
Wind River
General Purpose Platform,

VxWorks Edition

GETTING STARTED

®

3.6

®

Wind River General Purpose Platform, VxWorks Edition Getting Started, 3.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River General Purpose Platform, VxWorks Edition Getting Started, 3.6

4 Dec 07
Part #: DOC-16139-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 Introduction ... 1

1.2 Project Development Workflow .. 2

1.3 Product Documentation .. 3

1.3.1 Introductory Documentation ... 4

1.3.2 Online Documentation .. 4

1.4 Terminology and Conventions .. 6

2 Development Environment .. 9

2.1 Introduction ... 9

2.2 Environment Variables ... 10

2.3 Wind River Workbench .. 10

2.3.1 Wind River System Viewer ... 12

2.3.2 Wind River Run-Time Analysis Tools .. 13

2.4 Command-Line Development Tools .. 14

2.5 Shells ... 15

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

iv

2.6 Compilers ... 16

2.7 Wind River VxWorks Simulator ... 17

2.8 Wind River Wireless Ethernet Drivers ... 17

2.9 Setting up Target Hardware ... 18

Including Files in a VxWorks Image at Build Time 18
Copying Files from Development Host to Target System at Run Time 18

3 Getting Started with Development ... 21

3.1 Introduction ... 21

3.2 Configuring a VxWorks System .. 22

3.3 Developing Kernel Applications .. 23

3.4 Developing RTP Applications ... 24

3.5 Developing BSPs .. 25

3.6 Developing Drivers .. 25

4 Building VxWorks Source Code ... 27

4.1 Introduction ... 27

4.1.1 Precompiled Binary Files .. 28

4.2 Back up VxWorks Archives .. 28

4.3 Setting Environment Variables ... 29

Windows .. 29
Solaris and Linux .. 29

4.4 Building VxWorks Source Code—Workbench Procedure 30

4.5 Building VxWorks Source Code—Command-Line Procedure 32

 Contents

v

4.6 Source Build Options .. 34

Building SMP-Compatible Archives ... 34
Building IPv6 Network Stack Archives .. 34
Building Archives without System Viewer Instrumentation 36

4.7 Restoring Original Archives and Object Directories 37

4.8 Supported CPU and TOOL Values ... 37

5 Software Architecture .. 45

5.1 Introduction ... 45

5.2 Building Blocks .. 46

5.3 Component Structure .. 46

Source Code .. 46
Configuration Code ... 47
Starting a Network Stack Process .. 47

5.4 Multiple Platform Support ... 48

5.4.1 Functional Specification .. 48

Initialization of the Network Stack and Related Components 48
Authentication .. 49
Sysvars ... 49
Shell Commands .. 49
Syslog Daemon ... 49

5.4.2 APIs .. 49

IPCOM Layer APIs .. 50

5.4.3 IPCOM Shell Commands .. 50

Including a Shell Command ... 50
Running a Shell Command ... 51
Interpeak Daemon (ipd) .. 51
System Configuration (sysctl) .. 53
System Log (syslog) ... 53
System Variables (sysvar) ... 60
Calling Shell Commands from an Application 63

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

vi

1

 1
Overview

1.1 Introduction 1

1.2 Project Development Workflow 2

1.3 Product Documentation 3

1.4 Terminology and Conventions 6

1.1 Introduction

Using Wind River General Purpose Platform, VxWorks Edition, you can develop
a variety of projects or applications, such as VxWorks kernel-based applications,
VxWorks real-time process (RTP) applications, BSPs, and drivers. This release
provides VxWorks SMP for symmetric multiprocessing (as an optional product) in
addition to uniprocessor VxWorks. For information about VxWorks SMP, and
about migrating uniprocessor code to VxWorks SMP, see the VxWorks Kernel
Programmer's Guide: VxWorks SMP. VxWorks SMP is a separately purchased
product. Please contact your local Wind River representative for purchase details.

This document does not provide a tutorial of how to create each of the many types
of projects or applications. However, it provides you with an overview of the
development environment and some of the typical tasks you may want to perform.
This document also provides cross-references to documents containing more
detailed information about the tools and tasks.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

2

The document is organized as follows:

■ 1. Overview (this chapter) – provides information on how the document is
organized and product documentation. It also describes terminology and
conventions used in the document.

■ 2. Development Environment – provides background information on tools and
resources you should be familiar with before you begin the development
process.

■ 3. Getting Started with Development – describes some typical development tasks
and where you can find the information needed to complete these tasks.

■ 4. Building VxWorks Source Code – provides information on building VxWorks
source code. In most cases, it is not necessary to build the VxWorks source.

■ 5. Software Architecture – provides information on the software architecture of
the Wind River Network Stack and related applications, including the
software building blocks, component structure, and interface to the operating
system.

1.2 Project Development Workflow

Development of a typical VxWorks project usually consists of the following steps:

1. Set the environment variables. (See 2.2 Environment Variables, p.10.)

2. Compile the VxWorks source code (optional). (See 4. Building VxWorks Source
Code.)

3. Create a VxWorks project.

4. Configure VxWorks to include the appropriate components. (See
3.2 Configuring a VxWorks System, p.22.)

5. Develop either a kernel or RTP application. (See 3.3 Developing Kernel
Applications, p.23 or 3.4 Developing RTP Applications, p.24.)

6. Build the VxWorks project.

7. Test and debug your application. (See 2.3 Wind River Workbench, p.10.)

Figure 1-1 illustrates this workflow.

1 Overview
1.3 Product Documentation

3

1

1.3 Product Documentation

The documentation set for Wind River General Purpose Platform, VxWorks
Edition consists of online documentation, readme.txt files, and some third-party
documentation. This section provides an overview of the available documentation
and where it can be found.

Figure 1-1 Project Development Workflow

Develop
application

Build project

Test and debug
application

End

Start

Set environment
variables

Compile VxWorks
source code
(optional)

Create project

Configure project

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

4

1.3.1 Introductory Documentation

This section describes the documentation that provides information on how to get
started with Wind River General Purpose Platform, VxWorks Edition. It includes
getting started guides, release notes, migration guides, and readme.txt files.

The introductory documentation is as follows:

■ Wind River General Purpose Platform, VxWorks Edition Release Notes – contains
the latest list of supported hosts and targets, information on compatibility with
older releases, an outline of new features, and any caveats concerning the
current release. This document is available from the Online Support Web site.

■ Wind River General Purpose Platform, VxWorks Edition Getting Started (this
guide).

■ Wind River General Purpose Platform, VxWorks Edition Migration Guide –
contains information for migrating to Wind River General Purpose Platform,
VxWorks Edition 3.6. This document is available from the Online Support Web
site.

■ readme.txt – there are several readme.txt files that are included in your
installation. For a complete listing of readme.txt files included with your
installation, search installDir (the root installation directory).

1.3.2 Online Documentation

This section describes the online documentation available with Wind River
General Purpose Platform, VxWorks Edition.

Online Manuals

This release includes manuals in HTML and PDF format. You can open the online
manuals from the Help > Help Contents menu in Workbench. A full-text search
facility is available within the Workbench help browser.

Print-ready PDFs are available from the title page of the corresponding online
document. Navigate to the proper document, then click the PDF icon to the right
of the book title. Links to the PDF files are also available by selecting Wind River >
Documentation from your operating system Start menu.

In addition to the Wind River online documentation, important third-party
documentation is also provided, including Dinkumware documents, Eclipse
documents, and open-source documents for various products and applications.

1 Overview
1.3 Product Documentation

5

1
Context Sensitive Help

Help buttons in Wind River Workbench and Wind River System Viewer provide
information on the component you are currently using.

From a Workbench view, pressing F1 on Windows, CTRL+F1 on Linux, or the Help
button on Solaris opens an infopop containing a brief description of the view, as
well as links to related topics in the documentation. Pressing F1 within an enabled
area in System Viewer opens the appropriate help page.

System Viewer has additional ways to access context-sensitive help. Right-clicking
a specific event within a tool takes you to the System Viewer User's Reference
Event Dictionary information for that event or state stipple.

Man Pages

UNIX-style man pages for API reference entries are available for Solaris or Linux
hosts.

To view the VxWorks API man pages, make the following modifications to your
environment:

For sh or bash:

MANPATH=installDir/vxworks-6.x/man:$MANPATH
export MANPATH

For csh:

setenv MANPATH installDir/vxworks-6.x/man:$MANPATH

To display the man page, type:

man functionName

The most convenient way to access the VxWorks man pages is to create an alias for
man -M such as vxman.

For sh or bash:

alias vxman='man -M installDir/vxworks-6.x/man'

For csh:

alias vxman 'man -M installDir/vxworks-6.x/man'

You can then display entries, such as the one for printf(), from a shell prompt as
follows:

% vxman printf

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

6

1.4 Terminology and Conventions

The following terms are used in this document:

host
A computer on which the Wind River development tools run.

target
A processor board that runs VxWorks (Wind River’s real-time operating
system) and applications developed with Wind River Workbench.

target server
A service that runs on the host and manages communications between host
tools (such as the VxWorks development shell, debugger, and browser) and
the target system itself. One target server is required for each target.

Wind River registry
A Wind River service that keeps track of, and provides access to, target
servers. One registry may serve a network, or registries may run on each host.

The following conventions are used in this document:

■ The root installation directory is identified as installDir in this document, but
the environment variable WIND_HOME must be set to the root installation
directory for Wind River Workbench to work properly.

■ A series of items to be selected from the GUI is denoted by A > B > C. The
elements A, B, and C may be menu items, buttons, or tabs.

■ Pathnames that apply to both UNIX and Windows are shown with forward
slashes (/).

■ Plain italics of the default text font are applied to book titles, emphasis, special
terms, and placeholders. A placeholder is a text string that is not to be
interpreted literally, and represents some value that the user supplies or an
element that will vary depending on context. The use of placeholders is
confined mostly to command arguments, variable portions of pathnames, and
function parameters.

■ C subroutine names always include parentheses, as in printf().

■ Combinations of keys that must be pressed simultaneously are shown with a
+ linking the keys. For example, CTRL+F3 means to simultaneously press the
key labeled CTRL and the key labeled F3.

This document uses the font conventions in the following table for special
elements.

1 Overview
1.4 Terminology and Conventions

7

1Table 1-1 Typographical Conventions

Term Example

files, pathnames installDir/host

libraries, drivers memLib.c

command-line tools dir

Tcl procedures wtxMemRead

C subroutines semTake()

VxWorks boot commands p

code display main();

keyboard input display -> wtxregd -v

output display value = 0

user-supplied values name

components INCLUDE_NFS

keywords struct

named key on keyboard RETURN

key combination ALT+SHIFT+F5

GUI titles and commands Help

GUI menu paths Tools > Target Server > Configure

references to other manuals Wind River Workbench User’s Guide: Building Projects

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

8

9

 2
Development Environment

2.1 Introduction 9

2.2 Environment Variables 10

2.3 Wind River Workbench 10

2.4 Command-Line Development Tools 14

2.5 Shells 15

2.6 Compilers 16

2.7 Wind River VxWorks Simulator 17

2.8 Wind River Wireless Ethernet Drivers 17

2.9 Setting up Target Hardware 18

2.1 Introduction

Before you begin application development, you should be familiar with the
Wind River General Purpose Platform, VxWorks Edition development
environment. This chapter describes each of the common tools and resources, and
provides cross references to where more information on each tool or resource can
be found.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

10

2.2 Environment Variables

A specific set of environment variables must be set on your host machine for Wind
River development tools. On Windows, Wind River Workbench and the VxWorks
development shell set these variables automatically whenever you start these
tools. On Solaris or Linux, you must first set these environment variables manually
by running the wrenv script. You must also run this script on a Windows
computer if you use a shell other than the VxWorks development shell.

If the environment variables are not set automatically, you must run the script
before using:

■ the vxprj command-line VxWorks configuration and build tool

■ the compilers

■ the Wind River makefile system from the command line

■ the VxWorks Simulator

■ the Wind River host shell from the command-line

■ other tools

For information about setting environment variables with the wrenv script, see the
VxWorks Command-Line Tools User’s Guide and 4.3 Setting Environment Variables,
p.29.

2.3 Wind River Workbench

Wind River Workbench is an Eclipse-based development suite that facilitates
creating and building projects, establishing and managing host-target
communication, and running, debugging, and monitoring VxWorks applications.

Creating Projects and Developing Source Code

Workbench includes a variety of preconfigured project types for which it provides
full build support, as well as a user-defined project that uses your existing
makefiles.

2 Development Environment
2.3 Wind River Workbench

11

2

To assist you while writing code, the Workbench Editor provides code templates,
parameter hints, and code completion suggestions. It also supports planting
breakpoints directly on the line you are interested in.

The Workbench search tool allows you to search your code for normal text strings
as well as regular expressions. You can then filter the matches according to
location context and replace or restore text as necessary.

Parsing Source Files for Symbol Information

Workbench uses static analysis—the parsing of source code symbol information—
as the basis for features you see in the Editor such as multilanguage syntax
highlighting and definition/declaration navigation.

In addition, static analysis produces the data for features such as include browsing
and call trees, as well as information used by the compiler to resolve include search
paths. Once you configure your static analysis preferences and parse the source
code of your project, you can share those settings and the generated data with your
team.

Debugging Applications

Since debugging often requires you to repeatedly launch the same application on
the same target, Workbench allows you to configure that information once and
then relaunch your program (and even attach the debugger) with the click of a
button.

When you launch processes under debugger control or attach the debugger to a
running process, those processes appear in the Debug view where you can monitor
and control them. Even when the debugger is not able to display the source code
of your project in the Editor (such as when your code calls external libraries or the
code was compiled without debug information) you can still examine it using the
Disassembly view.

Integrating with Eclipse

Because Workbench is based on Eclipse, you can integrate third-party and open
source plug-ins into the editing, parsing, and debugging tools provided by
Workbench itself. In addition, you can integrate Workbench as a plug-in into an
existing Eclipse installation.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

12

Starting Workbench

To start Workbench on Windows, select Start > All Programs > Wind River >
Workbench 3.x > Wind River Workbench 3.x (if you chose the default program
group during installation).

To start Workbench on Solaris or Linux, navigate to your Workbench installation
directory and type the following at the command line:

% ./startWorkbench.sh

Learning More about Workbench

When you start Workbench, by default, a welcome page appears. (You may first
see a dialog box that prompts you to enter the path to your workspace.) The
welcome page contains links to Workbench tutorials, Wind River Online Support,
and so forth. To access this welcome page after the first time you start Workbench,
select Help > Welcome.

For introductory information and a tutorial, see the Wind River Workbench User’s
Guide.

For instructions on creating and using projects, see Wind River Workbench User’s
Guide: Projects Overview. For guidelines on configuring launches and debugging
projects, see Wind River Workbench User’s Guide, Part V: Debugging.

Additional tutorials for this release are available on the Online Support Web site:

http://www.windriver.com/support

2.3.1 Wind River System Viewer

Wind River System Viewer is a logic analyzer for embedded software that lets you
visualize and troubleshoot complex target multitasking activities.

Often the interactions between the operating system, the application, and the
target hardware occur within specified time constraints, characterized by
resolutions of microseconds or finer.

Commonly used debugging and benchmarking tools for embedded systems, such
as source-level debuggers and profilers, provide only static information.

System Viewer logs activities on a running target; the type of data and aspects of a
system that you want to view are highly configurable, and can be saved for later
analysis.

http://www.windriver.com/support

2 Development Environment
2.3 Wind River Workbench

13

2

Wind River System Viewer provides the ability to do the following:

■ Detect race conditions, deadlocks, CPU starvation, and other problems
relating to task interaction.

■ Determine application responsiveness and performance.

■ See cyclic patterns in application behavior.

■ Save data for deferred analysis.

For more information on Wind River System Viewer, see the Wind River
System Viewer User’s Guide.

2.3.2 Wind River Run-Time Analysis Tools

Wind River Run-Time Analysis Tools is a set of real-time software debugging
tools that enable data collection and analysis on a running program. The tool
capabilities include memory usage analysis, call stack tracing and profiling,
program variable tracking, and test coverage.

Wind River Run-Time Analysis Tools were previously called Wind River
ScopeTools. The following table lists the old name and the new name of each of the
debugging tools.

Wind River General Purpose Platform, VxWorks Edition includes the following
Wind River Run-Time Analysis Tools:

■ Wind River Memory Analyzer, an online memory analyzer.

■ Wind River Performance Profiler, a statistical profiler.

■ Wind River Data Monitor, a real-time data monitor.

Old Name New Name

Wind River MemScope Wind River Memory Analyzer

Wind River ProfileScope Wind River Performance Profiler

Wind River StethoScope Wind River Data Monitor

Wind River CoverageScope Wind River Code Coverage Analyzer

Wind River TraceScope Wind River Function Tracer

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

14

And optionally includes:

■ Wind River Code Coverage Analyzer, a code coverage analysis tool.

■ Wind River Function Tracer, an execution-flow trace tool.

For more information on Wind River Run-Time Analysis Tools, see the following
guides:

■ Wind River Memory Analyzer User’s Guide

■ Wind River Performance Profiler User’s Guide

■ Wind River Data Monitor User’s Guide

■ Wind River Code Coverage Analyzer User’s Guide

■ Wind River Function Tracer User’s Guide

2.4 Command-Line Development Tools

Wind River provides command-line development facilities for configuring and
building the VxWorks operating system, for developing kernel applications,
real-time process (RTP) applications, static shared libraries, user-mode shared
libraries, and so on. These facilities include a default makefile system, the vxprj
VxWorks configuration and build tool, compilers, and other utilities. For
information about these facilities and examples of their use, see the following:

■ VxWorks Command-Line Tools User’s Guide
■ the Wind River compiler guides
■ the GNU compiler and tools guides
■ the VxWorks programmer and developer guides
■ Wind River Host Utilities API Reference

2 Development Environment
2.5 Shells

15

2

2.5 Shells

Wind River General Purpose Platform, VxWorks Edition provides a kernel shell
and a host shell for managing, monitoring, and debugging VxWorks systems.
These shells can also be used for downloading and running kernel application
modules and for executing RTP (user-mode) applications.

Both shells provide more than one interpreter, with different sets of commands or
APIs for each. The kernel shell supports a C interpreter and a command
interpreter; in addition to these, the host shell supports a Tcl interpreter and a GDB
interpreter.

In addition to the kernel and host shells discussed below, Wind River General
Purpose Platform, VxWorks Edition also contains the VxWorks development shell
(only on Windows platforms). This shell is an ordinary command prompt, but it
automatically runs the wrenv environment variable script when you start it. To
access this shell, select Start > All Programs > Wind River > VxWorks 6.x and
General Purpose Technologies > VxWorks Development Shell.

Kernel Shell

The kernel shell is a target-resident shell that is accessed from a host system over
a serial connection, independent of Workbench or other Wind River host facilities.
It is therefore suitable for deployed systems as well as for development. For more
information on the kernel shell, see the VxWorks Kernel Programmer's Guide. For
more information on kernel shell commands, see the usrLib section of the VxWorks
Kernel API Reference and the VxWorks Kernel Shell Command Reference.

NOTE: The prescribed methods for configuring and building VxWorks and
VxWorks-based products and applications are Workbench and the command-line
tool vxprj. The legacy bspDir/config.h method has been officially deprecated for
application development and for most build and configuration scenarios.
However, this method may be required for low-level BSP and device driver
development and for build and configuration of certain technologies. For more
information on BSP and device driver development, see the VxWorks BSP
Developer's Guide or the appropriate volume of the VxWorks Device Driver
Developer's Guide. For product build and configuration information, see the
appropriate programmer’s guide.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

16

VxWorks can be configured with various components that provide additional
commands for the kernel shell. For example, components can be added for
semaphore show routines, for commands used to configure the Wind River
Network Stack, and so on.

For information on configuring a VxWorks Image Project with shell commands,
see 5.4.3 IPCOM Shell Commands, p.50. For information on accessing shell
commands from the kernel shell, see Running a Shell Command, p.51.

For information about the shell commands available for a specific technology, and
the VxWorks components that provide them, see the appropriate programmer’s
guide.

To access the kernel shell, right-click a target in the Remote Systems Explorer and
select Connect 'target_name'. A target shell window opens.

Host Shell

The Wind River Workbench host shell can be started from within Workbench or
from the command-line. It communicates with a target system by way of a target
server on the host, and the WDB target agent on the target. For more information
on the host shell, see the Wind River Workbench Host Shell User's Guide. For more
information on the host shell commands, see the Wind River Host Shell API
Reference.

To access the host shell from Workbench, select Project > Open Workbench
Development Shell.

2.6 Compilers

Wind River General Purpose Platform, VxWorks Edition includes two compilers
for C and C++ development: the Wind River Compiler and the Wind River GNU
Compiler.

The Wind River Compiler is a complete toolkit for embedded application
development, including C and C++ compilers, assemblers, linkers, utilities, and
standard libraries for a variety of target CPU architectures.

The Wind River GNU Compiler comprises C and C++ compilers, linker,
assembler, and utilities.

2 Development Environment
2.7 Wind River VxWorks Simulator

17

2

For detailed information on these compilers and using them from the command
line, see the compiler documentation.

2.7 Wind River VxWorks Simulator

The Wind River VxWorks Simulator is a simulated hardware target for use as a
prototyping and test-bed environment for VxWorks. The VxWorks simulator
allows you to develop, run, and test VxWorks applications on your host system
before target hardware is available. The VxWorks simulator also allows you to set
up a simulated target network for developing and testing complex networking
applications. The VxWorks simulator can be used with Wind River Workbench or
from the command line.

For information on using the VxWorks simulator, see the Wind River VxWorks
Simulator User’s Guide.

2.8 Wind River Wireless Ethernet Drivers

The Broadcom wireless driver, which is part of Wind River Wireless Ethernet
Drivers, is subject to a separate software license agreement and is not available
with your installation. To review the software license agreement and download
the Broadcom wireless driver, please visit the Wind River Online Support Web
site:

https://portal.windriver.com/windsurf/products/netprods/WRWirelessDriv
ers

https://portal.windriver.com/windsurf/products/netprods/WRWirelessDrivers
https://portal.windriver.com/windsurf/products/netprods/WRWirelessDrivers

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

18

2.9 Setting up Target Hardware

In addition to the Wind River VxWorks Simulator, Wind River provides board
support packages (BSPs) for a number of available target hardware reference
boards. These BSPs allow you to get your system up and running quickly on
reference hardware and can also serve as a base for developing your own custom
hardware solution. For more information on developing BSPs, see the VxWorks
BSP Developer’s Guide.

For information on starting development with target hardware, see Wind River
Workbench User’s Guide: Setting Up Your Hardware.

Including Files in a VxWorks Image at Build Time

You can use the read-only memory file system (ROMFS) to include files in a
VxWorks Image Project. These files will automatically be loaded into the target
system when it boots.

To include a file in your VxWorks Image Project, follow this procedure:

1. Include the component INCLUDE_ROMFS in the VxWorks Image Project. This
component creates a directory called romfs in your BSP directory .

2. Place the file you want to load to the target in the romfs directory.

3. Build the image.

4. Boot the target from the image.

5. Open the /romfs directory on the target system. The file you stored in
bsp/romfs on the host system will be there.

Copying Files from Development Host to Target System at Run Time

There are three ways to transfer files from the development host to the target
system:

■ Using FTP
■ Using the development file system
■ Using the target server file system

2 Development Environment
2.9 Setting up Target Hardware

19

2

Using FTP

Include the following components in the VxWorks image:

■ FTP server component (INCLUDE_IPFTPS)
■ FTP client component (INCLUDE_IPFTPC)
■ FTP shell command (IPFTP_CMD)

Then build your project and boot the target from the resulting image. You can then
FTP the file from the host to the target. To access FTP initially, use the default
username (ftp) and the default password (interpeak).

Using the Development File System

Mount the development file system as a netDrv device, using the component
INCLUDE_NET_DRV. You can then use the host shell or target shell to copy the file.

Using the Target Server File System

Use the target server file system and the copy() command. For example:

copy "/tgtsvr/myfile" "location_on_target"

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

20

21

 3
Getting Started with

Development

3.1 Introduction 21

3.2 Configuring a VxWorks System 22

3.3 Developing Kernel Applications 23

3.4 Developing RTP Applications 24

3.5 Developing BSPs 25

3.6 Developing Drivers 25

3.1 Introduction

Before you begin the development process, you should be familiar with the
development process, the development environment, and how to create VxWorks
projects.

For an overview of the development process and the project workflow, see
1.2 Project Development Workflow, p.2. For more information on Wind River
General Purpose Platform, VxWorks Edition development environment and tools,
see 2. Development Environment.

This chapter describes some of the typical development tasks and provides
cross-references to documents containing more detailed information.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

22

3.2 Configuring a VxWorks System

Wind River General Purpose Platform, VxWorks Edition provides default
VxWorks images and boot loaders that you can use to start development.
However, if the default image does not match your initial development needs (for
example, you need a different device driver), you may need to reconfigure and
rebuild VxWorks or the boot loader.

Modular Configuration

VxWorks is a highly scalable operating system that can be configured in a
multitude of ways, from a minimal kernel of less than 100 KB to a full-featured
operating system that includes MMU-based memory protection, local file-systems,
networking facilities, process-based RTP applications, POSIX support, and many
other facilities.

VxWorks operating system facilities are provided as modular components. Some
facilities are specifically designed for the development environment (such as
target-side support for host tools and show routines for shell use), that you remove
when you proceed to final product testing and deployment. Some facilities also
provide alternate configurations for development and for deployment (such as the
error detection and reporting facilities).

Configuration Tools

Both VxWorks and the boot loader can be configured and built using either
Wind River Workbench or the vxprj command-line facility. These tools are the
prescribed methods for configuring and building VxWorks.

Wind River Workbench displays descriptions of components and parameters, as
well as their names, in the Components tab of the Kernel Configuration Editor.
To access the Kernel Configuration Editor, double-click the Kernel Editor node

NOTE: The prescribed methods for configuring and building VxWorks and
VxWorks-based products and applications are Workbench and the command-line
tool vxprj. The legacy bspDir/config.h method has been officially deprecated for
application development and for most build and configuration scenarios.
However, this method may be required for low-level BSP and device driver
development and for build and configuration of certain technologies. For more
information on BSP and device driver development, see the VxWorks BSP
Developer's Guide or the appropriate volume of the VxWorks Device Driver
Developer's Guide. For product build and configuration information, see the
appropriate programmer's guide.

3 Getting Started with Development
3.3 Developing Kernel Applications

23

3

in your project tree in the Project Explorer. You can use the Find dialog to locate a
component or parameter using its name or description. To access the Find dialog
from the Components tab, type CTRL+F, or right-click and select Find.

Throughout the documentation, VxWorks components and their configuration
parameters are identified by the names used in component description files, which
take the form, for example, of INCLUDE_FOO and NUM_FOO_FILES (for
components and parameters, respectively). In Workbench, you can search for
these names using the Find dialog. For command-line configuration facilities, use
these names directly to configure VxWorks. For more information, on
command-line facilities, see 2. Development Environment.

References

For information about VxWorks and the associated technologies with which it can
be built, see the following:

■ VxWorks Kernel Programmer's Guide
■ VxWorks Application Programmer's Guide
■ the programmer guides for networking and middleware technologies

For information about the configuration tools, see the following:

■ Wind River Workbench User's Guide
■ VxWorks Command-Line Tools User's Guide

3.3 Developing Kernel Applications

VxWorks applications that execute in the kernel are created as relocatable object
modules. Kernel-based application modules can be either downloaded and
dynamically linked to the operating system by the object module loader, or
statically linked to the operating system, making them part of the system image.
Kernel applications run in kernel mode, and there is no memory protection
between kernel applications or between kernel applications and the kernel itself.
Kernel applications, however, have direct access to public kernel APIs and to
hardware, and therefore require no system calls for their operation.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

24

For information about the features and tools used to develop, execute, and debug
kernel applications, see the following:

■ VxWorks Kernel Programmer's Guide

■ Wind River Workbench User's Guide

■ VxWorks Command-Line Tools User's Guide

For APIs available for kernel applications, see the following:

■ VxWorks Kernel API Reference for native VxWorks C libraries

■ Dinkum C++ Library Reference Manual for C++ libraries

■ Dinkum EC++ Library for C++ libraries

3.4 Developing RTP Applications

VxWorks Real-Time Process (RTP) applications execute in user mode, in memory
spaces separate from the kernel and from other RTP applications. On systems with
an MMU, RTP applications and the kernel are all protected from one another.
VxWorks real-time processes are in many respects similar to processes in other
operating systems—such as UNIX and Linux—including extensive POSIX
compliance. However, RTPs are specifically designed for hard real-time systems.
RTP applications can be built separately from the operating system and stored on
a host or target file system; or bundled with the system image using the ROMFS
file system. RTP applications make system calls for kernel services.

RTP applications can be designed and built for use with shared libraries and
shared data regions. This allows them to share code and reduce the footprint of the
applications, and to provide a shared region for applications that are otherwise
separated by a memory barrier.

For information about the features and tools used to develop, execute, and debug
RTP applications, see the following:

■ VxWorks Application Programmer's Guide
■ Wind River Workbench User's Guide
■ VxWorks Command-Line Tools User's Guide

3 Getting Started with Development
3.5 Developing BSPs

25

3

For APIs available for RTP applications, see the following:

■ VxWorks Application API Reference for native VxWorks C libraries
■ Dinkum C++ Library Reference Manual for C++ libraries
■ Dinkum EC++ Library for C++ libraries

3.5 Developing BSPs

The VxWorks BSP Developer’s Guide discusses VxWorks BSP development. In
particular, it provides guidelines for writing a custom BSP based on an existing
reference BSP. This includes information on configuring your development
environment, accessing minimal hardware or a hardware simulator, creating a
minimal kernel, adding VxWorks device drivers, and other clean-up tasks.

For more information on developing and using drivers with your BSP, see the
appropriate volume of the VxWorks Device Driver Developer’s Guide.

3.6 Developing Drivers

At a high level, VxWorks device drivers allow for communication between your
VxWorks system and specific target hardware. If you are developing for custom
hardware, you must provide a device driver for that hardware so that it can be
included in your VxWorks system.

Before beginning any device driver development, you should have a good
understanding of the overall VxWorks I/O system. (For more information, see the
VxWorks Kernel Programmer's Guide.)

In recent VxWorks releases, device driver development is centered around the
VxBus driver infrastructure. The VxBus infrastructure supports device drivers by
defining interfaces that device drivers use to interact with the hardware and with
the operating system. VxBus-enabled drivers must be used when working with
symmetric multi-processing (SMP) systems and are optional (but recommended)
for uniprocessor (UP) systems.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

26

General driver development and the VxBus infrastructure are discussed in the
following documents:

■ VxWorks Device Driver Developer’s Guide, Volume 1: Fundamentals of Writing
Device Drivers discusses the VxBus infrastructure and the basic steps involved
in writing a VxBus-enabled device driver.

■ VxWorks Device Driver Developer’s Guide, Volume 2: Writing Class-Specific Device
Drivers discusses the specific requirements of the many driver classes
supported by VxBus (network drivers, timer drivers, bus controller drivers,
and so forth).

Wind River encourages developers to use the VxBus infrastructure for device
driver development whenever possible. The ad-hoc (or legacy) driver model used
in older VxWorks releases continues to be supported for uniprocessor systems.
Legacy driver information (including migration to VxBus) is provided in VxWorks
Device Driver Developer’s Guide, Volume 3: Legacy Drivers and Migration.

In addition to the device driver guides, you may want to reference the VxWorks
BSP Developer’s Guide. This document discusses VxWorks BSP development. In
particular, it provides guidelines for writing a custom BSP based on an existing
reference BSP.

27

 4
Building VxWorks Source Code

4.1 Introduction 27

4.2 Back up VxWorks Archives 28

4.3 Setting Environment Variables 29

4.4 Building VxWorks Source Code—Workbench Procedure 30

4.5 Building VxWorks Source Code—Command-Line Procedure 32

4.6 Source Build Options 34

4.7 Restoring Original Archives and Object Directories 37

4.8 Supported CPU and TOOL Values 37

4.1 Introduction

In most cases, it is not necessary to compile the source code for the VxWorks
operating system. However, you can recompile this code if your development
situation requires it, for example, if you want to produce SMP-compatible
archives, change the IP version of the network stack, or create archives without
System Viewer instrumentation. The output of this build is a set of run-time
libraries that you can use to create a VxWorks Image Project.

There are some limitations and restrictions you must be aware of when
recompiling the VxWorks source:

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

28

■ The source code must be built from the vxworks-6.x installation tree with the
host tools and makefiles provided.

■ There may be certain portions of the VxWorks object code for which source
code has not been provided.

■ For the unmodified source code that is included on the CD, the resulting
binaries built using the Wind River Compiler should match the binaries
distributed on the CD.

■ Modifications to the source code (when permitted) may not be covered by
Wind River Customer Support.

You can build the VxWorks source using Workbench or from the command line.

4.1.1 Precompiled Binary Files

Due to licensing restrictions, the VxWorks source code does not include source
files licensed by Wind River from third parties. This code is instead distributed in
the form of precompiled binary files with a .o extension.

When you build the source code using the procedure documented in this chapter,
the relevant .o files are copied into the source build directory.

Precompiled .o files are located in installDir/vxworks-6.x/target/precomp. For a
complete list of the affected files and architectures, search this directory for files
with a .o extension.

4.2 Back up VxWorks Archives

If you want to preserve the original VxWorks archives before recompiling the
source code, back them up using the following procedure. Making a backup copy
of these archives is advisable in case you later decide to use them again.

! CAUTION: Do not delete the precompiled files in this directory. Doing so may
prevent you from creating projects that rely on these files.

4 Building VxWorks Source Code
4.3 Setting Environment Variables

29

4

In a host shell, go to the library subdirectory of the target directory. Make a copy
of the vxworks-6.x archive directory and files for the architecture you want to
rebuild. For example, to back up your PowerPC files, type:

% cd installDir/vxworks-6.x/target/lib
% mkdir ppcBackup
% cp -r ppc ppcBackup/ppc
% cp libPPC*.a ppcBackup
% cp -r objPPC* ppcBackup

4.3 Setting Environment Variables

To use the command-line interface on the host computer to build source code or
develop your project, you must configure some environment variables and other
settings. The method you chose depends chiefly on your host computer’s
operating system.

Windows

If you run Workbench on a Windows computer, the environment variables are set
automatically.

If you use the VxWorks development shell, they are also set automatically. To open
this shell, select Start > All Programs > Wind River > VxWorks 6.x and
General Purpose Technologies > VxWorks Development Shell.

Solaris and Linux

On Solaris and Linux, you must set the environment variables whether you use
Workbench or the command line. Use the wrenv environment utility for this
purpose.

Open a shell and set your environment to access the Wind River host tools and
Wind River Compiler.

In your installation directory, run the following command:

% ./wrenv.sh -p vxworks-6.x

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

30

For more information about the wrenv utility, see the VxWorks Command-Line Tools
User’s Guide.

4.4 Building VxWorks Source Code—Workbench Procedure

This section describes how to build the VxWorks OS source using Workbench.

Step 1: Set your command environment (Solaris or Linux platform).

If you are using a Solaris or Linux platform, you must first set the appropriate
environment variables as documented in 4.3 Setting Environment Variables, p.29.

If you are using Windows, environment variables are automatically set when you
start Workbench.

Step 2: Start Workbench.

To start Workbench on Windows, select Start > Programs > Wind River >
Workbench 3.x > Wind River Workbench 3.x (if you chose the default program
group during installation).

To start Workbench on Solaris or Linux, navigate to your Workbench installation
directory and type the following at the command line:

% ./startWorkbench.sh

NOTE: If your shell configuration file (.profile, .cshrc, .tcshrc, and so forth)
overwrites the environment each time a new shell is created, the above command
may not work. To test whether the environment variables have been set
successfully, start Workbench. If you find that you cannot start the Workbench
tools after running the above command, use the following command:

% eval `installDir/wrenv.sh -p platform -o print_env -f shell`

where shell is sh or csh, depending on the current shell program. For example:

% eval `./wrenv.sh -p vxworks-6.x -o print_env -f sh`

4 Building VxWorks Source Code
4.4 Building VxWorks Source Code—Workbench Procedure

31

4

Step 3: Create a user-defined project.

1. Open Workbench and select File > New > User-Defined Project.

2. From the Target Operating System list, select Wind River VxWorks 6.x, then
click Next.

3. Provide a name for this project.

4. Select Create project at external location.

5. Click Browse, then navigate to (or enter):

installDir/vxworks-6.x/target/src

Click OK to close the Select folder dialog box.

6. Click Next twice. The Build Support page opens.

7. Ensure that User-defined build option is selected, then enter the following as
your Build Command:

make CPU=cpuType TOOL=toolChain

For example:

make CPU=PPC32 TOOL=diab

8. Click Finish.

Step 4: Rebuild the VxWorks source.

In the Project Explorer, right-click your project and select Build Project.

Step 5: Rebuild with a secondary compiler (optional).

If you intend to build your project with the GNU GCC compiler, you must rebuild
the project with a secondary compiler listed in 4.8 Supported CPU and TOOL Values,
p.37.

NOTE: For user builds, navigate to installDir/vxworks-6.x/target/usr/src.

NOTE: To identify your CPU and associated primary compiler, see
4.8 Supported CPU and TOOL Values, p.37.

NOTE: If you are building the user-side source—that is, the source code in
installDir/vxworks-6.x/target/usr/src—you do not need to perform a rebuild with
the secondary compiler. Only the Wind River Compiler is supported for user-side
builds.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

32

You can change the build command by changing the values of the user build
arguments.

1. In the User Build Arguments field in the the Build Console, add the TOOL
argument for the secondary compiler. The information you type here
overrides the Tool chain argument in the original project properties. For
example, if you enter TOOL=gnu as a user build argument, the build
command changes from:

make -f Makefile CPU=PENTIUM2 TOOL=diab

to

make -f Makefile CPU=PENTIUM2 TOOL=gnu

2. In the Project Explorer toolbar, click the (Build) button to start building
the project for your CPU and associated secondary compiler.

After a successful build with the secondary compiler, clear the
User Build Arguments field to revert to the primary compiler value.

Additional options are available. See 4.6 Source Build Options, p.34, for further
information.

4.5 Building VxWorks Source Code—Command-Line Procedure

This section describes how to build the VxWorks OS source from the command
line.

Step 6: Set your command environment.

Before you build the components, you must first set the appropriate environment
variables as documented in 4.3 Setting Environment Variables, p.29.

Step 7: Disable the GNU dependency (optional).

If you want to disable the GNU dependency in any BSP, modify the config.h file
for the BSP to include the following line:

#undef INCLUDE_GNU_INTRINSICS

This file is located in installDir/vxworks-6.x/target/config/bsp.

4 Building VxWorks Source Code
4.5 Building VxWorks Source Code—Command-Line Procedure

33

4

The GNU intrinsics are required to be able to load C modules built with one
compiler into an image built with another. Do not disable the GNU dependency if
you plan to load C modules built with another compiler into your image.

Step 8: Build the source code.

Go to installDir/vxworks-6.x/target/src and start the build by running make to
build the sources for your CPU and TOOL.

The syntax for the make command is:

% cd installDir/vxworks-6.x/target/src
% make CPU=cpuName TOOL=primaryCompilerName [other_build_options]

If you have INCLUDE_GCC_INTRINSICS in your project (or intend to build your
project with the GNU GCC compiler), you need to run make twice for each CPU—
once for the primary compiler and once for the secondary compiler. To identify
your CPU and associated primary and secondary compilers, see Supported CPU
and TOOL Values, p.37.

To build for your secondary compiler, the syntax is the same as for the primary
compiler. For example, run both of the following:

% make CPU=PPC32 TOOL=diab
% make CPU=PPC32 TOOL=gnu

Additional options are available. See 4.6 Source Build Options, p.34 for further
information.

NOTE: If you do not need INCLUDE_GCC_INTRINSICS (which allows you to load
gnu-built objects onto a diab-built image) or if you are performing a user-side
build, do not run the secondary build.

NOTE: You can build a debug version of the source by providing a -g flag with
ADDED_CFLAGS and ADDED_C++FLAGS in the following file:

installDir/vxworks-6.x/target/src/Makefile

For example:

% make CPU=cpuVal TOOL=toolChain ADDED_CFLAGS+=-g ADDED_C++FLAGS+=-g

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

34

4.6 Source Build Options

Whether you use Workbench or a command-line interface to build the VxWorks
source, additional build options are available. These include:

■ Building SMP-Compatible Archives, p.34

■ Building IPv6 Network Stack Archives, p.34

■ Building Archives without System Viewer Instrumentation, p.36

Building SMP-Compatible Archives

If you have purchased the SMP option, you can build SMP-compatible archives.

To build the source code for SMP, add VXBUILD=SMP to the make command. For
example:

make CPU=cpuType TOOL=toolChain VXBUILD=SMP

Building IPv6 Network Stack Archives

In Wind River General Purpose Platform, VxWorks Edition, the source code
libraries are prebuilt for an IPv4-only network stack. If you recompile the VxWorks
source code, VxWorks builds only the IPv4 network stack archives by default.
There are two ways to include an alternate IPv4/IPv6 network stack archive:

■ by replacing the precompiled network stack libraries with dual IPv4/IPv6
libraries

■ by generating a separate set of IPv6 libraries

You can also build a network stack that only supports IPv6.

The following sections provide additional details.

Replacing the Precompiled Network Stack Libraries

To replace the IPv4 library with an IPv4/IPv6 library, add an
ADDED_CFLAGS+=-DINET6 command-line flag. The make command then has the
following form:

% make CPU=cpuType TOOL=toolChain ADDED_CFLAGS+=-DINET6

If you are using Workbench, add ADDED_CFLAGS+=-DINET6 to the
User Build Arguments field in the Build Console and build your source project.

4 Building VxWorks Source Code
4.6 Source Build Options

35

4

This procedure overwrites the existing network stack libraries (libnetcommon.a,
libnetapps.a, and libnetwrap.a). The libraries generated using this procedure
support a dual IPv4/IPv6 network stack.

Generating a Separate Set of Libraries

To create an alternate set of IPv4/IPv6 network stack libraries while preserving the
precompiled libraries, append OPT=-inet6 to the make command. The make
command then has the following form:

% make CPU=cpuType TOOL=toolChain OPT=-inet6

If you are using Workbench, add OPT=-inet6 to the User Build Arguments field
in the Build Console and build your source project.

Using this procedure preserves the precompiled IPv4 libraries while generating a
separate set of IPv6 libraries (libnetcommon-inet6.a, libnetapps-inet6.a, and
libnetwrap-inet6.a).

If you build separate IPv6 network stack libraries using this technique, you must
also select the appropriate kernel libraries when you create a VxWorks Image
Project. To do so, select the option Use IPv6 enabled kernel libraries in the
Options page, which appears when you create a VxWorks Image Project.

For more information about the IPv4 and IPv6 network stacks, see the network
stack documentation set.

Building an IPv6-only Network Stack

To rebuild the source code libraries with support for an IPv6-only network stack,
you must issue a make command in the following directory:

installDir/vxworks-6.x/target/src/ipnet

Use the ADDED_CFLAGS+=-DINET6_ONLY command-line flag:

make CPU=cpuType TOOL=toolChain ADDED_CFLAGS+=-DINET6_ONLY

NOTE: When you build a dual IPv4/IPv6 library with the
ADDED_CFLAGS+=-DINET6 flag, the DHCP components for IPv6 are also built by
default.

NOTE: The build process may produce several build warnings, which you can
ignore.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

36

Affected Modules—IPv6-Only Network Stack

Most code modules are unaffected by the way the network stack source code is
built. If you build an IPv6-only network stack, however, modifications may be
required in modules that make calls to IPv4 routines. Such modules include SNMP
and BSPs.

To make these modules compatible with an IPv6-only network stack, perform the
following steps:

■ Enclose any IPv4-specific code with #ifdef INET.

■ Enclose any IPv6-specific code fragment with #ifdef INET6.

Symbol Table Download and Network Drives

Symbol table download and network drive mounting are ordinarily performed
over an IPv4 network. Special provisions are required when you build an
IPv6-only network stack. For further information, see Wind River Network Stack
Programmer’s Guide, Vol. 1: Configuring and Building the Network Stack.

Building Archives without System Viewer Instrumentation

Specifying the Use System Viewer free kernel libraries option when creating a
VxWorks Image Project creates a project that builds a VxWorks image without
System Viewer instrumentation.

However, for this to work, you must have kernel source and must have previously
compiled the kernel using the OPT=-fr option build (or OPT=-inet6_fr, if you want
IPv6 support). This option places the System Viewer-free archives in an alternate
location (for example, libwind-fr.a instead of libwind.a, libnet-fr.a instead of
libnet.a, and so on).

The free build, in addition to automatically undefining WV_INSTRUMENTATION
and INCLUDE_WVNETD, also defines a macro _FREE_VERSION that causes
omission of some debug and sanity checks in performance-critical code (primarily
in the networking code).

To build the kernel without System Viewer instrumentation using Workbench,
add OPT=-fr or OPT=-inet6_fr to the User Build Arguments in the Build Console
field and build your source project.

If you build the kernel without System Viewer instrumentation, you must also
select the appropriate kernel libraries when you create a VxWorks Image Project.

4 Building VxWorks Source Code
4.7 Restoring Original Archives and Object Directories

37

4

To do so, select the option Use System Viewer free kernel libraries in the
Options page, which appears when you create a VxWorks Image Project.

4.7 Restoring Original Archives and Object Directories

In the VxWorks development shell, go to the library subdirectory of the target
directory. Move the recompiled version of the vxworks-6.x archive directory by
renaming it, and then restore the original archive directory from the copy you
made in 4.2 Back up VxWorks Archives, p.28.

For example:

% cd installDir/vxworks-6.x/target/lib
% mv ppc ppcRef
% mv ppcBackup/ppc ppc
% mv ppcBackup/libPPC*.a .
% cp -rf ppcBackup/objPPC* .

In this example, the ppcRef and the original files are now located in
installDir/vxworks-6.x/target/lib.

4.8 Supported CPU and TOOL Values

The source tree build system has been designed and tested to compile source code
with a primary compiler only. The secondary compiler is provided for the
application level only, but some run-time support is required. Therefore, the
source tree build system builds only the directories necessary to support the
secondary compiler.

Table 4-1 lists the primary and secondary compilers for each architecture. In most
cases, the CPU values in this table can be used in make commands. In a few cases,
however, using a variant architecture from the same family (such as PPC32 instead

NOTE: User (RTP) builds support the CPU options listed in Table 4-1. However,
only the Wind River Compiler (diab) is supported.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

38

of PPC405) may provide better results. To verify the CPU argument in a make
command and the make variable settings, consult one or both of the following
sources:

■ VxWorks Architecture Supplement

■ installDir/vxworks-6.x/target/config/bsp/Makefile

NOTE: For SIMNT, SIMSPARCSOLARIS, and SIMLINUX, the libprocfs.a, libtffs.a,
libusb.a, and libusb2.a libraries are not supported. Although they are built from
source, they are not present on the product CD.

Table 4-1 CPU and TOOL Values by Architecture

Architecture CPU

TOOL

Primary Compiler Secondary Compiler

ARM Architecture
Version 4
Processors

ARMARCH4 diab gnu

ARM Architecture
Version 4
Processors
(big-endian)

ARMARCH4 diabbe gnube

ARM Architecture
Version 5
Processors

ARMARCH5 diab gnu

ARM Architecture
Version 5
Processors
(big-endian)

ARMARCH5 diabbe gnube

ARM Architecture
Version 6
Processors

ARMARCH6 diab gnu

ARM Architecture
Version 6
Processors
(big-endian)

ARMARCH6 diabbe gnube

4 Building VxWorks Source Code
4.8 Supported CPU and TOOL Values

39

4Cavium cn3xxx MIPSI64R2 diab gnu

Cavium cn3xxx
(little-endian)

MIPSI64R2 diable gnule

Cavium cn3xxx
(software floating
point)

MIPSI64R2 sfdiab sfgnu

Cavium cn3xxx
(software floating
point, little-endian)

MIPSI64R2 sfdiable sfgnule

ColdFire 5200 MCF 5200 diab Not supported

ColdFire 5400 MCF 5400 diab Not supported

ColdFire 5400
(software floating
point)

MCF 5400 sfdiab Not supported

Intel XScale XSCALE diab gnu

Intel XScale
(big-endian)

XSCALE diabbe gnube

MIPS32 (software
floating point)

MIPS32 sfdiab sfgnu

MIPS32 LE
(software floating
point)

MIPS32 sfdiable sfgnule

MIPS64 MIPS64 diab gnu

MIPS64 LE MIPS64 diable gnule

MTI 4kc MIPSI32 diab gnu

MTI 4kc
(little-endian)

MIPSI32 diable gnule

Table 4-1 CPU and TOOL Values by Architecture (cont’d)

Architecture CPU

TOOL

Primary Compiler Secondary Compiler

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

40

MTI 4kc (software
floating point)

MIPSI32 sfdiab sfgnu

MTI 4kc (software
floating point,
little-endian)

MIPSI32 sfdiable sfgnule

MTI 4kec, 24kc,
24kf, 74kc, 74kf

MIPSI32R2 diab gnu

MTI 4kec, 24kc,
24kf, 74kc, 74kf
(little-endian)

MIPSI32R2 diable gnule

MTI 4kec, 24kc,
24kf, 74kc, 74kf
(software floating
point)

MIPSI32R2 sfdiab sfgnu

MTI 4kec, 24kc,
24kf, 74kc, 74kf
(software floating
point, little-endian)

MIPSI32R2 sfdiable sfgnule

MTI 5kc, 5kf,
Broadcom 1250,
1480, Raza XLR

MIPSI64 diab gnu

MTI 5kc, 5kf,
Broadcom 1250,
1480, Raza XLR
(little-endian)

MIPSI64 diable gnule

MTI 5kc, 5kf,
Broadcom 1250,
1480, Raza XLR
(software floating
point)

MIPSI64 sfdiab sfgnu

Table 4-1 CPU and TOOL Values by Architecture (cont’d)

Architecture CPU

TOOL

Primary Compiler Secondary Compiler

4 Building VxWorks Source Code
4.8 Supported CPU and TOOL Values

41

4MTI 5kc, 5kf,
Broadcom 1250,
1480, Raza XLR
(software floating
point, little-endian)

MIPSI64 sfdiable sfgnule

Pentium PENTIUM diab gnu

Pentium II PENTIUM2 diab gnu

Pentium III PENTIUM3 diab gnu

Pentium IV PENTIUM4 diab gnu

PowerPC 403 PPC403 diab gnu

PowerPC 405 PPC405 diab gnu

PowerPC 405
(software floating
point)

PPC405 sfdiab sfgnu

PowerPC 40x, 440,
8xx, 85xx

PPC32 sfdiab sfgnu

PowerPC 440 PPC440 diab gnu

PowerPC 440
(software floating
point)

PPC440 sfdiab sfgnu

PowerPC 603 PPC603 diab gnu

PowerPC 604 PPC604 diab gnu

PowerPC 60x, 7xx,
74xx, 82xx

PPC32 diab gnu

PowerPC 85XX PPC85XX diab gnu

Table 4-1 CPU and TOOL Values by Architecture (cont’d)

Architecture CPU

TOOL

Primary Compiler Secondary Compiler

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

42

PowerPC 85XX
(software floating
point)

PPC85XX sfdiab sfgnu

PowerPC 860
(software floating
point)

PPC860 sfdiab sfgnu

SH 7750 SH7750 (SH32 for
RTP builds)

diab gnu

SH 7750 LE SH7750 (SH32 for
RTP builds)

diable gnule

SIMLINUX SIMLINUX
(SIMPENTIUM for
RTP builds)

diab gnu

SIMNT SIMNT
(SIMPENTIUM for
RTP builds)

diab gnu

SIMSOLARIS SIMSPARCSOLARIS diab gnu

Toshiba tx4938,
NEC vr5500,
PMC-Sierra rm9000

MIPSI3 diab gnu

Toshiba tx4938,
NEC vr5500,
PMC-Sierra rm9000
(little-endian)

MIPSI3 diable gnule

tx4938 and vr5500
when operated in
32-bit mode
(software floating
point)

MIPSI2 sfdiab sfgnu

Table 4-1 CPU and TOOL Values by Architecture (cont’d)

Architecture CPU

TOOL

Primary Compiler Secondary Compiler

4 Building VxWorks Source Code
4.8 Supported CPU and TOOL Values

43

4tx4938 and vr5500
when operated in
32-bit mode
(software floating
point, little-endian)

MIPSI2 sfdiable sfgnule

Table 4-1 CPU and TOOL Values by Architecture (cont’d)

Architecture CPU

TOOL

Primary Compiler Secondary Compiler

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

44

45

 5
Software Architecture

5.1 Introduction 45

5.2 Building Blocks 46

5.3 Component Structure 46

5.4 Multiple Platform Support 48

5.1 Introduction

This chapter describes the software architecture of networking and middleware
components. It provides information on the software components, or building
blocks, of the network stack, the structure of these components, and their
application programming interfaces (APIs). It also describes the multiple platform
support facility IPCOM, which provides an interface between the networking layer
and the operating system, and the shell commands used to configure and operate
the networking layer and related products.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

46

5.2 Building Blocks

The networking layer consists of separate source code modules, or building blocks,
that can be compiled and linked to form a network stack and related applications
for the target system. A supporting layer, called IPCOM, provides an interface
between the networking layer and target operating system.

5.3 Component Structure

Source Code

The source code for the network stack and related applications resides in the
following location:

installDir/components/ip_net2-6.x/component

Each component typically has the following structure:

■ config

■ feature_name_config.h, which specifies the included features and their
default values

■ gmake

■ Makefile

■ feature_name.mk

■ include

■ feature_name.h, which contains the API for the feature

■ src

■ feature_name.c
■ feature_name_xxx.c
■ feature_name_xxx.h

5 Software Architecture
5.3 Component Structure

47

5
Configuration Code

The directory installDir/components/ip_net2-6.x/osconfig/vxworks/src/ipnet
contains additional files used for configuration. These .c files contain the default
values for all components.

Configuration information is also stored in CDF files, which are read by the
Workbench Kernel Configuration Editor when you configure your project. These
files store the names of individual configuration components, ranges of
permissible values for each component, and similar information.

Starting a Network Stack Process

Each process in the network stack is started by calls to the following routines:

■ feature_name_create(). This routine is used to allocate, initialize, and clear
memory.

■ feature_name_configure(). This routine is used to read default feature values
and attributes.

■ feature_name_start(). This routine is used to start the process.

For example, starting a secure shell would require calls to the following routines:

■ ipssh_create()
■ ipssh_configure()
■ ipssh_start()

These routines are called automatically, and you should not include these routines
in your application code. If you want to add specific configuration code to a
particulare “feature,” or module, however, you can do so in the
feature_name_configure() routine.

Once a process has been started, component-specific APIs are used for further
configuration. See the individual programmer’s guides and the Wind River
Workbench online help for information on specific APIs.

NOTE: For the IPCOM component, public APIs are found only in ipcom_auth.h,
ipcom_ipd.h, ipcom_syslog.h, and ipcom_sysvar.h. Other header files in
/ipcom/include are internal and should not be used by applications.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

48

5.4 Multiple Platform Support

The IPCOM layer provides an interface between the networking layer and the
operating system. It ensures complete portability for the network stack and all
related products.

IPCOM provides such facilities as services, data structures, and shell commands. It
also provides the APIs used to enable and configure the network stack and related
applications. See 5.4.1 Functional Specification, p.48, for more information on the
IPCOM facilities.

5.4.1 Functional Specification

IPCOM provides the following facilities:

■ Network stack initialization

■ Authentication (user and password API)

■ System variables (sysvars) for system configuration (similiar to environment
variables)

■ Memory file system

■ Target shell and Telnet server

■ Syslog daemon

■ Shell commands (echo, ipd, sockperf, socktest, syslog, sysvar, tracert, ttcp,
user, ipversion)

■ Timeout server

■ Pseudorandom daemon implemented by the Entropy Gathering Daemon
(EGD)

■ Debug utilities: memory statistics (mem)

The following sections provide additional detail.

Initialization of the Network Stack and Related Components

The task is intilized and started from IPCOM.

The routine ipcom_start(void) (in ipcom_init.c) is the first line of code. Use this
routine to set a breakpoint just before the network stack is initialized.

5 Software Architecture
5.4 Multiple Platform Support

49

5

Authentication

A user and password API is available. This facility handles all system
authentication (Telnet, PPP, etc.).

Sysvars

System variables, or sysvars, are used to configure the network stack and related
applications. They are similar to environment variables.

System variables are not process-specfic. They are implemented as an ASCII
stream and a value—e.g., value_x = y. You can change the values of sysvars at run
time using the sysvar shell command. For further information, see System Variables
(sysvar), p.60.

Shell Commands

IPCOM provides shell commands that can be used to start, stop, or configure the
network stack and related applications. These commands are available when you
include the kernel shell and the individual command in your VxWorks Image
Project. See 5.4.3 IPCOM Shell Commands, p.50, for further information.

Syslog Daemon

The system logging daemon includes all run-time debugging information. It uses
the same debug level as Linux. Debug levels are configured at build time and at
run time. At build time, you can specify the debug levels that will be compiled into
the module. At run time, you can specify the debug levels that are actually output
to the system log. For further information, see System Log (syslog), p.53.

5.4.2 APIs

A variety of public APIs are available for use in programming the network stack
and related applications. These APIs are typically located in the include directory
for each component in the file feature_name.h. For example, the directory
installDir/components/ip_net2-6.6/ipppp/include contains the file ipppp.h. This
file contains the APIs used to enable and configure the Wind River PPP.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

50

For most APIs, documentation is available in individual programmer’s guides and
the Wind River Workbench online help. To access API documentation in the
Wind River Workbench online help, select Help > Help Contents. The help
contents appear in a Web browser. In the Contents pane, search within the Wind
River Documentation > References tree to locate the APIs that are relevant to your
product.

IPCOM Layer APIs

APIs to configure the IPCOM layer are defined in the following files in the
installDir/components/ip_net2-6.x/ipcom/include directory.

■ ipcom_auth.h
■ ipcom_ipd.h
■ ipcom_syslog.h
■ ipcom_sysvar.h

The APIs defined in these files are documented in the reference entries for the
Wind River Network Stack Kernel API Reference. The rest of the files in the
installDir/components/ip_net2-6.x/ipcom/include directory are internal and
should not be used by applications.

5.4.3 IPCOM Shell Commands

Including a Shell Command

IPCOM shell commands are available when you include the kernel shell and the
individual command in your VxWorks Image Project. To include a kernel shell in
your project:

1. Include the component INCLUDE_USE_NATIVE_SHELL.

2. Include an individual shell command. These shell commands are found in the
FOLDER_IPCOM_SHELL_CMD folder, if you are using the Workbench Kernel
Configuration Editor. Individual commands have names in the form
INCLUDE_CommandName_CMD—for example,
INCLUDE_IPCOM_SYSLOG_CMD.

The IPCOM shell command interface, INCLUDE_IPCOM_SHELL_CMD, is
included by default when you include the appropriate shell command.

5 Software Architecture
5.4 Multiple Platform Support

51

5

Running a Shell Command

The shell commands are run from the shell in command-interpreter mode. To run
the shell commands:

1. Open a VxWorks kernel shell.

2. At the command prompt, type cmd and press ENTER to switch to
command-interpreter mode. The command prompt changes from -> to
[vxWorks *] #.

3. Run the appropriate shell command.

You can also call shell commands from an application. For more information on
this technique, see Calling Shell Commands from an Application, p.63.

Interpeak Daemon (ipd)

Most networking component initialization routines and daemons are
automatically controlled by a central module called ipd.

The ipd shell command controls other daemons, such as the multicasting proxy
daemon. To include this command in your project, include INCLUDE_IPD_CMD.

Name

ipd – daemon process command

Synopsis

ipd command [-options]

Individual synopses are as follows:

ipd [-V vr] list
ipd [-V vr] start service
ipd [-V vr] kill service
ipd [-V vr] reconfigure service
ipd [-V vr] # service

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

52

Description

Command options are as follows:

-V vr
Use the virtual router identified by vr.

list
List daemon services.

start
Start the specified service.

kill
Stop the specified service.

reconfigure
Reconfigure the specified service.

Usage

Service names take the form IPservice_name—for example, IPike.

To list the services for IKE, use the following command:

[vxWorks *]# ipd list ipike
Services:
ipike started

To stop the IKE service, use an ipd kill command:

[vxWorks *]# ipd kill ipike
ipd: kill ipike ok

To verify that the service has been stopped, use a second ipd list command:

[vxWorks *]# ipd list ipike
Services:
ipike killed

To restart the service, use the following command:

[vxWorks *]# ipd start ipike
ipd: start ipike ok

To verify that the service has been restarted, use a third ipd list command:

[vxWorks *]# ipd list ipike
Services:
ipike started

5 Software Architecture
5.4 Multiple Platform Support

53

5

System Configuration (sysctl)

The sysctl command is used to get or set system parameters.

Name

sysctl - Get or set sysctl values

Synopsis

sysctl -w variable=value
sysctl -a
sysctl variable

Description

-a
List all sysctl parameters.

-w variable=value
Change the value of variable to the specified value.

value
Value of a system variable.

System Log (syslog)

The syslog command controls a system logging service with eight priority levels.

Setting Priority Levels at Build Time

The configuration component IPCOM_SYSLOGD_DEFAULT_PRIORITY sets the
default debug level for all modules. Options for this variable include:

■ IPCOM_LOG_EMERG
■ IPCOM_LOG_CRIT
■ IPCOM_LOG_ERR
■ IPCOM_LOG_WARNING
■ IPCOM_LOG_NOTICE
■ IPCOM_LOG_INFO
■ IPCOM_LOG_DEBUG
■ IPCOM_LOG_DEBUG2

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

54

Any level lower than that defined by IPCOM_SYSLOGD_DEFAULT_PRIORITY is
excluded from the module during compilation. As a result, the system at run time
cannot log lower priority levels than those set by this configuration component.

Figure 5-1 illustrates this functionality.

You can also specify individual debug levels for each module. These settings are
made in the configuration file component_config.h. There is one such file for each
module, residing in the following location:

installDir/components/ip_net2-6.x/component/config

For example, the configuration file for the SSH component is:

installDir/components/ip_net2-6.x/ipssh/config/ipssh_config.h

Debug levels are specified in the following lines of code:

#ifdef IPSSH_DEBUG
#define IPSSH_SYSLOG_PRIORITY IPCOM_LOG_DEBUG
#else
#define IPSSH_SYSLOG_PRIORITY IPCOM_LOG_ERR
#endif

Separate levels can be set for debug and optimized builds.

Figure 5-1 Setting syslog Priority Levels

Emergency

Alert

Error

Warning

Notice

Info

Debug

Default priority level for all modules is
defined before compilation by
IPCOM_SYSLOGD_DEFAULT_PRIORITY.

Low-priority debug
messages are removed
before compilation.

Priority for these levels can
be redefined at run time by
syslog priority.

5 Software Architecture
5.4 Multiple Platform Support

55

5

Setting Priority Levels at Run Time

At run time, you can use the syslog command to set the priority level.

To include the syslog command in your project, include the following
components:

■ INCLUDE_IPCOM_SYSLOGD_CMD

■ INCLUDE_IPCOM_SYSLOGD_USE_LOG_FILE

Set values for the following variables:

■ IPCOM_SYSLOGD_DEFAULT_PRIORITY

■ IPCOM_SYSLOGD_QUEUE_MAX

■ IPCOM_SYSLOGD_LOG_FILE

Many facilities and components in the network stack generate useful debug
information. Debugging is enabled when the stack is compiled with the
IPBUILD=debug in the make file.

The IPBUILD flag is located in the IPCOM make file
installDir/components/ip_net2-6.x/ipcom/Makefile.

If IPBUILD=debug, then IP_DEBUG must also be defined in the Workbench
project. To define this build macro, perform the following steps:

1. Right-click the project in Project Explorer and select Properties.

2. Select Build Properties.

3. Click the Build Macro tab.

4. Click New.

5. Type IP_DEBUG in the Name field.

6. Leave the default value blank.

You can direct debug output to the console or to the syslog file.

If you need to contact Wind River Support, send the entire syslog file for better
support.

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

56

Name

syslog – system log command

Synopsis

syslog echo prio message
syslog list
syslog priority facility prio
syslog log file [logfile]

Description

Command options are as follows:

prio
Priority level of the specified message. Options include:

■ Emerg
■ Crit
■ Error
■ Warning
■ Notice
■ Info
■ Debug
■ Debug2

message
The specified message.

facility prio
Priority facility. Some of the following options may not be available with your
Platform. Options include:

■ kern
■ user
■ daemon
■ auth
■ syslog
■ ipcom
■ ipcom_shell
■ ipcom_telnet
■ ipcrypto
■ ipipsec
■ ipike
■ ipl2tp
■ ipldapc

5 Software Architecture
5.4 Multiple Platform Support

57

5

■ iplite
■ ipnat
■ ippppoe
■ ipradius
■ iprip
■ ipssh
■ ipssl
■ ipsslproxy
■ ipftp
■ ipfirewall
■ ipdhcpd
■ ipdhcpc
■ ipwebs
■ ipnet
■ iptftp
■ ipsntp
■ ipdhcps
■ ipdhcps6
■ ipsnmp
■ ipdhcpr
■ ipcom_drv_eth
■ ipppp
■ ipmip
■ ipappl
■ iptcp
■ ipmlds
■ ipemanate
■ ipfreescale
■ ipmcp
■ ipprism
■ ip8021x
■ ipeap
■ ipsafenet
■ iphwcrypto
■ ipnetsnmp
■ ipquagga
■ ipdhcpc6
■ ipcci
■ ipdiameter
■ *ILLEGAL*

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

58

logfile
The specified log file.

Table 5-1 lists the syslog debug levels.

Usage

Use the echo option to print a message to the syslog with the specified priority. For
example, the following sequence of commands output the system log, prints this
is my string with the priority level Emergency, and outputs the system log again,
showing the new string.

The first command displays the existing log:

[vxWorks *] cat /ram/syslog
SAT MAY 26 05:00:12 2007: dhcps6[6068d120]: Error: Interface was not found

Table 5-1 syslog Debug Levels

Level Name No.
Workbench Configuration

Parameter Priority

EMERGENCY 0 IPCOM_LOG_EMERG Highest priority.

CRITICAL 1 IPCOM_LOG_CRIT

ALERT Not supported in
VxWorks— only in Linux.

ERROR 2 IPCOM_LOG_ERR Default log output level at run
time, as defined by
IPCOM_SYSLOGD_DEFAULT_
PRIORITY.

WARNNING 3 IPCOM_LOG_WARNNING This level and higher compiled
in for normal builds.

NOTICE 4 IPCOM_LOG_NOTICE

INFO 5 IPCOM_LOG_INFO

DEBUG 6 IPCOM_LOG_DEBUG Lowest priority. This level and
higher compiled in for debug
builds.

DEBUG 2 7 IPCOM_LOG_DEBUG2 Default level when debug flag
is used.

5 Software Architecture
5.4 Multiple Platform Support

59

5

The second command prints the string, using the syslog echo command:

[vxWorks *]# syslog echo Emerg "this is my string“

The third command redisplays the log, showing the new string:

[vxWorks *]# cat /ram/syslog
SAT MAY 26 05:00:12 2007: dhcps6[6068d120]: Error: Interface was not found
SUN MAY 27 08:53:00 2007: ipcom[605eafb0]: Emerg: this is my string
[vxWorks *]#

Use the list option to list the priority levels of the current facility:

[vxWorks *]# syslog list
syslog facility priority
ipike Error
ipl2tp Error
ipssh Debug
ipssl Error

In the preceding example, IPIKE, IPL2TP, and IPSSL are set to priority Error, while
IPSSH is set to priority Debug.

Use the priority option to modify the priority for a specified facility.

First, a syslog list command displays the priorities for the current facilities:

[vxWorks *]# syslog list
syslog facility priority
ipssh Debug
ipssl Error

Next, a syslog priority command modifies the priority for IPSSH to Critical.

[vxWorks *]# syslog priority ipssh Crit
syslog: facility ipssh priority set to Crit

Finally, a syslog list command verifies the new priority.

[vxWorks *]# syslog list
ipssh Crit
ipssl Error

Use the syslog log file command to change the name of the system log file.

[vxWorks *]# syslog log file /ram/mylog

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

60

To clear the log file, use the current file name. The syslog log file command closes
the current file and opens a new file with the same name. For example:

[vxWorks *]# cat /ram/syslog
MON MAY 28 06:04:35 2007: ipppp[6068f120]: Error: [ppp0 sec=0 lcp=1 auth=0
ipcp=0 ipv6cp=0] [ppp0] Failed to open driver: No such file or directory

[vxWorks *]# syslog log file /ram/syslog

[vxWorks *]# cat /ram/syslog
[vxWorks *]

System Variables (sysvar)

The sysvar command lists and modifies the network stack’s global variables, as
follows.

System variables are similar to UNIX environment variables, except that they are
available throughout the system to any process. For example, if you are running
an IKE process, you can issue a sysvar command to alter a NAT variable.

The sysvar command uses a treelike data structure for all the network components
and services. For example, the system variable iptcp.ConnectionTimeout defines
the number of seconds the network stack tries to create connection before giving
up.

The system variable ipssh.service.port_fwd controls whether port forwarding can
be used.

System variables are similar to the components you configure at build time using
the Workbench Kernel Configuration Editor. Unlike kernel components,
however, the sysvar command modifies parameters at run time.

To include this command in your project, include
INCLUDE_IPCOM_SYSVAR_CMD.

Name

sysvar – lists, gets, and defines system variables

NOTE: Not all global variables can be changed at run time. Some parameters can
only be reset at build time, using Workbench or vxprj.

5 Software Architecture
5.4 Multiple Platform Support

61

5

Synopsis

sysvar list [name[*]]
sysvar get name
sysvar unset name[*]
sysvar set [-c | -o | -r] name value

Description

Command options are as follows:

name
Name of a system variable.

-c
OK to create.

-o
OK to overwrite.

-r
Flag read-only.

value
Value of a system variable.

Usage

Use the option list to output system variables. The following example outputs a list
of system variables:

[vxWorks *]# sysvar list
System variables:

ipcom.hostname=iptarget
ipcom.syslogd.default_priority=2
ipcom.syslogd.queue.max=256
etc.

Add a service name to restrict output to a particular branch of the tree structure.
The following example outputs only SSH global variables:

[vxWorks *]# sysvar list ipssh
System variables:

ipssh.auth.max_fail=3
ipssh.auth.pub_key.allowed=1
ipssh.auth.pub_key.required=0
ipssh.auth.pub_key_first=1
ipssh.auth.pw.allowed=1
ipssh.auth.pw.required=0
ipssh.bind_addr=0.0.0.0
ipssh.enc.3des=1
ipssh.enc.aes=1
ipssh.enc.arcfour=1

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

62

ipssh.enc.blowfish=1
etc.

Add a branch to the service name to further define the output. The following
example outputs only SSH authentication parameters:

[vxWorks *]# sysvar list ipssh.auth
System variables:

ipssh.auth.max_fail=3
ipssh.auth.pub_key.allowed=1
ipssh.auth.pub_key.required=0
ipssh.auth.pub_key_first=1
ipssh.auth.pw.allowed=1
ipssh.auth.pw.required=0

Use a wildcard to filter selected fields. The following example outputs only SSH
authentication parameters beginning with m:

[vxWorks *]# sysvar list ipssh.auth.m*
System variables:
 ipssh.auth.max_fail=3

Use the option get to read the value of a parameter. The following example reads
the value of iptcp.ConnectionTimeout:

[vxWorks *]# sysvar get iptcp.ConnectionTimeout
sysvar: iptcp.ConnectionTimeout=30

Use the option unset to remove a parameter. The following example removes the
iptcp.ConnectionTimeout parameter:

[vxWorks *]# sysvar unset iptcp.ConnectionTimeout
sysvar: 'iptcp.ConnectionTimeout' unset ok

A subsequent sysvar get command verifies the removal:

[vxWorks *]# sysvar get iptcp.ConnectionTimeout
sysvar: 'iptcp.ConnectionTimeout' not found

Use the option set to assign a value to a parameter. Use this option in conjunction
with the -o flag and the options list and get to read a parameter, assign it a new
value, and verify the assignment of the new value.

The first command displays the value for the ipcom.hostname parameter:

[vxWorks *]# sysvar list ipcom.hostname
System variables:

ipcom.hostname=iptarget

The second command assigns the value MyTarget to this parameter, but fails
because the parameter already exists:

[vxWorks *]# sysvar set ipcom.hostname MyTarget
sysvar: set failed : duplicate entry

5 Software Architecture
5.4 Multiple Platform Support

63

5

The third command overwrites the existing value of ipcom.hostname with
MyTarget:

[vxWorks *]# sysvar set -o ipcom.hostname MyTarget
sysvar: ipcom.hostname=MyTarget ok

The fourth command verifies the new value:

[vxWorks *]# sysvar get ipcom.hostname MyTarget
sysvar: ipcom.hostname=MyTarget

Use the set option with the -c flag to create a new parameter.

First, use a sysvar get command to search for the new parameter, in case it already
exists:

[vxWorks *]# sysvar get MyParam
sysvar: 'MyParam' not found

The second command creates the new parameter and assigns it a value:

[vxWorks *]# sysvar set -c MyParam MyValue
sysvar: MyParam=MyValue ok

The third command verifies the creation of the parameter with the assigned value:

[vxWorks *]# sysvar get MyParam
sysvar: MyParam=MyValue

Use the -r flag to create a read-only parameter. After creation, this parameter
cannot be modified or deleted.

The first command creates the new parameter and assigns it a value:

[vxWorks *]# sysvar set -cr NewParam NewValue
sysvar: NewParam=NewValue ok

The second command reads the value of the parameter:

[vxWorks *]# sysvar get NewParam
sysvar: NewParam=NewValue

The third command attempts to assign a new value to the parameter. This
command fails because it is a read-only parameter.

[vxWorks *]# sysvar set NewParam VeryNewValue
sysvar: set failed : readonly entry

Calling Shell Commands from an Application

Shell commands provide a convenient method for optimizing the network stack
and related applications. Using shell commands such as sysvar, you can test

Wind River General Purpose Platform, VxWorks Edition
Getting Started, 3.6

64

various parameters without having to rebuild the network stack with every
change.

You can also call shell commands from an application, using one of the public
APIs. This method would allow you to dynamically reconfigure the network stack,
perhaps in response to changing conditions. You can start, stop, or reconfigure
daemons for individual facilities, or change system variables.

For example, to list daemons, call the following routine:

Ip_err ipcom_ipd_send(const char *name, int msgtype)

Call this routine once for each module. For example:

ipcom_ipd_send(“ipssh”, IPCOM_IPD_MSGTYPE_PING)
ipcom_ipd_send(“ipike”, IPCOM_IPD_MSGTYPE_PING)
ipcom_ipd_send(“ipftps”, IPCOM_IPD_MSGTYPE_PING)

If the return code is IPCOM_SUCCESS, the module is running.

To get the value of a system variable, call the following routine:

IP_PUBLIC char * ipcom_sysvar_get(const char *name, char *value, Ip_size_t
*value_size);

For example, to get the value of the TCP Connection.Timeout variable, call the
following routine:

ipcom_sysvar_get(" ipcom.tcp.timeout", IP_NULL, IP_NULL);

The return value is char *, which is the value in string format you get from the
syvar get command.

For example, if the value of ipcom.tcp.timeout=20, the return code from

ipcom_sysvar_get(" ipcom.tcp.timeout", IP_NULL, IP_NULL);

is a string with the value of 20.

To set a sysvar programmatically, call the following routine:

ipcom_sysvar_set("sysvar_name", "sysvar_value", IPCOM_SYSVAR_FLAG_OVERWRITE)

For example, to change the value of ipcom.tcp.timeout to 40 and overwrite the
original value, call the following routine:

ipcom_sysvar_set(" ipcom.tcp.timeout", 40 IPCOM_SYSVAR_FLAG_OVERWRITE);

	Wind River General Purpose Platform, VxWorks Edition Getting Started, 3.6
	Contents
	1 Overview
	1.1 Introduction
	1.2 Project Development Workflow
	1.3 Product Documentation
	1.3.1 Introductory Documentation
	1.3.2 Online Documentation

	1.4 Terminology and Conventions

	2 Development Environment
	2.1 Introduction
	2.2 Environment Variables
	2.3 Wind River Workbench
	2.3.1 Wind River System Viewer
	2.3.2 Wind River Run-Time Analysis Tools

	2.4 Command-Line Development Tools
	2.5 Shells
	2.6 Compilers
	2.7 Wind River VxWorks Simulator
	2.8 Wind River Wireless Ethernet Drivers
	2.9 Setting up Target Hardware
	Including Files in a VxWorks Image at Build Time
	Copying Files from Development Host to Target System at Run Time

	3 Getting Started with Development
	3.1 Introduction
	3.2 Configuring a VxWorks System
	3.3 Developing Kernel Applications
	3.4 Developing RTP Applications
	3.5 Developing BSPs
	3.6 Developing Drivers

	4 Building VxWorks Source Code
	4.1 Introduction
	4.1.1 Precompiled Binary Files

	4.2 Back up VxWorks Archives
	4.3 Setting Environment Variables
	Windows
	Solaris and Linux

	4.4 Building VxWorks Source Code-Workbench Procedure
	4.5 Building VxWorks Source Code-Command-Line Procedure
	4.6 Source Build Options
	Building SMP-Compatible Archives
	Building IPv6 Network Stack Archives
	Building Archives without System Viewer Instrumentation

	4.7 Restoring Original Archives and Object Directories
	4.8 Supported CPU and TOOL Values

	5 Software Architecture
	5.1 Introduction
	5.2 Building Blocks
	5.3 Component Structure
	Source Code
	Configuration Code
	Starting a Network Stack Process

	5.4 Multiple Platform Support
	5.4.1 Functional Specification
	Initialization of the Network Stack and Related Components
	Authentication
	Sysvars
	Shell Commands
	Syslog Daemon

	5.4.2 APIs
	IPCOM Layer APIs

	5.4.3 IPCOM Shell Commands
	Including a Shell Command
	Running a Shell Command
	Interpeak Daemon (ipd)
	System Configuration (sysctl)
	System Log (syslog)
	System Variables (sysvar)
	Calling Shell Commands from an Application

