

140

The default value for n is 1.

DEFICIENCIES Since the shell toggles between raw mode and line mode, type-ahead can be lost. The ESC,
redraw, and non-printable characters are built-in.

Some commands do not take counts as users might expect. For example, "ni" will not insert
whatever was entered n times.

EMACS-LIKE EDITING MODE

The shell history mechanism is similar to the UNIX Tcsh shell history facility, with a built-in
line-editor similar to emacs that allows previously typed commands to be edited. The
command h() displays the 20 most recent commands typed into the shell; old commands
fall off the top as new ones are entered.

To edit a command, the arrow keys can be used on most of the terminals. Up arrow and
down arrow move up and down through the history list, like CTRL+P and CTRL+N. Left
arrow and right arrow move the cursor left and right one character, like CTRL+B and
CTRL+F.

cc Change entire line.
c$ Change everything from cursor to end of line.
C Same as "c$".
S Same as "cc".
s Same as "cl".
i Insert.
I Insert at beginning of line.
R Type over characters.
Editing commands
nrc Replace the following n characters with c.
nx Delete n characters starting at cursor.
nX Delete n characters to the left of the cursor.
d SPACE Delete character.
dl Delete character.
dw Delete word.
dd Delete entire line.
d$ Delete everything from cursor to end of line.
D Same as "d$".
p Put last deletion after the cursor.
P Put last deletion before the cursor.
u Undo last command.
~ Toggle case, lower to upper or vice versa.
Special commands
CTRL+U Delete line and leave edit mode.
CTRL+L Redraw line.
CTRL+D Complete symbol name.
RETURN Give line to the shell and leave edit mode.

Movement and search commands

1 Libraries
loadLib

141

1
The following list is a summary of the commands available with the emacs-like editing
mode.

INCLUDE FILES ledLib.h

SEE ALSO VxWorks Kernel Programmer's Guide: Kernel Shell, Wind River Workbench Command-Line
User's Guide 2.2: Host Shell

loadLib

NAME loadLib – generic object module loader

ROUTINES loadModule() – load an object module into memory
loadModuleAt() – load an object module into memory

DESCRIPTION This library provides a generic object module loading facility. It handles loading ELF format
files into memory, relocating them, resolving their external references, and adding their
external definitions to the system symbol table for use by other modules and from the shell.

Cursor motion commands
CTRL+B Move cursor back (left) one character.
CTRL+F Move cursor forward (right) one character.
ESC+b Move cursor back one word.
ESC+f Move cursor forward one word.
CTRL+A Move cursor to beginning of line.
CTRL+E Move cursor to end of line.
Modification commands
DEL or
CTRL+H

Delete character to left of cursor.

CTRL+D Delete character under cursor.
ESC+d Delete word.
ESC+DEL Delete word backward.
CTRL+K Delete from cursor to end of line.
CTRL+U Delete entire line.
CTRL+P Get previous command in the history.
CTRL+N Get next command in the history.
!n Recall command n from the history.
!substr Recall first command from the history matching substr.
Special commands
CTRL+L Redraw line.
CTRL+D Complete symbol name if cursor at the end of line.
RETURN Give line to the shell.

VxWorks Kernel API Reference, 6.6
loadLib

142

Modules may be loaded from any I/O stream which allows repositioning of the pointer.
This includes netDrv, nfs, or local file devices. It does not include sockets.

EXAMPLE fdX = open ("/devX/objFile", O_RDONLY);
 loadModule (fdX, LOAD_ALL_SYMBOLS);
 close (fdX);

This code fragment would load the object file "objFile" located on device "/devX/" into
memory which would be allocated from the system memory pool (heap).

All external and static definitions from the file would be added to the system symbol table.

This could also have been accomplished from the shell, by typing:

 -> ld (1) </devX/objFile

INCLUDE FILE loadLib.h

ERRNOS Routines from this library can return the following module loading specific errors:

S_loadLib_ROUTINE_NOT_INSTALLED
The routine used to load the module is not available.

S_loadLib_ILLEGAL_FLAGS_COMBINATION
The combination of specified load flags is invalid because the flags are mutually
exclusive.

S_loadLib_INVALID_LOAD_FLAG
The specified load flag is invalid or does not exist.

S_loadLib_UNDEFINED_REFERENCES
There were undefined references to symbols when loading the module.

S_loadLib_INVALID_ARGUMENT
The argument specified is invalid.

S_loadLib_SDA_NOT_SUPPORTED
The kernel module loader does not suppport modules containing Small Data Area
relocations (this errno applies to the PowerPC architecture only).

S_loadLib_MISSING_SYMBOL_TABLE
No symbol table can be found in the module (a symbol table is mandatory when
loading a relocatable module).

Note that other errnos, not listed here, may come from libraries internally used by the
loadable module management library.

SEE ALSO usrLib, symLib, memLib, unldLib, moduleLib

1 Libraries
logLib

143

1logLib

NAME logLib – message logging library

ROUTINES logInit() – initialize message logging library
logMsg() – log a formatted error message
logFdSet() – set the primary logging file descriptor
logFdAdd() – add a logging file descriptor
logFdDelete() – delete a logging file descriptor
logTask() – message-logging support task

DESCRIPTION This library handles message logging. It is usually used to display error messages on the
system console, but such messages can also be sent to a disk file or printer.

The routines logMsg() and logTask() are the basic components of the logging system. The
logMsg() routine has the same calling sequence as printf(), but instead of formatting and
outputting the message directly, it sends the format string and arguments to a message
queue. The task logTask() waits for messages on this message queue. It formats each
message according to the format string and arguments in the message, prepends the ID of
the sender, and writes it on one or more file descriptors that have been specified as logging
output streams (by logInit() or subsequently set by logFdSet() or logFdAdd()).

USE IN INTERRUPT SERVICE ROUTINES

Because logMsg() does not directly cause output to I/O devices, but instead simply writes
to a message queue, it can be called from an interrupt service routine as well as from tasks.
Normal I/O, such as printf() output to a serial port, cannot be done from an interrupt
service routine.

DEFERRED LOGGING

Print formatting is performed within the context of logTask(), rather than the context of the
task calling logMsg(). Since formatting can require considerable stack space, this can
reduce stack sizes for tasks that only need to do I/O for error output.

However, this also means that the arguments to logMsg() are not interpreted at the time of
the call to logMsg(), but rather are interpreted at some later time by logTask(). This means
that the arguments to logMsg() should not be pointers to volatile entities. For example,
pointers to dynamic or changing strings and buffers should not be passed as arguments to
be formatted. Thus the following would not give the desired results:

 doLog (which)
 {
 char string [100];

 strcpy (string, which ? "hello" : "goodbye");
 ...
 logMsg (string);
 }

VxWorks Kernel API Reference, 6.6
loginLib

144

By the time logTask() formats the message, the stack frame of the caller may no longer exist
and the pointer string may no longer be valid. On the other hand, the following is correct
since the string pointer passed to the logTask() always points to a static string:

 doLog (which)
 {
 char *string;

 string = which ? "hello" : "goodbye";
 ...
 logMsg (string);
 }

CONFIGURATION To use the message logging library, configure VxWorks with the INCLUDE_LOGGING
component.

INITIALIZATION To initialize the message logging facilities, the routine logInit() must be called before
calling any other routine in this module. This is done automatically when the
INCLUDE_LOGGING component is included.

INCLUDE FILES logLib.h

SEE ALSO msgQLib, the VxWorks programmer guides.

loginLib

NAME loginLib – user login/password subroutine library

ROUTINES loginInit() – initialize the login table
loginUserAdd() – add a user to the login table
loginUserDelete() – delete a user entry from the login table
loginUserVerify() – verify a user name and password in the login table
loginUserShow() – display the user login table
loginPrompt() – display a login prompt and validate a user entry
loginStringSet() – change the login string
loginEncryptInstall() – install an encryption routine
loginDefaultEncrypt() – default password encryption routine

DESCRIPTION This library provides a login/password facility for network access to the VxWorks shell.
When installed, it requires a user name and password match to gain access to the VxWorks
shell from rlogin or telnet. Therefore VxWorks can be used in secure environments where
access must be restricted.

1 Libraries
loginLib

145

1
Routines are provided to prompt for the user name and password, and verify the response
by looking up the name/password pair in a login user table. This table contains a list of user
names and encrypted passwords that will be allowed to log in to the VxWorks shell
remotely. Routines are provided to add, delete, and access the login user table. The list of
user names can be displayed with loginUserShow().

INSTALLATION The login security feature is initialized by the root task, usrRoot(), in usrConfig.c, if the
configuration macro INCLUDE_SECURITY is defined. Defining this macro also adds a
single default user to the login table. The default user and password are defined as
LOGIN_USER_NAME and LOGIN_PASSWORD. These can be set to any desired name and
password. More users can be added by making additional calls to loginUserAdd(). If
INCLUDE_SECURITY is not defined, access to VxWorks will not be restricted and secure.

The name/password pairs are added to the table by calling loginUserAdd(), which takes
the name and an encrypted password as arguments. The VxWorks host tool vxencrypt is
used to generate the encrypted form of a password. For example, to add a user name of
"fred" and password of "flintstone", first run vxencrypt on the host to find the encryption of
"flintstone" as follows:

 % vxencrypt
 please enter password: flintstone
 encrypted password is ScebRezb9c

Then invoke the routine loginUserAdd() in VxWorks:

 loginUserAdd ("fred", "ScebRezb9c");

This can be done from the shell, a start-up script, or application code.

LOGGING IN When the login security facility is installed, every attempt to rlogin or telnet to the VxWorks
shell will first prompt for a user name and password.

 % rlogin target

 VxWorks login: fred
 Password: flintstone

 ->

The delay in prompting between unsuccessful logins is increased linearly with the number
of attempts, in order to slow down password-guessing programs.

ENCRYPTION ALGORITHM

This library provides a simple default encryption routine, loginDefaultEncrypt(). This
algorithm requires that passwords be at least 8 characters and no more than 40 characters.

The routine loginEncryptInstall() allows a user-specified encryption function to be used
instead of the default.

INCLUDE FILES loginLib.h

VxWorks Kernel API Reference, 6.6
lstLib

146

SEE ALSO shellLib, vxencrypt, the VxWorks programmer's guides

lstLib

NAME lstLib – doubly linked list subroutine library

ROUTINES lstInit() – initialize a list descriptor
lstAdd() – add a node to the end of a list
lstConcat() – concatenate two lists
lstCount() – report the number of nodes in a list
lstDelete() – delete a specified node from a list
lstExtract() – extract a sublist from a list
lstFirst() – find first node in list
lstGet() – delete and return the first node from a list
lstInsert() – insert a node in a list after a specified node
lstLast() – find the last node in a list
lstNext() – find the next node in a list
lstNth() – find the Nth node in a list
lstPrevious() – find the previous node in a list
lstNStep() – find a list node nStep steps away from a specified node
lstFind() – find a node in a list
lstFree() – free up a list

DESCRIPTION This subroutine library supports the creation and maintenance of a doubly linked list. The
user supplies a list descriptor (type LIST) that will contain pointers to the first and last nodes
in the list, and a count of the number of nodes in the list. The nodes in the list can be any
user-defined structure, but they must reserve space for two pointers as their first elements.
Both the forward and backward chains are terminated with a NULL pointer.

The linked-list library simply manipulates the linked-list data structures; no kernel
functions are invoked. In particular, linked lists by themselves provide no task
synchronization or mutual exclusion. If multiple tasks will access a single linked list, that
list must be guarded with some mutual-exclusion mechanism (e.g., a mutual-exclusion
semaphore).

NON-EMPTY LIST --------- -------- --------
 | head--------------->| next----------->| next---------
	------- prev	<---------- prev				
tail------		...	----->	...		
		v	v			
count=2		-----	-----			
 --------- | --- | ---

1 Libraries
mathALib

147

1
 | - | -
 | |

EMPTY LIST -----------
 | head------------------
 | | |
 | tail---------- |
 | | | v
 | count=0 | ----- -----
 ----------- --- ---
 - -

INCLUDE FILES lstLib.h

m85xxCCSR

NAME m85xxCCSR – VxBus driver for PowerPC 85xx CCSR resource allocation

ROUTINES m85xxCCSRRegister() – register m85xxLAWBAR driver

DESCRIPTION This is the VxBus driver for PowerPC 85xx CCSR resource management. The PowerPC 85xx
processors provide address management by use of up to seven LAWBAR mapping
registers. This driver allows downstream devices to allocate LAWBAR/LAWAR register
sets.

INCLUDE FILES none

mathALib

NAME mathALib – C interface library to high-level math functions

ROUTINES acosf() – compute an arc cosine (ANSI)
atanf() – compute an arc tangent (ANSI)
atan2f() – compute the arc tangent of y/x (ANSI)
asinf() – compute an arc sine (ANSI)
cbrt() – compute a cube root
cbrtf() – compute a cube root
ceilf() – compute the smallest integer greater than or equal to a specified value (ANSI)
cosf() – compute a cosine (ANSI)

VxWorks Kernel API Reference, 6.6
mathALib

148

coshf() – compute a hyperbolic cosine (ANSI)
expf() – compute an exponential value (ANSI)
fabsf() – compute an absolute value (ANSI)
floorf() – compute the largest integer less than or equal to a specified value (ANSI)
fmodf() – compute the remainder of x/y (ANSI)
infinity() – return a very large double
infinityf() – return a very large float
irint() – convert a double-precision value to an integer
irintf() – convert a single-precision value to an integer
iround() – round a number to the nearest integer
iroundf() – round a number to the nearest integer
logf() – compute a natural logarithm (ANSI)
log2() – compute a base-2 logarithm
log2f() – compute a base-2 logarithm
log10f() – compute a base-10 logarithm (ANSI)
powf() – compute the value of a number raised to a specified power (ANSI)
round() – round a number to the nearest integer
roundf() – round a number to the nearest integer
sinf() – compute a sine (ANSI)
sinhf() – compute a hyperbolic sine (ANSI)
sincos() – compute both a sine and cosine
sincosf() – compute both a sine and cosine
sqrtf() – compute a non-negative square root (ANSI)
tanf() – compute a tangent (ANSI)
tanhf() – compute a hyperbolic tangent (ANSI)
trunc() – truncate to integer
truncf() – truncate to integer

ADDITIONAL ROUTINES

acos() - compute an arc cosine (ANSI)
asin() - compute an arc sine (ANSI)
atan() - compute an arc tangent (ANSI)
atan2() - compute the arc tangent of y/x (ANSI)
ceil() - compute the smallest integer greater than or equal to a specified value (ANSI)
cos() - compute a cosine (ANSI)
cosh() - compute a hyperbolic cosine (ANSI)
exp() - compute an exponential value (ANSI)
fabs() - compute an absolute value (ANSI)
floor() - compute the largest integer less than or equal to a specified value (ANSI)
fmod() - compute the remainder of x/y (ANSI)
log() - compute a natural logarithm (ANSI)
log10() - compute a base-10 logarithm (ANSI)
pow() - compute the value of a number raised to a specified power (ANSI)
sin() - compute a sine (ANSI)
sinh() - compute a hyperbolic sine (ANSI)

1 Libraries
memDrv

149

1
sqrt() - compute a non-negative square root (ANSI)
tan() - compute a tangent (ANSI)
tanh() - compute a hyperbolic tangent (ANSI)

This reference entry describes the C interface to high-level floating-point math functions,
which can use either a hardware floating-point unit or a software floating-point emulation
library. The appropriate routine is called based on whether mathHardInit() or
mathSoftInit() or both have been called to initialize the interface.

All angle-related parameters are expressed in radians. All functions in this library with
names corresponding to ANSI C specifications are ANSI compatible.

WARNING Not all functions in this library are available on all architectures. The architecture-specific
supplements for VxWorks list any math functions that are not available.

INCLUDE FILES math.h

SEE ALSO ansiMath, fppLib, floatLib, mathHardLib, mathSoftLib, Kernighan & Ritchie:, The C
Programming Language, 2nd Edition, VxWorks Architecture Supplements

memDrv

NAME memDrv – pseudo memory device driver

ROUTINES memDrv() – install a memory driver
memDevCreate() – create a memory device
memDevCreateDir() – create a memory device for multiple files
memDevDelete() – delete a memory device

DESCRIPTION This driver allows the I/O system to access memory directly as a pseudo-I/O device.
Memory location and size are specified when the device is created. This feature is useful
when data must be preserved between boots of VxWorks or when sharing data between
CPUs.

Additionally, it can be used to build some files into a VxWorks binary image (having first
converted them to data arrays in C source files, using a utility such as memdrvbuild), and
then mount them in the filesystem; this is a simple way of delivering some non-changing
files with VxWorks. For example, a system with an integrated web server may use this
technique to build some HTML and associated content files into VxWorks.

memDrv can be used to simply provide a high-level method of reading and writing bytes
in absolute memory locations through I/O calls. It can also be used to implement a simple,

VxWorks Kernel API Reference, 6.6
memDrv

150

essentially read-only filesystem (exsisting files can be rewritten within their existing sizes);
directory searches and a limited set of IOCTL calls (including stat()) are supported.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Four
routines, however, can be called directly: memDrv() to initialize the driver,
memDevCreate() and memDevCreateDir() to create devices, and memDevDelete() to
delete devices.

Before using the driver, it must be initialized by calling memDrv(). This routine should be
called only once, before any reads, writes, or memDevCreate() calls. It may be called from
usrRoot() in usrConfig.c or at some later point.

IOCTL FUNCTIONS

The dosFs file system supports the following ioctl() functions. The functions listed are
defined in the header ioLib.h. Unless stated otherwise, the file descriptor used for these
functions may be any file descriptor which is opened to a file or directory on the volume or
to the volume itself.

FIOGETFL
Copies to flags the open mode flags of the file (O_RDONLY, O_WRONLY, O_RDWR):

 int flags;
 status = ioctl (fd, FIOGETFL, &flags);

FIOSEEK
Sets the current byte offset in the file to the position specified by newOffset:

 status = ioctl (fd, FIOSEEK, newOffset);

The FIOSEEK offset is always relative to the beginning of the file. The offset, if any,
given at open time by using pseudo-file name is overridden.

FIOWHERE
Returns the current byte position in the file. This is the byte offset of the next byte to be
read or written. It takes no additional argument:

 position = ioctl (fd, FIOWHERE, 0);

FIONREAD
Copies to unreadCount the number of unread bytes in the file:

 int unreadCount;
 status = ioctl (fd, FIONREAD, &unreadCount);

FIOREADDIR
Reads the next directory entry. The argument dirStruct is a DIR directory descriptor.
Normally, the readdir() routine is used to read a directory, rather than using the
FIOREADDIR function directly. See dirLib.

 DIR dirStruct;
 fd = open ("directory", O_RDONLY);
 status = ioctl (fd, FIOREADDIR, &dirStruct);

1 Libraries
memEdrLib

151

1
FIOFSTATGET

Gets file status information (directory entry data). The argument statStruct is a pointer
to a stat structure that is filled with data describing the specified file. File inode
numbers, user and group IDs, and times are not supported (returned as 0).

Normally, the stat() or fstat() routine is used to obtain file information, rather than
using the FIOFSTATGET function directly. See dirLib.

 struct stat statStruct;
 fd = open ("file", O_RDONLY);
 status = ioctl (fd, FIOFSTATGET, &statStruct);

Any other ioctl() function codes will return error status.

CONFIGURATION To use the pseudo memory device driver, configure VxWorks with the INCLUDE_MEMDRV
component.

INCLUDE FILES memDrv.h

SEE ALSO the VxWorks programmer guides.

memEdrLib

NAME memEdrLib – memory manager error detection and reporting library

ROUTINES memEdrFreeQueueFlush() – flush the free queue
memEdrBlockMark() – mark or unmark selected blocks

DESCRIPTION This library provides a runtime error detection and debugging tool for memory manager
libraries (memPartLib and memLib). It operates by maintaining a database of blocks
allocated, freed and reallocated by the memory manager and by validating memory
manager operations using the database.

CONFIGURATION In the kernel, this library is enabled by including the INCLUDE_MEM_EDR component. This
also requires that the ED&R logging facility (INCLUDE_EDR_ERRLOG) is also enabled.
Optionally, for compiler-assisted pointer validation also include
INCLUDE_MEM_EDR_RTC.

The following component configuration parameters can also be changed:

MEDR_EXTENDED_ENABLE
Set to TRUE to enable logging trace information for each allocated block. Defaul setting
is FALSE.

VxWorks Kernel API Reference, 6.6
memEdrLib

152

MEDR_FILL_FREE_ENABLE
Set to TRUE to enable pattern-filling queued free blocks. This aids detecting writes into
freed buffers. Default setting is FALSE.

MEDR_FREE_QUEUE_LEN
Lenght of the free queue. Queuing is disabled when this parameter is 0. Default setting
is 64.

MEDR_BLOCK_GUARD_ENABLE
Enable guard signatures in the front and the end of each allocated block. Enabling this
feature aids in detecting buffer overruns, underruns, and some heap memory
corruption, but results in a per-block allocation overhead of 16 bytes. Default setting is
FALSE.

MEDR_POOL_SIZE
Set the size of the memory pool used to maintain the memory block database. Default
setting is 1MBytes in the kernel, and 64k in RTPs. The database uses 32 bytes per
memory block without extended information (call stack trace) enabled, and 64 bytes
per block with extended information enabled.

When this library is enabled, the following types of memory manager errors are detected:

- allocating already allocated memory (possible heap corruption)

- allocating with invalid memory partition ID

- freeing a dangling pointer

- freeing non-allocated memory

- freeing a partial block

- freeing global memory

- freeing with invalid partition ID

The errors are logged via the ED&R facility, which should to be included in the kernel
configuration. The logs can be viewed with the ED&R show routines and show commands.

FREE QUEUE AND FREE PATTERN

Freed and reallocated blocks are stored in a queue. The queue allows detection of stall
pointer dereferencing in freed and re-allocated blocks. The length of the queue is set by
MEDR_FREE_QUEUE_LEN.

When the MEDR_FILL_FREE_ENABLE option is enabled, queued blocks are filled with a
special pattern. When the block is removed from the queue, the pattern is matched to detect
memory write operations with stale pointer.

When a partition has insufficient memory to satisfy an allocation, the free queue is
automatically flushed for that partition. This way the queueing does not cause allocations
to fail with insufficient memory while there are blocks in the free queue.

1 Libraries
memEdrLib

153

1
Blocks being freed by RTPs while executing system calls are not queued. This is because an
RTP's memory context may not include the mapping needed to access partitions created
using memory from a shared data region.

COMPILER INSTRUMENTATION

Code compiled by the Wind River Compiler with RTEC instrumentation enabled
(-Xrtc=code option) provides automatic pointer reference and pointer arithmetic validation.

In the kernel, this feature can be enabled with the INCLUDE_MEM_EDR_RTC component (in
addition to the already mentioned INCLUDE_MEM_EDR and ED&R facility components).

Dynamically downloaded kernel modules compiled with RTEC instrumentation must be
processed as C++ modules in order to enable the compiler-generated constructors and
destructors.

The errors are logged via the ED&R facility, which should to be included in the kernel
configuration. The logs can be viewed with the ED&R show routines and show commands.

For more information about the RTEC compiler coption consult the Wind River Compiler
documentation.

Note: the stack overflow check option (-Xrtc=0x04) is not supported with this library. Code
executed in ISR or kernel context is excluded from compiler instrumentation checks.

CAVEATS Realloc does not attempt to resize a block. Instead, it will always allocate a new block and
enqueue the old block into the free queue. This method enables detection of invalid
references to reallocated blocks.

Realloc with size 0 will return a pointer to a block of size 0. This feature coupled with
compiler pointer validation instrumentation aids in detecting dereferencing pointers
obtained by realloc with size 0.

In order to aid detection of unintended free and realloc operation on invalid pointers,
memory partitions should not be created in a task's stack when this library is enabled.
Although it is possible to create such memory partitions, it is not a recommended practice;
this library will flag it as an error when an allocated block is within a tasks's own stack.

Memory partition information is recorded in the database for each partition created. This
information is kept even after the memory partition is deleted, so that unintended
operations with a deleted partition can be detected.

INCLUDE FILES none

SEE ALSO memEdrShow, memEdrRtpShow, edrLib, memLib, memPartLib

VxWorks Kernel API Reference, 6.6
memEdrRtpShow

154

memEdrRtpShow

NAME memEdrRtpShow – memory error detection show routines for RTPs

ROUTINES memEdrRtpPartShow() – show partition information of an RTP
memEdrRtpBlockShow() – print memory block information of an RTP
memEdrRtpBlockMark() – mark or unmark selected allocated blocks in an RTP

DESCRIPTION This module provides the show routines of the memory manager instrumentation and error
detection library for RTPs. To use these libraries, configure VxWorks with
INCLUDE_MEM_EDR_RTP and INCLUDE_MEM_EDR_RTP_SHOW. In addition, set the
MEDR_SHOW_ENABLE environment variable to TRUE.

INCLUDE FILES none

SEE ALSO memEdrLib

memEdrShow

NAME memEdrShow – memory error detection show routines

ROUTINES memEdrPartShow() – show partition information in the kernel
memEdrBlockShow() – print memory block information

DESCRIPTION This module provides show routines for the memory manager instrumentation and error
detection library.

CONFIGURATION To use the memory error detection show routines, configure VxWorks with the
INCLUDE_MEM_EDR and INCLUDE_MEM_EDR_SHOW components.

INCLUDE FILES none

SEE ALSO memEdrLib

memInfo

NAME memInfo – memory partition info routines

1 Libraries
memLib

155

1
ROUTINES memPartInfoGet() – get partition information

memPartFindMax() – find the size of the largest available free block
memInfoGet() – get heap information
memFindMax() – find the largest free block in the system memory partition (kernel heap)

DESCRIPTION This library provides routines for obtaining information about a memmory partition or the
kernel heap. It is included in a kernel image configuration via the
INCLUDE_MEM_MGR_INFO components.

INCLUDE FILES memLib.h

SEE ALSO memPartLib, memLib, memShow

memLib

NAME memLib – full-featured memory partition manager

ROUTINES memPartOptionsSet() – set the options for a memory partition
memPartOptionsGet() – get the options of a memory partition
memalign() – allocate aligned memory from system memory partition (kernel heap)
valloc() – allocate memory on a page boundary from the kernel heap
memPartRealloc() – reallocate a block of memory in a specified partition
memOptionsSet() – set the options for the system memory partition (kernel heap)
memOptionsGet() – get the options of the system memory partition (kernel heap)

DESCRIPTION This library provides full-featured facilities for managing the allocation of blocks of memory
from ranges of memory called memory partitions. The library is an extension of
memPartLib and provides enhanced memory management features, including error
handling, aligned allocation, and ANSI allocation routines. For more information about the
core memory partition management facility, see the manual entry for memPartLib.

The system memory partition, which can also be referred to as the kernel heap, is
automatically created when the kernel is initialized.

The memalign() routine is provided for allocating memory aligned to a specified
boundary.

CONFIGURATION To use the memory partition manager, configure VxWorks with the
INCLUDE_MEM_MGR_FULL component.

Various debug options can be selected for each partition using memPartOptionsSet() and
memOptionsSet(). Two kinds of errors are detected: attempts to allocate more memory
than is available, and bad blocks found when memory is freed. The following
error-handling options can be individually selected:

VxWorks Kernel API Reference, 6.6
memLib

156

MEM_ALLOC_ERROR_EDR_FATAL_FLAG
Inject a fatal ED&R event when there is an error in allocating memory. This option
takes precedence over the MEM_ALLOC_ERROR_EDR_WARN_FLAG and
MEM_ALLOC_ERROR_SUSPEND_FLAG options.

MEM_ALLOC_ERROR_EDR_WARN_FLAG
Inject an ED&R warning when there is an error in allocating memory.

MEM_ALLOC_ERROR_LOG_FLAG
Log a message when there is an error in allocating memory.

MEM_ALLOC_ERROR_SUSPEND_FLAG
Suspend the task when there is an error in allocating memory (unless the task was
spawned with the VX_UNBREAKABLE option, in which case it cannot be suspended).
This option has been deprecated (available for backward compatibility only).

MEM_BLOCK_ERROR_EDR_FATAL_FLAG
Inject a fatal ED&R event when there is an error in freeing or reallocating memory. This
option takes precedence over the MEM_BLOCK_ERROR_EDR_WARN_FLAG and
MEM_BLOCK_ERROR_SUSPEND_FLAG options.

MEM_BLOCK_ERROR_EDR_WARN_FLAG
Inject a non-fatal ED&R event when there is an error in freeing or reallocating memory.

MEM_BLOCK_ERROR_LOG_FLAG
Log a message when there is an error in freeing memory.

MEM_BLOCK_ERROR_SUSPEND_FLAG
Suspend the task when there is an error in freeing memory (unless the task was
spawned with the VX_UNBREAKABLE option, in which case it cannot be suspended).
This option will be deprecated in future releases.

When the following option is specified to check every block freed to the partition,
memPartFree() and free() in memPartLib run consistency checks of various pointers and
values in the header of the block being freed. If this flag is not specified, no check will be
performed when memory is freed.

MEM_BLOCK_CHECK
Check each block freed.

Setting any of the MEM_BLOCK_ERROR_ options automatically sets MEM_BLOCK_CHECK.

The options of a partition are initialized to the value of the MEM_PART_DEFAULT_OPTIONS
configuration parameter, which defaults to the following flags being enabled:

MEM_ALLOC_ERROR_LOG_FLAG
MEM_ALLOC_ERROR_EDR_WARN_FLAG
MEM_BLOCK_CHECK
MEM_BLOCK_ERROR_LOG_FLAG
MEM_BLOCK_ERROR_EDR_WARN_FLAG
MEM_BLOCK_ERROR_SUSPEND_FLAG

1 Libraries
memPartLib

157

1
When setting options for a partition with memPartOptionsSet() or memOptionsSet(), use
the logical OR operator between each specified option to construct the options parameter.
For example:

 memPartOptionsSet (myPartId, MEM_ALLOC_ERROR_LOG_FLAG |
 MEM_BLOCK_CHECK |
 MEM_BLOCK_ERROR_LOG_FLAG);

In the case when multiple options are set so that one option takes precedence over the other,
then the preceeded options may not have their expected effect. For example, if the
MEM_BLOCK_ERROR_EDR_FATAL_FLAG flag results in a task being stopped by the ED&R
fatal policy handler, then the MEM_BLOCK_ERROR_SUSPEND_FLAG flag has no effect (a
task cannot be stopped and suspended at the same time).

KERNEL VERSUS RTP HEAP ALLOCATOR

Memory allocated in user code running in an RTP is managed by the RTP heap allocator,
independent from the kernel heap. Each RTP has it's own heap. By default, this service is
provided by the user version of memLib and memPartLib. These libraries can be replaced
with other third party or user provided allocators. For more information see also the
documentation for the user memLib and memPartLib.

INCLUDE FILES memLib.h

SEE ALSO memPartLib, smMemLib

memPartLib

NAME memPartLib – core memory partition manager

ROUTINES memPartCreate() – create a memory partition
memPartDelete() – delete a partition and free associated memory
memPartAddToPool() – add memory to a memory partition
memPartAlignedAlloc() – allocate aligned memory from a partition
memPartAlloc() – allocate a block of memory from a partition
memPartFree() – free a block of memory in a partition
memAddToPool() – add memory to the system memory partition
malloc() – allocate a block of memory from the system memory partition (ANSI)
calloc() – allocate space for an array (ANSI)
realloc() – reallocate a block of memory (ANSI)
free() – free a block of memory from the system memory partition (ANSI)
cfree() – free a block of memory from the system memory partition (kernel heap)

VxWorks Kernel API Reference, 6.6
memPartLib

158

DESCRIPTION This library provides core facilities for managing the allocation of blocks of memory from
ranges of memory called memory partitions. The library was designed to provide a
compact implementation; full-featured functionality is available with memLib, which
provides enhanced memory management features built as an extension of memPartLib.
(For more information about enhanced memory partition management options, see the
manual entry for memLib.) This library consists of two sets of routines. The first set,
memPart...(), comprises a general facility for the creation and management of memory
partitions, and for the allocation and deallocation of blocks from those partitions. The
second set provides a traditional ANSI-compatible malloc()/free() interface to the system
memory partition.

The system memory partition, which can also be referred to as the kernel heap, is
automatically created when the kernel is initialized.

The allocation of memory, using malloc() in the typical case and memPartAlloc() for a
specific memory partition, is done with a best-fit algorithm. Adjacent blocks of memory are
coalesced when they are freed with memPartFree() and free(). There is also a routine
provided for allocating memory aligned to a specified boundary from a specific memory
partition, memPartAlignedAlloc().

This library includes three ANSI-compatible routines: calloc() allocates a block of memory
for an array; realloc() changes the size of a specified block of memory; and cfree() returns
to the free memory pool a block of memory that was previously allocated with calloc().

CONFIGURATION This library is always included in VxWorks.

CAVEATS Architectures have various alignment constraints. To provide optimal performance,
malloc() returns a pointer to a buffer having the appropriate alignment for the architecture
in use. The portion of the allocated buffer reserved for system bookkeeping, known as the
overhead, may vary depending on the architecture. The following table lists the default
alignment and overhead size of free and allocated memory blocks for various architectures.

(*) On PowerPC, the boundary and allocated block overhead values are 16 bytes for system
based on the PPC604 CPU type (including ALTIVEC). For all other PowerPC CPU types

Architecture Boundary Overhead
ARM 4 16
COLDFIRE 4 16
I86 4 16
M68K 4 16
MCORE 8 16
MIPS 16 16
PPC (*) 8-16 16
SH 4 16
SIMLINUX 8 16
SIMNT 8 16
SIMSOLARIS 8 16
SPARC 8 16

1 Libraries
miiBus

159

1
(PPC403, PPC405, PPC440, PPC860, PPC603, etc...), the boundary for allocated blocks is 8
bytes.

The partition's free blocks are organized into doubly linked lists. Each list contains only free
blocks of the same size. The head of these doubly linked lists are organized in an AVL tree.
The memory for the AVL tree's nodes is carved out from the partition space itself, whenever
new AVL nodes need to be created. This occurs only if the fragmentation of the partition
increases; to be more exact, it happens only if a free memory block is created whose size does
not have a doubly linked list yet. This amount of memory carved out from the partition
space for bookkeeping purposes is reported by memPartShow() and memShow() as the
amount of "internal" memory allocated in the partition.

INCLUDE FILES memPartLib.h, stdlib.h

SEE ALSO memLib, smMemLib

memShow

NAME memShow – memory show routines

ROUTINES memShowInit() – initialize the memory partition show facility
memShow() – show blocks and statistics for the current heap partition
memPartShow() – show blocks and statistics for a given memory partition

DESCRIPTION This library contains memory partition information display routines. To use this facility, it
must first be installed using memShowInit(), which is called automatically when the
memory partition show facility is configured into VxWorks. To configure the memory
partition show facility into VxWorks, include the INCLUDE_MEM_SHOW component.

INCLUDE FILES none

SEE ALSO memLib, memPartLib, the VxWorks programmer guides, the IDE and host tools guides.

miiBus

NAME miiBus – MII bus controller and API library

ROUTINES miiBusRegister() – register with the vxBus subsystem
miiBusListAdd() – Add a PHY to the MII monitor list

VxWorks Kernel API Reference, 6.6
miiBus

160

miiBusListDel() – Remove a PHY to the MII monitor list
miiBusGet() – get the miiBus that goes with a given VxBus instance
miiBusCreate() – create an miiBus attached to a parent bridge
miiBusDelete() – delete an miiBus and all its child devices
miiBusRead() – read a PHY register
miiBusWrite() – write value to a PHY register
miiBusMediaUpdate() – invoke a PHY's parent's media update callback
miiBusModeGet() – get the current media mode and link status
miiBusModeSet() – set the current media mode
miiBusMediaListGet() – obtain a pointer to the bus's media list
miiBusMediaAdd() – add an entry to an miiBus's media list
miiBusMediaDel() – delete an entry to an miiBus's media list
miiBusMediaDefaultSet() – set the default media for an miiBus

DESCRIPTION This module implements a VxBus bus controller for managing MII-compliant ethernet
physical layer interfaces (PHYs). Up to 32 PHYs can be connected to a single MII
management bus. In the most common case, an ethernet controller will have a single PHY
attached to it, and that PHY's MDIO pins will be connected to the ethernet controller and
accessed through MDIO registers in the controller's register space. This module is designed
to allow an ethernet controller's MDIO bus to abstracted as a VxBus bus, and for PHYs to be
probed and attached as VxBus instances. The main benefits to this are that drivers can be
provided for specific PHY chips where necessary (although PHYs are meant to have a
generic management interface, it's often necessary to configure vendor-specific registers to
get some chips to work correctly), and save driver developers from having to duplicate PHY
management code over an over in each ethernet driver.

Each ethernet controller that uses an MII-based (or MII-like) PHY must have a logical MII
bus. The bus is created using the miiBusCreate() function, with the ethernet controller's
VxBus instance as a bridge. This will create the bus instance, and probe for PHYs attached
to the bus. Probing is accomplished using the miiBusRead() and miiBusWrite() functions.
These functions depend on the ethernet driver providing two VxBus methods: miiRead and
miiWrite. These methods should be implemented in the driver, and provide a way to read
a specific PHY register at a given PHY address. Once a bus is created, the miiBusGet()
function can be used to obtain a pointer to its VxBus instance. The ethernet driver should
save this pointer and use it to access the bus later on.

The ethernet driver should also export an miiMediaUpdate method. This is a callback which
may be invoked by PHY drivers as the result of media change events, such as connecting or
disconnecting of the network cable. This callback should be used to configure the controller
to match the PHY when the link state changes. For example, some ethernet MACs must be
explicitly set for full or half duplex mode to match the duplex setting of the PHY.
Consequently, the MAC must be alerted if the duplex setting of the link changes.

INCLUDE FILES none

1 Libraries
mmuMapLib

161

1mmanPxLib

NAME mmanPxLib – memory management library (POSIX)

ROUTINES mlockall() – lock all pages used by a process into memory (POSIX)
munlockall() – unlock all pages used by a process (POSIX)
mlock() – lock specified pages into memory (POSIX)
munlock() – unlock specified pages (POSIX)

DESCRIPTION This library contains POSIX interfaces designed to lock and unlock memory pages, i.e., to
control whether those pages may be swapped to secondary storage. Since VxWorks does
not use swapping (all pages are always kept in memory), these routines have no real effect
and simply return 0 (OK).

INCLUDE FILES sys/mman.h

SEE ALSO POSIX 1003.1b document

mmanShow

NAME mmanShow – mmap manager show library

ROUTINES mmapShow() – show information about memory mapped objects in the system

DESCRIPTION This library provides routines to display information about memory mapped objects (files
and mapped shard memory objects). These objects are mapped in a process' address space
with mmap().

This library is automatically initialized whenever the component
INCLUDE_MAPPED_FILES_SHOW is added.

INCLUDE FILES n/a

SEE ALSO application_mmanLib

mmuMapLib

NAME mmuMapLib – MMU mapping library for ARM Ltd. processors

VxWorks Kernel API Reference, 6.6
mmuPro32Lib

162

ROUTINES mmuVirtToPhys() – translate a virtual address to a physical address (ARM)
mmuPhysToVirt() – translate a physical address to a virtual address (ARM)

DESCRIPTION This library provides additional MMU support routines. These are present in a separate
module from mmuLib.c, so that these routines can be used without including all the code
in that object module.

INCLUDE FILES none

mmuPro32Lib

NAME mmuPro32Lib – MMU library for Pentium II

ROUTINES mmuPro32LibInit() – initialize module
mmuPro32Page0UnMap() – unmap the page zero for NULL pointer detection

DESCRIPTION mmuLib.c provides the architecture dependent routines that directly control the memory
management unit. It provides routines that are called by the higher level architecture
independent routines in vmLib.c:

mmuLibInit - initialize module mmuTransTblCreate - create a new translation table
mmuTransTblDelete - delete a translation table. mmuEnable - turn mmu on or off
mmuStateSet - set state of virtual memory page mmuStateGet - get state of virtual memory
page mmuPageMap - map physical memory page to virtual memory page
mmuPageUnMap - unmap a physical page. mmuTranslate - translate a virtual address to a
physical address mmuCurrentSet - change active translation table mmuTransTblUnion -
merge two translation tables mmuTransTblMask - subtract one translation table from
another. mmuAttrTranslate - translate special VM attributes to Intel bits. mmuBufferWrite
- writes to any mapped memory page w/o changing attributes. mmuPageSizeGet - return
the page size

Applications using the mmu will never call these routines directly; the visible interface is
supported in vmLib.c.

mmuPro32Lib supports the creation and maintenance of multiple translation tables. New
translation tables are created with a call to mmuTransTblCreate(). The translation table is
initialized by allocating a 4KB page to serve as a Page Directory Table for the new context.
(The first time mmuTransTblCreate is called, it initializes the kernel's virtual memory
context. Subsequent calls initialize other supervisor or user contexts.) After the table is
created and initialized, pages can be mapped using mmuPageMap(). Page mapping
associates physical addresses with virtual addresses. The attributes of any mapped page
can then be changed by calling mmuStateSet(). "Attributes" are read/write,
user/supervisor, writethrough/copyback, cache on/off. A translation table is installed as
the currently active table by mmuCurrentSet().

1 Libraries
mmuPro32Lib

163

1
Page table query functions are provided to translate physical/virtual addresses
(mmuTranslate()). Attribute bits can be fetched using mmuStateGet(). If detailed dumps
of page table and page directory entries are needed, the library can be built with #define
MMU_DEBUG to activate mmuPro32Show().

The typical translation table looks like this:

 PDBR
 |
 |

 top level |pde |pde |pde |pde |pde |pde | ...

 | | | | | |
 | | | | | |
 ---------- | v v v v
 | ------ NULL NULL NULL NULL
 | |
 v v
 ---- ----
l |pte | |pte |
o ---- ----
w |pte | |pte |
e ---- ----
r |pte | |pte |
l ---- ----
e |pte | |pte |
v ---- ----
e . .
l . .
 . .

where the top level consists of an array of pointers (Page Directory Entry) held within a
single 4k page. These point to arrays of Page Table Entry arrays in the lower level. Each of
these lower level arrays is also held within a single 4k page, and describes a virtual space
of 4 MB (each Page Table Entry is 4 bytes, so we get 1000 of these in each array, and each
Page Table Entry maps a 4KB page - thus 1000 * 4096 = 4MB.)

The physical memory that holds these data structures is obtained from the system memory
manager via memalign to insure that the memory is page aligned and is located in a
transparently mapped region (virtual address equals physical address). In order to protect
the page tables themselves from being corrupted, they are made read-only after being
mapped. The protection is done when the first call to mmuCurrentSet() is made. This
point is chosen because up until then, we don't know whether the kernel's memory has been
mapped.

Support for two new page attribute bits are added for Pentium II's enhanced MMU. They
are the Global bit (G) and the PageSize (PS) bit. The Global bit indicates a global page when
set. When a page is marked global and the page global enable (PGE) bit in register CR4 is
set, the page-table or page-directory entry for the page is not invalidated in the TLB when
register CR3 is loaded or a task switch occurs. This bit is provided to prevent frequently

VxWorks Kernel API Reference, 6.6
mmuPro36Lib

164

used pages (such as pages that contain kernel or other operating system or executive code)
from being flushed from the TLB. The PageSize bit is used only in a directory table entry.
When set it indicates that the page size for that entry is 4MB and there is no level 2 page
table. This bit is ignored if the page size enable bit (PSE) is not set in control register CR4.

This module supports the PentiumPro and Pentium II MMU. It is compatible with 80486
and Pentium, as long as the Global and PageSize attribute bits are not used.

INCLUDE FILES none

mmuPro36Lib

NAME mmuPro36Lib – MMU library for PentiumPro/2/3/4 36 bit mode

ROUTINES mmuPro36LibInit() – initialize module
mmuPro36Page0UnMap() – unmap the page zero for NULL pointer detection
mmuPro36PageMap() – map 36bit physical memory page to virtual memory page
mmuPro36Translate() – translate a virtual address to a 36bit physical address

DESCRIPTION mmuPro36Lib.c provides the architecture dependent routines that directly control the
memory management unit. It provides routines that are called by the higher level
architecture independent routines in vmLib.c:

mmuLibInit - initialize module mmuTransTblCreate - create a new translation table
mmuTransTblDelete - delete a translation table. mmuEnable - turn mmu on or off
mmuStateSet - set state of virtual memory page mmuStateGet - get state of virtual memory
page mmuPageMap - map physical memory page to virtual memory page
mmuPageUnMap - unmap a physical page. mmuTranslate - translate a virtual address to a
physical address mmuCurrentSet - change active translation table mmuTransTblUnion -
merge two translation tables mmuTransTblMask - subtract one translation table from
another. mmuAttrTranslate - translate special VM attributes to Intel bits. mmuBufferWrite
- writes to any mapped memory page w/o changing attributes. mmuPageSizeGet - return
the page size

Applications using the mmu will never call these routines directly; the visible interface is
supported in vmLib.c.

mmuPro36Lib supports the creation and maintenance of multiple translation tables. New
translation tables are created with a call to mmuTransTblCreate(). The translation table is
initialized by allocating a 4KB page to serve as a Page Directory Table for the new context.
(The first time mmuTransTblCreate is called, it initializes the kernel's virtual memory
context. Subsequent calls initialize other supervisor or user contexts.) After the table is
created and initialized, pages can be mapped using mmuPageMap(). Page mapping
associates physical addresses with virtual addresses. The attributes of any mapped page

1 Libraries
mmuPro36Lib

165

1
can then be changed by calling mmuStateSet(). "Attributes" are read/write,
user/supervisor, writethrough/copyback, cache on/off. A translation table is installed as
the currently active table by mmuCurrentSet().

Page table query functions are provided to translate physical/virtual addresses
(mmuTranslate()). Attribute bits can be fetched using mmuStateGet(). If detailed dumps
of page table and page directory entries are needed, the library can be built with #define
MMU_DEBUG to activate mmuPro36Show().

The typical translation table looks like this:

This module supports the PentiumPro/2/3/4 MMU:

 PDBR
 |
 |

 |pdp |pdp |pdp |pdp |

 |
 v

 top level |pde |pde |pde |pde |pde |pde | ...

 | | | | | |
 | | | | | |
 ---------- | v v v v
 | ------ NULL NULL NULL NULL
 | |
 v v
 ---- ----
l |pte | |pte |
o ---- ----
w |pte | |pte |
e ---- ----
r |pte | |pte |
l ---- ----
e |pte | |pte |
v ---- ----
e . .
l . .
 . .

where the top level consists of two tables that are the page directory pointer table and the
page directory table which is an array of pointers (Page Directory Entry) held within a single
4k page. These point to arrays of Page Table Entry arrays in the lower level. Each of these
lower level arrays is also held within a single 4k page, and describes a virtual space of 2 MB
(each Page Table Entry is 8 bytes, so we get 512 of these in each array, and each Page Table
Entry maps a 4KB page - thus 512 * 4096 = 2MB.)

To implement global virtual memory, a separate translation table called
mmuGlobalTransTbl is created when the module is initialized. Calls to
mmuGlobalPageMap will augment and modify this translation table. When new

VxWorks Kernel API Reference, 6.6
mmuPro36Lib

166

translation tables are created, memory for the top level array of sftd's is allocated and
initialized by duplicating the pointers in mmuGlobalTransTbl's top level sftd array. Thus,
the new translation table will use the global translation table's state information for portions
of virtual memory that are defined as global. Here's a picture to illustrate:

 GLOBAL TRANS TBL NEW TRANS TBL

 PDBR PDBR
 | |
 | |
 ------------------------- -------------------------
 |pdp |pdp |pdp |pdp | |pdp |pdp |pdp |pdp |
 ------------------------- -------------------------
 | |
 v v
 ------------------------- -------------------------
 top level |pde |pde | NULL| NULL| |pde |pde | NULL| NULL|
 ------------------------- -------------------------
 | | | | | | | |
 | | | | | | | |
 ---------- | v v ---------- | v v
 | ------ NULL NULL | | NULL NULL
 | | | |
 o------------------------------------ |
 | | |
 | o---
 | |
 v v
 ---- ----
l |pte | |pte |
o ---- ----
w |pte | |pte |
e ---- ----
r |pte | |pte |
l ---- ----
e |pte | |pte |
v ---- ----
e . .
l . .
 . .

Note that with this scheme, the global memory granularity is 4MB. Each time you map a
section of global virtual memory, you dedicate at least 4MB of the virtual space to global
virtual memory that will be shared by all virtual memory contexts.

The physical memory that holds these data structures is obtained from the system memory
manager via memalign to insure that the memory is page aligned. We want to protect this
memory from being corrupted, so we invalidate the descriptors that we set up in the global
translation that correspond to the memory containing the translation table data structures.
This creates a "chicken and the egg" paradox, in that the only way we can modify these data
structures is through virtual memory that is now invalidated, and we can't validate it
because the page descriptors for that memory are in invalidated memory (confused yet?)

1 Libraries
mmuPro36Lib

167

1
So, you will notice that anywhere that page table descriptors (PTE's) are modified, we do so
by locking out interrupts, momentarily disabling the MMU, accessing the memory with its
physical address, enabling the MMU, and then re-enabling interrupts (see mmuStateSet(),
for example.)

Support for two new page attribute bits are added for PentiumPro's enhanced MMU. They
are Global bit (G) and Page-level write-through/back bit (PWT). Global bit indicates a
global page when set. When a page is marked global and the page global enable (PGE) bit
in register CR4 is set, the page-table or page-directory entry for the page is not invalidated
in the TLB when register CR3 is loaded or a task switch occurs. This bit is provided to
prevent frequently used pages (such as pages that contain kernel or other operating system
or executive code) from being flushed from the TLB. Page-level write-through/back bit
(PWT) controls the write-through or write- back caching policy of individual pages or page
tables. When the PWT bit is set, write-through caching is enabled for the associated page or
page table. When the bit is clear, write-back caching is enabled for the associated page and
page table.

Following macros are used to describe these attribute bits in the physical memory descriptor
table sysPhysMemDesc[] in sysLib.c.

VM_STATE_WBACK - use write-back cache policy for the page
VM_STATE_WBACK_NOT - use write-through cache policy for the page
VM_STATE_GLOBAL - set page global bit
VM_STATE_GLOBAL_NOT - not set page global bit

Support for two page size (4KB and 2MB) are added also. The linear address for 4KB pages
is divided into four sections:

Page directory pointer - bits 30 through 31.
Page directory entry - bits 21 through 29.
Page table entry - Bits 12 through 20.
Page offset - Bits 0 through 11.

The linear address for 2MB pages is divided into three sections:

Page directory pointer - bits 30 through 31.
Page directory entry - Bits 21 through 29.
Page offset - Bits 0 through 20.

These two page size is configurable by VM_PAGE_SIZE macro in config.h.

INCLUDE FILES none

VxWorks Kernel API Reference, 6.6
mmuShLib

168

mmuShLib

NAME mmuShLib – Memory Management Unit Library for Renesas SH77xx

ROUTINES mmuShLibInit() – Initialize the SH MMU library.

DESCRIPTION The SH family of devices range between many different manufacturers resulting in a wide
range of implementations of memory management units. This library contains the functions
that support the SH7750 version of these devices. It provides routines that are called by the
architecture independent manager (AIM). There are two layers of architecture independent
routines: the lower of these is the Architecture-Independent MMU which provides
page-table management, and the upper is vmLib.c or vmBaseLib.c.

The SH MMU library is based on a page-table architecture created to handle TLB exceptions.
This page-table architecture is a three level hierarchy. Level-0, the Context Table, is
comprised of 256 4-byte pointers to the next level of page tables. The Level-1 page table, the
Region Table, is pointed to by Level-0 and is comprised of 1024 4-byte pointers to the next
level of page tables. It is indexed by the top 10 bits of the PTEH register. Level-2, the Page
Table, pointed to by Level-1, contains the page-table entries used to fill the TLB. It is
indexed by the second 10 bits of the PTEH register.

The sizes of the three-level page-table architecture restrict some of the characteristics of the
system. The size of the region table--limited to the number of available contexts given by
the Address Space ID (if available) field of the TLB--restricts the system to only 256 separate
execution contexts. The size of the L1 and L2 page tables restricts the system to a minimum
page size of 4KB and a maximum page size of 1MB.

INCLUDE FILES

moduleLib

NAME moduleLib – code module list management library

ROUTINES moduleCreate() – create and initialize a module
moduleDelete() – delete module ID information
moduleSegGet() – get (delete and return) the first segment from a module
moduleSegFirst() – find the first segment in a module
moduleSegNext() – find the next segment in a module
moduleCreateHookAdd() – add a routine to be called when a module is added
moduleCreateHookDelete() – delete a previously added module create hook routine
moduleFindByName() – find a module by name
moduleFindByNameAndPath() – find a module by filename and path

1 Libraries
moduleLib

169

1
moduleFindByGroup() – find a module by group number
moduleIdListGet() – get a list of loaded modules
moduleInfoGet() – get information about an object module
moduleCheck() – verify checksums on all modules loaded in the system
moduleNameGet() – get the name associated with a module ID
moduleFlagsGet() – get the flags associated with a module ID
moduleShow() – show information about loaded modules

DESCRIPTION This library is used to keep track of which object modules have been loaded into VxWorks,
to maintain information about object module segments associated with each module, to
track which symbols belong to which module and to maintain information about resources
involved in their installation in the system's memory. Tracking modules makes it possible
to list which modules are currently loaded and to unload them when they are no longer
needed.

CODE MODULE AND SEGMENT DESCRIPTORS

Loading an object module requires allocating memory for its loadable sections, for the
symbols it holds (depending on the exact load flags being used, see loadModule() for more
information), and for module management information.

By convention, we refer to this collection of related items as a code module. So, a code module
can be seen as the result of the load operation of an object file. In other words, an object
module is loaded, resulting in the installation of a code module in the target's memory (see
also loadLib).

The module management information is composed of descriptors, one for the code module
itself and one for each loaded segment. The ELF sections of the file are aggregated into
segments. See the loadLib documentation for more detail. The segment descriptors are
private structures which contain various pieces of information accessible via the
moduleInfoGet() routine.

Multiple modules with the same name are allowed (the same module may be loaded
without first being unloaded) but "find" functions find the most recently created module.

NOTE In general, users will not access these routines directly, with the exception of
moduleShow(), which displays information about currently loaded modules. Most calls to
this library will be from routines in loadLib and unldLib.

INCLUDE FILES moduleLib.h

ERRNOS Routines from this library can return the following module list-specific errors:

S_moduleLib_BAD_CHECKSUM
The checksum on one of the registered sections is incorrect

S_moduleLib_MODULE_NOT_FOUND
The code module which is looked for can not be found in the code module lists.

VxWorks Kernel API Reference, 6.6
mountd

170

S_moduleLib_MAX_MODULES_LOADED
There are too many loaded modules to perform the operation.

S_moduleLib_HOOK_NOT_FOUND
The specified hook routine can not be found in the list of registered hooks.

S_moduleLib_INVALID_SECTION_ID
The section ID passed as a parameter is invalid.

S_moduleLib_INVALID_MODULE_ID
The module ID passed as a parameter is invalid.

Note that other errnos, not listed here, may come from libraries internally used by the
module list management.

SEE ALSO loadLib, unldLib, symLib, memLib

mountd

NAME mountd – Mount protocol library

ROUTINES mountdInit() – initialize the mount daemon
nfsExport() – specify a file system to be NFS exported
nfsUnexport() – remove a file system from the list of exported file systems

DESCRIPTION This file implements the initialization routines for the MOUNT daemon.

The mount server is initialized by calling mountdInit(). This routine, will be invoked by
nfsdInit().

Including any of the NFS SERVER components (INCLUDE_NFS_SERVER_ALL,
INCLUDE_NF3_SERVER, INCLUDE_NFS2_SERVER) enables the call to nfsdInit() during the
boot process, which in turn calls mountdInit(), so there is normally no need to call either
routine manually. mountdInit() spawns one task, tMountd, which registers as an RPC
service with the portmapper. The registration is done for MOUNT V1 and/or MOUNT V3
depending on the NFS server version included. If only NFS V3 server is included then both
MOUNT V1 and MOUNT V3 are registered. If only NFS V2 is included then only the
MOUNT V1 is registered.

NOTE: The only routines in this library that are normally called by applications are
nfsExport() and nfsUnexport(). The mount daemon is normally initialized indirectly by
nfsdInit().

Currently, only the dosFsLib file system is supported. File systems are exported with the
nfsExport() call.

1 Libraries
mqPxLib

171

1
To export VxWorks file systems via NFS, you need facilities from both this library and from
nfsdLib. To include the nfsLib components, use either INCLUDE_NFS2_CLIENT or
INCLUDE_NFS3_CLIENT or INCLUDE_NFS_CLIENT_ALL and rebuild VxWorks.

Example The following example illustrates how to export an existing dosFs file system.

First, initialize the block device containing your file system.

Then assuming the dosFs system is called "/export" execute the following code on the
target:

nfsExport ("/export", 0, FALSE, 0); /* make available remotely */

This makes it available to all clients to be mounted using the client's NFS mounting
command. (On UNIX systems, mounting file systems normally requires root privileges.)

VxWorks does not normally provide authentication services for NFS requests, and the DOS
file system does not provide file permissions. If you need to authenticate incoming requests,
see the documentation for nfsdInit() and mountdInit() for information about
authorization hooks.

The following requests are accepted from clients. For details of their use, see Appendix I of
RFC 1813, "NFSv3 Protocol Specification."

INCLUDE FILES none

SEE ALSO dosFsLib, nfsdLib, RFC 1813

mqPxLib

NAME mqPxLib – message queue library (POSIX)

ROUTINES mqPxLibInit() – initialize the POSIX message queue library
mq_open() – open a message queue (POSIX)
mq_receive() – receive a message from a message queue (POSIX)
mq_send() – send a message to a message queue (POSIX)
mq_close() – close a message queue (POSIX)

Procedure Name
Procedure
Number

MOUNTPROC_NULL 0
MOUNTPROC_MNT 1
MOUNTPROC_DUMP 2
MOUNTPROC_UMNT 3
MOUNTPROC_UMNTALL 4
MOUNTPROC_EXPORT 5

VxWorks Kernel API Reference, 6.6
mqPxShow

172

mq_unlink() – remove a message queue (POSIX)
mq_notify() – notify a task that a message is available on a queue (POSIX)
mq_setattr() – set message queue attributes (POSIX)
mq_getattr() – get message queue attributes (POSIX)
mqPxDescObjIdGet() – returns the OBJ_ID associated with a mqd_t descriptor

DESCRIPTION This library implements the message-queue interface based on the POSIX 1003.1b standard,
as an alternative to the VxWorks-specific message queue design in msgQLib. The POSIX
message queues are accessed through names; each message queue supports multiple
sending and receiving tasks.

The message queue interface imposes a fixed upper bound on the size of messages that can
be sent to a specific message queue. The size is set on an individual queue basis. The value
may not be changed dynamically.

This interface allows a task to be notified asynchronously of the availability of a message on
the queue. The purpose of this feature is to let the task perform other functions and yet still
be notified that a message has become available on the queue.

MESSAGE QUEUE DESCRIPTOR DELETION

The mq_close() call terminates a message queue descriptor and deallocates any associated
memory. When deleting message queue descriptors, take care to avoid interfering with
other tasks that are using the same descriptor. Tasks should only close message queue
descriptors that the same task has opened successfully.

INCLUDE FILES mqueue.h

SEE ALSO POSIX 1003.1b document, msgQLib

mqPxShow

NAME mqPxShow – POSIX message queue show

ROUTINES mqPxShow() – display message queue internals
mqPxShowInit() – initialize the POSIX message queue show facility

DESCRIPTION This library provides a show routine for display information on POSIX message queue
objects. The information displayed is for debugging purposes and is intended to be a
snapshot of the system at the time the call is made.

INCLUDE FILES mqPxShow.h

1 Libraries
msgQInfo

173

1msgQEvLib

NAME msgQEvLib – VxWorks events support for message queues

ROUTINES msgQEvStart() – start the event notification process for a message queue
msgQEvStop() – stop the event notification process for a message queue

DESCRIPTION This library is an extension to eventLib, the VxWorks events library. Its purpose is to
support events for message queues.

The functions in this library are used to control registration of tasks on a message queue. The
routine msgQEvStart() registers a task and starts the notification process. The function
msgQEvStop() un-registers the task, which stops the notification mechanism.

When a task is registered and a message arrives on the queue, the events specified are sent
to that task, on the condition that no other task is pending on that message queue. However,
if a msgQReceive() is to be done afterwards to get the message, there is no guarantee that
it will still be available.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES msgQEvLib.h

SEE ALSO eventLib

msgQInfo

NAME msgQInfo – message queue information routines

ROUTINES msgQInfoGet() – get information about a message queue

DESCRIPTION This library provides routines to show message queue statistics, such as the task queuing
method, messages queued, and receivers blocked.

VxWorks Kernel API Reference, 6.6
msgQLib

174

The routine msgQInfoGet() gets the information about message queues, such as the task
queuing method, messages queued, and receivers blocked.

This component is required by pipe and message queue show routines. It can be configured
into VxWorks using either of the following methods:

- Using the configuration header files, define INCLUDE_MSG_Q_INFO in config.h.

- Using the project facility, select INCLUDE_MSG_Q_INFO.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES msgQLib.h

SEE ALSO pipeDrv

msgQLib

NAME msgQLib – message queue library

ROUTINES msgQInitialize() – initialize a pre-allocated message queue
msgQSend() – send a message to a message queue
msgQReceive() – receive a message from a message queue
msgQNumMsgs() – get the number of messages queued to a message queue
msgQCreate() – create and initialize a message queue
msgQDelete() – delete a message queue

DESCRIPTION This library contains routines for creating and using message queues, the primary inter-task
communication mechanism within a single CPU. Message queues allow a variable number
of messages (varying in length) to be queued in first-in-first-out (FIFO) order. Any task or
interrupt service routine can send messages to a message queue. Any task can receive
messages from a message queue. Multiple tasks can send to and receive from the same
message queue. Full-duplex communication between two tasks generally requires two
message queues, one for each direction.

To provide message queue support for a system, VxWorks must be configured with the
INCLUDE_MSG_Q component.

1 Libraries
msgQLib

175

1
CREATING AND USING MESSAGE QUEUES

A message queue is created with msgQCreate(). Its parameters specify the maximum
number of messages that can be queued to that message queue and the maximum length in
bytes of each message. Enough buffer space is pre-allocated to accommodate the specified
number of messages of the specified length.

A task or interrupt service routine sends a message to a message queue with msgQSend().
If no tasks are waiting for messages on the message queue, the message is added to the
buffer of messages for that queue. If any tasks are already waiting to receive a message from
the message queue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If any messages are
already available in the message queue's buffer, the first message is immediately dequeued
and returned to the caller. If no messages are available, the calling task blocks and is added
to a queue of tasks waiting for messages. This queue of waiting tasks can be ordered either
by task priority or FIFO, as specified in an option parameter when the queue is created.

TIMEOUTS Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, if no buffer space is available to queue the message, the timeout specifies how
many ticks to wait for space to become available. When receiving a message, the timeout
specifies how many ticks to wait if no message is immediately available. The timeout
parameter can have the special values NO_WAIT (0) or WAIT_FOREVER (-1). NO_WAIT
means the routine returns immediately; WAIT_FOREVER means the routine never times out.

URGENT MESSAGES

The msgQSend() routine allows the priority of a message to be specified. It can be either
MSG_PRI_NORMAL (0) or MSG_PRI_URGENT (1). Normal priority messages are added to
the tail of the list of queued messages, while urgent priority messages are added to the head
of the list.

VXWORKS EVENTS If a task has registered with a message queue via msgQEvStart(), events are sent to that task
when a message arrives on that message queue, on the condition that no other task is
pending on the queue.

CAVEATS There is a small difference between how pended senders and pended receivers are handled.
As in previous versions of VxWorks, a pended receiver is made ready as soon as a sender
sends a message.

Unlike previous versions of VxWorks, FIFO message queues allow only one pended sender
can be made ready by a receive; subsequent receive operations do not unpend more
senders. Instead the next sender is unpended by the previously unpended sender. This
enforces the correct order of delivery of messages onto the queue. This may affect the length
of time a sender spends pending for the message queue resource. Priority message queues
are not affected by this restriction.

VxWorks Kernel API Reference, 6.6
msgQOpen

176

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES msgQLib.h

SEE ALSO pipeDrv, msgQSmLib, msgQEvLib, eventLib

msgQOpen

NAME msgQOpen – extended message queue library

ROUTINES msgQOpenInit() – initialize the message queue open facility
msgQOpen() – open a message queue
msgQClose() – close a named message queue
msgQUnlink() – unlink a named message queue

DESCRIPTION The extended message queue library includes the APIs to open, close, and unlink message
queues. Since these APIs did not exist in VxWorks 5.5, to prevent the functions from being
included in the default image, they have been isolated from the general message queue
library.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES msgQLib.h

SEE ALSO objOpen, semOpen, taskOpen, timerOpen, the VxWorks, programmer guides

1 Libraries
msgQSmLib

177

1msgQShow

NAME msgQShow – message queue show routines

ROUTINES msgQShowInit() – initialize the message queue show facility
msgQShow() – show information about a message queue

DESCRIPTION This library provides routines to show message queue statistics, such as the task queuing
method, messages queued, and receivers blocked.

The routine msgQshowInit() links the message queue show facility into the VxWorks
system. It is called automatically when the message queue show facility is configured into
VxWorks using either of the following methods:

- Using the configuration header files, define INCLUDE_SHOW_ROUTINES in config.h.

- Using the project facility, select INCLUDE_MSG_Q_SHOW.

The msgQShow() routine displays information about message queues, such as the task
queuing method, messages queued, and receivers blocked.

INCLUDE FILES msgQLib.h

SEE ALSO pipeDrv

msgQSmLib

NAME msgQSmLib – shared memory message queue library (VxMP Option)

ROUTINES msgQSmCreate() – create and initialize a shared memory message queue (VxMP Option)

DESCRIPTION This library provides the interface to shared memory message queues. Shared memory
message queues allow a variable number of messages (varying in length) to be queued in
first-in-first-out order. Any task running on any CPU in the system can send messages to
or receive messages from a shared message queue. Tasks can also send to and receive from
the same shared message queue. Full-duplex communication between two tasks generally
requires two shared message queues, one for each direction.

Shared memory message queues are created with msgQSmCreate(). Once created, they
can be manipulated using the generic routines for local message queues; for more
information on the use of these routines, see the manual entry for msgQLib.

VxWorks Kernel API Reference, 6.6
mvYukonIIVxbEnd

178

MEMORY REQUIREMENTS

The shared memory message queue structure is allocated from a dedicated shared memory
partition. This shared memory partition is initialized by the shared memory objects master
CPU. The size of this partition is defined by the maximum number of shared message
queues, SM_OBJ_MAX_MSG_Q.

The message queue buffers are allocated from the shared memory system partition.

RESTRICTIONS Shared memory message queues differ from local message queues in the following ways:

Interrupt Use:
Shared memory message queues may not be used (sent to or received from) at interrupt
level.

Deletion:
There is no way to delete a shared memory message queue and free its associated
shared memory. Attempts to delete a shared message queue return ERROR and set
errno to S_smObjLib_NO_OBJECT_DESTROY.

Queuing Style:
The shared message queue task queueing order specified when a message queue is
created must be FIFO.

CONFIGURATION Before routines in this library can be called, the shared memory objects facility must be
initialized by calling usrSmObjInit(). This is done automatically during VxWorks
initialization if the component INCLUDE_SM_OBJ is included.

AVAILABILITY This module is distributed as a component of the unbundled shared objects memory
support option, VxMP.

INCLUDE FILES msgQSmLib.h, msgQLib.h, smMemLib.h, smObjLib.h

SEE ALSO msgQLib, smObjLib, msgQShow, usrSmObjInit(), the VxWorks, programmer guides

mvYukonIIVxbEnd

NAME mvYukonIIVxbEnd – Marvell Yukon II VxBus END driver

ROUTINES ynRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the Marvell Yukon II gigabit ethernet controller
devices. The Yukon II combines a 10/100/1000Mbps ethernet MAC with a Marvell 88E11xx
gigabit PHY. Both copper and fiber-optic configurations are possible, though copper is more
common.

1 Libraries
mvYukonIIVxbEnd

179

1
The Yukon family is based partly on technology created by SysKonnect and later acquired
by Marvell. The SysKonnect gigabit adapters consisted of two main components: a XaQti
XMAC II serial gigabit MAC and the SysKonnect GEnesis chip, which provided the PCI
interface and buffer management. The GEnesis was actually designed to accomodate two
MACs, allowing for dual port NIC configurations. (SysKonnect originally marketed their
dual port cards for failover applications only, but the hardware did allow both ports to be
used as independent interfaces.)

The Yukon I family is essentially a SysKonnect GEnesis combined with the Marvell GMAC
into a single chip. The resulting device is programmed in much the same way as the original
SysKonnect GEnesis NICs, except that the MAC setup is a bit different.

With the Yukon II family, the GEnesis portion of the controller has been modified: the DMA
descriptor layouts have changed, and a status DMA descriptor ring has been added into
which the controller multiplexes RX and TX completion events.

The differences in operation between the Yukon I and II devices are significant enough that
it's not really desirable to combine support for both of them into a single driver.
Consequently, this driver supports only the devices in the Yukon II family. This includes the
Yukon II PCI-X, Yukon II PCIe, the Yukon EC PCIe and the Yukon FE devices.

The major differences between parts in the family are:

- The Yukon EC devices have only a single TX DMA queue (the other
devices have two: a synchronous (normal priority) queue and an
asynchronous (high priority) queue).

- The Yukon FE devices are 10/100 only and do not support jumbo frames.

- The Yukon 8022 PCI-X and 8062 PCIe devices are dual link.

The dual-link port devices contain two independent MACs and provide two sets of DMA
descriptor rings and and two sets of interrupt status bits. Like their SysKonnect ancestors,
these devices appear as only a single PCI device. This is different from other multiport PCI
network cards, which are often implemented by combining multiple standalone PCI
devices together through a PCI bridge (e.g. bus0/dev0 is port 0 and bus0/dev1 is port 1), or
by combining them into multiple PCI functions in a single device (e.g. bus0/dev0/func0 is
port 0 and bus0/dev0/func1 is port 1).

This means that to VxBus, there will only be one device instance, however to support two
devices, we need two END objects, as well as two private device contexts. To implement
this, the pDrvCtrl structure attached to the VxBus device instance for a dual link device is
actually an array of two pDrvCtrls. Note that this means that it's not possible to unload a
single network interface on a dual link device: if the VxBus device instance is deleted, that
will cause both interfaces to be removed.

Note that unlike the failover configuration supported by SysKonnect, where both ports are
combined into a single virtual interface (with one port taking over for the other in the event

VxWorks Kernel API Reference, 6.6
mvYukonVxbEnd

180

of a link failure), this driver allows both ports to operate as two completely independent
interfaces.

The Yukon II devices support TCP/IP checksum offload and VLAN tag insertion and
stripping. Currently, VLAN tag insertion and stripping is supported for RX and TX,
however checksum offload is used only UDP and TCP transmit checksum acceleration.

The Yukon II gigE devices also support jumbo frames. This driver has jumbo frame support,
which is disabled by default in order to conserve memory (jumbo frames require the use of
a buffer pool with larger clusters). Jumbo frames can be enabled on a per-interface basis
using a parameter override entry in the hwconf.c file in the BSP. For example, to enable
jumbo frame support for interface yn0, the following entry should be added to the
VXB_INST_PARAM_OVERRIDE table:

{ "yn", 0, "jumboEnable", VXB_PARAM_INT32, {(void *)1} }

Note that currently this driver has only been tested with the Marvell 88E8050 PCIe
controller chip on the Intel 915GEV desktop board, and the 88E8022 on the SysKonnect SK
9S82 1000baseSX dual link adapter, however it should work with most devices in the Yukon
II family.

BOARD LAYOUT The Yukon II is available on standalone PCI-X and PCIe NICs as well as integrated onto
various system boards. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
ynRegister() function, which registers the driver with VxBus.

INCLUDE FILES mvYukonIIVxbEnd.h mvGmac.h end.h endLib.h netBufLib.h muxLib.h

SEE ALSO vxBus, ifLib, endLib

mvYukonVxbEnd

NAME mvYukonVxbEnd – Marvell Yukon I VxBus END driver

ROUTINES ykRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the Marvell Yukon I gigabit ethernet controller
devices. The Yukon I combines a 10/100/1000Mbps ethernet MAC with a Marvell 88E11xx
gigabit PHY. Both copper and fiber-optic configurations are possible, though copper is more
common.

1 Libraries
ne2000VxbEnd

181

1
The Yukon family is based partly on technology created by SysKonnect and later acquired
by Marvell. The SysKonnect gigabit adapters consisted of two main components: a XaQti
XMAC II serial gigabit MAC and the SysKonnect GEnesis chip, which provided the PCI
interface and buffer management. The GEnesis was actually designed to accomodate two
MACs, allowing for dual port NIC configurations. (SysKonnect originally marketed their
dual port cards for failover applications only, but the hardware did allow both ports to be
used as independent interfaces.)

The Yukon I family is essentially a SysKonnect GEnesis combined with the Marvell GMAC
and 88E11xx PHY into a single chip. The resulting device is programmed in much the same
way as the original SysKonnect GEnesis NICs, except that the MAC setup and PHY access
is a bit different. Also, where the XMAC was accessed via indirect registers, the GMAC
registers are mapped directly within the top level register space.

While the GEnesis allowed for dual MAC configurations, only a very few dual port Yukon
I devices were ever produced. Consequently, this driver is designed on only support a
single port.

The Yukon gigE devices also support jumbo frames. This driver has jumbo frame support,
which is disabled by default in order to conserve memory (jumbo frames require the use of
an buffer pool with larger clusters). Jumbo frames can be enabled on a per-interface basis
using a parameter override entry in the hwconf.c file in the BSP. For example, to enable
jumbo frame support for interface yk0, the following entry should be added to the
VXB_INST_PARAM_OVERRIDE table:

{ "yk", 0, "jumboEnable", VXB_PARAM_INT32, {(void *)1} }

BOARD LAYOUT The Yukon is available on standalone PCI and PCIe NICs as well as integrated onto various
system boards. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
ykRegister() function, which registers the driver with VxBus.

INCLUDE FILES mvYukonVxbEnd.h mvGmac.h end.h endLib.h netBufLib.h muxLib.h

SEE ALSO vxBus, ifLib, endLib

ne2000VxbEnd

NAME ne2000VxbEnd – NE2000 Compatible VxBus END driver

ROUTINES eneRegister() – register with the VxBus subsystem

VxWorks Kernel API Reference, 6.6
ne2000VxbEnd

182

DESCRIPTION This module provides driver support for NE2000 compatible 10Mbps ethernet adapters.
The National Semiconductor DP83905 is used as a reference. The DP83905 is fully compliant
with the IEEE 802.3u 10Base-T specification.

There are a large number of NE2000-compatible adapters in ISA, PCMCIA and PCI format,
from various manufacturers, including RealTek, Winbond, ASIX electronics and Kingston
Electronics. This driver uses the lowest common denominator in terms of programming API
in order to support as many of them as possible. Only the basic NE2000 register set is used,
along with the simple programmed I/O packet transfer scheme. No support for
IFMEDIA/miiBus is included since most adapter are 10Mbps half duplex only and don't
use an MII-compliant transceiver.

BOARD LAYOUT Board layout may vary depending on the manufacturer. Older ISA bus cards may have
jumpers or switches for selecting the desired I/O base address and interrupt line. Newer
ISA bus cards can have their I/O address and interrupt line selected via software. Typically
this is done with an DOS-based command line utility. For these devices, the base address
and interrupt line must be specified manually via the hwconf file in the BSP. PCI devices are
jumperless and can be autoprobed, so no manual configuration is needed.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
eneRegister() function, which registers the driver with VxBus.

For PCI devices, no special hwconf configuration should be needed, as the device will be
autoprobed. ISA/local bus devices, an hwconf entry is required in order to specify the I/O
base address and interrupt vector for which the device has been strapped. The hwconf
resources can also be used to specify the memory size and register width of the device. An
typical hwconf entry would look as follows:

const struct hcfResource ne2000Resources[] =
{

{ "regBase", HCF_RES_INT, {(void *)IO_ADRS_ENE} },
{ "intr", HCF_RES_INT, {(void *)(INUM_TO_IVEC(INT_NUM_ENE))} },
{ "intrLevel", HCF_RES_INT, {(void *)INT_LVL_ENE} },
{ "byteAccess", HCF_RES_INT, {(void *)0} }
{ "regWidth", HCF_RES_INT, {(void *)1} }

};
#define ne2000Num NELEMENTS(ne2000Resources)

HWCONF PARAMETERS

byteAccess
This controls whether the NIC RAM should be accessed using 8-bit or 16-bit operations.
16-bit accessed are used when the device has 16K of on-board RAM. This is the case on
most newer devices, and consequently, byteAccess defaults to 0. Set it to 1 to force 8-bit
operation.

1 Libraries
nfsCommon

183

1
regWidth

This specifies the width of each register. Normally, each register is 8 bits wide and
spaced 1 byte apart, but they may be spaced 2 bytes apart depending on how the
registers are mapped. The default is 1 byte. This parameter may only rarely need to be
changed.

INCLUDE FILES none

SEE ALSO vxBus, ifLib, endLib, muxLib, "Writing an Enhanced Network Driver", \tb"National
Semiconductor DP83905 datasheet, http://www.national.com/ds.cgi/DP/DP83905.pdf"

nfsCommon

NAME nfsCommon – Network File System (NFS) I/O driver

ROUTINES nfsMount() – mount an NFS file system
nfsMountAll() – mount all file systems exported by a specified host
nfsDevShow() – display the mounted NFS devices
nfsUnmount() – unmount an NFS device
nfsDevInfoGet() – read configuration information from the requested device
nfsDevListGet() – create list of all the NFS devices in the system
nfsDrvNumGet() – Get driver number of NFS device
nfsMntDump() – display all NFS file systems mounted on a particular host
nfsExportShow() – display the exported file systems of a remote host
nfsHelp() – display the NFS help menu
nfsAuthUnixPrompt() – modify the NFS UNIX authentication parameters
nfsAuthUnixShow() – display the NFS UNIX authentication parameters
nfsAuthUnixSet() – set the NFS UNIX authentication parameters
nfsAuthUnixGet() – get the NFS UNIX authentication parameters
nfsIdSet() – set the ID number of the NFS UNIX authentication parameters
nfsChkFilePerms() – check the NFS file permissions with a given permission.
nfsErrnoSet() – set NFS status

DESCRIPTION This driver provides facilities for accessing files transparently over the network via NFS
(Network File System). By creating a network device with nfsMount(), files on a remote
NFS system (such as a UNIX system) can be handled as if they were local.

USER-CALLABLE ROUTINES

The nfs2Drv() routine initializes the NFS version 2 driver. The nfs3Drv() routine
initializes the NFS version 3 driver. The nfsMount() and nfsUnmount() routines mount
and unmount file systems. The nfsMountAll() routine mounts all file systems exported by
a specified host.

VxWorks Kernel API Reference, 6.6
nfsHash

184

INITIALIZATION Before using the NFS v2 driver, it must be initialized by calling nfs2Drv(). Before using the
NFS v3 driver, it must be initialized by calling nfs3Drv(). These routines must be called
before any reads, writes, or other NFS calls. This is done automatically by adding the
component INCLUDE_NFS2_CLIENT, INCLUDE_NFS3_CLIENT or
INCLUDE_NFS_CLIENT_ALL (as appropriate) to your project.

CREATING NFS DEVICES

In order to access a remote file system, an NFS device must be created by calling
nfsMount(). For example, to create the device /myd0/ for the file system /d0/ on the host
wrs, call:

 nfsMount ("wrs", "/d0/", "/myd0/");

The file /d0/dog on the host wrs can now be accessed as /myd0/dog.

Before mounting a file system, the host must already have been created with hostAdd().
The routine nfsDevShow() displays the mounted NFS devices.

INCLUDE FILES nfsDriver.h, ioLib.h, dirent.h

SEE ALSO dirLib, hostAdd(), ioctl()

nfsHash

NAME nfsHash – file based hash table for file handle to file name and reverse

ROUTINES nfsdHashTableParamsSet() – sets up the parameters for the NFS hash table

DESCRIPTION This library implements the hash table maintained by the NFS server.

INCLUDE FILES none

nfsd

NAME nfsd – NFS Server Init routines

ROUTINES nfsdInit() – initialize the NFS server

DESCRIPTION This file implements the initialization routines for the NFS daemon.

The nfs server is initialized by calling nfsdInit().

1 Libraries
nfsdCommon

185

1
Including any of the NFS SERVER components (INCLUDE_NFS_SERVER_ALL,
INCLUDE_NFS3_SERVER, INCLUDE_NFS2_SERVER) enables the call to nfsdInit() during
the boot process. So there is normally no need to call the routine manually.

The nfsdInit() spawns several tasks. (see details below). The nfsd() daemon registers the
NFS services with the portmapper daemon. The registration is done depending on the
components included by the user during vxWorks build.

If user includes INCLUDE_NFS_SERVER_ALL, nfsd will register NFS V2 and V3 services.

If user includes INCLUDE_NFS2_SERVER nfsd will register only NFS V2 service.

If user includes INCLUDE_NFS3_SERVER nfsd will register only NFS V3 service.

With the registration of NFS V3, MOUNT v1, v3 and NLM v4 are also registered.

With the registration of NFS V3 MOUNT v1 is also registered.

AUTHENTICATION AND PERMISSIONS

Currently, no authentication is done on NFS requests. nfsdInit() describes the
authentication hooks that can be added should authentication be necessary.

Note that the DOS file system does not provide information about ownership or
permissions on individual files.

TASKS Several NFS tasks are created by nfsdInit(). They are:

tMountd
The mount daemon, which handles all incoming mount requests. This daemon is
created by mountdInit(), which is called from nfsdInit().

tNfsd
The NFS daemon, which queues all incoming NFS requests.

tNfsdX
The NFS request handlers, which dequeues and processes all incoming NFS requests.

INCLUDE FILES none

nfsdCommon

NAME nfsdCommon – Common functions for v2 and v3

ROUTINES nfsStatusGet() – Get the statistics of the NFS server
nfsdStatusShow() – show the status of the NFS server

VxWorks Kernel API Reference, 6.6
ns8381xVxbEnd

186

DESCRIPTION This file implements the common routines that will be used by the NFS version 2 and NFS
version 3 procedures.

USER-CALLABLE ROUTINES

The nfsStatusGet() routine gets the statistis of NFS procedure calls. The
nfsdStatusShow() routine displays the statistics of NFS procedure calls.

INCLUDE FILES none

ns8381xVxbEnd

NAME ns8381xVxbEnd – National Semiconductor DP83815/6 VxBus END driver

ROUTINES nseRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the Nationam Semiconductor DP83815 MACPhyter
and DP83816 MACPhyter II 10/100 PCI ethernet controllers. The DP83815 and DP83816 are
fully compliant with the IEEE 802.3 10Base-T and 100Base-T specifications. The controller
has an embedded 10/100 PHY, with MII management interface.

The MACPhyter chips use a simple list-based DMA descriptor scheme. Each decriptor is
three longwords in size and contains a 32-bit buffer pointer field, a command/status field,
and a next pointer field. The same descriptor format is used for both RX and TX. The device
is programmed through a single 256-byte register window using either I/O space or
memory mapped accesses. The chip has a single perfect filter entry for the station address
and a 512-bit multicast hash table.

Note that the last two bits of RX buffer addresses are not decoded, which means that RX
frame buffers must be aligned on a longword boundary. Because the ethernet frame header
is only 14 bytes in size, this causes the payload to be misaligned, which can lead to
unaligned accesses within the VxWorks TCP/IP stack (which uses 32-bit loads and stores to
access the address fields in the IP header). On the x86, PPC and Coldfire architectures, these
misaligned accesses can be safely ignored, but on all other architectures, the driver is forced
to copy received buffers to fix up the alignment before passing them to the stack.

The DP83815/6 can be found on standalone NICs such as the Netgear FA311 and FA312. It's
also used on some Soekris x86-based single-board computers.

BOARD LAYOUT The MACPhyter is available on standalone PCI cards as well as as integrated onto various
system boards. All configurations are jumperless.

1 Libraries
ns83902VxbEnd

187

1
EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
nseRegister() function, which registers the driver with VxBus.

INCLUDE FILES none

SEE ALSO vxBus, ifLib, "National Semiconductor DP83815 Datasheet,
http://www.national.com/ds.cgi/DP/DP83815.pdf", "National Semiconductor DP83816
Datasheet, http://www.national.com/ds.cgi/DP/DP83816.pdf"

ns83902VxbEnd

NAME ns83902VxbEnd – NatSemi DP83902A ST-NIC VxBus END driver

ROUTINES nicRegister() – register with the VxBus subsystem

DESCRIPTION This module provides driver support for the National Semiconductor DP83902A ST-NIC
10Mbps serial network ethernet controller chip. The DP83902A is fully compliant with the
IEEE 802.3u 10Base-T specification.

The DP83902A is based on the same design as the 8390, and operates in much the same
fashion. The chip has 64K of internal buffer space which can be used for both RX and TX
packet handling. The driver is responsible for deciding how much is reserved for each
function. The buffer space is accessed via a single bi-directional I/O port, which can be
accessed with either 16 bit or 8 bit operations, selectable by the driver.

There is some confusion concerning the number of available pages of memory within the
chip. The manual states that each page is 256 bytes, and that the amount of memory
available is "64 Kbyte (or 32 Kword)." This means that we should be able to program the
BNRY register with a value of 0xFF (255 pages). However, all other known drivers use a
value of 0x7F (127 pages). It's not clear why this is the case. Testing shows that using all 256
pages does in fact work with this device, so we use that here. This allows us to buffer a
significant amount of RX frames, which helps avoid overruns.

The DP83902A operates in 10Mbps half duplex mode only and does not have an MII-based
PHY. Consequently, this driver does not support IFMEDIA and does not provide any
miiBus methods. This means it's not possible to sense link state changes.

Accessing registers on the DP83902A is a slow process: a delay must be inserted between
consecutive accesses, otherwise invalid data may be written or read. The manual
recommends 4 bus clocks, however the appropriate delay time may vary from one
processor to the next. Also, on the SH7750 Solution Engine board, the registers are mapped
at 16 bit intervals even though they are only 8 bits wide.

VxWorks Kernel API Reference, 6.6
objLib

188

BOARD LAYOUT

EXTERNAL INTERFACE

INCLUDE FILES none

SEE ALSO vxBus, ifLib, \tb"National Semiconductor DP83902A ST-NIC datasheet,
http://www.national.com/ds.cgi/DP/DP83902A.pdf"

objLib

NAME objLib – generic object management library

ROUTINES objShow() – show information on an object
objOwnerGet() – return the object's owner
objOwnerSet() – change the object's owner
objClassTypeGet() – get an object's class type
objNameGet() – get an object's name
objNameLenGet() – get an object's name length
objContextGet() – return the object's context value
objContextSet() – set the object's context value
objNameToId() – find object with matching name string and type

DESCRIPTION This library contains class object management routines. Classes of objects control object
methods such as creation, initialization, deletion, and termination.

Many objects in VxWorks are managed with class organization. These include tasks,
semaphores, watchdogs, memory partitions, message queues, timers, and real time
processes.

To provide object management support for a system, VxWorks must be configured with the
INCLUDE_OBJ_LIB component.

If a system is configured without INCLUDE_RTP it is possible to also exclude object
ownership by removing the component INCLUDE_OBJ_OWNERSHIP. This enhances the
performance of object creation and deletion.

INCLUDE FILE objLib.h

1 Libraries
partLib

189

1objShow

NAME objShow – wind objects show library

ROUTINES objShowAll() – show all information on an object
objHandleShow() – show information on the object referenced by an object handle
objHandleTblShow() – show information on an RTP's handle table

DESCRIPTION This library provides the routine objShowAll() to show the contents of Wind objects. The
generic object information is displayed directly by objShowAll(), while the class specific
information is displayed by the show routine registered for the class. The routine
objShow() is invoked to display the class specific information.

CONFIGURATION The routines in this library are included if the INCLUDE_OBJECT_SHOW component is
configured into VxWorks.

INCLUDE FILES objLib.h

partLib

NAME partLib – routines to create disk partitions on a rawFS

ROUTINES partLibCreate() – partition a device
xbdCreatePartition() – partition an XBD device

DESCRIPTION This library contains routines for handling partitions.

EXAMPLE The following code will initialize a disk which is expected to have up to 4 partitions. The
parameter passed in is the base name of the device to be partitioned. E.g. "/ata00". Partitions
are automatically named using the base name followd by a ":" and then the partition
number. Using the fsMonitor component, these automatic names can be mapped to
something more meaningful:

STATUS usrCreatePartitions(char *devName)
 {
 devname_t baseName;
 char autoPartName[16];
 char * newPartName[4] = {"/p1", "/p2", "/p3", "/p4"};
 STATUS result;
 int i, fd;

 /* Name mapping */

VxWorks Kernel API Reference, 6.6
passFsLib

190

 /* Get the base name of the device */
 fd = open (devName, 0, 0666);
 if (fd < 0)
 {
 return (ERROR);
 }

 ioctl (fd, XBD_GETBASENAME, (int)baseName);

 close (fd);

 for (i = 0; i < 4; i++)
 {
 sprintf (autoPartName, "%s:%d", baseName, i+1);
 printf ("Installing mapping from %s to %s\n", autoPartName,
newPartName[i]);
 fsmNameInstall (autoPartName, newPartName[i]);
 }

 /* create 4 partitions on the device all with equal sizes */

 result = xbdCreatePartition (devName, 4, 25, 25, 25);

 if (result != OK)
 {
 return (ERROR);
 }

 /* create file systems atop each partition */

 dosFsVolFormat (newPartName[0], 0, NULL);
 dosFsVolFormat (newPartName[1], 0, NULL);
 dosFsVolFormat (newPartName[2], 0, NULL);
 dosFsVolFormat (newPartName[3], 0, NULL);

 return (OK);
 }

INCLUDE FILES fsMonitor.h, fsEventUtilLib.h, drv/xbd/xbd.h, drv/erf/erfLib.h

SEE ALSO dosFsLib, fsMonitor

passFsLib

NAME passFsLib – pass-through file system library (VxSim)

ROUTINES passFsDevInit() – associate a device with passFs file system functions
passFsInit() – prepare to use the passFs library

1 Libraries
passFsLib

191

1
DESCRIPTION This library implements a file-oriented device driver for VxSim to provide an easy access to

the host file system. This device driver is named pass-through file system (passFs). In
general, the routines are not to be called directly by users, but rather by the VxWorks I/O
System. All the host hard drives can be accessed by only one passFs device.

USING THIS LIBRARY

The various routines provided by passFs may be separated into two groups: device
initialization and file system operation.

The passFsInit() and passFsDevInit() APIs are the principal initialization functions. They
should be called once during system initialization. The initialization is done automatically
when INCLUDE_PASSFS component is defined. The PASSFS_CACHE parameter of
INCLUDE_PASSFS component allow to enable or disable passFs cache, by default it is
enabled.

I/O is performed on this device driver exactly as it would be on any device referencing a
VxWorks file system. File operations, such as read() and write(), are then executed on the
host file system.

INITIALIZING PASSFSLIB

Before using any other routines in passFsLib, the routine passFsInit() must be called to
initialize this library. First argument specifies the number of passFs devices that may be
open at once, second argument is a boolean that specifies if cache must be enabled or not.
The passFsDevInit() routine associates a device name with the passFsLib functions. The
parameter expected by passFsDevInit() is a pointer to a string which specifes the device
name. This device name will be part of the pathname for I/O operations which operates on
the device. It will appear in the I/O system device table, which may be displayed using the
iosDevShow() routine.

As an example:

 passFsInit (1, 1);
 passFsDevInit ("host:");

After the passFsDevInit() call, when passFsLib receives a request from the I/O system, it
calls the host Operating system I/O system to service the request. Only one device can be
created.

The default passFs device name is "host:" for Windows VxSim and "host name:" on UNIX
VxSim. It can been changed by using the VxSim command line option:

 vxsim -hn <host name> | -hostname <host name>

Then, host name parameter will be used as passFs device name.

PATH SEPARATOR VxSim passFs is using Unix like path separator, even on Windows VxSim.

PATH NAME On Windows VxSim, the VxWorks syntax to access a host file system is :

 <passFs device name>:<disk>:/dir1/dir2/file. or
 /<disk>/dir1/dir2/file.

VxWorks Kernel API Reference, 6.6
pentiumALib

192

For example, to open the host file "c:\myDir\mySubDir\myFile" :

 open ("host:c:/myDir/mySubDir/myFile", O_RDWR, 0); or
 open ("/c/myDir/mySubDir/myFile", O_RDWR, 0);

On UNIX VxSim, the VxWorks syntax to access a host file system is :

 <passFs device name>:/dir1/dir2/file.

For example, if VxSim is running on "mySolarisStation" host, to open the host file
"/myHome/mySubDir/myFile" :

 open ("mySolarisStation:/myHome/mySubDir/myFile", O_RDWR, 0);

READING DIRECTORY ENTRIES

All directory functions, such as mkdir(), rmdir(), opendir(), readdir(), losedir(), and
rewinddir() are supported by passFs.

FILE INFORMATION

To obtain more detailed information about a specific file, use the fstat() or stat() function.
Along with standard file information, the structure used by these routines also returns the
file attribute byte from a passFs directory entry.

FILE SYSTEM INFORMATION

To obtain more detailed information about a specific file system, use the fstatfs() or statfs()
functions.

FILE DATE AND TIME

Host OS file date and time are passed though to VxWorks.

FLAGS Standard I/O flags (O_RDWR, O_RDONLY, ..) convention is handled by passFs. VxWorkd
I/O flags are converted to passFs flags and then to host OS specific flags.

RESTRICTION rename() and fstatfs() APIs are not supported on Windows VxSim because the Windows
diskFormat() API is not supported.

limitations.

INCLUDE FILES passFsLib.h

SEE ALSO ioLib, iosLib, dirLib, ramDrv

pentiumALib

NAME pentiumALib – P5, P6 and P7 family processor specific routines

1 Libraries
pentiumALib

193

1
ROUTINES pentiumCr4Get() – get contents of CR4 register

pentiumCr4Set() – sets specified value to the CR4 register
pentiumP6PmcStart() – start both PMC0 and PMC1
pentiumP6PmcStop() – stop both PMC0 and PMC1
pentiumP6PmcStop1() – stop PMC1
pentiumP6PmcGet() – get the contents of PMC0 and PMC1
pentiumP6PmcGet0() – get the contents of PMC0
pentiumP6PmcGet1() – get the contents of PMC1
pentiumP6PmcReset() – reset both PMC0 and PMC1
pentiumP6PmcReset0() – reset PMC0
pentiumP6PmcReset1() – reset PMC1
pentiumP5PmcStart0() – start PMC0
pentiumP5PmcStart1() – start PMC1
pentiumP5PmcStop() – stop both P5 PMC0 and PMC1
pentiumP5PmcStop0() – stop P5 PMC0
pentiumP5PmcStop1() – stop P5 PMC1
pentiumP5PmcGet() – get the contents of P5 PMC0 and PMC1
pentiumP5PmcGet0() – get the contents of P5 PMC0
pentiumP5PmcGet1() – get the contents of P5 PMC1
pentiumP5PmcReset() – reset both PMC0 and PMC1
pentiumP5PmcReset0() – reset PMC0
pentiumP5PmcReset1() – reset PMC1
pentiumTscGet64() – get 64Bit TSC (Timestamp Counter)
pentiumTscGet32() – get the lower half of the 64Bit TSC (Timestamp Counter)
pentiumTscReset() – reset the TSC (Timestamp Counter)
pentiumMsrGet() – get the contents of the specified MSR (Model Specific Register)
pentiumMsrSet() – set a value to the specified MSR (Model Specific Registers)
pentiumTlbFlush() – flush TLBs (Translation Lookaside Buffers)
pentiumSerialize() – execute a serializing instruction CPUID
pentiumBts() – execute atomic compare-and-exchange instruction to set a bit
pentiumBtc() – execute atomic compare-and-exchange instruction to clear a bit

DESCRIPTION This module contains Pentium and PentiumPro specific routines written in assembly
language.

MCA (Machine Check Architecture)

The Pentium processor introduced a new exception called the machine-check exception
(interrupt-18). This exception is used to signal hardware-related errors, such as a parity
error on a read cycle. The PentiumPro processor extends the types of errors that can be
detected and that generate a machine- check exception. It also provides a new
machine-check architecture that records information about a machine-check error and
provides the basis for an extended error logging capability.

MCA is enabled and its status registers are cleared zero in sysHwInit(). Its registers are
accessed by pentiumMsrSet() and pentiumMsrGet().

VxWorks Kernel API Reference, 6.6
pentiumALib

194

PMC (Performance Monitoring Counters)

The P5 and P6 family of processor has two performance-monitoring counters for use in
monitoring internal hardware operations. These counters are duration or event counters
that can be programmed to count any of approximately 100 different types of events, such
as the number of instructions decoded, number of interrupts received, or number of cache
loads. However, the set of events can be counted with PMC is different in the P5 and P6
family of processors; and the locations and bit difinitions of the related counter and control
registers are also different. So there are two set of PMC routines, one for P6 family and one
for p5 family respectively.

There are nine routines to interface the PMC of P6 family processors. These nine routines
are:

 STATUS pentiumP6PmcStart
 (
 int pmcEvtSel0; /* performance event select register 0 */
 int pmcEvtSel1; /* performance event select register 1 */
)
 void pentiumP6PmcStop (void)
 void pentiumP6PmcStop1 (void)
 void pentiumP6PmcGet
 (
 long long int * pPmc0; /* performance monitoring counter 0 */
 long long int * pPmc1; /* performance monitoring counter 1 */
)
 void pentiumP6PmcGet0
 (
 long long int * pPmc0; /* performance monitoring counter 0 */
)
 void pentiumP6PmcGet1
 (
 long long int * pPmc1; /* performance monitoring counter 1 */
)
 void pentiumP6PmcReset (void)
 void pentiumP6PmcReset0 (void)
 void pentiumP6PmcReset1 (void)

pentiumP6PmcStart() starts both PMC0 and PMC1. pentiumP6PmcStop() stops them,
and pentiumP6PmcStop1() stops only PMC1. pentiumP6PmcGet() gets contents of
PMC0 and PMC1. pentiumP6PmcGet0() gets contents of PMC0, and
pentiumP6PmcGet1() gets contents of PMC1. pentiumP6PmcReset() resets both PMC0
and PMC1. pentiumP6PmcReset0() resets PMC0, and pentiumP6PmcReset1() resets
PMC1. PMC is enabled in sysHwInit(). Selected events in the default configuration are
PMC0 = number of hardware interrupts received and PMC1 = number of misaligned data
memory references.

There are ten routines to interface the PMC of P5 family processors. These ten routines are:

 STATUS pentiumP5PmcStart0
 (
 int pmc0Cesr; /* PMC0 control and event select */
)
 STATUS pentiumP5PmcStart1

1 Libraries
pentiumALib

195

1
 (
 int pmc1Cesr; /* PMC1 control and event select */
)
 void pentiumP5PmcStop0 (void)
 void pentiumP5PmcStop1 (void)
 void pentiumP5PmcGet
 (
 long long int * pPmc0; /* performance monitoring counter 0 */
 long long int * pPmc1; /* performance monitoring counter 1 */
)
 void pentiumP5PmcGet0
 (
 long long int * pPmc0; /* performance monitoring counter 0 */
)
 void pentiumP5PmcGet1
 (
 long long int * pPmc1; /* performance monitoring counter 1 */
)
 void pentiumP5PmcReset (void)
 void pentiumP5PmcReset0 (void)
 void pentiumP5PmcReset1 (void)

pentiumP5PmcStart0() starts PMC0, and pentiumP5PmcStart1() starts PMC1.
pentiumP5PmcStop0() stops PMC0, and pentiumP5PmcStop1() stops PMC1.
pentiumP5PmcGet() gets contents of PMC0 and PMC1. pentiumP5PmcGet0() gets
contents of PMC0, and pentiumP5PmcGet1() gets contents of PMC1.
pentiumP5PmcReset() resets both PMC0 and PMC1. pentiumP5PmcReset0() resets
PMC0, and pentiumP5PmcReset1() resets PMC1. PMC is enabled in sysHwInit().
Selected events in the default configuration are PMC0 = number of hardware interrupts
received and PMC1 = number of misaligned data memory references.

MSR (Model Specific Register)

The concept of model-specific registers (MSRs) to control hardware functions in the
processor or to monitor processor activity was introduced in the PentiumPro processor.
The new registers control the debug extensions, the performance counters, the
machine-check exception capability, the machine check architecture, and the MTRRs. The
MSRs can be read and written to using the RDMSR and WRMSR instructions, respectively.

There are two routines to interface the MSR. These two routines are:

 void pentiumMsrGet
 (
 int address, /* MSR address */
 long long int * pData /* MSR data */
)

 void pentiumMsrSet
 (
 int address, /* MSR address */
 long long int * pData /* MSR data */
)

VxWorks Kernel API Reference, 6.6
pentiumALib

196

pentiumMsrGet() get contents of the specified MSR, and pentiumMsrSet() sets value to
the specified MSR.

TSC (Time Stamp Counter)

The PentiumPro processor provides a 64-bit time-stamp counter that is incremented every
processor clock cycle. The counter is incremented even when the processor is halted by the
HLT instruction or the external STPCLK# pin. The time-stamp counter is set to 0 following
a hardware reset of the processor. The RDTSC instruction reads the time stamp counter and
is guaranteed to return a monotonically increasing unique value whenever executed,
except for 64-bit counter wraparound. Intel guarantees, architecturally, that the time-stamp
counter frequency and configuration will be such that it will not wraparound within 10
years after being reset to 0. The period for counter wrap is several thousands of years in the
PentiumPro and Pentium processors.

There are three routines to interface the TSC. These three routines are:

 void pentiumTscReset (void)

 void pentiumTscGet32 (void)

 void pentiumTscGet64
 (
 long long int * pTsc /* TSC */
)

pentiumTscReset() resets the TSC. pentiumTscGet32() gets the lower half of the 64Bit
TSC, and pentiumTscGet64() gets the entire 64Bit TSC.

Four other routines are provided in this library. They are:

 void pentiumTlbFlush (void)

 void pentiumSerialize (void)

 STATUS pentiumBts
 (
 char * pFlag /* flag address */
)

 STATUS pentiumBtc (pFlag)
 (
 char * pFlag /* flag address */
)

pentiumTlbFlush() flushes TLBs (Translation Lookaside Buffers). pentiumSerialize()
does serialization by executing CPUID instruction. pentiumBts() executes an atomic
compare-and-exchange instruction to set a bit. pentiumBtc() executes an atomic
compare-and-exchange instruction to clear a bit.

INCLUDE FILES none

SEE ALSO Pentium, PentiumPro Family Developer's Manual

1 Libraries
pentiumLib

197

1pentiumLib

NAME pentiumLib – Pentium and Pentium[234] library

ROUTINES pentiumMtrrEnable() – enable MTRR (Memory Type Range Register)
pentiumMtrrDisable() – disable MTRR (Memory Type Range Register)
pentiumMtrrGet() – get MTRRs to a specified MTRR table
pentiumMtrrSet() – set MTRRs from specified MTRR table with WRMSR instruction.
pentiumPmcStart() – start both PMC0 and PMC1
pentiumPmcStart0() – start PMC0
pentiumPmcStart1() – start PMC1
pentiumPmcStop() – stop both PMC0 and PMC1
pentiumPmcStop0() – stop PMC0
pentiumPmcStop1() – stop PMC1
pentiumPmcGet() – get the contents of PMC0 and PMC1
pentiumPmcGet0() – get the contents of PMC0
pentiumPmcGet1() – get the contents of PMC1
pentiumPmcReset() – reset both PMC0 and PMC1
pentiumPmcReset0() – reset PMC0
pentiumPmcReset1() – reset PMC1
pentiumMsrInit() – initialize all the MSRs (Model Specific Register)
pentiumMcaEnable() – enable/disable the MCA (Machine Check Architecture)

DESCRIPTION This library provides Pentium and Pentium[234] specific routines.

MTRR (Memory Type Range Register)

MTRR (Memory Type Range Register) are a new feature introduced in the P6 family
processor that allow the processor to optimize memory operations for different types of
memory, such as RAM, ROM, frame buffer memory, and memory-mapped IO. MTRRs
configure an internal map of how physical address ranges are mapped to various types of
memory. The processor uses this internal map to determine the cacheability of various
physical memory locations and the optimal method of accessing memory locations. For
example, if a memory location is specified in an MTRR as write-through memory, the
processor handles accesses to this location as follows. It reads data from that location in
lines and caches the read data or maps all writes to that location to the bus and updates the
cache to maintain cache coherency. In mapping the physical address space with MTRRs, the
processor recognizes five types of memory: uncacheable (UC), write-combining (WC),
write-through (WT), write-protected (WP), and write-back (WB).

There is one table - sysMtrr[] in sysLib.c - and four routines to interface the MTRR. These
four routines are:

 void pentiumMtrrEnable (void)

 void pentiumMtrrDisable (void)

VxWorks Kernel API Reference, 6.6
pentiumLib

198

 STATUS pentiumMtrrGet
 (
 MTRR * pMtrr /* MTRR table */
)

 STATUS pentiumMtrrSet (void)
 (
 MTRR * pMtrr /* MTRR table */
)

pentiumMtrrEnable() enables MTRR, pentiumMtrrDisable() disables MTRR.
pentiumMtrrGet() gets MTRRs to the specified MTRR table. pentiumMtrrGet() sets
MTRRs from the specified MTRR table. The MTRR table is defined as follows:

typedef struct mtrr_fix /* MTRR - fixed range register */
 {
 char type[8]; /* address range: [0]=0-7 ... [7]=56-63 */
 } MTRR_FIX;

typedef struct mtrr_var /* MTRR - variable range register */
 {
 long long int base; /* base register */
 long long int mask; /* mask register */
 } MTRR_VAR;

typedef struct mtrr /* MTRR */
 {
 int cap[2]; /* MTRR cap register */
 int deftype[2]; /* MTRR defType register */
 MTRR_FIX fix[11]; /* MTRR fixed range registers */
 MTRR_VAR var[8]; /* MTRR variable range registers */
 } MTRR;

Fixed Range Register's type array can be one of following memory types. MTRR_UC
(uncacheable), MTRR_WC (write-combining), MTRR_WT (write-through), MTRR_WP
(write-protected), and MTRR_WB (write-back). MTRR is enabled in sysHwInit().

PMC (Performance Monitoring Counters)

The P5 and P6 family of processors has two performance-monitoring counters for use in
monitoring internal hardware operations. These counters are duration or event counters
that can be programmed to count any of approximately 100 different types of events, such
as the number of instructions decoded, number of interrupts received, or number of cache
loads. However, the set of events can be counted with PMC is different in the P5 and P6
family of processors; and the locations and bit difinitions of the related counter and control
registers are also different. So there are two set of PMC routines, one for P6 family and one
for P5 family respectively in pentiumALib. For convenience, the PMC routines here are
acting as wrappers to those routines in pentiumALib. They will call the P5 or P6 routine
depending on the processor type.

There are twelve routines to interface the PMC. These twelve routines are:

 STATUS pentiumPmcStart
 (

1 Libraries
pentiumLib

199

1
 int pmcEvtSel0; /* performance event select register 0 */
 int pmcEvtSel1; /* performance event select register 1 */
)
 STATUS pentiumPmcStart0
 (
 int pmcEvtSel0; /* performance event select register 0 */
)
 STATUS pentiumPmcStart1
 (
 int pmcEvtSel1; /* performance event select register 1 */
)
 void pentiumPmcStop (void)
 void pentiumPmcStop0 (void)
 void pentiumPmcStop1 (void)
 void pentiumPmcGet
 (
 long long int * pPmc0; /* performance monitoring counter 0 */
 long long int * pPmc1; /* performance monitoring counter 1 */
)
 void pentiumPmcGet0
 (
 long long int * pPmc0; /* performance monitoring counter 0 */
)
 void pentiumPmcGet1
 (
 long long int * pPmc1; /* performance monitoring counter 1 */
)
 void pentiumPmcReset (void)
 void pentiumPmcReset0 (void)
 void pentiumPmcReset1 (void)

pentiumPmcStart() starts both PMC0 and PMC1. pentiumPmcStart0() starts PMC0, and
pentiumPmcStart1() starts PMC1. pentiumPmcStop() stops both PMC0 and PMC1.
pentiumPmcStop0() stops PMC0, and pentiumPmcStop1() stops PMC1.
pentiumPmcGet() gets contents of PMC0 and PMC1. pentiumPmcGet0() gets contents of
PMC0, and pentiumPmcGet1() gets contents of PMC1. pentiumPmcReset() resets both
PMC0 and PMC1. pentiumPmcReset0() resets PMC0, and pentiumPmcReset1() resets
PMC1. PMC is enabled in sysHwInit(). Selected events in the default configuration are
PMC0 = number of hardware interrupts received and PMC1 = number of misaligned data
memory references.

MSR (Model Specific Registers)

The P5(Pentium), P6(PentiumPro, II, III), and P7(Pentium4) family processors contain a
model-specific registers (MSRs). These registers are implement- ation specific. They are
provided to control a variety of hardware and software related features including the
performance monitoring, the debug extensions, the machine check architecture, etc.

There is one routine - pentiumMsrInit() - to initialize all the MSRs. This routine initializes
all the MSRs in the processor and works on either P5, P6 or P7 family processors.

VxWorks Kernel API Reference, 6.6
pentiumShow

200

MCA (Machine Check Architecture)

The P5(Pentium), P6(PentiumPro, II, III), and P7(Pentium4) family processors have a
machine-check architecture that provides a mechanism for detecting and reporting
hardware (machine) errors, such as system bus errors, ECC errors, parity errors, cache
errors and TLB errors. It consists of a set of model-specific registers (MSRs) that are used to
set up machine checking and additional banks of MSRs for recording errors that are
detected. The processor signals the detection of a machine-check error by generating a
machine-check exception, which an abort class exception. The implement- ation of the
machine-check architecture, does not ordinarily permit the processor to be restarted
reliably after generating a machine-check exception. However, the machine-check
exception handler can collect information about the machine-check error from the
machine-check MSRs.

There is one routine - pentiumMcaEnable() - to enable or disable the MCA. The routine
enables or disables 1) the Machine Check Architecture and its Error Reporting register
banks 2) the Machine Check Exception by toggling the MCE bit in the CR4. This routine
works on either P5, P6 or P7 family.

INCLUDE FILES none

SEE ALSO PentiumALib, Pentium, Pentium[234] Family Developer's Manual

pentiumShow

NAME pentiumShow – Pentium and Pentium[234] specific show routines

ROUTINES pentiumMcaShow() – show MCA (Machine Check Architecture) registers
pentiumPmcShow() – show PMCs (Performance Monitoring Counters)
pentiumMsrShow() – show all the MSR (Model Specific Register)

DESCRIPTION This library provides Pentium and Pentium[234] specific show routines.

pentiumMcaShow() shows Machine Check Global Control Registers and Error Reporting
Register Banks. pentiumPmcShow() shows PMC0 and PMC1, and reset them if the
parameter zap is TRUE.

INCLUDE FILES none

SEE ALSO VxWorks Programmer's Guide: Configuration

1 Libraries
phil

201

1phil

NAME phil – VxWorks/SMP Dijkstra's dining philosophers demo

ROUTINES philDemo() – entry point for VxWorks/SMP Dijkstra's dining philosophers demo

DESCRIPTION This program demonstrates Dijkstra's dining philosophers problem (see "Cooperating
Sequential Processes," Technical Report EWD-123, Technological University, Eindhoven,
The Netherlands, (1965)). It is considered a classic process synchronization problem. This
demo uses sempahores for synchronization.

Dining Philosophers Problem Description

Five philosophers spend their lives thinking and eating. They share a common table. Each
philosopher has their own chair. At the center of the table is a bowl of rice. The table is laid
with five chopsticks (see figure below). When a philosopher thinks, s/he does not eat, and
vice versa. When a philosopher is hungry, s/he tries to pick up the two chopsticks that are
closest. S/he may only pick up one stick at a time. When s/he has both chopsticks, s/he
eats without releasing his chopsticks. When s/he is finished eating, s/he puts down both
chopsticks and starts thinking.

 PHIL1 | PHIL2
 \ /

 PHIL5 (rice) PHIL3

 / PHIL4 \

The original version of phil.c was written by James R. Pickering. It has been ported by Wind
River Systems to VxWorks. The version ported to VxWorks uses binary sempahores, and
thus serves as programming example for VxWorks binary sempahores.

This demo also illustrates the portability of applications from the uniprocessor version of
VxWorks to the SMP version of VxWorks. This demo was created from the existing
(uniprocessor) VxWorks 6.x RTP sample application shipped in the directory
$WIND_BASE/target/usr/apps/samples/philosophers. The only modification performed
to create the SMP version of phil.c occured in the entry point code; RTPs require a "main (int
argc, char * argc[])" entry point, whereas kernel applications do not.

ANSI escape sequences are used to print bold/underline text and to perform cursor
movements. Thus the console terminal program, e.g. HyperTerminal for PCs, must support
ANSI escape sequences, and should be sized with 25 rows (or more), and 80 columns (or
more).

To run the demo, execute the entry point function philDemo() from the target shell.
Specifying a non-0 value for arg disables the usage of ANSI escape sequences in the console
output. The demo runs indefinitely.

VxWorks Kernel API Reference, 6.6
phil

202

The following console output is an example of executing the demo specifying that ANSI
escape sequences are to be used. The following output was obtained from a Freescale
hpcNet8641 (8641D dual-core processor) board:

->philDemo 0 (or no parameter)

 Phil - 1 is eating... on CPU 1
 Phil - 2 is hungry on CPU 1

 Phil - 5 is thinking... on CPU 1
 Phil - 3 is thinking... on CPU 0

 Phil - 4 is eating... on CPU 0

The following console output is an example of executing the demo specifying that ANSI
escape sequences are not to be used. Again, the following output was obtained from a
Freescale hpcNet8641 (8641D dual-core processor) board:

-> philDemo 1
Phil - 1 is thinking... on CPU 0
Phil - 1 is hungry on CPU 0
Phil - 1 is hungry (right) on CPU 0
Phil - 1 is eating... on CPU 0
Phil - 2 is thinking... on CPU 0
Phil - 2 is hungry on CPU 0
Phil - 3 is thinking... on CPU 0
Phil - 3 is hungry on CPU 0
Phil - 3 is hungry (right) on CPU 0
Phil - 3 is eating... on CPU 0
Phil - 4 is thinking... on CPU 0
Phil - 4 is hungry on CPU 0
Phil - 5 is thinking... on CPU 0
Phil - 5 is hungry on CPU 0
Phil - 1 is thinking... on CPU 1
Phil - 2 is hungry (left) on CPU 0
Phil - 5 is hungry (right) on CPU 0
Phil - 5 is eating... on CPU 1
Phil - 4 is hungry (left) on CPU 0
Phil - 2 is eating... on CPU 1
Phil - 3 is thinking... on CPU 0
Phil - 1 is hungry on CPU 1
Phil - 2 is thinking... on CPU 0
Phil - 1 is hungry (right) on CPU 1
Phil - 4 is eating... on CPU 0
Phil - 1 is eating... on CPU 1

1 Libraries
pipeDrv

203

1
Phil - 5 is thinking... on CPU 0
Phil - 3 is hungry on CPU 0
Phil - 1 is thinking... on CPU 1
Phil - 1 is hungry on CPU 1
Phil - 1 is hungry (right) on CPU 1
Phil - 1 is eating... on CPU 1
Phil - 5 is hungry on CPU 0
Phil - 1 is thinking... on CPU 1
Phil - 5 is hungry (right) on CPU 0
Phil - 1 is hungry on CPU 1
Phil - 1 is hungry (right) on CPU 1
Phil - 3 is hungry (right) on CPU 1
Phil - 4 is thinking... on CPU 0
Phil - 3 is eating... on CPU 1
Phil - 5 is eating... on CPU 0
Phil - 2 is hungry on CPU 1
Phil - 1 is eating... on CPU 1
Phil - 5 is thinking... on CPU 0
Phil - 3 is thinking... on CPU 1

INCLUDE FILES none

pipeDrv

NAME pipeDrv – pipe I/O driver

ROUTINES pipeDrv() – initialize the pipe driver
pipeDevCreate() – create a pipe device
pipeDevDelete() – delete a pipe device

DESCRIPTION The pipe driver provides a mechanism that lets tasks communicate with each other through
the standard I/O interface. Pipes can be read and written with normal read() and write()
calls. The pipe driver is initialized with pipeDrv(). Pipe devices are created with
pipeDevCreate().

The pipe driver uses the VxWorks message queue facility to do the actual buffering and
delivering of messages. The pipe driver simply provides access to the message queue
facility through the I/O system. The main differences between using pipes and using
message queues directly are:

- pipes are named (with I/O device names).

- pipes use the standard I/O functions -- open(), close(), read(), write() -- while
message queues use the functions msgQSend() and msgQReceive().

- pipes respond to standard ioctl() functions.

- pipes can be used in a select() call.

VxWorks Kernel API Reference, 6.6
pipeDrv

204

- message queues have more flexible options for timeouts and message priorities.

- pipes are less efficient than message queues because of the additional overhead of the
I/O system.

CONFIGURATION To use the pipe driver library, configure VxWorks with the INCLUDE_PIPES component.

INSTALLING THE DRIVER

Before using the driver, it must be initialized and installed by calling pipeDrv(). This
routine must be called before any pipes are created. It is called automatically when
VxWorks is configured with the INCLUDE_PIPES component.

CREATING PIPES Before a pipe can be used, it must be created with pipeDevCreate(). For example, to create
a device pipe "/pipe/demo" with up to 10 messages of size 100 bytes, the proper call is:

 pipeDevCreate ("/pipe/demo", 10, 100);

USING PIPES Once a pipe has been created it can be opened, closed, read, and written just like any other
I/O device. Often the data that is read and written to a pipe is a structure of some type.
Thus, the following example writes to a pipe and reads back the same data:

 {
 int fd;
 struct msg outMsg;
 struct msg inMsg;
 int len;

 fd = open ("/pipe/demo", O_RDWR);

 write (fd, &outMsg, sizeof (struct msg));
 len = read (fd, &inMsg, sizeof (struct msg));

 close (fd);
 }

The data written to a pipe is kept as a single message and will be read all at once in a single
read. If read() is called with a buffer that is smaller than the message being read, the
remainder of the message will be discarded. Thus, pipe I/O is "message oriented" rather
than "stream oriented." In this respect, VxWorks pipes differ significantly from UNIX pipes
which are stream oriented and do not preserve message boundaries.

Open pipe file descriptors do not honor the flags or mode values. Any open pipe can always
be read or written regardless of the flag value used to open the file (O_RDONLY or
O_WRONLY).

WRITING TO PIPES FROM INTERRUPT SERVICE ROUTINES

Interrupt service routines (ISR) can write to pipes, providing one of several ways in which
ISRs can communicate with tasks. For example, an interrupt service routine may handle the
time-critical interrupt response and then send a message on a pipe to a task that will
continue with the less critical aspects. However, the use of pipes to communicate from an

1 Libraries
pmLib

205

1
ISR to a task is now discouraged in favor of the direct message queue facility, which offers
lower overhead (see the reference entry for msgQLib for more information).

SELECT CALLS An important feature of pipes is their ability to be used in a select() call. The select()
routine allows a task to wait for input from any of a selected set of I/O devices. A task can
use select() to wait for input from any combination of pipes, sockets, or serial devices. See
the reference entry for select().

IOCTL FUNCTIONS

Pipe devices respond to the following ioctl() functions. These functions are defined in the
header file ioLib.h.

FIOGETNAME
Gets the file name of fd and copies it to the buffer referenced by nameBuf:

 status = ioctl (fd, FIOGETNAME, &nameBuf);

FIONREAD
Copies to nBytesUnread the number of bytes remaining in the first message in the pipe:

 status = ioctl (fd, FIONREAD, &nBytesUnread);

FIONMSGS
Copies to nMessages the number of discrete messages remaining in the pipe:

 status = ioctl (fd, FIONMSGS, &nMessages);

FIOFLUSH
Discards all messages in the pipe and releases the memory block that contained them:

 status = ioctl (fd, FIOFLUSH, 0);

INCLUDE FILES ioLib.h, pipeDrv.h

SEE ALSO select(), msgQLib, the VxWorks programmer guides.

pmLib

NAME pmLib – persistent memory library

ROUTINES pmFreeSpace() – returns the amount of free space left in the PM arena
pmRegionOpen() – opens an existing persistent heap region
pmRegionCreate() – creates a persistent heap region
pmRegionClose() – closes a region making it inaccessible to clients
pmRegionProtect() – makes a PM region read-only
pmRegionAddr() – returns the address of a persistent heap region
pmRegionSize() – return the size of a persistent heap region

VxWorks Kernel API Reference, 6.6
pmLib

206

pmValidate() – validates a PM arena
pmInvalidate() – invalidates the entire PM arena
pmShow() – shows the created persistent heap segments

DESCRIPTION This library provides an interface to a region of memory which is intended to survive across
reboots. This region is known as the persistent memory arena. This arena can be used to
allocate individual regions within it that are owned by different parts of the OS (e.g.
WindView post-mortem logs, ED&R error-logs, etc).

The arena header is verified for consistency using a magic number and a checksum, and is
protected against over-writes by the MMU. It is also possible to write-protect each region,
again by using the generic MMU/vmBaseLib API.

On creation, an arena can be configured to be writeable (i.e. with mode PM_PROT_RDWR),
although by default an arena would be write-protected (i.e. with mode
PM_PROT_RDONLY).

A system can have any number of arenas, although typically only one is configured. All the
public pmLib functions take a PM_ARENA_DEF as their first argument, and this typedef is
actually a function pointer, to a function which returns the start address of the arena itself,
and also returns (by reference) the arena size. The reason for this is that functions are
guaranteed to be immutable, and so pmLib contains no global variables at all. This is a
necessity for maintaining protection of the arena under all circumstances, since global
variables always face the possibility of being inadvertantly over-written.

A default arena is defined by the function pmDefaultArena which can be over-ridden in
usrPmInit.c if necessary, for example, to place the default PM arean in non-volatile memory
for a specific BSP.

Users of pmLib can also provide their own arena definition functions, as long as they
conform to the prototype PM_ARENA_DEF in pmLib.h.

CONFIGURATION To use the persistent memory library, configure VxWorks with the INCLUDE_EDR_PM
component.

TYPICAL USAGE MODE

The typical way of using pmLib is that the clients who wish to allocate persistent regions do
so at boot time. Typically, they would try to open an existing region (by name), and if that
fails they would create a new region.

Once a region has been created there is no way to destroy it, since pmLib does not provide
a heap, as such. Rather, the only way to start over is to call pmInvalidate(), which renders
the entire PM arena (all of USER_RESERVED_MEM in a typical configuration) invalid. Thus,
on the next reboot, the arena will be re-initialized and all clients will be able to re-create their
regions afresh.

INCLUDE FILES none

1 Libraries
poolLib

207

1poolLib

NAME poolLib – Memory Pool Library

ROUTINES poolCreate() – create a pool
poolDelete() – delete a pool
poolBlockAdd() – add an item block to the pool
poolUnusedBlocksFree() – free blocks that have all items unused
poolItemGet() – get next free item from pool and return a pointer to it
poolItemReturn() – return an item to the pool
poolIncrementSet() – set the increment value used to grow the pool
poolIncrementGet() – get the increment value used to grow the pool
poolTotalCount() – return total number of items in pool
poolFreeCount() – return number of free items in pool

DESCRIPTION This module contains the Memory Pool library. Pools provide a fast and efficient memory
management when an aplication uses a large number of identically sized memory items
(e.g. structures, objects) by minimizing the number of allocations from a memory partition.
The use of pools also reduces possible fragmentation caused by frequent memory allocation
and freeing.

A pool is a dynamic set of statically sized memory items. All items in a pool are of the same
size, and all are guaranteed a power of two alignment. The size and alignemnt of items are
specified at pool creation time. An item can be of arbitrary size, but the actual memory used
up by each item is at least 8 bytes, and it is a multiple of the item alignment. The minimum
alignment of items is the architecture specific allocation alignment.

Pools are created and expanded using a specified number of items for initial size and
another number of items for incremental pool additions. The initial set of items and the
incremental pool items are added as one block of memory. Each memory block can be
allocated from either the system memory partition (when the partition ID passed to
poolCreate() is NULL), a user-provided memory partition. A block can be also added to the
pool using any memory specified by the user using poolBlockAdd(). For example, if all
items in a pool have to be in some specific memory zone, the pool can be created with initial
and incremental item count as zero in order to prevent automatic creation of blocks from
memory partitions, and explicitly adding blocks with poolBlockAdd() as needed. The
memory provided to the pool must be writable. Allocation and free from memory pools are
performed using the poolItemGet() and poolItemReturn() routines.

If the pool item increment is specified as zero, the pool will be static, unable to grow
dynamically. A static pool is more deterministic.

Pools are intended for use in systems requiring frequent allocating and freeing of memory
in statically sized blocks such as used in messaging systems, data- bases, and the like. This
pool system is dynamic and grows upon request, eventually allowing a system to achieve a
stable state with no further memory requests needed.

VxWorks Kernel API Reference, 6.6
poolShow

208

The poolItemGet() and poolItemReturn() functions may be called from interrupt context
as long as the pool was created without the POOL_THREAD_SAFE. Other routines provided
by this library should not be called from an ISR.

Pool system statistics are available for specific pools as well as the overall pool system.
These show routines are available only if INCLUDE_SHOW_ROUTINES is defined.

INCLUDE FILE poolLib.h

SEE ALSO memPartLib, poolShow

poolShow

NAME poolShow – Wind Memory Pool Show Library

ROUTINES poolShow() – display pool information

DESCRIPTION This library provides routines which display information about memory pools in the
system, and detailed statistics about individual memeory pools.

To include this library, select the INCLUDE_POOL_SHOW component.

INCLUDE FILES none

SEE ALSO poolLib

primesDemo

NAME primesDemo – VxWorks SMP prime number computation demo

ROUTINES primesCompute() – entry point for the VxWorks SMP prime number computation demo

DESCRIPTION This module implements a VxWorks SMP prime number computation demo. This demo is
an example of a number crunching application, as opposed to an I/O intensive and/or
kernel system call intensive application. In addition, the various computational tasks (and
thus CPUs) cooperate to achieve a common goal.

The prime numbers are computed using the "Sieve of Eratosthenes" algorithm. The
following is a description of the algorithm from Wikipedia:

1 Libraries
primesDemo

209

1
"In mathematics, the Sieve of Eratosthenes is a simple, ancient algorithm for finding all
prime numbers up to a specified integer. It is the predecessor to the modern Sieve of Atkin,
which is faster but more complex. It was created by Eratosthenes, an ancient Greek
mathematician. Wheel factorization is often applied on the list of integers to be checked for
primality, before Sieve of Eratosthenes is used, to increase the speed.

Algorithm

1) Write a list of numbers from 2 to the largest number you want to test for primality. Call
this List A.

2) Write the number 2, the first prime number, in another list for primes found. Call this List
B.

3) Strike off 2 and all multiples of 2 from List A.

4) The first remaining number in the list is a prime number. Write this number into List B.

5) Strike off this number and all multiples of this number from List A. The crossing-off of
multiples can be started at the square of the number, as lower multiples have already been
crossed out in previous steps.

6) Repeat steps 4 through 6 until no more numbers are left in List A."

To run the demo, execute the entry point function primesCompute() from the target shell.
This function will create numTasks computational tasks to compute prime numbers from 2
to maxPrimeNum.

In a VxWorks SMP system, the computational tasks will be assigned to separate CPUs. Of
course, if numTasks exceeds the number of CPUs in the system, the additional tasks will not
contribute to reducing the elapsed computation time. In fact, the additional tasks may
contribute to increasing the elapsed computation time when round-robin scheduling is
enabled.

The following example output was obtained from a Freescale HPC-NET (8641D dual-core
processor) board:

-> primesCompute
Usage: primesCompute <unsigned maxPrimeNum>, <unsigned int numTasks>
value = -1 = 0xffffffff

-> primesCompute 10000000, 1
Computing primes... done.

Number of primes numbers found: 664579 Computation time = 131 ticks

The following prime numbers were computed:

 2 3 5 7 11 13 17 19 23
29
 31 37 41 43 47 53 59 61 67
71
 73 79 83 89 97 101 103 107 109
113

VxWorks Kernel API Reference, 6.6
primesDemo

210

 127 131 137 139 149 151 157 163 167
173
 179 181 191 193 197 199 211 223 227
229
 233 239 241 251 257 263 269 271 277
281
 283 293 307 311 313 317 331 337 347
349
 353 359 367 373 379 383 389 397 401
409
 419 421 431 433 439 443 449 457 461
463
 467 479 487 491 499 503 509 521 523
541

Type <CR> to continue, Q<CR> to stop: q

-> primesCompute 10000000, 2
Computing primes... done.

Number of primes numbers found: 664579 Computation time = 113 ticks

The following prime numbers were computed:

 2 3 5 7 11 13 17 19 23
29
 31 37 41 43 47 53 59 61 67
71
 73 79 83 89 97 101 103 107 109
113
 127 131 137 139 149 151 157 163 167
173
 179 181 191 193 197 199 211 223 227
229
 233 239 241 251 257 263 269 271 277
281
 283 293 307 311 313 317 331 337 347
349
 353 359 367 373 379 383 389 397 401
409
 419 421 431 433 439 443 449 457 461
463
 467 479 487 491 499 503 509 521 523
541

Type <CR> to continue, Q<CR> to stop: q
->

Specifying a numTasks of 0 selects "graph" mode. Graph mode will repeatedly compute
prime numbers from 2 to maxPrimeNum using 1 to numTasks computational tasks. The
compute times are plotted on an ASCII graph on standard output (STD_OUT). The x-axis
represents the number of tasks used to compute prime numbers, and the y-axis represents
the elapsed computation time.

1 Libraries
primesDemo

211

1
ANSI escape sequences are used to print bold/underline text and to perform cursor
movements. Thus the console terminal program, e.g. HyperTerminal for PCs, must support
ANSI escape sequences, and should be sized with 35 rows (or more), and 80 columns (or
more).

The following example output was obtained from a Freescale HPC-NET (8641D dual-core
processor) board:

-> primesCompute 10000000

 VxWorks SMP Prime Numbers Computation

Elapsed Time (ticks)

 ^
192 +
 |
 |
 |
160 +
 |
 |
 | *
128 +
 |
 |
 | * * * * * * * * *
96 +
 |
 |
 |
64 +
 |
 |
 |
32 +
 |
 |
 |
0
+------+------+------+------+------+------+------+------+------+------+->
 0 1 2 3 4 5 6 7 8 9 10
 Number of
Tasks
Type any key to return to shell prompt

INCLUDE FILES none

VxWorks Kernel API Reference, 6.6
pthreadLib

212

pthreadLib

NAME pthreadLib – POSIX 1003.1c thread library interfaces

ROUTINES pthread_sigmask() – change and/or examine calling thread's signal mask (POSIX)
pthread_kill() – send a signal to a thread (POSIX)
pthread_mutexattr_init() – initialize mutex attributes object (POSIX)
pthread_mutexattr_destroy() – destroy mutex attributes object (POSIX)
pthread_mutexattr_setprotocol() – set protocol attribute in mutex attribute object (POSIX)
pthread_mutexattr_getprotocol() – get value of protocol in mutex attributes object (POSIX)
pthread_mutexattr_setprioceiling() – set prioceiling attribute in mutex attributes object
(POSIX)
pthread_mutexattr_getprioceiling() – get the current value of the prioceiling attribute in a
mutex attributes object (POSIX)
pthread_mutex_getprioceiling() – get the value of the prioceiling attribute of a mutex
(POSIX)
pthread_mutex_setprioceiling() – dynamically set the prioceiling attribute of a mutex
(POSIX)
pthread_mutex_init() – initialize mutex from attributes object (POSIX)
pthread_mutex_destroy() – destroy a mutex (POSIX)
pthread_mutex_lock() – lock a mutex (POSIX)
pthread_mutex_trylock() – lock mutex if it is available (POSIX)
pthread_mutex_unlock() – unlock a mutex (POSIX)
pthread_condattr_init() – initialize a condition attribute object (POSIX)
pthread_condattr_destroy() – destroy a condition attributes object (POSIX)
pthread_cond_init() – initialize condition variable (POSIX)
pthread_cond_destroy() – destroy a condition variable (POSIX)
pthread_cond_signal() – unblock a thread waiting on a condition (POSIX)
pthread_cond_broadcast() – unblock all threads waiting on a condition (POSIX)
pthread_cond_wait() – wait for a condition variable (POSIX)
pthread_cond_timedwait() – wait for a condition variable with a timeout (POSIX)
pthread_attr_setscope() – set contention scope for thread attributes (POSIX)
pthread_attr_getscope() – get contention scope from thread attributes (POSIX)
pthread_attr_setinheritsched() – set inheritsched attribute in thread attribute object
(POSIX)
pthread_attr_getinheritsched() – get current value if inheritsched attribute in thread
attributes object (POSIX)
pthread_attr_setschedpolicy() – set schedpolicy attribute in thread attributes object
(POSIX)
pthread_attr_getschedpolicy() – get schedpolicy attribute from thread attributes object
(POSIX)
pthread_attr_setschedparam() – set schedparam attribute in thread attributes object
(POSIX)

1 Libraries
pthreadLib

213

1
pthread_attr_getschedparam() – get value of schedparam attribute from thread attributes
object (POSIX)
pthread_getschedparam() – get value of schedparam attribute from a thread (POSIX)
pthread_setschedparam() – dynamically set schedparam attribute for a thread (POSIX)
pthread_attr_init() – initialize thread attributes object (POSIX)
pthread_attr_destroy() – destroy a thread attributes object (POSIX)
pthread_attr_setopt() – set options in thread attribute object
pthread_attr_getopt() – get options from thread attribute object
pthread_attr_setname() – set name in thread attribute object
pthread_attr_getname() – get name of thread attribute object
pthread_attr_setstacksize() – set stacksize attribute in thread attributes object (POSIX)
pthread_attr_getstacksize() – get stack value of stacksize attribute from thread attributes
object (POSIX)
pthread_attr_setstackaddr() – set stackaddr attribute in thread attributes object (POSIX)
pthread_attr_getstackaddr() – get value of stackaddr attribute from thread attributes object
(POSIX)
pthread_attr_setdetachstate() – set detachstate attribute in thread attributes object (POSIX)
pthread_attr_getdetachstate() – get value of detachstate attribute from thread attributes
object (POSIX)
pthread_create() – create a thread (POSIX)
pthread_detach() – dynamically detach a thread (POSIX)
pthread_join() – wait for a thread to terminate (POSIX)
pthread_exit() – terminate a thread (POSIX)
pthread_equal() – compare thread IDs (POSIX)
pthread_self() – get the calling thread's ID (POSIX)
pthread_once() – dynamic package initialization (POSIX)
pthread_key_create() – create a thread specific data key (POSIX)
pthread_setspecific() – set thread specific data (POSIX)
pthread_getspecific() – get thread specific data (POSIX)
pthread_key_delete() – delete a thread specific data key (POSIX)
pthread_cancel() – cancel execution of a thread (POSIX)
pthread_setcancelstate() – set cancellation state for calling thread (POSIX)
pthread_setcanceltype() – set cancellation type for calling thread (POSIX)
pthread_testcancel() – create a cancellation point in the calling thread (POSIX)
pthread_cleanup_push() – pushes a routine onto the cleanup stack (POSIX)
pthread_cleanup_pop() – pop a cleanup routine off the top of the stack (POSIX)

DESCRIPTION This library provides an implementation of POSIX 1003.1c threads for VxWorks. This
provides an increased level of compatibility between VxWorks applications and those
written for other operating systems that support the POSIX threads model (often called
pthreads).

VxWorks implements POSIX threads in the kernel based on tasks. Because the kernel
environment is different from a process environment, in the POSIX sense, there are a few
restrictions in the implementation, but in general, since tasks are roughly equivalent to

VxWorks Kernel API Reference, 6.6
pthreadLib

214

threads, the pthreads support maps well onto VxWorks. The restrictions are explained in
more detail in the following paragraphs.

CONFIGURATION To add POSIX threads support to a system, the component INCLUDE_POSIX_PTHREADS
must be added.

THREADS A thread is essentially a VxWorks task, with some additional characteristics. The first is
detachability, where the creator of a thread can optionally block until the thread exits. The
second is cancelability, where one task or thread can cause a thread to exit, possibly calling
cleanup handlers. The next is private data, where data private to a thread is created,
accessed and deleted via keys. Each thread has a unique ID. A thread's ID is different than
it's VxWorks task ID.

It is recommended to use the POSIX thread API only via POSIX threads, not via native
VxWorks tasks. Since pthreads are not created by default in VxWorks the pthread_create()
API can be safely used by a native VxWorks task in order to create the first POSIX thread. If
a native VxWorks task must use more pthread API it is recommended to give this task a
pthread persona by calling pthread_self() first.

MUTEXES Included with the POSIX threads facility is a mutual exclusion facility, or mutex. These are
functionally similar to the VxWorks mutex semaphores (see semMLib for more detail), and
in fact are implemented using a VxWorks mutex semaphore. The advantage they offer, like
all of the POSIX libraries, is the ability to run software designed for POSIX platforms under
VxWorks.

There are three types of locking protocols available: PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT and PTHREAD_PRIO_PROTECT. PTHREAD_PRIO_INHERIT,
which is the default, maps to a semaphore created with SEM_Q_PRIORITY and
SEM_INVERSION_SAFE set (see semMCreate for more detail). A thread locking a mutex
created with its protocol attribute set to PTHREAD_PRIO_PROTECT has its priority elevated
to that of of the prioceiling attribute of the mutex. When the mutex is unlocked, the priority
of the calling thread is restored to its previous value. Both protocols aim at solving the
priority inversion problem where a lower priority thread can unduly delay a higher priority
thread requiring the resource blocked by the lower priority thread. The
PTHREAD_PRIO_INHERIT protocol can be more efficient since it elevates the priority of a
thread only when needed. The PTHREAD_PRIO_PROTECT protocol gives more control over
the priority change at the cost of systematically elevating the thread's priority as well as
preventing threads to use a mutex which priority ceiling is lower than the thread's priority.
In contrast the PTHREAD_PRIO_NONE protocol does not affect the priority and scheduling
of the thread that owns the mutex.

CONDITION VARIABLES

Condition variables are another synchronization mechanism that is included in the POSIX
threads library. A condition variable allows threads to block until some condition is met.
There are really only two basic operations that a condition variable can be involved in:
waiting and signalling. Condition variables are always associated with a mutex.

1 Libraries
pthreadLib

215

1
A thread can wait for a condition to become true by taking the mutex and then calling
pthread_cond_wait(). That function will release the mutex and wait for the condition to be
signalled by another thread. When the condition is signalled, the function will re-acquire the
mutex and return to the caller.

Condition variable support two types of signalling: single thread wake-up using
pthread_cond_signal(), and multiple thread wake-up using pthread_cond_broadcast().
The latter of these will unblock all threads that were waiting on the specified condition
variable.

It should be noted that condition variable signals are not related to POSIX signals. In fact,
they are implemented using VxWorks semaphores.

RESOURCE COMPETITION

All tasks, and therefore all POSIX threads, compete for CPU time together. For that reason
the contention scope thread attribute is always PTHREAD_SCOPE_SYSTEM.

NO VXWORKS EQUIVALENT

Since there is no notion of a process (in the POSIX sense) in the kernel environment, there is
no notion of sharing of locks (mutexes) and condition variables between processes. As a
result, the POSIX symbol _POSIX_THREAD_PROCESS_SHARED is not defined in this
implementation, and the routines pthread_condattr_getpshared(),
pthread_condattr_setpshared(), pthread_mutexattr_getpshared() are not implemented.

Also, since the VxWorks kernel is not a process environment, fork(), wait(), and
pthread_atfork() are unimplemented.

SCHEDULING The default scheduling policy for a created thread is inherited from the system setting at the
time of creation.

Unlike for the pthread support in RTPs, the POSIX threads in the kernel are not scheduled
by the POSIX scheduler. They are scheduled by the VxWorks native scheduler, like all other
VxWorks tasks: scheduling policies under VxWorks are global; they are not set per-thread,
as the POSIX model describes. As a result, the pthread scheduling routines, as well as the
POSIX scheduling routines native to VxWorks, do not allow you to change the scheduling
policy for kernel pthreads. Under VxWorks you may set the scheduling policy in a thread,
but if it does not match the system's scheduling policy, an error is returned.

The detailed explanation for why this situation occurs is a bit convoluted: technically the
scheduling policy is an attribute of a thread (in that there are
pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions that define
what the thread's scheduling policy will be once it is created, and not what any thread
should do at the time they are called). A situation arises where the scheduling policy in force
at the time of a thread's creation is not the same as set in its attributes. In this case
pthread_create() fails with the error EPERM.

The bottom line is that under VxWorks, if you wish to specify the scheduling policy of a
kernel thread, you must set the desired global scheduling policy to match. Kernel threads

VxWorks Kernel API Reference, 6.6
pthreadLib

216

must then adhere to that scheduling policy, or use the PTHREAD_INHERIT_SCHED mode to
inherit the current mode and creator's priority. Alternatively, you can also use pthreads in
an RTP.

In the kernel, the POSIX scheduling policies are therefore mapped as follows:

SCHED_FIFO
is mapped on VxWorks' preemptive priority scheduling.

SCHED_RR
is mapped on VxWorks' round-robin scheduling.

SCHED_OTHER
is mapped on the active VxWorks scheduling policy (either preemptive priority
scheduling or round-robin scheduling). This is the only meaningful scheduling policy
for kernel pthreads.

CREATION AND CANCELLATION

Each time a thread is created, the pthreads library allocates resources on behalf of it. Each
time a VxWorks task (i.e. one not created by the pthread_create() function) uses a POSIX
threads feature such as thread private data or pushes a cleanup handler, the pthreads library
creates resources on behalf of that task as well.

Asynchronous thread cancellation is accomplished by way of a signal. A special signal,
SIGCNCL, has been set aside in this version of VxWorks for this purpose. Applications
should take care not to block or handle SIGCNCL.

Current cancellation points in system and library calls:

Caveat: due to the implementation of some of the I/O drivers in VxWorks, it is possible that
a thread cancellation request can not actually be honored.

SUMMARY MATRIX

Libraries Cancellation Points
aioPxLib aio_suspend
ioLib creat, open, read, write, close, fsync, fdatasync, fcntl
mqPxLib mq_receive, mq_send
pthreadLib pthread_cond_timedwait, pthread_cond_wait, pthread_join,

pthread_testcancel
semPxLib sem_wait
sigLib pause, sigsuspend, sigtimedwait, sigwait, sigwaitinfo, waitpid
timerLib sleep, nanosleep

pthread function Implemented? Note(s)
pthread_attr_destroy() Yes
pthread_attr_getdetachstate() Yes
pthread_attr_getinheritsched() Yes
pthread_attr_getname() Yes 6
pthread_attr_getopt() Yes 6

1 Libraries
pthreadLib

217

1
pthread_attr_getschedparam() Yes
pthread_attr_getschedpolicy() Yes
pthread_attr_getscope() Yes
pthread_attr_getstackaddr() Yes
pthread_attr_getstacksize() Yes
pthread_attr_init() Yes
pthread_attr_setdetachstate() Yes
pthread_attr_setinheritsched() Yes
pthread_attr_setname() Yes 6
pthread_attr_setopt() Yes 6
pthread_attr_setschedparam() Yes
pthread_attr_setschedpolicy() Yes
pthread_attr_setscope() Yes 2
pthread_attr_setstackaddr() Yes
pthread_attr_setstacksize() Yes
pthread_atfork() No 1
pthread_cancel() Yes 5
pthread_cleanup_pop() Yes
pthread_cleanup_push() Yes
pthread_condattr_destroy() Yes
pthread_condattr_getpshared() No 3
pthread_condattr_init() Yes
pthread_condattr_setpshared() No 3
pthread_cond_broadcast() Yes
pthread_cond_destroy() Yes
pthread_cond_init() Yes
pthread_cond_signal() Yes
pthread_cond_timedwait() Yes
pthread_cond_wait() Yes
pthread_create() Yes
pthread_detach() Yes
pthread_equal() Yes
pthread_exit() Yes
pthread_getschedparam() Yes 4
pthread_getspecific() Yes
pthread_join() Yes
pthread_key_create() Yes
pthread_key_delete() Yes
pthread_kill() Yes
pthread_once() Yes
pthread_self() Yes
pthread_setcancelstate() Yes
pthread_setcanceltype() Yes
pthread_setschedparam() Yes 4

pthread function Implemented? Note(s)

VxWorks Kernel API Reference, 6.6
pthreadLib

218

NOTES 1 The pthread_atfork() function is not implemented since fork() is not implemented in
VxWorks.

2 The contention scope thread scheduling attribute is always
PTHREAD_SCOPE_SYSTEM, since threads (i.e. tasks) contend for resources with all
other threads in the system.

3 The routines pthread_condattr_getpshared(), pthread_attr_setpshared(),
pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() are not
supported, since these interfaces describe how condition variables and mutexes relate
to a process, and the VxWorks kernel is not a process environment.

4 The default scheduling policy is inherited from the current system setting. The POSIX
model of per-thread scheduling policies is not supported, since a basic tenet of the
design of VxWorks is a system-wide scheduling policy.

5 Thread cancellation is supported in appropriate pthread routines and those routines
already supported by VxWorks. However, the complete list of cancellation points
specified by POSIX is not supported because routines such as msync(), tcdrain(), and
wait() are not implemented by VxWorks.

6 VxWorks-specific routines provided as an extension to IEEE Std 1003.1 in order to
handle VxWorks tasks' attributes.

INCLUDE FILES pthread.h

SEE ALSO taskLib, semMLib, semPxLib

pthread_setspecific() Yes
pthread_sigmask() Yes
pthread_testcancel() Yes
pthread_mutexattr_destroy() Yes
pthread_mutexattr_getprioceiling() Yes
pthread_mutexattr_getprotocol() Yes
pthread_mutexattr_getpshared() No 3
pthread_mutexattr_init() Yes
pthread_mutexattr_setprioceiling() Yes
pthread_mutexattr_setprotocol() Yes
pthread_mutexattr_setpshared() No 3
pthread_mutex_destroy() Yes
pthread_mutex_getprioceiling() Yes
pthread_mutex_init() Yes
pthread_mutex_lock() Yes
pthread_mutex_setprioceiling() Yes
pthread_mutex_trylock() Yes
pthread_mutex_unlock() Yes

pthread function Implemented? Note(s)

1 Libraries
ptyDrv

219

1ptyDrv

NAME ptyDrv – pseudo-terminal driver

ROUTINES ptyDrv() – initialize the pseudo-terminal driver
ptyDevCreate() – create a pseudo terminal
ptyDevRemove() – destroy a pseudo terminal

DESCRIPTION The pseudo-terminal driver provides a tty-like interface between a master and slave
process, typically in network applications. The master process simulates the "hardware"
side of the driver (e.g., a USART serial chip), while the slave process is the application
program that normally talks to the driver.

CONFIGURATION To use the pseudo-terminal driver library, configure VxWorks with the INCLUDE_PTYDRV
component.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. However,
the following routines must be called directly: ptyDrv() to initialize the driver,
ptyDevCreate() to create devices, and ptyDevRemove() to remove an existing device.

INITIALIZING THE DRIVER

Before using the driver, it must be initialized by calling ptyDrv(). This routine must be
called before any reads, writes, or calls to ptyDevCreate().

CREATING PSEUDO-TERMINAL DEVICES

Before a pseudo-terminal can be used, it must be created by calling ptyDevCreate():

 STATUS ptyDevCreate
 (
 char *name, /* name of pseudo terminal */
 int rdBufSize, /* size of terminal read buffer */
 int wrtBufSize /* size of write buffer */
)

For instance, to create the device pair "/pty0.M" and "/pty0.S", with read and write buffer
sizes of 512 bytes, the proper call would be:

 ptyDevCreate ("/pty0.", 512, 512);

When ptyDevCreate() is called, two devices are created, a master and slave. One is called
nameM and the other nameS. They can then be opened by the master and slave processes.
Data written to the master device can then be read on the slave device, and vice versa. Calls
to ioctl() may be made to either device, but they should only apply to the slave side, since
the master and slave are the same device.

The ptyDevRemove() routine will delete an existing pseudo-terminal device and reclaim
the associated memory. Any file descriptors associated with the device will be closed.

VxWorks Kernel API Reference, 6.6
quiccEngineUtils

220

IOCTL FUNCTIONS

Pseudo-terminal drivers respond to the same ioctl() functions used by tty devices. These
functions are defined in ioLib.h and documented in the manual entry for tyLib.

INCLUDE FILES ioLib.h, ptyDrv.h

SEE ALSO tyLib, the VxWorks programmer guides.

quiccEngineUtils

NAME quiccEngineUtils – qeuiic engine resource allocation

ROUTINES quiccEngineRegister() – register quiccEngine driver
quiccEngineDrvCtrlShow() – place holder just prints out control structure ptr

DESCRIPTION Utilities to supply access to shared Quicc Engine resources to device drivers.

INCLUDE FILES none

rBuffLib

NAME rBuffLib – dynamic ring buffer (rBuff) library

ROUTINES wvRBuffMgrPrioritySet() – set the priority of the System Viewer rBuff manager

DESCRIPTION This library contains a routine for changing the default priority of the rBuff manager task.

INCLUDE FILES none

SEE ALSO memLib, rngLib, "VxWorks Kernel Programmer's Guide: Basic OS"

ramDiskCbio

NAME ramDiskCbio – RAM Disk Cached Block Driver

1 Libraries
ramDrv

221

1
ROUTINES ramDiskDevCreate() – Initialize a RAM Disk device

DESCRIPTION This module implements a RAM-disk driver with a CBIO interface which can be directly
utilized by dosFsLib without the use of the Disk Cache module dcacheCbio. This results
in an ultra-compact RAM footprint. This module is implemented using the CBIO API (see
cbioLib())

This module is delivered in source as a functional example of a basic CBIO module.

CAVEAT This module may be used for SRAM or other non-volatile RAM cards to store a file system,
but that configuration will be susceptible to data corruption in events of system failure
which are not normally observed with magnetic disks, i.e. using this driver with an SRAM
card can not guard against interruptions in midst of updating a particular sector, resulting
in that sector become internally inconsistent.

INCLUDE FILES none

SEE ALSO dosFsLib, cbioLib

ramDrv

NAME ramDrv – RAM disk driver

ROUTINES ramDrv() – prepare a RAM disk driver for use (optional)
ramDevCreate() – create a RAM disk device

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Two routines,
however, can be called directly by the user. The first, ramDrv(), provides no real function
except to parallel the initialization function found in true disk device drivers. A call to
ramDrv() is not required to use the RAM disk driver. However, the second routine,
ramDevCreate(), must be called directly to create RAM disk devices.

Once the device has been created, it must be associated with a name and file system (dosFs,
hrfs, or rawFs). This is accomplished in a two-stage process. First, create an XBD wrapper
around the pointer to the block device structure returned by ramDevCreate(). Second,
format the drive with the desired file system.

 BLK_DEV * pBlkDev;

 pBlkDev = ramDevCreate (NULL, 512, 32, 416, 0);

 xbdBlkDevCreate (pBlkDev, "/ramDrv");

 dosFsVolFormat ("/ramDrv:0", DOS_OPT_BLANK, NULL);

VxWorks Kernel API Reference, 6.6
rawFsLib

222

See the reference entry for ramDevCreate() for a more detailed discussion.

IOCTL FUNCTIONS

The RAM driver is called in response to ioctl() codes in the same manner as a normal disk
driver. When the file system is unable to handle a specific ioctl() request, it is passed to the
ramDrv driver. Although there is no physical device to be controlled, ramDrv does handle
a FIODISKFORMAT request, which always returns OK. All other ioctl() requests return an
error and set the task's errno to S_ioLib_UNKNOWN_REQUEST.

INCLUDE FILE ramDrv.h

SEE ALSO xbdBlkDevCreate(), dosFsVolFormat(), and hrfsFormat(), the VxWorks programmer
guides.

rawFsLib

NAME rawFsLib – raw block device file system library

ROUTINES rawFsDevInit() – associate a block device with raw volume functions
rawFsInit() – prepare to use the raw volume library

USING THIS LIBRARY

The various routines provided by the VxWorks raw "file system" (rawFs) may be separated
into three broad groups: general initialization, device initialization, and file system
operation.

The rawFsInit() routine is the principal initialization function; it need only be called once,
regardless of how many rawFs devices will be used.

A separate rawFs routine is used for device initialization. For each rawFs device,
rawFsDevInit() must be called to install the device.

INITIALIZATION Before any other routines in rawFsLib can be used, rawFsInit() must be called to initialize
the library. This call specifies the maximum number of raw device file descriptors that can
be open simultaneously and allocates memory for that many raw file descriptors. Any
attempt to open more raw device file descriptors than the specified maximum will result in
errors from open() or creat().

During the rawFsInit() call, the raw device library is installed as a driver in the I/O system
driver table. The driver number associated with it is then placed in a global variable,
rawFsDrvNum.

This initialization is enabled when the configuration macro INCLUDE_RAWFS is defined;
rawFsInit() is then called (normally via components from vxprj).

1 Libraries
rawFsLib

223

1
DEFINING A RAW DEVICE

To use this library for a particular device, and eXtended Block Device (XBD) must be
initialized as the backing media; the second parameter to rawFsDevInit() must be a
device_t referring to this XBD.

The rawFsDevInit() routine is used to associate a device with the rawFsLib functions. The
pVolName parameter expected by rawFsDevInit() is a pointer to a name string, to be used
to identify the device. This will serve as the pathname for I/O operations which operate on
the device. This name will appear in the I/O system device table, which may be displayed
using iosDevShow().

The syntax of the rawFsDevInit() routine is as follows:

rawFsDevInit
 (
 char *pVolName, /* name to be used for volume - iosDevAdd */
 device_t xbd /* handle to the backing XBD */
)

When rawFsLib receives a request from the I/O system, after rawFsDevInit() has been
called, it calls the appropriate device driver routines to access the device.

IOCTL FUNCTIONS

The VxWorks raw block device file system supports the following ioctl() functions. The
functions listed are defined in the header ioLib.h.

FIOGETNAME
Gets the file name of the file descriptor and copies it to the buffer nameBuf:

 status = ioctl (fd, FIOGETNAME, &nameBuf);

FIOSEEK
Sets the current byte offset on the disk to the position specified by newOffset:

 status = ioctl (fd, FIOSEEK, newOffset);

FIOWHERE
Returns the current byte position from the start of the device for the specified file
descriptor. This is the byte offset of the next byte to be read or written. It takes no
additional argument:

 position = ioctl (fd, FIOWHERE, 0);

FIOFLUSH
Writes all modified file descriptor buffers to the physical device.

 status = ioctl (fd, FIOFLUSH, 0);

FIOSYNC
Performs the same function as FIOFLUSH.

FIONREAD
Copies to unreadCount the number of bytes from the current file position to the end of
the device:

VxWorks Kernel API Reference, 6.6
rawPerfDemo

224

 status = ioctl (fd, FIONREAD, &unreadCount);

INCLUDE FILES rawFsLib.h

SEE ALSO ioLib, iosLib, rawFsLib, ramDrv, the VxWorks programmer guides.

rawPerfDemo

NAME rawPerfDemo – VxWorks/SMP raw performance demo

ROUTINES rawPerfDemo() – entry point for the VxWorks/SMP raw performance demo

DESCRIPTION This module implements a VxWorks/SMP raw performance demonstration. The term "raw
performance" is used to indicate that the performance figures generated by this demo are a
result of a number crunching algorithm, as opposed to an I/O intensive and/or kernel
system call intensive application. In addition, each CPU operates on per-CPU data, i.e. the
CPUs in the system do not cooperate to achieve a common goal.

The numerical computation performed by each CPU is a simple formula to compute pi
(ratio of the circumference to the diameter of a circle) using floating-point arithmetic.
Aggregate raw performance is reported in "operations per second"; an operation consisting
of computing pi to a certain number of decimal places. The actual performance figures, i.e.
the operations per second, are not important for the purposes of this demo. Instead, the
relative improvement in performance that occurs as additional CPUs are "enabled" is
important. Generally, the aggregate raw performance of a VxWorks/SMP system will
increase linearly with the number of CPUs enabled.

Aggregate raw performance figures are first obtained with only a single CPU enabled
(actually the other CPUs are enabled but are idle). Performance figures are obtained for a
period of 5 seconds in 1-second increments. After the initial 5-second period completes, an
additional CPU is added to the performance run. Performance figures are again obtained
for another 5 seconds as described above. This process is continued until all CPUs in the
system have been added to the performance run.

The aggregate raw performance results are displayed as an ASCII character graph on
standard output (STD_OUT). The elapsed time is plotted on the x-axis and "operations per
second" is plotted on the y-axis. The data is plotted in real-time, i.e. the data points are
plotted as aggregate raw performance figures are obtained.

ANSI escape sequences are used to print bold/underline text and to perform cursor
movements. Thus the console terminal program, e.g. HyperTerminal for PCs, must support
ANSI escape sequences, and should be sized with 35 rows (or more), and 80 columns (or
more).

1 Libraries
rawPerfDemo

225

1
As mentioned above, generally, the "raw performance" of a VxWorks/SMP system will
increase linearly with the number of CPUs enabled. Thus, the displayed graph will
resemble a step function; a step in aggregate raw performance will occur as each CPU is
enabled.

The following example output was obtained from a Freescale HPC-NET (8641D dual-core
processor) board:

-> rawPerfDemo

 Raw VxWorks/SMP Performance

Operations (per sec.)

 ^
1200 +
 |
 |
 | CPUs = 2
1000 +
 | * * * * *
 |
 |
800 +
 |
 |
 |
600 +
 | CPUs = 1
 |
 | * * * * *
400 +
 |
 |
 |
200 +
 |
 |
 |
0
+------+------+------+------+------+------+------+------+------+------+->
 0 1 2 3 4 5 6 7 8 9 10
 Time
(seconds)
Type any key to return to shell prompt

INCLUDE FILES none

VxWorks Kernel API Reference, 6.6
rebootLib

226

rebootLib

NAME rebootLib – reboot support library

ROUTINES reboot() – reset network devices and transfer control to boot ROMs
rebootHookAdd() – add a routine to be called at reboot

DESCRIPTION This library provides reboot support. To restart VxWorks, the routine reboot() can be
called at any time by typing CTRL-X from the shell. Shutdown routines can be added with
rebootHookAdd(). These are typically used to reset or synchronize hardware. For
example, netLib adds a reboot hook to cause all network interfaces to be reset. Once the
reboot hooks have been run, sysToMonitor() is called to transfer control to the boot ROMs.
For more information, see the reference entry for bootInit.

CONFIGURATION The reboot support library is always included in VxWorks.

DEFICIENCIES The order in which hooks are added is the order in which they are run. As a result, netLib
will kill the network, and no user-added hook routines will be able to use the network.
There is no rebootHookDelete() routine.

Reboot hooks must not invoke kernel service routines that may block. Blocking calls within
the reboot hooks may cause the reboot process to reschedule() or hang, potentially leaving
the system in an unpredictable state.

INCLUDE FILES rebootLib.h

SEE ALSO sysLib, bootConfig, bootInit

rngLib

NAME rngLib – ring buffer subroutine library

ROUTINES rngCreate() – create an empty ring buffer
rngDelete() – delete a ring buffer
rngFlush() – make a ring buffer empty
rngBufGet() – get characters from a ring buffer
rngBufPut() – put bytes into a ring buffer
rngIsEmpty() – test if a ring buffer is empty
rngIsFull() – test if a ring buffer is full (no more room)
rngFreeBytes() – determine the number of free bytes in a ring buffer
rngNBytes() – determine the number of bytes in a ring buffer

1 Libraries
rtl8139VxbEnd

227

1
rngPutAhead() – put a byte ahead in a ring buffer without moving ring pointers
rngMoveAhead() – advance a ring pointer by n bytes

DESCRIPTION This library provides routines for creating and using ring buffers, which are first-in-first-out
circular buffers. The routines simply manipulate the ring buffer data structure; no kernel
functions are invoked. In particular, ring buffers by themselves provide no task
synchronization or mutual exclusion.

However, the ring buffer pointers are manipulated in such a way that a reader task
(invoking rngBufGet()) and a writer task (invoking rngBufPut()) can access a ring
simultaneously without requiring mutual exclusion. This is because readers only affect a
read pointer and writers only affect a write pointer in a ring buffer data structure. However,
access by multiple readers or writers must be interlocked through a mutual exclusion
mechanism (i.e., a mutual-exclusion semaphore guarding a ring buffer).

This library also supplies two macros, RNG_ELEM_PUT and RNG_ELEM_GET, for putting
and getting single bytes from a ring buffer. They are defined in rngLib.h.

 int RNG_ELEM_GET (ringId, pch, fromP)
 int RNG_ELEM_PUT (ringId, ch, toP)

Both macros require a temporary variable fromP or toP, which should be declared as register
int for maximum efficiency. RNG_ELEM_GET returns 1 if there was a character available in
the buffer; it returns 0 otherwise. RNG_ELEM_PUT returns 1 if there was room in the buffer;
it returns 0 otherwise. These are somewhat faster than rngBufPut() and rngBufGet(),
which can put and get multi-byte buffers.

INCLUDE FILES rngLib.h

rtl8139VxbEnd

NAME rtl8139VxbEnd – RealTek 8139/8100 10/100 VxBus END driver

ROUTINES rtlRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the RealTek 8139 family of PCI 10/100 ethernet
controllers. The 8139 family is fully compliant with the IEEE 802.3 10Base-T and 100Base-T
specifications. The controller has an embedded 10/100 PHY, with a pseudo-MII
management interface.

The host communicates with the RealTek 8139 through a single register region, which can
be accessed using either I/O space or through a shared memory mapping, and a single PCI
interrupt line. the 8139 is a PCI bus master device, however it does not use the traditional
descriptor ring model for DMA.

VxWorks Kernel API Reference, 6.6
rtl8169VxbEnd

228

Packet reception is accomplished through a single RX window region, which is mapped into
the host's address space. This window can be 8K, 16K, 32K or 64K in size, and must be
contiguous. When a packet arrives, a 32-bit RX status word is copied into the start of the RX
window, followed by the packet data. The host must examine the RX status word (which
contains the frame length) and copy the packet data into an mBlk tuple before handing it off
to the stack. The next packet will be copied to the window immediately after the previous
one. When the controller reaches the end of the window, it will wrap back to the beginning.
A producer index register is used to tell the host how much valid packet data is waiting in
the window, and a consumer index register is used by the host to tell the controller how
much of the data in the window has been processed.

For transmission, the 8139 has four TX registers pairs. Each pair consists of a data pointer
register and a status register. Since there's only one data pointer, outbound packets must
reside in a single contiguous buffer. The host copies the address of the packet buffer into the
data pointer register and then writes to the status register to initiate transmission. The TX
register pairs must be used in sequence: they cannot be used in arbitrary order.

The 8139 receiver supports a 64-bit multicast hash filter, a single unicast address filter, and
promiscuous mode.

The 8139 family has a built-in 10/100 PHY, which is accessed via four shortcut registers that
provide an MII-compliant management interface. This driver provides miiBus-compliant
methods to access the PHY, which allows it to work with the genericPhy driver. This allows
the driver to support MII-based IFMEDIA functionality.

BOARD LAYOUT The RealTek 81xx family comprises both PCI and cardbus controllers. The PCI devices are
available in both standalone PCI card format and integrated directly onto the system main
board. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
rtlRegister() function, which registers the driver with VxBus.

INCLUDE FILES rtl8139VxbEnd.h end.h endLib.h netBufLib.h muxLib.h

SEE ALSO vxBus, ifLib, RealTek 8139 Programming Manual, http://www.realtek.com.tw

rtl8169VxbEnd

NAME rtl8169VxbEnd – RealTek 8139C+/8101E/816x/811x VxBus Ethernet driver

ROUTINES rtgRegister() – register with the VxBus subsystem

1 Libraries
rtl8169VxbEnd

229

1
DESCRIPTION This module implements a driver for the RealTek C+ family of PCI 10/100 and 10/100/1000

ethernet controllers. The C+ family is fully compliant with the IEEE 802.3 10Base-T and
100Base-T specifications. The original 8169 chip required an external GMII-compliant PHY,
however the 8139C+ and all subsequent chip revs have a copper transceiver built in.

Unlike the original 8139 family, the C+ series of controllers use a standard descriptor-based
DMA scheme for host/device data transfer. The first RealTek device to use this mechanism
was the 8139C+, which supported both the original 8139 DMA API and the new API. The
8169 and all later devices use the descriptor-based mechanism only.

There are a couple of minor differences between the original 8139C+ and the 8169 and later
devices: the 8139C+ only allows a maximum of 64 descriptors per DMA ring, has a couple
of its registers at different offsets, and uses the original 8139 PHY register access scheme (the
later devices use a single PHY access register). The length fields in the 8139C+'s DMA
descriptors are also slightly smaller, since it does not handle jumbo frames. All other aspects
of the device API are otherwise identical to the 8169 and later devices.

All devices in the C+ family support TCP/IP checksum offload (for IPv4), hardware VLAN
tag stripping and insertion and TCP large send. The gigE devices also support jumbo
frames, but only up to 7.5Kb in size. This driver makes use of the checksum offload and
VLAN tagging/stripping features.

The following is a list of devices supported by this driver:

RealTek 8139C+ 10/100 PCI ReakTek 8169 10/100/1000 PCI (first rev, external PHY) RealTek
8169S/8110S 10/100/1000 PCI (integrated PHY) RealTek 8169SB/8110SB 10/100/1000 PCI
(integrated PHY) RealTek 8169SC/8110SC 10/100/1000 PCI (integrated PHY) RealTek
8168B/8111B 10/100/1000 PCIe (integrated PHY) RealTek 8101E 10/100 PCIe (integrated PHY)

BOARD LAYOUT The RealTek 81xx family comprises PCI, PCIe and cardbus controllers. The PCI devices are
available in both standalone PCI card format and integrated directly onto the system main
board. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
rtgRegister() function, which registers the driver with VxBus.

The RealTek gigE devices also support jumbo frames. Note however that the maximum
MTU possible is 7400 bytes (not 9000, which is normal for most jumbo-capable NICs). This
driver supports jumbo frames on the 8169S/8110S, 8169SB/8110SB, 8169SC/8110SC and
8168B/8111B devices. They are not supported on the 8139C+, 8100E and 8101E devices,
which are 10/100 only, nor on the original 8169 (MAC only, no internal PHY) which doesn't
seem to be jumbo-capable. (The first generation 8169 is no longer in production however, so
this should not be a problem for new designs.)

Jumbo frame support is disabled by default in order to conserve memory (jumbo frames
require the use of an buffer pool with larger clusters). Jumbo frames can be enabled on a
per-interface basis using a parameter override entry in the hwconf.c file in the BSP. For

VxWorks Kernel API Reference, 6.6
rtpHookLib

230

example, to enable jumbo frame support for interface yn0, the following entry should be
added to the VXB_INST_PARAM_OVERRIDE table:

{ "rtg", 0, "jumboEnable", VXB_PARAM_INT32, {(void *)1} }

INCLUDE FILES rtl8139VxbEnd.h end.h endLib.h netBufLib.h muxLib.h

SEE ALSO vxBus, ifLib, RealTek 8139C+ Programming Manual, http://www.realtek.com.tw, RealTek
8169S/8110S Programming Manual, http://www.realtek.com.tw, RealTek 8168S/8111S
Programming Manual, http://www.realtek.com.tw, RealTek 8101E Programming Manual,
http://www.realtek.com.tw

rtpHookLib

NAME rtpHookLib – RTP Hook Support library

ROUTINES rtpPreCreateHookAdd() – add a routine to be called before RTP creation.
rtpPreCreateHookDelete() – delete a previously added RTP pre-create hook.
rtpPostCreateHookAdd() – add a routine to be called just after RTP creation.
rtpPostCreateHookDelete() – delete a previously added RTP post-create hook.
rtpInitCompleteHookAdd() – Add routine to be called after RTP init-complete.
rtpInitCompleteHookDelete() – delete a previously added RTP init-complete hook
rtpDeleteHookAdd() – add a routine to be called when RTPs are deleted
rtpDeleteHookDelete() – delete a previously added RTP delete hook routine

DESCRIPTION This library provides routines for adding extensions to the VxWorks Real-Time Process
(RTP) library. This library allows RTP-related facilities to be added to the system without
modifying the kernel. The kernel provides call-outs whenever RTP's are created and
deleted. These call-outs allow additional routines, or "hooks," to be invoked whenever these
events occur. The hook management routines below allow hooks to be dynamically added
to and deleted from the current lists of create and delete hooks:

rtpPreCreateHookAdd() and rtpPreCreateHookDelete()
Add and delete routines to be called before an RTP is created.

rtpPostCreateHookAdd() and rtpPostCreateHookDelete()
Add and delete routines to be called after an RTP and its initial task are created, but
before that RTP starts executing.

rtpInitCompleteHookAdd() and rtpInitCompleteHookDelete()
Add and delete routines to be called after an RTP is fully created, loaded, initialized,
and about to transition to user mode.

1 Libraries
rtpLib

231

1
rtpDeleteHookAdd() and rtpDeleteHookDelete()

Add and delete routines to be called when an RTP is deleted.

CONFIGURATION To use the RTP hook support library, configure VxWorks with the INCLUDE_RTP_HOOKS
component.

NOTE It is possible to have dependencies among hook routines. For example, a delete hook may
use facilities that are cleaned up and deleted by another delete hook. In such cases, the order
in which the hooks run is important. VxWorks runs RTP create hooks in the order in which
they were added, and runs RTP delete hooks in reverse of the order in which they were
added. Thus, if the hooks are added in "hierarchical" order, such that they rely only on
facilities whose hook routines have already been added, then the required facilities will be
initialized before any other facilities need them, and will be deleted after all facilities are
finished with them.

Typically, creation hooks should be called with addToHead set to FALSE, and delete hooks
should be called to addToHead set to TRUE.

VxWorks facilities guarantee this by having each facility's initialization routine first call any
prerequisite facility's initialization routine before adding its own hooks. Thus, the hooks are
always added in the correct order. Each initialization routine protects itself from multiple
invocations, allowing only the first invocation to have any effect.

INCLUDE FILES private/rtpLibP.h

SEE ALSO rtpLib., the VxWorks programmer guides.

rtpLib

NAME rtpLib – Real Time Process library

ROUTINES rtpSpawn() – spawns a new Real Time Process (RTP) in the system
rtpDelete() – terminates a real time process (RTP)

DESCRIPTION This library provides the interfaces to the Real Time Process (RTP) feature. Real Time
Process is an optional feature of the VxWorks kernel that provides a process-like
environment for applications. In the RTP environment, applications are protected and
isolated from each other.

The Real Time Process feature offers the following types of protection:

- protection of the kernel from errant application code

- run-time isolation of applications from each other

VxWorks Kernel API Reference, 6.6
rtpLib

232

- text and read-only data protection

- automatic resource reclamation

- NULL pointer access detection

An RTP is an active entity that always contains active tasks. An RTP may not exist without
tasks.

ENABLING RTP SUPPORT

To enable RTP support, the component, INCLUDE_RTP, must be added to the kernel at
configuration time. This component includes all the functionalities contained in this library
and all facilities necessary to support RTP.

To enable monitoring of RTPs, the component, INCLUDE_RTP_SHOW, must be configured
in conjunction with INCLUDE_RTP.

CONFIGURATION RTPs can be configured at creation time via rtpSpawn()'s parameters as explained later in
this manual and in rtpSpawn()'s manual. It is also possible to change the default
configuration parameters when the VxWorks image is generated (using Workbench's kernel
configuration utility, or the vxprj command line utility). The new default values apply then
to all RTPs. These configuration parameters, described in the component description file
01rtp.cdf, are:

RTP_KERNEL_STACK_SIZE
Size of the kernel stack for user tasks.

KERNEL_HEAP_SIZE
Size of the heap reserved to the kernel when RTPs are used in the system.

RTP_HOOK_TBL_SIZE
Number of entries in the RTP create/delete hook tables.

SYSCALL_HOOK_TBL_SIZE
Number of entries in the system call hook tables.

RTP_HEAP_INIT_SIZE
Initial size of the RTP's heap. This can be overriden by the environment variable
HEAP_INITIAL_SIZE.

RTP_SIGNAL_QUEUE_SIZE
Maximum number of queued signal for a RTP. Note that POSIX requires that this
number be at least 32.

RTP CREATION Real Time Processes are created using the rtpSpawn() API.

 rtpSpawn (const char *rtpFileName, const char *argv[], const char
*envp[],
 int priority, int uStackSize, int options, int taskOptions);

All RTPs are named and the names are associated with the rtpFileName argument passed to
the rtpSpawn() API.

1 Libraries
rtpLib

233

1
All RTPs are created with an initial task which is also named after the rtpFileName argument
passed to the rtpSpawn() API: "iFilename", where Filename is made of the first 30 letters of
the file name, excluding the extension.

The creation of an RTP will allocate the necessary memory to load the executable file for the
application as well as for the stack of the initial task. Memory for the application is allocated
from the global address space and is unique in the system. The memory of an RTP is not
static; additional memory may be allocated from the system dynamically after the RTP has
been created.

When a RTP is spawned by a kernel task it does not inherit the file descriptors available to
this task, except for its task stdin, stdout and stderr file descriptors (0, 1 and 2). However
when the RTP is created by another RTP, the child RTP does inherit all file descriptors of its
parent.

The environment variables are not inherited from the caller. If the application is expecting
specific environment variables, an environment array must be created and passed to the
rtpSpawn() API. If all of the caller's environment variables must be passed to the RTP, the
envGet() routine can be used for this purpose (see example below).

The initial task starts its life as a task executing kernel code in supervisor mode. Once the
application's code is loaded, the initial task switches to user mode and begins the execution
of the application starting at the _start() routine (ELF executable's entry point). The initial
task initializes the user libraries and invokes all constructors in the application before
executing the application's user code. The first user routine in the application is the main()
function and this function is called after all initializers and constructors are called. All C or
C++ applications must provide a main() routine. Its complete prototype is as follows:

int main
 (
 int argc, // number of arguments
 char * argv[], // NULL terminated array of arguments
 char * envp[], // NULL terminated array of environment strings
 void * auxp // implementation specific auxiliary vector
)

Note that, by convention, only the first two parameters are compulsory:

int main
 (
 int argc, // number of arguments
 char * argv[] // NULL terminated array of arguments
 }

There are attributes that may be set to customize the behavior of the RTP during
rtpSpawn() (including for example, whether symbol information is to be loaded, the initial
task should be stopped at the entry point, or the priority and task options of the initial task.)
The manual entry for rtpSpawn() provides more details on the options and other
configuration parameters available when creating an RTP.

RTP TERMINATION

Real Time Process are terminated in several ways:

VxWorks Kernel API Reference, 6.6
rtpLib

234

- Calling exit() within the RTP. This includes the initial task of the RTP reaching the end
of its execution.

- When the last task of the RTP exits.

- A fatal kill() signal is sent to an RTP.

- An unrecoverable exception occurs

The termination of an RTP will delete the RTP executable and return all memory (virtual
and physical memory) used by it to the system. System objects allocated and owned by the
RTP will also be deleted from the system. (See objLib manual entry for more details on
object resource reclamation.) Memory mapped to the RTP will also be freed back into the
system. Note that public objects still in use by other users in the system will be inherited by
the kernel, and will not be reclaimed at this point.

Any routines registered with the atexit() function will be called in the reverse order that
they are registered. These atexit() routines will be called in a normal termination of an RTP.
Abnormal termination of an RTP, such as invoking the deletion from the kernel or sending
a fatal kill() signal to an RTP, will not cause the atexit() routines to be called.

RTP INITIALIZATION

Real Time Processes (RTPs) may be initialized in various ways: automatically by the system
during boot time using the RTP startup facility, by launching them from the shell(s), or
programmatically using the rtpSpawn() API. The automatic initialization is available in
four forms:

- Using the INCLUDE_RTP_APPL_USER component that enables users to write their own
code to spawn their RTPs and to pass parameters to the RTP.

- Using the startup script (s field) in the boot parameters. Users may overload the startup
script field to specify RTPs and their parameters to be called at system boot time. The
format to use is the following:

startup script (s): #print.vxe^hello

One or more RTPs may be set up in the startup script field. The # character is the
delimiter for each RTP and the ^ is the delimiter for the parameters of the RTP. White
spaces are not allowed on the s-field. A sample usage for two RTPs is:

startup script (s): #helloworld.vxe#cal.vxe^2004

The above line launches helloworld.vxe first, followed by cal.vxe with one argument,
being "2004". Additionally, users can also pass options to rtpSpawn() itself. The
following four options are currently supported:

%p - specifies the priority of the initial task. %s - specifies the execution stack size for
the initial task. %o - specifies the value of the options argument passed to rtpSpawn. %t
- specifies the value of the task options for the RTPs initial task.

The option values may be either in decimal or hexadecimal, in which case they must
be prefaced by a "0x" or "0X". Options other than the above four are ignored, and the

1 Libraries
rtpLib

235

1
RTP is launched with default parameters i.e. with an initial task priority of 220, with a
stack size of 64KB, with RTP options being 0, and the initial task having the option
VX_DEALLOC_STACK being set.

Here is an example usage of the options -

startup script (s): #helloworld.vxe^%p=125^%s=0x4000#cal.vxe^2004^%p=150

- Using the INCLUDE_RTP_APPL_INIT_STRING component that enables users to specify
the list of RTPs in the form of a string. The RTP_APPL_INIT_STRING parameter must be
defined as a quoted string containing the list of RTPs to launch. This component is
almost the same as INCLUDE_RTP_APPL_INIT_BOOTLINE in both format and
behaviour. The difference between the two being that
INCLUDE_RTP_APPL_INIT_STRING can accept both whitespace and ̂ delimiters in its
input string.

- Using the INCLUDE_RTP_APPL_INIT_CMD_SHELL_SCRIPT component. This allows
users to write a shell script using the VxWorks Command Shell syntax, and have it
executed after the system boots. The RTP_APPL_CMD_SCRIPT_FILE parameter points to
a file containing the command shell script to execute. Note that this command shell
script is different from the startup script specified in the boot parameters. The latter is
a C-interpreter script.

RTPs may be spawned and initialized from the shell(s):

- Using the traditional C interpreter: the rtpSp() command will allow the user to execute
a VxWorks executable file and pass arguments to its main() routine.

-> rtpSp "myVxApp.vxe first second third"

- Using the RTP command shell by either directly typing the path and name of the
executable file and then the list of arguments (similar to a UNIX shell) or use the rtp
exec command. help rtp on the command shell will provide more details.

[vxWorks *]# /home/myVxApp.vxe first second third

OR

[vxWorks *]# rtp exec /home/myVxApp.vxe first second third

- Programmatically, from a kernel task or an other RTP, using the rtpSpawn() API:

 const char * args[] = {"/romfs/myApp.vxe", "-arg1", "-arg2 0x1000",
NULL};
 ...
 rtpSpawn (args[0], args, NULL, 100, 0x10000, 0, VX_FP_TASK);

or (when the caller's environment variables must be passed to the application):

 rtpSpawn (args[0], args, envGet(0), 100, 0x10000, 0, VX_FP_TASK);

Note that the envGet() API is available in the kernel space only. In a RTP the environ
variable is to be used instead. Note also that a specific set of environment variables can
be programmatically passed to a RTP via its envp parameter:

VxWorks Kernel API Reference, 6.6
rtpLib

236

 const char * envp[] = {"MY_ENV_VAR1=foo", "MY_ENV_VAR2=bar", NULL};
 ...
 rtpSpawn (args[0], args, envp, 100, 0x10000, 0, VX_FP_TASK);

TASKS Every task in the system will have an owner, whether it is the kernel or an RTP. This
owner is also the owner of the task object (tasks are <WIND objects>). Unlike other objects,
the ownership of a task is restricted to the task's RTP or the kernel. This restriction exists
since the task's stack will be allocated from the RTP's memory resources.

By default, tasks running outside the kernel run in the CPU's user mode. A task will run in
the CPU's supervisor mode (VX_SUPERVISOR_MODE option is set for the task), if the task is
created in the kernel.

The scheduling of tasks is not connected in any way with the RTP that owns them. Even
when RTPs are configured into the operating system, tasks are still scheduled based on
their priorities and readiness to execute. Note that in the specific case when POSIX threads
are executed in the RTP it is mandatory that the POSIX scheduler be used in the system
(INCLUDE_POSIX_PTHREAD_SCHEDULER component).

Unlike kernel tasks, user tasks (i.e. tasks created in the RTP) cannot have their own private
environment variables. They all share the RTP's environment.

Note also that the initial task of a RTP cannot be restarted (see taskRestart() for details).

SHARING DATA The real time process model also supports the sharing of data between RTPs. This sharing
can be done using shared data regions. Refer to the sdLib manual entries for more
information on shared data regions.

To simply share memory, or memory-mapped I/O, with another RTP, a shared data region
needs to be created. Then, the client RTP (i.e. the one wishing to access the shared resource)
simply needs to map the shared data region into its memory space. This is achieved using
the sdMap() function. See the manual entry for the sdMap() function for more information
about creating shared data mappings. This sharing relationship must be created at
run-time by the application.

SHARING CODE Sharing of code between RTPs are done using shared libraries. Shared libraries are
dynamically loaded at runtime by the RTPs that reference them.

To use shared libraries, the RTP executable must specify at build time that it wants to
resolves its undefined symbols using shared libraries. The location of the shared libraries
must be provided to the RTP executable using one of the following:

- the -rpath path compiler flag

- setting the environment variable LD_LIBRARY_PATH for the RTP

If the above two options are not used, the location of the RTP executable will be used to find
the shared libraries.

Refer to the VxWorks programmer guides for detailed information on how to use shared
libraries.

1 Libraries
rtpLib

237

1
RTP STATES An RTP life cycle revolves around the following states:

RTP_STATE_CREATE
When an RTP object is created it's initial state is RTP_STATE_CREATE. It remains in the
state until the RTP object is fully initialized, the image loaded into RTP memory space
and the initial task is about to transition to user mode. If initialization is successful, the
state transitions to RTP_STATE_NORMAL otherwise it transitions to
RTP_STATE_DELETE.

RTP_STATE_NORMAL
This is the state that indicates that the RTP image is fully loaded and tasks are running
in user mode. When the RTP terminates it transitions to RTP_STATE_DELETE.

RTP_STATE_DELETE
This is the state that indicates that the RTP is being deleted. No further operations can
be performed on the RTP in this state. Once the deletion is complete, the RTP object and
it's resources are reclaimed by the kernel.

All RTP operations can be done only when the RTP is in RTP_STATE_CREATE or
RTP_STATE_NORMAL state.

RTP STATUS RTP status bits indicates some important events happening in the RTP life cycle:

RTP_STATUS_STOP
This status bit is set when a stop signal is sent to the RTP. All tasks within the RTP are
stopped. A SIGCONT signal sent to the stopped RTP resumes all stopped tasks within
the RTP, thus unsetting this bit.

RTP_STATUS_ELECTED_DELETER
This status bit is set once a task is selected to delete the RTP among competing deleting
tasks. The RTP is now destined to die. The RTP delete hooks are called after this
election, but before the RTP state goes to RTP_STATE_DELETE. Once the RTP
transitions to RTP_STATE_DELETE, this bit is unset.

SYSTEM CALL BUFFER VALIDATION

By default any user buffer passed to a system call will be validated to ensure that it belongs
to the RTP's memory space. This validation is a lengthy operation which adds to the system
call overhead. The buffer validation can be turned off for a specific RTP by spawning it with
the option RTP_BUFFER_VAL_OFF (0x20) set. However this leaves a potential security hole
so this option should be used only once the application code is properly debugged.

SMP CONSIDERATIONS

By default RTP tasks inherit the CPU affinity setting of the task that created the RTP. If the
parent task has no specific CPU affinity (i.e. it can execute on any available CPU and may
migrate from one CPU to the other during its lifetime) then the RTP's tasks have no specific
CPU affinity either. If the parent task has its affinity set to a given CPU then, by default, the
RTP tasks inherit this affinity and execute only on the same CPU as the RTP's parent task.

VxWorks Kernel API Reference, 6.6
rtpShow

238

By using the rtpSpawn()'s option RTP_CPU_AFFINITY_NONE it is possible to create a RTP
which tasks have no specific CPU affinity even though the RTP's parent task may have a
specific CPU affinity.

INCLUDE FILES rtpLib.h

SEE ALSO rtpShow, rtpUtilLib, rtpSigLib, rtpHookLib, edrLib, sdLib, shlLib

rtpShow

NAME rtpShow – Real Time Process show routine

ROUTINES rtpShow() – display information for real time proceses
rtpMemShow() – display memory context information for real time proceses
rtpHookShow() – display all installed RTP hooks

DESCRIPTION This library provides routines to display information about the Real Time Processes (RTP)
in the system.

There are two levels of information that can be obtained: summary and full. Additionally,
the request can be applied to a specific RTP, or to all the RTPs within the system. For more
information see the rtpShow() manual entry.

The information provided by the show routines should be considered an instantaneous
snapshot of the system. This function is only designed as a diagnostic aid. Programmatic
access to RTP information is provided through the rtpUtilLib functions (for example,
rtpInfoGet()). Refer to the rtpUtilLib manual entry for these functions.

The rtpShow() routine may be called only from the C interpreter shell. To display
information from the command interpreter shell, use rtp or ps.

CONFIGURATION To use the RTP show routine library, configure VxWorks with the INCLUDE_RTP_SHOW
component.

INCLUDE FILES rtpLib.h

SEE ALSO rtpLib, rtpUtilLib, the VxWorks programmer guides.

1 Libraries
rtpUtilLib

239

1rtpSigLib

NAME rtpSigLib – RTP software signal facility library

ROUTINES rtpTaskKill() – send a signal to a task
rtpTaskSigqueue() – send a queued signal to a task
rtpKill() – send a signal to a RTP
rtpSigqueue() – send a queued signal to a RTP

DESCRIPTION This library provides the signal interfaces for Real Time Processes (RTPs) and tasks within
RTPs. Signals alter the execution flow of tasks by communicating asynchronous events
within or between task contexts. Any task or interrupt service can "raise" (or send) a signal
to a particular task. The task being signaled will immediately suspend its current thread of
execution and invoke a task-specified "signal handler" routine. The signal handler can be a
user-supplied routine that is bound to a specific signal and performs whatever actions are
necessary whenever the signal is received.

Signals are most appropriate for error and exception handling, rather than as a general
purpose inter-task communication mechanism.

INCLUDE FILES rtpLib.h

SEE ALSO rtpLib, POSIX 1003.1b documentation

rtpUtilLib

NAME rtpUtilLib – Real Time Process Utility library

ROUTINES rtpInfoGet() – Get specific information on an RTP
rtpSymTblIdGet() – Get the symbol table ID of an RTP

DESCRIPTION This library provides utilities to support the Real Time Process (RTP) feature. The utilities
provide ways for applications to access information regarding the RTP.

CONFIGURATION The selection of the INCLUDE_RTP feature will include these utilities into the VxWorks
image.

INCLUDE FILES rtpLib.h

SEE ALSO rtpLib, rtpSpawn()

VxWorks Kernel API Reference, 6.6
salClient

240

salClient

NAME salClient – socket application client library

ROUTINES salOpen() – establish communication with a named socket-based server
salSocketFind() – find sockets for a named socket-based server
salNameFind() – find services with the specified name
salCall() – invoke a socket-based server

DESCRIPTION This portion of the Socket Application Library (SAL) provides the infrastructure for
implementing a socket-based client application. The routines provided by SAL allow client
applications to communicate easily with socket-based server applications that are
registered with the Socket Name Service (SNS). Some routines can also be used to
communicate with unregistered server applications. SAL routines assume connection
oriented message based communications. Although it could provide support for all
protocols with the above features, the current implementation is supporting only local
(single node) inter process communication using the COMP (Connection Oriented Message
Passing) protocol and distributed (multi-node) inter process communication using the TIPC
(Transparent Inter-Process Communication) protocol.

SAL Client

The SAL client API allows a client application to communicate with a specified server
application by using socket descriptors. A client application can utilize SAL routines to
communicate with different server applications in succession, or create multiple SAL clients
that are each linked to a different server.

A client application typically calls salOpen() to configure a socket descriptor associated
with a named server application. salOpen() simplifies the procedures needed to initialize
the socket and its connection to the server. The server can be easily identified by a name,
represented by a character string. The client application can then communicate with the
server by passing the socket descriptor to standard socket API routines, such as send() and
recv(). Alternatively, the client application can perform a send() and recv() as a single
operation using salCall(). When the client application no longer needs to communicate
with a server it calls close() to close the socket to the server.

A client application can utilize salSocketFind() to exercise more control over the
establishment of communication with a server, as an alternative to using salOpen().
salSocketFind() can be used to determine the socket addresses related to a server, and then
create a socket to communicate with the server. The client can therefore choose the server
socket address or addresses that better suits its needs. A client can also use salNameFind()
to identify one or more services based on a search pattern. Therefore, the client does not
need to know the exact name of a service and, in case multiple names are found, it can
choose which ones to use.

Because normal socket descriptors are used, the client application also has access to all of
the standard socket API.

1 Libraries
salClient

241

1
EXAMPLE The following code illustrates how to create a client that utilizes an "ping" service which

simply returns each incoming message to the sender. The maximum size of a message is
limited to MAX_PING_SIZE bytes. This service uses the connection-based COMP socket
protocol.

 /* This routine creates and runs a client of the ping service. */

 #include "vxWorks.h"
 #include "dsi/salClient.h"

 #define MAX_PING_SIZE 72

 STATUS pingClient
 (
 char * message, /* message buffer */
 int msgSize /* size of message */
)
 {
 char reply[MAX_PING_SIZE]; /* reply buffer */
 int replySize; /* size of reply */
 int sockfd; /* socket file descriptor */

 /* set up client connection to PING server */

 if ((sockfd = salOpen ("ping")) < 0)
 {
 return ERROR;
 }

 /* send message to PING server and get reply */

 replySize = salCall (sockfd, message, msgSize,
 reply, sizeof (reply));

 /* tear down client connection to PING server */

 if (close (sockfd) <0)
 return ERROR;

 /* check that reply matches message */

 if ((replySize != msgSize) || (memcmp (message, reply, msgSize) !=
0))
 {
 return ERROR;
 }

 return OK;
 }

CONFIGURATION To use the SAL client library, configure VxWorks with the INCLUDE_SAL_CLIENT
component.

INCLUDE FILES salClient.h

VxWorks Kernel API Reference, 6.6
salServer

242

SEE ALSO salServer, snsLib

salServer

NAME salServer – socket application server library

ROUTINES salCreate() – create a named socket-based server
salDelete() – delete a named socket-based server
salServerRtnSet() – configures the processing routine with the SAL server
salRun() – activate a socket-based server
salRemove() – Remove service from SNS by name

DESCRIPTION This portion of the Socket Application Library (SAL) provides the infrastructure for
implementing a socket-based server application. The data structures and routines provided
by SAL allow the application to communicate easily with socket-based client applications
that locate the server using the Socket Name Service (SNS).

SAL Server ID

The "SAL Server ID" refers to an internal data structure that is used by many routines in the
SAL server library. The server data structure allows a server application to provide service
to any number of client applications. A server application normally utilizes a single SAL
server in its main task, but it is free to spawn additional tasks to handle the processing for
individual clients if parallel processing of client requests is required.

Main Capabilities

A server application typically calls salCreate() to configure a SAL server with one or more
sockets that are then registered with SNS under a specified service identifier. The number
of sockets created depends on which address families, socket types, and socket protocols
are specified by the server application. The current implementation supports only
connection-oriented message based socket types. Although it could provide support for all
protocols with the above features, the current implementation is supporting both local
(single node) inter process communication using the COMP (Connection Oriented Message
passing) protocol and distributed (multi-node) inter process communication using the TIPC
(Transparent Inter-Process Communication) protocol. The socket addresses used for the
server's sockets are selected automatically and cannot be specified by the server application
using salCreate().

Once created, a SAL server must be configured with one or more processing routines before
it is activated.

- The "accept" routine is invoked whenever an active socket is created as the result of a
new client connecting to the server.

1 Libraries
salServer

243

1
- The "read" routine is invoked whenever an active socket is ready for reading or can no

longer be read.

Configuring of the processing routines is accomplished by calling the salServerRtnSet()
function.

If no routine is supplied, the service will not be activated.

Activation of a SAL server is accomplished by calling salRun(). A SAL server runs
indefinitely once it has been activated, monitoring the activities on its connections and
calling the appropriate processing routines as needed. The SAL server becomes deactivated
only at the request of the server application (through the processing routines) or if an
unexpected error is detected by salRun().

Once a SAL server has been deactivated the server application calls salDelete() to close the
server's sockets and deregister the service identifier from SNS.

Processing Routines

The "accept" routine is utilized by any server application that incorporates passive (i.e.
listening) sockets into the SAL server. The routine should determine if the connection
should be accepted and the new socket added to the SAL server. The routine can return the
following values:

SAL_SOCK_KEEP
the SAL server has accepted the new connection and the new socket should be added
to the SAL server.

SAL_SOCK_CLOSE
the routine is requesting the SAL server to close the socket.

SAL_SOCK_IGNORE
the SAL server will not add the new socket but it will not close it. This could be because
the user application is going to have the socket managed by another task or because it
has already closed the socket.

Any other value is considered as an error and deactivates the SAL server.

If a SAL server is not configured with an accept routine salRun() uses a default routine that
automatically approves of the socket and adds it to the server.

The "read" routine is utilized by any server application that incorporates active sockets into
the SAL server. The routine should read the specified socket and process the input
accordingly, possibly generating a response. The read routine should return an appropriate
value to let salRun() know what to do with the socket or to the SAL server.

SAL_SOCK_CLOSE
the SAL server closes the socket and removes it the from server.

SAL_SOCK_IGNORE
the SAL server removes the socket from the list without closing it. This might be useful
when the application requires another task to take care of the socket.

VxWorks Kernel API Reference, 6.6
salServer

244

SAL_SOCK_KEEP
the socket is kept in the SAL server.

SAL_RUN_TERMINATE
salRun() is terminated, with an OK return value. The sockets are not closed.

Any other value is considered as an error and deactivates the SAL server.
The read routine should close the socket and return SAL_SOCK_IGNORE, or ask the
SAL server to close the socket (by returning SAL_SOCK_CLOSE), if it detects that the
socket connection has been closed by the client. This state is normally indicated by a
read operation that receives zero bytes.

If a SAL server is not configured with a read routine and active sockets are present,
salRun() uses a default routine that deactivates the server with an error.

NOTE Care must be taken to ensure that a processing routine does not cause salRun() to block,
otherwise the actions of a single client can halt the server's main task and thereby deny use
of the server to other clients. One solution is to use the MSG_DONTWAIT flag when reading
or writing an active socket; an alternative solution is to use a distinct task for each active
socket and not incorporate them into the SAL server.

EXAMPLE The following code illustrates how to create a server that implements an "ping" service
which simply returns each incoming message to the sender. The service satisfies the first
MAX_REQ_COUNT requests only. Once it has reached the threshold it terminates. The
maximum size of a message is limited to MAX_PING_SIZE bytes. This service uses the
connection-based COMP socket protocol.

 #include "vxWorks.h"
 #include "sockLib.h"
 #include "dsi/salServer.h"

 /* defines */

 #define MAX_PING_SIZE 72 /* max message size */
 #define MAX_REQ_COUNT 5 /* max number of client requests */

 /* forward declarations */

 LOCAL SAL_RTN_STATUS pingServerRead (int sockfd, void * pData);

 /* This routine creates and runs the server for the ping service. */

 STATUS pingServer (void)
 {
 SAL_SERVER_ID serverId; /* server structure */
 STATUS result; /* return value */
 int count; /* counter */

 /* create server socket & register service with SNS */

 if ((serverId = salCreate ("ping",AF_LOCAL, SOCK_SEQPACKET, 0,
 NULL, 0)) == NULL)

1 Libraries
salServer

245

1
 {
 return ERROR;
 }

 /* configure read routine for server */

 salServerRtnSet (serverId, SAL_RTN_READ, pingServerRead);

 /* request counter initialized */

 count = 0;

 /* activate the server (never returns unless a fatal error occurs */
 /* or the application processing routine requests a termination) */

 result = salRun (serverId, &count);

 /* close server socket & deregister service from SNS */

 salDelete (serverId);

 return result;
 }

 /* This is the read routine for the ping server. */

 LOCAL SAL_RTN_STATUS pingServerRead
 (
 int sockfd, /* active socket to read */
 void * pData /* user data */
)
 {
 char message[MAX_PING_SIZE]; /* buffer for message */
 int msgSize; /* size of message */
 int * pCounter; /* request counter */

 /* get message from specified client */

 msgSize = recv (sockfd, message, sizeof (message), MSG_DONTWAIT);

 if (msgSize <= 0)
 {
 /* client connection has been closed by client or has failed */

 return SAL_SOCK_CLOSE;
 }

 /* send message back to client */

 if (send (sockfd, message, msgSize, MSG_DONTWAIT) < 0)
 {
 /* client connection has failed */

 close (sockfd);
 return SAL_SOCK_IGNORE;

VxWorks Kernel API Reference, 6.6
sbeVxbEnd

246

 }

 pCounter = pData;

 if (*pCounter++ >= MAX_REQ_COUNT)
 return SAL_RUN_TERMINATE;

 /* indicate that client connection is still OK */

 return SAL_SOCK_KEEP;
 }

CONFIGURATION To use the SAL server library, configure VxWorks with the INCLUDE_SAL_SERVER
component.

INCLUDE FILES salServer.h

SEE ALSO salClient, snsLib

sbeVxbEnd

NAME sbeVxbEnd – Broadcom/Sibyte BCM1250 VxBus END driver

ROUTINES sbeRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver from the on-board ethernet in the Broadcom SB1 series
BCM1250 and BCM1480 boards. The SB1 ethernet provides dual RX and TX channels
(currently this driver uses only one RX and TX channel each), RX TCP/IP checksum offload,
RMON statistics counting, a 512-bit multicast hash table, and an MDIO interface to a GMII
compliant PHY.

Early revisions of the SBE controller have a major limitation concerning DMA alignment
requirements: when performing scatter/gather DMA, all but the first buffer must be
cache-line aligned, and intermediate buffers must all be exactly a multiple of the cache line
size in length. These requirements are fairly stringent, and when sourcing TCP or UDP
traffic, the current VxWorks TCP/IP stack almost never generates multi-fragment
transmissions that satisfy these requirements. This results in a potential performance
penalty in many cases, except in packet forwarding scenarios (when forwarding IP packets,
for example, packets are almost always contained in single buffers that match the SB1's
alignment requirements).

In BCM1250 devices with PERIPH_REV3 or later (e.g. BCM1250 stepping C0) and the
1255/1280/1455/1480 devices, a new descriptor format has been added that allows
unaligned DMA operations that are more compatible with the VxWorks stack. This format
will be used if a device which supports it is detected.

1 Libraries
sbeVxbEnd

247

1
BOARD LAYOUT The Broadcom SB1 interfaces are integrated into the BCM1250/BCM1480 processors.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
sbeRegister() function, which registers the driver with VxBus.

The SBE controller also supports jumbo frames. This driver has jumbo frame support,
which is disabled by default in order to conserve memory (jumbo frames require the use of
an buffer pool with larger clusters). Jumbo frames can be enabled on a per-interface basis
using a parameter override entry in the hwconf.c file in the BSP. For example, to enable
jumbo frame support for interface sbe0, the following entry should be added to the
VXB_INST_PARAM_OVERRIDE table:

{ "sbe", 0, "jumboEnable", VXB_PARAM_INT32, {(void *)1} }

The SBE controller also supports interrupt coalescing. This driver has coalescing support,
which is disabled by default so that the out of the box configuration has the smallest
interrupt latency. Coalescing can be anabled on a per-interface basis using parameter
overeides in the hwconf.c file, in the same way as jumbo frame support. In addition to
turning the coalescing support on and off, the timeout and packet count values can be set:

{ "sbe", 0, "coalesceEnable", VXB_PARAM_INT32, {(void *)1} }
{ "sbe", 0, "coalesceRxTicks", VXB_PARAM_INT32, {(void *)200} }
{ "sbe", 0, "coalesceRxPkts", VXB_PARAM_INT32, {(void *)16} }
{ "sbe", 0, "coalesceTxTicks", VXB_PARAM_INT32, {(void *)800} }
{ "sbe", 0, "coalesceTxPkts", VXB_PARAM_INT32, {(void *)32} }

If only the coalesceEnable property is set, the driver will use default timeout and packet count
values as shown above. Specifying alternate values via the BSP will override the defaults.

EXTERNAL SUPPORT REQUIREMENTS

This driver requires one non-VxBus external support function:

void sysSbeEnetAddrGet (int unit, char * pAddr);

This routine is needed to obtain the station address from the BSP. Eventually, this function
will be deprecated once VxBus-centric support for obtaining station addresses from
on-board NVRAM is available.

INCLUDE FILES sbeVxbEnd.h sb1Lib.h end.h endLib.h netBufLib.h muxLib.h

SEE ALSO vxBus, ifLib, "Writing an Enhanced Network Driver", "Broadcom BCM1250 User's Manual"

VxWorks Kernel API Reference, 6.6
scMemVal

248

scMemVal

NAME scMemVal – helper routines to validate system call parameters

ROUTINES scMemValEnable() – enable or disable pointer/buffer validation in system calls
scMemValidate() – validate an address range passed to a system call routine

DESCRIPTION This library provides for a buffer validation routine, scMemValidate(). Parameters passed
to a system call routine need to be validated. As part of this validation process it is necessary
to guarantee that a pointer passed to the system call routine points to memory belonging to
the calling RTP, and that the kernel system call code can access this memory, wether it needs
to read from it, or write to it. This routine is to be used only to validate pointers passed as
parameters to system calls. For information on how to add custom APIs to the system call
interface, refer to VxWorks Programmers' Guide, "Kernel", "Adding Custom APIs to the
System Call Interface".

NOTE The routine scMemValidate() is to be called only within code included when RTP support
is included. Failure to do so will drag the whole RTP support libraries into the kernel even
if the component INCLUDE_RTP is not defined.

INCLUDE FILES scMemVal.h

SEE ALSO rtpSpawn(), the VxWorks programmer guides.

schedPxLib

NAME schedPxLib – scheduling library (POSIX)

ROUTINES sched_setparam() – set a task's priority (POSIX)
sched_getparam() – get the scheduling parameters for a specified task (POSIX)
sched_setscheduler() – set scheduling policy and scheduling parameters (POSIX)
sched_getscheduler() – get the current scheduling policy (POSIX)
sched_yield() – relinquish the CPU (POSIX)
sched_get_priority_max() – get the maximum priority (POSIX)
sched_get_priority_min() – get the minimum priority (POSIX)
sched_rr_get_interval() – get the current time slice (POSIX)

DESCRIPTION This library provides POSIX-compliance scheduling routines. The routines in this library
allow the user to get and set priorities and scheduling schemes, get maximum and
minimum priority values, and get the time slice if round-robin scheduling is enabled.

1 Libraries
scsi1Lib

249

1
The POSIX standard specifies a priority numbering scheme in which higher priorities are
indicated by larger numbers. The VxWorks native numbering scheme is the reverse of this,
with higher priorities indicated by smaller numbers. For example, in the VxWorks native
priority numbering scheme, the highest priority task has a priority of 0.

In VxWorks, POSIX scheduling interfaces are implemented using the POSIX priority
numbering scheme. This means that the priority numbers used by this library do not match
those reported and used in all the other VxWorks components. It is possible to change the
priority numbering scheme used by this library by setting the global variable
posixPriorityNumbering. If this variable is set to FALSE, the VxWorks native numbering
scheme (small number = high priority) is used, and priority numbers used by this library
will match those used by the other portions of VxWorks.

The routines in this library are compliant with POSIX 1003.1b. In particular, task priorities
are set and reported through the structure sched_setparam, which has a single member:

struct sched_param /* Scheduling parameter structure */
 {
 int sched_priority; /* scheduling priority */
 };

POSIX 1003.1b specifies this indirection to permit future extensions through the same
calling interface. For example, because sched_setparam() takes this structure as an
argument (rather than using the priority value directly) its type signature need not change
if future schedulers require other parameters.

INCLUDE FILES sched.h

SEE ALSO POSIX 1003.1b document, taskLib

scsi1Lib

NAME scsi1Lib – Small Computer System Interface (SCSI) library (SCSI-1)

ROUTINES

DESCRIPTION This library implements the Small Computer System Interface (SCSI) protocol in a
controller-independent manner. It implements only the SCSI initiator function; the library
does not support a VxWorks target acting as a SCSI target. Furthermore, in the current
implementation, a VxWorks target is assumed to be the only initiator on the SCSI bus,
although there may be multiple targets (SCSI peripherals) on the bus.

The implementation is transaction based. A transaction is defined as the selection of a SCSI
device by the initiator, the issuance of a SCSI command, and the sequence of data, status,
and message phases necessary to perform the command. A transaction normally completes

VxWorks Kernel API Reference, 6.6
scsi1Lib

250

with a "Command Complete" message from the target, followed by disconnection from the
SCSI bus. If the status from the target is "Check Condition," the transaction continues; the
initiator issues a "Request Sense" command to gain more information on the exception
condition reported.

Many of the subroutines in scsi1Lib facilitate the transaction of frequently used SCSI
commands. Individual command fields are passed as arguments from which SCSI
Command Descriptor Blocks are constructed, and fields of a SCSI_TRANSACTION structure
are filled in appropriately. This structure, along with the SCSI_PHYS_DEV structure
associated with the target SCSI device, is passed to the routine whose address is indicated
by the scsiTransact field of the SCSI_CTRL structure associated with the relevant SCSI
controller.

The function variable scsiTransact is set by the individual SCSI controller driver. For
off-board SCSI controllers, this routine rearranges the fields of the SCSI_TRANSACTION
structure into the appropriate structure for the specified hardware, which then carries out
the transaction through firmware control. Drivers for an on-board SCSI-controller chip can
use the scsiTransact() routine in scsiLib (which invokes the scsi1Transact() routine in
scsi1Lib), as long as they provide the other functions specified in the SCSI_CTRL structure.

Note that no disconnect/reconnect capability is currently supported.

SUPPORTED SCSI DEVICES

The scsi1Lib library supports use of SCSI peripherals conforming to the standards specified
in "Common Command Set (CCS) of the SCSI, Rev. 4.B." Most SCSI peripherals currently
offered support CCS. While an attempt has been made to have scsi1Lib support non-CCS
peripherals, not all commands or features of this library are guaranteed to work with them.
For example, auto-configuration may be impossible with non-CCS devices, if they do not
support the INQUIRY command.

Not all classes of SCSI devices are supported. However, the scsiLib library provides the
capability to transact any SCSI command on any SCSI device through the
FIOSCSICOMMAND function of the scsiIoctl() routine.

Only direct-access devices (disks) are supported by a file system. For other types of devices,
additional, higher-level software is necessary to map user-level commands to SCSI
transactions.

CONFIGURING VXWORKS

To use the SCSI-1 library, configure VxWorks with the INCLUDE_SCSI1 component.

CONFIGURING SCSI CONTROLLERS

The routines to create and initialize a specific SCSI controller are particular to the controller
and normally are found in its library module. The normal calling sequence is:

 xxCtrlCreate (...); /* parameters are controller specific */
 xxCtrlInit (...); /* parameters are controller specific */

1 Libraries
scsi1Lib

251

1
The conceptual difference between the two routines is that xxCtrlCreate() calloc's memory
for the xx_SCSI_CTRL data structure and initializes information that is never expected to
change (for example, clock rate). The remaining fields in the xx_SCSI_CTRL structure are
initialized by xxCtrlInit() and any necessary registers are written on the SCSI controller to
effect the desired initialization. This routine can be called multiple times, although this is
rarely required. For example, the bus ID of the SCSI controller can be changed without
rebooting the VxWorks system.

CONFIGURING PHYSICAL SCSI DEVICES

Before a device can be used, it must be "created," that is, declared. This is done with
scsiPhysDevCreate() and can only be done after a SCSI_CTRL structure exists and has been
properly initialized.

SCSI_PHYS_DEV *scsiPhysDevCreate
 (
 SCSI_CTRL * pScsiCtrl,/* ptr to SCSI controller info */
 int devBusId, /* device's SCSI bus ID */
 int devLUN, /* device's logical unit number */
 int reqSenseLength, /* length of REQUEST SENSE data dev returns */
 int devType, /* type of SCSI device */
 BOOL removable, /* whether medium is removable */
 int numBlocks, /* number of blocks on device */
 int blockSize /* size of a block in bytes */
)

Several of these parameters can be left unspecified, as follows:

reqSenseLength
If 0, issue a REQUEST_SENSE to determine a request sense length.

devType
If -1, issue an INQUIRY to determine the device type.

numBlocks, blockSize
If 0, issue a READ_CAPACITY to determine the number of blocks.

The above values are recommended, unless the device does not support the required
commands, or other non-standard conditions prevail.

LOGICAL PARTITIONS ON BLOCK DEVICES

It is possible to have more than one logical partition on a SCSI block device. This capability
is currently not supported for removable media devices. A partition is an array of
contiguously addressed blocks with a specified starting block address and a specified
number of blocks. The scsiBlkDevCreate() routine is called once for each block device
partition. Under normal usage, logical partitions should not overlap.

SCSI_BLK_DEV *scsiBlkDevCreate
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device info */
 int numBlocks, /* number of blocks in block device */
 int blockOffset /* address of first block in volume */
)

VxWorks Kernel API Reference, 6.6
scsi1Lib

252

Note that if numBlocks is 0, the rest of the device is used.

ATTACHING FILE SYSTEMS TO LOGICAL PARTITIONS

Files cannot be read or written to a disk partition until a file system (such as dosFs) has been
initialized on the partition. For more information, see the documentation in dosFsLib.

TRANSMITTING ARBITRARY COMMANDS TO SCSI DEVICES

The scsi1Lib library provides routines that implement many common SCSI commands.
Still, there are situations that require commands that are not supported by scsi1Lib (for
example, writing software to control non-direct access devices). Arbitrary commands are
handled with the FIOSCSICOMMAND option to scsiIoctl(). The arg parameter for
FIOSCSICOMMAND is a pointer to a valid SCSI_TRANSACTION structure. Typically, a
call to scsiIoctl() is written as a subroutine of the form:

STATUS myScsiCommand
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */
 char * buffer, /* ptr to data buffer */
 int bufLength, /* length of buffer in bytes */
 int someParam /* param. specifiable in cmd block */
)

 {
 SCSI_COMMAND myScsiCmdBlock; /* SCSI command byte array */
 SCSI_TRANSACTION myScsiXaction; /* info on a SCSI transaction */

 /* fill in fields of SCSI_COMMAND structure */

 myScsiCmdBlock [0] = MY_COMMAND_OPCODE; /* the required opcode */
 .
 myScsiCmdBlock [X] = (UINT8) someParam; /* for example */
 .
 myScsiCmdBlock [N-1] = MY_CONTROL_BYTE; /* typically == 0 */

 /* fill in fields of SCSI_TRANSACTION structure */

 myScsiXaction.cmdAddress = myScsiCmdBlock;
 myScsiXaction.cmdLength = <# of valid bytes in myScsiCmdBlock>;
 myScsiXaction.dataAddress = (UINT8 *) buffer;
 myScsiXaction.dataDirection = <O_RDONLY (0) or O_WRONLY (1)>;
 myScsiXaction.dataLength = bufLength;
 myScsiXaction.cmdTimeout = timeout in usec;

 /* if dataDirection is O_RDONLY, and the length of the input data is
 * variable, the following parameter specifies the byte # (min == 0)
 * of the input data which will specify the additional number of
 * bytes available
 */

 myScsiXaction.addLengthByte = X;

 if (scsiIoctl (pScsiPhysDev, FIOSCSICOMMAND, &myScsiXaction) == OK)
 return (OK);

1 Libraries
scsi2Lib

253

1
 else
 /* optionally perform retry or other action based on value of
 * myScsiXaction.statusByte
 */
 return (ERROR);
 }

INCLUDE FILES scsiLib.h, scsi1Lib.h

SEE ALSO dosFsLib, American National Standards for Information Systems - Small Computer, System
Interface (SCSI), ANSI X3.131-1986, the VxWorks programmer guides.

scsi2Lib

NAME scsi2Lib – Small Computer System Interface (SCSI) library (SCSI-2)

ROUTINES scsi2IfInit() – initialize the SCSI-2 interface to scsiLib
scsiTargetOptionsSet() – set options for one or all SCSI targets
scsiTargetOptionsGet() – get options for one or all SCSI targets
scsiTargetOptionsShow() – display options for specified SCSI target
scsiPhysDevShow() – show status information for a physical device
scsiCacheSynchronize() – synchronize the caches for data coherency
scsiIdentMsgBuild() – build an identification message
scsiIdentMsgParse() – parse an identification message
scsiMsgOutComplete() – perform post-processing after a SCSI message is sent
scsiMsgOutReject() – perform post-processing when an outgoing message is rejected
scsiMsgInComplete() – handle a complete SCSI message received from the target
scsiSyncXferNegotiate() – initiate or continue negotiating transfer parameters
scsiWideXferNegotiate() – initiate or continue negotiating wide parameters
scsiThreadInit() – perform generic SCSI thread initialization
scsiCacheSnoopEnable() – inform SCSI that hardware snooping of caches is enabled
scsiCacheSnoopDisable() – inform SCSI that hardware snooping of caches is disabled

DESCRIPTION This library implements the Small Computer System Interface (SCSI) protocol in a
controller-independent manner. It implements only the SCSI initiator function as defined
in the SCSI-2 ANSI specification. This library does not support a VxWorks target acting as
a SCSI target.

The implementation is transaction based. A transaction is defined as the selection of a SCSI
device by the initiator, the issuance of a SCSI command, and the sequence of data, status,
and message phases necessary to perform the command. A transaction normally completes
with a "Command Complete" message from the target, followed by disconnection from the
SCSI bus. If the status from the target is "Check Condition," the transaction continues; the

VxWorks Kernel API Reference, 6.6
scsi2Lib

254

initiator issues a "Request Sense" command to gain more information on the exception
condition reported.

Many of the subroutines in scsi2Lib facilitate the transaction of frequently used SCSI
commands. Individual command fields are passed as arguments from which SCSI
Command Descriptor Blocks are constructed, and fields of a SCSI_TRANSACTION structure
are filled in appropriately. This structure, along with the SCSI_PHYS_DEV structure
associated with the target SCSI device, is passed to the routine whose address is indicated
by the scsiTransact field of the SCSI_CTRL structure associated with the relevant SCSI
controller. The above mentioned structures are defined in scsi2Lib.h.

The function variable scsiTransact is set by the individual SCSI controller driver. For
off-board SCSI controllers, this routine rearranges the fields of the SCSI_TRANSACTION
structure into the appropriate structure for the specified hardware, which then carries out
the transaction through firmware control. Drivers for an on-board SCSI-controller chip can
use the scsiTransact() routine in scsiLib (which invokes the scsi2Transact() routine in
scsi2Lib), as long as they provide the other functions specified in the SCSI_CTRL structure.

SCSI TRANSACTION TIMEOUT

Associated with each transaction is a time limit (specified in microseconds, but measured
with the resolution of the system clock). If the transaction has not completed within this
time limit, the SCSI library aborts it; the called routine fails with a corresponding error code.
The timeout period includes time spent waiting for the target device to become free to
accept the command.

The semantics of the timeout should guarantee that the caller waits no longer than the
transaction timeout period, but in practice this may depend on the state of the SCSI bus and
the connected target device when the timeout occurs. If the target behaves correctly
according to the SCSI specification, proper timeout behavior results. However, in certain
unusual cases--for example, when the target does not respond to an asserted ATN
signal--the caller may remain blocked for longer than the timeout period.

If the transaction timeout causes problems in your system, you can set the value of either or
both the global variables "scsi{Min,Max}Timeout". These specify (in microseconds) the
global minimum and maximum timeout periods, which override (clip) the value specified
for a transaction. They may be changed at any time and affect all transactions issued after
the new values are set. The range of both these variable is 0 to 0xffffffff (zero to about 4295
seconds).

SCSI TRANSACTION PRIORITY

Each transaction also has an associated priority used by the SCSI library when selecting the
next command to issue when the SCSI system is idle. It chooses the highest priority
transaction that can be dispatched on an available physical device. If there are several
equal-priority transactions available, the SCSI library uses a simple round-robin scheme to
avoid favoring the same physical device.

1 Libraries
scsi2Lib

255

1
Priorities range from 0 (highest) to 255 (lowest), which is the same as task priorities. The
priority SCSI_THREAD_TASK_PRIORITY can be used to give the transaction the same
priority as the calling task (this is the method used internally by this SCSI-2 library).

SUPPORTED SCSI DEVICES

This library requires peripherals that conform to the SCSI-2 ANSI standard; in particular,
the INQUIRY, REQUEST SENSE, and TEST UNIT READY commands must be supported
as specified by this standard. In general, the SCSI library is self-configuring to work with
any device that meets these requirements.

Peripherals that support identification and the SCSI message protocol are strongly
recommended as these provide maximum performance.

In theory, all classes of SCSI devices are supported. The scsiLib library provides the
capability to transact any SCSI command on any SCSI device through the
FIOSCSICOMMAND function of the scsiIoctl() routine (which invokes the scsi2Ioctl()
routine in scsi2Lib).

Only direct-access devices (disks) are supported by file systems like dosFs, and rawFs.
These file systems employ routines in scsiDirectLib (most of which are described in scsiLib
but defined in scsiDirectLib). In the case of sequential-access devices (tapes), higher-level
tape file systems, like tapeFs, make use of scsiSeqLib. For other types of devices,
additional, higher-level software is necessary to map user-level commands to SCSI
transactions.

DISCONNECT/RECONNECT SUPPORT

The target device can be disconnected from the SCSI bus while it carries out a SCSI
command; in this way, commands to multiple SCSI devices can be overlapped to improve
overall SCSI throughput. There are no restrictions on the number of pending, disconnected
commands or the order in which they are resumed. The SCSI library serializes access to the
device according to the capabilities and status of the device (see the following section).

Use of the disconnect/reconnect mechanism is invisible to users of the SCSI library. It can
be enabled and disabled separately for each target device (see scsiTargetOptionsSet()).
Note that support for disconnect/reconnect depends on the capabilities of the controller
and its driver (see below).

TAGGED COMMAND QUEUEING SUPPORT

If the target device conforms to the ANSI SCSI-2 standard and indicates (using the
INQUIRY command) that it supports command queuing, the SCSI library allows new
commands to be started on the device whenever the SCSI bus is idle. That is, it executes
multiple commands concurrently on the target device. By default, commands are tagged
with a SIMPLE QUEUE TAG message. Up to 256 commands can be executing concurrently.

The SCSI library correctly handles contingent allegiance conditions that arise while a device
is executing tagged commands. (A contingent allegiance condition exists when a target
device is maintaining sense data that the initiator should use to correctly recover from an

VxWorks Kernel API Reference, 6.6
scsi2Lib

256

error condition.) It issues an untagged REQUEST SENSE command, and stops issuing
tagged commands until the sense recovery command has completed.

For devices that do not support command queuing, the SCSI library only issues a new
command when the previous one has completed. These devices can only execute a single
command at once.

Use of tagged command queuing is normally invisible to users of the SCSI library. If
necessary, the default tag type and maximum number of tags may be changed on a
per-target basis, using scsiTargetOptionsSet().

SYNCHRONOUS TRANSFER PROTOCOL SUPPORT

If the SCSI controller hardware supports the synchronous transfer protocol, scsiLib
negotiates with the target device to determine whether to use synchronous or asynchronous
transfers. Either VxWorks or the target device may start a round of negotiation. Depending
on the controller hardware, synchronous transfer rates up to the maximum allowed by the
SCSI-2 standard (10 Mtransfers/second) can be used.

Again, this is normally invisible to users of the SCSI library, but synchronous transfer
parameters may be set or disabled on a per-target basis by using scsiTargetOptionsSet().

WIDE DATA TRANSFER SUPPORT

If the SCSI controller supports the wide data transfer protocol, scsiLib negotiates wide data
transfer parameters with the target device, if that device also supports wide transfers. Either
VxWorks or the target device may start a round of negotiation. Wide data transfer
parameters are negotiated prior to the synchronous data transfer parameters, as specified
by the SCSI-2 ANSI specification. In conjunction with synchronous transfer, up to a
maximum of 20MB/sec. can be attained.

Wide data transfer negotiation is invisible to users of this library, but it is possible to enable
or disable wide data transfers and the parameters on a per-target basis by using
scsiTargetOptionsSet().

SCSI BUS RESET The SCSI library implements the ANSI "hard reset" option. Any transactions in progress
when a SCSI bus reset is detected fail with an error code indicating termination due to bus
reset. Any transactions waiting to start executing are then started normally.

CONFIGURING SCSI CONTROLLERS

The routines to create and initialize a specific SCSI controller are particular to the controller
and normally are found in its library module. The normal calling sequence is:

 xxCtrlCreate (...); /* parameters are controller specific */
 xxCtrlInit (...); /* parameters are controller specific */

The conceptual difference between the two routines is that xxCtrlCreate() calloc's memory
for the xx_SCSI_CTRL data structure and initializes information that is never expected to
change (for example, clock rate). The remaining fields in the xx_SCSI_CTRL structure are
initialized by xxCtrlInit() and any necessary registers are written on the SCSI controller to

1 Libraries
scsi2Lib

257

1
effect the desired initialization. This routine can be called multiple times, although this is
rarely required. For example, the bus ID of the SCSI controller can be changed without
rebooting the VxWorks system.

CONFIGURING VXWORKS

To use the SCSI-2 library, configure VxWorks with the INCLUDE_SCSI2 component.

CONFIGURING PHYSICAL SCSI DEVICES

Before a device can be used, it must be "created," that is, declared. This is done with
scsiPhysDevCreate() and can only be done after a SCSI_CTRL structure exists and has been
properly initialized.

SCSI_PHYS_DEV *scsiPhysDevCreate
 (
 SCSI_CTRL * pScsiCtrl,/* ptr to SCSI controller info */
 int devBusId, /* device's SCSI bus ID */
 int devLUN, /* device's logical unit number */
 int reqSenseLength, /* length of REQUEST SENSE data dev returns */
 int devType, /* type of SCSI device */
 BOOL removable, /* whether medium is removable */
 int numBlocks, /* number of blocks on device */
 int blockSize /* size of a block in bytes */
)

Several of these parameters can be left unspecified, as follows:

reqSenseLength
If 0, issue a REQUEST_SENSE to determine a request sense length.

devType
This parameter is ignored: an INQUIRY command is used to ascertain the device type.
A value of NONE (-1) is the recommended placeholder.

numBlocks, blockSize
If 0, issue a READ_CAPACITY to determine the number of blocks.

The above values are recommended, unless the device does not support the required
commands, or other non-standard conditions prevail.

LOGICAL PARTITIONS ON DIRECT-ACCESS BLOCK DEVICES

It is possible to have more than one logical partition on a SCSI block device. This capability
is currently not supported for removable media devices. A partition is an array of
contiguously addressed blocks with a specified starting block address and specified number
of blocks. The scsiBlkDevCreate() routine is called once for each block device partition.
Under normal usage, logical partitions should not overlap.

SCSI_BLK_DEV *scsiBlkDevCreate
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device info */
 int numBlocks, /* number of blocks in block device */
 int blockOffset /* address of first block in volume */
)

VxWorks Kernel API Reference, 6.6
scsi2Lib

258

Note that if numBlocks is 0, the rest of the device is used.

ATTACHING DISK FILE SYSTEMS TO LOGICAL PARTITIONS

Files cannot be read or written to a disk partition until a file system (for example, dosFs, or
rawFs) has been initialized on the partition. For more information, see the relevant
documentation in dosFsLib or rawFsLib.

USING A SEQUENTIAL-ACCESS BLOCK DEVICE

The entire volume (tape) on a sequential-access block device is treated as a single raw file.
This raw file is made available to higher-level layers like tapeFs by the scsiSeqDevCreate()
routine, described in scsiSeqLib. The scsiSeqDevCreate() routine is called once for a given
SCSI physical device.

SEQ_DEV *scsiSeqDevCreate
 (
 SCSI_PHYS_DEV *pScsiPhysDev /* ptr to SCSI physical device info */
)

TRANSMITTING ARBITRARY COMMANDS TO SCSI DEVICES

The scsi2Lib, scsiCommonLib, scsiDirectLib, and scsiSeqLib libraries collectively
provide routines that implement all mandatory SCSI-2 direct-access and sequential-access
commands. Still, there are situations that require commands that are not supported by these
libraries (for example, writing software that needs to use an optional SCSI-2 command).
Arbitrary commands are handled with the FIOSCSICOMMAND option to scsiIoctl(). The
arg parameter for FIOSCSICOMMAND is a pointer to a valid SCSI_TRANSACTION
structure. Typically, a call to scsiIoctl() is written as a subroutine of the form:

STATUS myScsiCommand
 (
 SCSI_PHYS_DEV * pScsiPhysDev, /* ptr to SCSI physical device */
 char * buffer, /* ptr to data buffer */
 int bufLength, /* length of buffer in bytes */
 int someParam /* param. specifiable in cmd block */
)

 {
 SCSI_COMMAND myScsiCmdBlock; /* SCSI command byte array */
 SCSI_TRANSACTION myScsiXaction; /* info on a SCSI transaction */

 /* fill in fields of SCSI_COMMAND structure */

 myScsiCmdBlock [0] = MY_COMMAND_OPCODE; /* the required opcode */
 .
 myScsiCmdBlock [X] = (UINT8) someParam; /* for example */
 .
 myScsiCmdBlock [N-1] = MY_CONTROL_BYTE; /* typically == 0 */

 /* fill in fields of SCSI_TRANSACTION structure */

 myScsiXaction.cmdAddress = myScsiCmdBlock;
 myScsiXaction.cmdLength = <# of valid bytes in myScsiCmdBlock>;

1 Libraries
scsiCommonLib

259

1
 myScsiXaction.dataAddress = (UINT8 *) buffer;
 myScsiXaction.dataDirection = <O_RDONLY (0) or O_WRONLY (1)>;
 myScsiXaction.dataLength = bufLength;
 myScsiXaction.addLengthByte = 0; /* no longer used */
 myScsiXaction.cmdTimeout = <timeout in usec>;
 myScsiXaction.tagType = SCSI_TAG_{DEFAULT,UNTAGGED,
 SIMPLE,ORDERED,HEAD_OF_Q};
 myScsiXaction.priority = [0 (highest) to 255 (lowest)];

 if (scsiIoctl (pScsiPhysDev, FIOSCSICOMMAND, &myScsiXaction) == OK)
 return (OK);
 else
 /* optionally perform retry or other action based on value of
 * myScsiXaction.statusByte
 */
 return (ERROR);
 }

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO dosFsLib, rawFsLib, tapeFsLib, scsiLib, scsiCommonLib, scsiDirectLib, scsiSeqLib,
scsiMgrLib, scsiCtrlLib, American National Standard for Information Systems - Small Computer,
System Interface (SCSI-2), ANSI X3T9, the VxWorks programmer guides.

scsiCommonLib

NAME scsiCommonLib – SCSI library common commands for all devices (SCSI-2)

ROUTINES

DESCRIPTION This library contains commands common to all SCSI devices. The content of this library is
separated from the other SCSI libraries in order to create an additional layer for better
support of all SCSI devices.

Commands in this library include:

CONFIGURATION To use the SCSI common commands library, configure VxWorks with the INCLUDE_SCSI2
component.

INCLUDE FILES scsiLib.h, scsi2Lib.h

Command Op Code
INQUIRY (0x12)
REQUEST SENSE (0x03)
TEST UNIT READY (0x00)

VxWorks Kernel API Reference, 6.6
scsiCtrlLib

260

SEE ALSO dosFsLib, rawFsLib, tapeFsLib, scsi2Lib

scsiCtrlLib

NAME scsiCtrlLib – SCSI thread-level controller library (SCSI-2)

ROUTINES

DESCRIPTION The purpose of the SCSI controller library is to support basic SCSI controller drivers that
rely on a higher level of software in order to manage SCSI transactions. More advanced
SCSI I/O processors do not require this protocol engine since software support for SCSI
transactions is provided at the SCSI I/O processor level.

This library provides all the high-level routines that manage the state of the SCSI threads
and guide the SCSI I/O transaction through its various stages:

- selecting a SCSI peripheral device;

- sending the identify message in order to establish the ITL nexus;

- cycling through information transfer, message and data, and status phases;

- handling bus-initiated reselects.

The various stages of the SCSI I/O transaction are reported to the SCSI manager as SCSI
events. Event selection and management is handled by routines in this library.

CONFIGURATION The thread-level controller library is automatically included when the INCLUDE_SCSI2
component is configured.

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO scsiLib, scsi2Lib, scsiCommonLib, scsiDirectLib, scsiSeqLib, scsiMgrLib, American
National Standard for Information Systems - Small Computer, System Interface (SCSI-2), ANSI
X3T9, the VxWorks programmer guides.

scsiDirectLib

NAME scsiDirectLib – SCSI library for direct access devices (SCSI-2)

ROUTINES scsiStartStopUnit() – issue a START_STOP_UNIT command to a SCSI device
scsiReserve() – issue a RESERVE command to a SCSI device

1 Libraries
scsiLib

261

1
scsiRelease() – issue a RELEASE command to a SCSI device

DESCRIPTION This library contains commands common to all direct-access SCSI devices. These routines
are separated from scsi2Lib in order to create an additional layer for better support of all
SCSI direct-access devices.

Commands in this library include:

CONFIGURATION The SCSI library for direct access devices is automatically included when the
INCLUDE_SCSI2 component is configured.

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO dosFsLib, rawFsLib, scsi2Lib, the VxWorks programmer guides.

scsiLib

NAME scsiLib – Small Computer System Interface (SCSI) library

ROUTINES scsiPhysDevDelete() – delete a SCSI physical-device structure
scsiPhysDevCreate() – create a SCSI physical device structure
scsiPhysDevIdGet() – return a pointer to a SCSI_PHYS_DEV structure
scsiAutoConfig() – configure all devices connected to a SCSI controller
scsiShow() – list the physical devices attached to a SCSI controller
scsiBlkDevCreate() – define a logical partition on a SCSI block device
scsiBlkDevInit() – initialize fields in a SCSI logical partition
scsiBlkDevShow() – show the BLK_DEV structures on a specified physical device
scsiBusReset() – pulse the reset signal on the SCSI bus

Command Op Code
FORMAT UNIT (0x04)
READ (6) (0x08)
READ (10) (0x28)
READ CAPACITY (0x25)
RELEASE (0x17)
RESERVE (0x16)
MODE SELECT (6) (0x15)
MODE SELECT (10) (0x55)
MODE SENSE (6) (0x1a)
MODE SENSE (10) (0x5a)
START STOP UNIT (0x1b)
WRITE (6) (0x0a)
WRITE (10) (0x2a)

VxWorks Kernel API Reference, 6.6
scsiMgrLib

262

scsiIoctl() – perform a device-specific I/O control function
scsiFormatUnit() – issue a FORMAT_UNIT command to a SCSI device
scsiModeSelect() – issue a MODE_SELECT command to a SCSI device
scsiModeSense() – issue a MODE_SENSE command to a SCSI device
scsiReadCapacity() – issue a READ_CAPACITY command to a SCSI device
scsiRdSecs() – read sector(s) from a SCSI block device
scsiWrtSecs() – write sector(s) to a SCSI block device
scsiTestUnitRdy() – issue a TEST_UNIT_READY command to a SCSI device
scsiInquiry() – issue an INQUIRY command to a SCSI device
scsiReqSense() – issue a REQUEST_SENSE command to a SCSI device and read results

DESCRIPTION The purpose of this library is to switch SCSI function calls (the common SCSI-1 and SCSI-2
calls listed above) to either scsi1Lib or scsi2Lib, depending upon the SCSI configuration in
the Board Support Package (BSP). The normal usage is to configure SCSI-2. However,
SCSI-1 is configured when device incompatibilities exist. VxWorks can be configured with
either SCSI-1 or SCSI-2, but not both SCSI-1 and SCSI-2 simultaneously.

For more information about SCSI-1 functionality, refer to scsi1Lib. For more information
about SCSI-2, refer to scsi2Lib.

CONFIGURATION To use the SCSI system interface library, configure VxWorks with the INCLUDE_SCSI
component.

INCLUDE FILES scsiLib.h, scsi1Lib.h, scsi2Lib.h

SEE ALSO dosFsLib, rawFsLib, scsi1Lib, scsi2Lib, VxWorks Programmer's Guide: I/O System, Local File
Systems

scsiMgrLib

NAME scsiMgrLib – SCSI manager library (SCSI-2)

ROUTINES scsiMgrEventNotify() – notify the SCSI manager of a SCSI (controller) event
scsiMgrBusReset() – handle a controller-bus reset event
scsiMgrCtrlEvent() – send an event to the SCSI controller state machine
scsiMgrThreadEvent() – send an event to the thread state machine
scsiMgrShow() – show status information for the SCSI manager

DESCRIPTION This SCSI-2 library implements the SCSI manager. The purpose of the SCSI manager is to
manage SCSI threads between requesting VxWorks tasks and the SCSI controller. The SCSI
manager handles SCSI events and SCSI threads but allocation and de-allocation of SCSI
threads is not the manager's responsibility. SCSI thread management includes dispatching

1 Libraries
scsiSeqLib

263

1
threads and scheduling multiple threads (which are performed by the SCSI manager), plus
allocation and de-allocation of threads (which are performed by routines in scsi2Lib).

The SCSI manager is spawned as a VxWorks task upon initialization of the SCSI interface
within VxWorks. The entry point of the SCSI manager task is scsiMgr(). The SCSI manager
task is usually spawned during initialization of the SCSI controller driver. The driver's
xxxCtrlCreateScsi2() routine is typically responsible for such SCSI interface initializations.

Once the SCSI manager has been initialized, it is ready to handle SCSI requests from
VxWorks tasks. The SCSI manager has the following responsibilities:

- It processes requests from client tasks.

- It activates a SCSI transaction thread by appending it to the target device's wait queue
and allocating a specified time period to execute a transaction.

- It handles timeout events which cause threads to be aborted.

- It receives event notifications from the SCSI driver interrupt service routine (ISR) and
processes the event.

- It responds to events generated by the controller hardware, such as disconnection and
information transfer requests.

- It replies to clients when their requests have completed or aborted.

One SCSI manager task must be spawned per SCSI controller. Thus, if a particular
hardware platform contains more than one SCSI controller then that number of SCSI
manager tasks must be spawned by the controller-driver initialization routine.

CONFIGURATION The SCSI manager library is automatically configured when INCLUDE_SCSI2 is configured
in VxWorks.

INCLUDE FILES scsiLib.h, scsi2Lib.h

SEE ALSO scsiLib, scsi2Lib, scsiCommonLib, scsiDirectLib, scsiSeqLib, scsiCtrlLib, American
National Standard for Information Systems - Small Computer, System Interface (SCSI-2), ANSI
X3T9, the VxWorks programmer guides.

scsiSeqLib

NAME scsiSeqLib – SCSI sequential access device library (SCSI-2)

ROUTINES scsiSeqDevCreate() – create a SCSI sequential device
scsiErase() – issue an ERASE command to a SCSI device
scsiTapeModeSelect() – issue a MODE_SELECT command to a SCSI tape device
scsiTapeModeSense() – issue a MODE_SENSE command to a SCSI tape device

VxWorks Kernel API Reference, 6.6
scsiSeqLib

264

scsiSeqReadBlockLimits() – issue a READ_BLOCK_LIMITS command to a SCSI device
scsiRdTape() – read bytes or blocks from a SCSI tape device
scsiWrtTape() – write data to a SCSI tape device
scsiRewind() – issue a REWIND command to a SCSI device
scsiReserveUnit() – issue a RESERVE UNIT command to a SCSI device
scsiReleaseUnit() – issue a RELEASE UNIT command to a SCSI device
scsiLoadUnit() – issue a LOAD/UNLOAD command to a SCSI device
scsiWrtFileMarks() – write file marks to a SCSI sequential device
scsiSpace() – move the tape on a specified physical SCSI device
scsiSeqStatusCheck() – detect a change in media
scsiSeqIoctl() – perform an I/O control function for sequential access devices

DESCRIPTION This library contains commands common to all sequential-access SCSI devices.
Sequential-access SCSI devices are usually SCSI tape devices. These routines are separated
from scsi2Lib in order to create an additional layer for better support of all SCSI sequential
devices.

SCSI commands in this library include:

The SCSI routines implemented here operate mostly on a SCSI_SEQ_DEV structure. This
structure acts as an interface between this library and a higher-level layer. The SEQ_DEV
structure is analogous to the BLK_DEV structure for block devices.

The scsiSeqDevCreate() routine creates a SCSI_SEQ_DEV structure whose first element is
a SEQ_DEV, operated upon by higher layers. This routine publishes all functions to be
invoked by higher layers and maintains some state information (for example, block size) for
tracking SCSI-sequential-device information.

CONFIGURATION The SCSI sequential access device library is automatically included when you configure
VxWorks with the INCLUDE_SCSI2 component.

INCLUDE FILES scsiLib.h, scsi2Lib.h

Command Op Code
ERASE (0x19)
MODE SELECT (6) (0x15)
MODE_SENSE (6) (0x1a)
READ (6) (0x08)
READ BLOCK LIMITS (0x05)
RELEASE UNIT (0x17)
RESERVE UNIT (0x16)
REWIND (0x01)
SPACE (0x11)
WRITE (6) (0x0a)
WRITE FILEMARKS (0x10)
LOAD/UNLOAD (0x1b)

1 Libraries
sdLib

265

1
SEE ALSO tapeFsLib, scsi2Lib, the VxWorks programmer guides.

sdLib

NAME sdLib – shared data API layer

ROUTINES sdCreate() – create a new shared data region
sdOpen() – open a shared data region for use
sdDelete() – delete a shared data region
sdMap() – map a shared data region into an application or the kernel
sdUnmap() – unmap a shared data region from an application or the kernel
sdProtect() – change the protection attributes of a mapped SD
sdInfoGet() – get specific information about a Shared Data Region
sdCreateHookAdd() – add a hook routine to be called at Shared Data creation
sdCreateHookDelete() – delete a Shared Data creation hook routine
sdDeleteHookAdd() – add a hook routine to be called at Shared Data deletion
sdDeleteHookDelete() – delete a Shared Data deletion hook routine
sdGenericHookAdd() – add a hook routine to be called before Shared Data routine
sdGenericHookDelete() – delete a Shared Data generic hook routine

DESCRIPTION This library provides shared data region management for VxWorks. The purpose of shared
data regions is to allow physical memory, or other physical resources such as blocks of
memory mapped I/O space to be shared between multiple applications.

To configure shared data management into the system, the component
INCLUDE_SHARED_DATA must be included in the kernel.

To include display routines for shared data regions the component
INCLUDE_SHOW_ROUTINES must be configured in conjunction with
INCLUDE_SHARED_DATA.

CREATION A shared data region can be created via one of two routines:

 sdOpen (char * name, int options, int mode, UINT32 size,
 off_t64 physAddress, MMU_ATTR attr, void ** pVirtAddress);

 sdCreate (char * name, int options, UINT32 size, off_t64 physAddress,
 MMU_ATTR attr, void ** pVirtAddress);

The behavior of sdOpen is determined by the value of its mode parameter. If the default
value of 0 is passed, then a shared data region will not be created.

To create a shared data region using sdOpen() the OM_CREATE flag must be passed in the
mode parameter. If just this flag is passed in mode and a shared data region with the name
specified does not already exist in the system the region will be created. However, if a

VxWorks Kernel API Reference, 6.6
sdLib

266

shared data region name already exists, then sdOpen() will map that region into the
memory context of the calling task and return its SD_ID.

If both the OM_CREATE and OM_EXCL flags are passed in the mode parameter of sdOpen(),
then a new region will be created if a region with the name specified does not already exist
in the system. If such a region does exist then no region will be created and NULL will be
returned.

The behavior of sdCreate() is identical to that of sdOpen() with both the OM_CREATE and
OM_EXCL flag specified in the mode parameter.

While it is possible to specify a physical location of a shared data region with the arguments
physAddress and size, that address range must not be mapped into any other context in the
system. No other restrictions are placed. If physAddress is NULL the system will allocate the
physical memory from the available RAM. If there is not enough RAM available in the
system the creation will fail and NULL will be returned.

It is not possible to specify a virtual location for a shared data region. The location of the
region will be returned at pVirtAddress.

A size of greater than 0 must be specified to create a shared data region.

On creation the shared data region will be mapped into the memory context associated with
the task which invoked the call. The shared data region will be owned by either the RTP of
that task or the kernel if the task is a kernel task. If the shared data region is owned by a RTP
and that RTP exits the kernel will assume ownership of the region.

A shared data region is initially mapped into its owner's context with both read and write
access privileges in addition to those specified by attr. This may be changed by either a call
to sdProtect() or sdMap(). The MMU attribute value specified in attr will be the default
value for the shared data region. This will also serve as the limit of access privileges all
subsequent clients of the region may use. That is, if attr does not specify a particular
attribute applications other than the owner will not have, nor be able to set, that attribute on
the region within their memory context. For example, if attr is set to (SD_ATTR_RW |
SD_CACHE_OFF) an application other than the owner may use sdProtect() to restrict its
access to (SD_ATTR_RO | SD_CACHE_OFF), but not to set its access to (SD_ATTR_RWX |
SD_CACHE_OFF).

USING SHARED DATA

To access a shared data region from an application or the kernel it must be initially be
mapped to that application via a call to either sdOpen() or sdCreate().

These routines return a SD_ID which may be used by any task within that application. A
SD_ID may not be shared between applications or between an application and the kernel.

Once this initial mapping is done tasks in the application may access the memory as if it
were local unless explicitly unmapped by a task in the application with a call to sdUnmap().

Task may call the following routines using the application's unique SD_ID:

1 Libraries
sdShow

267

1
sdDelete()

sdMap()

sdUnmap()

sdProtect()

sdInfoGet()

By default each client application, excepting the owner, will have the access privileges
specified by the value of attr at creation. However, an application may change its access
privileges via a call to either sdProtect() or sdMap(), but will be limited to the default
attributes of the region or a subset thereof. The owner of a region will by default have both
read and write privileges in addition to the region default attributes and may change its
local access rights to any valid combination. See vmBaseLib for details on what valid
values of attr are available.

It is important to note that the shared data region object provides no mutual exclusion. If
more than one application, or the kernel and one application or more, require access to this
region some form of mutual exclusion must be used.

A shared data region may be created that is private to the creator by passing the
SD_PRIVATE option in the options field. No other application, including the kernel, will be
able to map such a region.

DELETING SHARED DATA

When all applications have unmapped a shared data region, it may be deleted using the
sdDelete() function. This will return all resources associated with the region and remove
it from the system. It is not possible to delete a shared data region that is still in use by an
application or the kernel. To unmap a shared data region from an application it is necessary
for a task in that application to call sdUnmap().

By default the last application to unmap a shared data region will force a deletion of the
region. However, if the shared data region was created with the option SD_LINGER
specified it will remain until explicitly deleted by calling sdDelete().

INCLUDE FILES sdLib.h

SEE ALSO rtpLib, slLib, vmBaseLib, the VxWorks programmer guides.

sdShow

NAME sdShow – Shared Data region show routine

ROUTINES sdShow() – display information for shared data regions

VxWorks Kernel API Reference, 6.6
selectLib

268

DESCRIPTION This library provides routines to display information about the Shared Data regions in the
system.

There are two levels of information that can be obtained: summary and full. For more
information see the sdShow() manual entries.

The information provided by the show routines should be considered an instantaneous
snapshot of the system. This function is only designed as a diagnostic aid. Programmatic
access to Shared Data information is provided through the function sdInfoGet(). Refer to
the manual entry for this routine for more information.

The sdShow() routine may be called only from the C interpreter shell.

CONFIGURATION To use the shared data region show routine, configure VxWorks with the
INCLUDE_SHARED_DATA_SHOW component.

INCLUDE FILES sdLib.h

SEE ALSO sdLib, the VxWorks programmer guides.

selectLib

NAME selectLib – UNIX BSD select library

ROUTINES selectInit() – initialize the select facility
select() – pend on a set of file descriptors
selWakeup() – wake up a task pended in select()
selWakeupAll() – wake up all tasks in a select() wake-up list
selNodeAdd() – add a wake-up node to a select() wake-up list
selNodeDelete() – find and delete a node from a select() wake-up list
selWakeupListInit() – initialize a select() wake-up list
selWakeupListTerm() – terminate a select() wake-up list
selWakeupListLen() – get the number of nodes in a select() wake-up list
selWakeupType() – get the type of a select() wake-up node

DESCRIPTION This library provides a BSD 4.3 compatible select facility to wait for activity on a set of file
descriptors. selectLib provides a mechanism that gives a driver the ability to detect pended
tasks that are awaiting activity on the driver's device. This allows a driver's interrupt
service routine to wake up such tasks directly, eliminating the need for polling.

Applications can use select() with pipes and serial devices, in addition to sockets. Also,
select() examines write file descriptors in addition to read file descriptors; however,
exception file descriptors remain unsupported.

1 Libraries
semBLib

269

1
Typically, application developers need concern themselves only with the select() call.
However, driver developers should become familiar with the other routines that may be
used with select(), if they wish to support the select() mechanism.

CONFIGURATION The select facility is included in a system when VxWorks is configured with the
INCLUDE_SELECT component.

INCLUDE FILES selectLib.h

SEE ALSO The VxWorks programmer guides.

semBLib

NAME semBLib – binary semaphore library

ROUTINES semBInitialize() – initialize a pre-allocated binary semaphore.
semBCreate() – create and initialize a binary semaphore

DESCRIPTION This library provides the interface to VxWorks binary semaphores. Binary semaphores are
the most versatile, efficient, and conceptually simple type of semaphore. They can be used
to: (1) control mutually exclusive access to shared devices or data structures, or (2)
synchronize multiple tasks, or task-level and interrupt-level processes. Binary semaphores
form the foundation of numerous VxWorks facilities.

A binary semaphore can be viewed as a cell in memory whose contents are in one of two
states, full or empty. When a task takes a binary semaphore, using semTake(), subsequent
action depends on the state of the semaphore:

(1) If the semaphore is full, the semaphore is made empty, and the calling task continues
executing.

(2) If the semaphore is empty, the task will be blocked, pending the availability of the
semaphore. If a timeout is specified and the timeout expires, the pended task will be
removed from the queue of pended tasks and enter the ready state with an ERROR
status. A pended task is ineligible for CPU allocation. Any number of tasks may be
pended simultaneously on the same binary semaphore.

When a task gives a binary semaphore, using semGive(), the next available task in the pend
queue is unblocked. If no task is pending on this semaphore, the semaphore becomes full.
Note that if a semaphore is given, and a task is unblocked that is of higher priority than the
task that called semGive(), the unblocked task will preempt the calling task.

VxWorks Kernel API Reference, 6.6
semBLib

270

MUTUAL EXCLUSION

To use a binary semaphore as a means of mutual exclusion, first create it with an initial state
of full. For example:

 SEM_ID semMutex;

 /* create a binary semaphore that is initially full */
 semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

Then guard a critical section or resource by taking the semaphore with semTake(), and exit
the section or release the resource by giving the semaphore with semGive(). For example:

 semTake (semMutex, WAIT_FOREVER);
 ... /* critical region, accessible only by one task at a time */

 semGive (semMutex);

While there is no restriction on the same semaphore being given, taken, or flushed by
multiple tasks, it is important to ensure the proper functionality of the mutual-exclusion
construct. While there is no danger in any number of processes taking a semaphore, the
giving of a semaphore should be more carefully controlled. If a semaphore is given by a task
that did not take it, mutual exclusion could be lost.

SYNCHRONIZATION

To use a binary semaphore as a means of synchronization, create it with an initial state of
empty. A task blocks by taking a semaphore at a synchronization point, and it remains
blocked until the semaphore is given by another task or interrupt service routine.

Synchronization with interrupt service routines is a particularly common need. Binary
semaphores can be given, but not taken, from interrupt level. Thus, a task can block at a
synchronization point with semTake(), and an interrupt service routine can unblock that
task with semGive().

In the following example, when init() is called, the binary semaphore is created, an
interrupt service routine is attached to an event, and a task is spawned to process the event.
Task 1 will run until it calls semTake(), at which point it will block until an event causes the
interrupt service routine to call semGive(). When the interrupt service routine completes,
task 1 can execute to process the event.

 SEM_ID semSync; /* ID of sync semaphore */

 init ()
 {
 intConnect (..., eventInterruptSvcRout, ...);
 semSync = semBCreate (SEM_Q_FIFO, SEM_EMPTY);
 taskSpawn (..., task1);
 }

 task1 ()
 {
 ...
 semTake (semSync, WAIT_FOREVER); /* wait for event */
 ... /* process event */

1 Libraries
semCLib

271

1
 }

 eventInterruptSvcRout ()
 {
 ...
 semGive (semSync); /* let task 1 process event */
 ...
 }

A semFlush() on a binary semaphore will atomically unblock all pended tasks in the
semaphore queue, i.e., all tasks will be unblocked at once, before any actually execute.

CAVEATS There is no mechanism to give back or reclaim semaphores automatically when tasks are
suspended or deleted. Such a mechanism, though desirable, is not currently feasible.
Without explicit knowledge of the state of the guarded resource or region, reckless
automatic reclamation of a semaphore could leave the resource in a partial state. Thus, if a
task ceases execution unexpectedly, as with a bus error, currently owned semaphores will
not be given back, effectively leaving a resource permanently unavailable. The
mutual-exclusion semaphores provided by semMLib offer protection from unexpected task
deletion.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES semLib.h

SEE ALSO semLib, semCLib, semMLib, the VxWorks programmer guides.

semCLib

NAME semCLib – counting semaphore library

ROUTINES semCInitialize() – initialize a pre-allocated counting semaphore.
semCCreate() – create and initialize a counting semaphore

DESCRIPTION This library provides the interface to VxWorks counting semaphores. Counting
semaphores are useful for guarding multiple instances of a resource.

VxWorks Kernel API Reference, 6.6
semCLib

272

A counting semaphore may be viewed as a cell in memory whose contents keep track of a
count. When a task takes a counting semaphore using semTake(), subsequent action
depends on the state of the count:

(1) If the count is non-zero, it is decremented and the calling task continues executing.

(2) If the count is zero, the task is blocked, pending the availability of the semaphore. If a
timeout is specified and the timeout expires, the pended task is removed from the
queue of pended tasks and enters the ready state with an ERROR status. A pended task
is ineligible for CPU allocation. Any number of tasks may be pended simultaneously
on the same counting semaphore.

When a task gives a semaphore, using semGive(), the next available task in the pend queue
is unblocked. If no task is pending on this semaphore, the semaphore count is incremented.
Note that if a semaphore is given, and a task is unblocked that is of higher priority than the
task that called semGive(), the unblocked task preempts the calling task.

A semFlush() on a counting semaphore atomically unblocks all pended tasks in the
semaphore queue. This means all tasks are made ready before any task actually executes.
The count of the semaphore remains unchanged.

INTERRUPT USAGE

Counting semaphores may be given but not taken from interrupt level.

CAVEATS There is no mechanism to give back or reclaim semaphores automatically when tasks are
suspended or deleted. Such a mechanism, though desirable, is not currently feasible.
Without explicit knowledge of the state of the guarded resource or region, reckless
automatic reclamation of a semaphore could leave the resource in a partial state. Thus, if a
task ceases execution unexpectedly, as with a bus error, currently owned semaphores are
not given back, effectively leaving a resource permanently unavailable. The
mutual-exclusion semaphores provided by semMLib offer protection from unexpected task
deletion.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES semLib.h

SEE ALSO semLib, semBLib, semMLib

1 Libraries
semExchange

273

1semEvLib

NAME semEvLib – VxWorks events support for semaphores

ROUTINES semEvStart() – start the event notification process for a semaphore
semEvStop() – stop the event notification process for a semaphore

DESCRIPTION This library is an extension to eventLib, the events library. Its purpose is to support events
for semaphores.

The functions in this library are used to control registration of tasks on a semaphore. The
routine semEvStart() registers a task and starts the notification process. The function
semEvStop() un-registers the task, which stops the notification mechanism.

When a task is registered and the semaphore becomes available, the events specified are
sent to that task. However, if a semTake() is to be done afterwards, there is no guarantee
that the semaphore will still be available.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES semEvLib.h

SEE ALSO eventLib, semLib

semExchange

NAME semExchange – semaphore exchange library

ROUTINES semExchange() – atomically give and take a pair of semaphores

DESCRIPTION This library provides the semExchange() routine. This routine atomically gives one
semaphore and takes another.

Currently on the binary and mutex semaphore types support the semExchange() operation.

VxWorks Kernel API Reference, 6.6
semInfo

274

The functionality provided by this library can be included/removed from the VxWorks
kernel using the INCLUDE_SEM_EXCHANGE component.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES semLib.h

SEE ALSO taskLib, semBLib, semCLib, semMLib, semSmLib, semRWLib, semEvLib, eventLib, the
VxWorks programmer guides.

semInfo

NAME semInfo – semaphore information routines

ROUTINES semInfo() – get information about tasks blocked on a semaphore
semInfoGet() – get information about a semaphore

DESCRIPTION This library provides routines to retrieve information about a semaphore.

The routine semInfo() returns information about tasks blocked on the semaphore.

Given a SEM_INFO structure, the routine semInfoGet() returns the type and state of the
semaphore, as well as the options used to create the semaphore, the number of blocked
tasks and the pending task IDs.

This component is required by the semaphore show routines. It can be included into the
VxWorks image using one of the following methods:

Using Workbench
With the kernel configurator include the INCLUDE_SEM_INFO component under the
FOLDER_KERNEL folder.

Using the vxprj Command Line Tool
Use the add command to include the INCLUDE_SEM_INFO component.

INCLUDE FILES semLib.h

1 Libraries
semLib

275

1semLib

NAME semLib – general semaphore library

ROUTINES semGive() – give a semaphore
semTake() – take a semaphore
semFlush() – unblock every task pended on a semaphore
semDelete() – delete a semaphore

DESCRIPTION Semaphores are the basis for synchronization and mutual exclusion in VxWorks. They are
powerful in their simplicity and form the foundation for numerous VxWorks facilities.

Different semaphore types serve different needs, and while the behavior of the types differs,
their basic interface is the same. This library provides semaphore routines common to all
VxWorks semaphore types. For all types, the two basic operations are semTake() and
semGive(), the acquisition or relinquishing of a semaphore.

Semaphore creation and initialization is handled by other libraries, depending on the type
of semaphore used. These libraries contain full functional descriptions of the semaphore
types:

semBLib - binary semaphores
semCLib - counting semaphores
semMLib - mutual exclusion semaphores
semRWLib - reader/writer semaphores
semSmLib - shared memory semaphores

Binary semaphores offer the greatest speed and the broadest applicability.

The semLib library provides all other semaphore operations, including routines for
semaphore control, deletion, and information. Semaphores must be validated before any
semaphore operation can be undertaken. An invalid semaphore ID results in ERROR, and
an appropriate errno is set.

SEMAPHORE CONTROL

The semTake() call acquires a specified semaphore, blocking the calling task or making the
semaphore unavailable. All semaphore types support a timeout on the semTake()
operation. The timeout is specified as the number of ticks to remain blocked on the
semaphore. Timeouts of WAIT_FOREVER and NO_WAIT codify common timeouts. If a
semTake() times out, it returns ERROR. Refer to the library of the specific semaphore type
for the exact behavior of this operation.

The semGive() call relinquishes a specified semaphore, unblocking a pended task or
making the semaphore available. Refer to the library of the specific semaphore type for the
exact behavior of this operation.

VxWorks Kernel API Reference, 6.6
semLib

276

The semFlush() call may be used to atomically unblock all tasks pended on a semaphore
queue, i.e., all tasks will be unblocked before any are allowed to run. It may be thought of
as a broadcast operation in synchronization applications. The state of the semaphore is
unchanged by the use of semFlush(); it is not analogous to semGive().

SEMAPHORE DELETION

The semDelete() call terminates a semaphore and deallocates any associated memory. The
deletion of a semaphore unblocks tasks pended on that semaphore; the routines which were
pended return ERROR. Take care when deleting semaphores, particularly those used for
mutual exclusion, to avoid deleting a semaphore out from under a task that already has
taken (owns) that semaphore. Applications should adopt the protocol of only deleting
semaphores that the deleting task has successfully taken.

SEMAPHORE INFORMATION

The semInfo() call is a useful debugging aid, reporting all tasks blocked on a specified
semaphore. It provides a snapshot of the queue at the time of the call, but because
semaphores are dynamic, the information may be out of date by the time it is available. As
with the current state of the semaphore, use of the queue of pended tasks should be
restricted to debugging uses only.

VXWORKS EVENTS If a task has registered for receiving events with a semaphore, events will be sent when that
semaphore becomes available. By becoming available, it is implied that there is a change of
state. For a binary semaphore, there is only a change of state when a semGive() is done on
a semaphore that was taken. For a counting semaphore, there is always a change of state
when the semaphore is available, since the count is incremented each time. For a mutex, a
semGive() can only be performed if the current task is the owner, implying that the
semaphore has been taken; thus, there is always a change of state. Events are not currently
supported for use with reader/writer semaphores.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES semLib.h

SEE ALSO taskLib, semBLib, semCLib, semMLib, semSmLib, semRWLib, semEvLib, eventLib, the
VxWorks programmer guides.

1 Libraries
semMLib

277

1semMLib

NAME semMLib – mutual-exclusion semaphore library

ROUTINES semMInitialize() – initialize a pre-allocated mutex semaphore.
semMGiveForce() – give a mutual-exclusion semaphore without restrictions
semMCreate() – create and initialize a mutual-exclusion semaphore

DESCRIPTION This library provides the interface to VxWorks mutual-exclusion semaphores.
Mutual-exclusion semaphores offer convenient options suited for situations requiring
mutually exclusive access to resources. Typical applications include sharing devices and
protecting data structures. Mutual-exclusion semaphores are used by many higher-level
VxWorks facilities.

The mutual-exclusion semaphore is a specialized version of the binary semaphore,
designed to address issues inherent in mutual exclusion, such as recursive access to
resources, priority inversion, and deletion safety. The fundamental behavior of the
mutual-exclusion semaphore is identical to the binary semaphore (see the manual entry for
semBLib), except for the following restrictions:

- It can only be used for mutual exclusion.
- It can only be given by the task that took it.
- It may not be taken or given from interrupt level.
- The semFlush() operation is illegal.

These last two operations have no meaning in mutual-exclusion situations.

RECURSIVE RESOURCE ACCESS

A special feature of the mutual-exclusion semaphore is that it may be taken "recursively,"
i.e., it can be taken more than once by the task that owns it before finally being released.
Recursion is useful for a set of routines that need mutually exclusive access to a resource,
but may need to call each other.

Recursion is possible because the system keeps track of which task currently owns a
mutual-exclusion semaphore. Before being released, a mutual-exclusion semaphore taken
recursively must be given the same number of times it has been taken; this is tracked by
means of a count which is incremented with each semTake() and decremented with each
semGive().

The example below illustrates recursive use of a mutual-exclusion semaphore. Function A
requires access to a resource which it acquires by taking semM; function A may also need
to call function B, which also requires semM:

 SEM_ID semM;

 semM = semMCreate (...);

VxWorks Kernel API Reference, 6.6
semMLib

278

 funcA ()
 {
 semTake (semM, WAIT_FOREVER);
 ...
 funcB ();
 ...
 semGive (semM);
 }

 funcB ()
 {
 semTake (semM, WAIT_FOREVER);
 ...
 semGive (semM);
 }

PRIORITY-INVERSION SAFETY

If the option SEM_INVERSION_SAFE is selected, the library adopts a priority-inheritance
protocol to resolve potential occurrences of "priority inversion," a problem stemming from
the use semaphores for mutual exclusion. Priority inversion arises when a higher-priority
task is forced to wait an indefinite period of time for the completion of a lower-priority task.

Consider the following scenario: T1, T2, and T3 are tasks of high, medium, and low priority,
respectively. T3 has acquired some resource by taking its associated semaphore. When T1
preempts T3 and contends for the resource by taking the same semaphore, it becomes
blocked. If we could be assured that T1 would be blocked no longer than the time it
normally takes T3 to finish with the resource, the situation would not be problematic.
However, the low-priority task is vulnerable to preemption by medium-priority tasks; a
preempting task, T2, could inhibit T3 from relinquishing the resource. This condition could
persist, blocking T1 for an indefinite period of time.

The priority-inheritance protocol solves the problem of priority inversion by elevating the
priority of T3 to the priority of T1 during the time T1 is blocked on T3. This protects T3, and
indirectly T1, from preemption by T2. Stated more generally, the priority-inheritance
protocol assures that a task which owns a resource will execute at the priority of the highest
priority task blocked on that resource. Once the task priority has been elevated, it remains
at the higher level until all contributing mutual- exclusion semaphores that the task owns
are released; then the task returns to its normal, or standard, priority. Hence, the
"inheriting" task is protected from preemption by any intermediate-priority tasks.

The priority-inheritance protocol also takes into consideration a task's ownership of more
than one mutual-exclusion semaphore at a time. Such a task will execute at the priority of
the highest priority task blocked on any of its owned resources. Under most circumstances,
the task will return to its normal priority only after relinquishing all contributing
mutual-exclusion semaphores.

The sole exception to this occurs if some task tried to lower the priority of a task involved in
priority inheritance by using taskPrioritySet(). This act creates some uncertainties in that
task's inheritance tracking that can only be made certain when all the inversion safe
mutual-exclusion semaphores that task has are known to be involved in its priority

1 Libraries
semMLib

279

1
inheritance. If all previously known contributing mutual-exclusion semaphores were to be
relinquished, the priority of that task might not be lowered to its newly assigned lower
priority. It will however at least be lowered to the last known "safe" value-- typically the
task's normal priority before that call to taskPrioritySet(). The priority can not be restored
to the new normal priority before these uncertainties are removed. At the absolute worst,
this is not until the task gives up all of its inversion safe mutual-exclusion semaphores.

SEMAPHORE DELETION

The semDelete() call terminates a semaphore and deallocates any associated memory. The
deletion of a semaphore unblocks tasks pended on that semaphore; the routines which were
pended return ERROR. Take special care when deleting mutual-exclusion semaphores to
avoid deleting a semaphore out from under a task that already owns (has taken) that
semaphore. Applications should adopt the protocol of only deleting semaphores that the
deleting task owns.

TASK-DELETION SAFETY

If the option SEM_DELETE_SAFE is selected, the task owning the semaphore will be
protected from deletion as long as it owns the semaphore. This solves another problem
endemic to mutual exclusion. Deleting a task executing in a critical region can be
catastrophic. The resource could be left in a corrupted state and the semaphore guarding
the resource would be unavailable, effectively shutting off all access to the resource.

As discussed in taskLib, the primitives taskSafe() and taskUnsafe() offer one solution, but
as this type of protection goes hand in hand with mutual exclusion, the mutual-exclusion
semaphore provides the option SEM_DELETE_SAFE, which enables an implicit taskSafe()
with each semTake(), and a taskUnsafe() with each semGive(). This convenience is also
more efficient, as the resulting code requires fewer entrances to the kernel.

CAVEATS There is no mechanism to give back or reclaim semaphores automatically when tasks are
suspended or deleted. Such a mechanism, though desirable, is not currently feasible.
Without explicit knowledge of the state of the guarded resource or region, reckless
automatic reclamation of a semaphore could leave the resource in a partial state. Thus if a
task ceases execution unexpectedly, as with a bus error, currently owned semaphores will
not be given back, effectively leaving a resource permanently unavailable. The
SEM_DELETE_SAFE option partially protects an application, to the extent that unexpected
deletions will be deferred until the resource is released.

Because the priority of a task which has been elevated by the taking of a mutual-exclusion
semaphore remains at the higher priority until all mutexes held by that task are released,
unbounded priority inversion situations can result when nested mutexes are involved. If
nested mutexes are required, consider the following alternatives:

1. Avoid overlapping critical regions.

2. Adjust priorities of tasks so that there are no tasks at intermediate priority levels.

3. Adjust priorities of tasks so that priority inheritance protocol is not needed.

VxWorks Kernel API Reference, 6.6
semOpen

280

4. Manually implement a static priority ceiling protocol using a non-inversion-save
mutex. This involves setting all blockers on a mutex to the ceiling priority, then taking
the mutex. After semGive, set the priorities back to the base priority. Note that this
implementation reduces the queue to a fifo queue.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES semLib.h

SEE ALSO semLib, semBLib, semCLib, the VxWorks programmer guides.

semOpen

NAME semOpen – extended semaphore library

ROUTINES semOpenInit() – initialize the semaphore open facility
semOpen() – open a named semaphore
semClose() – close a named semaphore
semUnlink() – unlink a named semaphore

DESCRIPTION The extended semaphore library includes the APIs to open, close, and unlink semaphores.
Since these APIs did not exist in VxWorks 5.5, to prevent the functions from being included
in the default image, they have been isolated from the general semaphore library.

INCLUDE FILES semLib.h

SEE ALSO msgQOpen, objOpen, taskOpen, timerOpen, the VxWorks, programmer guides.

semPxLib

NAME semPxLib – semaphore synchronization library (POSIX)

1 Libraries
semPxLib

281

1
ROUTINES semPxLibInit() – initialize POSIX semaphore support

sem_init() – initialize an unnamed semaphore (POSIX)
sem_destroy() – destroy an unnamed semaphore (POSIX)
sem_open() – initialize/open a named semaphore (POSIX)
sem_close() – close a named semaphore (POSIX)
sem_unlink() – remove a named semaphore (POSIX)
sem_wait() – lock (take) a semaphore, blocking if not available (POSIX)
sem_trywait() – lock (take) a semaphore, returning error if unavailable (POSIX)
sem_timedwait() – lock (take) a semaphore with a timeout (POSIX)
sem_post() – unlock (give) a semaphore (POSIX)
sem_getvalue() – get the value of a semaphore (POSIX)

DESCRIPTION This library implements the semaphore interface based on the POSIX 1003.1b specifications.
For alternative semaphore routines designed expressly for VxWorks, see the manual page
for semLib and other semaphore libraries mentioned there. POSIX semaphores are
counting semaphores; as such they are most similar to the semCLib VxWorks-specific
semaphores.

The main advantage of POSIX semaphores is portability (to the extent that alternative
operating systems also provide these POSIX interfaces). However, VxWorks-specific
semaphores provide the following features absent from the semaphores implemented in
this library: priority inheritance, task-deletion safety, the ability for a single task to take a
semaphore multiple times, ownership of mutual-exclusion semaphores, semaphore
timeout, and the choice of queuing mechanism.

POSIX defines both named and unnamed semaphores; semPxLib includes separate
routines for creating and deleting each kind. For other operations, applications use the
same routines for both kinds of semaphore.

TERMINOLOGY The POSIX standard uses the terms wait or lock where take is normally used in VxWorks, and
the terms post or unlock where give is normally used in VxWorks. VxWorks documentation
that is specific to the POSIX interfaces (such as the remainder of this manual entry, and the
manual entries for subroutines in this library) uses the POSIX terminology, in order to make
it easier to read in conjunction with other references on POSIX.

SEMAPHORE DELETION

The sem_destroy() call terminates an unnamed semaphore and deallocates any associated
memory; the combination of sem_close() and sem_unlink() has the same effect for named
semaphores. Take care when deleting semaphores, particularly those used for mutual
exclusion, to avoid deleting a semaphore out from under a task that has already locked that
semaphore. Applications should adopt the protocol of only deleting semaphores that the
deleting task has successfully locked. (Similarly, for named semaphores, applications
should take care to only close semaphores that the closing task has opened.)

If there are tasks blocked waiting for the semaphore, sem_destroy() fails and sets errno to
EBUSY.

VxWorks Kernel API Reference, 6.6
semPxShow

282

Detection of deadlock is not considered in this implementation.

INCLUDE FILES semaphore.h

SEE ALSO POSIX 1003.1b document, semLib, the VxWorks programmer guides.

semPxShow

NAME semPxShow – POSIX semaphore show library

ROUTINES semPxShowInit() – initialize the POSIX semaphore show facility
semPxShow() – display semaphore internals

DESCRIPTION This library provides a show routine for POSIX semaphore objects.

INCLUDE FILES semPxShow.h

semRWLib

NAME semRWLib – reader/writer semaphore library

ROUTINES semRWInitialize() – initialize a pre-allocated read/write semaphore.
semWTake() – take a semaphore in write mode
semRTake() – take a semaphore as a reader
semRWGiveForce() – give a reader/writer semaphore without restrictions
semRWCreate() – create and initialize a reader/writer semaphore

DESCRIPTION This library provides the interface to VxWorks reader/writer semaphores. Reader/writer
semaphores provide a method of synchronizing groups of tasks that can be granted
concurrent access to a resource with those tasks that require mutually exclusive access to
that resource. Typically this correlates to those tasks that intend to modify a resource and
those which intend only to view it.

Like a mutual-exclusion semaphore the following restrictions exist:

- It can only be given by the task that took it.
- It may not be taken or given from interrupt level.
- The semFlush() operation is illegal.

1 Libraries
semRWLib

283

1
A reader/writer semaphore differs from other semaphore types in that a mode is specified
by the choice of the "take" routine. It is this mode that determines whether the caller
requires mutually exclusive access or if concurrent access would suffice.

The two modes are "read" and "write", and specified by calling one of the following
routines:

semRTake() - take a semaphore in "read" mode

semWTake() - take a semaphore in "write" mode

For tasks that take a reader/writer semaphore in "write" mode the behavior is quite similar
to a mutex semaphore. That task will own the semaphore exclusively.

If a timeout other than NO_WAIT is specified an attempt to acquire a reader/writer
semaphore in "write" mode when the semaphore is held by another writer or any number
of readers will result in the caller pending.

The behavior of a reader/writer semaphore when taken in "read" mode is unique. This does
not imply exclusive access to a resource. In fact, a semaphore may be concurrently held in
this mode by a number of tasks. These tasks can be seen as collectively owning the
semaphore.

Mutual exclusion between a collection of reader tasks and all writer tasks will be
maintained.

If a timeout other than NO_WAIT is specified an attempt to acquire a reader/writer
semaphore in "read" mode when the semaphore is held by a writer will result in the caller
pending. Also, if the semaphore is held by other readers but the maximum concurrent
readers has been reached the caller will pend. If a task has attempted to take the semaphore
in "write" mode and pended for any reason all subsequent "read" takes will result in the
caller pending until all writers have run.

When a reader/writer semaphore becomes available a new owner is selected from any tasks
pended on the semaphore. If tasks are pended in "write" mode they will be granted
ownership in the order determined by the option specified for the semaphore at creation
(SEM_Q_FIFO or SEM_Q_PRIORITY). If no write tasks are pended then all tasks waiting for
the semaphore in "read" mode, up to the maximum concurrent readers specified for the
semaphore, will be granted ownership in "read" mode.

Though the maximum number of concurrent readers is set per semaphore at creation there
is also a limit on the maximum concurrent readers for a system as defined by
SEM_RW_MAX_CONCURRENT_READERS. The value of
SEM_RW_MAX_CONCURRENT_READERS will be used as the semaphore's maximum if a
larger value is specified at creation. This value should be set no larger than necessary as a
larger maximum concurrent reader value will result in longer interrupt and task response.

RECURSIVE RESOURCE ACCESS

Like mutex semaphores reader/writer semaphores support recursive access. Please refer to
the semMLib documentation for further details.

VxWorks Kernel API Reference, 6.6
semShow

284

WARNING While taking a reader/writer semaphore recursively through either the semWTake and
semRTake routines is allowed, an attempt to acquire a semaphore in both modes is not
allowed. The semWTake() routine will return ERROR if the semaphore is held by the caller
as a reader and the semRTake() routine will return ERROR if the semaphore is held by the
caller as a writer.

PRIORITY-INVERSION SAFETY

Like mutex semaphores reader/writer semaphores support priority inheritence. Please
refer to the semMLib documentation for further details.

SEMAPHORE DELETION

The semDelete() call terminates a semaphore and deallocates any associated memory. The
deletion of a semaphore unblocks tasks pended on that semaphore; the routines which were
pended return ERROR. Take special care when deleting read/write semaphores to avoid
deleting a semaphore out from under tasks that have taken that semaphore. In particular,
a semaphore should never be deleted when held in read mode and the option
SEM_DELETE_SAFE was passed at creation.

Applications should adopt the protocol of only deleting semaphores that the deleting task
owns in write mode.

TASK-DELETION SAFETY

Like mutex semaphores reader/writer semaphores support task deletion safety. Please
refer to the semMLib documentation for further details.

INCLUDE FILES semLib.h

SEE ALSO semLib, semMLib, semBLib, semCLib, VxWorks Programmer's Guide

semShow

NAME semShow – semaphore show routines

ROUTINES semShow() – show information about a semaphore

DESCRIPTION This library provides routines to show semaphore statistics, such as semaphore type,
semaphore queuing method, tasks pended, etc.

The semaphore show facility is configured into VxWorks using either of the following
methods:

1 Libraries
semSmLib

285

1
Using Workbench

With the kernel configurator include the INCLUDE_SEM_SHOW component under the
FOLDER_SHOW_ROUTINES folder.

Using the vxprj Command Line Tool
Use the add command to include the INCLUDE_SEM_SHOW component.

Routines in this library are meant to be used as debugging aids that display semaphore
information to standard output. Due to the dynamic nature of semaphore operations the
information displayed may no longer be accurate by the time it is provided.

INCLUDE FILES semLib.h

SEE ALSO semLib, VxWorks Programmer's Guide

semSmLib

NAME semSmLib – shared memory semaphore library (VxMP Option)

ROUTINES semBSmCreate() – create and initialize a shared memory binary semaphore (VxMP
Option)
semCSmCreate() – create and initialize a shared memory counting semaphore (VxMP
Option)

DESCRIPTION This library provides the interface to VxWorks shared memory binary and counting
semaphores. Once a shared memory semaphore is created, the generic
semaphore-handling routines provided in semLib are used to manipulate it. Shared
memory binary semaphores are created using semBSmCreate(). Shared memory counting
semaphores are created using semCSmCreate().

Shared memory binary semaphores are used to: (1) control mutually exclusive access to
multiprocessor-shared data structures, or (2) synchronize multiple tasks running in a
multiprocessor system. For general information about binary semaphores, see the manual
entry semBLib.

Shared memory counting semaphores are used for guarding multiple instances of a
resource used by multiple CPUs. For general information about shared counting
semaphores, see the manual entry for semCLib.

For information about the generic semaphore-handling routines, see the manual entry for
semLib.

MEMORY REQUIREMENTS

The semaphore structure is allocated from a dedicated shared memory partition.

VxWorks Kernel API Reference, 6.6
shellConfigLib

286

The shared semaphore dedicated shared memory partition is initialized by the shared
memory objects master CPU. The size of this partition is defined by the maximum number
of shared semaphores, set in the configuration parameter SM_OBJ_MAX_SEM .

This memory partition is common to shared binary and counting semaphores, thus
SM_OBJ_MAX_SEM must be set to the sum total of binary and counting semaphores to be
used in the system.

RESTRICTIONS Shared memory semaphores differ from local semaphores in the following ways:

Interrupt Use:
Shared semaphores may not be given, taken, or flushed at interrupt level.

Deletion:
There is no way to delete a shared semaphore and free its associated shared memory.
Attempts to delete a shared semaphore return ERROR and set errno to
S_smObjLib_NO_OBJECT_DESTROY .

Queuing Style:
The shared semaphore queuing style specified when the semaphore is created must be
FIFO.

INTERRUPT LATENCY

Internally, interrupts are locked while manipulating shared semaphore data structures,
thus increasing local CPU interrupt latency.

CONFIGURATION Before routines in this library can be called, the shared memory object facility must be
initialized by calling usrSmObjInit(). This is done automatically during VxWorks
initialization when the component INCLUDE_SM_OBJ is included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory support
option, VxMP.

INCLUDE FILES semSmLib.h

SEE ALSO semLib, semBLib, semCLib, smObjLib, semShow, usrSmObjInit(), the VxWorks
programmer guides.

shellConfigLib

NAME shellConfigLib – the shell configuration management module

ROUTINES shellConfigDefaultSet() – set default shell configuration
shellConfigSet() – set shell configuration

1 Libraries
shellDataLib

287

1
shellConfigDefaultGet() – get default shell configuration
shellConfigGet() – get the shell configuration
shellConfigDefaultValueSet() – set a default configuration variable value
shellConfigValueSet() – set a shell configuration variable value
shellConfigDefaultValueUnset() – unset a default configuration variable value
shellConfigValueUnset() – unset a shell configuration variable value
shellConfigDefaultValueGet() – get a default configuration variable value
shellConfigValueGet() – get a shell configuration variable value

DESCRIPTION This module manages the configuration variables of the kernel shell.

Configuration variables are used to store dynamic configuration of the shell core
mechanism itself or of shell commands. This concept is very similar to the UNIX or
Windows shell environment variables.

Configuration variables can be set either globaly to all shell sessions, or localy to a specific
one. A local configuration variable superseeds the global definition, if one exists.

It is also possible to unset a configuration variable (global or local).

INCLUDE FILES shellConfigLib.h, shellLib.h

SEE ALSO shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellDataLib

NAME shellDataLib – the shell data management module

ROUTINES shellDataFromNameAdd() – add user data to a specified shell
shellDataAdd() – add user data to a specified shell
shellDataRemove() – remove user data from a specified shell
shellDataFromNameGet() – get user data from a specified shell
shellDataGet() – get user data from a specified shell
shellDataFirst() – get the first user data that matchs a key
shellDataNext() – get the next user data that matchs a key

DESCRIPTION This module manages the user data that can be stored in or retrieved from a shell session
context.

This facility allows a routine called from a shell session to store private or public
information for a latter use by itself or an other routine. This information is local to a
specified shell session.

VxWorks Kernel API Reference, 6.6
shellInterpCmdLib

288

Information are stored and retreived using a key string that should be unique for a
dedicated information. Along with that key, an integer value is stored that defines the data
value. This value can be a pointer on specific structure for example.

At the shell termination, the data value may need a special handling. For example if this is
a pointer to an allocated buffer, it has to be freed in order to prevent memory leaks. For that
purpose, when a data is added to a shell session context, it is possible to specify a finalizing
routine. This routine will be called automaticaly when the shell session is terminated.

INCLUDE FILES shellDataLib.h

SEE ALSO shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellInterpCmdLib

NAME shellInterpCmdLib – the command interpreter library

ROUTINES shellCmdPreParseAdd() – define a command to be pre-parsed
shellCmdMemRegister() – register a buffer against the command interpreter
shellCmdMemUnregister() – unregister a buffer
shellCmdExec() – execute a shell command
shellCmdAdd() – add a shell command
shellCmdArrayAdd() – add an array of shell commands
shellCmdTopicAdd() – add a shell command topic
shellCmdAliasAdd() – add an alias string
shellCmdAliasArrayAdd() – add an array of alias strings
shellCmdAliasDelete() – delete an alias
shellCmdSymTabIdGet() – get symbol table Id of a shell session

DESCRIPTION This module contains several routines to manages the shell commands for the shell
command interpreter. At initialization time, it registers several commands in order to
access the tasks, the symbols, the file system, the memory, the breakpoints, the network and
the object. Some other basic commands are also registered. Check the command manual for
a list of available commands.

The module exports the necessary routines in order for the customer to create and easily add
its own commands to the command interpreter.

INCLUDE FILES shellInterpCmdLib.h

1 Libraries
shellLib

289

1shellInterpLib

NAME shellInterpLib – the shell interpreters management module

ROUTINES shellInterpEvaluate() – interpret a string by an interpreter
shellInterpRegister() – register a new interpreter
shellInterpByNameFind() – Find an interpreter based on its name
shellInterpCtxGet() – get the interpreter context
shellInterpDefaultNameGet() – get the name of the default interpreter
shellInterpNameGet() – get the name of the current interpreter

DESCRIPTION This module manages the multiple interpreter capability of the kernel shell. Few routines
are available from this library, mainly to register an interpreter, get the name of the current
interpreter of the shell session and get the current interpreter context of a shell session.

INCLUDE FILES shellInterpLib.h

SEE ALSO shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shellLib

NAME shellLib – the kernel shell module

ROUTINES shellGenericInit() – start a shell session
shellRestart() – restart a shell session
shellAbort() – abort a shell session
shellPromptSet() – change the shell prompt (vxWorks 5.5 compatibility)
shellScriptAbort() – signal the shell to stop processing a script (vxWorks 5.5 compatibility)
shellHistory() – display or set the size of the shell history (vxWorks 5.5 compatibility)
shellLock() – lock access to the shell (vxWorks 5.5 compatibility)
shellFirst() – get the first shell session
shellNext() – get the next shell session
shellIdVerify() – verify the validity of a shell session Id
shellTaskGet() – get the task Id of a shell session
shellFromTaskGet() – get a shell session Id from its task Id
shellFromNameGet() – get a shell session Id from a task name
shellErrnoSet() – set the shell session errno
shellErrnoGet() – get the shell session errno
shellCompatibleCheck() – check the compatibility mode of the shell
shellTerminate() – terminate a shell task
shellTaskIdDefault() – set the default task for a given shell session

VxWorks Kernel API Reference, 6.6
shellLib

290

shellResourceReleaseHookAdd() – add a resource-releasing hook to the shell

DESCRIPTION This library contains the execution support routines for the VxWorks kernel shell. The
kernel shell provides the basic programmer's interface to VxWorks.

This module gives access to the kernel shell. It is used to launch a new shell task
(shellXXXInit() functions), to control it (shellRestart()) and to end it (shellTerminate()).

INTERPRETERS The kernel shell is is a based on different interpreters:

- A C-expression interpreter, containing no built-in commands (as in previous version
of VxWorks).

- A command interpreter, containing several commands to manipulate task, file systems,
netwokr, objects, symbols... This interpreter is very similar to a UNIX shell interpreter
like sh or csh. The customer can add his/her own command to that interpreter.

- Any other interpreter of the customer.

The interpreters are registered against the shell at boot time (see the shellInterpLib library).
It is possible to switch dynamically from one interpreter to another using either a dedicated
command or by modifying directly the shell configuration variable INTERPRETER (see
below).

Each interpreter has its own private line history, and so the interpreter syntax are not mixed.

The nature, use, and syntax of the shell are fully described in the VxWorks Kernel
Programmer's Guide: Kernel Shell and Wind River Workbench Command-Line User's Guide 2.2:
Host Shell.

MULTIPLE SHELL SESSIONS

More than one kernel shell session can be launched at a time. But only one shell task can
have its standard input streams (STD_IN) attached to the console. Each of the shell tasks is
caracterized by a shell session identifier (type SHELL_ID) that can be known either by the
shell task name (shellFromNameGet()) or by the shell task ID (shellFromTaskGet()). Each
shell session has normally its own set of I/O, that does not interfere with the other shell
sessions or with the system. In that case, the global standard I/O is not modified by the
shell. Moreover, modifying the global standard I/O will not modify the I/O of the shell
session attached to the console. Dedicated APIs exist to modify a shell session I/O.

Obviously, this new feature may break the compatibility with previous version of VxWorks.
For that reason, it is possible to turn that feature off at kernel configuration time (check the
compatibility parameter of the kernel shell component). Turning this feature off sets the
kernel shell to a compatibility mode: one shell session shared between the different
connections (telnet/rlogin/console/wtxConsole) that modifies the global standard I/O of
the system.

SECURE ACCESS As for previous version of the shell, a remote connection is secured by a login/password
step if the security component is included into the VxWorks image. The secure access has

1 Libraries
shellLib

291

1
been extended to any other shell session, including the session attached to the console. This
feature is enabled by the secure parameter of the shell.

Two routines exist to set the login and logout function that have to be called by the shell.
They have to be set before creating a shell session. They are common to all shell session
initialization processes, but are copied into the shell context. As a consequence, when a shell
session as started, it is not possible to modify that functions anymore.

CONFIGURATION VARIABLES

Some behavior of the kernel shell can be modified through the use of configuration
variables. These variables can be defined at boot time (see the configuration parameters of
the shell component) and dynamicaly created and modified (see either dedicated command
of the interpreter or the shellConfigLib library). Configuration variables are like UNIX shell
variables or UNIX environment variables.

There are global variables (common to all shell sessions) and local variables to one shell
session. If one creates a local variable with the same name of a global variable, the local
overloads the global. If one modifies the value of a global variable with a routine dedicated
to local variables (see shellConfigLib), a new local variable with the same name is created.
Most of the routines or commands have a local scope, and so do not modify the
configuration values globally.

The shell defines and uses several configuration variables. Other modules may define and
use new variables.

The existing configuration variables used the core mechanism of the shell are:

INTERPRETER
Define the name of the current interpreter. Setting this variable allows to switch from
one interpreter to another one. The existing interpreters that come along the shell is the
C interpreter named "C" and the command interpreter named "Cmd".

LINE_LENGTH
Set the line editing length value. The value is taking into account only when a new
session is created.

LINE_EDIT_MODE
Define the name of the line edit mode to use for the shell session. The existing line
editing modes that come along the shell is "vi" and "emacs".

EXC_PRINT
If this variable is set to "on" (default), the exceptions are reported to the shell session.
Setting it to "off" stops the exception reporting to the shell session.

BP_PRINT
If this variable is set to "on" (default), the breakpoint notifications are reported to the
shell session. Setting it to "off" stops the breakpoint notifications reporting to the shell
session.

VxWorks Kernel API Reference, 6.6
shellPromptLib

292

AUTOLOGOUT
Set the autologout delay, in minutes. This variable is used when the shell session is
accessed with a login/password. After the lougout delay, and if no character is type to
the shell terminal, the shell session is automatically log out.

CPLUS_SYM_MATCH
When the kernel shell try to access a symbol, it first looks for its name as a C symbol
name. If the symbol cannot be located, the shell looks for its name as a partial C++
mangled symbol name. If this variable is set to "on" (default is "off"), the shell always
search for both symbol name format.

LINE EDITING MODE

The kernel shell has two line editing modes: the classical Vi-like one and the new
Emacs-like one (see ledLib documentation). Each and both can be added to the VxWorks
kernel. If both editing modes are included into the VxWorks image, it is possible to
dynamically switch between them, using the configuration variable LINE_EDIT_MODE.

SHELL TASK STACK SIZE

The kernel shell is using the VxWorks demangler to access C++ symbol names. The
demangler implementation uses a recursive descent parsing algorithm to decode C++
mangled symbol names. Demangling of symbols with an extremely high degree of template
nesting can require an arbitrarily large amount of stack space (nesting level of ~800 requires
~80K of stack), simply because of the depth of the call stack. If such symbols should be
accessed from the shell, it may be necessary to increase the shell task stack size, using the
shell component parameter SHELL_STACK_SIZE.

Notice that C++ standard says that implementations are not required to support a template
nesting depth greater than 17.

INCLUDE FILES shellLib.h

SEE ALSO VxWorks Kernel Programmer's Guide: Kernel Shell, Wind River Workbench Command-Line
User's Guide 2.2: Host Shell

shellPromptLib

NAME shellPromptLib – the shell prompt management module

ROUTINES shellPromptFmtStrAdd() – add a new prompt format string
shellPromptFmtSet() – set the current prompt format string
shellPromptFmtDftSet() – set the default prompt format string

1 Libraries
shlShow

293

1
DESCRIPTION This module manages the shell prompt strings defined by the interpreters. The shell prompt

is a regular string that can contain format strings to print various information (as for a UNIX
shell).

The format strings are composed of the percent (%) character plus one character. This
library provides the format strings:

%/ display the current working path

%h display the current history event number

%m display the target name

%% display the percent character

%n display the current user name

Other modules of the kernel can add their own format string using the function
shellPromptFmtStrAdd().

INCLUDE FILES shellLib.h

SEE ALSO shellLib, VxWorks Kernel Programmer's Guide: Kernel Shell

shlShow

NAME shlShow – Shared Library Show Routine

ROUTINES shlShow() – display information for shared libraries
rtpShlShow() – Display shared library information for an RTP

DESCRIPTION This library provides routines to display information about the Shared libraries in the Real
Time Processes (RTP). The routines are only included if the shared library component
(INCLUDE_SHL) and the shl show component (INCLUDE_SHL_SHOW) are configured into
the kernel.

The information provided by the show routines should be considered an instantaneous
snapshot of the system. The show function is designed only as a diagnostic aid and should
not be used programmatically.

The shlShow() routine is called from the C interpreter shell.

INCLUDE FILES shlLib.h

SEE ALSO shlLib, rtpLib, the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
sigLib

294

sigLib

NAME sigLib – software signal facility library

ROUTINES sigInit() – initialize the signal facilities
sigqueueInit() – initialize the queued signal facilities
sigemptyset() – initialize a signal set with no signals included (POSIX)
sigfillset() – initialize a signal set with all signals included (POSIX)
sigaddset() – add a signal to a signal set (POSIX)
sigdelset() – delete a signal from a signal set (POSIX)
sigismember() – test to see if a signal is in a signal set (POSIX)
signal() – specify the handler associated with a signal
sigaction() – examine and/or specify the action associated with a signal (POSIX)
sigprocmask() – examine and/or change the signal mask (POSIX)
sigpending() – retrieve the set of pending signals blocked from delivery (POSIX)
sigsuspend() – suspend the task until delivery of a signal (POSIX)
pause() – suspend the task until delivery of a signal (POSIX)
sigtimedwait() – wait for a signal
sigwaitinfo() – wait for real-time signals
sigwait() – wait for a signal to be delivered (POSIX)
sigvec() – install a signal handler
sigsetmask() – set the signal mask
sigblock() – add to a set of blocked signals
raise() – send a signal to the caller's task
taskRaise() – send a signal to the caller's task
kill() – send a signal to a task (POSIX)
taskKill() – send a signal to a task
sigqueue() – send a queued signal to a task
taskSigqueue() – send a queued signal to a task

DESCRIPTION This library provides a signal interface for tasks. Signals are used to alter the flow control
of tasks by communicating asynchronous events within or between task contexts. Any task
or interrupt service can "raise" (or send) a signal to a particular task. The task being signaled
will immediately suspend its current thread of execution and invoke a task-specified "signal
handler" routine. The signal handler is a user-supplied routine that is bound to a specific
signal and performs whatever actions are necessary whenever the signal is received.
Signals are most appropriate for error and exception handling, rather than as a general
purpose intertask communication mechanism.

This library has both a BSD 4.3 and POSIX signal interface. The POSIX interface provides a
standardized interface which is more functional than the traditional BSD 4.3 interface. The
chart below shows the correlation between BSD 4.3 and POSIX 1003.1 functions. An
application should use only one form of interface and not intermix them.

1 Libraries
sigLib

295

1

POSIX 1003.1b (Real-Time Extensions) also specifies a queued-signal facility that involves
four additional routines: sigqueue(), sigwaitinfo(), and sigtimedwait().

The default handling of a signal differs significantly from the POSIX specification. When
SIG_DFL is specified as the value of its handler a signal will be ignored.

In many ways, signals are analogous to hardware interrupts. The signal facility provides a
set of 63 distinct signals. A signal can be raised by calling kill(), which is analogous to an
interrupt or hardware exception. A signal handler is bound to a particular signal with
sigaction() in much the same way that an interrupt service routine is connected to an
interrupt vector with intConnect(). Signals are blocked for the duration of the signal
handler, just as interrupts are locked out for the duration of the interrupt service routine.
Tasks can block the occurrence of certain signals with sigprocmask(), just as the interrupt
level can be raised or lowered to block out levels of interrupts. If a signal is blocked when
it is raised, its handler routine will be called when the signal becomes unblocked. Caution
is suggested when calling routines that may block during a signal handler as this may
introduce deadlock situations.

Several routines (sigprocmask(), sigpending(), and sigsuspend()) take sigset_t data
structures as parameters. These data structures are used to specify signal set masks.
Several routines are provided for manipulating these data structures: sigemptyset() clears
all the bits in a segset_t, sigfillset() sets all the bits in a sigset_t, sigaddset() sets the bit in
a sigset_t corresponding to a particular signal number, sigdelset() resets the bit in a
sigset_t corresponding to a particular signal number, and sigismember() tests to see if the
bit corresponding to a particular signal number is set.

CONFIGURATION To use the software signal facility library, configure VxWorks with the INCLUDE_SIGNALS
component.

FUNCTION RESTARTING

If a task is pended (for instance, by waiting for a semaphore to become available) and a
signal is sent to the task for which the task has a handler installed, then the handler will run
before the semaphore is taken. When the handler returns the task will go back to being

BSD 4.3 POSIX 1003.1
sigmask() sigemptyset(),

sigfillset(),
sigaddset(),
sigdelset(),
sigismember()

sigblock() sigprocmask()
sigsetmask() sigprocmask()
pause() sigsuspend()
sigvec() sigaction()
(none) sigpending()
signal() signal()
kill() kill()

VxWorks Kernel API Reference, 6.6
sigLib

296

pended (waiting for the semaphore). If there was a timeout used for the pend, then the
original value will be used again when the task returns from the signal handler and goes
back to being pended. If the handler alters the execution path, via a call to longjmp() for
example, and does not return then the task does not go back to being pended.

Signal handlers are typically defined as:

 void sigHandler
 (
 int sig, /* signal number */
)
 {
 ...
 }

In VxWorks, the signal handler is passed additional arguments and can be defined as:

 void sigHandler
 (
 int sig, /* signal number */
 int code, /* additional code */
 struct sigcontext *pSigContext /* context of task before signal
*/
)
 {
 ...
 }

The parameter code is valid only for signals caused by hardware exceptions. In this case, it
is used to distinguish signal variants. For example, both numeric overflow and zero divide
raise SIGFPE (floating-point exception) but have different values for code. (Note that when
the above VxWorks extensions are used, the compiler may issue warnings.)

SIGNAL HANDLER DEFINITION

Signal handling routines must follow one of two specific formats, so that they may be
correctly called by the operating system when a signal occurs.

Traditional signal handlers receive the signal number as the sole input parameter.
However, certain signals generated by routines which make up the POSIX Real-Time
Extensions (P1003.1b) support the passing of an additional application-specific value to the
handler routine. These include signals generated by the sigqueue() call, by asynchronous
I/O, by POSIX real-time timers, and by POSIX message queues.

If a signal handler routine is to receive these additional parameters, SA_SIGINFO must be
set in the sa_flags field of the sigaction structure which is a parameter to the sigaction()
routine. Such routines must take the following form:

 void sigHandler (int sigNum, siginfo_t * pInfo, void * pContext);

Traditional signal handling routines must not set SA_SIGINFO in the sa_flags field, and
must take the form of:

 void sigHandler (int sigNum);

1 Libraries
sigLib

297

1
EXCEPTION PROCESSING

Certain signals, defined below, are raised automatically when hardware exceptions are
encountered. This mechanism allows user-defined exception handlers to be installed. This
is useful for recovering from catastrophic events such as bus or arithmetic errors. Typically,
setjmp() is called to define the point in the program where control will be restored, and
longjmp() is called in the signal handler to restore that context. Note that longjmp()
restores the state of the task's signal mask. If a user-defined handler is not installed or the
installed handler returns for a signal raised by a hardware exception, then the task is
suspended and a message is logged to the console.

The following is a list of hardware exceptions caught by VxWorks and delivered to the
offending task. The user may include the higher-level header file sigCodes.h in order to
access the appropriate architecture-specific header file containing the code value.

If the configuration parameter POSIX_SIGNAL_MODE is defined as true VxWorks will
generate signals on exception as defined by the POSIX 1003.1 specification. This mode will
be automatically specified if the component INCLUDE_RTP_POSIX_PSE52 is included.

If the POSIX_SIGNAL_MODE parameter is defined as false a backward compatible mode
will be used. This mode will generate the signals used in previous versions of VxWorks
when an exception occurs.

ARM

Coldfire

Signal Mode
VxWorks POSIX Code Exception
SIGILL SIGILL EXC_OFF_RESET branch through zero
SIGILL SIGILL EXC_OFF_UNDEF undefined instruction
SIGILL SIGILL EXC_OFF_SWI software interrupt
SIGSEGV SIGSEGV EXC_OFF_PREFETCH instruction prefetch abort
SIGSEGV SIGSEGV EXC_OFF_DATA data access

Signal Mode
VxWorks POSIX Code Exception
SIGSEGV SIGSEGV IV_ACCESS_FAULT access fault
SIGBUS SIGBUS IV_ADDRESS_ERROR address error
SIGILL SIGILL IV_ILLEGAL_INSTRUCTION illegal instruction
SIGFPE SIGFPE IV_ZERO_DIVIDE divide by zero
SIGILL SIGILL IV_PRIVILEGE_VIOLATION privelege instr violation
SIGTRAP SIGTRAP IV_TRACE trace trap
SIGEMT SIGTRAP IV_LINE_1010_EMULATOR line 1010 emulation
SIGEMT SIGTRAP IV_LINE_1111_EMULATOR line 1111 emulation
SIGILL SIGILL IV_CP_PROTOCOL_VIOLATION coprocessor protocol

error
SIGFMT SIGILL IV_FORMAT_ERROR exception frame format

error

VxWorks Kernel API Reference, 6.6
sigLib

298

MIPS R3000/R4000

Intel i386/i486

SIGFPE SIGFPE IV_FPCP_B_S_U_CONDITION branch/set on unordered
SIGFPE SIGFPE IV_FPCP_INEXACT_RESULT inexact result
SIGFPE SIGFPE IV_FP_UNDERFLOW underflow
SIGFPE SIGFPE IV_FP_UNDERFLOW overflow
SIGFPE SIGFPE IV_FP_OPERAND_ERROR operand error
SIGFPE SIGFPE IV_SIGNALING_NAN signaling NAN
SIGILL SIGILL IV_UNIMP_DATA_TYPE unimplemented data type
SIGILL SIGILL IV_PMMU_CONFIGURATION invalid MMU

configuration
SIGILL SIGILL IV_PMMU_ILLEGAL_OPERATION invalid MMU operation
SIGSEGV SIGSEGV IV_PMMU_ACCESS_LEVEL

_VIOLATON
protected address access

SIGBUS SIGBUS IV_UNIMP_EFFECTIVE_ADDRESS unimplemented effective
addr

SIGILL SIGILL IV_UNIMP_INTEGER
_INSTRUCTION

unimplemented integer
instr

Signal Mode
VxWorks POSIX Code Exception
SIGBUS SIGSEGV BUS_TLBMOD TLB modified
SIGBUS SIGSEGV BUS_TLBL TLB miss on a load instruction
SIGBUS SIGSEGV BUS_TLBS TLB miss on a store

instruction
SIGBUS SIGBUS BUS_ADEL address alignment error on

load instr
SIGBUS SIGBUS BUS_ADES address alignment error on

store instr
SIGSEGV SIGBUS SEGV_IBUS bus error (instruction)
SIGSEGV SIGBUS SEGV_DBUS bus error (data)
SIGTRAP SIGTRAP TRAP_SYSCALL syscall instruction executed
SIGTRAP SIGTRAP TRAP_BP break instruction executed
SIGILL SIGILL ILL_ILLINSTR_FAULT reserved instruction
SIGILL SIGILL ILL_COPROC_UNUSABLE coprocessor unusable
SIGFPE SIGFPE FPE_FPA_UIO, SIGFPE unimplemented FPA

operation
SIGFPE SIGFPE FPE_FLTNAN_TRAP invalid FPA operation
SIGFPE SIGFPE FPE_FLTDIV_TRAP FPA divide by zero
SIGFPE SIGFPE FPE_FLTOVF_TRAP FPA overflow exception
SIGFPE SIGFPE FPE_FLTUND_TRAP FPA underflow exception
SIGFPE SIGFPE FPE_FLTINEX_TRAP FPA inexact operation

Signal Mode
VxWorks POSIX Code Exception

1 Libraries
sigLib

299

1

PowerPC

Hitachi SH770x

SIGILL SIGILL ILL_DIVIDE_ERROR divide error
SIGEMT SIGTRAP EMT_DEBUG debugger call.
SIGILL SIGILL ILL_NON_MASKABLE NMI interrupt
SIGEMT SIGTRAP EMT_BREAKPOINT breakpoint
SIGILL SIGILL ILL_OVERFLOW INTO-detected overflow
SIGILL SIGILL ILL_BOUND bound range exceeded
SIGILL SIGILL ILL_INVALID_OPCODE invalid opcode
SIGFPE SIGFPE FPE_NO_DEVICE device not available
SIGILL SIGILL ILL_DOUBLE_FAULT double fault
SIGFPE SIGFPE FPE_CP_OVERRUN coprocessor segment overrun
SIGILL SIGILL ILL_INVALID_TSS invalid task state segment
SIGBUS SIGBUS BUS_NO_SEGMENT segment not present
SIGBUS SIGBUS BUS_STACK_FAULT stack exception
SIGILL SIGILL ILL_PROTECTION_FAULT general protection
SIGBUS SIGSEGV BUS_PAGE_FAULT page fault
SIGILL SIGILL ILL_RESERVED (intel reserved)
SIGFPE SIGFPE FPE_CP_ERROR coprocessor error
SIGBUS SIGBUS BUS_ALIGNMENT alignment check

Signal Mode
VxWorks POSIX Code Exception
SIGBUS SIGBUS _EXC_OFF_MACH machine check
SIGBUS SIGSEGV _EXC_OFF_INST instruction access
SIGBUS SIGBUS _EXC_OFF_ALIGN alignment
SIGILL SIGILL _EXC_OFF_PROG program
SIGBUS SIGSEGV _EXC_OFF_DATA data access
SIGBUS SIGSEGV _EXC_OFF_PROT data access (PPC405)
SIGFPE SIGFPE _EXC_OFF_FPU floating point unavailable
SIGTRAP SIGTRAP _EXC_OFF_DBG debug exception
SIGTRAP SIGTRAP _EXC_OFF_INST_BRK inst. breakpoint
SIGTRAP SIGTRAP _EXC_OFF_TRACE trace
SIGBUS SIGBUS _EXC_OFF_CRTL critical interrupt
SIGILL SIGILL _EXC_OFF_SYSCALL system call

Signal Mode
VxWorks POSIX Code Exception
SIGSEGV SIGSEGV TLB_LOAD_MISS TLB miss/invalid (load)
SIGSEGV SIGSEGV TLB_STORE_MISS TLB miss/invalid (store)
SIGSEGV SIGSEGV TLB_INITITIAL_PAGE_WRITE Initial page write
SIGSEGV SIGSEGV TLB_LOAD_PROTEC_VIOLATION TLB prot. violation (load)
SIGSEGV SIGSEGV TLB_STORE_PROTEC_VIOLATION TLB prot. violation (store)
SIGBUS SIGSEGV BUS_LOAD_ADDRESS_ERROR Address error (load)
SIGBUS SIGSEGV BUS_STORE_ADDRESS_ERROR Address error (store)

VxWorks Kernel API Reference, 6.6
sigLib

300

Hitachi SH7604/SH704x/SH703x/SH702x

SIMNT simulator

SIMLINUX simulator

SIGILL SIGILL ILLEGAL_INSTR_GENERAL general illegal instruction
SIGILL SIGILL ILLEGAL_SLOT_INSTR slot illegal instruction
SIGFPE SIGILL FPE_INTDIV_TRAP integer zero divide

Signal Mode
VxWorks POSIX Code Exception
SIGILL SIGILL ILL_ILLINSTR_GENERAL general illegal instruction
SIGILL SIGILL ILL_ILLINSTR_SLOT slot illegal instruction
SIGBUS SIGSEGV BUS_ADDERR_CPU CPU address error
SIGBUS SIGSEGV BUS_ADDERR_DMA DMA address error
SIGFPE SIGFPE FPE_INTDIV_TRAP integer zero divide

Signal Mode
VxWorks POSIX Code Exception
SIGFPE SIGFPE EXC_INT_DIVIDE_BY_ZERO Integer zero divide
SIGEMT SIGTRAP EXC_SINGLE_STEP Single step
SIGSEGV SIGBUS EXC_DATATYPE_MISALIGNMENT Data aligment
SIGEMT SIGTRAP EXC_BREAKPOINT Breakpoint
SIGSEGV SIGSEGV EXC_IN_PAGE_ERROR In page error
SIGILL SIGILL EXC_ILLEGAL_INSTRUCTION Illegal instruction
SIGILL SIGILL EXC_INVALID_DISPOSITION Invalid disposition
SIGBUS SIGSEGV EXC_ARRAY_BOUNDS_EXCEEDED Array bounds exceeded
SIGILL SIGFPE EXC_FLT_DENORMAL_OPERAND Floating point

denormalize
SIGFPE SIGFPE EXC_FLT_DIVIDE_BY_ZERO Floating point zero

divide
SIGFPE SIGFPE EXC_FLT_INEXACT_RESULT Floating point inexact

result
SIGFPE SIGFPE EXC_FLT_INVALID_OPERATION Floating point invalid

operation
SIGFPE SIGFPE EXC_FLT_OVERFLOW Floating point overflow
SIGSEGV SIGSEGV EXC_ACCESS_VIOLATION Access violation
SIGBUS SIGBUS EXC_FLT_STACK_CHECK Floating point stack

check
SIGFPE SIGFPE EXC_FLT_UNDERFLOW Floating point

underflow
SIGFPE SIGFPE EXC_INT_OVERFLOW Integer overflow
SIGILL SIGILL EXC_PRIV_INSTRUCTION Private instruction
SIGBUS SIGBUS EXC_STACK_OVERFLOW Stack overflow
SIGILL SIGILL EXC_UNKNOWN Unknown

Signal Mode

1 Libraries
smMemLib

301

1

SIMSOLARIS simulator

Two signals are provided for application use: SIGUSR1 and SIGUSR2. VxWorks will never
use these signals; however, other signals may be used by VxWorks in the future.

INCLUDE FILES signal.h

SEE ALSO intLib, IEEE POSIX 1003.1b, the VxWorks programmer guides.

smMemLib

NAME smMemLib – shared memory management library (VxMP Option)

ROUTINES memPartSmCreate() – create a shared memory partition (VxMP Option)
smMemAddToPool() – add memory to shared memory system partition (VxMP Option)
smMemOptionsSet() – set debug options for shared memory system partition (VxMP
Option)
smMemMalloc() – allocate block of memory from shared memory system partition (VxMP
Option)
smMemCalloc() – allocate memory for array from shared memory system partition (VxMP
Option)
smMemRealloc() – reallocate block of memory from shared memory system partition
(VxMP Option)
smMemFree() – free a shared memory system partition block of memory (VxMP Option)
smMemFindMax() – find largest free block in shared memory system partition (VxMP
Option)

VxWorks POSIX Code Exception
SIGSEGV SIGSEGV IV_SEGV Segmentation violation
SIGBUS SIGBUS IV_BUS Bus error
SIGILL SIGILL IV_ILL Illegal instruction
SIGFPE SIGFPE IV_FPE Floating point exception
SIGTRAP SIGTRAP IV_TRAP Trap

Signal Mode
VxWorks POSIX Code Exception
SIGSEGV SIGSEGV IV_SEGV Segmentation violation
SIGBUS SIGBUS IV_BUS Bus error
SIGILL SIGILL IV_ILL Illegal instruction
SIGFPE SIGFPE IV_FPE Floating point exception
SIGTRAP SIGTRAP IV_TRAP Trap

VxWorks Kernel API Reference, 6.6
smMemLib

302

DESCRIPTION This library provides facilities for managing the allocation of blocks of shared memory from
ranges of memory called shared memory partitions. The routine memPartSmCreate() is
used to create shared memory partitions in the shared memory pool. The created partition
can be manipulated using the generic memory partition calls, memPartAlloc(),
memPartFree(), etc. (for a complete list of these routines, see the manual entry for
memPartLib). The maximum number of partitions that can be created is determined by the
configuration parameter SM_OBJ_MAX_MEM_PART .

The smMem...() routines provide an easy-to-use interface to the shared memory system
partition. The shared memory system partition is created when the shared memory object
facility is initialized.

Shared memory management information and statistics display routines are provided by
smMemShow.

The allocation of memory, using memPartAlloc() in the general case and smMemMalloc()
for the shared memory system partition, is done with a first-fit algorithm. Adjacent blocks
of memory are coalesced when freed using memPartFree() and smMemFree().

There is a 28-byte overhead per allocated block (architecture dependent), and allocated
blocks are aligned on a 16-byte boundary.

All memory used by the shared memory facility must be in the same address space, that is,
it must be reachable from all the CPUs with the same offset as the one used for the shared
memory anchor.

CONFIGURATION Before routines in this library can be called, the shared memory objects facility must be
initialized by a call to usrSmObjInit(), which is found in
target/config/comps/src/usrSmObj.c. This is done automatically by VxWorks when the
INCLUDE_SM_OBJ component is included.

Various debug options can be selected for each partition using memPartOptionsSet() and
smMemOptionsSet(). Two kinds of errors are detected: attempts to allocate more memory
than is available, and bad blocks found when memory is freed. In both cases, options can
be selected for system actions to take place when the error is detected: (1) return the error
status, (2) log an error message and return the error status, or (3) log an error message and
suspend the calling task.

One of the following options can be specified to determine the action to be taken when there
is an attempt to allocate more memory than is available in the partition:

MEM_ALLOC_ERROR_RETURN
just return the error status to the calling task.

MEM_ALLOC_ERROR_LOG_MSG
log an error message and return the status to the calling task.

MEM_ALLOC_ERROR_LOG_AND_SUSPEND
log an error message and suspend the calling task.

1 Libraries
smMemShow

303

1
The following option is specified by default to check every block freed to the partition. If
this option is specified, memPartFree() and smMemFree() will make a consistency check
of various pointers and values in the header of the block being freed.

MEM_BLOCK_CHECK
check each block freed.

One of the following options can be specified to determine the action to be taken when a bad
block is detected when freed. These options apply only if the MEM_BLOCK_CHECK option
is selected.

MEM_BLOCK_ERROR_RETURN
just return the status to the calling task.

MEM_BLOCK_ERROR_LOG_MSG
log an error message and return the status to the calling task.

MEM_BLOCK_ERROR_LOG_AND_SUSPEND
log an error message and suspend the calling task.

The default options when a shared partition is created are
MEM_ALLOC_ERROR_LOG_MSG, MEM_BLOCK_CHECK, MEM_BLOCK_ERROR_RETURN.

When setting options for a partition with memPartOptionsSet() or smMemOptionsSet(),
use the logical OR operator between each specified option to construct the options
parameter. For example:

 memPartOptionsSet (myPartId, MEM_ALLOC_ERROR_LOG_MSG |
 MEM_BLOCK_CHECK |
 MEM_BLOCK_ERROR_LOG_MSG);

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smMemLib.h

SEE ALSO smMemShow, memLib, memPartLib, smObjLib, usrSmObjInit(), the VxWorks
programmer guides.

smMemShow

NAME smMemShow – shared memory management show routines (VxMP Option)

ROUTINES smMemShow() – show the shared memory system partition blocks and statistics (VxMP
Option)

DESCRIPTION This library provides routines to show the statistics on a shared memory system partition.

VxWorks Kernel API Reference, 6.6
smNameLib

304

General shared memory management routines are provided by smMemLib.

CONFIGURATION The routines in this library are included by default if the component INCLUDE_SM_OBJ is
included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smLib.h, smObjLib.h, smMemLib.h

SEE ALSO smMemLib, the VxWorks programmer guides.

smNameLib

NAME smNameLib – shared memory objects name database library (VxMP Option)

ROUTINES smNameAdd() – add a name to the shared memory name database (VxMP Option)
smNameFind() – look up a shared memory object by name (VxMP Option)
smNameFindByValue() – look up a shared memory object by value (VxMP Option)
smNameRemove() – remove an object from the shared memory objects name database
(VxMP Option)

DESCRIPTION This library provides facilities for managing the shared memory objects name database. The
shared memory objects name database associates a name and object type with a value and
makes that information available to all CPUs. A name is an arbitrary, null-terminated
string. An object type is a small integer, and its value is a global (shared) ID or a global
shared memory address.

Names are added to the shared memory name database with smNameAdd(). They are
removed by smNameRemove().

Objects in the database can be accessed by either name or value. The routine
smNameFind() searches the shared memory name database for an object of a specified
name. The routine smNameFindByValue() searches the shared memory name database
for an object of a specified identifier or address.

Name database contents can be viewed using smNameShow().

The maximum number of names to be entered in the database is defined in the configuration
parameter SM_OBJ_MAX_NAME . This value is used to determine the size of a dedicated
shared memory partition from which name database fields are allocated.

The estimated memory size required for the name database can be calculated as follows:

 name database pool size = SM_OBJ_MAX_NAME * 40 (bytes)

1 Libraries
smNameLib

305

1
The display facility for the shared memory objects name database is provided by the
smNameShow module.

EXAMPLE The following code fragment allows a task on one CPU to enter the name, associated ID, and
type of a created shared semaphore into the name database. Note that CPU numbers can
belong to any CPU using the shared memory objects facility.

On CPU 1 :

 #include "vxWorks.h"
 #include "semLib.h"
 #include "smNameLib.h"
 #include "semSmLib.h"
 #include "stdio.h"

 testSmSem1 (void)
 {
 SEM_ID smSemId;

 /* create a shared semaphore */

 if ((smSemId = semBSmCreate(SEM_Q_FIFO, SEM_EMPTY)) == NULL)
 {
 printf ("Shared semaphore creation error.");
 return (ERROR);
 }

 /*
 * make created semaphore Id available to all CPUs in
 * the system by entering its name in shared name database.
 */

 if (smNameAdd ("smSem", smSemId, T_SM_SEM_B) != OK)
 {
 printf ("Cannot add smSem into shared database.");
 return (ERROR);
 }
 ...

 /* now use the semaphore */

 semGive (smSemId);
 ...
 }

On CPU 2 :

 #include "vxWorks.h"
 #include "semLib.h"
 #include "smNameLib.h"
 #include "stdio.h"

 testSmSem2 (void)
 {
 SEM_ID smSemId;

VxWorks Kernel API Reference, 6.6
smNameShow

306

 int objType; /* place holder for smNameFind() object type */

 /* get semaphore ID from name database */

 smNameFind ("smSem", (void **) &smSemId, &objType, WAIT_FOREVER);
 ...
 /* now that we have the shared semaphore ID, take it */

 semTake (smSemId, WAIT_FOREVER);
 ...
 }

CONFIGURATION Before routines in this library can be called, the shared memory object facility must be
initialized by calling usrSmObjInit(). This is done automatically during VxWorks
initialization when the component INCLUDE_SM_OBJ is included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smNameLib.h

SEE ALSO smNameShow, smObjLib, smObjShow, usrSmObjInit(), the VxWorks programmer
guides.

smNameShow

NAME smNameShow – shared memory objects name database show routines (VxMP Option)

ROUTINES smNameShow() – show the contents of the shared memory objects name database (VxMP
Option)

DESCRIPTION This library provides a routine to show the contents of the shared memory objects name
database. The shared memory objects name database facility is provided by the
smNameLib module.

CONFIGURATION The routines in this library are included by default if the component INCLUDE_SM_OBJ is
included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smNameLib.h

SEE ALSO smNameLib, smObjLib, the VxWorks programmer guides.

1 Libraries
smObjLib

307

1smObjLib

NAME smObjLib – shared memory objects library (VxMP Option)

ROUTINES smObjLibInit() – install the shared memory objects facility (VxMP Option)
smObjSetup() – initialize the shared memory objects facility (VxMP Option)
smObjInit() – initialize a shared memory objects descriptor (VxMP Option)
smObjAttach() – attach the calling CPU to the shared memory objects facility (VxMP
Option)
smObjLocalToGlobal() – convert a local address to a global address (VxMP Option)
smObjGlobalToLocal() – convert a global address to a local address (VxMP Option)
smObjTimeoutLogEnable() – control logging of failed attempts to take a spin-lock (VxMP
Option)

DESCRIPTION This library contains miscellaneous functions used by the shared memory objects facility
(VxMP). Shared memory objects provide high-speed synchronization and communication
among tasks running on separate CPUs that have access to a common shared memory.
Shared memory objects are system objects (e.g., semaphores and message queues) that can
be used across processors.

The main uses of shared memory objects are interprocessor synchronization, mutual
exclusion on multiprocessor shared data structures, and high-speed data exchange.

Routines for displaying shared memory objects statistics are provided by the smObjShow
module.

SHARED MEMORY MASTER CPU

One CPU node acts as the shared memory objects master. This CPU initializes the shared
memory area and sets up the shared memory anchor. These steps are performed by the
master calling smObjSetup(). This routine should be called only once by the master CPU.
Usually smObjSetup() is called from usrSmObjInit(). (See "Configuration" below.)

Once smObjSetup() has completed successfully, there is little functional difference
between the master CPU and other CPUs using shared memory objects, except that the
master is responsible for maintaining the heartbeat in the shared memory objects header.

ATTACHING TO SHARED MEMORY

Each CPU, master or non-master, that will use shared memory objects must attach itself to
the shared memory objects facility, which must already be initialized.

Before it can attach to a shared memory region, each CPU must allocate and initialize a
shared memory descriptor (SM_DESC), which describes the individual CPU's attachment to
the shared memory objects facility. Since the shared memory descriptor is used only by the
local CPU, it is not necessary for the descriptor itself to be located in shared memory. In fact,
it is preferable for the descriptor to be allocated from the CPU's local memory, since local
memory is usually more efficiently accessed.

VxWorks Kernel API Reference, 6.6
smObjLib

308

The shared memory descriptor is initialized by calling smObjInit(). This routine takes a
number of parameters which specify the characteristics of the calling CPU and its access to
shared memory.

Once the shared memory descriptor has been initialized, the CPU can attach itself to the
shared memory region. This is done by calling smObjAttach().

When smObjAttach() is called, it verifies that the shared memory anchor contains the value
SM_READY and that the heartbeat located in the shared memory objects header is
incrementing. If either of these conditions is not met, the routine will check periodically
until either SM_READY or an incrementing heartbeat is recognized or a time limit is reached.
The limit is expressed in seconds, and 600 seconds (10 minutes) is the default. If the time
limit is reached before SM_READY or a heartbeat is found, ERROR is returned and errno is
set to S_smLib_DOWN .

ADDRESS CONVERSION

This library also provides routines for converting between local and global shared memory
addresses, smObjLocalToGlobal() and smObjGlobalToLocal(). A local shared memory
address is the address required by the local CPU to reach a location in shared memory. A
global shared memory address is a value common to all CPUs in the system used to
reference a shared memory location. A global shared memory address is always an offset
from the shared memory anchor.

SPIN-LOCK MECHANISM

The shared memory objects facilities use a spin-lock mechanism based on an indivisible
read-modify-write (RMW) operation on a shared memory location which acts as a low-level
mutual exclusion device. The spin-lock mechanism is called with a system-wide
configuration parameter, SM_OBJ_MAX_TRIES, which specifies the maximum number of
RMW tries on a spin-lock location.

Care must be taken that the number of RMW tries on a spin-lock on a particular CPU never
reaches SM_OBJ_MAX_TRIES, otherwise system behavior becomes unpredictable. The
default value should be sufficient for reliable operation.

The routine smObjTimeoutLogEnable() can be used to enable or disable the printing of a
message should a shared memory object call fail while trying to take a spin-lock.

RELATION TO BACKPLANE DRIVER

Shared memory objects and the shared memory network (backplane) driver use common
underlying shared memory utilities. They also use the same anchor, the same shared
memory header, and the same interrupt when they are used at the same time.

LIMITATIONS A maximum of twenty CPUs can be used concurrently with shared memory objects. Each
CPU in the system must have a hardware test-and-set (TAS) mechanism, which is called via
the system-dependent routine sysBusTas().

1 Libraries
smObjShow

309

1
The use of shared memory objects raises interrupt latency, because internal mechanisms
lock interrupts while manipulating critical shared data structures. Interrupt latency does
not depend on the number of objects or CPUs used.

GETTING STATUS INFORMATION

The routine smObjShow() displays useful information regarding the current status of
shared memory objects, including the number of tasks using shared objects, shared
semaphores, and shared message queues, the number of names in the database, and also the
maximum number of tries to get spin-lock access for the calling CPU.

CONFIGURATION When the component INCLUDE_SM_OBJ is included, the init and setup routines in this
library are called automatically during VxWorks initialization.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smObjLib.h

SEE ALSO smObjShow, semSmLib, msgQSmLib, smMemLib, smNameLib, usrSmObjInit(), the
VxWorks programmer guides.

smObjShow

NAME smObjShow – shared memory objects show routines (VxMP Option)

ROUTINES smObjShow() – display the current status of shared memory objects (VxMP Option)

DESCRIPTION This library provides routines to show shared memory object statistics, such as the current
number of shared tasks, semaphores, message queues, etc.

CONFIGURATION The routines in this library are included by default if the component INCLUDE_SM_OBJ is
included.

AVAILABILITY This module is distributed as a component of the unbundled shared memory objects
support option, VxMP.

INCLUDE FILES smObjLib.h

SEE ALSO smObjLib, the VxWorks programmer guides.

VxWorks Kernel API Reference, 6.6
smpLockDemo

310

smpLockDemo

NAME smpLockDemo – synchronization mechanism demo for VxWorks SMP

ROUTINES smpLockDemo() – smpLockDemo entry point (shell command)

DESCRIPTION This module contains code to demonstrate the capabilities of VxWorks SMP to provide CPU
synchronization mechanisms. In an SMP system tasks or ISRs running concurrently on
different CPU must coordinate their access to shared data. For that purpose VxWorks SMP
offers a number of mechanisms:

- Semaphores: These can be used for synchronization between tasks or when an ISR
wants to "wake-up" as task.

- VxWorks Events: These can be used for synchronization between tasks or when an ISR
wants to "wake-up" as task.

- Atomic Operators: These can be used for the purpose of safely performing a simple
read-modify-write of memory from either tasks or ISRs. For example for incrementing
a global count of some sort.

- Spinlocks: These can be used for synchronization between tasks, between ISRs or
between tasks and ISRs. This synchronization is typically required when non-trivial
shared data manipulation is required or for protecting a critical section of code.

This demo shows comparative performance figures for atomic operators, spinlocks and
highlights the fact it is absolutely critical to use a synchronization mechanism to preserve
the integrity of shared data when it is manipulated by more than one task on an SMP
system.

DEMO IMPLEMENTATION

The smpLockDemo consists of two equal priority tasks, each trying to repeatedly (loop)
increment a shared global count for a user-defined amount of time. Each task also has a
local count that it is incremented every time it increments the global count. Assuming no
corruption takes place the sum of the local counts, which are safely incremented without the
need for synchronization, should be equal to the global count.

The procedure above is repeated five times, using a different synchronization method:

- No synchronization: The tasks do not synchronize their accesses to the global count.

- Spinlocks: The tasks acquire a spinlock, increment the global count and then release
the spinlock.

- vxAtomicInc() Operator: The tasks use the vxAtomicInc() operator to atomically
increment the global count.

- vxTas() Operator: The tasks atomically set or clear a flag using vxTas() and use that
flag as a custom semaphore. When the flag is cleared it means the semaphore is not

1 Libraries
smpLockDemo

311

1
available. When it is set it means the semaphore is available. The tasks then acquire the
semaphore, increment the global count and release the semaphore.

- vxAtomicAdd() Operator: The tasks use the vxAtomicAdd() operator to atomically
increment the global count.

The demo then displays the results as described below.

INVOKING THE DEMO

The demo can be invoked from the kernel shell:

-> smpLockDemo 3

The optional argument is the number of seconds the demo spends updating the local and
global counts for each synchronization mechanism mentioned above. In this case,
specifying "3" means the demo will run for approximately 15 seconds (3 sec x 5 sync
mechanisms).

If no argument is supplied the default is to use a two-second time period.

INTERPRETING DEMO RESULTS

The demo displays results similar to the ones below on standard output.

-> smpLockDemo

METHOD TASK 0 TASK 1 SUM(COUNTS) GLOBAL RESULT
--------- --------- --------- ----------- --------- ---------
no-lock 0x253d8ae 0x253b31c 0x4a78bca 0x470327d Failed
spinLocks 0x782f43 0x78265a 0xf0559d 0xf0559d Passed
atomicInc 0x20b600d 0x20b4623 0x416a630 0x416a630 Passed
test-and-set 0x1509e72 0x150a628 0x2a1449a 0x2a1449a Passed
atomic Add 0x1e25b2a 0x1e26d2a 0x3c4c854 0x3c4c854 Passed

The METHOD column indicates the type of synchronization used by the tasks to safely
update the global count. The TASK0 column displays the local count for task 0. The figure
indicates the number of times the task was able to execute its loop within the user-defined
time period. The greater the number the better the performance of the synchronization
mechanism. The TASK1 column displays the local count for task 1. The SUM(COUNTS)
column is the sum of the previous two columns. The GLOBAL column is the value of the
global count; that is, the total number of times the tasks were able to execute their loop. The
RESULT column simply indicates whether or not the sum of the local counts is equal to that
of the global count.

As can be seen from the example above, not using a synchronization method to update the
global count causes severe corruption, even though incrementing a variable only offers a
small window of opportunity for corruption to take place. The results also show that using
the vxAtomicInc() operator is safe and faster than using vxAtomicAdd(), which in turn is
faster than using a spinlock. The reason atomic operators are faster than spinlocks is
because they are designed for simple atomic read-modify-write operations, which is exactly
what this demos is. Spinlocks are meant for the synchronization of more complex

VxWorks Kernel API Reference, 6.6
snsLib

312

operations. The test-and-set approach uses vxTas() to implement a custom semaphore. This
method is slower than atomic operators but faster than spinlocks, It is however subject to
live lock and hence should be used with extreme caution. Spinlocks are a much safer
alternative to the custom semaphore.

Below is an example using the same time period and the same platform but only with one
CPU enabled. As can be seen corruption did not take place since the two tasks did not run
concurrently. Furthermore, the counts indicate a better performance than the example
above. This is because there is much less contention for the global count since tasks do not
run concurrently. In some way this is an example of an application that does not benefit
from concurrent execution because of the excessive contention.

-> smpLockDemo

METHOD TASK 0 TASK 1 SUM(COUNTS) GLOBAL RESULT
--------- --------- --------- ----------- -------- ---------
no-lock 0x265d794 0x2675ee8 0x4cd367c 0x4cd367c Passed
spinLocks 0xaae678 0xaaefaf 0x155d627 0x155d627 Passed
atomicInc 0x23c5135 0x23c7018 0x478c14d 0x478c14d Passed
test-and-set 0x1a84dd6 0x1a864c0 0x350b296 0x350b296 Passed
atomic Add 0x20b9c80 0x20bb843 0x41754c3 0x41754c3 Passed

INCLUDE FILES none

SEE ALSO spinLockLib, vxAtomicLib, smpLockDemo()

snsLib

NAME snsLib – Socket Name Service library

ROUTINES

DESCRIPTION This library implements the Socket Name Service (SNS). SNS allows applications based on
the Socket Application Library (SAL) to associate a list of socket addresses with a service
name. This name can then be referenced by other SAL-based applications to determine
which socket addresses the server application providing the specified service is using.

SERVICE INFORMATION

SNS maintains a simple database of service entries. Each service entry contains the
following information:

Service Name:
A character string mnemonic for the service.

Service Scope:
Level of visibility of the service within the system.

1 Libraries
snsLib

313

1
Service Sockets:

Information about the sockets which provide the service.

Service Owner:
The entity that created the service (operating system kernel or RTP identifier).

SERVICE LOCATOR

An application that wishes to register a new service, or locate an existing service, must
specify a "service location". The service location is simply the service's name, optionally
attached with a scope indicator in URL format. All locations must be unique within a scope.

SERVICE SCOPE The service scoping capability of SNS allows a server application to limit the visibility of a
service name to a specified subset of applications within a system. An analogous capability
allows a client application searching for a specified service name to limit how far SNS
should search. Thus, a search only returns a matching entry if the search scope specified
by the client overlaps the service scope specified by the server. Four levels of scope are
supported:

private:
The service is visible within the service's memory region (the operating system kernel
space or RTP) only.

node:
The service is visible within the service's owner local node only.

cluster:
The service is visible within the service's cluster of nodes only.

system:
The service is visible to all nodes in the system.

The scoping capability of SNS is best illustrated by visualizing the SNS name space as a set
of nested boxes, each representing a different scope.

SNS currently supports the exchange of service information between nodes using the TIPC
(Transparent Inter-Process Communication) protocol. Thus the TIPC component must be
included in a project to utilitize the distributed mode of operation. Services with a scope of
the "system" and "cluster" will be visible to an application on another node (if the address
family allows it).

It is possible to create AF_LOCAL sockets with scope larger than the node, but these sockets
will not be visible outside of the node on which they were created.

URL SCHEME SYNOPSIS

[SNS:]service_name[@scope]

where the parts in brackets, [], are optional.

SNS: represent the URL service scheme, i.e. the Socket Name Service. It is the only scheme
accepted and can be omitted.

VxWorks Kernel API Reference, 6.6
snsLib

314

@scope represents the visibility of the service name within the system. It can take several
values, depending from the context and the application needs. If the the scope is not
specified, "@node" is assumed.

The URL representation is case insensitive.

For SAL service creation, registration or removal service_name cannot contain any
wildcard symbol, and scope must be the exact scope such as node, private, cluster and
system. service_name should not contain RFC 2396 reserved characters.

For the SAL client (to open or find services), service_name make contain wildcard, and
scope may provide exact scope or the outmost scope. For detail, refer to the SERVICE
DISCOVERY section below.

SERVICE REGISTRATION AND DISCOVERY

A service who wants to take advantage of the SNS capability, registers itself to the system
by providing an URL format identifier. If no scope is specified, the default is set to node.

A client discovers a server by specifying the service URL. In this case, there are two search
options for each level of visibility:

- if a user specifies the service URL with the scope as described above, the system looks
for the service only within the specified scope.

- if the scope is prefixed with upto_, such as upto_node, the system searches a service
beginning from the private scope. If it cannot find one, the search moves outward to
the next scope. The search stops either when a service is located or the specified scope
has been reached and no service was found.

For example, assuming both client and server are in the same node, if a service is defined
with node scope and the client specifies a scope upto_cluster the search will return the
matching service. On the other hand, if the client specifies cluster then the search will not
return that service. It might still return another service with the same name but in a different
node, which registered itself with cluster visibility.

CONFIGURATION Socket Name Service capabilities are provided by an SNS server task, which can be
configured to start automatically when VxWorks starts up. The server task can be
configured to run in its own RTP or as part of the base operating system.

To use the SNS server, configure VxWorks with either the INCLUDE_SNS or the
INCLUDE_SNS_RTP component. With either component you will also require
INCLUDE_UN_COMP, INCLUDE_SAL_COMMON, and INCLUDE_SAL_SERVER.

For the distributed versions of the SNS server, the respective components are
INCLUDE_SNS_MP and INCLUDE_SNS_MP_RTP. Note that an additional task called
dsalMonitor is started in the kernel to monitor all existing distributed SNS servers in the
system.

If the SNS server runs as an RTP, the executable needs to be allocated in the path defined
by SNS_PATHNAME.

1 Libraries
spinLockLib

315

1
INCLUDE FILES snsLib.h

SEE ALSO salClient, salServer, snsShow

snsShow

NAME snsShow – Socket Name Service show routines

ROUTINES snsShow() – show information about services in the SNS directory

DESCRIPTION This library provides routines to show information about the services registered with Socket
Name Service (SNS), including the name and scope of the service and the socket address(es)
of the server application that provides the service.

An SNS server task must be operational, otherwise no information can be obtained about
SNS.

CONFIGURATION To use the SNS show facility, configure VxWorks with the INCLUDE_SNS_SHOW
component.

INCLUDE FILES snsLib.h

SEE ALSO snsLib

spinLockLib

NAME spinLockLib – spinlock library

ROUTINES spinLockIsrInit() – initialize an ISR-callable spinlock
spinLockIsrTake() – take an ISR-callable spinlock
spinLockIsrGive() – release an ISR-callable spinlock
spinLockTaskInit() – initialize a task-only spinlock
spinLockTaskTake() – take a task-only spinlock
spinLockTaskGive() – release a task-only spinlock
spinLockIsrHeld() – is an ISR-callable spinlock held by the current CPU?

DESCRIPTION Spinlocks are a fundamental methods of synchronization between CPUs in a multi-CPU
system like VxWorks SMP. They are meant to control accesses to a shared resource or a
short critical section of code. The taskCpuLock() and intCpuLock() routines provide

VxWorks Kernel API Reference, 6.6
spinLockLib

316

similar mutual exclusion capabilities in the uniprocessor version of VxWorks but they are
not suitable in an SMP environment. However the same set of APIs is available for UP for
ease of portability between SMP and UP applications.

In the information below, when more than one CPU is mentioned, the information is
applicable only to SMP. Unless explicitly mentioned, the information below is relevant for
both SMP and UP.

Conceptually spinlocks are similar to mutual exclusion semaphores but they differ in
several ways:

- Because a spinlock is a CPU synchronization mechanism, the real owner of a spinlock
is the CPU, not the task nor ISR that acquires the lock. Therefore the concept of
pending while waiting for the lock does not apply as it does for a semaphore since a
CPU cannot be pended. Instead of pending, a CPU busy-waits for a spinlock to become
available. In UP a spinlock is always available for a CPU since no additional CPUs
compete against it. Therefore the CPU never busy-waits in the UP environment.

- A spinlock cannot order its access according to the priority of the tasks seeking to
acquire it. Hence priority inversions are inherent in the acquisition of a spinlock.
However, given that a spinlock should only be held for a very short periods of time, and
moreover held for a deterministic amount of time, any priority inversions should only
occur for a deterministic amount of time.

- Unlike a semaphore, a spinlock can be acquired by an ISR. This allows synchronization
between tasks and ISRs.

TYPES OF SPINLOCKS

Because a CPU really owns a spinlock, it is imperative that the thread of execution (task or
ISR) that acquired the lock not be pre-empted until it releases the lock. Allowing
pre-emption can cause live lock, which is a state where a CPU busy-waits for a spinlock that
is never going to become available. This is why VxWorks SMP introduces two types of
spinlocks, each type having its own purpose and having different pre-emption
characteristics:

- ISR-callable spinlocks can be acquired by both tasks and ISRs. Due to the live lock
scenario implied when an ISR goes to acquire a spinlock held by a task on the same
CPU, interrupts must be disabled on that CPU when an ISR-callable spinlock is held
by either a task or an ISR. Furthermore, a task that acquires an ISR-callable spinlock
cannot be rescheduled.

- Task-only spinlocks can be taken by tasks only. Due to the live lock implied when a
task goes to acquire a spinlock held by another task on the same CPU, rescheduling on
that CPU must not take place. Interrupts are not disabled on the local CPU when a
task-only spinlock is held, but pre-emption is disabled. Due to its busy-wait nature,
task-only spinlocks should be used only if the length of time required for the spinlock
is very short. Otherwise semaphores should be used for synchronization that requires
longer duration.

1 Libraries
spinLockLib

317

1
Because of the impact on the ability to process interrupts and perform scheduling, it is
essential that spinlocks only be acquired for very short durations; just like taskCpuLock()
and intCpuLock() must only be used for short durations in a uniprocessor VxWorks
system. Acquisition of a spinlock by a CPU does not have any effect on the ability of other
CPUs to process interrupts or perform scheduling in a VxWorks SMP system.

A task or ISR must not take more than one spinlock at a time. This is to prevent live lock
situations inherent with schemes that require the sequential acquisition and release of
multiple spinlocks. Conceptually this is very similar to deadlock situations that can happen
with semaphores. The major difference with spinlocks is that the acquiring entity never
pends or blocks while waiting for a resource like it is the case for semaphores. Instead of
deadlock the system goes into a live lock where a CPU continuously attempts to acquire a
spinlock without success. Because either task pre-emption or interrupts are disabled on the
CPU in question during this time, there is no way for the CPU to come out of that state
safely. The symptoms will make the situation appear as if the CPU is "hung". If operating
in a UP system, the acquisition of a spinlock always succeeds even if previously acquired.
However acquired recursively will provoke an unstable behaviour.

SPINLOCKS AS MEMORY BARRIERS

In a multi-processor system it is typical that memory access are weakly ordered. For that
reason both types of spinlock perform full memory barriers after acquiring a spinlock and
before releasing it. The term full memory memory barrier implies that both READ and
WRITE memory access are forced to be performed in order. Data structures updated while
a CPU is holding a lock will be completed before a lock is released or acquired.

SPINLOCK RESTRICTED APIs

Internally the VxWorks kernel uses spinlocks to protect its critical sections. The scenarios
under which this is done make it very likely that an application would cause the system to
enter into a live lock state if a task/ISR were to enter a kernel critical section while it already
has a spinlock. For this reason a number of the VxWorks kernel APIs are spinlock restricted
meaning that calling the API while holding a spinlock is not permitted. The reference
entries in the VxWorks Kernel API reference manual specifies when this restriction applies
to an API.

DIFFERENCES BETWEEN SMP and UP SPINLOCKS

- Spinlock APIs have identical interfaces between SMP and UP but behave differently. In
UP spinlocks do not perform a memory fencing operation nor explicit bus reservation
while acquiring a lock. Therefore the spinlock APIs provided by this library can not be
used to access atomically shared memory in an AMP system.

- In UP spinlocks will not cause a live lock since busy-wait operation is not performed,
but taking a previously taken lock may cause fatal problems.

- In SMP mode, the spinlock library offer the capability to enable debugging in order to
catch improper usages. This feature allows to enforce SMP restrictions on usages of the
spinlock APIs. In case of error detection a kernel fatal ED&R error message is injected
which may bring the whole system down based on the policy put in place. The

VxWorks Kernel API Reference, 6.6
spinLockLib

318

different scenarios that may cause a fatal kernel ED&R error is documented in the
description of the concerned API. By default debugging is not enabled. One may
enable debugging by including the following component while building a VxWorks
image: INCLUDE_SPINLOCK_DEBUG

In order to disable spinlock debugging, simply include INCLUDE_SPINLOCK and
INCLUDE_SPINLOCK_DEBUG is automatically removed by the configuration tool.

EXAMPLE A spinlock controls access to a shared resource between two or more processors. The
resource shared in this instance is a global variable that may be updated by two or more
tasks that could be running simultaneously on separate processors. The spinlock will ensure
that a global count is exclusively accessed by one core at a given time in order to increment
it atomically.

If the global count is accessed from an ISR it is necessary to use an ISR-callable, otherwise
a task-only spinlock is sufficient.

Initially the spinlock must be declared and initialized. If it is required to define the spinlock
statically then declare it as follows:

SPIN_LOCK_XX_DECL (mySpinLock, 0); where XX is defined as either "ISR" or "TASK".

The same can be dynamically accomplished just before taking the lock as follows:

void foo (void)
{

/* automatic variable declaration */

spinLockxx_t mySpinLock; where xx is defined as "Isr" or "Task"

SPIN_LOCK_XX_INIT (&mySpinLock, 0);

/* Before accessing the shared ressource the spinlock must be acquired */

SPIN_LOCK_XX_TAKE (&mySpinLock);

/* ... Access the share resource here */

/* Now release the lock */

SPIN_LOCK_XX_GIVE (&mySpinLock);
}

1 Libraries
spyLib

319

1
INCLUDE FILES none

spyLib

NAME spyLib – spy CPU activity library

ROUTINES spyLibInit() – initialize task cpu utilization tool package

DESCRIPTION This library provides a facility to monitor tasks' use of CPUs. The primary interface routine,
spy(), periodically calls spyReport() to display the amount of CPU time utilized by each
task, the amount of time spent at interrupt level, the amount of time spent in the kernel, and
the amount of idle time. It also displays the total usage since the start of spy() (or the last
call to spyClkStart()), and the change in usage since the last spyReport().

CPU usage can also be monitored manually by calling spyClkStart() and spyReport(),
instead of spy(). In this case, spyReport() provides a one-time report of the same
information provided by spy().

Data is gathered by an interrupt-level routine that is connected by spyClkStart() to the
auxiliary clock. Currently, this facility cannot be used with CPUs that have no auxiliary
clock. Interrupts that are at a higher level than the auxiliary clock's interrupt level cannot
be monitored.

All user interface routines except spyLibInit() are available through usrLib. Help
information concerning spy can be obtained by calling the spyHelp() routine in the target
shell.

EXAMPLE The following call:

 -> spy 10, 100

will generate a report in the following format every 10 seconds, gathering data at the rate of
100 times per second.

 NAME ENTRY TID PRI total % (ticks) delta % (ticks)
------------ ------------ ---------- --- --------------- ---------------
tExcTask 0x600abbd0 0x601c7af8 0 0% (0) 0% (0)
tJobTask 0x600acce4 0x603c6010 0 0% (0) 0% (0)
tLogTask logTask 0x603ca010 0 0% (0) 0% (0)
tNbioLog 0x600ae030 0x603ce010 0 0% (0) 0% (0)
tShell0 shellTask 0x60559fc0 1 0% (4) 0% (0)
tWdbTask wdbTask 0x60545fa0 3 0% (0) 0% (0)
tSpyTask spyComTask 0x60577020 5 0% (25) 0% (1)
tAioIoTask1 aioIoTask 0x6048fa60 50 0% (0) 0% (0)
tAioIoTask0 aioIoTask 0x6047f020 50 0% (0) 0% (0)
tNetTask netTask 0x604b3020 50 0% (0) 0% (0)
tAioWait aioWaitTask 0x604716d0 51 0% (0) 0% (0)
tTestTask test 0x6170ef78 100 71% (4683) 99% (500)

VxWorks Kernel API Reference, 6.6
spyLib

320

KERNEL 0% (0) 0% (0)
INTERRUPT 0% (0) 0% (0)
IDLE 27% (1812) 0% (0)
TOTAL 98% (6524) 99% (501)

The "total" column reflects CPU activity since the initial call to spy() or the last call to
spyClkStart(). The "delta" column reflects activity since the previous report. A call to
spyReport() will produce a single report; however, the initial auxiliary clock interrupts and
data collection must first be started using spyClkStart().

Data collection/clock interrupts and periodic reporting are stopped by calling:

 -> spyStop

SMP CONSIDERATIONS

When used on an SMP system, spy reports changes to the following :

 NAME ENTRY TID PRI total % (ticks) delta % (ticks)
------------ ------------ ---------- --- --------------- ---------------
tExcTask 0x600b72e4 0x601e21e0 0 0% (0) 0% (0)
tJobTask 0x600bf6b4 0x6042a010 0 0% (0) 0% (0)
tLogTask logTask 0x6042e010 0 0% (0) 0% (0)
tNbioLog 0x600d3420 0x60432010 0 0% (0) 0% (0)
tShell0 shellTask 0x605c20c8 1 0% (10) 0% (10)
tWdbTask wdbTask 0x605adfa0 3 0% (0) 0% (0)
tAioIoTask1 aioIoTask 0x604f7a60 50 0% (0) 0% (0)
tAioIoTask0 aioIoTask 0x604e7020 50 0% (0) 0% (0)
tNetTask netTask 0x6051baf0 50 0% (0) 0% (0)
tAioWait aioWaitTask 0x604d9768 51 0% (0) 0% (0)
worker 0x60165110 0x61716af0 100 7% (202) 7% (202)
worker 0x60165110 0x605df108 100 7% (202) 7% (202)
worker 0x60165110 0x605df690 100 3% (93) 3% (93)
worker 0x60165110 0x6171cf70 100 6% (193) 6% (193)
worker 0x60165110 0x6171d3d0 100 7% (202) 7% (202)
worker 0x60165110 0x6171d830 100 7% (200) 7% (200)
worker 0x60165110 0x6062b020 100 7% (201) 7% (201)
worker 0x60165110 0x6062b480 100 7% (200) 7% (200)
worker 0x60165110 0x6062b8e0 100 7% (202) 7% (202)
worker 0x60165110 0x60639020 100 7% (200) 7% (200)
tIdleTask0 idleTaskEntr 0x603be000 287 77% (2156) 77% (2156)
tIdleTask1 idleTaskEntr 0x603d6450 287 76% (2137) 76% (2137)
tIdleTask2 idleTaskEntr 0x603ee8a0 287 73% (2055) 73% (2055)
tIdleTask3 idleTaskEntr 0x60406cf0 287 100% (2799) 100% (2799)
KERNEL 5% (144) 5% (144)
INTERRUPT 0% (0) 0% (0)
TOTAL 396% (2799) 396% (2799)

CPU KERNEL INTERRUPT IDLE TASK TOTAL
--- --------------- --------------- --------------- --------------- -----
0 0% (11) 0% (0) 77% (2156) 22% (632) 99%
1 1% (42) 0% (0) 76% (2137) 22% (620) 99%
2 3% (91) 0% (0) 73% (2055) 23% (653) 99%
3 0% (0) 0% (0) 100% (2799) 0% (0) 100%

The first, uniprocessor-style report is kept, the main differences being :

1 Libraries
strSearchLib

321

1
- there is no IDLE total anymore, this state being shown via the idle tasks.

- since there is true concurrent execution, the TOTAL percentage will go beyond 100% (n
* 100%, where n is the number of CPUs in the system). The number of TOTAL ticks is
however left unchanged as it shows the real duration of the measurement (2799 ticks in
the abovementioned example).

The second report shows, for each configured CPU, the number of ticks spent in each state.

LIMITATIONS On SMP systems, if a task migrates between CPUs during measurement, it is possible that
it ends up being counted several times.

Due to rounding done by spyLib display routines, the TOTAL percentage may not always
reach 100%.

INCLUDE FILES spyLib.h

SEE ALSO usrLib

ssiDb

NAME ssiDb – SSI database module

ROUTINES ssmCompRegister() – Register a component with SSI Manager.
ssmCompInfoGet() – Get component information.
ssiDbInit() – Initialize SSI database.
ssiShow() – Display SSI information

DESCRIPTION The SSI database module maintains the info data of components participating in the SSI
process. The module provides APIs to add or remove components from the database. It also
provides APIs to allow changing the dependency info of a given component.

The module also provides an API to generate the SSI dependency tree, which does play an
important role in sequencing the startup and initialization of components.

INCLUDE FILES ssm.h

strSearchLib

NAME strSearchLib – Efficient string search library

VxWorks Kernel API Reference, 6.6
symLib

322

ROUTINES fastStrSearch() – Search by optimally choosing the search algorithm
bmsStrSearch() – Search using the Boyer-Moore-Sunday (Quick Search) algorithm
bfStrSearch() – Search using the Brute Force algorithm

DESCRIPTION This library supplies functions to efficiently find the first occurrence of a string (called a
pattern) in a text buffer. Neither the pattern nor the text buffer needs to be null-terminated.

The functions in this library search the text buffer using a "sliding window" whose length
equals the pattern length. First the left end of the window is aligned with the beginning of
the text buffer, then the window is compared with the pattern. If a match is not found, the
window is shifted to the right and the same procedure is repeated until the right end of the
window moves past the end of the text buffer.

This library supplies the following search functions:

fastStrSearch()
Optimally chooses the search algorithm based on the pattern size

bmsStrSearch()
Uses the efficient Boyer-Moore-Sunday search algorithm; may not be optimal for small
patterns

bfStrSearch()
Uses the simple Brute Force search algorithm; best suited for small patterns

To include this library, configure VxWorks with the INCLUDE_STRING_SEARCH
component.

INCLUDE FILE strSearchLib.h

symLib

NAME symLib – symbol table subroutine library

ROUTINES symLibInit() – initialize the symbol table library
symTblCreate() – create a symbol table
symTblDelete() – delete a symbol table
symAdd() – create and add a symbol to a symbol table, including a group number
symRemove() – remove a symbol from a symbol table
symFindByName() – look up a symbol by name
symFindByNameAndType() – look up a symbol by name and type
symByValueFind() – look up a symbol by value
symByValueAndTypeFind() – look up a symbol by value and type
symFindByValue() – look up a symbol by value
symFindByValueAndType() – look up a symbol by value and type

1 Libraries
symLib

323

1
symEach() – call a routine to examine each entry in a symbol table

DESCRIPTION This library provides facilities for managing symbol tables. A symbol table associates a
name and type with a value. A name is simply an arbitrary, null-terminated string. A
symbol type is an unsigned char (typedef SYM_TYPE). A symbol value is a pointer. Though
commonly used as the basis for object loaders, symbol tables may be used whenever
efficient association of a value with a name is needed.

If you use the symLib subroutines to manage symbol tables local to your own applications,
the values for SYM_TYPE objects are completely arbitrary; you can use whatever one-byte
integers are appropriate for your application.

If you use the symLib subroutines to manipulate the VxWorks system symbol table (whose
ID is recorded in the global variable sysSymTbl), the allowed values for SYM_TYPE are
defined in symbol.h. They include macros for SYM_UNDF, SYM_LOCAL, SYM_GLOBAL,
SYM_ABS, SYM_TEXT, SYM_DATA, SYM_BSS, and SYM_COMM. There are also macros
defined there for determining whether a symbol is of a particular type. These include
SYM_IS_UNDF(symType) SYM_IS_GLOBAL(symType), SYM_IS_LOCAL(symType),
SYM_IS_TEXT(symType), etc. Using these macros helps to isolate the user of symbol tables
from any changes that may be made to the way symbol types are handled internally within
VxWorks.

USAGE Tables are created with symTblCreate(), which returns a symbol table ID. This ID is used
for all symbol table operations, including adding symbols, removing symbols, and
searching for symbols. All operations on a symbol table are protected from re-entrancy
problems by means of a mutual-exclusion semaphore in the symbol table structure. To
ensure proper use of the symbol table semaphore, all symbol table accesses and operations
should be performed using the API's provided by the symLib library. Symbol tables are
deleted with symTblDelete().

Symbols are added to a symbol table with symAdd(). Each symbol in the symbol table has
a name, a value, a type and a reference. Symbols are removed from a symbol table with
symRemove().

Symbols can be accessed by either name or value. The routine symFindByName() searches
the symbol table for a symbol with a specified name. The routine symByValueFind() finds
a symbol with a specified value or, if there is no symbol with the same value, the symbol in
the table with the largest value that is smaller than the specified value. Using this method,
if an address is inside a function whose name is registered as a symbol, then the name of
the function will be returned.

The routines symFindByValue() and symFindByValueAndType() are obsolete. They are
replaced by the routines symByValueFind() and symByValueAndTypeFind() and will be
removed in the next version of VxWorks.

Symbols in the symbol table are hashed by name into a hash table for fast look-up by name,
e.g., by symFindByName(). The size of the hash table is specified during the creation of a

VxWorks Kernel API Reference, 6.6
symLib

324

symbol table. Look-ups by value, e.g., symByValueFind(), must search the table linearly;
these look-ups can therefore be much slower.

The routine symEach() allows every symbol in the symbol table to be examined by a
user-specified function.

Name clashes occur when a symbol added to a table is identical in name and type to a
previously added symbol. Whether or not symbol tables can accept name clashes is set by
a parameter when the symbol table is created with symTblCreate().

If name clashes are not allowed, symAdd() will return an error if there is an attempt to add
a symbol with the same name and type as a symbol already in the symbol table.

If name clashes are allowed, adding multiple symbols with the same name and type will be
permitted. In such cases, symFindByName() will return the value most recently added,
although all versions of the symbol can be found using symEach().

The system symbol table (sysSymTbl) allows name clashes.

See the VxWorks Programmmer's Guide for more information about configuration,
intialization, and use of the system symbol table.

INCLUDE FILES symLib.h

ERRNOS Routines from this library can return the following symbol-specific errors:

S_symLib_SYMBOL_NOT_FOUND
The requested symbol can not be found in the specified symbol table.

S_symLib_NAME_CLASH
A symbol of same name already exists in the specified symbol table (only when the
name clash policy is selected at symbol table creation).

S_symLib_TABLE_NOT_EMPTY
The symbol table is not empty from its symbols, and then can not be deleted.

S_symLib_INVALID_SYMTAB_ID
The symbol table ID is invalid.

S_symLib_INVALID_SYM_ID_PTR.
The symbol table ID pointer is invalid.

S_symLib_INVALID_SYMBOL_NAME
The symbol name is invalid.

Note that other errors, not listed here, may come from libraries internally used by this
library.

SEE ALSO loadLib

1 Libraries
sysLib

325

1symShow

NAME symShow – symbol table show routines

ROUTINES symShowInit() – initialize symbol table show routine
symShow() – show the symbols of specified symbol table with matching substring

DESCRIPTION This library provides a routine for showing symbol table information. The routine
symShowInit() links the symbol table show facility into the VxWorks system. It is called
automatically when this facility is configured into VxWorks by including the
INCLUDE_SYM_TBL_SHOW component.

INCLUDE FILE symLib.h

ERRNOS Routines from this library can return the following symbol show specific errors:

S_symLib_INVALID_SYMTAB_ID
The specified symbol table ID is invalid.

SEE ALSO symLib

sysLib

NAME sysLib – system-dependent library

ROUTINES sysClkConnect() – connect a routine to the system clock interrupt
sysClkDisable() – turn off system clock interrupts
sysClkEnable() – turn on system clock interrupts
sysClkRateGet() – get the system clock rate
sysClkRateSet() – set the system clock rate
sysAuxClkConnect() – connect a routine to the auxiliary clock interrupt
sysAuxClkDisable() – turn off auxiliary clock interrupts
sysAuxClkEnable() – turn on auxiliary clock interrupts
sysAuxClkRateGet() – get the auxiliary clock rate
sysAuxClkRateSet() – set the auxiliary clock rate
sysIntDisable() – disable a bus interrupt level
sysIntEnable() – enable a bus interrupt level
sysBusIntAck() – acknowledge a bus interrupt
sysBusIntGen() – generate a bus interrupt
sysMailboxConnect() – connect a routine to the mailbox interrupt
sysMailboxEnable() – enable the mailbox interrupt

VxWorks Kernel API Reference, 6.6
sysLib

326

sysNvRamGet() – get the contents of non-volatile RAM
sysNvRamSet() – write to non-volatile RAM
sysModel() – return the model name of the CPU board
sysBspRev() – return the BSP version and revision number
sysHwInit() – initialize the system hardware
sysPhysMemTop() – get the address of the top of memory
sysMemTop() – get the address of the top of logical memory
sysToMonitor() – transfer control to the ROM monitor
sysProcNumGet() – get the processor number
sysProcNumSet() – set the processor number
sysBusTas() – test and set a location across the bus
sysScsiBusReset() – assert the RST line on the SCSI bus (Western Digital WD33C93 only)
sysScsiInit() – initialize an on-board SCSI port
sysScsiConfig() – system SCSI configuration
sysLocalToBusAdrs() – convert a local address to a bus address
sysBusToLocalAdrs() – convert a bus address to a local address
sysSerialHwInit() – initialize the BSP serial devices to a quiesent state
sysSerialHwInit2() – connect BSP serial device interrupts
sysSerialReset() – reset all SIO devices to a quiet state
sysSerialChanGet() – get the SIO_CHAN device associated with a serial channel
sysNanoDelay() – delay for specified number of nanoseconds

DESCRIPTION This library provides board-specific routines.

NOTE: This is a generic reference entry for a BSP-specific library; this description contains
general information only. For features and capabilities specific to the system library
included in your BSP, see your BSP's reference entry for sysLib.

The file sysLib.c provides the board-level interface on which VxWorks and application code
can be built in a hardware-independent manner. The functions addressed in this file
include:

Initialization functions

- initialize the hardware to a known state

- identify the system

- initialize drivers, such as SCSI or custom drivers

Memory/address space functions

- get the on-board memory size

- make on-board memory accessible to external bus

- map local and bus address spaces

- enable/disable cache memory

- set/get nonvolatile RAM (NVRAM)

1 Libraries
syscallHookLib

327

1
- define board's memory map (optional)

- virtual-to-physical memory map declarations for processors with MMUs

Bus interrupt functions

- enable/disable bus interrupt levels

- generate bus interrupts

Clock/timer functions

- enable/disable timer interrupts

- set the periodic rate of the timer

Mailbox/location monitor functions

- enable mailbox/location monitor interrupts for VME-based boards

The sysLib library does not support every feature of every board; a particular board may
have various extensions to the capabilities described here. Conversely, some boards do not
support every function provided by this library. Some boards provide some of the functions
of this library by means of hardware switches, jumpers, or PALs, instead of
software-controllable registers.

Typically, most functions in this library are not called by the user application directly. The
configuration modules usrConfig.c and bootConfig.c are responsible for invoking the
routines at the appropriate time. Device drivers may use some of the memory mapping
routines and bus functions.

INCLUDE FILES sysLib.h

SEE ALSO The VxWorks programmer guides, the BSP-specific reference entry for sysLib

syscallHookLib

NAME syscallHookLib – SYSCALL Hook Support library

ROUTINES syscallRegisterHookAdd() – add hook for system call group registration requests
syscallRegisterHookDelete() – delete a previously added registration hook.
syscallEntryHookAdd() – add a routine to be called on each system call entry
syscallEntryHookDelete() – delete a previously added entry hook
syscallExitHookAdd() – add a routine to be called on each system call exit
syscallExitHookDelete() – delete a previously added exit hook

DESCRIPTION This library provides routines for adding extensions to the VxWorks System Call library via
hook routines. Hook routines can be added without modifying kernel code. The kernel

VxWorks Kernel API Reference, 6.6
syscallLib

328

provides call-outs whenever system call groups are registered, and on entry and exit from
system calls. Each hook type is represented as an array of function pointers. For each hook
type, hook functions are called in the order they were added.

System call registration hooks are functions called when a call to syscallGroupRegister()
is made. Registration hooks are passed the same parameters as those passed to
syscallGroupRegister() itself. The hook functions are called in the order in which they were
added, and must return either OK or ERROR. If the return value is anything other than OK,
the group registration attempt is aborted, and ERROR is returned back to the user. This
mechanism can be used to reject otherwise valid group registration requests.

System call entry hooks are functions called when a system call is made, and control is
passed to the system call trap dispatcher in the kernel. The entry hook gets the same
parameters as the system call dispatcher, and must return either OK or ERROR. If the return
value is anything other than OK, the system call is aborted, and ERROR is returned back to
the user. This mechanism can be used to reject otherwise valid system calls.

System call exit hooks are more informational in nature. Each exit hook is passed the return
value from the system call. The hook function itself is not expected to return anything.

CONFIGURATION To use the syscall hook support library, configure VxWorks with the
INCLUDE_SYSCALL_HOOKS component and set parameter SYSCALL_HOOK_TBL_SIZE to a
positive value (a value of at least 4 is recommended).

INCLUDE FILES private/syscallLibP.h

SEE ALSO syscallLib, the VxWorks programmer guides.

syscallLib

NAME syscallLib – VxWorks System Call Infrastructure management library

ROUTINES syscallGroupRegister() – register a system call group with the SCI
syscallDispatch() – dispatch a system call request to its system call handler

DESCRIPTION This is the System Call Infrastructure (SCI) library. The purpose of the SCI is to allow kernel
routines to be invoked on behalf of applications. The kernel is organized in terms of various
libraries that provide API's for users. Not all kernel API's are callable from user mode. A
kernel library exporting its API to user-mode applications must first register with the SCI
before any system calls are dispatched to it by the SCI.

1 Libraries
syscallLib

329

1
SYSTEM CALL NUMBERS

A System Call Number (SCN) is a unique 32-bit number that identifies the kernel routine
requested by the user. The SCI decodes this number to identify and call the kernel function
to perform kernel work on behalf of the application. The SCN is organized as follows:

 SYSCALL_GROUP_NUM_BITS SYSCALL_ROUTINE_NUM_BITS
 --
 | | | |
 | reserved | Group# | Routine# |
 | | | |
 --
 31 0

SYSTEM CALL GROUPS

A System Call Group is a logical grouping of related API's to be exposed to user-mode
applications. VxWorks kernel code is organized into libraries that perform certain services
and offer an API. This same library concept can be extended into the system call domain, for
each kernel library wishing to export its API to user-space. Each such library can be treated
as a System Call Group (SCG). Within the group, a library can have several functions that it
wants to be callable via a system call.

Each System Call Group provides a table of routines that the SCI uses to call functions in it,
in response to a system call. A System Call Group is represented in the system by a pointer
to a table containing its routines, and a count of the number of routines it exports. A Group
Table represents all SCG's in the system, and is an array of group structures.

It is not necessary to enforce a one-to-one mapping between a kernel library and a System
Call Group number. More than one kernel library can share the same system call group
without any impact on performance or complexity. However it should be kept in mind that
it is convenient to group API's in logical order. Group numbering must also be unique
across the operating system and also across future versions. Without this uniqueness rule,
binary compatibility across OS versions will be broken.

The following is a visual representation for how semLib might be represented in the SCI:

 semLib Group Tbl Entry Routine Table for semLib
|------------------ -------------------------------------
| pRoutineTbl ----+---------> | pMethod | numArgs | methodName |
|------------------ -------------------------------------
numRoutines (4)		semTake	2	"semTake"
------------------	semGive	1	"semGive"	
 | semFlush | 1 | "semFlush" |
 | semDelete | 1 | "semDelete" |

SYSTEM CALL DISPATCHING

First, the group number is used to index into the Group Table. For example, if the group
number for semLib is 5, the sixth entry of the Group Table (i.e., at offset 5) is accessed to get
to the routine table for semLib. Then, the routine number of the SCN gives the index into
the routine table, for the routine to be called. So semFlush (at offset 2 in the routine table) is
the third routine exported by semLib. Joining the two together, the unique system call

VxWorks Kernel API Reference, 6.6
syscallShow

330

number for semFlush is 0x0502. (This example is for expository purposes only. The semLib
system calls actually belong to a system call group containing many other VxWorks-specific
functions, not just semaphore operations.)

SYSTEM CALL ARGUMENT PASSING

System calls accept at most 8 arguments. Passing floating-point numbers or structures by
value is not supported, and neither are variable argument list functions.

The total number and types of arguments must be limited to 8 native words for the
architecture in question. A 64-bit argument of type long long is to be understood as 2
(possibly 3) 32-bit size arguments for a 32-bit architecture. Some architectures require 64-bit
arguments to be in an even-odd numbered register pair, while some require them in an
odd-even pair, while some others have no restriction at all. Alignment restrictions can mean
having unused argument registers in the middle of an argument list. All such considerations
taken together must to add up to 8 native-word-size arguments (including any padding
registers).

SYSTEM CALL GROUP REGISTRATION

When the system is built, the Group Table is initialized with all System Call Groups known
at compile time. As the other kernel libraries initialize themselves, they should call
syscallGroupRegister() to register their API with the SCI. Registration involves populating
the relevant entry in the Group Table - a pointer to the routine table, the number of routines
exported, and a name string for show routines to display. Routine tables are allocated and
populated by the respective kernel libraries.

Without registration, system calls made to a particular group will fail, returning ERROR and
with errno set to ENOSYS. The dynamic nature of the registration process allows a kernel
to be configured with just the needed functionality, without having to modify the system
call infrastructure. The group table is statically allocated to hold space for all the defined
groups.

CONFIGURATION The system call infrastructure management library is automatically included when the
INCLUDE_RTP component is configured.

INCLUDE FILES syscallLib.h private/syscallLibP.h

syscallShow

NAME syscallShow – VxWorks System Call Infrastructure management library

ROUTINES syscallShow() – show registered System Call Groups, or a specific group
syscallHookShow() – display all installed system call infrastructure hooks
syscallMonitor() – monitor system call activity

1 Libraries
tarLib

331

1
DESCRIPTION This module implements a show facility for the System Call Infrastructure. The system call

show routine can display either group-level information (level 0) or information about a
specific group (level 1).

It also provides a simple mechanism for monitoring system call activity along the lines of
the UNIX truss utility.

This library is initialized along with the RTP show library initialization.
INCLUDE_RTP_SHOW and INCLUDE_RTP must both be defined to initialize this library.

INCLUDE FILES syscallLib.h private/syscallLibP.h

sysctl

NAME sysctl – sysctl command

ROUTINES Sysctl() – get or set values for kernel state variables from the C shell

DESCRIPTION This module defines Sysctl(), a C shell utility that you can use to retrieve and configure run
time parameters.

INCLUDE FILES sysctl.h

tarLib

NAME tarLib – UNIX tar compatible library

ROUTINES tarExtract() – extract all files from a tar formatted tape
tarArchive() – archive named file/dir onto tape in tar format
tarToc() – display all contents of a tar formatted tape

DESCRIPTION This library implements functions for archiving, extracting and listing of UNIX-compatible
"tar" file archives. It can be used to archive and extract entire file hierarchies to/from archive
files on local or remote disks, or directly to/from magnetic tapes.

CURRENT LIMITATIONS

This Tar utility does not handle MS-DOS file attributes, when used in conjunction with the
MS-DOS file system. The maximum subdirectory depth supported by this library is 16,
while the total maximum path name that can be handled by tar is limited at 100 characters.

VxWorks Kernel API Reference, 6.6
taskArchLib

332

INCLUDE FILES none

SEE ALSO dosFsLib

taskArchLib

NAME taskArchLib – architecture-specific task management routines

ROUTINES taskSRSet() – set the task status register (MC680x0, MIPS, x86)
taskSRInit() – initialize the default task status register (MIPS)

DESCRIPTION This library provides architecture-specific task management routines that set and examine
architecture-dependent registers. For information about architecture-independent task
management facilities, see the manual entry for taskLib.

NOTE There are no application-level routines in taskArchLib for SimSolaris, SimNT or SH.

INCLUDE FILES regs.h, taskArchLib.h

SEE ALSO taskLib

taskHookLib

NAME taskHookLib – task hook library

ROUTINES taskCreateHookAdd() – add a routine to be called at every task create
taskCreateHookDelete() – delete a previously added task create routine
taskSwitchHookAdd() – add a routine to be called at every task switch
taskSwitchHookDelete() – delete a previously added task switch routine
taskDeleteHookAdd() – add a routine to be called at every task delete
taskDeleteHookDelete() – delete a previously added task delete routine

DESCRIPTION This library provides routines for adding extensions to the VxWorks tasking facility. To
allow task-related facilities to be added to the system without modifying the kernel, the
kernel provides call-outs every time a task is created, switched, or deleted. The call-outs
allow additional routines, or "hooks," to be invoked whenever these events occur. The hook
management routines below allow hooks to be dynamically added to and deleted from the
current lists of create, switch, and delete hooks:

1 Libraries
taskHookLib

333

1
taskCreateHookAdd() and taskCreateHookDelete()

Add and delete routines to be called when a task is created.

taskSwitchHookAdd() and taskSwitchHookDelete()
Add and delete routines to be called when a task is switched.

taskDeleteHookAdd() and taskDeleteHookDelete()
Add and delete routines to be called when a task is deleted.

This facility is used by dbgLib to provide task-specific breakpoints and single-stepping. It
is used by taskVarLib for the "task variable" mechanism. It is also used by fppLib for
floating-point coprocessor support.

CONFIGURATION To use the task hook library, configure VxWorks with the INCLUDE_TASK_HOOKS
component.

NOTE It is possible to have dependencies among task hook routines. For example, a delete hook
may use facilities that are cleaned up and deleted by another delete hook. In such cases, the
order in which the hooks run is important. VxWorks runs the create and switch hooks in
the order in which they were added, and runs the delete hooks in reverse of the order in
which they were added. Thus, if the hooks are added in "hierarchical" order, such that they
rely only on facilities whose hook routines have already been added, then the required
facilities will be initialized before any other facilities need them, and will be deleted after all
facilities are finished with them.

VxWorks facilities guarantee this by having each facility's initialization routine first call any
prerequisite facility's initialization routine before adding its own hooks. Thus, the hooks are
always added in the correct order. Each initialization routine protects itself from multiple
invocations, allowing only the first invocation to have any effect.

Task create hooks need to consider the ownership of any Wind objects, e.g. watchdog
timers, semaphores, etc. created in the hook routine. Since create hook routines execute in
the context of the creator task, new Wind objects will be owned by the creator task's RTP. It
may be necessary to assign the ownership of these objects to the new task's RTP. This will
prevent unexpected object reclamation from occuring if and when the RTP of the creator
task terminates.

For the case where the creator task is a kernel task, the kernel will own any created Wind
objects. Thus there is no concern about unexpected object reclamation for this case.

Switch hooks also need to be aware of the following restrictions:

- Do not assume any VM context is current other than the kernel context (as per ISRs).

- Do not not rely on knowledge of the current task or invoke any function that relies on
this information, e.g. taskIdSelf().

- Do not rely on taskIdVerify (pOldTcb) to determine if a delete hook, if any, has
already executed for the self-destructing task case. Instead, some other state

VxWorks Kernel API Reference, 6.6
taskHookShow

334

information needs to be changed, e.g. NULL'ing of a pointer, in the delete hook to be
detected by the switch hook.

INCLUDE FILES taskHookLib.h

SEE ALSO dbgLib, fppLib, taskLib, taskVarLib, the VxWorks programmer guide.

taskHookShow

NAME taskHookShow – task hook show routines

ROUTINES taskHookShowInit() – initialize the task hook show facility
taskCreateHookShow() – show the list of task create routines
taskSwitchHookShow() – show the list of task switch routines
taskDeleteHookShow() – show the list of task delete routines

DESCRIPTION This library provides routines which summarize the installed kernel hook routines. There
is one routine dedicated to the display of each type of kernel hook: task operation, task
switch, and task deletion.

CONFIGURATION The routine taskHookShowInit() links the task hook show facility into the VxWorks
system. It is called automatically when the task hook show facility is configured into
VxWorks using the INCLUDE_TASK_HOOK_SHOW component.

INCLUDE FILES taskHookLib.h

SEE ALSO taskHookLib, VxWorks Programmer's Guide: Basic OS

taskInfo

NAME taskInfo – task information library

ROUTINES taskOptionsSet() – change task options
taskOptionsGet() – examine task options
taskRegsGet() – get a task's registers from the TCB
taskRegsSet() – set a task's registers
taskName() – get the name associated with a task ID
taskIdDefault() – set the default task ID
taskIsReady() – check if a task is ready to run

1 Libraries
taskLib

335

1
taskIsSuspended() – check if a task is suspended
taskIsStopped() – check if a task is stopped by the debugger
taskIsPended() – check if a task is pended
taskPriNormalGet() – get the normal priority of the task
taskIdListGet() – get a list of active task IDs
taskNameToId() – look up the task ID associated with a task name

DESCRIPTION This library provides a programmatic interface for obtaining task information.

Task information is crucial as a debugging aid and user-interface convenience during the
development cycle of an application. The routines taskOptionsGet(), taskRegsGet(),
taskName(), taskNameToId(), taskIsReady(), taskIsSuspended(), taskPriNormalGet(),
and taskIdListGet() are used to obtain task information. Three routines --
taskOptionsSet(), taskRegsSet(), and taskIdDefault() -- provide programmatic access to
debugging features.

The chief drawback of using task information is that tasks may change their state between
the time the information is gathered and the time it is utilized. Information provided by
these routines should therefore be viewed as a snapshot of the system, and not relied upon
unless the task is consigned to a known state, such as suspended.

Task management and control routines are provided by taskLib. Higher-level task
information display routines are provided by taskShow.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES taskLib.h

SEE ALSO taskLib, taskShow, taskHookLib, taskVarLib, semLib, kernelLib, the VxWorks
programmer guides.

taskLib

NAME taskLib – task management library

ROUTINES taskInitExcStk() – initialize a task with stacks at specified addresses

VxWorks Kernel API Reference, 6.6
taskLib

336

taskActivate() – activate a task that has been initialized
taskSuspend() – suspend a task
taskResume() – resume a task
taskPrioritySet() – change the priority of a task
taskPriorityGet() – examine the priority of a task
taskLock() – disable task rescheduling
taskUnlock() – enable task rescheduling
taskSafe() – make the calling task safe from deletion
taskUnsafe() – make the calling task unsafe from deletion
taskDelay() – delay a task from executing
taskIdSelf() – get the task ID of a running task
taskIdVerify() – verify the existence of a task
taskTcb() – get the task control block for a task ID
taskStackAllot() – allot memory from a task's exception stack
taskCpuAffinitySet() – set the CPU affinity of a task
taskCpuAffinityGet() – get the CPU affinity of a task
taskCpuLock() – disable local CPU task rescheduling
taskCpuUnlock() – enable local CPU task rescheduling
taskSpawn() – spawn a task
taskCreate() – allocate and initialize a task without activation
taskInit() – initialize a task with a stack at a specified address
exit() – exit a task (ANSI)
taskExit() – exit a task
taskDelete() – delete a task
taskDeleteForce() – delete a task without restriction
taskRestart() – restart a task

DESCRIPTION This library provides the interface to the VxWorks task management facilities. Task control
services are provided by the VxWorks kernel, which is comprised of kernelLib, taskLib,
semLib, tickLib, msgQLib, and wdLib. Programmatic access to task information and
debugging features is provided by taskInfo. Higher-level task information display routines
are provided by taskShow.

TASK CREATION Tasks are created with the general-purpose routine taskSpawn(). Task creation consists of
the following: allocation of memory for the stack and task control block (WIND_TCB),
initialization of the WIND_TCB, and activation of the WIND_TCB. Special needs may require
the use of the lower-level routines taskInit() and taskActivate(), which are the underlying
primitives of taskSpawn().

Tasks in VxWorks execute in the most privileged state of the underlying architecture. In a
shared address space, processor privilege offers no protection advantages and actually
hinders performance.

There is no limit to the number of tasks created in VxWorks, as long as sufficient memory is
available to satisfy allocation requirements.

1 Libraries
taskLib

337

1
The routine sp() is provided in usrLib as a convenient abbreviation for spawning tasks. It
calls taskSpawn() with default parameters.

TASK DELETION If a task exits its "main" routine, specified during task creation, the kernel implicitly calls
exit() to delete the task. Tasks can be explicitly deleted with the taskDelete() or exit()
routine.

Task deletion must be handled with extreme care, due to the inherent difficulties of resource
reclamation. Deleting a task that owns a critical resource can cripple the system, since the
resource may no longer be available. Simply returning a resource to an available state is not
a viable solution, since the system can make no assumption as to the state of a particular
resource at the time a task is deleted.

The solution to the task deletion problem lies in deletion protection, rather than overly
complex deletion facilities. Tasks may be protected from unexpected deletion using
taskSafe() and taskUnsafe(). While a task is safe from deletion, deleters will block until it
is safe to proceed. Also, a task can protect itself from deletion by taking a mutual-exclusion
semaphore created with the SEM_DELETE_SAFE option, which enables an implicit
taskSafe() with each semTake(), and a taskUnsafe() with each semGive() (see semMLib
for more information). Many VxWorks system resources are protected in this manner, and
application designers may wish to consider this facility where dynamic task deletion is a
possibility.

The sigLib facility may also be used to allow a task to execute clean-up code before actually
expiring.

TASK STACKS In VxWorks every task has two stacks. The stack used for normal execution is simply called
stack. The exception stack is the second stack. It is used during the processing of an exception,
and in the case of tasks that run in real time processes, the exception stack is also used for
the processing of a system call into the kernel. VxWorks manages the switching required
between stacks without user intervention. There are a few APIs provided by this library
that require users to be aware of this concept though.

TASK CONTROL Tasks are manipulated by means of an ID that is returned when a task is created. VxWorks
uses the convention that specifying a task ID of NULL in a task control function signifies the
calling task.

The following routines control task state: taskResume(), taskSuspend(), taskDelay(),
taskRestart(), taskPrioritySet(), and taskRegsSet().

TASK SCHEDULING

VxWorks schedules tasks on the basis of priority. Tasks may have priorities ranging from
0, the highest priority, to 255, the lowest priority. The priority of a task in VxWorks is
dynamic, and an existing task's priority can be changed using taskPrioritySet().

VxWorks Kernel API Reference, 6.6
taskOpen

338

TASK CPU AFFINITY

Task CPU affinity allows users to specify the CPU on which a task is to be run. While the
APIs used to do this are available in both the uniprocessor version of VxWorks and
VxWorks SMP, they really only have an effect in SMP systems. CPU affinity is meant to be
a performance tuning tool that overrides the default VxWorks SMP scheduling behaviour,
which is to dispatched tasks on any of the CPUs. CPU affinity can also be used to "stick" on
a single CPU all tasks of an application that is not designed to be run in a concurrent
environment. This effectively hides the SMP platform's concurrent execution characteristic
from the application.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES taskLib.h

SEE ALSO taskInfo(), taskShow(), taskHookLib, taskVarLib, semLib, semMLib, kernelLib,
VxWorks Programmer's Guide

taskOpen

NAME taskOpen – extended task management library

ROUTINES taskOpenInit() – initialize the task open facility
taskOpen() – open a task
taskClose() – close a task
taskUnlink() – unlink a task

DESCRIPTION The extended task management library includes the APIs to open, close, and unlink tasks.
Since these APIs did not exist in VxWorks 5.5, to prevent the functions from being included
in the default image, they have been isolated from the general task management library.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU

1 Libraries
taskShow

339

1
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES taskLib.h

SEE ALSO msgQOpen, objOpen, semOpen, timerOpen, the VxWorks, programmer guides.

taskRotate

NAME taskRotate – taskRotate functionality

ROUTINES taskRotate() – rotate ready queue for a given task priority

DESCRIPTION This library contains the implementation of the taskRotate() function. taskRotate() will
rotate tasks in the VxWorks READY state for the specified priority.

The API taskRotate() will only be available when the INCLUDE_TASK_ROTATE
component is included in the VxWorks configuration. This implementation also requires
that VxWorks be built with the INCLUDE_VX_TRADITIONAL_SCHEDULER component, and
thats it's VX_TRAD_SCHED_CONSTANT_RDY_Q parameter is set to TRUE. This is the
normal (default) case for both command-line and project facility builds. See usrKernel.c for
how this macro is used.

SMP CONSIDERATIONS

The taskRotate() API does not have defined behaviour in SMP, therefore any call to
taskRotate() in a SMP system will return ERROR. In future releases, taskRotate() may be
defined for a SMP system. Until then, the routine will return ERROR.

See the reference manual entry for taskRotate() for more information.

INCLUDE FILES taskLib.h

taskShow

NAME taskShow – task show routines

ROUTINES taskShowInit() – initialize the task show routine facility
taskInfoGet() – get information about a task

VxWorks Kernel API Reference, 6.6
taskUtilLib

340

taskShow() – display task information from TCBs
taskRegsShow() – display the contents of a task's registers
taskStatusString() – get a task's status as a string

DESCRIPTION This library provides routines to show task-related information, such as register values, task
status etc.

The taskShowInit() routine links the task show facility into the VxWorks system. It is called
automatically when this show facility is configured into VxWorks using either of the
following methods:

- If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

- If you use the project facility, select INCLUDE_TASK_SHOW.

Task information is crucial as a debugging aid and user-interface convenience during the
development cycle of an application. The routines taskInfoGet(), taskShow(),
taskRegsShow() and taskStatusString() are used to display task information.

The chief drawback of using task information is that tasks may change their state between
the time the information is gathered and the time it is utilized. Information provided by
these routines should therefore be viewed as a snapshot of the system, and not relied upon
unless the task is consigned to a known state, such as suspended.

Task management and control routines are provided by taskLib. Programmatic access to
task information and debugging features is provided by taskInfo.

INCLUDE FILES taskLib.h

SEE ALSO taskLib, taskInfo, taskHookLib, taskVarLib, semLib, kernelLib, the VxWorks
programmer guides.

taskUtilLib

NAME taskUtilLib – task utility library

ROUTINES taskSpareNumAllot() – Allocate the first available spare field in the TCB
taskSpareFieldSet() – set the spare field of a TCB
taskSpareFieldGet() – get the spare field of a TCB

DESCRIPTION This library provides a programmatic interface for obtaining and modifying task
information.

INCLUDE FILES taskLib.h

1 Libraries
tc3c905VxbEnd

341

1
SEE ALSO taskLib

taskVarLib

NAME taskVarLib – task variables support library

ROUTINES taskVarInit() – initialize the task variables facility
taskVarAdd() – add a task variable to a task
taskVarDelete() – remove a task variable from a task
taskVarGet() – get the value of a task variable
taskVarSet() – set the value of a task variable
taskVarInfo() – get a list of task variables of a task

DESCRIPTION VxWorks provides a facility called "task variables," which allows 4-byte variables to be
added to a task's context, and the variables' values to be switched each time a task switch
occurs to or from the calling task. Typically, several tasks declare the same variable (4-byte
memory location) as a task variable and treat that memory location as their own private
variable. For example, this facility can be used when a routine must be spawned more than
once as several simultaneous tasks.

The routines taskVarAdd() and taskVarDelete() are used to add or delete a task variable.
The routines taskVarGet() and taskVarSet() are used to get or set the value of a task
variable.

NOTE If you are using task variables in a task delete hook (see taskHookLib), refer to the reference
entry for taskVarInit() for warnings on proper usage.

SMP CONSIDERATIONS

This library is not available in VxWorks SMP. Use __thread variables instead.

INCLUDE FILES taskVarLib.h

SEE ALSO taskHookLib, the VxWorks programmer guides.

tc3c905VxbEnd

NAME tc3c905VxbEnd – 3Com 3c905/B/C VxBus END driver

ROUTINES elPciRegister() – register with the VxBus subsystem

VxWorks Kernel API Reference, 6.6
tc3c905VxbEnd

342

DESCRIPTION This module implements a driver for the 3Com Fast Etherlink XL PCI network interface
cards. The Fast Etherlink XL family is fully compliant with the IEEE 802.3 10Base-T and
100Base-T specifications. The original 3c905 adapter uses an external National
Semiconductor DP83840A MII PHY, while the 3c905B and later adapters have an internal
MII transceiver. Access to the PHYs on all boards is through a bit-bang MDIO interface.

The first generation of 3Com PCI ethernet cards were known as the Vortex family (3c590).
These cards were based loosely on earlier 3Com ISA NIC designs. The Vortex supported bus
master DMA, but did not use a descriptor ring-based API. It also included a PIO data
transfer mechanism for compatibility with driver software for earlier devices.

The Vortex was followed by the Boomerang, aka the 3c905. The Boomerang introduced a
descriptor-based DMA scheme which greatly reduced CPU overhead, however it also
maintained compatibility with earlier Vortex devices.

The Boomerang was ultimately suceeded by the Cyclone, aka the 3c905B, which dropped
the PIO compatibility interface entirely, added several I/O enhancements, included an
integrated 10/100 PHY, and supported TCP/IP checksum offload.

The Cyclone was later followed by the Hurricane and Tornado chips, which maintained the
existing Cyclone features and added remote management.

This driver supports all the cards in the Boomerang, Cyclone, Hurricane and Tornado
families with 10/100 UTP and 10Mbps TPO interfaces. This includes the following:

3c900-TPO 10Mbps 3c900B-TPO 10Mbps 3c905-TX 10/100Mbps 3c905B-TX 10/100Mbps
3c905C-TX 10/100Mbps 3c905CX-TXM 10/100Mbps 3c980-TX 10/100Mbps 3c980C-TX
10/100Mbps 3c918-TX 10/100Mbps 3c920-EMB 10/100Mbps 3c920-EMB-WNM 10/100Mbps
3cSOHO100-TX OfficeConnect 10/100Mbps 3c450-TX HomeConnect 10/100Mbps

Cards with AUI/BNC ports, fiber optic interfaces, or 100baseT4 PHYs are not supported
due to lack of available hardware for testing. (These cards are uncommon and are no longer
being manufactured.)

The 3c90x uses a DMA descriptor scheme where each descriptor contains a 63-entry
fragment list. Each fragment list entry is 8 bytes, which, along with 8 bytes for the status
field and next pointer field, makes each descriptor 512 bytes in size. For RX handling, this
driver only uses one fragment, so a special RX descriptor format is defined with just one
fragment entry, for a total of 16 bytes.

RX DMA handling is reasonably straightforward: all descriptors are arranged into a
circularly linked list, which the chip and host both traverse, using the upload complete bit
in the status field to arbitrate access.

Transmit DMA handling is a little more complex: the driver must prepare a "download list"
of descriptors containing outbound packets, and load the list address into the downlist
pointer register each time it wants to initiate transmission. The last descriptor in the list
must have a next pointer of 0, which will signal the chip to go idle once the last packet has
been sent. It's possible to append additional descriptors to a transmission currently in
progress, but the driver must pause the TX DMA engine first in order to avoid a race with
the chip.

1 Libraries
tffsDrv

343

1
This driver uses the checksum offload feature available in all Cyclone, Hurricane and
Tornado adapters for both RX and TX. The chip supports checksum offloading for IP, TCP
and UDP, for IPv4 packets only.

BOARD LAYOUT The 3Com Fast Etherlink XL family of chips are available on standalone PCI cards as well
as integrated onto various system boards. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
elPciRegister() function, which registers the driver with VxBus.

SMP CONSIDERATIONS

The 3Com Fast Etherlink XL uses a register bank switching scheme to provide access to
some of its registers. The total register space is 64 bytes in size for Boomerang adapters and
128 bytes for Cyclone, Hurricane and Tornado adapters. The first 16 bytes form a window
through which 8 different register banks are visible, depending on the window selection bits
of the command/status register. There are various registers of interest scattered throughout
the different banks, including the RX filter control, MAC control and the MDIO access
registers. Luckily, all of these special registers are accessed only in task context. Therefore,
any code that switches register banks is guarded using the device semaphore.

The 3Com documentation states that some commands take more than one clock cycle to
complete, requiring the driver to poll the command completion bit. This makes accesses to
the command register non-atomic. Consequently, all accesses to the command/status
register (offset 0xe), some of which are done in interrupt context, are guarded with a
spinlock.

INCLUDE FILES none

SEE ALSO vxBus, miiBus, ifLib, "3com 3c90x and 3c90xB NICs Technical Reference,
http://www.freebsd.org/~wpaul/3Com/3c90xb.pdf"

tffsDrv

NAME tffsDrv – TrueFFS interface for VxWorks

ROUTINES tffsDrv() – initialize the TrueFFS system
tffsDevCreate() – create a TrueFFS block device suitable for use with dosFs
tffsDevOptionsSet() – set TrueFFS volume options
tffsDrvOptionsSet() – set TrueFFS volume options
tffsDevFormat() – format a flash device for use with TrueFFS
tffsRawio() – low level I/O access to flash components

VxWorks Kernel API Reference, 6.6
tffsDrv

344

DESCRIPTION This module defines the routines that VxWorks uses to create a TrueFFS block device. Using
this block device, dosFs can access a board-resident flash memory array or a flash memory
card (in the PCMCIA slot) just as if it was a standard disk drive. Also defined in this file
are functions that you can use to format the flash medium, as well as well as functions that
handle the low-level I/O to the device.

To include TrueFFS for Tornado in a VxWorks image, you must edit your BSP's config.h
and define INCLUDE_TFFS, or, for some hardware, INCLUDE_PCMCIA. If you define
INCLUDE_TFFS, this configures usrRoot() to call tffsDrv(). If you defined
INCLUDE_PCMCIA, the call to tffsDrv() is made from pccardTffsEnabler(). The call to
tffsDrv() sets up the structures, global variables, and mutual exclusion semaphore needed
to manage TrueFFS. This call to tffsDrv() also registers socket component drivers for each
flash device found attached to the target.

These socket component drivers are not quite block devices, but they are an essential layer
within TrueFFS. Their function is to manage the hardware interface to the flash device, and
they are intelligent enough to handle formatting and raw I/O requests to the flash device.
The other two layers within TrueFFS are known as the translation layer and the MTD (the
Memory Technology Driver). The translation layer of TrueFFS implements the error
recover and wear-leveling features of TrueFFS. The MTD implements the low-level
programming (map, read, write, and erase) of the flash medium.

To implement the socket layer, each BSP that supports TrueFFS includes a sysTffs.c file.
This file contains the code that defines the socket component driver. This file also contains
a set of defines that you can use to configure which translation layer modules and MTDs
are included in TrueFFS. Which translation layer modules and MTDs you should include
depends on which types of flash devices you need to support. Currently, there are three
basic flash memory technologies, NAND-based, NOR-based, and SSFDC. Within sysTffs.c,
define:

INCLUDE_TL_NFTL
To include the NAND-based translation layer module.

INCLUDE_TL_FTL
To include the NOR-based translation layer module.

INCLUDE_TL_SSFDC
To include the SSFDC-appropriate translation layer module.

To support these different technologies, TrueFFS ships with three different
implementations of the translation layer. Optionally, TrueFFS can include all three
modules. TrueFFS later binds the appropriate translation layer module to the flash device
when it registers a socket component driver for the device.

Within these three basic flash device categories there are still other differences (largely
manufacturer-specific). These differences have no impact on the translation layer.
However, they do make a difference for the MTD. Thus, TrueFFS ships with eight different
MTDs that can support a variety of flash devices from Intel, Sharp, Samsung, National,
Toshiba, AMD, and Fujitsu. Within sysTffs.c, define:

1 Libraries
tffsDrv

345

1
INCLUDE_MTD_I28F016

For Intel 28f016 flash devices.

INCLUDE_MTD_I28F008
For Intel 28f008 flash devices.

INCLUDE_MTD_I28F008_BAJA
For Intel 28f008 flash devices on the Heurikon Baja 4000.

INCLUDE_MTD_AMD
For AMD, Fujitsu: 29F0{40,80,16} 8-bit flash devices.

INCLUDE_MTD_CDSN
For Toshiba, Samsung: NAND CDSN flash devices.

INCLUDE_MTD_DOC2
For Toshiba, Samsung: NAND DOC flash devices.

INCLUDE_MTD_CFISCS
For CFI/SCS flash devices.

INCLUDE_MTD_WAMD
For AMD, Fujitsu 29F0{40,80,16} 16-bit flash devices.

The socket component driver and the MTDs are provided in source form. If you need to
write your own socket driver or MTD, use these working drivers as a model for your own.

EXTERNALLY CALLABLE ROUTINES

Most of the routines defined in this file are accessible through the I/O system only.
However, four routines are callable externally. These are: tffsDrv(), tffsDevCreate(),
tffsDevFormat(), and tffsRawio().

The first routine called from this library must be tffsDrv(). Call this routine exactly once.
Normally, this is handled automatically for you from within usrRoot(), if INCLUDE_TFFS
is defined, or from within pccardTffsEnabler(), if INCLUDE_PCMCIA is defined.

Internally, this call to tffsDrv() registers socket component drivers for all the flash devices
connected to your system. After registering a socket component driver for the device,
TrueFFS can support calls to tffsDevFormat() or tffsRawio(). However, before you can
mount dosFs on the flash device, you must call tffsDevCreate(). This call creates a block
device on top of the socket component driver, but does not mount dosFs on the device.
Because mounting dosFs on the device is what you will want to do most of the time, the
sysTffs.c file defines a helper function, usrTffsConfig(). Internally, this function calls
tffsDevCreate() and then does everything necessary (such as calling the dosFsDevInit()
routine) to mount dosFs on the resulting block device.

LOW LEVEL I/O Normally, you should handle your I/O to the flash device using dosFs. However, there are
situations when that level of indirection is a problem. To handle such situations, this library
defines tffsRawio(). Using this function, you can bypass both dosFs and the TrueFFS
translation services to program the flash medium directly.

VxWorks Kernel API Reference, 6.6
tickLib

346

However, you should not try to program the flash device directly unless you are intimately
familiar with the physical limits of your flash device as well as with how TrueFFS formats
the flash medium. Otherwise you risk not only corrupting the medium entirely but
permanently damaging the flash device.

If all you need to do is write a boot image to the flash device, use the tffsBootImagePut()
utility instead of tffsRawio(). This function provides safer access to the flash medium.

IOCTL This driver responds to all ioctl codes by setting a global error flag. Do not attempt to format
a flash drive using ioctl calls.

INCLUDE FILES tffsDrv.h, fatlite.h

tickLib

NAME tickLib – clock tick support library

ROUTINES tickAnnounce() – announce a clock tick to the kernel
tickSet() – set the value of the kernel's tick counter
tickGet() – get the value of the kernel's tick counter
tick64Set() – set the value of the kernel's tick counter in 64 bits
tick64Get() – get the value of the kernel's tick counter as a 64 bit value
tickAnnounceHookAdd() – add a hook routine to be called at each tick interrupt

DESCRIPTION This library is the interface to the VxWorks kernel routines that announce a clock tick to the
kernel, get the current time in ticks, and set the current time in ticks.

Kernel facilities that rely on clock ticks include taskDelay(), wdStart(), kernelTimeSlice(),
and semaphore timeouts. In each case, the specified timeout is relative to the current time,
also referred to as "time to fire." Relative timeouts are not affected by calls to tickSet(),
which only changes absolute time. The routines tickSet() and tickGet() keep track of
absolute time in isolation from the rest of the kernel.

Time-of-day clocks or other auxiliary time bases are preferable for lengthy timeouts of days
or more. The accuracy of such time bases is greater, and some external time bases even
calibrate themselves periodically.

SMP CONSIDERATIONS

All of the tickxxSet/tickxxGet APIs in this module are spinlock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs.

INCLUDE FILES tickLib.h

1 Libraries
timerLib

347

1
SEE ALSO kernelLib, taskLib, semLib, wdLib, The VxWorks Programmer's Guide

timerLib

NAME timerLib – timer library (POSIX)

ROUTINES timer_cancel() – cancel a timer
timer_connect() – connect a user routine to the timer signal
timer_create() – allocate a timer using the specified clock for a timing base (POSIX)
timer_delete() – remove a previously created timer (POSIX)
timer_gettime() – get the remaining time before expiration and the reload value (POSIX)
timer_getoverrun() – return the timer expiration overrun (POSIX)
timer_settime() – set the time until the next expiration and arm timer (POSIX)
nanosleep() – suspend the current task until the time interval elapses (POSIX)
sleep() – delay for a specified amount of time
alarm() – set an alarm clock for delivery of a signal
timer_modify() – modify a timer

DESCRIPTION This library provides a timer interface, as defined in the IEEE standard, POSIX 1003.1b.

Timers are mechanisms by which tasks signal themselves after a designated interval.
Timers are built on top of the clock and signal facilities. The clock facility provides an
absolute time-base. Standard timer functions simply consist of creation, deletion and
setting of a timer. When a timer expires, sigaction() (see sigLib) must be in place in order
for the user to handle the event. The "high resolution sleep" facility, nanosleep(), allows
sub-second sleeping to the resolution of the clock.

The clockLib library should be installed and clock_settime() set before the use of any timer
routines.

CONFIGURATION To use the POSIX timer library, configure VxWorks with the INCLUDE_POSIX_TIMERS
component.

ADDITIONS Two non-POSIX functions are provided for user convenience:

timer_cancel() quickly disables a timer by calling timer_settime().
timer_connect() easily hooks up a user routine by calling sigaction().

CLARIFICATIONS The task creating a timer with timer_create() will receive the signal no matter which task
actually arms the timer.

When a timer expires and the task has previously exited, logMsg() indicates the expected
task is not present. Similarly, logMsg() indicates when a task arms a timer without

VxWorks Kernel API Reference, 6.6
timerOpen

348

installing a signal handler. Timers may be armed but not created or deleted at interrupt
level.

As specified by the POSIX standard, the sleep() prototype is defined in unistd.h.

IMPLEMENTATION The actual clock resolution is hardware-specific and in many cases is 1/60th of a second.
This is less than _POSIX_CLOCKRES_MIN, which is defined as 20 milliseconds (1/50th of
a second).

INCLUDE FILES timers.h, unistd.h

SEE ALSO clockLib, sigaction(), POSIX 1003.1b documentation

timerOpen

NAME timerOpen – extended timer library

ROUTINES timerOpenInit() – initialize the timer open facility
timer_open() – open a timer
timer_close() – close a named timer
timer_unlink() – unlink a named timer

DESCRIPTION The extended timer library includes the APIs to open, close, and unlink timers. Since these
APIs did not exist in VxWorks 5.5, to prevent the functions from being included in the
default image, they have been isolated from the general timer library.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpuLock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES timerLib.h

SEE ALSO msgQOpen, objOpen, semOpen, taskOpen, the VxWorks, programmer guides.

1 Libraries
timexLib

349

1timerShow

NAME timerShow – POSIX timer show library

ROUTINES timerShowInit() – initialize the timer show routine facility
timer_show() – show information on a specified timer

DESCRIPTION This Library contains the routine timer_show(), which displays a "snap shot" of a specified
timer. The "snap shot" displays information about the timer at the time the function is
called. The information displayed by timer_show() is intended for debugging purposes
only.

CONFIGURATION The routines in this library are included if the INCLUDE_POSIX_TIMER_SHOW component
is configured into VxWorks. INCLUDE_POSIX_TIMER_SHOW requires the component
INCLUDE_POSIX_TIMER.

INCLUDE FILES time.h

timexLib

NAME timexLib – execution timer facilities

ROUTINES timexInit() – include the execution timer library
timexClear() – clear the list of function calls to be timed
timexFunc() – specify functions to be timed
timexHelp() – display synopsis of execution timer facilities
timex() – time a single execution of a function or functions
timexN() – time repeated executions of a function or group of functions
timexPost() – specify functions to be called after timing
timexPre() – specify functions to be called prior to timing
timexShow() – display the list of function calls to be timed

EXAMPLES The routine timex() can be used to obtain the execution time of a single routine:

 -> timex myFunc, myArg1, myArg2, ...

The routine timexN() calls a function repeatedly until a 2% or better tolerance is obtained:

 -> timexN myFunc, myArg1, myArg2, ...

The routines timexPre(), timexPost(), and timexFunc() are used to specify a list of
functions to be executed as a group:

 -> timexPre 0, myPreFunc1, preArg1, preArg2, ...

VxWorks Kernel API Reference, 6.6
tlsLib

350

 -> timexPre 1, myPreFunc2, preArg1, preArg2, ...

 -> timexFunc 0, myFunc1, myArg1, myArg2, ...
 -> timexFunc 1, myFunc2, myArg1, myArg2, ...
 -> timexFunc 2, myFunc3, myArg1, myArg2, ...

 -> timexPost 0, myPostFunc, postArg1, postArg2, ...

The list is executed by calling timex() or timexN() without arguments:

 -> timex

or

 -> timexN

In this example, myPreFunc1 and myPreFunc2 are called with their respective arguments.
myFunc1, myFunc2, and myFunc3 are then called in sequence and timed. If timexN() was
used, the sequence is called repeatedly until a 2% or better error tolerance is achieved.
Finally, myPostFunc is called with its arguments. The timing results are reported after all
post-timing functions are called.

NOTES The timings measure the execution time of the routine body, without the usual subroutine
entry and exit code (usually LINK, UNLINK, and RTS instructions). Also, the time required
to set up the arguments and call the routines is not included in the reported times. This is
because these timing routines automatically calibrate themselves by timing the invocation
of a null routine, and thereafter subtracting that constant overhead.

Also note that the measurement method is not immune to scheduling events. Should the
timed tasks be stopped, pended or interrupted during measurement, the final data will take
that into account. This is because the clock is still counting while the tasks are inactive.

SMP CONSIDERATIONS

On SMP systems, task migration also influence timings (see note about precision above).
The VxWorks CPU affinity mechanism can be used to suppress that bias if deemed
necessary (refer to the taskLib documentation for more information about CPU affinity).

INCLUDE FILES timexLib.h

SEE ALSO spyLib

tlsLib

NAME tlsLib – thread local storage support library

ROUTINES tlsTaskInit() – Thread Local Storage init routine

1 Libraries
tlsLib

351

1
DESCRIPTION The Thread Local Storage library provides VxWorks support for task specific variables. A

task specific variable is declared using the __thread storage class keyword. For example,
you can declare task specific variables like this:

__thread UINT32 myInteger;
__thread char myBuffer [10];

or add a reference to an external __thread variable like this:

extern __thread UINT32 myInteger;

When a VxWorks task is created, memory used to store __thread variables located in the
VxWorks image (including user applications linked with the vxWorks image) for this
specific task is allocated from the task exception stack. If your VxWorks image does contain
a lot of __thread variables or if the size of __thread variables is big you may have to increase
the size of the task exception stack in your VxWorks configuration.

The memory for __thread variables of a Downloadable Kernel Module (DKM) is allocated
using the VxWorks memory manager; the memory required to store a DKM's __thread
variables for a specific task is allocated only when this task makes access to one of the
__thread variables of this modules. Because of this, accessing a __thread variable for the first
time will not be deterministic. To avoid this, the entry point of the task can call tlsTaskInit()
routine (this will allocate memory for all __thread variables of all DKMs) or simply access
one of the DKM __thread variables (this will allocate memory only for the __thread
variables of the DKM where is located the accessed __thread variable). The first solution will
preserve determinism when accessing __thread variables for all DKMs in the system (that
were loaded when tlsTaskInit() routine was called), the second solution will preserve
determinisn only when accessing a __thread variable of the same DKM (but will allocate
memory only for __thread variables of this DKM).

When a task is deleted, all the memory it has used to manage and store __thread variables
will be released.

When a DKM is unloaded, the memory used by a task to handle this module's __thread
variables will be released only when the task will exit or when the task will try to access one
of the DKM's __thread variables again. Note that when a task tries to access a __thread
variable of a module that does not exist (because it has been unloaded for example), then a
fatal ED&R event will be injected (if ED&R support is enabled) and the task will be stopped
by the ED&R fatal policy handler.

__thread variables should not be accessed from an interrupt service routine. Accessing a
__thread variable from an interrupt service routine may lead to unpredictable results.

INCLUDE FILES tlsLib.h

SEE ALSO

VxWorks Kernel API Reference, 6.6
trgLib

352

trgLib

NAME trgLib – trigger events control library

ROUTINES trgLibInit() – initialize the triggering library
trgWorkQReset() – Resets the trigger work queue task and queue
trgAdd() – add a new trigger to the trigger list
trgReset() – Reset a trigger in the trigger list
trgDelete() – delete a trigger from the trigger list
trgOn() – set triggering on
trgOff() – set triggering off
trgEnable() – enable a trigger
trgDisable() – turn a trigger off
trgChainSet() – chains two triggers
trgEvent() – trigger a user-defined event

DESCRIPTION This library provides the interface for triggering events. The routines provide tools for
creating, deleting, and controlling triggers. However, in most cases it is preferable to use
the GUI to create and manage triggers, since all order and dependency factors are
automatically accounted for there.

The event types are defined as in the Wind River System Viewer. Triggering and the System
Viewer share the same instrumentation points. Furthermore, one of the main uses of
triggering is to start and stop System Viewer instrumentation. Triggering is started by the
routine trgOn(), which sets the shared variable evtAction. Once the variable is set, when an
instrumented point is hit, trgCheck() is called. The routine looks for triggers that apply to
this event. The routine trgOff() stops triggering. The routine trgEnable() enables a specific
trigger that was previously disabled with trgDisable(). (At creation time all triggers are
enabled by default.) This routine also checks the number of triggers currently enabled, and
when this is zero, it turns triggering off.

NOTE It is important to create a trigger before calling trgOn(). trgOn() checks the trigger list to
see if there is at least one trigger there, and if not, it exits without setting evtAction.

INCLUDE FILES trgLibP.h

SEE ALSO Wind River System Viewer User's Guide

trgShow

NAME trgShow – trigger show routine

1 Libraries
tsecVxbEnd

353

1
ROUTINES trgShowInit() – initialize the trigger show facility

trgShow() – show trigger information

DESCRIPTION This library provides routines to show event triggering information, such as list of triggers,
associated actions, trigger states, and so on.

The routine trgShowInit() links the triggering show facility into the VxWorks system. It is
called automatically when INCLUDE_TRIGGER_SHOW is defined.

INCLUDE FILES none

SEE ALSO trgLib

tsecVxbEnd

NAME tsecVxbEnd – Freescale TSEC VxBus END driver

ROUTINES tsecRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the Motorola/Freescale Three Speed Ethernet
Controller (TSEC) network interface. The TSEC supports 10, 100 and 1000Mbps operation
over copper and fiber media.

The TSEC is unusual in that it uses three different interrupt vectors: one for RX events, one
for TX events and one for error events. The intention is to shave some cycles from the
interrupt service path by jumping directly to the proper event handler routine instead of the
driver having to determine the nature of pending events itself.

Note that while this driver is VxBus-compliant, it does not use vxbDmaBufLib. The reason
for this is that vxbDmaBufLib is technically only required for drivers for DMA-based
devices that must be portable among multiple architectures (e.g. PCI or VMEbus adapters).
The TSEC is not a standalone device: it only exists as an integrated component of certain
MPC85xx and MPC83xx PowerPC CPUs. It is always big-endian, it is always cache-coherent
(since we always enable the TSEC's snooping features), and it never needs bounce buffering
or address translation. Given this, we may as well forgo the use of vxbDmaBufLib entirely,
since using it will do nothing except add a bit of extra overhead to the packet processing
paths.

BOARD LAYOUT The TSEC is directly integrated into the CPU. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
tsecRegister() function, which registers the driver with VxBus.

VxWorks Kernel API Reference, 6.6
ttyDrv

354

The TSEC controller also supports jumbo frames. This driver has jumbo frame support,
which is disabled by default in order to conserve memory (jumbo frames require the use of
an buffer pool with larger clusters). Jumbo frames can be enabled on a per-interface basis
using a parameter override entry in the hwconf.c file in the BSP. For example, to enable
jumbo frame support for interface mottsec0, the following entry should be added to the
VXB_INST_PARAM_OVERRIDE table:

{ "mottsec", 0, "jumboEnable", VXB_PARAM_INT32, {(void *)1} }

The TSEC controller also supports interrupt coalescing. This driver has coalescing support,
which is disabled by default so that the out of the box configuration has the smallest
interrupt latency. Coalescing can be anabled on a per-interface basis using parameter
overeides in the hwconf.c file, in the same way as jumbo frame support. In addition to
turning the coalescing support on and off, the timeout and packet count values can be set:

{ "mottsec", 0, "coalesceEnable", VXB_PARAM_INT32, {(void *)1} }
{ "mottsec", 0, "coalesceRxTicks", VXB_PARAM_INT32, {(void *)10} }
{ "mottsec", 0, "coalesceRxPkts", VXB_PARAM_INT32, {(void *)8} }
{ "mottsec", 0, "coalesceTxTicks", VXB_PARAM_INT32, {(void *)100} }
{ "mottsec", 0, "coalesceTxPkts", VXB_PARAM_INT32, {(void *)16} }

If only the coalesceEnable property is set, the driver will use default timeout and packet count
values as shown above. Specifying alternate values via the BSP will override the defaults.

INCLUDE FILES none

SEE ALSO vxBus, ifLib, miiBus, "Writing an Enhanced Network Driver", "MPC8560 PowerQUICC III
Integrated Communications Processor Reference Manual,
http://www.freescale.com/files/32bit/doc/ref_manual/MPC8560RM.pdf"

ttyDrv

NAME ttyDrv – provide terminal device access to serial channels

ROUTINES ttyDrv() – initialize the tty driver
ttyDevCreate() – create a VxWorks device for a serial channel

DESCRIPTION This library provides the OS-dependent functionality of a serial device, including canonical
processing and the interface to the VxWorks I/O system.

The BSP provides "raw" serial channels which are accessed via an SIO_CHAN data structure.
These raw devices provide only low level access to the devices to send and receive
characters. This library builds on that functionality by allowing the serial channels to be

1 Libraries
tyLib

355

1
accessed via the VxWorks I/O system using the standard read/write interface. It also
provides the canonical processing support of tyLib.

CONFIGURATION To use terminal device access to serial channels, configure VxWorks with the
INCLUDE_TTY_DEV component.

This library is initialized automatically when the INCLUDE_TTY_DEV component is
configured in VxWorks.

INCLUDE FILES ttyLib.h

SEE ALSO tyLib, sioLib.h

tyLib

NAME tyLib – tty driver support library

ROUTINES tyLibInit() – initialize the tty library
tyDevInit() – initialize the tty device descriptor
tyDevRemove() – remove the tty device descriptor
tyDevTerminate() – terminate the tty device descriptor
tyAbortFuncSet() – set the abort function
tyAbortSet() – change the abort character
tyAbortGet() – get the abort character
tyBackspaceSet() – change the backspace character
tyDeleteLineSet() – change the line-delete character
tyEOFSet() – change the end-of-file character
tyEOFGet() – get the current end-of-file character
tyMonitorTrapSet() – change the trap-to-monitor character
tyIoctl() – handle device control requests
tyWrite() – do a task-level write for a tty device
tyRead() – do a task-level read for a tty device
tyITx() – interrupt-level output
tyIRd() – interrupt-level input
tyXoffHookSet() – install a hardware flow control function

DESCRIPTION This library provides routines used to implement drivers for serial devices. It provides all
the necessary device-independent functions of a normal serial channel, including:

- ring buffering of input and output

- raw mode

- optional line mode with backspace and line-delete functions

VxWorks Kernel API Reference, 6.6
tyLib

356

- optional processing of X-on/X-off

- optional RETURN/LINEFEED conversion

- optional echoing of input characters

- optional stripping of the parity bit from 8-bit input

- optional special characters for shell abort and system restart

Most of the routines in this library are called only by device drivers. Functions that normally
might be called by an application or interactive user are the routines to set special
characters, ty...Set().

USE IN SERIAL DEVICE DRIVERS

Each device that uses tyLib is described by a data structure of type TY_DEV. This structure
begins with an I/O system device header so that it can be added directly to the I/O system's
device list. A driver calls tyDevInit() to initialize a TY_DEV structure for a specific device
and then calls iosDevAdd() to add the device to the I/O system. Prior to driver
termination, if ever, the driver calls tyDevTerminate() to terminate a TY_DEV structure.

The call to tyDevInit() takes three parameters: the pointer to the TY_DEV structure to
initialize, the desired size of the read and write ring buffers, and the address of a transmitter
start-up routine. This routine will be called when characters are added for output and the
transmitter is idle. Thereafter, the driver can call the following routines to perform the
usual device functions:

tyRead()
user read request to get characters that have been input

tyWrite()
user write request to put characters to be output

tyIoctl()
user I/O control request

tyIRd()
interrupt-level routine to get an input character

tyITx()
interrupt-level routine to deliver the next output character

Thus, tyRead(), tyWrite(), and tyIoctl() are called from the driver's read, write, and I/O
control functions. The routines tyIRd() and tyITx() are called from the driver's interrupt
handler in response to receive and transmit interrupts, respectively.

Examples of using tyLib in a driver can be found in the source file(s) included by tyCoDrv.
Source files are located in src/drv/serial.

TTY OPTIONS A full range of options affects the behavior of tty devices. These options are selected by
setting bits in the device option word using the FIOSETOPTIONS function in the ioctl()

1 Libraries
tyLib

357

1
routine (see "I/O Control Functions" below for more information). The following is a list of
available options. The options are defined in the header file ioLib.h.

OPT_LINE
Selects line mode. A tty device operates in one of two modes: raw mode (unbuffered)
or line mode. Raw mode is the default. In raw mode, each byte of input from the device
is immediately available to readers, and the input is not modified except as directed by
other options below. In line mode, input from the device is not available to readers
until a NEWLINE character is received, and the input may be modified by backspace,
line-delete, and end-of-file special characters. The max line length in line mode is set to
MAX_CANON, defined in limits.h. This limit includes the end of line character.

OPT_ECHO
Causes all input characters to be echoed to the output of the same channel. This is done
simply by putting incoming characters in the output ring as well as the input ring. If
the output ring is full, the echoing is lost without affecting the input.

OPT_CRMOD
C language conventions use the NEWLINE character as the line terminator on both
input and output. Most terminals, however, supply a RETURN character when the
return key is hit, and require both a RETURN and a LINEFEED character to advance
the output line. This option enables the appropriate translation: NEWLINEs are
substituted for input RETURN characters, and NEWLINEs in the output file are
automatically turned into a RETURN-LINEFEED sequence.

OPT_TANDEM
Causes the driver to generate and respond to the special flow control characters
CTRL-Q and CTRL-S in what is commonly known as X-on/X-off protocol. Receipt of
a CTRL-S input character will suspend output to that channel. Subsequent receipt of a
CTRL-Q will resume the output. Also, when the VxWorks input buffer is almost full,
a CTRL-S will be output to signal the other side to suspend transmission. When the
input buffer is almost empty, a CTRL-Q will be output to signal the other side to resume
transmission.

OPT_7_BIT
Strips the most significant bit from all bytes input from the device.

OPT_MON_TRAP
Enables the special monitor trap character, by default CTRL-X. When this character is
received and this option is enabled, VxWorks will trap to the ROM resident monitor
program. Note that this is quite drastic. All normal VxWorks functioning is
suspended, and the computer system is entirely controlled by the monitor. Depending
on the particular monitor, it may or may not be possible to restart VxWorks from the
point of interruption. The default monitor trap character can be changed by calling
tyMonitorTrapSet().

OPT_ABORT
Enables the special shell abort character, by default CTRL-C. When this character is
received and this option is enabled, the VxWorks shell is restarted. This is useful for

VxWorks Kernel API Reference, 6.6
tyLib

358

freeing a shell stuck in an unfriendly routine, such as one caught in an infinite loop or
one that has taken an unavailable semaphore. For more information, see the VxWorks
programmer guides.

OPT_TERMINAL
This is not a separate option bit. It is the value of the option word with all the above
bits set.

OPT_RAW
This is not a separate option bit. It is the value of the option word with none of the
above bits set.

I/O CONTROL FUNCTIONS

The tty devices respond to the following ioctl() functions. The functions are defined in the
header ioLib.h.

FIOGETNAME
Gets the file name of the file descriptor and copies it to the buffer referenced to by
nameBuf:

 status = ioctl (fd, FIOGETNAME, &nameBuf);

This function is common to all file descriptors for all devices.

FIOSETOPTIONS, FIOOPTIONS
Sets the device option word to the specified argument. For example, the call:

 status = ioctl (fd, FIOOPTIONS, OPT_TERMINAL);
 status = ioctl (fd, FIOSETOPTIONS, OPT_TERMINAL);

enables all the tty options described above, putting the device in a "normal" terminal
mode. If the line protocol (OPT_LINE) is changed, the input buffer is flushed. The
various options are described in ioLib.h.

FIOGETOPTIONS
Returns the current device option word:

 options = ioctl (fd, FIOGETOPTIONS, 0);

FIONREAD
Copies to nBytesUnread the number of bytes available to be read in the device's input
buffer:

 status = ioctl (fd, FIONREAD, &nBytesUnread);

In line mode (OPT_LINE set), the FIONREAD function actually returns the number of
characters available plus the number of lines in the buffer. Thus, if five lines of just
NEWLINEs were in the input buffer, it would return the value 10 (5 characters + 5
lines).

FIONWRITE
Copies to nBytes the number of bytes queued to be output in the device's output buffer:

 status = ioctl (fd, FIONWRITE, &nBytes);

1 Libraries
tyLib

359

1
FIOFLUSH

Discards all the bytes currently in both the input and the output buffers:

 status = ioctl (fd, FIOFLUSH, 0);

FIOWFLUSH
Discards all the bytes currently in the output buffer:

 status = ioctl (fd, FIOWFLUSH, 0);

FIORFLUSH
Discards all the bytes currently in the input buffers:

 status = ioctl (fd, FIORFLUSH, 0);

FIOCANCEL
Cancels a read or write. A task blocked on a read or write may be released by a second
task using this ioctl() call. For example, a task doing a read can set a watchdog timer
before attempting the read; the auxiliary task would wait on a semaphore. The
watchdog routine can give the semaphore to the auxiliary task, which would then use
the following call on the appropriate file descriptor:

 status = ioctl (fd, FIOCANCEL, 0);

FIOBAUDRATE
Sets the baud rate of the device to the specified argument. For example, the call:

 status = ioctl (fd, FIOBAUDRATE, 9600);

Sets the device to operate at 9600 baud. This request has no meaning on a pseudo
terminal.

FIOISATTY
Returns TRUE for a tty device:

 status = ioctl (fd, FIOISATTY, 0);

FIOPROTOHOOK
Adds a protocol hook function to be called for each input character. pfunction is a
pointer to the protocol hook routine which takes two arguments of type int and returns
values of type STATUS (TRUE or FALSE). The first argument passed is set by the user
via the FIOPROTOARG function. The second argument is the input character. If no
further processing of the character is required by the calling routine (the input routine
of the driver), the protocol hook routine pFunction should return TRUE. Otherwise, it
should return FALSE:

 status = ioctl (fd, FIOPROTOHOOK, pFunction);

FIOPROTOARG
Sets the first argument to be passed to the protocol hook routine set by
FIOPROTOHOOK function:

 status = ioctl (fd, FIOPROTOARG, arg);

VxWorks Kernel API Reference, 6.6
unShow

360

FIORBUFSET
Changes the size of the receive-side buffer to size:

 status = ioctl (fd, FIORBUFSET, size);

FIOWBUFSET
Changes the size of the send-side buffer to size:

 status = ioctl (fd, FIOWBUFSET, size);

Any other ioctl() request will return an error and set the status to
S_ioLib_UNKNOWN_REQUEST.

CONFIGURATION To use the tty driver support library, configure VxWorks with the INCLUDE_TYLIB
component.

INCLUDE FILES tyLib.h, ioLib.h

SEE ALSO ioLib, iosLib, tyCoDrv, the VxWorks programmer guides.

unShow

NAME unShow – information display routines for AF_LOCAL

ROUTINES unstatShow() – display all AF_LOCAL sockets

DESCRIPTION This library provides routines to display information for all sockets and statistics for the
AF_LOCAL address family.

The unShowInit() routine links the AF_LOCAL show facility into the VxWorks system. This
is performed automatically if INCLUDE_UN_SHOW is defined. Components need to be
added per-protocol as well, eg. INCLUDE_UN_COMP_SHOW for the COMP protocol
unstatShow() support.

INCLUDE FILES none

unixDrv

NAME unixDrv – UNIX-file disk driver (VxSim for Solaris)

ROUTINES unixDrv() – install UNIX disk driver

1 Libraries
unixDrv

361

1
unixDiskDevCreate() – create a UNIX disk device
unixDiskInit() – initialize a dosFs disk on top of UNIX

DESCRIPTION This driver emulates a VxWorks disk driver by using a virtual disk. The VxWorks disk
appears under UNIX as a single file. The UNIX file name, and the size of the disk, may be
specified during the unixDiskDevCreate() call.

USER-CALLABLE ROUTINES

The routine unixDrv() must be called to initialize the driver and the unixDiskDevCreate()
routine is used to create devices.

CREATING UNIX DISKS

Before a UNIX disk can be used, it must be created. This is done with the
unixDiskDevCreate() call. The format of this call is:

 BLK_DEV *unixDiskDevCreate
 (
 char *unixFile, /* name of the UNIX file to use */
 int bytesPerBlk, /* number of bytes per block */
 int blksPerTrack, /* number of blocks per track */
 int nBlocks /* number of blocks on this device */
)

The UNIX file must be pre-allocated separately. This can be done using the UNIX mkfile(8)
command. Note that you have to create an appropriately sized file. For example, to create
a UNIX file system that is used as a common floppy dosFs file system, you would issue the
comand:

 mkfile 1440k /tmp/floppy.dos

This will create space for a 1.44 Meg DOS floppy (1474560 bytes, or 2880 512-byte blocks).

The bytesPerBlk parameter specifies the size of each logical block on the disk. If bytesPerBlk
is zero, 512 is the default.

The blksPerTrack parameter specifies the number of blocks on each logical track of the UNIX
disk. If blksPerTrack is zero, the count of blocks per track will be set to nBlocks (i.e., the disk
will be defined as having only one track). UNIX disk devices typically are specified with
only one track.

The nBlocks parameter specifies the size of the disk, in blocks. If nBlocks is zero the size of the
UNIX file specified, divided by the number of bytes per block, is used.

The formatting parameters (bytesPerBlk, blksPerTrack, and nBlocks) are critical only if the
UNIX disk already contains the contents of a disk created elsewhere. In that case, the
formatting parameters must be identical to those used when the image was created.
Otherwise, they may be any convenient number.

Once the device has been created it still does not have a name or file system associated with
it. This must be done by using the file system's device initialization routine (e.g.,
dosFsDevInit()). The dosFs file systems also provide make-file-system routines

VxWorks Kernel API Reference, 6.6
unldLib

362

(dosFsMkfs()), which may be used to associate a name and file system with the block
device and initialize that file system on the device using default configuration parameters.

The unixDiskDevCreate() call returns a pointer to a block device structure (BLK_DEV).
This structure contains fields that describe the physical properties of a disk device and
specify the addresses of routines within the UNIX disk driver. The BLK_DEV structure
address must be passed to the desired file system (dosFs, or rawFs) during the file system's
device initialization or make-file-system routine. Only then is a name and file system
associated with the device, making it available for use.

As an example, to create a 200KB disk, 512-byte blocks, and only one track, the proper call
would be:

 BLK_DEV *pBlkDev;

 pBlkDev = unixDiskDevCreate ("/tmp/filesys1", 512, 400, 400, 0);

This will attach the UNIX file /tmp/filesys1 as a block device.

A convenience routine, unixDiskInit(), is provided to do the unixDiskDevCreate()
followed by either a dosFsMkFs() or dosFsDevInit(), whichever is appropriate.

The format of this call is:

 BLK_DEV *unixDiskInit
 (
 char * unixFile, /* name of the UNIX file to use */
 char * volName, /* name of the dosFs volume to use */
 int nBytes /* number of bytes in dosFs volume */
)

This call will create the UNIX disk if required.

IMPORTANT NOTE This library is obsolete, but is kept for backward compatibility and is now replaced by
virtual disk library. But note that the virtual disk library is not able to use unix disk created
with unixDiskDevCreate() API.

INCLUDE FILES none

SEE ALSO dosFsDevInit(), dosFsMkfs(), rawFsDevInit()

unldLib

NAME unldLib – object module unloading library

ROUTINES unldByModuleId() – unload an object module by specifying a module ID
unldByNameAndPath() – unload an object module by specifying a name and path
unldByGroup() – unload an object module by specifying a group number

1 Libraries
unldLib

363

1
DESCRIPTION This library provides a facility for unloading code modules (see loadLib for a definition of code

modules). Once a code module has been installed in the system using loadLib, it can be
removed from the system by calling one of the unldXxx() routines in this library.

Unloading a code module involves performing the following actions:

(1) Free the space allocated for the code module segments (text, data, and BSS), unless
loadModule() was given load directives with specific segment addresses, in which
case the user is responsible for freeing the space.

(2) Remove all symbols associated with the object module from the symbol table.

(3) Remove the code module descriptor, and its segment descriptors, from the code
module list.

Once the code module is unloaded, any calls to routines in that module from other modules
will fail unpredictably. In this case, the user is responsible for ensuring that no modules are
unloaded that are used by other modules. unldByModuleId() checks the hooks created by
the following routines to ensure none of the unloaded code is in use by a hook:

taskCreateHookAdd()
taskDeleteHookAdd()
taskSwapHookAdd()
taskSwitchHookAdd()

However, unldByModuleId() does not check any hook added by a network component , by
ED&R or the hooks created by the following routines:

excHookAdd()
rebootHookAdd()
moduleCreateHookAdd()

INCLUDE FILES unldLib.h, moduleLib.h

ERRNOS Routines from this library can return the following unloader-specific errors:

S_unldLib_TEXT_IN_USE
The text segment of the module which is being unloaded is still in use.

Note that other errors, not listed here, may come from libraries internally used by the
unloader.

SEE ALSO loadLib, moduleLib

VxWorks Kernel API Reference, 6.6
usrConfig

364

usrConfig

NAME usrConfig – user-defined system configuration library

ROUTINES usrInit() – user-defined system initialization routine
usrRoot() – the root task
usrClock() – user-defined system clock interrupt routine

DESCRIPTION This library is the WRS-supplied configuration module for VxWorks. It contains the root
task, the primary system initialization routine, the network initialization routine, and the
clock interrupt routine.

The include file config.h includes a number of system-dependent parameters used in this
file.

In an effort to simplify the presentation of the configuration of vxWorks, this file has been
split into smaller files. These additional configuration source files are located in
../../src/config/usr[xxx].c and are #included into this file below. This file contains the bulk of
the code a customer is likely to customize.

The module usrDepend.c contains checks that guard against unsupported configurations
such as INCLUDE_NFS without INCLUDE_RPC. The module usrKernel.c contains the core
initialization of the kernel which is rarely customized, but provided for information. The
module usrNetwork.c now contains all network initialization code. Finally, the module
usrExtra.c contains the conditional inclusion of the optional packages selected in
configAll.h.

The source code necessary for the configuration selected is entirely included in this file
during compilation as part of a standard build in the board support package. No other
make is necessary.

INCLUDE FILES config.h

SEE ALSO The VxWorks programmer guides.

usrFdiskPartLib

NAME usrFdiskPartLib – FDISK-style partition handler

ROUTINES usrFdiskPartRead() – read an FDISK-style partition table
usrFdiskPartCreate() – create an FDISK-like partition table on a disk
usrFdiskPartShow() – parse and display partition data

1 Libraries
usrFdiskPartLib

365

1
DESCRIPTION This module is provided as source code to accommodate various customizations of

partition table handling, resulting from variations in the partition table format in a
particular configuration. It is intended for use with dpartCbio partition manager.

This code supports both mounting MSDOS file systems and displaying partition tables
written by MSDOS FDISK.exe or by any other MSDOS FDISK.exe compatible partitioning
software.

The first partition table is contained within a hard drive's Master Boot Record (MBR) sector,
which is defined as sector one, cylinder zero, head zero or logical block address zero.

The mounting and displaying routines within this code will first parse the MBR partition
tables entries (defined below) and also recursively parse any "extended" partition tables,
which may reside within another sector further into the hard disk. MSDOS file systems
within extended partitions are known to those familiar with the MSDOS FDISK.exe utility
as "Logical drives within the extended partition".

Here is a picture showing the layout of a single disk containing multiple MSDOS file
systems:

 +---+
 |<---------------------The entire disk------------------->|
 |M |
 |B<---C:---> |
 |R /---- First extended partition--------------\|
 | E<---D:---><-Rest of the ext part------------>|
 |P x |
 |A t E<---E:--->E<Rest of the ext part->|
 |R x x |
 |T t t<---------F:---------->|
 +---+
 (Ext == extended partition sector)
 C: is a primary partiion
 D:, E:, and F: are logical drives within the extended partition.

A MS-DOS partition table resides within one sector on a hard disk. There is always one in
the first sector of a hard disk partitioned with FDISK.exe. There first partition table may
contain references to "extended" partition tables residing on other sectors if there are
multiple partitions. The first sector of the disk is the starting point. Partition tables are of
the format:

Offset from
the beginning
of the sector Description
------------- -------------------------
 0x1be Partition 1 table entry (16 bytes)
 0x1ce Partition 2 table entry (16 bytes)
 0x1de Partition 3 table entry (16 bytes)
 0x1ee Partition 4 table entry (16 bytes)
 0x1fe Signature (0x55aa, 2 bytes)

Individual MSDOS partition table entries are of the format:

Offset Size Description
------ ---- ------------------------------

VxWorks Kernel API Reference, 6.6
usrFsLib

366

 0x0 8 bits boot type
 0x1 8 bits beginning sector head value
 0x2 8 bits beginning sector (2 high bits of cylinder#)
 0x3 8 bits beginning cylinder# (low order bits of cylinder#)
 0x4 8 bits system indicator
 0x5 8 bits ending sector head value
 0x6 8 bits ending sector (2 high bits of cylinder#)
 0x7 8 bits ending cylinder# (low order bits of cylinder#)
 0x8 32 bits number of sectors preceding the partition
 0xc 32 bits number of sectors in the partition

The Cylinder, Head and Sector values herein are not used, instead the 32-bit partition offset
and size (also known as LBA addresses) are used exclusively to determine partition
geometry.

If a non-partitioned disk is detected, in which case the 0'th block is a DosFs boot block rather
then an MBR, the entire disk will be configured as partition 0, so that disks formatted with
VxWorks and disks formatted on MS-DOS or Windows can be accepted interchangeably.

The usrFdiskPartCreate() will create a partition table with up to four partitions, which can
be later used with usrFdiskPartRead() and dpartCbio to manage a partitioned disk on
VxWorks.

However, it can not be guaranteed that this partition table can be used on another system
due to several BIOS specific paramaters in the boot area. If interchangeability via removable
disks is a requirement, partition tables should be created and volumes should be formatted
on the other system with which the data is to be interchanged.

CAUTION The partition decode function is recursive, up to the maximum number of partitions
expected, which is no more then 24.

Sufficient stack space needs to be provided via taskSpawn() to accommodate the recursion
level.

INCLUDE FILES none

SEE ALSO dpartCbio

usrFsLib

NAME usrFsLib – file system user interface subroutine library

ROUTINES cd() – change the default directory
pwd() – print the current default directory
mkdir() – make a directory
rmdir() – remove a directory

1 Libraries
usrFsLib

367

1
rm() – remove a file
copyStreams() – copy from/to specified streams
copy() – copy in (or stdin) to out (or stdout)
chkdsk() – perform consistency checking on a MS-DOS file system
dirList() – list contents of a directory (multi-purpose)
ls() – generate a brief listing of a directory
ll() – generate a long listing of directory contents
lsr() – list the contents of a directory and any of its subdirectories
llr() – do a long listing of directory and all its subdirectories contents
cp() – copy file into other file/directory.
mv() – mv file into other directory.
xcopy() – copy a hierarchy of files with wildcards
xdelete() – delete a hierarchy of files with wildcards
attrib() – modify MS-DOS file attributes on a file or directory
xattrib() – modify MS-DOS file attributes of many files
dosfsDiskFormat() – format a disk with dosFs
diskFormat() – format a disk with dosFs
hrfsDiskFormat() – format a disk with HRFS
diskInit() – initialize a file system on a block device
commit() – commit current transaction to disk.
ioHelp() – print a synopsis of I/O utility functions

DESCRIPTION This library provides user-level utilities for managing file systems. These utilities may be
used from Host Shell, the Kernel Shell or from an application.

USAGE FROM HOST SHELL

Some of the functions in this library have counterparts of the same names built into the Host
Shell (aka Windsh). The built-in functions perform similar functions on the Tornado host
computer's I/O systems. Hence if one of such functions needs to be executed in order to
perform any operation on the Target's I/O system, it must be preceded with an @ sign, e.g.:

-> @ls "/sd0"

will list the directory of a disk named "/sd0" on the target, wile

-> ls "/tmp"

will list the contents of the "/tmp" directory on the host.

The target I/O system and the Host Shell running on the host, each have their own notion
of current directory, which are not related, hence

-> pwd

will display the Host Shell current directory on the host file system, while

-> @pwd

will display the target's current directory on the target's console.

VxWorks Kernel API Reference, 6.6
usrLib

368

WILDCARDS Some of the functions herein support wildcard characters in argument strings where file or
directory names are expected. The wildcards are limited to "*" which matches zero or more
characters and "?" which matches any single characters. Files or directories with names
beginning with a "." are not normally matched with the "*" wildcard.

DIRECTORY LISTING

Directory listing is implemented in one function dirList(), which can be accessed using one
of these four front-end functions:

ls()
produces a short list of files

lsr()
is like ls() but ascends into subdirectories

ll()
produces a detailed list of files, with file size, modification date attributes etc.

llr()
is like ll() but also ascends into subdirectories

All of the directory listing functions accept a name of a directory or a single file to list, or a
name which contain wildcards, which will result in listing of all objects that match the
wildcard string provided.

INCLUDE FILES usrLib.h

SEE ALSO ioLib, dosFsLib, netDrv, nfsLib, hrFsLib, the VxWorks programmer guides, the, VxWorks
Command-Line Tools User's Guide.

usrLib

NAME usrLib – user interface subroutine library

ROUTINES help() – print a synopsis of selected routines
netHelp() – print a synopsis of network routines
w() – print a summary of each task's pending information, task by task
tw() – print info about the object the given task is pending on
shConfig() – display or set the shell configuration
strFree() – free shell strings
bootChange() – change the boot line
periodRun() – call a function periodically
period() – spawn a task to call a function periodically
repeatRun() – call a function repeatedly
repeat() – spawn a task to call a function repeatedly

1 Libraries
usrLib

369

1
sp() – spawn a task with default parameters
checkStack() – print a summary of each task's stack usage
i() – print a summary of each task's TCB
ti() – print complete information from a task's TCB
show() – print information on a specified object
ts() – suspend a task
tr() – resume a task
td() – delete a task
version() – print VxWorks version information
m() – modify memory
d() – display memory
ld() – load an object module into memory
devs() – list all system-known devices
lkup() – list symbols
lkAddr() – list symbols whose values are near a specified value
mRegs() – modify registers
pc() – return the contents of the program counter
printErrno() – print the definition of a specified error status value
printLogo() – print the VxWorks logo
logout() – log out of the VxWorks system
h() – display or set the size of shell history
spyReport() – display task activity data
spyTask() – run periodic task activity reports
spy() – begin periodic task activity reports
spyClkStart() – start collecting task activity data
spyClkStop() – stop collecting task activity data
spyStop() – stop spying and reporting
spyHelp() – display task monitoring help menu
unld() – unload an object module by specifying a file name or module ID (shell command)
reld() – reload an object module (shell command)

DESCRIPTION This library consists of routines meant to be executed from the VxWorks shell. It provides
useful utilities for task monitoring and execution, system information, symbol table
management, etc.

Many of the routines here are simply command-oriented interfaces to more general routines
contained elsewhere in VxWorks. Users should feel free to modify or extend this library,
and may find it preferable to customize capabilities by creating a new private library, using
this one as a model, and appropriately linking the new one into the system.

Some routines here have optional parameters. If those parameters are zero, which is what
the shell supplies if no argument is typed, default values are typically assumed.

A number of the routines in this module take an optional task name or ID as an argument.
If this argument is omitted or zero, the "current" task is used. The current task (or "default"
task) is the last task referenced. The usrLib library uses shellTaskIdDefault() to set and get
the last-referenced task ID of the current shell session. This routine calls in turn

VxWorks Kernel API Reference, 6.6
usrRtpLib

370

taskIdDefault() to the system default task accordingly, in order that other VxWorks
routines have a correct behavior.

Note that if a task name is provided but this name matches a symbol name (e.g. a routine),
the order of precedence for the symbol resolution in the shell will prevent finding the task.
In this case, use double quotes around the task name.

INCLUDE FILES usrLib.h

SEE ALSO usrFsLib, usrRtpLib, spyLib, dbgLib, the VxWorks programmer guides.

usrRtpLib

NAME usrRtpLib – Real Time Process user interface subroutine library

ROUTINES rtpHelp() – print a synopsis of RTP-related shell commands
rtpLkup() – list symbols from an RTP's symbol table
rtpLkAddr() – list symbols in an RTP whose values are near a specified value
rtpSp() – launch a RTP with default options.
rtpSymsAdd() – add symbols from an executable file to a RTP symbol table
rtpSymsRemove() – remove symbols from a RTP symbol table
rtpSymsOverride() – override the RTP symbol registration policy
shlSymsAdd() – add symbols from a shared object file to a RTP symbol table
shlSymsRemove() – remove shared library symbols from a RTP symbol table
rtpi() – display all tasks within an RTP

DESCRIPTION This library consists of routines related to Real Time Processes (RTP) which are meant to be
executed from the C interpreter of the VxWorks shell. It provides useful utilities for RTP
monitoring and execution, system information, symbol table management, etc.

Some routines here have optional parameters. If those parameters are zero, which is what
the shell supplies if no argument is typed, default values are typically assumed.

INCLUDE FILES N/A

SEE ALSO usrLib, rtpLib, windsh, the VxWorks programmer guides.

usrRtpStartup

NAME usrRtpStartup – RTP Startup Facility Support Code

1 Libraries
usrTransLib

371

1
ROUTINES startupScriptFieldSplit() – Split the startup script field of the bootline

DESCRIPTION This module implements support code for the RTP Startup Facility. The function
startupScriptFieldSplit splits the startup script field of the bootline at the first occurence of
a # character and null-terminates it at that location. The text before the # is the name of a
traditional startup script file containing shell commands. Everything following the first # is
part of a list of RTP's to startup.

INCLUDE FILES none

usrShellHistLib

NAME usrShellHistLib – shell history user interface subroutine library

ROUTINES histSave() – save history of the current shell session interpreter(s)
histLoad() – load history into the current shell session interpreter(s)

DESCRIPTION This library contains user callable routines to save and load the shell history for the current
shell session. This can be done for all interpreters or only for the current interpreter.

INCLUDE FILES none

usrTransLib

NAME usrTransLib – Transaction Device Access Library

ROUTINES usrFormatTrans() – Perform a low-level trans XBD format operation
usrTransCommit() – Set a transaction point on a trans XBD
usrTransCommitFd() – set a transaction point using a file descriptor

DESCRIPTION This module provides access to special functionality of the Transactional Extended Block
Device (also known as the "trans XBD" and "TRFS"). It provides functions for both low-level
formatting and setting transaction points.

INCLUDE FILES transCbio.h, usrTransLib.h

VxWorks Kernel API Reference, 6.6
utfLib

372

utfLib

NAME utfLib – Library to manage Unicode characters encoded in UTF-8 and UTF-16

ROUTINES utfLibInit() – initialize the UTF library
proofUtf8() – Determine if a string represents a valid UTF-8 character
utf8ToCP() – Convert a UTF-8 encoded Unicode character to the Unicode codepoint.
CPToUtf8() – Convert a Unicode codepoint to a UTF-8 encoding
utf16ToCP() – Convert a UTF-16 encoded Unicode character to a codepoint.
CPToUtf16() – Convert a Unicode codepoint to a UTF-16 encoding
utflen8() – return the encoding length of a NULL terminated UTF-8 string
utflen16() – Return the number of 16-bit words used by a UTF-16 encoding.
proofUtf8String() – determine if a string is valid UTF-8
utf8ToUtf16String() – convert a UTF-8 string to a UTF-16 string
utf16ToUtf8String() – Convert a UTF-16 string to a UTF-8 String
utf8ToUtf16StringBOM() – Convert UTF-8 to UTF16 with a Byte Order Mark
utf16ToUtf8StringBOM() – Convert UTF-16 to UTF-8 based on a Byte Order Mark

DESCRIPTION This library provides conversion routines for transforming Unicode characters encoded in
UTF-8 and several variations of UTF-16 to the corresponding Unicode codepoint, as well as
encoding Unicode codepoints as UTF-8 and UTF-16.

There are two basic types of conversion routines supplied - routines that convert between
UTF-8 or UTF-16 encodings and codepoints, and routines that convert between UTF-8 and
UTF-16 encoded strings.

UTF-8 strings have no associated byte-order representation, however, UTF-16 has an
associated byte-order. This library can handle byte order which is either indicated by the
caller, or, in the case of strings, use a preceding Byte Order Mark as described in "The
Unicode Standard, v 4.0".

INCLUDE FILES utfLib.h

virtualDiskLib

NAME virtualDiskLib – virtual disk driver library (vxSim)

ROUTINES virtualDiskInit() – install the virtual disk driver
virtualDiskCreate() – create a virtual disk device.
virtualDiskClose() – close a virtual disk block device.

1 Libraries
virtualDiskLib

373

1
DESCRIPTION The module provides APIs to emulate a VxWorks disk driver. The VxWorks disk appears

under a single host file.

The host file name and the disk formating parameters must be specified to
virtualDiskCreate () when creating the virtual disk. The parameters are then stored into the
virtual disk host file. If the virtual disk already exists, all information regarding structure of
the disk (number of bytes per block, number of blocks per track and number of blocks on
this device) are read from the existing virtual disk; values passed in parameter of the
virtualDiskCreate() routine are ignored.

USER-CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. The routine
virtualDiskInit () must be called to initialize the driver and the virtualDiskCreate () routine
is used to create devices. Before removing the host file associated with the virtual disk, the
routine virtualDiskClose () must be called.

CREATING VIRTUAL DISKS

Before a virtual disk can be used, it must be created. This is done with the
virtualDiskCreate() call. The format of this call is:

 BLK_DEV * vitualDiskCreate
 (
 char * hostFile, /* name of the host file to use */
 int bytesPerBlk, /* number of bytes per block */
 int blksPerTrack, /* number of blocks per track */
 int nBlocks /* number of blocks on this device */
)

The hostFile parameter specifies the name of the host file used for the virtual disk. The host
file pathname is a standard host pathname without the host name. For Windows VxSim, the
path separator to use is either \ or / (i.e. c:/myDir/myFile or c:\myDir\myFile).

The bytesPerBlk parameter specifies the size of each logical block on the disk. If bytesPerBlk
is zero, 512 is the default.

The blksPerTrack parameter specifies the number of blocks on each logical track of the host
disk. If blksPerTrack is zero, the count of blocks per track will be set to nBlocks (i.e., the disk
will be defined as having only one track).

The nBlocks parameter specifies the size of the disk, in blocks. If nBlocks is zero, 512 is the
default.

The formatting parameters (bytesPerBlk, blksPerTrack, and nBlocks) are critical only if the host
file does not exist. In that case, the formatting parameters are used to compute the disk size
and to fill the block device structure.

The disk size is defined by bytesPerBlk * nBlocks. blksPerTrack is used to calculate the
number of track.

The virtualDiskCreate () API is not able to open an old unix disk created with the
unixDiskDevCreate () API.

VxWorks Kernel API Reference, 6.6
vmArch32Lib

374

The virtualDiskCreate () call returns a pointer to a block device structure. This structure
contains fields that describe the physical properties of a disk device and specify the
addresses of routines within the virtual disk driver.

Once the device has been created, it still does not have a name or file system associated with
it. This can be done by creating an XBD wrapper for the returned BLK_DEV pointer (eg.
xbdBlkDevCreate (pBlkDev, "/deviceName")). The file system framework will attempt to
identify and instantiate the type file system (if any) currently installed on the virtual disk.
If no identifiable file system was found, then it will be instantiated with rawFs. The type of
file system installed on the virtual disk can be changed at any time by formatting it with the
desired file system (eg. dosFsVolFormat(), hrfsFormat()).

As an example, to create a 208KB disk, 512-byte blocks, and 32 blocks per track, the proper
call would be:

 BLK_DEV * pBlkDev;

 pBlkDev = virtualDiskCreate ("c:/tmp/filesys1", 512, 32, 416);

This will attach the host file c:/tmp/filesys1 as a block device.

CLOSING VIRTUAL DISKS

Closing a virtual disk is done with the virtualDiskClose() call. The format of this call is:

 STATUS vitualDiskClose
 (
 BLK_DEV blkDev; /* virtual disk block device to close */
)

The blkDev parameter specifies the virtual disk block device to close.

The virtualDiskClose () API close the host file associated with the virtual disk. The virtual
disk referenced by blkDev can then be removed if needed.

IOCTL Only the FIODISKFORMAT request is supported; all other ioctl requests return an error,
and set the task's errno to S_ioLib_UNKNOWN_REQUEST.

INCLUDE FILES virtualDiskLib.h

SEE ALSO xbdBlkDevCreate(), dosFsVolFormat(), hrfsFormat(), dosfsDiskFormat(),
hrfsDiskFormat()

vmArch32Lib

NAME vmArch32Lib – VM (VxVMI) library for PentiumPro/2/3/4 32 bit mode

ROUTINES vmArch32LibInit() – initialize the arch specific unbundled VM library (VxVMI Option)

1 Libraries
vmArch36Lib

375

1
vmArch32Map() – map 32bit physical space into 32bit virtual space (VxVMI Option)
vmArch32Translate() – translate a 32bit virtual address to a 32bit physical address (VxVMI
Option)

DESCRIPTION This library provides the virtual memory mapping and virtual address translation that
works with the unbundled VM library VxVMI. The architecture specific VM library APIs
are linked in automatically when INCLUDE_MMU_FULL and INCLUDE_MMU_P6_32BIT are
both defined in the BSP. The provided APIs are vmArch32Map() and
vmArch32Translate().

The 4KB-page and 4MB-page are supported. The page size is configurable by
VM_PAGE_SIZE macro in the BSP.

INCLUDE FILES mmuPro32Lib.h

SEE ALSO vmLib, Intel Architecture Software Developer's Manual

vmArch36Lib

NAME vmArch36Lib – VM (VxVMI) library for PentiumPro/2/3/4 36 bit mode

ROUTINES vmArch36LibInit() – initialize the arch specific unbundled VM library (VxVMI Option)
vmArch36Map() – map 36bit physical space into 32bit virtual space (VxVMI Option)
vmArch36Translate() – translate a 32bit virtual address to a 36bit physical address (VxVMI
Option)

DESCRIPTION The 36 bit physical addressing mechanism of P6 (Pentium II and III) family processors and
P7 (Pentium4) family processors are supported by this library. This library provides the
virtual memory mapping and virtual address translation that works with the unbundled
VM library VxVMI. The architecture specific VM library APIs are linked in automatically
when INCLUDE_MMU_FULL and INCLUDE_MMU_P6_36BIT are both defined in the BSP.
The provided APIs are vmArch36Map() and vmArch36Translate().

The 4KB-page and 2MB-page are supported. The page size is configurable by
VM_PAGE_SIZE macro in the BSP.

The memory description table sysPhysMemDesc[] in sysLib.c has not changed and only
allows 32 bit virtual and physical address mapping description. Thus the first 4GB 32 bit
address space of the 36 bit physical address is used at the initialization/boot time. Then, the
physical address beyond the 4GB can be mapped in somewhere outside of the system
memory pool in the 32 bit virtual address space with above APIs.

INCLUDE FILES mmuPro36Lib.h

VxWorks Kernel API Reference, 6.6
vmBaseArch32Lib

376

SEE ALSO vmLib, Intel Architecture Software Developer's Manual

vmBaseArch32Lib

NAME vmBaseArch32Lib – VM (bundled) library for PentiumPro/2/3/4 32 bit mode

ROUTINES vmBaseArch32LibInit() – initialize the arch specific bundled VM library
vmBaseArch32Map() – map 32bit physical to the 32bit virtual memory
vmBaseArch32Translate() – translate a 32bit virtual address to a 32bit physical address

DESCRIPTION This library provides the virtual memory mapping and virtual address translation that
works with the bundled VM library. The architecture specific VM library APIs are linked
in automatically when INCLUDE_MMU_BASIC and INCLUDE_MMU_P6_32BIT are both
defined in the BSP. The provided APIs are vmBaseArch32Map() and
vmBaseArch32Translate().

The 4KB-page and 4MB-page are supported. The page size is configurable by
VM_PAGE_SIZE macro in the BSP.

INCLUDE FILES mmuPro32Lib.h

SEE ALSO vmLib, Intel Architecture Software Developer's Manual

vmBaseArch36Lib

NAME vmBaseArch36Lib – VM (bundled) library for PentiumPro/2/3/4 36 bit mode

ROUTINES vmBaseArch36LibInit() – initialize the arch specific bundled VM library
vmBaseArch36Map() – map 36bit physical to the 32bit virtual memory
vmBaseArch36Translate() – translate a 32bit virtual address to a 36bit physical address

DESCRIPTION The 36 bit physical addressing mechanism of P6 (Pentium II and III) family processors and
P7 (Pentium4) family processors are supported by this library. This library provides the
virtual memory mapping and virtual address translation that works with the bundled VM
library. The architecture specific VM library APIs are linked in automatically when
INCLUDE_MMU_BASIC and INCLUDE_MMU_P6_36BIT are both defined in the BSP. The
provided APIs are vmBaseArch36Map() and vmBaseArch36Translate().

The 4KB-page and 2MB-page are supported. The page size is configurable by
VM_PAGE_SIZE macro in the BSP.

1 Libraries
vmBaseLib

377

1
The memory description table sysPhysMemDesc[] in sysLib.c has not changed and only
allows 32 bit virtual and physical address mapping description. Thus the first 4GB 32 bit
address space of the 36 bit physical address is used at the initialization/boot time. Then, the
physical address beyond the 4GB can be mapped in somewhere outside of the system
memory pool in the 32 bit virtual address space with above APIs.

INCLUDE FILES mmuPro36Lib.h

SEE ALSO vmLib, Intel Architecture Software Developer's Manual

vmBaseLib

NAME vmBaseLib – base virtual memory support library

ROUTINES vmBaseStateSet() – change the state of a block of virtual memory (obsolete)
vmStateSet() – change the state of a block of virtual memory
vmStateGet() – get the state of a page of virtual memory
vmBasePageSizeGet() – return the MMU page size (obsolete)
vmPageSizeGet() – return the page size
vmTranslate() – translate a virtual address to a physical address
vmPhysTranslate() – translate a physical address to a virtual address
vmMap() – map physical space into virtual space
vmPageMap() – map physical space into virtual space
vmTextProtect() – write-protect kernel text segment
vmPageOptimize() – Optimize the address range if possible.
vmPageLock() – lock the pages.
vmPageUnlock() – unlock the pages.

DESCRIPTION This library provides the MMU (Memory Management Unit) support needed for kernel
facilities and kernel applications. To enable this feature, configure VxWorks with the
INCLUDE_MMU_BASIC component. Note that INCLUDE_MMU_GLOBAL_MAP is also a
required component.

It also provides support for the following features:

- Ability to write protect the kernel text segment as well as the text segments loaded by
the incremental loader.

- Ability to get the state of a virtual page.

- Ability to translate a physical address to virtual address and vice versa.

- Ability to map a page.

- Ability to be able to write to a buffer regardless of the protection attributes.

VxWorks Kernel API Reference, 6.6
vmBaseLib

378

- Enable certain processor specific optimizations, such as TLB locking and large pages.
For details see the respective Architecture Supplement.

For code that must not rely on the VM to be initilized or included (so that dependancy with
VM is not introduced), the VM routines should be accessed through the following macros.
These macros first check that the routines they call are installed, which allows the use of a
scaled back VM layer.

VM_STATE_SET(context, virtAdrs, len, stateMask, state)
This calls vmStateSet().

VM_STATE_GET(context, pageAddr, pState)
This calls vmStateGet().

VM_PAGE_MAP(context, virtualAddr, physicalAddr, len)
This calls vmMap().

VM_PAGE_SIZE_GET()
The calls vmPageSizeGet().

VM_TRANSLATE(context, virtualAddr, physicalAddr)
This calls vmTranslate().

VM_PHYS_TRANSLATE(context, physicalAddr, virtualAddr)
This calls vmPhysTranslate().

VM_CONTEXT_BUFFER_WRITE(context, fromAddr, toAddr, nbBytes)
This calls vmBufferWrite().

This macro should be used only in very specific cases where the current context cannot
be defined using VM_CURRENT_GET() and therefore the context to use must be
passed to vmBufferWrite(). Nevertheless the context ID passed to
VM_CONTEXT_BUFFER_WRITE() must correspond to the context in place.

VM_PAGE_OPTIMIZE(context, virtAddr, len, option)
This calls vmPageOptimize().

VM_PAGE_LOCK(context, virtAddr, len, option)
This calls vmPageLock().

VM_PAGE_UNLOCK(context, virtAddr)
This calls vmPageUnlock().

INCLUDE FILES sysLib.h, vmLib.h

SEE ALSO vmGlobalMap, vmShow, the VxWorks programmer guides.

1 Libraries
vmGlobalMap

379

1vmGlobalMap

NAME vmGlobalMap – virtual memory global mapping library

ROUTINES vmGlobalMapInit() – initialize global mapping
vmBaseGlobalMapInit() – initialize global mapping (obsolete)

DESCRIPTION This library provides the minimal virtual memory functionality for initializing global MMU
mappings for the kernel. These mappings are created at system startup based on the system
memory descriptor table - sysPhysmemDesc[] - of the BSP. This functionality is enabled
with the INCLUDE_VM_GLOBAL_MAP component.

The mappings can be modified at runtime only if the vmBaseLib API is included in the
system with the INCLUDE_MMU_BASIC component.

The physical memory descriptor contains information used to initialize the MMU attribute
information in the translation table. The following state bits may be or'ed together:

Supervisor access:

User access:

Validity attribute:

Cache attributes:

Additionally, mask bits are or'ed together in the initialStateMask structure element to
describe which state bits are being specified in the initialState structure element:

MMU_ATTR_PROT_MSK
MMU_ATTR_CACHE_MSK

MMU_ATTR_PROT_SUP_READ read access in supervisor mode
MMU_ATTR_PROT_SUP_WRITE write access in supervisor mode
MMU_ATTR_PROT_SUP_EXE executable access in supervisor mode

MMU_ATTR_PROT_USR_READ read access in user mode
MMU_ATTR_PROT_USR_WRITE write access in user mode
MMU_ATTR_PROT_USR_EXE executable access in user mode

MMU_ATTR_VALID page is valid.

MMU_ATTR_CACHE_OFF cache turned off
MMU_ATTR_CACHE_COPYBACK cache in copy-back mode
MMU_ATTR_CACHE_WRITETHRU cache set in writethrough mode
MMU_ATTR_CACHE_GUARDED page access set to guarded.
MMU_ATTR_CACHE_COHERENCY page access set to cache coherent.
MMU_ATTR_CACHE_DEFAULT default cache value, set with

USER_D_CACHE_MODE

VxWorks Kernel API Reference, 6.6
vmShow

380

MMU_ATTR_VALID_MSK

If there is an error when mappings are initialized, the reason for the failure is recorded in
sysExcMsg area and the system is rebooted. The most common reasons for failures are the
invalid combination of state/stateMask, or overlapping and conflicting entries in
sysPhysmemDec[].

INCLUDE FILES none

SEE ALSO vmBaseLib

vmShow

NAME vmShow – virtual memory show routines

ROUTINES vmContextShow() – display the translation table for a context
vmAttrShow() – display the text representation of a MMU attribute value

DESCRIPTION This library contains virtual memory information display routines.

The routine vmShowInit() links this facility into the VxWorks system. It is called
automatically when this facility is configured into VxWorks.

CONFIGURATION To use the virtual memory show routines, configure VxWorks with the
INCLUDE_MMU_FULL_SHOW component.

AVAILABILITY This module is distributed as the bundled virtual memory support option.

INCLUDE FILES vmLib.h

vrfsLib

NAME vrfsLib – the Virtual Root File System

ROUTINES vrfsInit() – Initialize the Virtual Root File System Library
vrfsDevCreate() – Instantiate the VRFS

1 Libraries
vxAtomicLib

381

1
DESCRIPTION This component provides a file system representing the contents of the Core IO device table,

thus providing a root file system, the elements of which are all Core IO devices, whose
names begin with "/" and do not contain an embedded "/".

INCLUDE FILES none

vxAtomicLib

NAME vxAtomicLib – atomic operations library

ROUTINES vxAtomicAdd() – atomically add a value to a memory location
vxAtomicSub() – atomically subtract a value from a memory location
vxAtomicInc() – atomically increment a memory location
vxAtomicDec() – atomically decrement a memory location
vxAtomicOr() – atomically perform a bitwise OR on memory location
vxAtomicXor() – atomically perform a bitwise XOR on a memory location
vxAtomicAnd() – atomically perform a bitwise AND on a memory location
vxAtomicNand() – atomically perform a bitwise NAND on a memory location
vxAtomicSet() – atomically set a memory location
vxAtomicGet() – atomically get a memory location
vxAtomicClear() – atomically clear a memory location
vxCas() – atomically compare-and-swap the contents of a memory location
VX_MEM_BARRIER_W() – Write memory barrier
VX_MEM_BARRIER_R() – Read Memory Barrier
VX_MEM_BARRIER_RW() – Read/Write Memory Barrier

DESCRIPTION This library provides routines to perform a number of atomic operations on a memory
location: add, subtract, increment, decrement, bitwise OR, bitwise NOR, bitwise AND,
bitwise NAND, set, clear and compare-and-swap. In addition, this library also provides
memory barrier APIs that enforce memory access orders for CPU to CPU interaction.

ATOMIC OPERATORS

Atomic operations constitute one of the solutions to the mutual exclusion problems faced
by multi-threaded applications. The ability to perform an indivisible read-modify-write
operation on a memory location allows multiple threads of execution, tasks or ISRs, to
safely read-modify-write a global variable. Mutex semaphores, interrupt locking and task
locking are other mutual exclusion mechanisms that exist in VxWorks.

- Atomic operators can be used from both task and interrupt level, allowing a variable to
safely be read-modifed-written from any context. Using mutex semaphores to control
access to a variable from interrupt level is not possible as these cannot be taken or given
from interrupt level.

VxWorks Kernel API Reference, 6.6
vxAtomicLib

382

- Atomic operators leverage the capabilities of the hardware to perform atomic
operations. Therefore they are very fast since little processing is required.

- Unlike task locking atomic operators can be used in a multiprocessing environment
where multiple CPUs share a global memory location.

- Unlike interrupt locking, atomic operators can be used in a multiprocessing
environment where multiple CPUs share a global memory location.

Atomic operations are performed on atomic_t type variables. Depending on the underlying
processor architecture, restrictions may exist regarding the memory alignment and caching
attributes of atomic_t variables. Below is a list of the instructions used to implement atomic
operators. Refer to the relevant processor user's manual to determine the restrictions that
apply to the use of these instructions.

PowerPC
lwarx/stwcx

Intel Architecture
lock/cmpxchg

MIPS
ll/sc

MEMORY BARRIERS

Memory barriers are ways to enforce an ordering between memory access operations on
either side of the barriers. Barriers ensure that the sequence of memory operations
performed by one CPU appears the same to the rest of the system, especially when there is
a possibility of interaction between two CPUs. However, if other mechanisms are used,
such as semaphores, to ensure that interactions between two CPUs are safe, then memory
barriers are not necessary.

There are three types of memory barriers provided:

VX_MEM_BARRIER_W() - Write memory barrier
A write memory barrier guarantees that all store memory operations before the write
barrier have occurred before any subsequent store operations after the write barrier.

VX_MEM_BARRIER_R() - Read Memory Barrier
A read memory barrier guarantees that all load memory operations before the read
memory barrier have occurred before any subsequent load operations after the read
barrier.

VX_MEM_BARRIER_RW() - Read/Write Memory Barrier
A Read/Write memory barrier is essentially a general barrier that enforces ordering for
either reads or writes. Hence, a R/W memory barrier can be used in substitution for
either a read or a write barrier.

In VxWorks SMP, there are a few locking strategies that enforce memory barriers. The
following is a list of routines that enforce a full memory barrier.

1 Libraries
vxCpuLib

383

1
- spinLockXXXTake() APIs and spinLockXXXGive() APIs

- semTake() and semGive() APIs

Other terms such as "membar" or memory fence are often used in software documentation.
These terms are equivalent to memory barriers.

INCLUDE FILES vxAtomicLib.h

vxCpuLib

NAME vxCpuLib – CPU utility routines

ROUTINES vxCpuEnabledGet() – get a set of running CPUs
vxCpuConfiguredGet() – get the number of configured CPUs in the system
vxCpuIndexGet() – get the index of the calling CPU

DESCRIPTION This library provides a small number of utility routines for users who need to have visibility
into the number of CPUs that are present in a VxWorks system. One typical example is code
that needs to manage per-CPU objects, which are objects that need to be replicated for each
CPU and accessed based on the CPU a task or ISR is running on.

Routines in this library allow a user to determine:

- The CPU on which the calling task or ISR is presently running.

- The number of CPUs configured in the system.

- The number of enabled CPUs in the system.

There are two important concepts that need to be understood by users of this library: CPU
indices and CPU sets.

CPU INDICES In a VxWorks single CPU system, the CPU index is always 0.

In a VxWorks SMP system each CPU is uniquely identified using an index. The index is an
unsigned integer ranging from 0 to N-1 where N is the number of CPUs configured in the
system. The CPU index of the bootstrap CPU is always 0. This is the CPU that takes the
system out of reset and enables other CPUs at boot time. The number of configured CPUs
in a system is set at compile time.

CPU SETS Routine vxCpuEnabledGet() returns the set of enabled CPUs in the system. In VxWorks a
set of CPUs is always represented using a cpuset_t type variable. Refer to the reference
entry for cpuset to obtain more information.

INCLUDE FILES vxCpuLib.h

VxWorks Kernel API Reference, 6.6
vxLib

384

SEE ALSO cpuset, The VxWorks Programmer's Guides

vxLib

NAME vxLib – miscellaneous support routines

ROUTINES vxTas() – C-callable atomic test-and-set primitive
vxMemArchProbe() – architecture specific part of vxMemProbe
vxMemProbe() – probe an address for a bus error
vxSSEnable() – enable the superscalar dispatch (MC68060)
vxSSDisable() – disable the superscalar dispatch (MC68060)
vxPowerModeSet() – set the power management mode (PowerPC, SH, x86)
vxPowerModeGet() – get the power management mode (PowerPC, SH, x86)
vxPowerDown() – place the processor in reduced-power mode (PowerPC, SH)
vxCr0Get() – get a content of the Control Register 0 (x86)
vxCr0Set() – set a value to the Control Register 0 (x86)
vxCr2Get() – get a content of the Control Register 2 (x86)
vxCr2Set() – set a value to the Control Register 2 (x86)
vxCr3Get() – get a content of the Control Register 3 (x86)
vxCr3Set() – set a value to the Control Register 3 (x86)
vxCr4Get() – get a content of the Control Register 4 (x86)
vxCr4Set() – set a value to the Control Register 4 (x86)
vxEflagsGet() – get a content of the EFLAGS register (x86)
vxEflagsSet() – set a value to the EFLAGS register (x86)
vxDrGet() – get a content of the Debug Register 0 to 7 (x86)
vxDrSet() – set a value to the Debug Register 0 to 7 (x86)
vxTssGet() – get a content of the TASK register (x86)
vxTssSet() – set a value to the TASK register (x86)
vxGdtrGet() – get a content of the Global Descriptor Table Register (x86)
vxIdtrGet() – get a content of the Interrupt Descriptor Table Register (x86)
vxLdtrGet() – get a content of the Local Descriptor Table Register (x86)

DESCRIPTION This module contains miscellaneous VxWorks support routines.

INCLUDE FILES vxLib.h

vxMemProbeLib

NAME vxMemProbeLib – miscellaneous support routines

1 Libraries
vxbEtsecEnd

385

1
ROUTINES vxMemProbeInit() – add vxMemProbeTrap exception handler to exc handler chain

vxMemProbe() – probe an address for a bus error

DESCRIPTION This modules provides an architecture-independent mechanism for supporting
vxMemProbe.

INCLUDE FILES none

vxbEtsecEnd

NAME vxbEtsecEnd – Freescale Enhanced TSEC VxBus END driver

ROUTINES etsecRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the Motorola/Freescale Enhanced Three Speed
Ethernet Controller (ETSEC) network interface. The ETSEC supports 10, 100 and 1000Mbps
operation over copper and fiber media.

The ETSEC is unusual in that it uses three different interrupt vectors: one for RX events, one
for TX events and one for error events. The intention is to shave some cycles from the
interrupt service path by jumping directly to the proper event handler routine instead of the
driver having to determine the nature of pending events itself.

Note that while this driver is VxBus-compliant, it does not use vxbDmaBufLib. The reason
for this is that vxbDmaBufLib is technically only required for drivers for DMA-based
devices that must be portable among multiple architectures (e.g. PCI or VMEbus adapters).
The ETSEC is not a standalone device: it only exists as an integrated component of certain
MPC85xx and MPC83xx PowerPC CPUs. It is always big-endian, it is always cache-coherent
(since we always enable the ETSEC's snooping features), and it never needs bounce
buffering or address translation. Given this, we may as well forgo the use of vxbDmaBufLib
entirely, since using it will do nothing except add a bit of extra overhead to the packet
processing paths.

The ETSEC supports several advanced features not present in the original TSEC. This
includes TCP/IP checksum offload support, hardware VLAN tag insertion and stripping,
hardware packet parsing and filing, and transmit packet prioritization. The receive filter
logic also supports a wider multicast hash filter (512 bits vs 256 in the original TSEC) and a
16 entry CAM filter. This driver includes support for the checksum features and the filer,
and uses the CAM filter and expanded hash table to provided improved multicast filtering,
but does not support the VLAN tag insertion/stripping feature or the transmit
prioritization.

The VLAN tagging/stripping is not supported because of an incompatibility between the
hardware and our VLAN support code. When VLAN insertion is enabled for transmit, the

VxWorks Kernel API Reference, 6.6
vxbEtsecEnd

386

hardware always inserts a VLAN tag: if no frame control block with a valid VLAN control
field is present, it uses the value from the DFVLAN register. This is not the behavior we
expect: the decision whether or not to insert a tag at all should be done on a per-frame basis,
not globally. The ETSEC's design makes it impossible to send untagged frames as long as
the VLINS bit in the transmit control register is set, which is not what we want. (I am
mystified as to why Freescale felt the need to impliment it this way.)

The transmit packet prioritization is not supported, because it requires the use of multiple
transmit DMA queues. Currently, there is no API available in the MUX or the TCP/IP stack
to enable us to support multiple TX queues.

For the RX frame parser and filer, the ETSEC supports up to 8 physical DMA queues, and
up to 64 virtual queues. Currently, we support only 8 queues, with the queue ID
corresponding to one of the physical DMA rings. When the filer is enabled, special
device-specific ioctls can be used to program the filer to distribute frames among the queues
depending on the various filtering properties supported by the hardware. A few simple
cases are also provided as examples. Currently, the MUX/END API does not support
multiple input queues, so the driver uses the filer and RX queues to prioritize the order in
which the frames are sent to the stack. The driver considers queue 0 to have the highest
priority and queue 7 the lowest. When frames arrive, those directed to queue 0 will be
processed first, followed by queue 1, and queue 2, and so on. If the filer is programmed to
reject certain frames, they won't be seen at all.

Since using the filer requires configuring all 8 RX DMA queues, which consumes a large
amount of memory, the filer support is off by default. It can be enabled using the
"filerEnable" configuration parameter, as shown below.

SMP CONSIDERATIONS

While the ETSEC has three interrupt vectors, it has only one interrupt status register and
one interrupt mask register. Each interrupt service routine can only mask off specific
interrupt events without touching the others (i.e. the RX ISR can only mask RX events).
Doing this requires clearing bits in the mask register using a read-modify-write operation,
which is not atomic. A similar read-modify-write operation is used in the task level
interrupt handler code to un-mask interrupts as well. For proper SMP synchronization,
these operations must be guarded with a spinlock.

AMP CONSIDERATIONS

The MPC8641D dual core processor contains 4 ETSEC devices, and can be run in either SMP
or AMP mode. In AMP mode, it may be desireable to allocate the on-board ETSEC interface
among the cores, i.e. assigning ETSEC0 and ETSEC1 to core0, and ETSEC2 and ETSEC3 to
core1. There are two complications involved in doing this.

The first is that while there are four complete ETSEC controllers, there is only one functional
MDIO port (namely the one associated with ETSEC0). Reading or writing a PHY register
through the MDIO registers is not an atomic operation, which means simultaneous accesses
by both cores will overlap and likely fail. To guard against this, the tsecMdio driver should
be used in conjuction with the ETSEC driver. This driver provides a simple inter-core

1 Libraries
vxbEtsecEnd

387

1
synchronization mechanism which allows both cores to share access to the MDIO port
without contention.

The second complication involves address translation. To use VxWorks in AMP mode on
the 8641D, low memory offset mode must be enabled. In this mode, the second core applies
a bias of 256MB to memory addresses. The Freescale 8641D eval board is configured with
512MB of RAM: using low memory offset mode effectively splits the memory into 256MB
banks, with core0 using the first bank and core1 using the second. Using low memory offset
mode allows the second core to think that the second bank of RAM starting at address
0x10000000 actually starts at address 0x0. This allows the same VxWorks image linked for
core0 to run on core1 unmodified.

This bias only applies to the CPU core, however: it does not apply to the ETSEC controllers,
which still need to be provided with the absolute physical addresses of descriptors and
packet buffers in order to perform DMA correctly. This means that when running on the
second core, the ETSEC driver must perform a virtual to physical address translation on all
DMA addresses. A physMask configuration property is provided to specify the virtual to
physical bias offset. For ETSEC instances allocated to core0, this property can be left
undefined, or explicitly set to 0. For ETSEC instances allocated to core1, physMask should be
set to 0x10000000.

Assigning an ETSEC instance to a particular core is done by setting the coreNum
configuration property. If coreNum is not defined, or explicitly set to 0 for a particular ETSEC
instance, then that instance will be assigned to core0. If coreNum is set to 1, it will be assigned
to core1 instead. Any ETSEC can be assigned to any core (the BSP defaults to assigning
ETSEC0 and ETSEC1 to the first core and ETSEC2 and ETSEC3 to the second).

BOARD LAYOUT The ETSEC is directly integrated into the CPU. All configurations are jumperless.

EXTERNAL INTERFACE

The driver provides a vxBus external interface. The only exported routine is the
etsecRegister() function, which registers the driver with VxBus. Since the ETSEC is a
processor local bus device, each device instance must be specified in the hwconf.c file in a
BSP. The hwconf entry The hwconf entry must specify the following parameters:
parameters:

regBase
Specifies the base address where the controller's CSR registers are mapped into the
host's address space. All register offsets are computed relative to this address.

intr0
Specifies the interrupt vector for the ETSEC's TX interrupts.

intrLevel0
Specifies the interrupt level for the ETSEC's TX interrupts.

intr1
Specifies the interrupt vector for the ETSEC's RX interrupts.

VxWorks Kernel API Reference, 6.6
vxbEtsecEnd

388

intrLevel1
Specifies the interrupt level for the ETSEC's RX interrupts.

intr2
Specifies the interrupt vector for the ETSEC's error interrupts.

intrLevel2
Specifies the interrupt level for the ETSEC's error interrupts.

tbiAddr
Specifies the address to use for the internal TBI management interface. This value will
be programmed into the TBIPA register, and controls the address at which the TBI
management registers will be visible when accessing the MII management port. When
the ETSEC is not operating in TBI mode, this value should be set so that it does not
conflict with the address of a copper PHY, or else the management registers of the
copper PHY will be obscured.

phyAddr
Specifies the address of the PHY allocated to this ETSEC instance. On most boards, all
PHYs share the same management port, so we must specify explicitly which PHY on
the management bus maps to which ETSEC.

miiIfName
Specifies the name of the VxBus device driver that manages this ETSEC's MDIO
management port. In the UP and SMP cases, motetsec0 is designated as the manager of
the MDIO port. For AMP, this must be set to the "tsecMdio" driver: this driver has
special support for synchronizing access to ETSEC0's MDIO registers between cores.

miiIfUnit
The unit number that goes with miiIfName. Together, these describe a specific VxBus
instance (i.e. motesec0, or tsecMdio0).

coreNum
Specifies the core to which to allocate this particular ETSEC in an AMP configuration.
If this property is omitted or explicitly set to 0, then the ETSEC instance will be bound
to core0. If set to 1, it will be bound to core1. Any ETSEC may be mapped to any core.
In UP and SMP mode, this property should not be used.

physMask
Specifies the memory offset to apply when translating virtual addresses to physical
addresses on ETSECs that are bound to the second core in an AMP configuration. For
ETSECs bound to core0, this property should be ommitted or set to 0. For ETSECs
bound to core1, it should be set to 0x10000000. This property should only be used when
coreNum is set to 1.

An example hwconf entry is shown below:

const struct hcfResource tsecVxbEnd0Resources[] = {
 { "regBase", HCF_RES_INT, { (void *)(CCSBAR + 0x24000) } },
 { "intr0", HCF_RES_INT, { (void *)EPIC_TSEC1TX_INT_VEC } },
 { "intr0Level", HCF_RES_INT, { (void *)EPIC_TSEC1TX_INT_VEC } },

1 Libraries
vxbEtsecEnd

389

1
 { "intr1", HCF_RES_INT, { (void *)EPIC_TSEC1RX_INT_VEC } },
 { "intr1Level", HCF_RES_INT, { (void *)EPIC_TSEC1RX_INT_VEC } },
 { "intr2", HCF_RES_INT, { (void *)EPIC_TSEC1ERR_INT_VEC } },
 { "intr2Level", HCF_RES_INT, { (void *)EPIC_TSEC1ERR_INT_VEC } },
 { "phyAddr", HCF_RES_INT, { (void *)0 } },
#ifdef INCLUDE_AMP
 { "miiIfName", HCF_RES_STRING, { (void *)"tsecMdio" } },
 { "miiIfUnit", HCF_RES_INT, { (void *)0 } },
 { "coreNum", HCF_RES_INT, { (void *)0 } }
#else
 { "miiIfName", HCF_RES_STRING, { (void *)"motetsec" } },
 { "miiIfUnit", HCF_RES_INT, { (void *)0 } }
#endif
};
#define tsecVxbEnd0Num NELEMENTS(tsecVxbEnd0Resources)

The ETSEC controller also supports jumbo frames. This driver has jumbo frame support,
which is disabled by default in order to conserve memory (jumbo frames require the use of
an buffer pool with larger clusters). Jumbo frames can be enabled on a per-interface basis
using a parameter override entry in the hwconf.c file in the BSP. For example, to enable
jumbo frame support for interface motetsec0, the following entry should be added to the
VXB_INST_PARAM_OVERRIDE table:

{ "motetsec", 0, "jumboEnable", VXB_PARAM_INT32, {(void *)1} }

The ETSEC controller also supports interrupt coalescing. This driver has coalescing support,
which is disabled by default so that the out of the box configuration has the smallest
interrupt latency. Coalescing can be anabled on a per-interface basis using parameter
overrides in the hwconf.c file, in the same way as jumbo frame support. In addition to
turning the coalescing support on and off, the timeout and packet count values can be set:

{ "motetsec", 0, "coalesceEnable", VXB_PARAM_INT32, {(void *)1} }
{ "motetsec", 0, "coalesceRxTicks", VXB_PARAM_INT32, {(void *)10} }
{ "motetsec", 0, "coalesceRxPkts", VXB_PARAM_INT32, {(void *)8} }
{ "motetsec", 0, "coalesceTxTicks", VXB_PARAM_INT32, {(void *)100} }
{ "motetsec", 0, "coalesceTxPkts", VXB_PARAM_INT32, {(void *)16} }

If only the coalesceEnable property is set, the driver will use default timeout and packet count
values as shown above. Specifying alternate values via the BSP will override the defaults.

To enable support for the filer and multiple RX queues, the filerEnable property should also
be set, as illustrated below:

{ "motetsec", 0, "filerEnable", VXB_PARAM_INT32, {(void *)1} }

Note that the filer support can not be enabled or disabled on the fly at runtime.

INCLUDE FILES none

VxWorks Kernel API Reference, 6.6
vxbFileNvRam

390

SEE ALSO vxBus, ifLib, miiBus, "Writing an Enhanced Network Driver", "MPC8548E PowerQUICC III
Integrated Communications Processor Reference Manual,
http://www.freescale.com/files/32bit/doc/ref_manual/MPC8548ERM.pdf"

vxbFileNvRam

NAME vxbFileNvRam – VxBus driver for NVRam on a filesystem file

ROUTINES vxbFileNvRamRegister() – register vxbFileNvRam driver
vxbFileNvRampDrvCtrlShow() – show pDrvCtrl for template controller
vxbFileNvRamGet() – get the contents of non-volatile RAM
vxbFileNvRamSet() – write to non-volatile RAM

DESCRIPTION This is the VxBus driver for the VXB_FILERAM device for use by battery backed RAM
devices and other byte-oriented non-volatile RAM, which can be read and written as if it
were normal RAM.

INCLUDE FILES none

vxbI8042Kbd

NAME vxbI8042Kbd – Intel 8042 keyboard driver routines

ROUTINES i8042vxbRegister() – register i8042vxb driver

DESCRIPTION This is the driver for the Intel 8042 Keyboard Controller Chip used on a personal computer
386 / 486. This driver handles the standard 101 key board. This driver does not change the
defaults set by the BIOS. The BIOS initializes the scan code set to 1 which make the PS/2
keyboard compatabile with the PC and PC XT keyboard.

USER CALLABLE ROUTINES

Some routines in this driver are accessed via VxBus methods.

The i8042Intr() is the interrupt handler which handles the key board interrupt and is
responsible for the handing the character received to whichever console the device is
initialized to. By default this is initialized to PC_CONSOLE. If the user has to change the
current console he will have to make an ioctl call with the option CONIOCURCONSOLE
and the argument as the console number which he wants to change to. To return to the

1 Libraries
vxbIntelIchStorage

391

1
console owned by the shell the user has to do an ioctl call back to the console number owned
the shell from his application.

NOTES A hcfResource structure must be defined in the BSP's hwconf.c file which sets the values for
regBase (the I/O address of the data register for the keyboard), irq (interrupt vector),
regInterval (set to 4), irqLevel (interrupt level), and mode (0 for Japanese, 1 for English).
This is one example:

const struct hcfResource i8042KbdResources[] =
{

{ "regBase", HCF_RES_INT, {(void *)DATA_8042} },
{ "irq", HCF_RES_INT, {(void *)(INUM_TO_IVEC(INT_NUM_KBD))} },
{ "regInterval", HCF_RES_INT, {(void *)4} },
{ "irqLevel", HCF_RES_INT, {(void *)KBD_INT_LVL} },
{ "mode", HCF_RES_INT, {(void *)KEYBRD_MODE} }

};

The macros N_VIRTUAL_CONSOLES and PC_CONSOLE should be defined in config.h file.

INCLUDE FILES none

SEE ALSO vxbPcConsole.c

vxbIntelIchStorage

NAME vxbIntelIchStorage – Intel ICH0/1 (82801) ATA/IDE and ATAPI CDROM

ROUTINES vxbIntelIchStorageRegister() – register driver with vxbus
ichAtaDrv() – Initialize the ATA driver
ichAtaXbdDevCreate() – create an XBD device for a ATA/IDE disk
ichAtaDevCreate() – create a device for a ATA/IDE disk
ichAtaBlkRW() – read or write sectors to a ATA/IDE disk.
ichAtapiPktCmdSend() – Issue a Packet command.
ichAtapiIoctl() – Control the drive.
atapiParamsPrint() – Print the drive parameters.
ichAtapiCtrlMediumRemoval() – Issues PREVENT/ALLOW MEDIUM REMOVAL
packet command
ichAtapiRead10() – read one or more blocks from an ATAPI Device.
ichAtapiReadCapacity() – issue a READ CD-ROM CAPACITY command to a ATAPI
device
ichAtapiReadTocPmaAtip() – issue a READ TOC command to a ATAPI device
ichAtapiScan() – issue SCAN packet command to ATAPI drive.

VxWorks Kernel API Reference, 6.6
vxbIntelIchStorage

392

ichAtapiSeek() – issues a SEEK packet command to drive.
ichAtapiSetCDSpeed() – issue SET CD SPEED packet command to ATAPI drive.
ichAtapiStopPlayScan() – issue STOP PLAY/SCAN packet command to ATAPI drive.
ichAtapiStartStopUnit() – Issues START STOP UNIT packet command
ichAtapiTestUnitRdy() – issue a TEST UNIT READY command to a ATAPI drive
ichAtaCmd() – issue a RegisterFile command to ATA/ATAPI device.
ichAtaInit() – initialize ATA device.
ichAtaRW() – read/write a data from/to required sector.
ichAtaDmaRW() – read/write a number of sectors on the current track in DMA mode
ichAtaPiInit() – init a ATAPI CD-ROM disk controller
ichAtaDevIdentify() – identify device
ichAtaParamRead() – Read drive parameters
ichAtaCtrlReset() – reset the specified ATA/IDE disk controller
ichAtaStatusChk() – Check status of drive and compare to requested status.
ichAtapiPktCmd() – execute an ATAPI command with error processing
ichAtapiInit() – init ATAPI CD-ROM disk controller
ichAtaXbdRawio() – do raw I/O access
ichAtaRawio() – do raw I/O access
ichAtaConfig() – configure an ATA drive (hard disk or cdrom drive)
ichAtaConfigInit() – intialize the hard disk driver

DESCRIPTION

BLOCK DEVICE DRIVER:

This is a Block Device Driver for ATA/ATAPI devices on IDE host controller. It also
provides neccessary functions to user for device and its features control which are not used
or utilized by file system.

This driver provides standard Block Device Driver functions,(blkRd, blkWrt, ioctl,
statusChk, and reset) for ATA and ATAPI devices separately as the scheme of
implementation differs. These functions are implemented as ataBlkRd(), ataBlkWrt(),
ataBlkIoctl(), ataStatus() and ataReset() for ATA devices and atapiBlkRd(),
atapiBlkWrt(), atapiBlkIoctl(), atapiStatusChk() and atapiReset() for ATAPI devices.
The Block Device Structure BLK_DEV is updated with these function pointers ata
initialization of the driver depending on the type of the device in function
ichAtaDevCreate().

ichAtaDrv(), a user callable function, initializes ATA/ATAPI devices present on the
specified IDE controller(either primary or secondary), which must be called once for each
controller, before usage of this driver, usally called from usrRoot()in usrConfig.c.

The routine ichAtaDevCreate(), which is user callable function, is used to mount a logical
drive on an ATAPI drive.This routine returns a pointer to BLK_DEV structure, which is used
to mount the file system on the logical drive.

1 Libraries
vxbIntelIchStorage

393

1
OTHER NECESSARY FUNCTIONS FOR USER:

There are various functions provided to user, which can be classified to different catagories
as device contol function, device information functions and functions meant for packet
devices.

Device Control Function:

ichAtapiIoctl() function is used to control a device. Block Device Driver functions
ataBlkIoctl() and atapiBlkIcotl()functions are also routed to this function. This function
implements various control command functions which are not used by the I/O system (like
power managment feature set commands, host protected feature set commands, security
feature set commands, media control functions etc).

Device Information Function:

In this catagory various functions are implmented depending on the information required.
These functions return information required (like cylinder count, Head count, device serial
number, device Type, etc)from the internal device structures.

Packet Command Functions:

Although Block Device Driver functions deliver packet commands using functions
provided by atapiLib.c for required functionality. There are group of functions provided in
this driver to user for ATAPI device, which implements packet commands for CD_ROM
that comply to ATAPI-SFF8020i specification which are essentially required for CD ROM
operation for file system. These functions are named after their command name (like for
REQUEST SENSE packet command atapiReqSense() function). To issue other packet
commands ichAtapiPktCmdSend() can be used.

This driver also provides a generic function ichAtapiPktCmdSend() to issue a packet
command to ATAPI devices, which can be utilized by user to issue packet command
directly instead using the implmented functions also may be used to send new commands
(may come in later specs) to device. User can issue any packet command using
ichAtapiPktCmdSend() function to the required device by passing its BLK_DEV structure
pointer and pointer for ATAPI_CMD command packet.

typedef of ATAPI_CMD

 typedef struct atapi_cmd
 {
 UINT8 cmdPkt [ATAPI_MAX_CMD_LENGTH];
 char **ppBuf;
 UINT32 bufLength;
 ATA_DATA_DIR direction;
 UINT32 desiredTransferSize;
 BOOL dma;
 BOOL overlap;
 } ATAPI_CMD;

and ATA_DATA_DIR typedef is

typedef enum /* with respect to host/memory */
 {

VxWorks Kernel API Reference, 6.6
vxbIntelIchStorage

394

 NON_DATA, /* non data command */
 OUT_DATA, /* to drive from memory */
 IN_DATA /* from drive to memory */
 } ATA_DATA_DIR;

User is expected supposed to fill the ATAPI_CMD structure with required parameters of the
packet and pass the ATAPI_CMD structure pointer to ichAtapiPktCmdSend() fuuction for
command execution.

All the packet command functions require ATA_DEV structure to be passed, which
alternatively a BLK_DEV Device Structure of the device. One should type convert the
structure and the same BLK_DEV structrue pointer to these functions.

The routine ataPiRawio() supports physical I/O access. The first argument is the controller
number, 0 or 1; the second argument is drive number, 0 or 1; the third argument is a pointer
to an ATA_RAW structure.

PARAMETERS:

The ataPiDrv() function requires a configuration flag as a parameter. The configuration flag
is one of the following or Bitwise OR of any of the following combination:

configuration flag =
Transfer mode | Transfer bits | Transfer unit | Geometry parameters

Transfer mode Description Transfer Rate
ATA_PIO_DEF_0 PIO default mode
ATA_PIO_DEF_1 PIO default mode, no IORDY
ATA_PIO_0 PIO mode 0 3.3 MBps
ATA_PIO_1 PIO mode 1 5.2 MBps
ATA_PIO_2 PIO mode 2 8.3 MBps
ATA_PIO_3 PIO mode 3 11.1 MBps
ATA_PIO_4 PIO mode 4 16.6 MBps
ATA_PIO_AUTO PIO max supported mode
ATA_DMA_SINGLE_0 Single DMA mode 0 2.1 MBps
ATA_DMA_SINGLE_1 Single DMA mode 1 4.2 MBps
ATA_DMA_SINGLE_2 Single DMA mode 2 8.3 MBps
ATA_DMA_MULTI_0 Multi word DMA mode 0 4.2 MBps
ATA_DMA_MULTI_1 Multi word DMA mode 1 13.3 MBps
ATA_DMA_MULTI_2 Multi word DMA mode 2 16.6 MBps
ATA_DMA_ULTRA_0 Ultra DMA mode 0 16.6 MBps
ATA_DMA_ULTRA_1 Ultra DMA mode 1 25.0 MBps
ATA_DMA_ULTRA_2 Ultra DMA mode 2 33.3 MBps
ATA_DMA_ULTRA_3 Ultra DMA mode 3 44.4 MBps
ATA_DMA_ULTRA_4 Ultra DMA mode 4 66.6 MBps
ATA_DMA_ULTRA_5 Ultra DMA mode 5 100.0 MBps
ATA_DMA_AUTO DMA max supported mode
Transfer bits

1 Libraries
vxbIntelIchStorage

395

1

ISA SingleWord DMA mode is obsolete in ata-3.

The Transfer rates shown above are the Burst transfer rates. If ATA_PIO_AUTO is specified,
the driver automatically chooses the maximum PIO mode supported by the device. If
ATA_DMA_AUTO is specified, the driver automatically chooses the maximum Ultra DMA
mode supported by the device and if the device doesn't support the Ultra DMA mode of
data transfer, the driver chooses the best Multi Word DMA mode. If the device doesn't
support the multiword DMA mode, driver chooses the best single word DMA mode. If the
device doesn't support DMA mode, driver automatically chooses the best PIO mode. So it
is recommended to specify the ATA_DMA_AUTO.

If ATA_PIO_MULTI is specified, and the device does not support it, the driver automatically
chooses single sector or word mode. If ATA_BITS_32 is specified, the driver uses 32-bit
transfer mode regardless of the capability of the drive. The Single word DMA mode will not
be supported by the devices compliant to ATA/ATAPI-5 or higher.

This driver supports UDMA mode data transfer from device to host, provided 80 conductor
cable is used for required controller device. This check done at the initilisation of the device
from the device parameters and if 80 conductor cable is connected then UDMA mode
transfer is selected for operation subject to condition that required UDMA mode is
supported by device as well as host. This driver follows ref-3 Chapter 4 "Determining a
Drive's Transfer Rate Capability" to determine drives best transfer rate for all modes (ie
UDMA, MDMA, SDMA and PIO modes).

The host IDE Bus master functions are to be mapped to follwing macro defined for various
functionality in header file which are used in this driver.

ATA_HOST_CTRL_INIT - initialize the controller

ATA_HOST_DMA_ENGINE_INIT - initialize bus master DMA engine

ATA_HOST_DMA_ENGINE_START - Start bus master operation

ATA_HOST_DMA_ENGINE_STOP - Stop bus master operation

ATA_HOST_DMA_TRANSFER_CHK - check bus master data transfer complete

ATA_HOST_DMA_MODE_NEGOTIATE - get mode supported by controller

ATA_HOST_SET_DMA_RWMODE - set controller to required mode

ATA_HOST_CTRL_RESET - reset the controller

ATA_BITS_16 RW bits size, 16 bits
ATA_BITS_32 RW bits size, 32 bits
Transfer unit
ATA_PIO_SINGLE RW PIO single sector
ATA_PIO_MULTI RW PIO multi sector
Geometry parameters
ATA_GEO_FORCE set geometry in the table
ATA_GEO_PHYSICAL set physical geometry
ATA_GEO_CURRENT set current geometry

VxWorks Kernel API Reference, 6.6
vxbIntelIchStorage

396

If ATA_GEO_PHYSICAL is specified, the driver uses the physical geometry parameters
stored in the drive. If ATA_GEO_CURRENT is specified, the driver uses current geometry
parameters initialized by BIOS. If ATA_GEO_FORCE is specified, the driver uses geometry
parameters stored in sysLib.c.

The geometry parameters are stored in the structure table ataTypes[] in sysLib.c. That table
has two entries, the first for drive 0, the second for drive 1. The members of the structure are:

 int cylinders; /* number of cylinders */
 int heads; /* number of heads */
 int sectors; /* number of sectors per track */
 int bytes; /* number of bytes per sector */
 int precomp; /* precompensation cylinder */

The driver supports two controllers and two drives on each. This is dependent on the
configuration parameters supplied to ataPiDrv().

SMP CONSIDERATIONS

Most of the processing in this driver occurs in the context of a dedicated task, and therefore
is inherently SMP-safe. One area of possible concurrence occurs in the interrupt service
routine, ataIntr(). An ISR-callable spin lock take/give pair has been placed around the code
which acknowledges/clears the ATA controller's interrupt status register. If the BSP or
application provides functions for ataIntPreProcessing or ataIntPostProcessing,
consideration will have to be given to making these functions SMP-safe. Most likely, some
portion(s) of these functions will need to be protected by a spin lock. The spin lock allocated
for the controller can be used. Consult the SMP Migration Guide for hints.

References:
1) ATAPI-5 specification "T13-1321D Revision 1b, 7 July 1999"
2) ATAPI for CD-ROMs "SFF-8020i Revision 2.6, Jan 22,1996"
3) Intel 82801BA (ICH2), 82801AA (ICH), and 82801AB (ICH0) IDE Controller

Programmer's Reference Manual, Revision 1.0 July 2000

Source of Reference Documents:
1) ftp://ftp.t13.org/project/d1321r1b.pdf
2) http://www.bswd.com/sff8020i.pdf

INCLUDE FILES none

SEE ALSO VxWorks Programmer's Guide: I/O System

1 Libraries
vxbIntelIchStorageShow

397

1vxbIntelIchStorageShow

NAME vxbIntelIchStorageShow – ICH ATA disk device driver show routine

ROUTINES ichAtaShowInit() – initialize the ATA/IDE disk driver show routine
ichAtaShow() – show the ATA/IDE disk parameters
ichAtaDmaToggle() – turn on or off an individual controllers dma support
ichAtapiCylinderCountGet() – get the number of cylinders in the drive.
ichAtapiHeadCountGet() – get the number heads in the drive.
ichAtapiDriveSerialNumberGet() – get the drive serial number.
ichAtapiFirmwareRevisionGet() – get the firm ware revision of the drive.
ichAtapiModelNumberGet() – get the model number of the drive.
ichAtapiFeatureSupportedGet() – get the features supported by the drive.
ichAtapiFeatureEnabledGet() – get the enabled features.
ichAtapiMaxUDmaModeGet() – get the Maximum Ultra DMA mode the drive can
support.
ichAtapiCurrentUDmaModeGet() – get the enabled Ultra DMA mode.
ichAtapiMaxMDmaModeGet() – get the Maximum Multi word DMA mode the drive
supports.
ichAtapiCurrentMDmaModeGet() – get the enabled Multi word DMA mode.
ichAtapiMaxSDmaModeGet() – get the Maximum Single word DMA mode the drive
supports
ichAtapiCurrentSDmaModeGet() – get the enabled Single word DMA mode.
ichAtapiMaxPioModeGet() – get the Maximum PIO mode that drive can support.
ichAtapiCurrentPioModeGet() – get the enabled PIO mode.
ichAtapiCurrentRwModeGet() – get the current Data transfer mode.
ichAtapiDriveTypeGet() – get the drive type.
ichAtapiVersionNumberGet() – get the ATA/ATAPI version number of the drive.
ichAtapiRemovMediaStatusNotifyVerGet() – get the Media Stat Notification Version.
ichAtapiCurrentCylinderCountGet() – get logical number of cylinders in the drive.
ichAtapiCurrentHeadCountGet() – get the number of read/write heads in the drive.
ichAtapiBytesPerTrackGet() – get the number of Bytes per track.
ichAtapiBytesPerSectorGet() – get the number of Bytes per sector.
ichAtaDumptest() – a quick test of the dump functionality for ATA driver

DESCRIPTION This library contains a driver show routine for the ATA/IDE (PCMCIA and LOCAL)
devices supported on the IBM PC.

INCLUDE FILES none

VxWorks Kernel API Reference, 6.6
vxbM6845Vga

398

vxbM6845Vga

NAME vxbM6845Vga – motorola 6845 VGA console driver

ROUTINES m6845vxbRegister() – register m6845vxb driver

DESCRIPTION This is the driver fo Video Contoroller Chip (6845) normally used in the 386/486 personal
computers.

USER CALLABLE ROUTINES

This driver provides several VxBus methods for external access to its routines.

All virtual consoles are mapped to the same screen buffer. This is a very basic
implementation of virtual consoles. Multiple screen buffers are not used to switch between
consoles. This implementation is left for the future. Mutual exclusion for the screen buffer
is guaranteed within the same console but it is not implemented across multiple virtual
consoles because all virtual consoles use the same screen buffer. If multiple screen buffers
are implemented then the mutual exclusion between virtual consoles can be implemented.

NOTES The macro N_VIRTUAL_CONSOLES should be defined in config.h file. This refers to the
number of virtual consoles which the user wishes to have. The user should define
INCLUDE_ANSI_ESC_SEQUENCE in this file if the ansi escape sequences are required.
Special processing in the m6845 driver is done if an escape sequence exists.

INCLUDE FILES none

SEE ALSO tyLib, vxbPcConsole

vxbNonVolLib

NAME vxbNonVolLib – non-volatile RAM to non-volatile memory routine mapping

ROUTINES vxbNonVolLibInit() – Non Volatile RAM library initialization
vxbNonVolGet() – get the contents of non-volatile RAM
vxbNonVolSet() – write to non-volatile memory
nvRamSegDefGet() – get segment allocation from BSP
sysNetMacNVRamAddrGet() – get network MAC address from NVRAM

DESCRIPTION This library provides the external API to handle non-volatile RAM manipulation in a VxBus
environment.

1 Libraries
vxbSI31xxStorage

399

1
INCLUDE FILES vxBus.h

vxbPcConsole

NAME vxbPcConsole – console handler

ROUTINES pcConDrv() – initialize the console driver
pcConDevCreate() – create a device for the on-board ports
pcConDevBind() – bind keyboard or VGA device with console

DESCRIPTION This file is used to link the keyboard driver and the vga driver.

USER CALLABLE ROUTINES

Most of the routines in this driver are accessible only through the I/O system. Two routines,
however, must be called directly: pcConDrv() to initialize the driver, and
pcConDevCreate() to create devices.

Before using the driver, it must be initialized by calling pcConDrv () This routine should be
called exactly once, before any reads, writes, or calls to pcConDevCreate(). Normally, it is
called from usrRoot() in usrConfig.c.

Before a console can be used, it must be created using pcConDevCreate().

IOCTL FUNCTIONS

This driver responds to the same ioctl codes as a normal ty driver.

NOTES The macro N_VIRTUAL_CONSOLES should be defined in config.h file.

INCLUDE FILES none

SEE ALSO tyLib

vxbSI31xxStorage

NAME vxbSI31xxStorage – PCI bus header file for vxBus

ROUTINES vxbSI31xxStorageRegister() – register driver with vxbus
sil31xxDrvVxbInit() – Initialize the driver.
sil31xxDiskPresent() – Return OK if disk exists.

VxWorks Kernel API Reference, 6.6
vxbSI31xxStorage

400

sil31xxXbdCreate() – Create an XBD for the specified port.
sil31xxXbdDelete() – Delete an XBD for a specified port
sil31xxIsr() – Interrupt service routine.
sil31xxBIST() – Controller Built-In Self Test...
sil31xxBISTShow() – Show the results of the power-on BIST
sil31xxRegisterPortCallback() – register the port call back for a PHYRdyChg
sil31xxSectorRW() – read a single sector

DESCRIPTION XBD driver for:
- Silicon Image 3132 SATA PCI Express controller
- Silicon Image 3124 SATA PCI-X controller

The 31xx driver can support either 2 or 4 ports. The pci device ID identifies the part as either
a 3124 or a 3132. The 3124 supports 4 ports and the 3132 support 2 ports.

SIL31XX_MAX_CTRL is a limit on the number of chips (pci boards with this chip) that we
can be configured in the system.

As each controller (chipset) is initialized, the pci device id is examined. Based on the type
3124 or 3132, the maximum number of ports for that device is saved in the control block. A
port monitor task is spawned for each port.

This monitor task is blocked on the "deviceChange" semaphore. When it is recognized that
a device has been inserted (via an ISR) the "deviceChange" semaphore is given to the port
monitor task.

If the device change indicates that a device is present, the XBD interface to the device is
created. 2 semaphores are used in this interface. A mutex to force mutual exclusion
between the driver and the other users of the xbd interface, and a bio ready semaphore.
Both of these semaphores are used by the "bio task" which is created at this time for each
device (port) as the device becomes active. The bio ready indicates that there is work for
the driver to do. Part of the creation of the xbd interface is to send an insertion event to the
event reporting framework. This allows the filesystem to use the newly created xbd.

If the device change indicates that a device has gone away, the XBD interface is deleted, the
bio service task is deleted and other resources used by the bio service task are recovered.
The device change indication allow for hot removal/insertion of sata devices.

The interrupt handler has the controller specific control block passed as an argument by the
pci interrupt routine. The isr scans each port on that controller for status bits. If the a device
change has occurred, the "device change" is given to the waiting port monitor task. If the
command has completed, the command complete semaphore is given. This semaphore
serializes access to the driver. The bio task will call the function to read/write to the device,
and uses this semaphore for that purpose.

Multiple instances:

There can be up to SIL31XX_MAX_CTRL instances of the driver. The driver will assign a
controller number (0 thru (SIL31XX_MAX_CTRL -1)) as a means of identifying the

1 Libraries
vxbSmscLan9118End

401

1
controller instance. If disks aren't named, they can always be referenced by ctrl_num,
port_num for the purpose of testing and diagnostics. Also, the default names of the drives
will be formed from the assigned controller number and port number. If port3 on controller
1 is present, the default device name is "/s1p3"

XBD driver for:
- Silicon Image 3132 SATA PCI Express controller
- Silicon Image 3124 SATA PCI-X controller

Initialization of the the driver and block devices are handled by the
vxBus interface. The driver is fully initialized in vxBus "connection"
phase.

INCLUDE FILES none

vxbSmscLan9118End

NAME vxbSmscLan9118End – SMSC LAN9118 VxBus END driver

ROUTINES smeRegister() – register with the VxBus subsystem

DESCRIPTION This module implements a driver for the SMSC LAN9118 single chip non-PCI 10/100
ethernet controller. The LAN9118 is fully compliant with the IEEE 802.3 10Base-T and
100Base-T specifications. The controller has an embedded 10/100 PHY, with simplified
management interface.

The LAN9118 is a programmed I/O device: packet data transfer is driven by the host CPU,
using separate 32 bit RX and TX FIFO I/O ports. The chip has 16K of internal FIFO memory
which can be divided by the host between the RX and TX functions. Unlike the 91C111, the
LAN9118 has a fully mapped register space, so that no switching between register banks is
necessary.

The LAN9118 supports several different RX filtering modes, including hash filtering for
either multicast or unicast. This driver configures the chip for "hash perfect" mode, using the
single perfect filter for the station address and the 64 bit hash table for multicast traffic. The
chip also has explicit support for all-multicast mode.

The internal 10/100 PHY is managed using miiBus, allowing fully dynamic link handling.
The integrated PHY interrupt is used to provide instantaneous link change sensing.

The driver splits the 16K FIFO memory so that 6656 bytes are available for transmission, and
the rest for reception. This allows up to 4 full size frames to be queued for transmission at
any given time. Note that this is still quite small compared to other devices that support

VxWorks Kernel API Reference, 6.6
vxbSmscLan9118End

402

DMA, so to avoid excessive TX frame drops, the protocol should implement some form of
output queueing to buffer a reasonable amount of frames.

The device indicates RX and TX completion using RX and TX status FIFOs. When a frame
reception completes, the chip writes a status word to one of the FIFOs. The device can be
programmed to trigger an interrupt when a configurable amount of status words have been
written to a status FIFO. To minimize latency, this driver always triggers an interrupt
whenever any status words are available in one of the FIFOs.

BOARD LAYOUT The SMSC LAN9118 is typically wired directly to the host CPU. All configurations are
jumperless.

EXTERNAL INTERFACE

The driver provides the standard VxBus external interface, smeRegister(). This function
registers the driver with the VxBus subsystem, and instances will be created as needed.
Since the LAN9118 is a processor local bus device, each device instance must be specified in
the hwconf.c file in a BSP. The hwconf entry must specify the following parameters:

regBase
Specifies the base address where the controller's CSR registers are mapped into the
host's address space. All register offsets are computed relative to this address.

intr
Specifies the interrupt vector for the LAN9118.

intrLevel
Specifies the interrupt level for the LAN9118.

An example hwconf entry is shown below:

struct hcfResource sme0Resources[] = {
 { "regBase", HCF_RES_INT, {(void *)VERSATILE_SMC_ENET_BASE} },
 { "intr", HCF_RES_INT, {(void *)INT_VEC_ETHERNET}},
 { "intrLevel", HCF_RES_INT, {(void *)INT_LVL_ETHERNET}},
};
#define sme0Num NELEMENTS(sme0Resources)

A configuration parameter is also provided to set the default speed of the interface to
10Mbps instead of 100Mbps. Since this driver uses the LAN9118 in programmed I/O mode,
performance at 100Mbps can be poor if no output queueing is provided by the stack. Setting
the speed to 10Mbps improves the behavior somewhat. Forcing the interface to 10Mbps can
be done by adding the following entry to the VXB_INST_PARAM_OVERRIDE table in the
BSP's hwconf.c file:

 { "sme", 0, "lowSpeed", VXB_PARAM_INT32, {(void *)1} }

INCLUDE FILES none

SEE ALSO vxBus, ifLib, miiBus, "Writing an Enhanced Network Driver", "SMSC LAN9118 datasheet,
http://www.smsc.com/main/datasheets/9118.pdf"

1 Libraries
vxsimHostArchLib

403

1vxsimHostArchLib

NAME vxsimHostArchLib – VxSim host side interface library

ROUTINES vxsimHostDllLoad() – load the given Dll to VxSim.
vxsimHostProcAddrGet() – return the address of a host API
vxsimHostProcCall() – call a host routine
vxsimHostMmuProtect() – set/clear protection on mmu pages
vxsimHostMmuCurrentSet() – set current translation table mapping
vxsimHostSioWrite() – write buffer to SIO device
vxsimHostSioRead() – read SIO device into buffer
vxsimHostSioOpen() – open SIO device
vxsimHostSioClose() – close SIO device
vxsimHostSioIntVecGet() – get SIO device interrupt vector
vxsimHostSioModeSet() – set SIO device mode (poll/interrupt)
vxsimHostSioBaudRateSet() – set SIO device transfert rate
vxsimHostCpuVarsInit() – intialize per cpu variable pointers

DESCRIPTION This module provide the ability to load and use dynamically loaded libraries (DLLs) from
VxSim. This facility allows a VxSim application to reference any code located in a system or
user DLL. This mechanism is very simple, the vxsimHostDllLoad() routine allows to load
the DLL, and then vxsimHostProcAddrGet() can be used to retrieve the addresses of the
DLL's exported routines.

IMPORTANT NOTE Before invoking any host side routines, the interrupts must be locked to avoid system calls
interruption.

EXAMPLE The following code shows how to use these APIs:

#include "vxWorks.h"
#include "vxsimHostLib.h"

STATUS dllTestStart (void)
 {
 FUNCPTR pDllTestInit;

 /* Load the test DLL */

 if (vxsimHostDllLoad ("dllTest") == ERROR)
 {
 printf ("Error: Unable to load dllTest\n");
 return (ERROR);
 }

 /* Get the address of the DLL init routine */

 pDllTestInit = vxsimHostProcAddrGet ("testInit");

VxWorks Kernel API Reference, 6.6
wdLib

404

 if (dllTestInit == NULL)
 {
 printf ("Error: Unable to find testInit() symbol in loaded DLLs\n");
 return (ERROR);
 }

 /* invoke the DLL init routine */

 vxsimHostProcCall (pDllTestInit, 0,0,0,0,0,0,0,0,0);

 return (OK);
 }

INCLUDE FILES vxsimHostLib.h

SEE ALSO vxsim

wdLib

NAME wdLib – watchdog timer library

ROUTINES wdInitialize() – initialize a pre-allocated watchdog.
wdStart() – start a watchdog timer
wdCancel() – cancel a currently counting watchdog
wdCreate() – create a watchdog timer
wdDelete() – delete a watchdog timer

DESCRIPTION This library provides a general watchdog timer facility. Any task may create a watchdog
timer and use it to run a specified routine in the context of the system-clock ISR, after a
specified delay.

Once a timer has been created with wdCreate(), it can be started with wdStart(). The
wdStart() routine specifies what routine to run, a parameter for that routine, and the
amount of time (in ticks) before the routine is to be called. (The timeout value is in ticks as
determined by the system clock; see sysClkRateSet() for more information.) After the
specified delay ticks have elapsed (unless wdCancel() is called first to cancel the timer) the
timeout routine is invoked with the parameter specified in the wdStart() call. The timeout
routine is invoked whether the task which started the watchdog is running, suspended, or
deleted.

The timeout routine executes only once per wdStart() invocation; there is no need to cancel
a timer with wdCancel() after it has expired, or in the expiration callback itself.

Note that the timeout routine is invoked at interrupt level, rather than in the context of the
task. Thus, there are restrictions on what the routine may do. Watchdog routines are

1 Libraries
wdShow

405

1
constrained to the same rules as interrupt service routines. For example, they may not take
semaphores, issue other calls that may block, or use I/O system routines like printf().

Note: watchdog routine invocation can be deferred. As such isrIdCurrent is either a valid
ISR_ID or is NULL in the case of deferral.

EXAMPLE In the fragment below, if maybeSlowRoutine() takes more than 60 ticks, logMsg() will be
called with the string as a parameter, causing the message to be printed on the console.
Normally, of course, more significant corrective action would be taken.

 WDOG_ID wid = wdCreate ();
 wdStart (wid, 60, logMsg, "Help, I've timed out!");
 maybeSlowRoutine (); /* user-supplied routine */
 wdCancel (wid);

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES wdLib.h

SEE ALSO logLib, the VxWorks programmer guides.

wdShow

NAME wdShow – watchdog show routines

ROUTINES wdShowInit() – initialize the watchdog show facility
wdShow() – show information about a watchdog

DESCRIPTION This library provides routines to show watchdog statistics, such as watchdog activity, a
watchdog routine, etc.

The routine wdShowInit() links the watchdog show facility into the VxWorks system. It is
called automatically when this show facility is configured into VxWorks using either of the
following methods:

- If you use the configuration header files, define INCLUDE_SHOW_ROUTINES in
config.h.

VxWorks Kernel API Reference, 6.6
wdbLib

406

- If you use the Tornado project facility, select INCLUDE_WATCHDOGS_SHOW.

SMP CONSIDERATIONS

Some or all of the APIs in this module are spinlock and intCpulock restricted. Spinlock
restricted APIs are the ones where it is an error condition for the caller to acquire any
spinlock and then attempt to call these APIs. APIs that are intCpuLock restricted are the
ones where it is an error condition for the caller to have disabled interrupts on the local CPU
(by calling intCpuLock()) and then attempt to call these APIs. The method by which these
error conditions are flagged and the exact behaviour in these situations are described in the
individual API documentation.

INCLUDE FILES wdLib.h

SEE ALSO wdLib, windsh, the VxWorks programmer guides.

wdbLib

NAME wdbLib – WDB agent context management library

ROUTINES wdbSystemSuspend() – suspend the system

DESCRIPTION This library provides a routine to transfer control from the run time system to the WDB
agent running in external mode. This agent in external mode allows a system-wide control,
including ISR debugging, from a host tool (eg: Debugger, WindSh ...) through the target
server and the WDB communcation link.

ADDING WDB SUPPORT

To add WDB support, the component INCLUDE_WDB must be added to the kernel at
configuration time. For more information about how to configure WDB see Tornado User's
Reference: Target Configuration

INCLUDE FILES wdb/wdbLib.h

SEE ALSO

wdbMdlSymSyncLib

NAME wdbMdlSymSyncLib – target-host modules and symbols synchronization

1 Libraries
wdbMdlSymSyncLib

407

1
ROUTINES wdbMdlSymSyncLibInit() – initialize modules and symbols synchronization library

DESCRIPTION This module provides host/target modules and symbols synchronization. With
synchronization enabled, every module or symbol added to the run-time system from either
the target or host side can be seen by facilities on both the target and the host. This
synchronization makes it possible to use host tools to debug application modules loaded by
the target loader.

The module is initialized by wdbMdlSymSyncLibInit(), which is called automatically
when the WDB modules and symbols synchronization component
(INCLUDE_WDB_MDL_SYM_SYNC) is included at configuration time.

When the target server connects the target agent, target and host symbol tables and module
lists are synchronized so that every module loaded on the target before the target server was
started can be seen by the host tools. This feature is particularly useful if VxWorks is started
with a target-based startup script before the target server has been launched.

The target loader does not wait for synchronization completion to return. If your target
server was started with the -V option, it prints a message indicating synchronization has
been completed.

The following are examples of messages displayed by the target server indicating
synchronization is complete:

Added module target_module to target server... done
Added module host_module to target... done
Added symbol targetSymbol to target server... done
Added symbol hostSymbol to target... done

If synchronization fails, the following message is displayed:

Added module host_module to target... failed

This error generally means that synchronization of the corresponding module or symbol is
not possible because there is not enough memory on the target.

Failure can also occur if a target server to target communication timeout is reached. If this
is the case, you should stop the target server and restart it with the option "-Bt" to modify
the WDB timeout between the target agent and the target server.

When a module is loaded from a host tool, the module is kept on the target when the target
server disconnect from the target agent. If a new target server is started, this module is
synchronized again and is visible from the new target server.

Note that the synchronization mechanism will not work when the WDB agent is running in
system mode. The modules and symbols added while the agent in system mode will be
synchronized later when a new module or symbol will be added while the agent is in task
mode. However, this may lead to some unpredictable results.

INCLUDE FILES wdb/wdbLib.h

SEE ALSO tgtsvr

VxWorks Kernel API Reference, 6.6
wdbUserEvtLib

408

wdbUserEvtLib

NAME wdbUserEvtLib – WDB user event library

ROUTINES wdbUserEvtLibInit() – include the WDB user event library
wdbUserEvtPost() – post a user event string to host tools

DESCRIPTION This library contains routines for sending WDB User Events. The event is sent through the
WDB agent, the WDB communication link and the target server to the host tools that have
registered for it. The event received by host tools will be a WTX user event string.

To add WDB user events support, the component INCLUDE_WDB_USER_EVENT must be
added at configuration time.

INCLUDE FILES wdb/wdbLib.h

SEE ALSO

windPwrLib

NAME windPwrLib – Power Management Library

ROUTINES windPwrModeSet() – Set the BSP power mode
windPwrModeGet() – Get the current power mode
windPwrDownRtnSet() – register a BSP power-down function
windPwrUpRtnSet() – register a BSP power-up function

DESCRIPTION This file provides methods for setting the processor into sleep mode and later waking it up.

Power managment operates in three states as defined by windPowerMode.

windPwrModeOff
In this CPU mode of operation, power management is disabled.

windPwrModeShort
In this CPU mode of operation, the CPU sleeps between system clock ticks but always
wakes up for every tick. In other words, the tick interrupt source remains consisten off
when this CPU power mode is set.

windPwrModeLong
This power mode is deprecated.

The number of ticks that the BSP is requested to disable the tick interrupt source is provided
by the kernel as a parameter to the BSP routine specified in windPwrDownRtnSet() as

1 Libraries
wvLib

409

1
dRtn. When the CPU power down mode is windPwrModeLong, this value is used by dRtn
to determine when to schedule an interrupt to wake up the processor. When the CPU power
down mode is windPwrModeOff, dRtn is not invoked when the kernel goes idle. Hardware
limitations may prevent the system from sleeping for the requested duration. If unable to
support the requested duration, the BSP will program a sleep period for the maximum
duration that hardware permits.

INCLUDE FILES windPwrLib.h

SEE ALSO the VxWorks programmer guides.

wvFileUploadPathLib

NAME wvFileUploadPathLib – file destination for event data

ROUTINES wvFileUploadPathLibInit() – initialize the wvFileUploadPathLib library
wvFileUploadPathCreate() – create a file for depositing event data
fileUploadPathClose() – close the event-destination file
wvFileUploadPathWrite() – write to the event-destination file

DESCRIPTION This file contains routines that write events to a file rather than uploading them to the host
using a type of socket connection. If the file indicated is a TSFS file, this routine has the same
result as uploading to a host file using other methods, allowing it to replace evtRecv. The
file can be created anywhere, however, and event data can be kept on the target if desired.

INCLUDE FILES

SEE ALSO wvSockUploadPathLib, wvTsfsUploadPathLib

wvLib

NAME wvLib – event logging control library (System Viewer)

ROUTINES wvLibInit() – initialize wvLib - first step
wvLibInit2() – initialize wvLib - final step
wvEvtLogStart() – start logging events to the buffer
wvEvtLogStop() – stop logging events to the buffer
wvEvtClassSet() – set the class of events to log
wvEvtClassGet() – get the current set of classes being logged

VxWorks Kernel API Reference, 6.6
wvLib

410

wvEvtClassClear() – clear the specified class of events from those being logged
wvEvtClassClearAll() – clear all classes of events from those logged
wvObjInstModeSet() – set object instrumentation on/off
wvObjInst() – instrument objects
wvAllObjsSet() – set instrumented state for all objects and classes
wvSigInst() – instrument signals
wvSalInst() – instrument SAL
wvEventInst() – instrument VxWorks Events
wvEdrInst() – instrument ED&R Events
wvEvent() – log a user-defined event
wvUploadStart() – start upload of events to the host
wvUploadStop() – stop upload of events to host
wvUploadTaskConfig() – set priority and stacksize of tWVUpload task
wvLogCreate() – Create a System Viewer log
wvLogDelete() – Delete a System Viewer log
wvPartitionGet() – determine partition in use for System Viewer logging
wvPartitionSet() – specify a partition for use by System Viewer logging
wvLogListCreate() – create a list to hold System Viewer logs
wvLogListDelete() – delete a System Viewer log list
wvCurrentLogGet() – return a pointer to the currently active System Viewer log
wvCurrentLogSet() – select a System Viewer log as currently active
wvCurrentLogListSet() – set the current log list
wvCurrentLogListGet() – return a pointer to the System Viewer log list
wvLogFirstGet() – return a pointer to the first log in the System Viewer log list
wvLogNextGet() – return a pointer to the next log in the System Viewer log list
wvLogCountGet() – return the number of logs in the curent log list

DESCRIPTION This library contains routines that control event collection and upload of event data from
the target to various destinations. The routines define the interface for the target component
of the Wind River System Viewer. When event data has been collected, the routines in this
library are used to produce event logs that can be loaded by the System Viewer host tools.

An event log is made up of a small header, a hash table which contains various important
items, and a variable-sized binary data stream. The binary data carries the bulk of the events
produced by the various event points throughout the kernel and associated libraries.

For convenience, the various parts of a System Viewer log are kept together in a WV_LOG
structure, and a list of these structures is maintained in a WV_LOG_LIST.

In general, this information is gathered and stored temporarily on the target, and later
uploaded to the host in the proper order to form an event log. The routines in this file can
be used to create logs in various ways, depending on which routines are called, and in
which order the routines are called.

There are three methods for uploading event logs. The first is to defer upload of event data
until after logging has been stopped in order to eliminate events associated with upload
activity from the event log. The second is to continuously upload event data as it is

1 Libraries
wvLib

411

1
gathered. This allows the collection of very large event logs, that may contain more events
than the target event buffer can store at one time. The third is to defer upload of the data
until after a target reboot.

It is possible to configure the buffer to allow old data to be overwritten by newer data. This
allows logging to be carried out for arbitrarily long periods, and stopped when some fault
condition is detected.

Each of these three methods is explained in more detail in CREATING AN EVENT LOG.

EVENT BUFFERS AND UPLOAD PATHS

Many of the routines in wvLib require access to the buffer used to store event data (the event
buffer) and to the communication paths from the target to the host (the upload paths). Both
the buffer and the path are referenced with IDs that provide wvLib with the appropriate
information for access.

The event buffering mechanism used by wvLib is provided by rBuffLib. The upload paths
available for use with wvLib are provided by wvFileUploadPathLib,
wvTsfsUploadPathLib and wvSockUploadPathLib.

The upload mechanism backs off and retries writing to the upload path if an error occurs
during the write attempt with the errno EAGAIN or EWOULDBLOCK. Two global
variables are used to set the amount of time to back off and the number of retries. The
variables are:

 int wvUploadMaxAttempts /* number of attempts to try writing */
 int wvUploadRetryBackoff /* delay between tries (in ticks - 60/sec) */

INITIALIZATION This library is initialized in two steps. The first step, done by calling wvLibInit(), associates
event logging routines to system objects. This is done when the kernel is initialized. The
second step, done by calling wvLibInit2(), associates all other event logging routines with
the appropriate event points. Initialization is done automatically when
INCLUDE_WINDVIEW is defined.

DETERMINING WHICH EVENTS ARE COLLECTED

There are three classes of events that can be collected. They are:

 WV_CLASS_1 /* Events causing context switches */
 WV_CLASS_2 /* Events causing task-state transitions */
 WV_CLASS_3 /* Events from object and system libraries */

The second class includes all of the events contained within the first class, plus additional
events causing task-state transitions but not causing context switches. The third class
contains all of the second, and allows logging of events within system libraries. It can also
be limited to specific objects or groups of objects:

- Using wvObjInst() allows classes of objects (e.g. message queues) or individual
instances (for example, sem1) to be instrumented.

- Using wvSigInst() allows signals to be instrumented.

VxWorks Kernel API Reference, 6.6
wvLib

412

- Using wvEventInst() allows vxWorks events (from eventLib) to be instrumented.

- Using wvSalInst() allows socket application layer (SAL) to be instrumented.

Logging events in Class 3 generates the most data, which may be helpful during analysis of
the log. It is also the most intrusive on the system, and may affect timing and performance.
Class 2 is more intrusive than Class 1. In general, it is best to use the lowest class that still
provides the required level of detail.

To manipulate the class of events being logged, the following routines can be used:
wvEvtClassSet(), wvEvtClassGet(), wvEvtClassClear(), and wvEvtClassClearAll(). To
log a user-defined event, wvEvent() can be used. It is also possible to log an event from any
point during execution using e(), located in dbgLib.

CONTROLLING EVENT LOGGING

Once the class of events has been specified, event logging can be started with
wvEvtLogStart() and stopped with wvEvtLogStop().

CREATING AN EVENT LOG

An event log consists of a number of components, grouped together in the WV_LOG
structure. As discussed above, there are three common ways to upload an event log.

"Deferred Upload"

When creating an event log by uploading the event data after event logging has been
stopped (deferred upload), the following series of calls can be used to start and stop the
collection. In this example, the System Viewer log list and logs are created in the system
memory partition. The event buffer should be allocated from the system memory partition
as well. Error checking has been eliminated to simplify the example.

 /* wvLib and rBuffLib initialized at system start up */

 #include <vxWorks.h>
 #include <wvLib.h>
 #include <private/wvBufferP.h>
 #include <private/wvUploadPathP.h>
 #include <private/wvFileUploadPathLibP.h>
 #include <sysLib.h>
 #include <logLib.h>
 #include <fcntl.h>

 BUFFER_ID bufId;
 UPLOAD_ID pathId;
 WV_UPLOADTASK_ID upTaskId;

 /*
 * To prepare the event log and start logging:
 */

 /* Select the system memory partition */

 wvPartitionSet (memSysPartId);

1 Libraries
wvLib

413

1 /* If there is no log list, make one */

 if (wvCurrentLogListGet () == NULL)
 wvLogListCreate ();

 /* Create rBuffs using default configuration */

 bufId = rBuffCreate (&wvDefaultRBuffParams);

 /* Create a System Viewer log, adding to the log list */

 wvLogCreate (bufId);

 wvEvtClassSet (WV_CLASS_1); /* set to log class 1 events */
 wvEvtLogStart ();

 /*
 * To stop logging and complete the event log.
 */

 wvEvtLogStop ();

 /* Create an upload path using wvFileUploadPathLib, yielding pathId. */

 pathId = wvFileUploadPathCreate ("/tgtsvr/eventLog.wvr", O_CREAT);

 /* Start uploading, upload task will die when done */

 upTaskId = wvUploadStart (wvCurrentLogGet (), pathId, FALSE);

 /* Finish uploading */

 wvUploadStop (upTaskId);

 /* Close the upload path and destroy the event buffer */

 wvFileUploadPathClose (pathId);

 wvLogDelete (wvCurrentLogListGet (), wvCurrentLogGet ());

Routines which can be used as they are, or modified to meet the users' needs, are located in
usrWindview.c. These routines, wvOn() and wvOff(), provide a way to produce useful
event logs without using the host user interface of System Viewer.

"Continuous Upload"

When uploading event data as it is still being logged to the event buffer (continuous
upload), simply rearrange the above calls:

 /* Includes and declarations. */

 BUFFER_ID bufId;
 UPLOAD_ID pathId;
 WV_UPLOADTASK_ID upTaskId;

VxWorks Kernel API Reference, 6.6
wvLib

414

 /*
 * To prepare the event log and start logging:
 */

 /* Select the system memory partition */

 wvPartitionSet (memSysPartId);

 /* If there is no log list, make one */

 if (wvCurrentLogListGet () == NULL)
 wvLogListCreate ();

 /* Create rBuffs using default configuration */

 bufId = rBuffCreate (&wvDefaultRBuffParams);

 /* Create a System Viewer log, adding to the log list */

 wvLogCreate (bufId);

 /* Create an upload path using wvFileUploadPathLib, yielding pathId. */

 pathId = wvFileUploadPathCreate ("/tgtsvr/eventLog.wvr", O_CREAT);

 /* Start uploading, upload task will wait */

 upTaskId = wvUploadStart (wvCurrentLogGet (), pathId, TRUE);

 wvEvtClassSet (WV_CLASS_1); /* set to log class 1 events */
 wvEvtLogStart ();

 /* record system activity */
 /*
 * To stop logging and complete the event log.
 */

 wvEvtLogStop ();

 wvUploadStop (upTaskId);

 /* Close the upload path */

 wvFileUploadPathClose (pathId);

 wvLogDelete (wvCurrentLogListGet (), wvCurrentLogGet ());

"Post-Mortem Event Collection"

This library also contains routines that preserve task name information throughout event
logging in order to produce post-mortem event logs.

Post-mortem event logs typically contain events leading up to a target failure. The memory
containing the information to be stored in the log must not be zeroed when the system

1 Libraries
wvLib

415

1
reboots. The event buffer is set up to allow event data to be logged to it continuously,
overwriting the data collected earlier. When event logging is stopped, either by a system
failure or at the request of the user, the event buffer may not contain the first events logged
due to the overwriting. As tasks are created the EVENT_TASKNAME that is used by the
System Viewer host tools to associate a task ID with a task name can be overwritten, while
other events pertaining to that task ID may still be present in the event buffer. In order to
assure that the System Viewer host tools can assign a task name to a context, a copy of all
task name events can be preserved outside the event buffer and uploaded separately from
the event buffer.

Note that the WV_LOG_LIST structure contains a partition id. This allows the list to be
created in a user-specified partition. For post-mortem data collection, the memory partition
should be within memory that is not zeroed upon system reboot. The event buffer,
preserved task names, and log header will be stored in the same partition.

Generating a post-mortem event log is similar to generating a deferred upload log.
Typically event logging is stopped due to a system failure, but it may be stopped in any way.
To retrieve the logs, the location of the log list in the preserved memory must be known.

 /* Includes, as in the examples above. */

 BUFFER_ID bufId;
 PART_ID preservedPartition;
 WV_LOG_LIST * pWvLogList;

 /*
 * To prepare the event log and start logging:
 */

 pWvLogList = wvCurrentLogListGet ();

 if (pWvLogList != NULL)
 wvLogListDelete (pWvLogList);

 if (wvCurrentLogListGet () != NULL)
 wvLogListDelete ();

 /*
 * Create a memory partition in the user-reserved region. It is assumed
 * that the whole of the region is available for System Viewer: This may
 * not be true, particularly if pmLib is included.
 * The first few words are not included in the partition, but are assumed
 * to be available. Conventionally, the pointer to the log list, which
 * contains all the rquired information, is stored at the start of the
 * user-reserved region, by default.
 */

 preservedPartition = memPartCreate (sysMemTop () + 16,
 sysPhysMemTop () - sysMemTop () -
16);
 if (preservedPartition == NULL)
 {

VxWorks Kernel API Reference, 6.6
wvLib

416

 logMsg ("Error creating partition: Start 0x%x, Size: 0x%x\n",
 sysMemTop (), sysPhysMemTop () - sysMemTop (), 0, 0, 0, 0);
 return (ERROR);
 }

 wvPartitionSet (preservedPartition);

 pWvLogList = wvLogListCreate ();

 /*
 * Save the log list pointer in user-reserved memory
 */

 *(WV_LOG_LIST **)sysMemTop () = pWvLogList;

 /*
 * Create event buffer in non-zeroed memory, allowing overwrite,
 * yielding bufId. Set the wvDefaultRBuffParams.option flags for this
 */

 wvDefaultRBuffParams.sourcePartition = preservedMemPartition;
 rBuffId = rBuffCreate (&wvDefaultRBuffParams);
 wvLogCreate (rBuffId);

 wvEvtClassSet (WV_CLASS_1); /* set to log class 1 events */
 wvEvtLogStart ();

 /*
 * System fails and reboots. Note that the address of the WV_LOG_LIST
 * must be preserved through the reboot so the list can be set here
 * and used to upload the data. We assume that the pointer to the
 * WV_LOG_LIST, saved at the start of user-reserved memory, is
 * available.
 */

After the target has rebooted, the log should be available in the user-reserved region

 /* Includes, as in the examples above. */

 UPLOAD_ID pathId;
 WV_UPLOADTASK_ID upTaskId;
 PART_ID preservedPartition;
 WV_LOG_LIST * pWvLogList;

 pWvLogList = *(WV_LOG_LIST **)sysMemTop ();

 wvCurrentLogListSet (pWvLogList);

 /* Create an upload path, yielding pathId. */

 pathId = wvFileUploadPathCreate ("/tgtsvr/eventLog.wvr", O_CREAT);

 upTaskId = wvUploadStart (wvLogFirstGet (), pathId, FALSE);
 wvUploadStop (upTaskId);

1 Libraries
wvTmrLib

417

1 /* Close the upload path and destroy the event buffer */

 wvFileUploadPathClose (pathId);

 /*
 * Logs should not be deleted if the target has rebooted. This situation
 * could be detected with a global variable which is set when the
partition
 * is created
 * */

 /* wvLogDelete (wvCurrentLogListGet (), wvCurrentLogGet ()); */

INCLUDE FILES wvLib.h eventP.h

SEE ALSO rBuffLib, wvFileUploadPathLib, wvSockUploadPathLib, wvTsfsUploadPathLib, Wind
River System Viewer User's Guide

wvSockUploadPathLib

NAME wvSockUploadPathLib – socket upload path library

ROUTINES wvSockUploadPathLibInit() – initialize wvSockUploadPathLib library
wvSockUploadPathCreate() – establish an upload path to the host using a socket
wvSockUploadPathClose() – close the socket upload path
wvSockUploadPathWrite() – write to the socket upload path

DESCRIPTION This file contains routines that are used by wvLib to pass event data from the target buffers
to the host. This particular event-upload path opens a normal network socket connected
with the Wind River System Viewer host process to transfer the data.

INCLUDE FILES

SEE ALSO wvTsfsUploadPathLib, wvFileUploadPathLib

wvTmrLib

NAME wvTmrLib – timer library (System Viewer)

VxWorks Kernel API Reference, 6.6
wvTsfsUploadPathLib

418

ROUTINES wvTmrRegister() – register a timestamp timer
traceTmrResolutionGet() – get resolution of timestamp source, in nanoseconds

DESCRIPTION This library allows a Wind River System Viewer timestamp timer to be registered. When
this timer is enabled, events are tagged with a timestamp as they are logged.

Seven routines are required for System Viewer: a timestamp routine, a timestamp routine
that guarantees interrupt lockout, a routine that enables the timer driver, a routine that
disables the timer driver, a routine that specifies the routine to run when the timer hits a
rollover, a routine that returns the period of the timer, and a routine that returns the
frequency of the timer.

INCLUDE FILES

SEE ALSO wvLib, Wind River System Viewer User's Guide

wvTsfsUploadPathLib

NAME wvTsfsUploadPathLib – target host connection library using TSFS

ROUTINES wvTsfsUploadPathLibInit() – initialize wvTsfsUploadPathLib library
wvTsfsUploadPathCreate() – open an upload path to the host using a TSFS socket
wvTsfsUploadPathClose() – close the TSFS-socket upload path
wvTsfsUploadPathWrite() – write to the TSFS upload path

DESCRIPTION This library contains routines that are used by wvLib to transfer event data from the target
to the host. This transfer mechanism uses the socket functionality of the Target Server File
System (TSFS), and can therefore be used without including any socket or network facilities
within the target.

INCLUDE FILES

SEE ALSO wvSockUploadPathLib, wvFileUploadPathLib

xbdBlkDev

NAME xbdBlkDev – XBD / BLK_DEV Converter

ROUTINES xbdBlkDevLibInit() – initialize the XBD block device wrapper

1 Libraries
xbdRamDisk

419

1
xbdBlkDevCreate() – create an XBD block device wrapper
xbdBlkDevDelete() – deletes an XBD block device wrapper
xbdBlkDevCreateSync() – synchronously create an XBD block device wrapper

DESCRIPTION This library contains routines for wrapping an XBD around a BLK_DEV.

INCLUDE FILES xbdBlkDev.h

xbdCbioDev

NAME xbdCbioDev – XBD / CBIO Converter

ROUTINES xbdCbioLibInit() – initialize the XBD block device wrapper
xbdCbioDevCreate() – create an XBD CBIO device wrapper
xbdCbioDevDelete() – deletes an XBD CBIO device wrapper

DESCRIPTION This library contains routines for wrapping an XBD around a CBIO device. The CBIO device
is assumed to be ready at the time the wrapper is created. No removability support is
provided by this wrapper.

INCLUDE FILES xbdCbio.h

xbdRamDisk

NAME xbdRamDisk – XBD Ramdisk Implementation

ROUTINES xbdRamDiskDevCreate() – create an XBD ram disk
xbdRamDiskDevDelete() – XBD Ram Disk Deletion routine

DESCRIPTION This library implements an XBD ram disk.

INCLUDE FILES xbdRamDisk.h

VxWorks Kernel API Reference, 6.6
xbdTrans

420

xbdTrans

NAME xbdTrans – Transaction extended-block-device

ROUTINES formatTrans() – Format a transaction disk.
transCommit() – externally-callable function to do a commit
transDevCreate() – create a transactional XBD.
xbdTransDevCreate() – create a transactional XBD.
xbdTransInit() – initialize the transactional XBD subsystem.

DESCRIPTION This library provides device (or partition) level transaction support for XBDs. A medium
with transaction support will commit changes to the media in an atomic operation (with
automatical rollback if modification is not committed). As the commit operation is atomic,
the media will be resistant to power failures.

This allows synthesizing a reliable media, e.g., together with DosFS. The media will be
resistant to power failures. Additionally it will always provide data integrity (different files
of data on the media will always be in sync, as the application is able to set the commit
points whenever the data is in sync). Note that there is a tradeoff involved: synthetic
reliability is not free (in terms of performance and disk space).

1a) How to Create a Transaction Disk on a Hard Disk / Solid State (Block/ATA) Disk

(This has been designed and tested for VxWorks 6.2.)

In most cases one should use the file system monitor, which will identify an existing
transactional XBD layer and instantiate it automatically. To format a new transactional
layer, use the usrFormatTrans() routine, which also works with the convenient user
interfaces.

To do this explicitly, however, first create a disk XBD, and stacking the appropriate XBD
layers on top of it. For example a configuration could look like this:
ATA XBD Block Driver
XBD Transaction Layer
DosFS File System

A sample configuration could e.g. be created with the following code (for ATA disk 0,
master, on bus 0):

STATUS dskinit()
{

fsmNameInstall ("/ata0:1", "/ata0");

/+ create xbd block device for the entire disk +/
if ((ataXbdDevCreate (0, 0, 0, 0, "/ata0")) == (device_t) NULL)
{

1 Libraries
xbdTrans

421

1
printErr ("ataXbdDevCreate failed.\n");
return (ERROR);

}

/+ Put TRFS on the device +/
if (usrFormatTrans ("/ata0",50,0) != OK)
{

printErr ("usrFormatTrans failed.\n");
return (ERROR);

}

/+ Now put dosFs on TRFS +/
if (dosFsVolFormat ("/ata0", DOS_OPT_BLANK, 0) != OK)

{
printErr ("Could not format for dos\n");
return (ERROR);

}

/+ Set a transaction point +/
usrTransCommit ("/ata0");

return (OK);
}

1b) How to Create a Transaction Disk on a Floppy Driver

Do as described previously for a Hard Disk, but use the name of the floppy drive (typically
"/fd0" or "A:").

1c) How to Create a Transaction Disk on a Flash (TFFS) Disk

(This has been designed and tested for VxWorks 6.2)

First create the TFFS layer to obtain a block driver. For example a configuration could look
like this:
Flash MTD
TFFS Driver
XBD Block Driver Wrapper
XBD Transaction Layer
DosFS File System

As before, most operations should be done with the file system monitor. However, you
must use the tffsDevOptionsSet() or tffsDrvOptionsSet() function, as shown below.

VxWorks Kernel API Reference, 6.6
xbdTrans

422

An explicit configuration could be created with the following code (for ATA disk 0, master,
on bus 0):

device_t trans;

STATUS dskinit()
{

/+ create block device for the entire disk, +/
if (usrTffsConfig (0, 0, "/tffs") != OK)
{

printErr ("usrTffsConfig failed.\n");
return (ERROR);

}

/+ Put TRFS on the device +/
if (usrFormatTrans ("/tffs",50,0) != OK)
{

printErr ("usrFormatTrans failed.\n");
return (ERROR);

}

/+ Now put dosFs on TRFS +/
if (dosFsVolFormat ("/tffs", DOS_OPT_BLANK, 0) != OK)

{
printErr ("Could not format for dos\n");
return (ERROR);

}

/+ Set a transaction point +/
usrTransCommit ("/tffs");

return (OK);
}

2) How to Commit changes to a transaction disk

The created disks are completely transaction based. This means all changes on the device
have to be "committed" to actually affect any changes (note: the commit operation is
designed to be atomic: it is either completely perfomed or not at all; if it is interrupted it is
rolled back to the last successfull commit). Once the transaction disk has been mounted it is
immediatelly possible to modify its content. All modifications will be visible immediately.
It is however important to understand that they have not been committed to the disk. (When
power fails or system reboots, all changes are gone.)

1 Libraries
xbdTrans

423

1
Commits have to be manually specified. This is done by doing an ioctl on the highest layer
(e.g., the DosFS File System). For example, this could be done by:

/+ flush a transaction layer to disk +/
void dskflush(char * diskname)
{

int fd;
fd = open(diskname,O_RDWR,0);
ioctl(fd, FIOCOMMITFS, 0);
close(fd);

}

(This code is provided in the system as usrTransCommit().)

It is important to understand that:

a) Only commit points on the disk are persistent! All changes on the disk only affect the
media if they have been committed. If changes have not been commited it will automatically
roll back to the last commit (reset, power fail, crash).

b) Commit is designed to be atomic! A commit will either execute completely, or it will be
rolled back to the last commit on failure (reset, power fail, crash).

c) Commit is mainly a logical operation! Although all data will immediatelly be written onto
the disk existing data will never be overwritten (unless a transaction is committed).

d) Commit is essential! If the software does not commit changes the disk will never change!

e) It is essential to commit starting from the highest layer (read on).

A commit operation has to be started from the highest layer (e.g., DosFS). This has do be
done since the commit operation will traverse down the XBD stack. While traversing down
it will flush any lazy write caches (to ensure everything has been written down). As a very
last step it will then invoke the actual commit function in the transaction layer (which will
actually write the transaction).

3) How to Format a transaction disk

A transaction disk has to be formatted independently of the file system. This can be
considered kind of a "low level" format. It has to be executed in the propper sequence, e.g.,
for a TFFS device, you'd first "low level" format the TFFS disk (sysTffsFormat), then the
transaction layer (usrFormatTrans) and then the above DosFS device (dosFsVolFormat).

Formatting should be done through the usrFormatTrans() function, which takes three
parameters:
usrTffsFormat(devname, overhead, type)
where devname is the name of the disk, overhead is the amount of overhead space to allocate
for transactions, and type is the media type flag. The overhead value must be between 1
(representing 0.1%) and 1000 (representing 100.0%), or 0 to use the default of 50
(representing 5%). The type flag should be one of FORMAT_REGULAR or FORMAT_TFFS.

VxWorks Kernel API Reference, 6.6
xbdTrans

424

The overhead value shrinks the logical disk drive. For instance, using the default of 50, the
logical disk presented to the file system will be 5% smaller than the physical disk. Doing so
ensures the ability to change files even in case of a full disk. An overhead of 50% (500)
would ensure the entire disk could be modified before the transaction has to be commited
(it would be possible to format a full disk, completely fill it with new data, and then either
commit or rollback the complete modification).

The type is the type of format. FORMAT_REGULAR includes a TMR at the beginning and
end of the media to increase reliability (the TMR at the beginning of the media is typically
exposed to formating problems, while the TMR at the end of the media is hard to locate as
sensing the media size might fail). It should be used for all regular devices, but not TFFS.
FORMAT_TFFS leaves the first sector empty (for TFFS) but otherwise behaves the same as
FORMAT_REGULAR. A TMR is placed at the end of the media with a backup placed at sector
1.

4) How to get info on a transaction disk

transShow() can be used for this:

-> transShow(transXbd) Physical Information:
readychange= 0(0)
nBlocks= 7113(7463)
bytesPerBlk= 512(512)
Transaction Structure:
physStartOffset= 1
physTransXOffset= 1/59
physDataOffset= 117
physTransSize= 58
physDataSize= 7345
physDataUnits= 7345
physFreeUnits= 3569
physReplacedUnits= 5
physLastFreeUnit= 1207
transSerial= 9753
transNumber= 2
Disk Serial= 0x41c6/0x92c
Structural information: Virtual Data/Free=3771/3342 Physical
Data/Free/Replaced/Replacement=3547/3569/5/224

In detail, the provided information is:

readychange= 0(0)
readyChange status of transaction layer and underlying device (0 means layer is ready and
has not detected any change, underlying layer is in bracket).

nBlocks= 7113(7463)
Total number of Blocks (Sectors) of device (transaction/logical device is smaller, see
overhead, underlying device is in bracket).

1 Libraries
xbdTrans

425

1
bytesPerBlk= 512(512)

Bytes per Block (Sectors) of device (transaction/logical may be equal or larger than
underlying device, see blkshift, underlying device is in bracket).

physStartOffset= 1
Physical Block (underlying device) start offset of disk (here in case of a TFFS disk it starts
with 1 instead of 0, first block is free).

physTransXOffset= 1/59
Physical Block (underlying device) start offset of both transaction tables.

physDataOffset= 117
Physical Block (underlying device) start offset of data on the media.

physTransSize= 58
Physical Block (underlying device) size of (1) transaction table.

physDataSize= 7345
Physical Block (underlying device) size of data area.

physDataUnits= 7345
Total data units (blkshift might change this, physDataSize = physDataUnits * 2^blkshift).

physFreeUnits= 3569
Total free data units (neither containing commited nor uncommited data).

physReplacedUnits= 5
Total replaced units. New data which would actually be written onto the media replacing
data will be written into replacement units instead (it must not overwrite data already on
the media). When commiting this will turn into data units.

physLastFreeUnit= 1207
Last free unit. This will be used to locate the next free unit (it will typically increase
monotonic).

transSerial= 9753
Monotonically increasing transaction serial number (# of commits done on the media since
formated).

transNumber= 2
Currently active transaction.

Disk Serial= 0x41c6/0x92c
Disk serial number, created upon formating the media.

Virtual Data/Free=3771/3342
Virtual units. Data is the total number of virtual data units (including free). Free is the
number of free units (from a virtual perspective). This is as the above layer (e.g. DosFS)
reports it on the media.

Physical Data/Free/Replaced/Replacement=3547/3569/5/224
Physical units. Data... total number of physical data units. Free... number of free data units.

VxWorks Kernel API Reference, 6.6
xbdTrans

426

Replaced... number of replaced data units (this are units which have been changed and
would have been overwritten if not replaced). Replacement... number of replacement data
units (this are units used to either store new data, or replace data units when overwritten).

transShow trans,1 will display a detailed mapping plan for the device.

6) How to create rollback / completely changable disks

Setting overhead to 50% (this will only provide you with 50% of the physical disk size) will
allow you to completely roll back any changes on the media w/o any limitations. This will
probably hardly ever be used, probably only for small disks storing only configuration data.

7) How to activate/deactivate debug printouts

The global int transDebug = DBG_ERR | DBG_STAT /+ | DBG_MSG | DBG_INFO +/ ; can
be tuned with #define DBG_ERR 1 #define DBG_STAT 2 #define DBG_MSG 4 #define
DBG_INFO 8 (at runtime) to modify debug output.

8) #define PEDANTIC

This is a number of really pedantic logic tests on the media. It should be active during
development and may be deactivated prior to system testing, deploying the device (althogh
it will do no harm if installed).

Transaction logic will be heavily checked, which will significantly slow down commiting on
the device (especially for large disks or slow CPUs).

When a logic error is detected it will typically trigger transPanic(), resulting in calling the
user hook and deactivating the complete transaction layer (for safety reasons, as the disk
should no longer be modified).

9) transPanic()

Panics are typically fatal. Although a hook is provided to "catch" panics the hook will NOT
allow to recover from them.

Types are:

ERROR_LOCK error aquiring the lock (semTake() error This is a fatal internal error. The
semaphore operation has returned an error.

ERROR_TRANS_WRITE error writing transaction Transaction table write operations are
generally considered fatal. The layer/ disk/device has a major problem. If the write has
failed it is likely that data from non failing writes will not be written correct. The layer goes
therefore down.

ERROR_CONSISTENCY internal consistency check error Internal consistency checking
found a major problem. This is most likely a media independend problem, the layer itself
has encountered a bug. It has to go down.

ERROR_IO_OPERATION general IO error (underlying layer should not return error!)
General read or write error when accessing the underlying layer (during a data read/write
operation). This should never happen. Please be aware that the layer will only try to read

1 Libraries
xbdTrans

427

1
data from previously completed operations (it can never read data blocks from previously
interrupted operations). This problem can therefore not be caused by e.g. a NAND flash
which has been interrupted while writing (ECC error).

ERROR_OUTOFMEMORY out of heap memory Malloc returned NULL.

ERROR_UNCATCHED system was unable to recover from warning A warning (see "What is
transWarning()?") that should have been caught has not been caught and is therefore
considered fatal.

ERROR_OUT_OF_UNITS out of physical units The system has run out of free space. This
should not happen as a warning WARN_OUT_OF_UNITS has been triggered previously...
and should either lead to a fatal error ERROR_UNCATCHED, or should have been resolved.
As this should not happen it is fatal.

ERROR_DEFRAG error while defragmenting Problem while in the still pretty experimental
deframenter. It is fatal as further modifications might lead to a corrupt disk.

On a panic the XBD device will disable itself. It will do so by ejecting itself; at this point the
XBD is no longer useable. This is done to ensure the transaction layer can no longer be used
(several panics are from internal errors, it makes sense to make absolutely sure the layer
goes down).

10) transWarning()

Most triggered warnings should be considered fatal. A hook is provided to catch those
warnings; additionally the hook allows recovering from warnings (just continue processing
and ignore the warning). A triggered warning should however be considered with certain
severity.

Types are:

WARN_OUT_OF_UNITS See below for details. This should be caught and considered serious
if not specifically intended otherwise.

WARN_TRANS_CRC_MIS This should typically never happen. The transaction head and tail
have been completely verified (and are correct). Nevertheless the transaction data does not
match the CRC. This can only mean the transaction data has been corrupted AFTER writing.
The system would now try to find another transaction (would revert to the second
transaction). The old transaction might however no longer be valid (after the commit the
system is allowed to replace data for the first time). Therefore, the other transaction should
NOT be used for this special condition! This is automatically caught and converted into a
panic (uncaught warning). It can be caught by the user and converted into OK, but this
involves above mentioned risk and might not be adviceable!

All uncaught warnings (but WARN_OUT_OF_UNITS) are automatically converted to panics
(see "What is transPanic()?")

11) WARN_OUT_OF_UNITS

There are certain limitations on the size of new or replaced information you can store on a
volume. Consider a volume of 100MB physical size. It is formated with a standard of 5% (50)

VxWorks Kernel API Reference, 6.6
xbdTrans

428

overhead, which provides you with a 95MB logical volume. If this disk is filled up with
80MB of data you have only 15MB of free space. Of course you won't have a limit when
adding new files (other than the 15MB limit which is obvious). When you however start
replacing files you can reach a new limit: the limit of the transaction layer. When you
replace/overwrite a file of 15MB size everything is fine. You can replace the file and commit
after this has been done. When you hower replace a file of 21MB (or more) size you'd
essentially try to write 101MB of data onto the volume. This will would of course fail.

The system will then call the warning transWarning() WARN_OUT_OF_UNITS. This will
print a warning on the console, but otherwise continue. If the warning hook does nothing,
the system will fail the I/O and eject the XBD (effectively rolling back the uncommitted
transaction).

12) Why the system is resistant to (NAND) ECC/CRC errors

There are 3 distinct types of data on the disk:

TMR (Transaction Master Record) This is only written once when formating the media. It is
therefore not in risk at a power fail.

Transaction Table Two copies of this exist. The layer is hardened to ignore read errors (and
revert to the other copy if it makes sense).

Data Only data that has been completely written to the media will ever be read. While a
power fail/error might occour during a data write, this data block will not be commited and
can therefore never be read. Only after a complete commit the data has been made
accessible.

13) How long will it take to commit

Commit time will depend on Blocks Cached in upper and lower layers, plus number of
changes. A minimum commit consists of: no data dirty in caches, therefore nothing to flush
3 sectors written (transaction head + tail + 1 transaction data sector changed).

Transaction data sectors are only written if they have changed, the code maintains the dirty
status on both tables.

14) Disk and RAM memory consumption

a) Disk Space The transaction layer will introduce the following overhead in terms of disk
space on the media:

+ Transaction Master Record (TMR) TMR has a similar function than the Master Boot
Record (MBR) on a FAT device. It is used to identify the media, and to obtain its basic
parameters. Depending on the choosen format (there are 3 different types of format to be
choosen when the media is initially formated) the MBR will take 1 or 2 physical disk sectors.

+ Transaction A transaction keeps track of the logical to physical unit mapping. A media has
exactly 2 transaction records. A transaction consists of a transaction head followed by
transaction data followed by a transaction tail. Transaction head and tail are used to identify
the version and the integrity of the transaction, they will always take exactly 1 physical disk
sector each. The size of the transaction data depends on the number of logical units the

1 Libraries
xbdTrans

429

1
device provides. A logical unit is the internal view for grouping 2^n sectors together (The
transaction layer can increase the block size presented to the upper layer. This can be done
to decrease memory overhead both on the disk and in RAM, or to further increase
performance. This is controlled by the blkshift, which is choosen when formating the media:
sectSizeUpper = unitsize = sectSizeLower * 2^blkshift). Both transactions including head
and tail will take 4 physical disk sectors +

Memory is approx: Memory(RAM&Disk) is linear with 1/(2^blkshift); (Doubling the sector
size will half the memory overhead).

+ Configured overhead Overhead is a choosen value. It can be used to increase the rollback
capability of the media (the amount of data that can possibly be "rolled back" is of course
determined by a logical boundary: the amount of free media on the device. A completely
filled up media would therefore become read-only if there is no extra space provided). The
recomended value for this is 50promille = 5%. The overhead actually created is percentage
of overhead - Transaction Size - TMR size (overhead is calculated in a way that it expresses
the complete amount of space volunteered to the transaction layer... and overhead of e.g. 0
is therefore not possible).

Memory (RAM) consumption: The current version requires one complete transaction to be
stored in RAM (additionally a few bitfields are used which cause a minor additional
overhead). The exact memory consumption is:

(based on number of units... a unit is a logical (upper) block. Number and size of units can
be controlled by using blkshift)

32bit per (#units) for logical2physical mapping table (transaction data) 2bit per (#units * 4
byte / physical block size) for dirty bits

(for both transactions)
2bit per (physical #units) for block status information

This roughly translates into:
4.25bytes * (1/(2^blkshift)) * (# blocks on media)

INCLUDE FILES transCbio.h

SEE ALSO VxWorks Programmers Guide: I/O System

VxWorks Kernel API Reference, 6.6
xbdTrans

430

	VxWorks Kernel API Reference, 6.6
	Contents
	1 Libraries
	adrSpaceLib
	adrSpaceShow
	aimCacheLib
	aimFppLib
	aimMmuLib
	aioPxLib
	aioPxShow
	aioSysDrv
	am79c97xVxbEnd
	an983VxbEnd
	bLib
	bcm52xxPhy
	bootInit
	bootLib
	bootParseLib
	cacheArchLib
	cacheAuLib
	cacheLib
	cacheR10kLib
	cacheR4kLib
	cacheR5kLib
	cacheR7kLib
	cacheSh7750Lib
	cacheTx49Lib
	cbioLib
	cdromFsLib
	clockLib
	cnsCompLib
	cnsLib
	coreDumpHookLib
	coreDumpLib
	coreDumpMemFilterLib
	coreDumpShow
	coreDumpUtilLib
	cplusLib
	cpuPwrLightLib
	cpuPwrUtilLib
	cpuset
	dbgArchLib
	dbgLib
	dcacheCbio
	dirLib
	dosFsCacheLib
	dosFsFmtLib
	dosFsLib
	dosFsShow
	dpartCbio
	dshmMuxLib
	dsiSockLib
	edrErrLogLib
	edrLib
	edrShow
	edrSysDbgLib
	envLib
	errnoLib
	eventLib
	excArchLib
	excLib
	fccVxbEnd
	fecVxbEnd
	fei8255xVxbEnd
	ffsLib
	fioBaseLib
	fioLib
	fppArchLib
	fppLib
	fppShow
	fsEventUtilLib
	fsMonitor
	fsPxLib
	ftruncate
	gei825xxVxbEnd
	getopt
	hashLib
	hookLib
	hookShow
	hrFsLib
	hrFsTimeLib
	hrfsChkDskLib
	hrfsFormatLib
	inflateLib
	intArchLib
	intLib
	ioLib
	iosLib
	iosShow
	isrLib
	isrShow
	kern_sysctl
	kernelLib
	ledLib
	loadLib
	logLib
	loginLib
	lstLib
	m85xxCCSR
	mathALib
	memDrv
	memEdrLib
	memEdrRtpShow
	memEdrShow
	memInfo
	memLib
	memPartLib
	memShow
	miiBus
	mmanPxLib
	mmanShow
	mmuMapLib
	mmuPro32Lib
	mmuPro36Lib
	mmuShLib
	moduleLib
	mountd
	mqPxLib
	mqPxShow
	msgQEvLib
	msgQInfo
	msgQLib
	msgQOpen
	msgQShow
	msgQSmLib
	mvYukonIIVxbEnd
	mvYukonVxbEnd
	ne2000VxbEnd
	nfsCommon
	nfsHash
	nfsd
	nfsdCommon
	ns8381xVxbEnd
	ns83902VxbEnd
	objLib
	objShow
	partLib
	passFsLib
	pentiumALib
	pentiumLib
	pentiumShow
	phil
	pipeDrv
	pmLib
	poolLib
	poolShow
	primesDemo
	pthreadLib
	ptyDrv
	quiccEngineUtils
	rBuffLib
	ramDiskCbio
	ramDrv
	rawFsLib
	rawPerfDemo
	rebootLib
	rngLib
	rtl8139VxbEnd
	rtl8169VxbEnd
	rtpHookLib
	rtpLib
	rtpShow
	rtpSigLib
	rtpUtilLib
	salClient
	salServer
	sbeVxbEnd
	scMemVal
	schedPxLib
	scsi1Lib
	scsi2Lib
	scsiCommonLib
	scsiCtrlLib
	scsiDirectLib
	scsiLib
	scsiMgrLib
	scsiSeqLib
	sdLib
	sdShow
	selectLib
	semBLib
	semCLib
	semEvLib
	semExchange
	semInfo
	semLib
	semMLib
	semOpen
	semPxLib
	semPxShow
	semRWLib
	semShow
	semSmLib
	shellConfigLib
	shellDataLib
	shellInterpCmdLib
	shellInterpLib
	shellLib
	shellPromptLib
	shlShow
	sigLib
	smMemLib
	smMemShow
	smNameLib
	smNameShow
	smObjLib
	smObjShow
	smpLockDemo
	snsLib
	snsShow
	spinLockLib
	spyLib
	ssiDb
	strSearchLib
	symLib
	symShow
	sysLib
	syscallHookLib
	syscallLib
	syscallShow
	sysctl
	tarLib
	taskArchLib
	taskHookLib
	taskHookShow
	taskInfo
	taskLib
	taskOpen
	taskRotate
	taskShow
	taskUtilLib
	taskVarLib
	tc3c905VxbEnd
	tffsDrv
	tickLib
	timerLib
	timerOpen
	timerShow
	timexLib
	tlsLib
	trgLib
	trgShow
	tsecVxbEnd
	ttyDrv
	tyLib
	unShow
	unixDrv
	unldLib
	usrConfig
	usrFdiskPartLib
	usrFsLib
	usrLib
	usrRtpLib
	usrRtpStartup
	usrShellHistLib
	usrTransLib
	utfLib
	virtualDiskLib
	vmArch32Lib
	vmArch36Lib
	vmBaseArch32Lib
	vmBaseArch36Lib
	vmBaseLib
	vmGlobalMap
	vmShow
	vrfsLib
	vxAtomicLib
	vxCpuLib
	vxLib
	vxMemProbeLib
	vxbEtsecEnd
	vxbFileNvRam
	vxbI8042Kbd
	vxbIntelIchStorage
	vxbIntelIchStorageShow
	vxbM6845Vga
	vxbNonVolLib
	vxbPcConsole
	vxbSI31xxStorage
	vxbSmscLan9118End
	vxsimHostArchLib
	wdLib
	wdShow
	wdbLib
	wdbMdlSymSyncLib
	wdbUserEvtLib
	windPwrLib
	wvFileUploadPathLib
	wvLib
	wvSockUploadPathLib
	wvTmrLib
	wvTsfsUploadPathLib
	xbdBlkDev
	xbdCbioDev
	xbdRamDisk
	xbdTrans

