
Wind River Workbench

USER'S GUIDE

®

2.6.1

VxWorks 653 Version

Wind River Workbench (VxWorks 653 Version) User's Guide, 2.6.1

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench User's Guide, 2.6.1

11 Oct 07
Part #: DOC-16132-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 Introduction ... 1

2 Setup ... 5

2.1 Setting up Your Development Environment .. 5

2.2 Planning a Cross-Development Environment .. 9

2.3 Setting up a Cross-Development Environment ... 11

2.3.1 Installing bootApp ... 12

2.3.2 Configuring the Host ... 12

2.3.3 Configuring bootApp .. 14

2.4 Installing a ROM Payload System Image .. 18

3 Boot ... 21

3.1 Booting VxWorks 653 ... 21

3.2 Booting VxWorks 653 on the Simulator ... 22

3.3 Booting a Network Loadable System Image ... 23

Wind River Workbench
User's Guide, 2.6.1

iv

3.4 Booting RAM Payload System Images .. 24

3.5 Booting ROM Payload System Images .. 24

3.6 Booting an online-loaded partition ... 25

4 Connect ... 27

4.1 Connecting Workbench to the Running Target .. 27

4.1.1 Connecting Workbench to the Simulator .. 27

4.1.2 Connecting to the Target via the Network ... 28

4.1.3 Setting up a Host-Target Connection via a Serial Connection 30

5 Debug .. 33

5.1 Understanding Cross-development Debugging .. 33

5.2 Understanding ARINC 653 Debugging ... 35

5.3 Understanding the Workbench Debugger .. 35

5.4 Planning Debugging .. 37

System mode or task mode? ... 38
Do you need to debug C++ code? .. 39

5.5 Planning Debugging in a Certified Environment ... 40

Enable debugging for applications post deployment 40

5.6 Using the Debugger ... 41

5.7 Controlling Execution .. 43

5.8 Viewing and Manipulating Data ... 47

5.8.1 Special debugging situations .. 48

How do I overcome the constraints of partitions? 48
How do I debug application initialization? .. 49

5.8.2 Examining Memory ... 51

 Contents

v

5.9 Monitoring Resources ... 51

5.10 Configuring the Debugger ... 52

6 Tools .. 53

6.1 Introduction ... 53

6.2 Boot Program ... 54

6.2.1 Description of Boot Parameters ... 56

6.3 wrMonitor .. 58

6.4 Shells ... 59

6.4.1 Host Shell .. 59

6.4.2 Target Shell .. 59

6.4.3 vThreads Shell .. 60

Strengths .. 61
Limitations .. 61

6.5 Monitoring Tools .. 62

6.5.1 Memory Usage Monitoring .. 62

6.5.2 Performance Monitoring ... 62

Parameters ... 65

6.5.3 Port Monitoring .. 66

System Impact ... 69
Using the Port Monitoring Tool ... 69

6.6 VxWorks 653 Simulator ... 71

6.6.1 Running the Simulator .. 71

6.6.2 File Systems ... 72

6.6.3 Building a Module for the Simulator .. 72

6.6.4 Differences between the Simulator and VxWorks 653 72

Architecture Considerations ... 74

Wind River Workbench
User's Guide, 2.6.1

vi

6.7 Configuration and Build Tools .. 79

6.7.1 XMLGen ... 80

6.7.2 crDump .. 81

6.7.3 VxWorks 653 2.2 Development Shell ... 82

6.7.4 VerIMAx ... 82

6.7.5 Table Viewer .. 83

Generating a Complete Set of Reports .. 83
Generating Individual Reports .. 84

6.7.6 VeroStyle .. 88

A Debugger Tutorial ... 89

A.1 Introduction ... 89

A.2 Debugger Tutorial .. 89

B Glossary .. 105

1

 1
Overview

1.1 Introduction

Wind River Workbench is a suite of cross-development tools for developing
embedded systems. A cross-development environment consists of a target (the
embedded systems board for which you are developing), a host (the workstation
on which you will do your development work), one or more communication
channels between the target and the host, and a suite of development tools
designed for cross-development.

When an embedded system is running in production mode, its software consists
of an operating system and one or more applications running on that operating
system. During development an additional piece of software is required on the
target to manage communications between the target and the host. This is the
target agent. When you debug a program running in the host, it is the target agent
that manages breakpoints and watches on the target side and transfers the
information to the host. The host in turn uses the target agent to issue debugging
commands to the target, such as stepping through code.

On the host side, communication with the target agent is managed by a target
server. This communication can take place over either a serial or network
connection, or using a hardware emulator such as Wind River Probe or Wind River
ICE.

Once the target operating system is loaded, the host communicates with the target
for debugging applications. How this communication takes place, and therefore
the host setup required to support this communication, depends on the
configuration of the target OS and the target agent.

Wind River Workbench
User's Guide, 2.6.1

2

The default target agent uses a network connection to communicate with the host.
The host uses two software components to establish communication with a
network target, the Registry and the Target Server.

The Registry maintains a list of the targets available on the network. You can
communicate with a registry running on your own machine or with a shared
registry running on the network.

The target server manages the connection to a target and communicates with the
target agent using the WDB protocol.

To set up your host to communicate with the target, you must first launch the
registry (which is done automatically when you launch Workbench) and then
create and configure a target server to communicate with the target. You set up a
target server using the Workbench Target Manager.

All the Workbench tools that need to talk to the target do so using the target server.
Once the target server is running and connected, you are ready to begin
development.

About this document

This document covers Wind River Workbench 2.6.1 for VxWorks 653 2.2. It
includes information on:

■ how to setup your development environment

■ how to load and run a VxWorks 653 module on a target

■ how to debug a VxWorks 653 module using the Workbench debugger

■ a number of tools included with Workbench and VxWorks 653.

For information on configuring and building a VxWorks 653 module, see the
VxWorks 653 Configuration and Build Guide. For information on programming for
VxWorks 653, see the VxWorks 653 Programmer’s Guide.

Conventions Used in This Book

This document uses the following conventions to refer to files and directories that
may have different names or locations on your system:

■ installDir refers to the directory in which your Wind River software is
installed.

■ projDir refers to the directory in which project files are located.

■ Configuration files are referred to by their XML document type names. For
more information, see the VxWorks 653 Configuration and Build Guide.

1 Overview
1.1 Introduction

3

1Specific information on individual Workbench views and dialogues can be found
by pressing the help key.

Wind River Workbench
User's Guide, 2.6.1

4

5

 2
Setup

Setting Up Your Development Environment

2.1 Setting up Your Development Environment 5

2.2 Planning a Cross-Development Environment 9

2.3 Setting up a Cross-Development Environment 11

2.4 Installing a ROM Payload System Image 18

2.1 Setting up Your Development Environment

To set up your development environment you must accomplish the following:

■ Set up your target (the embedded system board your module will run on)

■ Set up your host (the workstation you use to do development)

■ Set up the necessary connections between the host and target.

When your target is turned on, it attempts to load its operating system by running
its boot ROM code. To set up your target, you install either a VxWorks 653 ROM
payload loader or a VxWorks 653 network boot loader as the bootROM of the
target. The ROM payload loader loads the VxWorks 653 system image that is
resident in target ROM as part of the ROM payload. The network boot loader
transfers the VxWorks 653 system image from the host to the target over a network
connection.

Wind River Workbench
User's Guide, 2.6.1

6

In a development environment, having the board boot VxWorks 653 from ROM
makes it difficult to make changes to the code, especially because, in the case of an
VxWorks 653 module, the entire module must be booted at once and applications
cannot be downloaded to a running OS.

To make it easier to make changes in the module, VxWorks 653 allows you to load
the system image from the host over a network or serial connection. To facilitate
this, VxWorks 653 supplies a special boot loader program called bootApp with
every BSP it supports. bootApp is provided in both binary and source. You can use
bootApp as is, modify it to suit you needs, or write your own boot loader.

When loading a network-loadable system image, bootApp loads the image over a
network connection from the host using FTP or RSH. Before bootApp can
download the system image, however, it must be configured with the information
required to locate the system image on the host and to retrieve it.

To configure bootApp with this information, you must create a serial connection
to the target. bootApp will communicate over the serial connection and prompt
you for the information it needs to download the system image over the network.
Figure 2-1 illustrates the setup for booting the target using the default boot loader.

Once bootApp receives the booting instructions over the serial connection, it is
ready to download the target operating system from the host and boot VxWorks
653.

2 Setup
2.1 Setting up Your Development Environment

7

2

Once the target has been booted the first time, bootApp will store the
communication parameters in NV-RAM, meaning that the serial connection will
not be necessary for subsequent booting (unless the board is not equipped with
NV-RAM, or you need to change the boot parameters).

Notice that it is not necessary for the host that contains the downloadable target
operating system to be the same workstation as the host used to establish the serial
connection with the target. The serial connection is used to transmit
communication parameters and booting instructions to bootApp. You can tell
bootApp to load the operating system from any suitably configured machine on
the network.

Figure 2-1 Host-Target Communication for Booting

HOST

TARGET
Serial

FTP
Server

Network
Interface

Network Serial
Port

Port

Interface

bootApp

Terminal
View

Target OS
Image

Transfer
Transfer
target OS

image

configuration
instructions

Wind River Workbench
User's Guide, 2.6.1

8

Development Configuration Overview

Figure 2-2 illustrates the setup for developing and debugging with Wind River
Workbench. It illustrates both the default configuration using a network
connection, and alternate configurations using other types of connections.

Figure 2-2 Host-Target Communication for Development and Debugging

Shell Debugger
Other

Browser Tools

Non-WDB
Agent

VxWorks 653

AGENTS

WDB TARGET AGENT
COMMUNICATION
INTERFACES

TARGET SERVER
BACK ENDS

HOST

TARGET (board or simulator)

Target Server

Serial
Comm

Interface

Network
Comm

Interface

WDB
Serial

Non-WDB
Back End

WDB

Pipe
Comm

Interface

WDB
Pipe

WDB
RPC

Target
Agent

ACE

2 Setup
2.2 Planning a Cross-Development Environment

9

2

Developing Using the Simulator

It is also possible to develop applications without access to a physical target using
the Wind River Simulator. The simulator is essentially a version of the target OS
running on your host machine (on top of, not instead of, your workstation’s OS).

Specialized Connection Types

Specialized development tasks, such as developing device drivers, operating
system components, or boot loaders may require specialized low level connection
methods such as JTAG and specialized hardware such as Wind River ICE or Wind
River Probe. See the Wind River On Chip Debugging User’s Guide and the Wind River
ICE and Wind River Probe documentation for more information on setting up your
development environment for use with these tools.

2.2 Planning a Cross-Development Environment

Before you proceed with setting up your development environment, you may find
it useful to spend some time planning your development strategy. Planning your
development strategy involves answering a number of questions about your
environment and the kinds of development work you will be doing. Answering
the following questions will help lead you to the correct development strategy for
your project.

Which type of system image will you use

VxWorks 653 can produce three different types of system image:

■ Network loadable system image

■ RAM payload image

■ ROM payload image

For information on the image types, their advantages and disadvantages, see the
VxWorks 653 Configuration and Build Guide.

How should the target acquire the system image?

You need to decide how the system image will get be loaded on to the target and
booted. Available options are as follows:

Wind River Workbench
User's Guide, 2.6.1

10

Network from the Host

The principal advantage of a network connection is speed. This method is
supported by bootApp. You may develop a custom network boot ROM if your
board is unable to store configuration parameters between sessions or if you have
some particular network configuration or booting problem you need to resolve.
This method can be used with a network loadable system image or a RAM payload
system image.

From Flash on the Target

Loading the OS from flash on the target is quick, but it can be very cumbersome to
transfer an updated copy of the target OS to the target during development. This
method is used with ROM payload system images and is more commonly used for
production systems rather than for development purposes.

Via an Emulator

An emulator can give you very low level access to the target hardware when other
communication channels are unavailable. It is principally useful when you are
developing low level drivers and OS components. For information on using Wind
River ICE or Wind River Probe to load the target OS onto your target, see Wind
River ICE for Wind River Workbench Hardware Reference or Wind River Probe for
Wind River Workbench Hardware Reference.

Will you use the Wind River target agent?

While Wind River supplies a target agent as part of the Workbench suite, some
organizations prefer to develop their own agent, or to use another generally
available agent. If you decide to use a different agent, you must also select or
develop an appropriate back end to communicate with your custom target agent.

What debug modes do I need to support?

The default target agent supports two debug modes: task mode and systeml mode.
Task mode is used for debugging individual applications. System mode is used for
debugging the target operating system itself and low level code such as device
drivers. For more information on debug modes, see 5. Debug.

The reason that you need to consider this question when designing your
development environment is that system mode debugging require a
communication channel that is capable of working in polled mode rather than the
default interrupt mode. (Interrupts are suspended when code is stopped at a
breakpoint in system mode.) Most Wind River BSPs supply a default driver
capable of running in polled mode, and the target agent switches automatically

2 Setup
2.3 Setting up a Cross-Development Environment

11

2

between interrupt mode and polled mode as required. However, not all the
available drivers support polled mode. This should not be an issue for you as long
as you stick to the default communication drivers for the target agent.

How will the host and the target communicate for debugging?

The issue of how the host and target communicate for development and
debugging is essentially unrelated to the issue of how they communicate for
booting the target. The two processes may use the same physical connections, or
different ones. You can use different host machines and different communication
channels on the target for development than you used for booting.

For development and debugging purposes, the choices of communication
channels are as follows:

Network

The normal method for communication between host and target during
debugging is over a network.

Serial

You might choose a serial connection if a network connection were not available,
if you needed to reduce the size of the target agent by removing networking
support, or if you did not have access to a network driver that supported polled
mode communication, which is needed to support system mode debugging.

Emulator

You might choose to use an emulator if you are doing programming that requires
low level access to the target hardware or if you are debugging a problem related
to higher level communication protocols, or which occurs before higher level
communication protocols are available in the boot sequence.

2.3 Setting up a Cross-Development Environment

The following is an overview of the steps required to prepare a target and host for
development. Some of these steps may already have been performed for you in
your development organization, or your organization may be using a custom

Wind River Workbench
User's Guide, 2.6.1

12

setup. Consult the person in charge of your development environment to
determine the specific steps to be followed in your environment.

2.3.1 Installing bootApp

The first step to setting up your development environment is to install bootApp on
your board.

VxWorks 653 includes both the source code and binary for bootApp for each
supported BSP. Unless you want to make changes to bootApp, you can use the
precompiled binaries for your BSP. The bootApp for each BSP is found in
$(WIND_BASE)/target/proj/$(BSP)_bootApp.

Instructions for installing bootApp on a particular board are found in the BSP
documentation for your board.

BSPs Requiring TFTP on the host

Some boards require the TFTP protocol on the host in order to burn a new
VxWorks 653 image into flash. Workbench ships with a version of TFTP. See your
BSP documentation on how to burn flash for your board.

2.3.2 Configuring the Host

You must set up the host to communicate with the target. There are two parts to
this communication, and they may occur on different host machines or the same
one.

The first part of the host/target communication occurs over a serial connection and
is used to configure bootApp to download the VxWorks system image over a
network connection.

The second part is to configure the host to respond the a request from bootApp to
download the VxWorks 653 system image.

! CAUTION: Follow proper procedures to protect your equipment from electrostatic
discharge (ESD). Failure to take proper ESD precautions may seriously damage
your board. It can also degrade target hardware over time, leading to intermittent
errors or hardware failure. Damage caused by ESD can be difficult to diagnose,
resulting in significant loss of time trying to track down the causes of subtle
failures.

2 Setup
2.3 Setting up a Cross-Development Environment

13

2

Configuring Terminal View

You can use any terminal emulator to configure bootApp. Workbench supplies a
suitable terminal emulator in the Terminal view.

To configure Terminal view to receive a connection from bootApp:

1. Launch Workbench on the host.

2. Locate the Terminal view.

3. Click the Settings button on the Terminal view toolbar.

4. Configure your host system serial port for a full-duplex (no local echo), 8-bit
connection with one stop bit and no parity bit. The line speed must match
whatever is configured into your target agent. See your BSP documentation for
specific settings.

5. Click OK. Workbench opens the port and awaits a connection from the target.

Configuring FTP on the host

bootApp downloads the target OS image from the host using FTP or RSH. Your
host must be configured to respond to the request from the target to download the
system image.

For Windows, Workbench includes an FTP server application, WFTPD.

To configure WFTPD:

1. Select Programs > Wind River > VxWorks 653 2.2 > FTP Server. The WFTPD
application appears.

2. Select Security > Users/rights. The User / Rights Security Dialog is
displayed.

3. Select New User. The New User dialog is displayed.

4. Enter the target user name.

5. Click OK. The Change Password dialog is displayed.

6. Enter the target password and reenter it to verify what you have typed.

7. Click OK. You will be returned to the User / Rights Security Dialog.

NOTE: You can run WFTPD as a restricted user, but you cannot add new users and
passwords if you are a restricted user. A non-restricted user must add the new
users and passwords for you.

Wind River Workbench
User's Guide, 2.6.1

14

8. Fill in the Home Directory text box. The home directory specifies the directory
that will be displayed to an FTP user when they first log in.

9. If the Rights for user panel is not displayed, click Rights >>. Assign this user
sufficient privileges to permit the download of the system image.

10. Click Done.

11. To enable logging of FTP activities, select Logging > Log Options and select
the types of activities you want to log.

When you have finished configuring your FTP settings, leave the FTP server
running. It must be running on your host when your target tries to access the
system image.

You are now ready to boot a VxWorks 653 system image. For information on
booting a VxWorks 653 image, see 3. Boot.

2.3.3 Configuring bootApp

Once bootApp is installed and your host is configured, you can configure bootApp
to download the VxWorks system image from the host. Once the image has been
booted for the first time, the configuration will be saved and you will not need to
use this procedure again unless:

■ You want to change the configuration

■ The board has been used to boot a different system, overwriting the
configuration data stored in its NVRAM.

■ You want to load a different type of system image.

For this example, we will use the values for the boot parameters shown in
Table 2-1:

Table 2-1 Sample Boot Parameters

Parameter Value

Host IP address 90.0.0.1

Host name mars

Target IP address 90.0.0.50

Target name phobos

2 Setup
2.3 Setting up a Cross-Development Environment

15

2

Step 1: Determine communication parameters

Determine the correct values for the parameters that govern target-host
communication during the booting process.

Host IP Address

The IP address of the host computer. This is the address of the computer on which
the target OS image resides. You will need this to configure the boot loader.

Target IP Address

The IP address of the target. Ask your network administrator to assign an IP
address for use with your target. You will need this to configure the boot loader.

If you intend to use ACE over a network connection, your ACE will be configured
with a specific network address. You may need to configure a private network
around your target in order to assign it an address that matches the address
configured into ACE.

.

Target Name

The network name assigned to the target. This is optional. bootApp always uses
the IP address of the target.

Image Location

The location of the target OS image on the host. Note that this path must be
expressed relative to the root of the FTP server running on the host. You will need
this to configure the boot loader. For a network-loadable system image, this

Image location c:\project\integration\boot.txt

Target user name fred

Target password secret

Table 2-1 Sample Boot Parameters (cont’d)

Parameter Value

! CAUTION: If you are in a networked environment, do not pick arbitrary IP
addresses for your host and target as they could be assigned to someone else.
Contact your network administrator for available IP addresses.

Wind River Workbench
User's Guide, 2.6.1

16

parameter should point to the boot.txt file produced by the build. For a RAM
payload system image, it should point to sms_ramPayload.

Target User Name

The user name that the boot loader will use to download the target OS image from
the host. This can be any name you like. You will need this to set up the FTP or RSH
server on the host and to configure the boot loader.

Target Password

The password that the boot loader will use to connect to the FTP server to
download the target OS image. You will need this to set up the FTP server on the
host and to configure the boot loader. A target password is not required if you use
RSH to load your image.

Step 2: Power up the target

Switch on the target power according to the directions in the hardware
documentation.

Step 3: Configure the boot loader

If your system is properly configured, the target will start the boot loader and the
boot loader will communicate with the host over the serial port. The boot display
will look something like this:

VxWorks 653 System Boot

Copyright (c) 1984-2007 Wind River Systems, Inc.

CPU: MPC8560 - Wind River SBC
Version: 2.2
BSP version: 1.3/1
Creation date: Aug 24 2007, 03:37:56

Press any key to stop auto-boot...
 1

The boot loader starts a seven-second countdown (after which it will proceed with
the boot using the default configuration).

2 Setup
2.3 Setting up a Cross-Development Environment

17

2

Stop the countdown by pressing any key. The boot program displays the
VxWorks 653 boot prompt:

[VxWorks 653 Boot]:

Step 4: Review the existing boot parameters

To display the current (default) boot parameters, type p at the boot prompt:

[VxWorks 653 Boot]: p

A display similar to the following appears. The meaning of each of these
parameters is described in 6.2 Boot Program, p.54. The p command does not
actually display the lines with blank fields, although this example shows them for
completeness.

boot device : ln
unit number : 0
processor number : 0
host name : mars
file name : c:\project\integration\boot.txt
inet on ethernet (e) : 90.0.0.50:ffffff00
inet on backplane (b) :
host inet (h) : 90.0.0.1
gateway inet (g) :
user (u) : fred
ftp password (pw)(blank=use rsh) :secret
flags (f) : 0x0
target name (tn) : phobos
startup script (s) :
other (o) :

Step 5: Enter new boot parameters

You can now configure the boot loader to download and execute the target OS. For
a complete list of boot loader parameter and commands, see 6.2 Boot Program, p.54.

1. Type c at the boot prompt:

[VxWorks 653 Boot]: c

The boot loader prompts you for each parameter in turn.

2. If a particular field has the correct value already, press ENTER. To clear a field,
enter a period (.), then press ENTER. To go back to change the previous
parameter, enter a dash (-), then press ENTER. If you want to quit before
completing all parameters, type CTRL+D.

If your target has non-volatile RAM (NV-RAM), the boot parameters are stored
there and retained even if power is turned off. For each subsequent power-on or
system reset, the boot program uses these stored parameters for the automatic boot
configuration.

Wind River Workbench
User's Guide, 2.6.1

18

Step 6: Initiate booting

You can test your connection by initiating booting by typing the @ command:

[VxWorks 653 Boot]: @

The boot loader will download the target OS image and boot it on the board. Note
that this will only be successful if there is a correctly built VxWorks 653
network-loadable or RAM payload system image located at the location you
specified in your configuration. For information on building VxWorks 653 system
images, see the VxWorks 653 Configuration and Build Guide.

2.4 Installing a ROM Payload System Image

To install a VxWorks 653 ROM Payload system image, you must flash each
component of the image to the correct location in ROM. Those locations are the
ones that you configured in the Payloads section of your Module configuration
document. If a set of components is configured to be located contiguously in ROM,
you must concatenate the .bin files for each contiguously located component into
a single bin file that can be flashed at the appropriate location in ROM.

This example is based on a system that includes the following components:

■ my-coreOS

■ my-ssl

■ my-sl-A

■ my-sl-B

■ my-sdr

■ my-application-A-partition

■ my-application-B-partition

■ my-application-C-partition

The my-application-B-partition component will be configured as an online-loaded
partition.

The payload memory is configured as follows:

<Payloads>
<CoreOSPayload

2 Setup
2.4 Installing a ROM Payload System Image

19

2

 Base_Address="0xc0000000"
 Size="0x100000"/>
 <SharedLibraryPayload

NameRef="my-ssl"/>
 <SharedLibraryPayload

NameRef="my-sl-A"
Base_Address="0xc0200000"

 Size="0x100000"/>
<SharedLibraryPayload
NameRef="my-sl-B"
Size="0x100000"/>
<SharedDataPayload
NameRef="my-sdr"/>
<ConfigRecordPayload
NameRef="configRecord"
Base_Address="0xc0400000"

 Size="0xC00000"/>
 <PartitionPayload

NameRef="my-application-A-partition"/>
 <PartitionPayload

NameRef="my-application-B-partition"
Online="true"/>

 <PartitionPayload
NameRef="my-application-C-partition"/>

</Payloads>

Unless you specify a specific base address for a payload, the system will locate the
payloads contiguously. Unless you specify a specific size for a payload, the build
system will calculate the size base on the black box for the component.

Given this configuration, the build process will create the following binary files:

■ my-coreOS.bin

■ my-ssl.bin

■ my-sl-A.bin

■ my-sl-B.bin

■ my-sdr.bin

■ configRecord.bin

■ my-application-A-partition.bin

■ my-application-B-partition.bin

■ my-application-C-partition.bin

You would then concatenate these files as follows. The names of the concatenated
files are up to you. You will use them with your flash utility to flash files to ROM:

Wind River Workbench
User's Guide, 2.6.1

20

1. Concatenate my-coreOS.bin and my-ssl.bin to my-platform.bin. On UNIX you can
use the cat command to concatenate files. On Windows, you can use the copy
command, as follows:

% copy /b my-coreOs.bin+my-ssl.bin my-platform.bin

2. Concatenate my-sl-A.bin, my-sdr.bin, and my-sl-B.bin to my-shared.bin.

3. Concatenate configRecord.bin, my-application-A-partition.bin, and
my-application-C-partition.bin to my-apps.bin.

Although my-application-A-partition.bin and my-application-C-partition.bin are not
consecutive in the XML document, my-application-C-partition.bin follows
my-application-A-partition.bin because my-application-B-partition.bin is defined as an
online-loaded partition.

4. Convert sms_romPayload.hex to sms_romPayload.bin following the
directions in your BSP documentation.

5. Flash the ROM image to the correct addresses in ROM using the flash utility of
your choice. The addresses used must be those specified in the
payloadMemory element of the CoreOSDescription document, as described
in 2.12.2 Configuring a ROM Payload, p.52.

Following the example given above, you should flash the files as follows:

■ Flash sms_romPayload.bin to the location specified by the
ROM_TEXT_ADRS of the BSP.

■ Flash my-platform.bin starting at 0xc0000000.

■ Flash my-shared.bin starting at 0xc0200000.

■ Flash my-apps.bin starting at 0xc0400000.

Because my-application-B-partition.bin is defined as an online-loaded partition
it is not flashed.

21

 3
Boot

Loading and Running VxWorks 653 on your Target

3.1 Booting VxWorks 653 21

3.2 Booting VxWorks 653 on the Simulator 22

3.3 Booting a Network Loadable System Image 23

3.4 Booting RAM Payload System Images 24

3.5 Booting ROM Payload System Images 24

3.6 Booting an online-loaded partition 25

3.1 Booting VxWorks 653

A VxWorks 653 system image always contains a complete module including all
libraries, applications, and shared data. With the limited exception of
online-loaded partitions, you cannot add or subtract anything from a running
VxWorks 653 system. Running VxWorks 653, therefore, consists of transferring a
complete system image to the target and booting it. The core OS will then
automatically create all the partitions, load the applications, and run them
according to the default schedule.

How you boot a VxWorks 653 system image will depend on which type of image
you are using and whether you are running on a real target or on the simulator.

Wind River Workbench
User's Guide, 2.6.1

22

Since the only image type that works on the simulator is the network-loadable
system image, there are therefore four possible boot routines:

■ Booting a network-loadable system image on the simulator

■ Booting a network-loadable system image on a target

■ Booting a RAM payload system image on a target

■ Booting a ROM payload system image on a target

If you are using a network-loadable image, bootApp will load the image from a
host over the network and then boot the image.

If you are using a RAM payload image, bootApp loads the image into a RAM
payload region of the target RAM and then transfer control to the payload loader
that is part of the RAM payload image, which then loads and boots the system
image.

If you are using a ROM payload image, you flash the various components of the
ROM payload image to target ROM. You will also flash the payload loader that is
part of the ROM payload to the boot ROM address of the target (replacing
bootApp, if it is installed). You then power on the target and VxWorks 653 will
boot.

For more information on system images, schedules, and, online-loaded partitions
see the VxWorks 653 Configuration and Build Guide.

3.2 Booting VxWorks 653 on the Simulator

You can run your system image on the simulator either through Workbench or by
invoking VxSim on the command line.

Booting the Simulator via Workbench

To run your module on the simulator using Workbench:

1. Build a network loadable system image as described in the VxWorks 653
Configuration and Build Guide.

2. Open Workbench.

3. Select Targets > New Connection. The New Connection Wizard appears.

3 Boot
3.3 Booting a Network Loadable System Image

23

3

4. Select the Simulator Connection. The wizard prompts you for a boot file
name.

5. Select Custom Simulator and enter the path to the boot.txt file in the
integration directory of your build tree. (The name and location of this
directory will depend on how you designed your build system.)

6. Complete the wizard, supplying whatever parameters are appropriate to your
application. Workbench will launch your module and connect to the
simulator.

For more information on the managing targets, select the Target Manager view
and press the help key.

Booting the Simulator in the Command Line

You can run the simulator from the command line:

1. Open the VxWorks 653 2.2 Development Shell.

2. Change the current directory to the project integration directory that contains
boot.txt.

3. Type vxsim.

For more vxsim option, type vxsim -help.

3.3 Booting a Network Loadable System Image

1. Build a network loadable system image as described in the VxWorks 653
Configuration and Build Guide.

2. Configure your host and target to boot a network loadable system image as
described in 2. Setup.

3. Initiate booting by typing the @ command in the Terminal view that is
connected to bootApp on the target:

[VxWorks 653 Boot]: @

The boot loader will download the VxWorks 653 system image and boot it on the
board.

Wind River Workbench
User's Guide, 2.6.1

24

Rebooting VxWorks 653

When VxWorks 653 is running, there are several ways you can reboot it. Rebooting
by any of these means restarts the attached target server on the host as well

:

■ Entering CTRL+X in the Terminal View (other Windows terminal emulators
do not pass CTRL+X to the target, because of its standard Windows meaning.)

■ Invoking reboot() from the host shell.

■ Pressing the reset button on the target system.

■ Turning the target’s power off and on.

3.4 Booting RAM Payload System Images

The procedure for loading a RAM Payload System Image is identical to that for
loading a network-loadable system image, with one exception: In loading the
network-loadable system image, you configure the bootApp to load boot.txt. To
boot a RAM payload image, you configure bootApp to load sms_ramPayload.
(Note however, that you will still use boot.txt, not sms_ramPayload, when
configuring the target server.)

3.5 Booting ROM Payload System Images

To boot a ROM payload system image, install the ROM payload system image on
the target as described in 2. Setup and power up the board.

! CAUTION: Be sure to follow ESD precautions specified in the hardware
documentation whenever you work with your target.

3 Boot
3.6 Booting an online-loaded partition

25

3

3.6 Booting an online-loaded partition

The method for loading an online partition in a production system is entirely up to
the platform provider and the system integrator. For information on how to build
a loader for an online-loaded partition, see the VxWorks 653 Programmer’s Guide.

To test an online loaded partition during development, you may use the following
procedure.

1. Boot the system image.

2. Establish a target server connection to the target.

3. In the target shell, verify that there is a pool with the name of the online-loaded
partition:

[coreOS] -> rgnShow

4. View information on partitions, noting that the partition mode for the
online-loaded partition is IDLE:

[coreOS] -> partitionShow

5. Load the module containing the online-loaded partition loader:

[coreOS] -> ld < c:\onlinePartitionLoad.o

6. Load the code for the online-loaded partition loader (and spawn the task):

[coreOS] -> sp onlinePartitionLoad, "c:\part2.bin", 2

7. Start the partition:

[coreOS] -> partitionModeSet 2, 1, 0, 0, 0

8. Verify that the partition mode for the online-loaded partition is COLD_START
instead of IDLE:

[coreOS] -> partitionShow

Wind River Workbench
User's Guide, 2.6.1

26

27

 4
Connect

Connecting the host to the running target

4.1 Connecting Workbench to the Running Target

In order to debug your application using Workbench, you must connect the
Workbench tools to the VxWorks 653 system image running on the target.

If you need a JTAG or other emulator connection, see the Wind River ICE for
Wind River Workbench Hardware Reference or the Wind River Probe for Wind River
Workbench Hardware Reference for information about making emulator connections
to your target.

4.1.1 Connecting Workbench to the Simulator

If you booted your system image on the simulator as described in 3. Boot, it will
already be connected to Workbench. If you booted your system image on the
simulator by starting VxSim on the command line, you can connect Workbench to
the Simulator using the same procedure as described in 3. Boot. Workbench will
connect to the existing simulator rather than launching a new instance of the
simulator.

Wind River Workbench
User's Guide, 2.6.1

28

4.1.2 Connecting to the Target via the Network

To create a connection to the target for development using a network connection:

Step 1: Ensure that the registry is running

Make sure that the registry is running on your host, or that you have access to an
appropriate network registry. The registry is started automatically on your host
when you run Workbench. If you are using a network registry, talk to the person
responsible for your development environment.

Step 2: Configure the target server

Configure the target server settings necessary to connect to the target. This
procedure will cover the steps necessary to create a basic connection with a default
configuration. For more information on target server options press the help key in
the Target Manager view or the New Connection dialog.

1. Open Workbench.

2. Select Target > New Connection. The New Connection wizard appears. The
New Connection wizard supports many different types of connections. The
connection types available on your system will depend on the set of product
that you have installed.

3. Select Wind River VxWorks 653 Target Server Connection and click Next.
The Target Server Options page appears.

4 Connect
4.1 Connecting Workbench to the Running Target

29

4

4. For Backend, select the wdbrpc back end.

5. For Target name / IP Address, enter the target IP address or the target name.

6. In the Kernel Image panel, select File and enter the location of the boot.txt file
in the integration directory of your build tree. Note that when you connect the
target manager to a RAM payload system image, you do not use
sms_ramPayload here, you use boot.txt just as with the network-loadable
image.

7. In the Advanced target server options section, select the Verbose target
server output.

Wind River Workbench
User's Guide, 2.6.1

30

The command line section show the command line that will be used to create
the target server.

8. Click Next through the following pages, then click Finish. Your new target
server connection definition will appear in the Target Manager connection
list.

Step 3: Connect to the target

The target manager will attempt to connect to your target. If everything is set up
properly, you will see connected - target server running in the status bar.

If the target manager does not connect automatically, or to connect to a target
using a previously defined connection:

1. Right click on the connection in the Target Manager view.

2. Select Connect.

4.1.3 Setting up a Host-Target Connection via a Serial Connection

The procedure for using a serial connection for host-target communication during
development is:

Step 1: Ensure that you have a working serial connection between the host and the target

Make sure that you have a working serial connection between the host and the
target. If you were able to boot the target as described in 3Boot, p.21, or if you were
able to successfully boot the target using a custom serial-only boot procedure, then
your connection is working correctly.

Step 2: Configure the target agent for serial connection

Using a serial connection is not the default configuration, therefore, you will have
to modify the target agent configuration in order to use a serial connection.

Step 3: Configure the target server

To configure the target server for a serial connection.

1. Open Workbench.

NOTE: If the target has only one serial port and the target server is therefore using
the same port as the terminal program used for booting, you must terminate the
terminal connection before trying to connect with the target server. If the terminal
connection is open, the target server will not be able to connect.

4 Connect
4.1 Connecting Workbench to the Running Target

31

4

2. Select Target > New Connection. The New Connection wizard appears. For
more information on the New Connection wizard, press the help key.

The New Connection wizard supports many different types of connections.
The connection types available on your system will depend on the set of
product that you have installed.

3. Select Wind River VxWorks 653 Target Server Connection and click Next.
The Target Server Connection dialog appears.

4. For Back End, select the wdbserial back end.

5. For Host serial device, select the serial port on the host that is connected to the
target.

6. For Serial device speed, select the highest speed supported by your target.

7. In the Advanced Target Server Options section, select Verbose target
server output.

The command line section show the command line that will be used to create
the target server. Your command line should look like this:

tgtsvr -V -d comport -bps speed -B wdbserial ipaddress

8. Click Next through the following screens, then click Finish. Your new target
server connection definition will appear in the Target Manager connection list.

Step 4: Connect to the target

The target manager will attempt to connect to your target. If everything is set up
properly, you will see connected - target server running in the status bar.

If the target manager does not connect automatically, or to connect to a target using
a previously defined connection:

1. Right click on the connection in the Target Manager view.

2. Select Connect.

Wind River Workbench
User's Guide, 2.6.1

32

33

 5
Debug

5.1 Understanding Cross-development Debugging 33

5.2 Understanding ARINC 653 Debugging 35

5.3 Understanding the Workbench Debugger 35

5.4 Planning Debugging 37

5.5 Planning Debugging in a Certified Environment 40

5.6 Using the Debugger 41

5.7 Controlling Execution 43

5.8 Viewing and Manipulating Data 47

5.9 Monitoring Resources 51

5.10 Configuring the Debugger 52

5.1 Understanding Cross-development Debugging

Debugging in a cross-development environment involves debugging an
application running on a target using debugging tools running on a host. This
requires an agent on the target to communicate with the debugging tools on the
host and to perform debugging actions on the target, such as setting breakpoints,
starting and stopping execution, and inspecting the values of variables.

Wind River Workbench
User's Guide, 2.6.1

34

The following components are used to establish an environment for
cross-development debugging:

■ The target: the board that the software to be debugged is running on.

■ The target image: the system image that is running on the target.

■ The host image: an identical system image to the target image, but resident on
the host.

■ The source code: the code from which the system image was created, also
resident on the host.

■ Symbol files: files listing the symbols in the image, resident on the host.

■ The debug agent: a component running on the target that communicates with
the debugger to execute debug actions on the target and to communicate
debug information to the debugger.

■ The debugger: a debugger running on the host that communicates with the
debug agent to debug the software running on the target.

■ The target server: a component running on the host that manages
communication between the debugger and the debug agent.

The debugger requires access to the host image and the source code in order to
formulate and communicate instructions to the target agent and interpret
information sent by the target agent. The general procedure for debugging in a
cross development environment is:

1. Build a system image with debug information and include the debug agent in
the image.

2. Transfer the image to the target and boot the target.

3. Establish a connection from the host to the target and attach the debugger to
the image running on the target via the debug agent.

4. Debug the system.

The debugging options available depend on several factors, including the
capabilities of the debugger, the capabilities of the debug agent, the debug support
available in the target hardware, and the characteristics of the target software. In
the case of an ARINC 653 compliant system, the strict protections in place between
partitions and the core OS, and the constraints that exist in a certified environment,
present some unique debugging challenges.

5 Debug
5.2 Understanding ARINC 653 Debugging

35

5

5.2 Understanding ARINC 653 Debugging

Debugging ARINC 653 compliant systems presents a number of particular
challenges, in addition to the normal challenges of debugging in a
cross-development environment. VxWorks 653 provides a number of tools and
strategies to help you cope with these challenges. The principal challenges of an
ARINC 653 compliant system are:

Challenges of a Partitioned System

Applications reside in partitions which are strictly separated from the core OS.
This restricts the access that the target agent has to code running in a partition.
Applications and partitions cannot be downloaded to a running system. All
applications and partitions (with the exception of online-loaded partitions) must
be part of the payload at the time that the system is booted. At boot time, the core
OS creates all partitions and starts them according to a schedule.

Challenges of a Certified Environment

VxWorks 653 applications are usually intended to be certified. The debug agent
typically runs as a component of the core OS on the target. However, a debug agent
cannot be included in a certified core OS. This means that during development, the
system is running a non-certified core OS. To alleviate this problem, VxWorks 653
includes the Agent for Certified Environment (ACE), which allows the target agent
to run outside of the core OS. ACE provides a restricted set of debugging facilities.
In most cases, it is used for final testing and debugging of a system in cert
configuration, after principal development is complete.

For information on including ACE in your system, see the VxWorks 653
Configuration and Build Guide.

5.3 Understanding the Workbench Debugger

For general information on the Workbench debugger, press the help key in the
debugger perspective.

For a tutorial on the debugger with VxWorks 653, see A. Debugger Tutorial.

Wind River Workbench
User's Guide, 2.6.1

36

Understanding the Target Manager Display

Managing a system running on a target and attaching the debugger to tasks
running in a system is done through the Target Manager. It is important to
understand the Target Manager display for a VxWorks 653 system. A sample
display is shown in Figure 5-1.

This is what each level of the hierarchy in Figure 5-1 represents:

default(localhost)
This is the registry that you used to connect to your target.

Figure 5-1 Sample Target Manager Display

5 Debug
5.4 Planning Debugging

37

5

vxsim0 (VxWorks653 2.2)
This is the target that your module is running on. In this case, the target is the
simulator.

SIMNT (VxWorks653 2.2)
This is your module.

Kernel Tasks
This item collects all the kernel tasks. Expanding this item will show all the
tasks running in the kernel (not shown here to reduce space).

protection domains
This item collects all the partitions, shared libraries, and other protection
domains in your system.

apexPartition:0x2037d570
This item represents one partition, called apexPartition. The hex number
following the name is the location of the partition in memory.

part1:0x203c6ed8
This item represents a second partition, called part1. It is expanded to show its
contents.

tPart1:0x203db438 [Ready]
This item represents the partition task. The partition task is a kernel task that
runs the partition. The current state of this task is Ready. Below the partition
task are listed all the threads running in the partition. Note that the threads
will only be displayed if the partition is part of the current schedule. If the
partition is not part of the current schedule, its state will be shown as Suspend
and the threads will not be shown.

When attaching the debugger to the module, you will attach either to a kernel
task or to a partition task.

tExcTask:0x28294f40 [Pend]
This item represents a thread running in a partition.

5.4 Planning Debugging

When planning your debugging strategy, these are some of the issues you will
need to bear in mind.

Wind River Workbench
User's Guide, 2.6.1

38

System mode or task mode?

Two debugging modes are available, task mode and system mode. In system
mode, hitting a break point stops the entire system. In task mode, hitting a
breakpoint stops a single running task or partition. Other partitions and the core
OS continue to run normally according to the schedule.Note that the stopped task
is still subject to the scheduler. HM events could occur of it does not meet its
deadlines. Periodic processes could be thrown off.

In both modes, if a breakpoint is encountered in a thread in a partition, the whole
partition is stopped. Individual threads in the partition are visible, but you cannot
control them individually.

Advantages of System Mode

In task mode, stopping one partition does not stop other partitions which may
depend on the stopped partition. If you stop partition A, and partition B is waiting
for information from partition A, partition B will run on its normal schedule and
may inject health monitor events as a result of not receiving information from
partition A. These in turn could affect the behavior of partition A, or even result in
a partition restart or module restart. In system mode, stopping partition A stops
the whole system, avoiding problems of this sort.

This preserves the scheduling behavior of multi-task applications. In task mode,
when a task hits a debugger breakpoint, other tasks in the application or operating
system may be scheduled to run when otherwise they would not. For many
applications, this represents a significant change in the behavior and
characteristics of the application. By putting all the tasks into the break state
together, system mode preserves the scheduling characteristics of the application.

This also supports third-party emulators for operating system bring-up. If an
emulator is present, a pseudo-protection domain and pseudo-task are shown in
the control view prior to the operating system starting.

System mode allows you to debug interrupt service routines (ISR) by attaching the
debugger to the kernel and setting a breakpoint in the ISR.

Limitations of System Mode

When the debugger is in system mode:

■ When the host tools access data, it is possible that the data may be in an
inconsistent state. For example, Figure 5-2 shows a system of two partitions.
Partition #1 starts to delete a thread, but its time slice expires before it
completes the action. Partition #2 runs for its time frame. If a system-mode

5 Debug
5.4 Planning Debugging

39

5

breakpoint fires while Partition #2 is running, Partition #1’s thread linked list
will be in an inconsistent state. While the frequency of this type of event is low,
when it occurs the behavior of the tools may be unpredictable.

Unusable Tasks

In bimodal systems, selecting system mode when a task is in the break state causes
that task to remain in the break state until task mode is selected again. Such tasks
are marked as unusable. You cannot change their state from the debugger or the
target agent until you switch back to task mode.

Do you need to debug C++ code?

If your project contains C++ code, refer also to Inline Functions and Default
Constructors and Destructors, p.47. This section discusses compiling options for
inline functions and coding requirements for constructors and destructors that
you want to debug.

Figure 5-2 Timeline of Hypothetical Debug Scenarios

(1) Partition #1
starts to delete
a thread

(2) Partition #1
schedule window

(3) Core OS schedules
out Partition #1 and
schedules in Partition #2

(4) Threads in
Partition #2 run

(6) Core OS schedules
out Partition #2 and
schedules in Partition #1

(7) Completion of
Partition #1 Thread
deletion

(A) time of inconsistent TCB
linked list for Partition #1

expires

(5) Partition #2
schedule window
expires

Wind River Workbench
User's Guide, 2.6.1

40

5.5 Planning Debugging in a Certified Environment

VxWorks 653 provides a number of tools and techniques to assist in debugging in
a certified environment.

Using ACE

Because the ACE debug agent is separate from the core OS, you can include ACE
in a system with a cert core OS. While the use of ACE restricts the number of shell
routines that are available, it does allow you to inspect many system properties
and perform a number of debugging activities. For information on including ACE
in your module, see the VxWorks 653 Configuration and Build Guide.

Debugging Applications Built with Certifiable Subsets

In order to debug an application that is built with certifiable subsets, you can
debug it against the debug core OS image. In doing so, you benefit from all the
Workbench tools, including the full WDB debug agent without the limitations of
ACE. To do this, simply include a debug core OS rather than a cert core OS in your
integration build.

Taking Advantage of the CERT Macro

Because the CERT macro is defined when compiling with the cert build
specification, it is possible to have the debug code conditionally compiled in the
application, as shown in the following example:

numItems = getNewItems(items, MAX_ITEMS); /* get new items */
#ifndef CERT /* full VxWorks AE653 */
printf (‘’debug: numItems returned = %d\n’’, numItems);
#endif

Enable debugging for applications post deployment

Debug code cannot be included in a deployed certified system. However, it is
sometimes useful to be able to attach a system to a debugger after initial
deployment so as to diagnose a problem encountered in the field.

To facilitate this, VxWorks 653 allows you to optionally start ACE based on a
hardware signal. This means that ACE can be included in a deployed system, but
not started. When the board is placed on a test rack, a hardware signal can be
asserted, causing ACE to start, and enabling debug access to the system.

5 Debug
5.6 Using the Debugger

41

5

This functionality is provided by a function pointer
_func_usrAceStartupConditionGet, which is set to NULL by default. If the
function pointer is set to NULL, ACE starts. The function pointer can be set to point
to a function that returns TRUE or FALSE. If the functions returns FALSE, ACE
does not start.

The system integrator or platform provider can set this function pointer to point to
a function that will return TRUE or FALSE depending on a hardware signal. In a
deployed system, the function should return FALSE, so that ACE does not start. In
a test bed, the signal should be asserted and the function should return TRUE,
causing ACE to start.

5.6 Using the Debugger

This is the general procedure for using the debugger. For a tutorial on the
debugger, see A. Debugger Tutorial.

To run your system with the debugger:

Step 1: Build your module in debug mode or inclued ACE

You must either build your system image in debug mode or include ACE in your
system image. For information on building a system image in debug mode or
including ACE in your system image, see the VxWorks 653 Configuration and Build
Guide.

Step 2: Run your system on the target

Transfer your system image to the target and boot the target as described in 3. Boot.
You are now ready to attach the debugger to a running task.

Step 3: Attach the debugger to a task

You can attach the debugger to a kernel (core OS) task or to a task running in a
partition. You can also spawn a new kernel task and attach it to the debugger.

Spawning a Kernel Task

To spawn a kernel task and attach it to the debugger:

Wind River Workbench
User's Guide, 2.6.1

42

1. In the Target Manager, locate your module. For help in locating a module in
the Target Manager, see Figure 5-1.

2. Select Target > Debug > Debug Kernel Task. The Debug dialog box appears.

3. In the Kernel Task to Run section of the Main tab, choose the entry point to
use and supply any arguments required by the entry point.

4. In the Debug Options tab, check the Break on Entry and
Automatically attach spawned Kernel Tasks check boxes.

5. Click Debug. The debugger attaches to the task. The task is added to the list of
attached tasks in the Debug view.

Attaching the Debugger to a Running Kernel Task

To attach the debugger to a kernel task:

1. In the Target Manager, locate the kernel task you want to debug. For help in
locating a kernel task in the Target Manager, see Figure 5-1.

2. Right click the kernel task and select Attach to Kernel Task. The task is added
to the list of attached tasks in the Debug view.

Attaching the Debugger to a Partition Task

To attach the debugger to a partition task:

1. In the Target Manager, locate the partition task that you want to debug. (For
help in identifying a partition task in the Target Manager, see Figure 5-1.

2. If the partition task is in the Suspend state, use the target console to change to
a schedule that includes the partition using the arincSchedSet command.
After changing the schedule, right click the partition task and select Refresh.
The state of the partition task should change from Suspend to another state.

3. Select the partition task and select Target > Attach to Protection domain task.
The partition task, and its threads, are displayed in the Debug view.

Viewing symbols

You can view the symbols in tasks attached to the debugger using the
Symbol Browser.

To view symbols, select Show Debugger Symbols from the Symbol Browser
menu. The symbols in all tasks attached to the debugger are displayed. You can
filter the symbols by name and type.

5 Debug
5.7 Controlling Execution

43

5

To bring up the code that corresponds to a symbol, double click the symbol. The
code (assembly or source, as available) will be shown in the Editor view.

For more information on the Symbol Browser, press the help key.

Associating source code with the task

If your system was compiled in another location, the debugger may not be able to
associate the task that you are debugging with its source code. In this case, you can
manually associate source code with a task in the debugger.

To associate source code with a task in the debugger:

1. Right click on the task in the debug view and select Edit Source Lookup. The
Edit Source Lookup Path dialog is displayed.

2. Click Add.

3. Select the correct type of source location for your source file.

4. Select the directory that contains your source file.

5. Click OK to close the dialog.

5.7 Controlling Execution

This section describes how to set breakpoints, step through code, and examine the
execution state.

Setting Breakpoints

To set a breakpoint:

1. Open the source file for the task in which you want to set a breakpoint.

2. Right click in the editor gutter next to the line where you want to set the
breakpoint and select Breakpoints > Add Breakpoint. The
Line Breakpoint Properties dialog is displayed.

NOTE: The core OS and vThreads binaries have been pre-compiled without debug
symbols. Thus you cannot associate core OS and vThreads tasks with their source
code files unless you first recompile them with debug symbols.

Wind River Workbench
User's Guide, 2.6.1

44

3. Click the Source Lookup tab and ensure that the source lookup setting are
correct.

4. Click on the Scope tab and ensure that the correct scope for the breakpoint is
set.

5. If you want to place a hardware breakpoint, click on the Hardware tab and
select the appropriate settings for a hardware breakpoint.

6. Click OK.

For more information on the Line Breakpoint Properties dialog, press the help
key.

You can manage your breakpoints in the Breakpoints view. You can also set
expression and data breakpoints. For more information, press the help key.

Break on Data Access

You can set a hardware breakpoint that will break on access to a variable when that
variable has a particular value. This means that the breakpoint will be hit either
when the variable is read and the current value matches the specified value, or
when the variable is written and the new value matches the specified value.

These breakpoints cannot be set in Workbench. They must be set from either the
host shell or the target shell. For more information, see the reference entries for
bhv() and pdbhv().

Stepping Through Source Code

You can step through code using the step button in the Debug view. Note that you
can step through a kernel or partition task, but you cannot step through a thread.
For more information, press the help key.

Navigating the Call Stack

You can navigate the call stack using the Stack Trace view. For more information,
press the help key.

Viewing Thread Activity

You can view thread activity in Workbench or in WindSh.

In Workbench, you can view thread activity in the Target Manager.

The WindSh command partitionTaskInfoShow() displays thread information in
a partition. There is no equivalent in the partitions to the ti() command in the core
OS. It is also possible to display a stack trace for threads by using the partitionTt()

5 Debug
5.7 Controlling Execution

45

5

command in a partition. The partitionW() command, when used in a partition,
shows the objects each thread is pending on, if any. For more information, see
6. Tools.

Displaying APEX and POSIX Objects

WindSh commands are provided to display APEX and POSIX objects in partitions.
Alternatively, the Object Browser view displays the same information.

OS Exception State

If the operating system puts a task into the exception state, which is actually a
variation of pended, a pop-up window indicates that an exception has been
trapped. In the debugger, the runstate icon for the task changes from a running
icon to an exception icon. In this state you can use all of the features in the
debugger to examine the state of the task when it triggered an exception.

Object Memory Allocation

C++ objects can be allocated in three different ways:

■ automatic allocation

■ heap allocation (using the new operator)

■ static allocation

You can toggle the display of these types of objects in the object relationships view.

Global Class

Functions that are not class member functions, and global data, are shown as being
members of the Global class.

Debugging Constructors and Destructors

This section describes settings and debugger behavior for C++ constructors and
destructors.

Constructor and Destructor Calling Ordering

The debugger shows the calling sequence from derived down to base class
constructor, for the purpose of passing the initialization parameters. The
constructors then execute the code and return in the correct order, from base class
constructor through to derived class constructor.

Wind River Workbench
User's Guide, 2.6.1

46

Destructors are called in the reverse order, the most derived executing first, most
base class executing last. The debugger shows this order of invocation directly.

Missing Constructors and Destructors

To use the debugger optimally for C++ applications, it is best to provide
constructors and destructors for all classes. These can even be null body
constructors, if in-lining has been switched off using a compiler flag. For example:

class Derived: public Base
{

public:
Derived() {}
~Base(){}

};

They can be created by the compiler by default. For example, as shown below, the
C++ compiler generates a default constructor and destructor for any class that is
derived from, or an aggregate of, a base class, in order to call that class constructor
and destructor:

class Base
{

public:
Base();
~Base();

};
class Derived : public Base
{

// body goes here but does not have a constructor or destructor
};

It is good practice to explicitly provide constructors and destructors for all classes
that have member functions. This also allows the debugger to check the validity of
all object IDs used in the program. In the case of an invalid object ID value, the
debugger generates an error message.

If the debugger is used on a program that does not have default constructors or
destructors for all classes or, if static filtering criteria are changed to include
previously excluded objects, the debugger may generate unnecessary information
messages about unexpected object IDs. This happens the first time it encounters
the ID for an object of a class for which it has not detected the invocation of a
constructor. If the value is a valid address, the debugger assumes that the address
is a valid object address. It then uses that value as the object address in the future.

The debugger does not detect the destruction of a heap-based object that is
instantiated from a class that has no destructor, unless one of its base classes has a
destructor. Then the debugger detects the deletion of the object.

5 Debug
5.8 Viewing and Manipulating Data

47

5

Inline Functions and Default Constructors and Destructors

To monitor object creation and destruction, constructors and destructors must be
defined and implemented for each class. If they are not, the debugger cannot show
the object being created or destroyed. This is also true for constructors and
destructors that are implemented as inline. Inline functions cannot be monitored
because they are not implemented as functions. To fully monitor your C++ objects,
ensure that all of your classes have constructors and destructors, and that you
compile your application with inlining turned off.

Debugging Shared Libraries

Applications linked to a shared library (including the partition OS) share the TEXT
sections (that is the code). Each has its own per-client copy of the DATA sections of
the shared library. In the Target Manager view, any attached shared library
module icons within an application domain are there to indicate that the
application is linked to that library.

Debugging of shared libraries is done in the context of application domains. It is in
the application domain that you read debug information for the shared library.
You cannot read debug information for a shared library in the shared library
domain itself.

5.8 Viewing and Manipulating Data

You can modify all data and software in the module using the debugger.

Browsing and Editing Data

You can browse and edit data using the Variables view and the Registers view.
For more information an these views, press the help key in each.

Setting Watches

You can set watches using the Watch view. You can watch a variable or a complex
expression.

NOTE: You can potentially crash the system by writing invalid data into core OS
memory.

Wind River Workbench
User's Guide, 2.6.1

48

To set a watch:

1. Highlight the variable or expression to watch.

2. Right click on the highlighted expression

3. Select Watch. The highlighted expression is added to the watch table in the
Watch view.

You can also set a watch by entering the expression to watch:

1. Right click in the watch view.

2. Select Add. An empty cell is highlighted in the watch table.

3. Type an expression into the empty cell.

For more information on the Watch view, press the help key.

5.8.1 Special debugging situations

How do I get information about applications in partitions?

In a partitioned system it is difficult to get access to the standard output of an
application running in a partition. If standard output is attached to a serial port,
for example, the output of different partitions and the core OS would be
interspersed, making it difficult to determine what information came from each
partition. The address this problem, VxWorks 653 provides application
multiplexed I/O (AMIO). AMIO allows you to monitor the output of multiple
partitions over a single serial connection. You can enable AMIO by including its
component in your partition. To view AMIO data, VxWorks 653 provides an
AMIO-enabled serial monitor, wrMonitor. For information on wrMonitor, see
6.3 wrMonitor, p.58.

How do I overcome the constraints of partitions?

If an application uses a standard API like POSIX or APEX, which is supported in
VxWorks 653 partitions, you can develop and debug your application in another
environment that supports that API and then move it to VxWorks 653 later. This
may make it easier to debug the application without the constraints imposed by an
ARINC 653-compliant system.

5 Debug
5.8 Viewing and Manipulating Data

49

5

How do I debug application initialization?

Because all partitions are started automatically by the core OS according to a
schedule, it can be difficult to debug the initialization routines of applications. You
can use the following techniques to debug application initialization.

Debugging Application Initialization Using Warm Restart

Manual invocation of a warm restart of the application allows you to observe
failures that occur during initialization.

The procedure for using this debugging technique is:

1. Build and boot a payload image system.

2. Set a system or task mode breakpoint on the application entry point using the
debugger or the shell.

3. Invoke a WARM restart from the host or target shell:

partitionModeSet (partition_number, 2, 0, 0, 0)

Debugging Initialization Prior to OS Initialization

The software debugger is not available until the core OS initialization routine starts
the target debug agent. To debug code that executes during board hardware
initialization or the preliminary stages of core OS initialization, you must use a
hardware debugger.

Debugging Application Initialization Using the Scheduler

If the initial automatic execution of the application causes catastrophic application
failure, consider using the scheduler to debug application startup. By assigning the
time allotted to your application to the core OS instead, you can load the
application without ever running it. Once it is loaded, you can set a breakpoint on
the entry point using the debugger or a shell. Then, by changing to a schedule that
allots time to the application, the breakpoint is fired.

This technique does not require restarting your application and therefore works
with any build specification. However, since, in a ROM or RAM payload system,
partitions are not loaded until they are scheduled, it is necessary to use a hardware
rather than a software breakpoint to initially stop the system. If you are using a
downloadable image, partitions are loaded when the image is loaded and before
the system is started. Therefore you can use a software breakpoint with a
downloadable image.

The procedure for this debugging technique is:

Wind River Workbench
User's Guide, 2.6.1

50

1. In your Module configuration document, change the schedule ID of the
default schedule from 0 to the next available number. (In this example, 1 will
be used).

2. Add a new default schedule that assigns all time to the core OS by establishing
a single partition window with a partition name reference of “SPARE”. The
changes are highlighted:

<Schedules>
 <Schedule Id="0">
 <PartitionWindow

PartitionNameRef="SPARE"
 Duration="0.25"
 ReleasePoint="true"/>
 </Schedule>
 <Schedule Id="1">
 <PartitionWindow
 PartitionNameRef="my-application-A-partition"
 Duration="0.001"
 ReleasePoint="true"/>
 <PartitionWindow
 PartitionNameRef="my-application-B-partition"
 Duration="0.00025"
 ReleasePoint="true"/>
 <PartitionWindow
 PartitionNameRef="my-application-C-partition"
 Duration="0.002"
 ReleasePoint="true"/>
 </Schedule>
</Schedules>

3. Build and boot the system. If you use a downloadable image, the partition will
be loaded but not run. If you use a ROM or RAM payload image, the partition
will not be loaded.

4. If you are using a downloadable image, set a breakpoint at the appropriate line
of code using the debugger.

If you are using a ROM or RAM payload, look up the virtual address of the
partition’s system shared library in the PartitionDescription document. Use
the host shell to set a hardware breakpoint at that address. For information on
the host shell, see 6.4 Shells, p.59.

5. From the host or target shell, switch to the schedule that includes the partition
to be debugged (in this case, schedule 1):

arincSchedSet (1, 2)

The breakpoint will be hit, stopping the partition. You can now set any
additional breakpoints you need to debug the application.

5 Debug
5.9 Monitoring Resources

51

5

Debugging Application Initialization by Disabling the Scheduler

You can gain access to the initialization routines of partitions by disabling the
initial startup of the scheduler, allowing you to set breakpoints before the
schedules are started.

The parameter FUNCPTR_func_arincSchedEnableHook has been added to the
arincSchedEnable() routine. By default, this function pointer is set to NULL. You
can set this function pointer to point to a function that sets arincSchedEnabled to
TRUE or FALSE. If arincSchedEnabled is FALSE, the schedule will not start. You
can use a hardware signal, or any other trigger you like, to control whether
scheduling is started.

Once you have control over the starting of scheduling, the procedure for
debugging application initialization is as follows:

1. Boot the system with the scheduler disabled. Once the boot is complete, the
core OS, system shared libraries, and shared libraries have been loaded. The
partitions have been created, but not started.

2. Connect the debugger to the target.

3. Using the host shell, set a hardware breakpoint at the start of the partition OS
by connecting to a partition that uses that partition OS and setting the
breakpoint at the virtual address of the start of the partition OS.

Start the scheduler by using the shell to set arincSchedEnabled to TRUE. The
scheduler will start and the task will break when the breakpoint is hit.

5.8.2 Examining Memory

You can view the contents of target memory in the Memory view. For more
information, press the help key in the Memory view.

5.9 Monitoring Resources

For information on monitoring resources, see 6.5 Monitoring Tools, p.62.

Wind River Workbench
User's Guide, 2.6.1

52

5.10 Configuring the Debugger

For information on configuring the debugger, press the help key in the debugger
perspective.

53

 6
Tools

6.1 Introduction 53

6.2 Boot Program 54

6.3 wrMonitor 58

6.4 Shells 59

6.5 Monitoring Tools 62

6.6 VxWorks 653 Simulator 71

6.7 Configuration and Build Tools 79

6.1 Introduction

This chapter describes some of the tools included with Workbench.

Wind River Workbench
User's Guide, 2.6.1

54

6.2 Boot Program

Boot ROMs for each BSP are located at
$(WIND_BASE)/target/proj/$(BSP)_bootApp. For information on flashing the
boot ROM, see your BSP documentation.

The VxWorks 653 boot program, bootApp, is used to bring up a target board and
to load a VxWorks 653 system image over the network. To see a list of available
commands, type either h or ? at the boot prompt, followed by ENTER:

[VxWorks 653 Boot]: ?

Table 6-1 describes each of the VxWorks 653 boot commands and their arguments.

Table 6-1 VxWorks 653 Boot Commands

Command Description

h Help command—print a list of available boot commands.

? Same as h.

@ Boot using the current boot parameters.

p Print the current boot parameter values.

c Change the boot parameter values.

l Load the file using current boot parameters, but without
executing.

g adrs Go to (execute at) hex address adrs.

d adrs[, n] Display n words of memory starting at hex address adrs. If n
is omitted, the default is 64.

m adrs Modify memory at location adrs (hex). The system prompts
for modifications to memory, starting at the specified
address. It prints each address, and the current 16-bit value
at that address, in turn. You can respond in one of several
ways:

ENTER: Do not change the address, but continue prompting
at the next address.

number: Set the value to a 16-bit number.

6 Tools
6.2 Boot Program

55

6

Changing Boot Parameters

To change boot parameters:

1. Type c at the boot prompt. The first parameter is displayed.

2. Enter a new value for this parameter or press enter to keep the existing value.

3. Repeat for each parameter in turn.

Instead of being prompted for each of the boot parameters, you can supply the
boot program with all the parameters on a single line at the boot prompt
([VxWorks Boot]:) beginning with a dollar sign character (“$”). For example:

$ln(0,0)mars:c:\temp\vxWorks e=90.0.0.50 h=90.0.0.1 u=fred pw=…

The order of the assigned fields (those containing equal signs) is not important.
Omit any assigned fields that are irrelevant. The codes for the assigned fields
correspond to the letter codes shown in parentheses by the p command. For a full
description of the format, see the reference entry for bootStringToStruct() in
bootLib.

Non-volatile RAM (NV-RAM)

If your target CPU has non-volatile RAM (NV-RAM), all the values you enter in
the boot parameters are retained in the NV-RAM. In this case, you can let the boot

. (dot): Do not change that address, and quit.

f adrs, nbytes, value Fill nbytes of memory, starting at adrs with value.

t adrs1, adrs2, nbytes Copy nbytes of memory, starting at adrs1, to adrs2.

s [0 | 1] Turn the CPU system controller ON (1) or OFF (0) (only on
boards where the system controller can be enabled by
software).

e Display a synopsis of the last occurring VxWorks 653
exception.

v Display BSP and boot ROM version.

n Set MAC address of the target board.

Table 6-1 VxWorks 653 Boot Commands (cont’d)

Command Description

Wind River Workbench
User's Guide, 2.6.1

56

program auto-boot without having a terminal program connected to the target
system.

6.2.1 Description of Boot Parameters

Each of the boot parameters is described below. The letters in parentheses after
some parameters indicate how to specify the parameters in the command line boot
procedure described in Changing Boot Parameters, p.55.

boot device
The type of device to boot from. This must be one of the drivers included in the
boot ROMs (for example, enp for a CMC controller). Due to limited space in
the boot ROMs, only a few drivers can be included. A list of included drivers
is displayed at the console (type ? or h).

unit number
The unit number of the boot device, starting at zero.

processor number
A unique numerical target identifier for systems with multiple targets on a
backplane. The backplane master must have its processor number set to zero.
For boards not connected to a backplane, a value of zero is typically used but
is not required.

host name
The name of the host machine to boot from. This is the name by which the host
is known to VxWorks 653; it need not be the name used by the host itself.

file name

The full path name of the VxWorks 653 image to be booted. This path name is
also reported to the host when you start a target server, so that it can locate the
host-resident image of VxWorks 653. The path name is limited to a 160 byte
string, including the null terminator. If the same path name is not suitable for
both host and target—for example, if you boot from a disk attached only to the
target—you can specify the host path separately to the target server, using the
-c filename option in the Advanced Target Server Options field of the
New Target Server Connection dialog.

inet on ethernet (e)
The Internet Protocol (IP) address of a target system Ethernet interface, as well
as the subnet mask used for that interface. The address consists of the IP
address, in dot decimal format, followed by a colon, followed by the mask in
hex format (for example, 90.0.0.50:ffffff00).

6 Tools
6.2 Boot Program

57

6

inet on backplane (b)
The Internet address of a target system with a backplane interface (blank in the
example).

host inet (h)
The Internet address of the host to boot from (90.0.0.1 for example).

gateway inet (g)
The Internet address of a gateway node if the host is not on the same network
as the target.

user (u)
The user ID that VxWorks 653 uses to access the host for the purpose of boot
loading the file specified by the filename boot parameter. That user must have
permission to read the VxWorks 653 boot-image file.

The user must have FTP or rsh access. The ftp password boot parameter
described below controls how the boot loader accesses the host. For rsh, the
user must be granted access by adding the user ID to the host's /etc/host.equiv
file, or more typically to the user's .rhosts file (~userName/.rhosts).

ftp password (pw)
The user password used by the boot loader to access the host using FTP for the
purpose of boot loading the file specified by the filename boot parameter.

flags (f)
Configuration options specified as a numeric value that is the sum of the
values of selected option bits defined below.

target name (tn)
The name of the target system to be added to the host table.

0x01 = Do not enable the system controller, even if the processor number is 0.
(This option is board specific; refer to your target documentation.)

0x02 = Load all VxWorks 653 symbols, instead of just globals.
0x04 = Do not auto-boot.
0x08 = Auto-boot fast (short countdown).
0x20 = Disable login security.
0x40 = Use BOOTP to get boot parameters.
0x80 = Use TFTP to get boot image.
0x100 = Use proxy ARP.
0x200 = Use WDB agent.
0x400 = Set system to debug mode for the error detection and reporting facility.

Wind River Workbench
User's Guide, 2.6.1

58

startup script (s)
If the kernel shell is included in the downloaded image, this parameter allows
you to pass to it the path and filename of a startup script to execute after the
system boots. A startup script file can contain only the shell’s C interpreter
commands. This parameter can also be used to specify process-based
applications to run automatically at boot time, if VxWorks 653 has been
configured with the appropriate components.

other (o)
This parameter is generally unused and available for applications. It can be
used when booting from a local SCSI disk to specify a network interface to be
included.

6.3 wrMonitor

The wrMonitor serial-port monitor lets you observe the output from application
multiplexed I/O (AMIO). AMIO lets you perform serial text I/O with multiple
applications running in different partitions, and with the core OS, over a single
serial connection. For more information on AMIO, see the VxWorks 653
Programmer’s Guide.

To start wrMonitor, in the Command Prompt window, move to the following
directory:

installDir/host/hostType/bin

Type the following:

wrMonitor

The default configuration is brought up. This includes a window for the core OS.

Partitions will be displayed in new tabs as soon as they generate output. To display
partitions that have not yet produced output, click Setup > Add Partition and add
partitions by number. The Setup menu includes other configuration items, such as
configuration parameters for serial ports.

The wrMonitor tool includes help.

6 Tools
6.4 Shells

59

6

6.4 Shells

VxWorks 653 requires multiple shells to provide full access to the partitions. In
addition to the target shell in the core OS (see the reference entry for shellLib) and
the host shell (WindSh), the vThreads shell runs in a partition time slot and
provides access to more information about the partition than is available to the
other shells. There is no COIL shell, however, the target shell of the core OS will
provide useful information about COIL-based partitions.

Shell routines that require spawning a task cannot be issued to partitions from
either the host or the target shell. They can be used from the core OS only. The
partition version of the shell permits using tools such as i() and tt() within
partitions.

Shells cannot call routines in a partition context, only in the core OS context.

6.4.1 Host Shell

The host shell (WindSh) provides the default shell interface to the target. This is the
shell you should use unless you need the specific capabilities of the other shells.
Each APEX and POSIX partition can be debugged from the shell as a single
instance of a core OS task.

6.4.2 Target Shell

The target shell provides access to core OS task information and system memory.
However, system mode debugging is not supported from the target shell. Note
that the target shell is an unbreakable task, so breakpoints cannot be set on it, or on
functions that it calls directly.

The target shell cannot display the Altivec register set. Only a single instance of the
target shell, running as a single task, can be run on a VxWorks 653 system. The
target shell consumes target resources (memory and CPU time) when it performs
control and information functions. When the target shell encounters a string literal
in an expression, it allocates space for the string. This memory is never freed unless
you explicitly free it.

For more information about the target shell, see the VxWorks 653 Programmer’s
Guide.

Wind River Workbench
User's Guide, 2.6.1

60

6.4.3 vThreads Shell

The vThreads shell runs as a thread in a vThreads partition. Like other vThreads
threads, it runs only during the partition time slot.

Configuring the vThreads shell

To configure your application to include the vThreads shell:

1. Ensure that the core OS provided by your platform provider includes the
INCLUDE_PARTITION_SHELL and INCLUDE_VAL_WORKER_TASKS
components.

2. Ensure that the partition OS provided by the platform provider includes the
vThreadsShellComponent.o component. If you want to have the partition OS
symbols in the partition symbol table, you must also ensure that the partition
OS symbol table (my-pos-syms.c) was included in the partition OS build.

3. Include the vThreadsShell.c component in the application build.

4. Include the usrSymTbl.c component in the application build.

5. Generate the application symbol table (my-application-syms.c) and include it in
the application. The symbol tables are generated from a .pm file containing all
your object modules, so you must change how your .sm is built. First, build a
.pm file, then generate the symbol table from the .pm, and finally link the .pm
and symbol table files into the .sm file. Makefile.rules contains a rule for
generating a symbol table from a .pm file, so you need only supply the
dependency list for the .pm and .sm files:

In your application make file, change this line (in which $(PART_OBJS)
represents all the .o files that make up your application):

my-application.sm: vxMain.o $(PART_OBJS)

To this:

my-application.pm: $(PART_OBJS) vThreadsShell.o usrSymTbl.o
my-application.sm: vxMain.o my-application.pm my-application-syms.o

6. Configure at least one worker task in the
PartitionDescription/Settings/@numWorkerTasks attribute of the
PartitionDescription document.

7. Build your application as described in the VxWorks 653 Configuration and Build
Guide.

6 Tools
6.4 Shells

61

6

Invoking the vThread shell

To invoke the vThreads shell, execute the attach command from the shell prompt:

[coreOS] -> attach firstPartition
Switched to firstPartition’s Shell (Press CTRL+W to exit)

-> iosFdShow
fd name drv
3 /globalIo/0 1 in
4 /globalIo/1 1 out
5 /globalIo/2 1 err

value = 50 = 0x32 = ’2’
->

Strengths

The vThreads shell has the following strengths:

■ Has visibility into a partitions mapped space, but not outside it.
■ Supports all standard show routines.
■ Displays thread status.
■ Creates and deletes threads.
■ Checks the thread stack.
■ Runs a stack trace on threads.
■ Examines and modifies memory.
■ Generates partition memory usage statistics.
■ Has a C interpreter with function call capability.

Limitations

The vThreads shell has the following limitations:

■ No breakpoint support.
■ No dynamic loading of code.

Many partitions can have a shell thread running, but only one can be active at a
given time. The core OS redirects input to the active partition.

Wind River Workbench
User's Guide, 2.6.1

62

6.5 Monitoring Tools

The following monitoring tools are available.

6.5.1 Memory Usage Monitoring

The memory usage monitor runs as part of the host shell, and reports the memory
usage of various areas of the operating system, including heaps, stacks, ports, and
health monitoring. Information displays on a per partition basis in a consistent,
easily readable format.

To use the memory usage monitor, make sure that you have established a target
connection, and that the host shell is running. No additional configuration is
required to use the memory usage monitor.

For information on the memory usage monitoring commands, consult the API
reference for the following routines:

■ memoryUsageHeapShow

■ memoryUsageStackShow

■ memoryUsageHmShow

■ memoryUsagePortShow

■ memoryUsageAllShow

6.5.2 Performance Monitoring

The performance monitoring tool allows you to monitor CPU usage in order to
analyze a system or part of a system. Use it to monitor the amount of time used in
a module, either in the core OS or the partition OS.

Two time monitoring components make up the performance monitoring tool—one
for the core OS and one for the partition OS.

NOTE: The memory usage monitor does not introduce any performance issues to
your system. Any changes in performance are due exclusively to the use of
WindSh.

NOTE: Memory usage monitoring is not supported in COIL-based partitions.

6 Tools
6.5 Monitoring Tools

63

6

The performance monitoring tool is included by default and cannot be removed. If
you want to view performance data using the target shell, you must include the
component INCLUDE_KERNEL_SHOW. For information about including binary
components, see Using the Performance Monitoring Tool, p.66.

How the Performance Monitoring Works

The data acquisition portion of the performance monitoring tool is included by
default and is controlled by the timeMonitorLib routines. Monitoring sessions
start when the core OS starts, or when a partition is activated the first time.
Monitoring can be stopped on request and started again. Core OS and partition OS
monitoring are independent. The core OS sees the partition as a task, and the
partition does not see the core OS at all.

Start or stop commands in a partition do not cause any negative impact on the
performance of the core OS. Likewise, start and stop commands in the core OS do
not cause any performance issues for the partition OS.

Partitions may be switched out without notification. This means that within a
partition, there is no way to update current task CPU usage before the partition is
switched out. Since the core OS controls this switch, it is responsible for delivering
the partition switch-out time to the relevant partition.

Monitoring the Core OS

In the core OS, three elements are monitored:

■ Task Time

The performance monitoring tool monitors the cumulative amount of time the
CPU spends executing tasks from the time that monitoring starts. The tPartOS
task that runs the partitions is included. There is one time accumulator per
task.

Monitoring CPU time for a task starts when a task becomes active and stops
when a task becomes inactive. A task may become inactive when another task
becomes active or when an interrupt occurs. When the interrupt is finished
executing, the task starts again.

■ Idle Time

The performance monitoring tool records the cumulative amount of time that
the system is idle from the time that monitoring starts. Monitoring idle time

NOTE: Performance monitoring is not supported for COIL-based partitions. Per-
formance monitoring is not supported in the Simulator.

Wind River Workbench
User's Guide, 2.6.1

64

starts whenever the system enters an idle loop and stops when it exits the idle
loop or when an interrupt occurs.

■ Interrupt Time

The performance monitoring tool records the amount of time that the system
spends in an interrupt from the time that monitoring starts. As with tasks,
there is one time accumulator per interrupt. Monitoring CPU time for an
interrupt starts when the system enters the ISR. It stops when the system exits
the ISR.

vThreads Partition OS

In the partition OS, four elements are monitored:

■ Thread Time

The performance monitoring tool monitors the cumulative amount of time the
CPU spends executing threads from the time that monitoring starts. There is
one time accumulator per thread.

In a partition, monitoring starts when the thread becomes active and stops
when a pseudo-interrupt occurs or when the partition is scheduled out. If a
thread stops because of a pseudo-interrupt, it will start again when the
pseudo-interrupt finishes executing. Monitoring CPU time within a partition
is not stopped when the partition OS task is preempted by a core OS task.

■ Idle Time

The performance monitoring tool records the cumulative amount of time that
the system has been idle since monitoring started. Monitoring idle time starts
when the system enters an idle loop. It stops when exiting the loop, when a
pseudo-interrupt occurs, or when the partition is scheduled out.

■ Pseudo-Interrupt Time

The tool records the amount of time that the system spends in a
pseudo-interrupt once monitoring is started. As with tasks, there is one
accumulator per pseudo-interrupt. Monitoring CPU time starts when the
pseudo-interrupt starts executing, and stops when the pseudo-interrupt
execution exits or when the partition is scheduled out.

■ Partition Window

The performance monitoring tool records the amount of time that a partition
is active since monitoring started. Monitoring a partition window starts when
a partition becomes active and stops when it becomes inactive. Data collected

6 Tools
6.5 Monitoring Tools

65

6

in this accumulator is used to compute information like CPU usage inside a
partition or percentage of CPU usage for a thread.

Viewing Acquired Data

To view the data acquired by the performance monitoring tool, use the Get
routines in timeMonitorLib. These functions are used to read the time
accumulator values of the system or a task or thread. A series of Show routines can
also be included (added as a binary component INCLUDE_KERNEL_SHOW) that
allows you to view the collected data through the target shell.

Parameters

The following parameters are available to configure the behavior of the
Performance Monitor. These parameters are available in both the core OS and the
vThreads partition OS:

System Impact

The performance monitoring tool is designed to be non-intrusive for CPU
consumption. It runs permanently and takes a fixed overhead during the partition
window.

Since the reporting task involves the use of a communication media (such as a
network stack and device), it does use some CPU time.

Table 6-2 Performance Monitor Parameters

Parameter How Used

TIME_MONITOR_ENABLE When this parameter is set to TRUE, performance
monitoring starts at start up time. This is equiva-
lent to calling timeMonitorStart() when the core
OS starts or when a partition is activated.

MAX_NUM_OF_ACCU This parameter defines the maximum number of
time accumulators available in the core OS and
partitions. Time accumulators are required as
follows:

■ 1 per task (all tasks including system tasks)
■ 1 per partition task (vThreads partitions only)
■ 4 extras (idle, ISR, reference, and notUsed)

Wind River Workbench
User's Guide, 2.6.1

66

Using the Performance Monitoring Tool

The monitoring portion of the tool is included and cannot be removed. You do not
have to make any changes or do any additional configuration to use it.

To view the acquired data from the target shell, you need to include the
INCLUDE_TIME_MONITOR_SHOW binary component. To view data in the core
OS, include the component in your kernel. To view data in a partition OS, include
timeMonitorShowLib.o in the partition OS.

Once the INCLUDE_TIME_MONITOR_SHOW binary component is included, you
can use four different show commands in the target shell to control the
performance monitoring tool and display output.

For information on the port time monitoring command, see the API reference for
the following routines:

■ timeMonitorClear

■ timeMonitorStart

■ timeMonitorStop

■ timeMonitorShow

■ timeMonitorAPEXShow

6.5.3 Port Monitoring

The port monitoring tool is provided so that developers can selectively log log port
activity occurring in a system.

The port monitoring tool is composed of three pieces. The first is the low-level
instrumentation that is embedded in the sampling and queuing port libraries. This
code collects data during port operation and sends it to the monitoring portion of
the code. It cannot be removed.

The second piece is the monitoring component, which gets the collected data from
the ports and stores it in a buffer. This buffer is allocated to the port specific
memory region. The monitoring component can be added or removed from the

NOTE: For data to display correctly, you need to use the target shell to execute the
show commands. Since the start, stop, and clear commands do not return any out-
put, you can enter these commands from WindSh (the host shell) if you prefer.
Note that commands entered from WindSh apply to the core OS.

6 Tools
6.5 Monitoring Tools

67

6

system as required. Interaction between the instrumentation and the monitoring
components occurs when monitoring is first enabled.

How Does Port Monitoring Work?

Monitoring

The monitoring portion of the tool oversees a set of connected ports called channels.
Within each channel a sender point, a distribution point, and a receiver point are
monitored.

■ Sender Point

At the sender point, all messages that are sent by a port and put into a source
port are monitored. Information captured about each message at this point
includes:

■ port type
■ timestamp
■ message length
■ source port identifier
■ message identifier

■ Distribution Point

At the distribution point, all messages taken from the sender port and sent to
the destination port are monitored.

Information collected about each message includes:

■ port type
■ timestamp
■ message length
■ source port identifier
■ destination port identifier
■ message identifier

NOTE: Port monitoring is supported for COIL-based partitions.

NOTE: Sampling ports use a zero-copy algorithm, so there is no distribution
point for sampling channels.

Wind River Workbench
User's Guide, 2.6.1

68

■ Receiver Point

At the receiver point, all messages read from a destination port are monitored.
Information collected about each message includes:

■ port type
■ timestamp
■ message length
■ destination port identifier
■ message identifier

Message data monitoring consists of identifying each message and logging its
identifier. If reporting is enabled, message data is shown if the message is still in
the port buffer at the time of reporting.

Monitored data is stored in a ring buffer, and there is one buffer for the whole
system. Specify buffer size at system startup during the call to
portMonitorLibInit().

Reporting

The reporting portion of the port monitoring tool collects data from the monitoring
buffer and writes it to the virtual I/O (VIO) channel of the Wind River Debug
(WDB) agent. The VIO channel is a feature of the WDB agent that provides fast,
asynchronous communication between the target and the host. Using this channel
lets reporting code rely exclusively on the WDB back end without requiring
configuration for a specific communication media. For more information on the
VIO channel and the WDB agent, see the Tornado API Programmer’s Guide: The WTX
Protocol.

The reporting task is spawned at configlette initialization (usrPortMonitorInit()).
If monitoring is disabled, the reporting task suspends.

The code for the reporting task is provided as source code in a configlette called
usrPortMonitor.c. The code can be modified as required, or removed from the
system entirely.

NOTE: When using the RECEIVER_DISCARD function, the event of discarding
a message when the destination buffer is full is recorded at the distribution
point.

NOTE: Stopping port monitoring does not clear the data collected in the monitor-
ing buffer. If monitoring is not enabled, data is collected in a waste buffer.

6 Tools
6.5 Monitoring Tools

69

6

For example, a platform provider may wish to modify the code to avoid using the
VIO channel and send a UDP broadcast packet through a socket instead.

System Impact

The port monitoring tool is designed to be non-intrusive for CPU consumption.
The monitoring portion runs permanently and takes a fixed overhead during the
partition window. When data is available, the monitoring portion tells the
reporting function that data is available. This exchange is fast and non-blocking
regardless of whether the reporting task is included.

Since the reporting task involves the use of a communication media (such as a
network stack and device), it does use some CPU time. To avoid affecting the
partition timing, the reporting task is scheduled as a low priority task that only
runs when the system is idle, or is scheduled within its own time window, set aside
in the major time frame.

Using the Port Monitoring Tool

The use of monitoring and reporting is handled slightly differently. Enable or
disable the monitoring of a channel using routines made from the host shell or the
target shell, or programmed into the core OS.

Reporting is also enabled and disabled using routines; however, calls to these can
be made only from a shell (either the host shell or the target shell). Reporting
routines cannot be programmed into the core OS because the reporting function is
part of the tools, and tools can be included or removed from the system with no
impact on the kernel domain.

The display used for the reporting tool is wtxConsole, which is included with
Workbench, or the portMonitorLib.tcl application included in
installDir/host/resource/tcl/. Launch wtxConsole with the option to display all
data coming from VIO channel 99.

For assistance in writing a C or TCL application that reads data from the VIO
channel, see the API reference entry for wtxVioLink. This type of code could be
used to filter the data or log it to a file.

NOTE: If the bandwidth of the media used for streaming is not large enough, mes-
sages may be lost because the monitoring buffer wraps. Any loss of messages is
indicated in the report.

Wind River Workbench
User's Guide, 2.6.1

70

Executing Port Monitoring Commands

There are two main port monitoring actions available:

■ Start or stop port monitoring of a channel

■ Enable or disable port monitoring reporting

These two actions are independent of each other and do not need to be
synchronized. The following examples illustrate different ways of combining the
monitoring and reporting commands.

Enabling Reporting First

1. Enable reporting.

2. Start monitoring on Channel A. Events from Channel A start being displayed.

3. Start monitoring on Channel B. Events from Channel A and Channel B are
displayed.

4. Disable reporting.

Start Monitoring First

1. Start monitoring on Channel A. Nothing is displayed.

2. Start monitoring on Channel B. Nothing is displayed.

3. Enable reporting. Events from Channel A and Channel B are displayed.

4. Stop monitoring on Channel B. Events from Channel A are displayed.

5. Disable reporting.

Port Monitoring Functions

For information on the port monitoring commands, see the API reference entry for
portMonitorLib.

NOTE: These examples show the results of various commands in a general way.
For command syntax, see Port Monitoring Functions, p.70.

6 Tools
6.6 VxWorks 653 Simulator

71

6

6.6 VxWorks 653 Simulator

The VxWorks 653 simulator (VxSim) is a port of VxWorks 653 to the Windows host
architectures. It provides a simulated target for use as a prototyping and test-bed
environment. In most regards, its capabilities are identical to a true VxWorks 653
system running on target hardware.

In the simulator, the image is executed on the host computer as a host process.
There is no emulation of instructions, because the code is for the host’s own
architecture.

The host-based simulation environment supports partitioning and provides
behavior-level simulation for the APIs of the operating system (including POSIX
and APEX APIs). However, the host simulation environment does not provide
instruction set simulation.

The host simulator and partitions are built with the standard VxWorks 653
Pentium compiler, which generates objects in ELF format.

6.6.1 Running the Simulator

Starting the Simulator

You can launch the simulator from within Workbench as described in 3.2 Booting
VxWorks 653 on the Simulator, p.22.

The simulator can also be started from the command line by typing vxsim (the
executable is found in installDir/host/hostType/bin). By default, it looks for the file
to boot (boot.txt) in the current directory.

For additional options when running vxsim from the command line, run

vxsim -help

Rebooting the Simulator

As with other targets, you can reboot the simulator by typing CTRL+X in the shell.

Exiting the Simulator

Close the simulator window.

Wind River Workbench
User's Guide, 2.6.1

72

6.6.2 File Systems

The simulator can use any VxWorks 653 file system.

The default file system is the pass-through file system, passFs, which is unique to
the simulator. passFs allows direct access to any files on the host. Essentially, the
VxWorks 653 functions open(), read(), write(), and close() eventually call the
host equivalents in the host library libc.a. With passFs, you can open any file
available on the host, including NFS-mounted files. By default, NTPASSFS is
included in the kernel protection domain to cause this file system to be mounted
on startup.

In order to prevent the simulator from misinterpreting the colon (:) in the path
name for a VxWorks 653 device, you need to specify, in the target shell only, the
host name at the beginning of a full path. In the following examples, note the use
of the forward slash (/):

[vxKernel] -> cd "myHostName:c:/myPath"
[vxKernel] -> ml < myHostName:d:/projDir/test/CPUgnu.debug/test.o

For more information on passFs, see the reference entry for passFsLib. For more
information on other VxWorks 653 file systems, see the VxWorks 653 Programmer’s
Guide.

6.6.3 Building a Module for the Simulator

In order to build successfully for the simulator, you must adjust the memory map
of your module to conform with the memory map of the simulator. This involves
adjusting all memory values that must align on CPU page sizes to the page size of
the simulator, and assigning virtual addresses that do not conflict with those used
by the simulator. For more information, see the documentation for the simpc BSP.

To build your module for the simulator you specify “SIMNT” as the name of the
CPU and “simpc” as the name of the BSP when building each component of the
module. For information on configuring and building modules, see the VxWorks
653 Configuration and Build Guide.

6.6.4 Differences between the Simulator and VxWorks 653

In comparison to the VxWorks 653 operating system running on a hardware target,
the simulator has several limitations:

6 Tools
6.6 VxWorks 653 Simulator

73

6

■ The execution speed of the simulator is dependent on your host, on what
simulator services you are using, and on what else is running on the host. Thus
you cannot predict the performance of your application on a hardware target
based on its performance on the simulator.

■ For the simulator, there is no difference between user and supervisor modes.
All the tasks, including threads running in partitions, run in the equivalent of
supervisor mode. This means that code executing in a partition can access the
core OS on the simulator, which it cannot do in real targets.

■ There is no stack overflow detection for core OS tasks.

■ The only clock available on the simulator is the system clock. This means that
the time resolution will not be better than 100 ticks per second.

■ No memory auto-sizing is available for the simulator. The size of the memory
available for the simulator is specified during kernel configuration and must
be rebuilt to take effect.

■ Only COLD starts are available on the simulator; no restart or WARM start is
available.

■ Only a limited number of device drivers are available with the simulator.

■ The performance monitor is not supported.

■ Online loaded partitions are not supported.

■ ROM and RAM payloads are not supported. The simulator does not support
payload images. For this reason, it also does not support partition restart.

■ The certifiable build image of vThreads and the core OS are not supported.

■ The simulator does not provide a full MMU as real targets do. Associated
limitations are described in Protection Domains and Partitions, p.74.

■ The simulator defaults to using a pass-through file system (passFs) to access
files directly on the workstation. (See the online reference for passFsLib under
VxWorks AE Reference Manual > Libraries.)

Because target hardware interaction is not possible, device driver development
may not be suitable for simulation. However, the VxWorks 653 scheduler is
implemented in the host process, maintaining true tasking interaction with respect
to priorities and preemption. This means that any application that is written in a
portable style and with minimal hardware interaction should be portable between
the simulator and VxWorks 653.

Wind River Workbench
User's Guide, 2.6.1

74

Architecture Considerations

The information in this section highlights differences between the simulator and
other VxWorks 653 BSPs. These differences should be taken into consideration as
you develop applications on the simulator that will eventually be ported to
another target architecture.

The simulator uses the VxWorks 653 scheduler, which behaves the same way as for
any other VxWorks 653 architecture. The BSP is extensible. For example,
pseudo-drivers can be written for additional timers, and serial drivers.

The rest of this section discusses some details of the simulator implementation.
Differences between the simulator and other VxWorks 653 environments are noted
where appropriate.

Supported Configurations

Most of the optional features and device drivers for VxWorks 653 are supported by
the simulator. The few that are not are hardware devices (SCSI, Ethernet) and ROM
and RAM payloads.

Protection Domains and Partitions

The simulator provides partial support for protection domains and, therefore, for
partitions. Because there is no difference between user and supervisor modes, it is
not possible to prevent one domain from directly accessing the memory of another.
Moreover, there is no stack overflow detection mechanism.

Simulator Timeout

Occasionally a simulator session loses its target server connection due to the many
things competing for CPU time on the host. If you find that your application is
frequently losing its target server connection, adjust the back end timeout (-Bt) and
back end retry (-Br) parameters.

1. In the Target Manager view, right-click the active session, select Properties.

2. Select the Target Server Options tab.

3. In the Advanced Target Server Options panel, click the Edit button.

4. Enter appropriate values for Backend Request Timeout and Backend
Request Resent Number.

6 Tools
6.6 VxWorks 653 Simulator

75

6

The BSP Directory

Aside from the following exceptions, the simpc BSP is similar to other
VxWorks 653 BSPs:

■ The sysLib.c module contains the same essential functions: sysModel(),
sysHwInit(), and sysClkConnect() through sysNvRamSet(). Because there
is no bus, sysBusToLocalAdrs() and related functions have no effect.

■ The file 00kernel.ddf contains the default kernel domain configuration. By
default, it removes the networking facility, which is not supported by the
simulator in VxWorks 653.

■ You may experience address conflicts with associated error messages if the
default addresses used by the simulator are not available in the simulator
address space. This might occur, for example, if a DLL is already mapped to
that address or if you modified the memory configuration and the default
address areas no longer fit.

■ The BSP file sysLib.c can be extended to emulate the eventual target hardware.

Correcting Memory Map Errors

Table 6-3 illustrates the Windows simulator memory map. Physical and virtual
address spaces are mixed into the simulator process address space. Physical
addresses are determined by attributes in CoreOSDescription document for the
core OS.

Wind River Workbench
User's Guide, 2.6.1

76

KernelMemPool Region Start Address

If the default values do not fit on your host, the simulator exits showing a message
similar to the following:

Table 6-3 Simulator Memory Map

Physical address space Starting address (Default) How calculated

KernelMemPoolRgn 0x20000000 PhysicalMemory/@BaseAddress

ConfigRecordPoolRgn 0x20400000 kernelMemPoolRgn start address +
PhysicalMemory/kernelMemoryRegion/
@Size

KernelPgPoolRgn 0x20410000 configRecordPoolRgn start address
+ PhysicalMemory/
kernelConfigRecordRegion/@Size

portPgPoolRgn 0x20810000 kernelPgPoolRgn start address +
PhysicalMemory/kernelPgPool/@Size

hmlogPgPoolRgn 0x20a10000 portPgPoolRgn start address +
PhysicalMemory/portRegion/@Size

SdPgPoolRgn Allocated consecutively starting at PhysicalMemory/userMemoryRegion/
@Base_Address

SlPgPoolRgn

Part1PgPoolRgn

Part2PgPoolRgn

Virtual address space
(Space for static
protection domains;
should be completely
available)

Start: PhysicalMemory/@Base_Address(0x20000000)
End: PhysicalMemory/@Base_Address + KernelConfiguration/
@addressSpaceSize (0x80000000)

Partitions
Start: kernelConfiguration/@partitionVirtualAddress (0x28000000)
End: kernelConfiguration/@partitionVirtualAddress + PD_DEFAULT_SIZE
(0x30000000)

Ending address (Default): PhysicalMemory/@Base_Address + KernelConfiguration/@addressSpaceSize
(0x80000000)

6 Tools
6.6 VxWorks 653 Simulator

77

6

Failed to allocate 0x400000 at 0x20000000
Trying to find a valid configuration:
Please update memory configuration of your kernel domain.
Update Physical Regions Parameters with the following values :
KERNEL_MEM_POOL_RGN_LOG_START: 0x20400000
...
If kernelMemPool is modified then you also have to modify TEXT_VIRT_ADDR
and VIRT_ADDR parameters in kernel domain’s attributes.

To update the KernelMemPool region start address, you need to update the
HardwareConfiguration/PhysicalMemory/@BaseAddress attribute in the
CoreOSDescription document.

Core OS Memory Attributes

If you modified the kernel memory pool configuration, you must also update
related core OS attributes in the CoreOSDescription document. Change the value
of the attribute:

KernelConfiguration/@kernelVirtualAddress

to be equal to:

HardwareConfiguration/PhysicalMemory/@Base_Address + 0x10000

Application Base Address Not Available

The default application domain base address may also be unavailable. In such a
case, the following error message is output to the simulator console:

Can’t reserve user PD address space at 0x60000000
Please update PD_DEFAULT_BASE_ADRS parameter (PD component) with the
value 0x60600000.

Update the attribute KernelConfiguration/@partitionVirtualAddress in the
CoreOSDescription document to the specified value.

ADR_SPACE_BASE

The last parameters shown on the memory map are
PhysicalMemory/@Base_Address and
KernelConfiguration/@addressSpaceSize. The run-time side checks and isolates
blocks in this range already used by the process. However, when building static
protection domains, they are mapped starting at
PhysicalMemory/@Base_Address, by default. In such a case, the following
message results:

Wind River Workbench
User's Guide, 2.6.1

78

Can’t use virtual address space at 0x22400000 for domain simpc_eliza_lib

Please update ADR_SPACE_BASE parameter (ADR_SPACE_LIB component) and
PD_BASE_ADDR (PD component) with the value 0x22600000.

Domain init failed for ‘simpc_eliza_lib‘
pdBootCreate: 0x7f0004
Simulator stopped
Hit any key to Exit

To fix this problem, modify the KernelConfiguration/@addressSpaceSize
attribute of the CoreOSDescription document.

Interrupts

Windows messages are used to simulate hardware interrupts. For example, the
simulator uses messages 0xc000 through 0xc010 to simulate interrupts from the
pipe back end. The messages are the simulator equivalent to ISRs on other
VxWorks 653 targets. You can install ISRs in the simulator to handle these
simulated interrupts. Not all VxWorks 653 routines can be called from ISRs; see
VxWorks AE Programmer’s Guide: Multitasking. To run ISR code during a future
system clock interrupt, use the watchdog timer facilities. To run ISR code during
auxiliary clock interrupts, use the sysAuxClkxxx() functions.

Table 6-4 shows how the message table is set up.

Pseudo-drivers can be created to use these interrupts. Interrupt code must be
connected with the standard VxWorks intConnect() mechanism.

For example, to install an ISR that logs a message whenever host message
WM_TIMER_CLOCK arrives, execute the following from the shell:

[vxKernel] -> intConnect (0xc011, logMsg, "Help!\n")

Then send message 0xc011 to the simulator from a host task. Every time the
message is received, the ISR (logMsg() in this case) runs.

If a simulator task reads from a host device, the task would normally block while
reading; however, this would stop the simulator process entirely until data is
ready. Instead, the device is put into asynchronous mode so that a message is sent

Table 6-4 Interrupt Assignments

Interrupts Assigned To

0xc000-0xc010 host messages

0xc011 on available for user messages

6 Tools
6.7 Configuration and Build Tools

79

6

whenever data becomes ready. In this case, an input ISR reads the data, puts it in
a buffer, and unblocks some waiting task.

Since the simulator uses the task’s stack when taking interrupts, the task stacks are
artificially inflated to compensate.

Clock and Timing Issues

The execution times of simulator functions are not, in general, the same as on a real
target. For example, the VxWorks intLock() routine is normally very fast because
it just writes to the processor status register. However, under the simulator,
intLock() is relatively slow because it takes a host semaphore, allowing other
processes to run.

The simulator is not a target, and, therefore, has no target clock. Clock facilities are
provided by the host thread sending messages for both the system and auxiliary
clocks. This technique produces inaccurate timings when the simulator is swapped
out as a host process. However, in general, the timing of the simulator is different
from an actual target.

The spy() facility is built on top of the auxiliary clock. The task monitoring occurs
during each interrupt of the auxiliary clock to see which task is executing or
whether the kernel is executing. Because the profiling timer includes host system
time and user time, discrepancies can occur, especially if intensive host I/O occurs.

6.7 Configuration and Build Tools

This section lists the tools used in the configuration and build process for VxWorks
653

NOTE: Because the simulator is a host process, it shares resources with all other
processes and is swapped in and out. In addition, the kernel’s idle loop has been
modified to suspend the simulator until a signal arrives (rather than busy waiting),
thus allowing other processes to run.

NOTE: Not all the applications used in the configuration and build process are
invoked directly by the user. In some cases, the tools are invoked by other tools.

Wind River Workbench
User's Guide, 2.6.1

80

6.7.1 XMLGen

XMLGen is wrapper around a collection of tools used to build different elements
of a system. These tools read XML configuration files and create various files
required by the build. For help, see the reference entry for XMLGen. For help on
the underlying tools, see the reference entries for the following:

■ xmlBinFlagsGen
■ xmlCfgGen
■ xmlFileListGen
■ xmlLinkageGen
■ xmlLdsGen
■ xmlMemMacrosGen
■ xmlNetbootGen
■ bbSizeCheck
■ xmlVirtAddrGen

Shared library Virtual Address

You can use XMLGen to calculate a virtual address for a shared library:

1. If you have a Module configuration file for your module, you can use it in the
steps that follow. If not, create an XML file named temp-module.xml in the
same directory as your shared library files list each of your shared libraries,
following the format of a normal Module configuration document:

<Module>
 <CoreOS>

<xi:include href="bsp.xml"/>
 </CoreOS>
 <SharedLibraryRegions>

<SharedLibrary Name="pos">
 <xi:include href="hello-pos.xml"/>
</SharedLibrary>

 </SharedLibraryRegions>
</Module>

2. Open your shared library configuration file and completely remove the
SharedLibraryDescription/@VirtualAddress attribute. Make sure that you
remove both the attribute and its value, not just the value.

3. Open the VxWorks 653 Development Shell and change the current directory
to your shared library project directory.

4. Run the following command:

xmlgen --virtAddr --region pos temp-module.xml

The command will print out a hexadecimal number. For example:

6 Tools
6.7 Configuration and Build Tools

81

6

0x10000000

This value is a virtual address that is suitable for loading the system shared
library that contains the partition operating system.

5. Open the SharedLibraryDescription document for your shared library and
restore the virtual address attribute in its original place. For example, the file
will now look something like this:

<SharedLibraryDescription
 xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.windriver.com/vxWorks653/ConfigRecord
target/config/xml/cleanschema/Application.xsd"
 SystemSharedLibrary="true"
 VirtualAddress="0x10000000">
 <MemorySize

MemorySizeBss="0x4000"
MemorySizeText="0x40000"
MemorySizeData="0x8000"
MemorySizeRoData="0x4000"
/>

</SharedLibraryDescription>

6.7.2 crDump

The configuration and build procedures no longer produce the following files:

■ configRecord.c
■ prjMemConfig.c
■ payloadMap.c
■ payloadMap_ram.c
■ payloadMap_rom.c

Since these files can be useful for debugging, you can use the crDump utility to
create these files from configRecord.reloc, payloadMap_ram.o, and
payloadMap_rom.o.

crDump is provided in two versions based on the platform for which the system
was built. The two versions are:

■ crDumppentium

■ crDumpppc

To create configRecord.c and prjMemConfig.c enter the following command:

crDumppentium configRecord.reloc

or

Wind River Workbench
User's Guide, 2.6.1

82

crDumpppc configRecord.reloc

To create the payload map files, enter the following commands:

crDumppentium payloadMap_ram.o
crDumppentium payloadMap_rom.o

or

crDumpppc payloadMap_ram.o
crDumpppc payloadMap_rom.o

6.7.3 VxWorks 653 2.2 Development Shell

The VxWorks 653 2.2 Development Shell is used to run the VxWorks 653
configuration and build tools. You can start the Development Shell from the
program list
Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell.

6.7.4 VerIMAx

VerIMAx is an XML processing and validation tool for the XML configuration
schemas. It is used for the following purposes:

Generating the Configuration Record

VerIMAx is used by the build tools to create a binary configuration file
(configRecord.reloc/configRecord.bin) and a payload manifest
(payloadMap_ram.o or payloadMap_rom.o) from the Module configuration
document.

Checking Consistency

You can use VerIMAx independently of the build process to check your
configuration files for errors. The check ensures that your configuration file
follows the business rules implemented by VerIMAx. To use the checker feature
you must use a special version of the schemas which includes the business rule
information used by VerIMAx. These schema are found in the directory
installDir/target/config/xml/schema/checker/arch/[ppc|simnt]. They have the
same names as the regular schemas, but the names are prefixed by “VXCC_”, so
that Module.xsd becomes VXCC_Module.xsd.

To check your Module configuration document, run the following command:

6 Tools
6.7 Configuration and Build Tools

83

6

VerIMAx
installDir/target/config/xml/schema/checker/arch/[ppc|simnt]/VXCC_Module.xsd
my-module.xml

You can also use VerIMAx to check any of the component XML configuration files.
For instance, to check your ApplicationDescription document, run the following
command:

VerIMAx
installDir/target/config/xml/schema/checker/arch/[ppc|simnt]/VXCC_Application.xsd
my-application.xml

6.7.5 Table Viewer

Table Viewer is a combination of two tools, VerIMAx and VeroStyle which are
used together to generate and format reports on various aspects of the
configuration of a module and its constituent parts.

The Table Viewer can generate reports for each of the following:

■ ACE
■ applications
■ core OS
■ the health monitor
■ memory layout
■ modules
■ partitions
■ payloads
■ port connections
■ pseudo-partitions
■ schedules
■ shared data
■ shared libraries
■ Wind River extensions

For each report, an XML report file is generated. The XML report file can be
translated into HTML and Microsoft Word (DOC) format for easier printing and
reviewing using VeroStyle.

Generating a Complete Set of Reports

You can use the sample script to generate a complete set of reports using the
following procedure:

Wind River Workbench
User's Guide, 2.6.1

84

1. Create configRecord.xml as described in the VxWorks 653 Configuration and
Build Guide.

2. Locate the directory that contains the configRecord.xml file in the build
output. In the instructions that follow, this directory will be referred to as
configDir.

3. Copy the installDir/target/config/xml/tabgen directory and all its contents to
configDir, so that you have a configDir/tabgen directory.

4. Copy configDir/tabgen/sample.bat to configDir.

5. Open a command prompt and run:

installDir/host/WIND_HOST_TYPE/bin/torVars

6. Change to configDir and run the sample script, specifying the name of the
configRecord.xml file:

sample configRecord.xml

The reports, in HTML and DOC format, are created in configDir.

To create a subset of the reports, you may edit the sample script to specify only
those reports that you want to create. You may also generate reports from any of
the XML configuration files (ApplicationDescription, CoreOSDescription, etc.)
however, you must use configRecord.xml if you want a report that includes the
memory allocations created by the build tools. An error will occur if you request a
report and specify a configuration file that does not contain the information
required for the report.

Generating Individual Reports

To create an individual report, use the following procedure:

Step 1: Select the appropriate input file.

Reports are based on XML configuration files. You can generate all reports from
the configRecord.xml file generated by the build process. You may also generate
reports from any of the XML configuration files (ApplicationDescription,
CoreOSDescription, etc.) however, you must use configRecord.xml if you want a
report that includes the memory allocations created by the build tools. An error
will occur if you request a report and specify a configuration file that does not
contain the information required for the report.

In the instructions that follow, configRecord.xml will be used to illustrate the
command. You may substitute any appropriate configuration file.

6 Tools
6.7 Configuration and Build Tools

85

6

For information of building configRecord.xml, see the VxWorks 653 Configuration
and Build Guide.

Step 2: Select the report to run.

Each report is created using a different schema file. Select the report you want to
run from the list in Table 6-5 and note the associated schema file. In the steps that
follow, the module table report will be created using the
moduleTable/VXMT_WR_ConfigRecord.xsd schema.

Table 6-5 XML Report Types and Filenames

Report Type schemaFile Report Output File

ACE table ACETable/VXACET_WR_
ConfigRecord.xsd

AceTable.xml

Application tables applicationTable/VXAT_WR_
ConfigRecord.xsd

ApplicationTable.xml

Core OS table coreOSTable/VXCOST_WR_
ConfigRecord.xsd

CoreOSTable.xml

Port connection data connectionTable/VXCT_WR_
ConfigRecord.xsd

ConnectionTable.xml

Health management
tables

healthMonitorTables/\VXHMT_WR_
ConfigRecord.xsd

HealthMonitorTables.xml

Memory layout tables memoryLayoutTable/VXMLT_WR_
ConfigRecord.xsd

MemoryLayoutTable.xml

Module tables moduleTable/VXMT_WR_
ConfigRecord.xsd

ModuleTable.xml

Payload tables payloadsTable/VXPLT_WR_
ConfigRecord.xsd

PayloadsTable.xml

Pseudo-partition table pseudoPartitionTable/VXPPT_WR_
ConfigRecord.xsd

PseudoPartitionTable.xml

Partition tables partitionTable/VXPT_WR_
ConfigRecord.xsd

PartitionTable.xml

Shared data tables sharedDataTable/VXSDT_WR_
ConfigRecord.xsd

SharedDataTable.xml

Wind River Workbench
User's Guide, 2.6.1

86

Step 3: Generate XML Report Files.

Generate an XML report file using VerIMAx.exe:

1. Open the VxWorks 653 Development Shell.

2. Change to the directory that contains your configRecord.xml file.

3. Create the XML report file by running VerIMAx and specifying the schema
that corresponds to the report you want to create and the XML configuration
file to report on:

VerIMAx %WIND_BASE%/target/config/xml/schema/tabgen/moduleTable/
VXMT_WR_ConfigRecord.xsd configRecord.xml

The XML report file is generated in the current directory. The filenames of
XML report files are listed in Table 6-5.

Step 4: Format the Report Files.

You can format the reports in HTML or DOC format using VeroStyle. VeroStyle
requires a driver file for each report file. These driver files are shown in Table 6-6.

Shared library tables sharedLibraryTable/VXSLT_WR_
ConfigRecord.xsd

SharedLibraryTable.xml

Schedule tables schedulesTable/VXST_WR_
ConfigRecord.xsd

SchedulesTable.xml

Wind River extension
table

WindRiverExtensionsTable/
VXWRET_WR_ConfigRecord.xsd

WRExtensionsTable.xml

Table 6-5 XML Report Types and Filenames (cont’d)

Report Type schemaFile Report Output File

Table 6-6 XML Report Files, Driver Files, and Output Files

XML Report File driverFile Output Files

AceTable.xml tabgen/drivers/AceTable.txt AceTable.doc
AceTable.htm

ApplicationTable.xml tabgen/drivers/ApplicationTable.txt ApplicationTable.doc
ApplicationTable.htm

CoreOSTable.xml tabgen/drivers/CoreOSTable.txt CoreOSTable.doc
CoreOSTable.htm

6 Tools
6.7 Configuration and Build Tools

87

6

The tabgen/drivers/ModuleTable.txt driver file will be used in the procedure that
follows.

1. Copy the installDir/target/config/xml/tabgen directory and all of its contents
to the directory that contains the XML report file (ModuleTable.xml in this
example).

ConnectionTable.xml tabgen/drivers/ConnectionTable.txt ConnectionTableApp.doc
ConnectionTableApp.htm
ConnectionTablePart.doc
ConnectionTablePart.htm

HealthMonitorTables.xml tabgen/drivers/HMTable.txt HealthMonitorTables.doc
HealthMonitorTables.htm

MemoryLayoutTable.xml tabgen/drivers/MemoryLayoutTable.txt MemoryLayoutTable.doc
MemoryLayoutTable.htm

ModuleTable.xml tabgen/drivers/ModuleTable.txt ModuleTable.doc
ModuleTable.htm

PayloadsTable.xml tabgen/drivers/PayloadsTable.txt PayloadsTable.doc
PayloadsTable.htm

PseudoPartitionTable.xml tabgen/drivers/PseudoPartitionTable.txt PseudoPartitionTable.doc
PseudoPartitionTable.htm

PartitionTable.xml tabgen/drivers/PartitionTable.txt PartitionTable.doc
PartitionTable.htm

SharedDataTable.xml tabgen/drivers/SharedDataTable.txt SharedDataTable.doc
SharedDataTable.htm

SharedLibraryTable.xml tabgen/drivers/SharedLibraryTable.txt SharedLibraryTable.doc
SharedLibraryTable.htm

SchedulesTable.xml tabgen/drivers/SchedulesTable.txt SchedulesTable.doc
SchedulesTable.htm

WRExtensionsTable.xml tabgen/drivers/WRExtensionsTable.txt WRExtensionsTable.doc
WRExtensionsTable.htm

Table 6-6 XML Report Files, Driver Files, and Output Files (cont’d)

XML Report File driverFile Output Files

Wind River Workbench
User's Guide, 2.6.1

88

2. Format the report by running VeroStyle and specifying the name of the driver
file to use:

VeroStyle tabgen/drivers/ModuleTable.txt

The formatted HTML and DOC files are created in the current working
directory.

6.7.6 VeroStyle

VeroStyle is a formatting application used with the table viewer function of
VerIMAx. See 6.7.4 VerIMAx, p.82 for details.

89

 A
Debugger Tutorial

A.1 Introduction 89

A.2 Debugger Tutorial 89

A.1 Introduction

This tutorial is intended to assist you in understanding the steps required to attach
the debugger to your system running on a target. Because VxWorks 653 projects
are not supported on Workbench 2.6.1, you cannot use Workbench projects and
launch configurations to attach the debugger to your system. For more
information, see 5. Debug.

A.2 Debugger Tutorial

This tutorial will use the demo project found at
installDir/vxworks653-2.2/target/src/demos/simple653Module.

To run the demo:

Wind River Workbench
User's Guide, 2.6.1

90

Step 1: Build the demo project

You must build the demo project for the target you are using. Since each target has
a different memory map, some memory values have to be specified during the
build process. Depending on the target and BSP you are using, you may find that
you have to make additional configuration changes to get the demo to build. For
more information on the configuration and build system, see the VxWorks 653
Configuration and Build Guide.

To build the demo project:

1. From the program list, select
Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell. The
VxWorks 653 Development Shell opens.

2. Change to the demo directory:

cd vxworks653-2.2/target/src/demos/simple653Module

3. Type make specifying the “create” target and giving the appropriate values for
the BSP and CPU build variables. For instance, to build for the simulator, you
would run:

make CPU=SIMNT BSP=simpc create

This creates a build project in the directory
vxworks653-2.2/target/proj/BSP_simple653Module. For example, if you were
building for the simulator, the build project would be created in
vxworks653-2.2/target/proj/simpc_simple653Module.

4. In the project directory created by the previous step, locate and open the file
pos.xml. This file is the SharedLibraryDescription document for the partition
OS.

5. Replace the string $(SSL_ADDR) with an appropriate virtual address. You can
find a suitable default in the BSP directory for your BSP in the file
BSP_default.xml. For example, the default value for the simulator, as defined
in the file installDir/vxworks653-2.2/target/config/simpc/simpc_default.xml
is 0x50000000.

6. Determine the default partition virtual address for your BSP. This is found in
the CoreOSDescription document for your BSP, which is named BSP.xml. For
example, the name of the CoreOSDescription document for the simulator is
simpc.xml. The value of the partition virtual address is found in the attribute
/CoreOSDescription/@partitionVirtualAddress. For example, the default
value for the simulator, as defined in the file
installDir/vxworks653-2.2/target/config/simpc/simpc.xml is 0x28000000.

A Debugger Tutorial
A.2 Debugger Tutorial

91

A

7. In the VxWorks Development Shell enter the make command using the
buildproj target and specifying the appropriate values for the CPU, BSP, and
PARTADDR (partition virtual address) build variables. For instance, to build
for the simulator you would use the following command:

make CPU=SIMNT BSP=simpc PARTADDR=0x28000000 buildproj

The project will be built.

Step 2: Run the demo system on the simulator

To run the demo project on the simulator:

1. Open Workbench.

2. Bypass any introductory screens until you get to the
Application Development perspective. If you are asked to select a workspace,
accept the default. For information on the Application Development
perspective, press the help key.

3. Locate the Target Manager view. It should appear similar to the illustration
below.

4. Select Target > New Connection. The New Connection dialog appears.

5. Select Wind River VxWorks 653 Simulator Connection and click Next.

6. Select the Custom Simulator option. The VxWorks 653 Boot File field
becomes available.

7. Click Browse and select the file
installDir/vxworks653-2.2/target/proj/CPU_simple653Module/integration/b
oot.txt.

8. Click Next until the Target State Refresh page is displayed.

Wind River Workbench
User's Guide, 2.6.1

92

9. Check all the items under the heading Initial Target State Query Settings.

10. Click Next until the Connection Summary page is displayed.

11. Verify that Immediately Connect to Target if Possible is checked.

12. Click Finish. The simulator console opens, showing the output as the module
boots and the applications in the project begin to run and produce output.

Within Workbench, the connection is displayed in the Target Manager. It may
take some time for the simulator to finish booting and for the connection to the
target to be completed. When the connection is complete, the Target Manager
view will look something like this:

A Debugger Tutorial
A.2 Debugger Tutorial

93

A

For an explanation of the Target Manager display for VxWorks 653 systems, see
Understanding the Target Manager Display, p.36. For more information on the Target
Manager, see the User Interface Reference.

Step 3: Attach a kernel task (task mode)

You are now ready to debug a kernel task. Workbench allows you to debug an
existing kernel task or to spawn and debug a new kernel task. In this step you will
debug an existing kernel task. In the next step you will spawn and debug a new
kernel task.

1. In order to debug an existing task, you must attach the debugger to the
running task. To do this, expand the Kernel Tasks item in the Target Manager
and select tPortRepTask.

2. Select Target > Attatch to Kernel Task. The debugger attaches to the task and
the task is displayed in the Debug view.

3. Select tPortRepTask in the debug view.

Wind River Workbench
User's Guide, 2.6.1

94

4. Click the Suspend button on the Debug view toolbar. The task is stopped. Its
stack trace is displayed in the Debug view, and the Assembly view opens
showing the current execution point. (Source code view for kernel tasks is not
available unless you have access to the kernel source and have compiled the
kernel with debug symbols.)

5. Click the Resume button on the Debug view toolbar.

6. Click the Disconnect button on the Debug view toolbar. The debugger
connection to the task is terminated

7. Click the Remove All Terminated button in the Debug view. This clears the
Debug view.

Step 4: Spawn and attach a kernel task (task mode)

To spawn and debug a kernel task:

1. In the Target Manager, select the Kernel Tasks item.

2. Select Target > Debug > Debug Kernel Task. The Debug dialog is displayed.

3. On the Main tab, enter “printf” in the Entry Point field and “test” in the
Arguments field (without the quotes).

4. In the Debug Options tab, make sure that Break on Entry and
Automatically attach spawned Kernel Tasks are checked.

5. Click Debug. The task is added to the Debug view and the assembly code is
shown in the Assembly view.

A Debugger Tutorial
A.2 Debugger Tutorial

95

A

Step 5: Step through the task

1. Use the step controls on the Debug view toolbar to step through the code.
Observe that the recently executed lines are shaded in progressively lighter
tones as you step.

2. Click the Resume button on the Debug view toolbar. The string “test” is
printed in the simulator console and the task exits. The debugger connection
to the task is terminated.

3. Click the Remove All Terminated button in the Debug view. This clears the
Debug view.

Step 6: Attach to a partition task

You can attach the debugger to a partition task.

1. In the Target Manager, collapse the list of kernel tasks.

2. Expand the protection domains item. The list of protection domains is
displayed. Protection domains include partitions, shared libraries, and other
domains.

3. Expand the part1 partition item. The partition task, tPart1 is shown. Select
tPart1. (If tPart1 is not listed, right click part1 and select Refresh. tPart1 should
appear.)

Wind River Workbench
User's Guide, 2.6.1

96

4. Select Target > Attach to protection domain task. The task is displayed in the
Debug view.

A Debugger Tutorial
A.2 Debugger Tutorial

97

A

Note that the tPart1 task is shown at the same level as the threads running
within the task. It is the first item in the list and is distinguished by a different
icon.

Step 7: Open a source code file and set a breakpoint

You can now open the source code file for this task and associate it with the debug
session. Depending on how your project is configured, Workbench may be able to
associate the source code files with the project automatically. However, following
the procedure below assures that the association is made.

1. Select File > Open File and open the file
installDir/vxworks653-2.2/target/proj/BSP_simple653Module/part1/tp_api.c.
The file is displayed in the Editor view.

2. Locate the tp_printfStub function in the source code file.

3. Locate the first executable line of the function (the first if statement).

4. Right-click in the gutter next to that line (not on the line itself, but in the gutter)
and select Breakpoints > Add breakpoint.

5. Select the Source Lookup tab.

6. In the Source Lookup tab, click the Edit Source Lookup button. The
Edit Source Lookup Dialog is displayed.

7. Click Add. The Add Source dialog is displayed.

8. Select File System Directory and click OK. The Directory Selection dialog is
displayed.

9. Select installDir/vxworks653-2.2/target/proj/simple653Module/part1 and
click OK.

10. Click OK to close the Edit Source Lookup Path dialog.

11. Click OK to close the Line Breakpoint Properties dialog. The breakpoint is
set.

12. Wait for the system to hit the breakpoint. This should happen momentarily.

Step 8: Step through the function

You can now step through the function using the step controls on the Debug view
toolbar. (For more information on the step controls, press the help key).

Wind River Workbench
User's Guide, 2.6.1

98

1. Experiment with the step controls.

2. When you have finished experimenting, remove the breakpoint by selecting
Run > Remove All Breakpoints.

3. Resume the thread by clicking the Resume button on the Debug view toolbar.

4. Close the tp_api.c file in the Editor view.

Step 9: Set an expression breakpoint

1. Ensure that tPart1 is selected in the Debug view.

1. Select Run > Breakpoints > Add Expression Breakpoint. The
Expression Breakpoint Properties dialog is displayed.

2. In the Location Expression field of the General tab, enter the function name
“tp_printfStub”

3. Select the Scope tab.

4. Ensure that Enable restricting of breakpoint scope is checked and that
Enable scoping to debug targets and threads is not checked.

5. Ensure the Show only active launch configurations is checked. The list of
launch configurations will be restricted to those active in the debugger.

6. Expand the part1 partition and ensure that the tPart1 partition task is selected.

7. Click OK. The breakpoint is set.

8. Wait for the system to hit the breakpoint. This should happen momentarily.
When the breakpoint is hit, Workbench will open the source file and display

A Debugger Tutorial
A.2 Debugger Tutorial

99

A

the line where the breakpoint was hit. (If Workbench cannot locate the file, it
will prompt you to specify its location.)

9. Remove the breakpoint, resume the partition, and close the source file.

Step 10: Use the symbol browser

You can use the symbol browser to navigate the symbols in the tasks that are
attached to the debugger.

1. Locate the Symbol Browser view. If it is hidden behind another view, click its
tab to bring it forward. If it is not visible, select it from Window > Show View.

2. Click the Show Symbols Loaded by the debugger button on the
Symbol Browser tool bar. (It is the one at the right with a bug on it.) The view
is populated with a long list of symbols.

3. In the Name Filter field of the Symbol Browser toolbar, enter:

tp_printfStub

The list of symbols is restricted to those whose names start with tp_printfStub.

4. Double-click on the tp_printfStub symbol. Workbench opens the source file in
the Edit view and displays the function definition for tp_printfStub.

Step 11: Set a breakpoint in a thread

While it is not possible to step through a thread, it is possible to set a breakpoint in
a thread. (This means that the breakpoint will be hit only when the code is
executing in the thread specified, not when that code is executed by another
thread.)

1. Locate the tp_printfStub function in the source code file.

Wind River Workbench
User's Guide, 2.6.1

100

2. Locate the first executable line of the function (the first if statement).

3. Right click in the gutter next to that line (not on the line itself, but in the gutter)
and select Breakpoints > Add Breakpoint.

4. Select the Source Lookup tab and confirm that the source lookup settings are
correct.

5. Select the Scope tab.

6. Check Enable scoping to debug targets and threads. This allows you to
specify which threads the breakpoint applies to.

7. Check thread tp3_1 and clear all the other threads.

A Debugger Tutorial
A.2 Debugger Tutorial

101

A

8. Click OK. The breakpoint is set.

9. Wait for the system to hit the breakpoint. This should happen momentarily.

10. Click the Resume button on the Debug view toolbar. You cannot use the step
controls because stepping through a thread is not supported.

11. Click the Disconnect button on the Debug view toolbar. The debugger
connection to the task is terminated.

12. Click the Remove All Terminated button on the Debug view toolbar. This
clears the Debug view.

Step 12: Debug the kernel in system mode

In this step you will debug the kernel in system mode. In system mode, you can
attach to a system task or the whole system, but when you step, you step the whole
system, not the individual task.

1. Switch the debugger to system mode by selecting the system item (the item
labeled SIMNT (VxWorks653 2.2) in the Target Manager and selecting
Target >Target Mode > System.

2. Attach the debugger to the kernel by selecting the system item in the
Target Manager and selecting Target > Attach to Kernel (System Mode). The
debugger attaches to the task and the task is displayed in the Debug view. The
Debug view displays the system:

3. You will now set a breakpoint on the write routine in the kernel. Select
Run > Breakpoints >Add Expression Breakpoint. The
Expression Breakpoint Properties dialog is displayed.

Wind River Workbench
User's Guide, 2.6.1

102

4. In the Location Expression field of the General tab, enter “write” (without the
quotes). The information panel of the dialog will show the location of the
symbol.

5. On the Scope tab of the dialog, ensure that
Enable restricting of breakpoint scope is checked and that the system you are
debugging is checked.

6. Click OK. The breakpoint is set.

7. Wait for the breakpoint to be hit. This should happen momentarily. The Debug
view shows the system stopped and displays a stack trace.

A Debugger Tutorial
A.2 Debugger Tutorial

103

A

8. You can now experiment with stepping through code and viewing values.

9. When you have finished experimenting, you can close the connection to the
debugger. If the system is stopped, remove the breakpoint and click the
Resume button on the Debug view toolbar.

10. Click the Disconnect button on the Debug view toolbar. The debugger
connection to the task is terminated.

11. Click the Remove All Terminated button on the Debug view toolbar. This
clears the Debug view.

Step 13: Debugging a partition in system mode

You can debug a partition in system mode.

1. In the Target Manager, select SIMNT (vxworks653 2.2).

2. Select Target > Attach to kernel (System Mode). The Debug view will show
the system.

3. In the Target Manager, select the tPart1 item.

4. Select Target > Attach to Protection domain task (System Mode). If the menu
shows Attach to Protection domain task (Task Mode), then select
Target > Target Mode > System, then select
Target > Attach to Protection domain task (System Mode). The Debug view
will show the partition.

Wind River Workbench
User's Guide, 2.6.1

104

5. You can now set a breakpoint in the partition. Select
Run > Breakpoints > Add Expression Breakpoint. The
Expression Breakpoint Properties dialog is displayed.

6. In the Location Expression field of the General tab, enter the expression
“tp_printfStub” (without the quotes). The information panel of the dialog will
show the location of the symbol.

7. On the Scope tab of the dialog, ensure that
Enable restricting of breakpoint scope is checked.

8. Ensure that tPart1 is part of the selected scope (the scope cannot be limited to
tPart1 alone).

9. Click OK. The breakpoint is set.

10. Wait for the breakpoint to be hit. This should happen momentarily. The Debug
view will show that the system is stopped and will display a stack trace.

11. You can now step the system. In system mode you can only step the system.
You cannot step tPart1. Experiment with stepping and viewing variables.

12. When you are finished, resume the system and disconnect the debugger.

105

 B
Glossary

acceptance

Acceptance is the acknowledgement by a certification authority that the ARINC
653 module, application, or system meets its defined requirements.

ACE

ACE: Agent for the Certified Environment.

AFDX

AFDX: Avionics Full Duplex Switched Ethernet. It is defined by the ARINC 664
specification, Part 7.

alarm

In the context of health monitoring, an alarm is an event. See also message.

AMIO

Applications multiplexed I/O (AMIO) allows you to provide input to and view
output from multiple partitions over a single serial connection.

APEX

APEX: Application/Executive. The general-purpose interface between an OS and
application software, specified by the ARINC 653 specification. The specification
includes the list of services that lets the application control scheduling,
communication, and status information of its internal processing elements.

Wind River Workbench
User's Guide, 2.6.1

106

APEX port

APEX port: see port.

API

API: application programming interface.

application

An application is a collection of software components that together perform a
specific function in an embedded system. See also application partition.

application developer

An application developer develops one or more applications that will reside in a
partition. This person or group may also be responsible for developing data
binaries, which contain any databases used by the application. See also platform
provider and system integrator.

application partition

An application partition is a partition that includes an application.

APPS

APPS: ARINC PPS. It is the module-wide scheduling scheme for partitions. This is
a combination of ARINC 653 scheduling (TPS) and PPS scheduling in which the
PPS scheme is used during idle time within the TPS scheme. The scheduling
scheme applies to all PPS-enabled partitions in the module.

ARINC 653

ARINC 653 refers to ARINC Specification 653: the “Avionics Application Software
Standard Interface.”

ARINC 653 scheduling

ARINC 653 scheduling is the scheduling that is specified by the ARINC 653
specification. It is time-preemptive scheduling (TPS). See also APPS scheduling
and PPS scheduling.

ARINC PPS

ARINC PPS: see APPS scheduling.

B Glossary

107

B

black box

A black box is a set of configuration parameters that represent the memory
requirements of an application, a shared library, or the core OS. The use of black
boxes allows a VxWorks 653 module to be configured before all the applications
and libraries are available. Applications, libraries, and the core OS must fit within
the memory limits set by their black boxes.

board support package

BSP: board support package. It provides the libraries required to support a
platform on a particular board. The BSP, along with the kernel and user-supplied
extensions, makes up the core OS.

BSP

BSP: see board support package.

BSP developer

A BSP developer is a person or organization responsible for the development of a
board support package.

BSS

BSS: block started by symbol. It is a data section in an ELF file that contains
uninitialized global and static variables that are zeroed.

build spec

A build spec specifies compiler and linker options to produce particular output,
such as cert, debug, and release.

callback routine

In the context of health monitoring, a callback routine is called when an event
arrives at a partition health monitor task or module health monitor task. It is called
before the handler for the given event is called.

CDF

CDF: component description file. It has the .cdf extension. It uses the component
description language (CDL) to name and give values to the parameters of VxWorks
653 components.

Wind River Workbench
User's Guide, 2.6.1

108

cert

cert is the build spec that produces a certifiable image.

certifiable

An image that is certifiable can be certified to a specific level of the DO-178B
avionics software standard.

certifiable subset

A certifiable subset is a subset of the core OS or a partition OS that can be certifiable
to Level A of the DO-178B avionics software standard.

certification

Certification refers to certification to a specific level of the DO-178B avionics
software standard.

channel

A channel defines a logical link between one source port and one or more
destination ports. It also defines the message transfer mode and the characteristics
of the messages. Channels are used for inter-partition communication, which can
be between local partitions and/or pseudo-partitions. Channels conform to the
ARINC 653 specification.

COIL

COIL: core OS interface library. A partition OS that provides a library of routines
independent of the vThreads partition OS. The library supports the management
of interrupts and exceptions, device I/O, interpartition messaging, and injection of
health monitoring events.

COIL partition

A COIL partition is a partition whose partition OS is based on COIL. See also
vThreads partition.

cold restart

A cold restart occurs when a module or partition is restarted and all data is
reloaded. A cold restart takes longer than a warm restart.

B Glossary

109

B

configlette

A configlette is a component or part of a component that is distributed in source
form, allowing compile time parameters to be set when the component is included
in a build.

configuration parameter

A configuration parameter is used to change the configuration of VxWorks 653
component.

configuration record

A configuration record is a record of the information that makes up the
configuration of a VxWorks 653 module or a part of it. Configuration records
include both the system configuration record and user configuration records.

core OS

The core OS is the core operating system for a VxWorks 653 module. It provides
fundamental operating system services and schedules partitions.

core OS interface library

Core OS interface library: see COIL.

CPU page size

The CPU page size is the smallest addressable unit of memory for the MMU. It is
also called MMU page size. The page size depends on the CPU and is generally not
configurable.

cross-development tools

Cross-development tools are programs that run on a host computer (running, for
example, Windows or UNIX) and that are used to develop, debug, or control
software running on an embedded processor, which is running a real-time
operating system (for example, VxWorks 653). For VxWorks 653, the
cross-development tools are based on Workbench. See also run-time software.

current partition

The current partition is the partition that is running. In an APPS scheduling
environment, the current partition and the TPS partition may not be the same.

Wind River Workbench
User's Guide, 2.6.1

110

default schedule

The schedule that will be run when the module is booted.

destination port

A destination port is one of possibly many ports at the receiving end of a channel.
See also source port.

direct-access port

A direct-access port is a type of pseudo-port which does not use software
buffering. Buffering support is assumed to be provided by the communications
hardware.

DO-178B

DO-178B: “Software Considerations in Airborne Systems and Equipment
Certification.” The avionics software standard developed by RTCA.

domain

A domain is a software container. Each element of a VxWorks 653 module—the
core OS (kernel), partitions (applications), shared libraries, system shared libraries,
and shared data regions—exists in a domain.

dynamic memory allocation

Dynamic memory allocation refers to allocating memory from the heap at runtime.

EABI

EABI: Embedded Application Binary Interface.

ELF

ELF: Executable and Linking Format. It is an object module format used to
encapsulate compiled software.

error handler process

See process health monitor.

B Glossary

111

B

event

In the context of health monitoring, an event is the base unit that is injected into the
event handling framework. It could represent an alarm or a message, depending
on the event code.

event code number

In the context of health monitoring, an event code number is the value of the event
code, as defined in the HM_CODE enumeration type in hmTypes.h.

event queue

The module health monitor table and partition health monitor table each have an
event queue. The module and partition health monitor event queues are
sometimes called, simply, the module and partition health monitor queues. An
event queue holds the events that have been dispatched to its associated health
monitor for handling. Event queues are serviced before health monitor notification
queues are serviced.

FAA

FAA: U.S. Federal Aviation Administration.

FIFO

FIFO: first-in, first-out queuing.

global file descriptor

Global file descriptors (standard in, standard out, and standard error) are available
to all tasks in a partition. Their global assignment is controlled by the
ioGlobalStdSet() and ioGlobalStdGet() routines, but may be overridden by the
ioTaskStdSet() and ioTaskStdGet() routines.

GUI

GUI: graphical user interface.

health monitor

Health monitoring provides a framework to raise and handle events (which can be
alarms or messages) in a VxWorks 653 module. Alarms are injected to represent
faults, and handlers provide the opportunity to perform recovery actions. See
module health monitor, partition health monitor, process health monitor, and
system health monitor.

Wind River Workbench
User's Guide, 2.6.1

112

hosted function supplier

Hosted function supplier: see application developer.

IDE

IDE: integrated development environment.

injection

Injection is the act of creating a health monitor alarm event or message event.

interface subset

An interface subset defines part of the interface of a shared library. The use of
interface subsets allows you to reuse parts of the interface definition among
libraries that share some parts of their interface. For example, two different
vThreads libraries containing different components would share the core
vThreads interface.

interrupt level

Saying an event is injected at an interrupt level means the event is injected from an
interrupt execution context.

ISR

ISR: interrupt service routine.

jitter

Jitter is a variation or deviation in the frequency of an expected occurrence. See also
partition switch jitter.

kernel

Kernel is another term for the core OS.

kernel I/O region

A kernel I/O region is a region of target memory that corresponds to the address
of an I/O device on the target and can be accessed only by the core OS.

Level A

Level A is the highest certification level for the DO-178B software standard.

B Glossary

113

B

loadable shared data region

A loadable shared data region is a data source, such as a database, that can be
loaded into a shared data region as part of the module payload.

local partition

A local partition is a partition that is local to a VxWorks 653 module. Unless it
might be confused with a pseudo-partition, it is called, simply, a partition.

local port

A local port is a port that is attached to a local partition. Unless it might be
confused with a pseudo-port, it is called, simply, a port. See also null port.

log queue

The module health monitor and partition health monitor each have a log queue
(sometimes called simply a log). Health monitor messages are always logged,
whereas alarms are logged only if health monitor logging is enabled. If an event is
injected from within a partition (HM_PROCESS_MODE or
HM_PARTITION_MODE), the event is logged to the partition health monitor log.
If the event is injected from outside the partition (HM_MODULE_MODE), the
event is logged to the module health monitor log.

major frame

Each schedule consists of a major frame, which is divided into a series of
variable-length minor frames.

message

In the context of health monitoring, a message is an event. See also alarm.

minor frame

Each schedule consists of a major frame, which is divided into a series of
variable-length minor frames. Each minor frame defines the partition to run, its
allowed duration, and whether or not the minor frame is a release point.

MMU

MMU: memory management unit.

Wind River Workbench
User's Guide, 2.6.1

114

module

A module is the “system” controlled by one RTOS, and in VxWorks 653, that RTOS
is the core OS.

module health monitor

The module health monitor is present in parallel with all partitions in a VxWorks
653 module, and hence all partition health monitors in the module. The module
health monitor is not part of any partition window and has priority over all
partitions. The module health monitor resides in the core OS. It is associated with
the module health monitor table, which among other things, defines notification
queues, a log queue, and an event queue. See also system health monitor, partition
health monitor, and process health monitor.

namespace

An XML namespace provides a unique identifier which can be associated with an
XML element by means of a prefix. The namespace uniquely identifies the XML
schema in which the element is defined.

NMI

NMI: non-maskable interrupt.

normal mode

Normal mode is the partition mode during which processes/threads are
scheduled. (Other partition modes include idle, cold start, and warm start.)

notification

In the health monitoring context, notification is the act of informing another
partition health monitor or the module health monitor of an event that has
occurred in a given partition.

notification queue

The module health monitor table and partition health monitor table each have
notification queues, one for each partition that wants to accept notification of
events. Notification queues are serviced after health monitor event queues are
serviced.

B Glossary

115

B

null port

A null port is a port that is created at system initialization time, but is not used. It
is always considered to be empty when read from and have space when written to.
A null port can be attached to a partition or the core OS of a VxWorks 653 module
or to a pseudo-partition. See also local port and pseudo-port.

NVM

NVM: non-volatile memory.

online-loaded partition

With online-loaded partitions, the core OS does not install the partition code from
flash or RAM into its final domain location in RAM as it does during the system
initialization phase for regular partitions. Instead, an empty application domain is
created for an online-loaded partition during the core OS initialization phase. The
code of the online-loaded partition is made available to the core OS only at a later
stage. In some cases this may not be until after all the regular partitions are already
running.

OS

OS: operating system.

partition

A partition is a container for an application. An application running in a partition
cannot interfere with applications in other partitions or with the core OS.

partition direct-access port

A partition direct-access port is a type of direct-access port residing in a partition.
A partition direct access port can communicate only with a local port in the
application resident in the partition.

partition health monitor

The partition health monitor is the health monitor that is present in parallel with
vThreads to handle vThreads partition errors and events that may affect the
operation of vThreads within the partition. The partition health monitor is
scheduled as part of the partition window. It is associated with the partition health
monitor table, which among other things, defines notification queues, a log queue,
and an event queue. See also system health monitor, module health monitor, and
process health monitor.

Wind River Workbench
User's Guide, 2.6.1

116

partition OS

A partition OS is a user-level software library running within a partition that
provides operating system services to the partition. See also vThreads and COIL.

partition OS scheduler

The partition OS scheduler is the scheduler in a partition OS that allocates CPU
time to threads in the partition. The partition OS scheduler in a vThreads partition
is a priority-preemptive scheduler and is not related to the ARINC schedule.

partition port

Partition port: see local port.

partition scheduler

The partition scheduler is the scheduler in the core OS that allocates CPU time to
partitions, allowing CPU time to become available to threads in those partitions.
By default, the partition scheduler uses ARINC 653 (TPS) scheduling, but can
optionally schedule designated partitions with APPS scheduling. See also
partition OS scheduler.

partition switch jitter

Partition switch jitter is a variation or deviation in the configured partition
switching schedule. For example, partition switch jitter might be caused by
hardware latencies or when the core OS locks interrupts.

partition window

A partition window is the time in which a partition is allowed to run before being
scheduled out.

payload

A payload is an image file (or files) that contains the code for a VxWorks 653
module in a form that is suitable for running on a target.

payload region

A payload region is the region of RAM or ROM where a payload is loaded.

B Glossary

117

B

periodic process

A periodic process is a process within a partition that is run on a schedule based
on the passage of wall clock time (that is, the countdown to the next invocation of
periodic process runs even when the partition itself is not scheduled).

PersistentBSS

A BSS section that is persistent across a warm restart.

platform

A platform is software on which applications can be built and from which a
VxWorks 653 module can be developed.

platform provider

A platform provider is responsible for configuring the base system on which
application developers will build their applications.

port

A port is one end of a channel, which is used for inter-partition communication.
Ports have attributes, for example, direction (source or destination), mode
(queuing or sampling), protocol (receiver discard, sender block, or none), and
refresh rate. Ports conform to the ARINC 653 specification and its APEX interface
and are also called APEX ports. See also pseudo-port.

POS

POS: See Partition Operating System.

POSIX

POSIX: Portable Operating Systems Interface. In this documentation, POSIX refers
to the standard for real-time extensions (1003.1b), which specifies a set of interfaces
to OS facilities. The POSIX API can be included in a vThreads partition if the APEX
API is not included.

PPS

PPS: priority-preemptive scheduling. It allows for scheduling of partitions in a
module-wide priority-preemptive scheme during the idle time within an ARINC
653 (TPS) schedule. See also APPS scheduling.

Wind River Workbench
User's Guide, 2.6.1

118

PPS-enabled

A PPS-enabled partition is a partition that is configured to indicate that it should
be considered during APPS scheduling.

preemption locking

Preemption locking disables the scheduling of processes/threads/tasks, and only
the current process/thread/task can be run until it decrements the lock level back
to zero.

priority-preemptive scheduling

Priority-preemptive scheduling: see PPS.

process

Process is the APEX term for a thread. In the vThreads context, the term thread is
preferred. See also task.

process health monitor

The process health monitor is the health monitor that is present within vThreads
to handle process-related errors and events. It is also known as the error handler
process. See also system health monitor, module health monitor, and partition
health monitor.

pseudo-partition

A pseudo-partition is a communications object that is outside a VxWorks 653
module. See also local partition and pseudo-port.

pseudo-port

The term pseudo-port applies generally to any port that represents a data source
or destination outside the current module. The term pseudo-port is also used in a
more restrictive sense for a type of pseudo-port that uses software buffering. In this
sense it is contrasted with direct-access port which is a type of pseudo-port that
does not use software buffering. See also local port and null port.

queuing port

A queuing port is a port in queuing mode. In queuing ports, messages are queued.
A protocol is required to manage the queues. See also sampling port.

B Glossary

119

B

RAM

RAM: random access memory.

RAM payload

A RAM payload is a payload that is designed to be downloaded into RAM on the
target.

real-world time

Real-world time: see wall clock time.

receiver discard protocol

Receiver discard protocol is a port message protocol. If one of the channel’s
destination ports is full, the source port discards the message for that port.
Therefore, if all the destination ports are full, the message might be lost. When a
message is so discarded, the port’s overflow flag is set to notify the application of
the discarded (lost) message. See also sender block protocol.

refresh rate

The refresh rate (in seconds) indicates the maximum acceptable age of a valid
message, from the time it was received by the port. It applies to destination
sampling ports only.

release point

A release point is a way to synchronize a periodic process with the partition
window of a partition. A periodic process spawned in a partition will be started
only at the next release point.

ROM

ROM: read-only memory.

ROM payload

A ROM payload is a payload that is designed to be installed in ROM on the target.

root element

The root element is the element of an XML document that contains all the other
elements in the document.

Wind River Workbench
User's Guide, 2.6.1

120

RTCA

RTCA: Radio Technical Commission for Aeronautics. The private, not-for-profit
corporation that develops recommendations on communications, navigation,
surveillance, and air-traffic management issues. RTCA developed the DO-178B
avionics software standard.

RTOS

RTOS: real-time operating system.

run-time software

Run-time software is the operating system and application software that together
run on a target. See also cross-development tools.

sampling port

A sampling port is a port in sampling mode. In sampling ports, messages are not
queued. A message remains in the source port until it is sent or overwritten. Each
new message overwrites the previous one when it reaches the destination port and
remains there until it is overwritten itself. Sampling ports have refresh rates. See
also queuing port.

SAP port

A service access point (SAP) is a special kind of queuing port. It is different from a
normal queuing port because it allows access to addressing information when
sending and receiving messages. The SAP services are similar to the ARINC 653
queuing port services but will have additional parameters to support address
information.

schedule

Schedules define how the core OS schedules partitions. Each schedule consists of
a major frame.

scheduler

See partition scheduler and partition OS scheduler.

select operation

The select operation refers to calling select() to pend on a set of file descriptors.

B Glossary

121

B

sender block protocol

Sender block protocol is a port message protocol. A queuing message is sent to all
the channel’s destination ports. If any one is full, the message is queued in the
source port in FIFO order. When the source port is full and if a timeout was
specified, sender processes are blocked during the SEND_QUEUING_MESSAGE
service. When a destination port is emptied, retransmission is attempted. Whether
it succeeds depends on the state of the channel’s other destination ports. See also
receiver discard protocol.

service access point

Service access point: see SAP port.

shared data region

A shared data region (sometimes called a shared data domain) is a data region that
can be used by applications within partitions to share data. Outside a shared data
region, applications have no access to the data of other applications. See also
loadable shared data region.

shared I/O region

A shared I/O region is a region of target memory that corresponds to the address
of an I/O device on the target and can be shared by partitions and the core OS.

shared library

A shared library is a library that contains code that can be shared by multiple
applications. See also system shared library.

shared library region

A shared library region is the area of RAM that holds a shared library.

source port

A source port is the one port at the sending end of a channel. See also destination
port.

standard port

Standard port: see local port.

Wind River Workbench
User's Guide, 2.6.1

122

static module

A static module file is a fully located object file that has been compiled and linked
for use in a VxWorks 653 module. A static module file has a .sm file extension.

straight-line code

Straight-line code is code that does not use threads.

system call

A system call is a call from a partition to the core OS.

system clock

System clock refers to the system clock for a VxWorks 653 module.

system configuration record

The system configuration record is the record of all the configuration parameters
in a VxWorks 653 module. During the configuration process, configuration
information is expressed in the Module configuration document. The build
process produces a binary version of this information in configRecord.reloc or
configRecord.bin.

system health monitor

The system health monitor is the dispatcher for the health monitoring system. See
also module health monitor, partition health monitor, and process health monitor.

system heap

System heap refers to the heap for the core OS.

system initialization

System initialization refers to the initialization of a VxWorks 653 module.

system integrator

A system integrator is responsible for integrating the applications created by the
application developers with the platform created by the platform provider to
create the final module.

system memory

System memory refers to memory controlled by the core OS.

B Glossary

123

B

system object

A system object is an object created by the core OS (or vThreads) for use by the core
OS (or vThreads). An example is a semaphore.

system resource

A system resource is a resource allocated by the core OS for use by the core OS.

system restart

System restart refers to restarting a VxWorks 653 module.

system shared library

A system shared library is a special shared library that contains the code for a
partition OS.

system start

System start refers to starting a VxWorks 653 module.

target

The target is the board for which you are developing an embedded system.

task

A task is an execution context. In VxWorks 653, it refers to a core OS object. See also
thread.

TCB

TCB: task control block. The structure that contains critical runtime information for
a single task.

thread

A thread is an execution context. It is the preferred term for what is sometimes
called a process. A thread is a programming unit contained within a vThreads
partition. It runs concurrently with other threads of the same partition. See also
task and process.

time-preemptive scheduling

Time-preemptive scheduling: see TPS.

Wind River Workbench
User's Guide, 2.6.1

124

TLB

TLB: translation look-aside buffer. It is a specialized cache that holds a table of
physical addresses as generated from the virtual addresses that program code
uses.

TPS

TPS: time-preemptive scheduling. It is also called ARINC 653 scheduling. See also
APPS scheduling and PPS scheduling.

TPS partition

A TPS partition is the partition that has been scheduled to be run by the ARINC
653 (TPS) scheduler. In an APPS scheduling environment, the current partition and
the TPS partition may not be the same.

trusted partition

From the point of view of a given partition, a trusted partition is a partition from
which it will allow the health monitor to accept health monitor notifications on its
behalf. Since health monitor notifications are processed in the time slice of the
partition on whose behalf they are received, limiting the number of partitions that
a partition trusts limits the effect of health monitor notifications on the partition' s
time allotment.

user configuration record

A user configuration record is a collection of data that can be used for configuring
user extensions to the core OS.

user memory region

The user memory region is that area of RAM that is needed for memory other than
health monitor logs, core OS configuration records, core OS memory, core OS page
pools, core pools, ports, and RAM payload.

user partition OS

A user partition OS is a partition OS that is based on COIL, augmented to perform
other functions that are required by the application.

B Glossary

125

B

VAL

VAL: vThreads abstraction layer. It is a layer of the core OS. When a vThreads
partition makes a system call, it communicates with this layer. It is a concept
internal to VxWorks 653.

validation

In XML terms, validation is a process that ensures that an XML file is well formed
according to the rules of XML and adheres to the structure specified in the
appropriate XML schema. Validation is performed by an XML validator.

VME

VME: Versa Module Europa. VME is an open-ended bus system that makes use of
the Eurocard standard. The VME bus was intended to be a flexible environment,
supporting a variety of computing-intensive tasks, and has become a popular
protocol in the computer industry. It is defined by the IEEE 1014-1987 standard.

vThreads

vThreads is the priority-preemptive OS that serves as a partition OS.

vThreads partition

A vThreads partition is a partition whose partition OS is based on vThreads. See
also COIL partition.

vThreads scheduler

vThreads scheduler: see partition OS scheduler.

VxWorks 5.5

VxWorks 5.5 is the Wind River operating system on which the vThreads partition
OS of VxWorks 653 is based.

VxWorks 653

VxWorks 653 is the Wind River operating system that supports the ARINC 653
specification.

W3C

W3C refers to the World Wide Web consortium at www.w3.org.

Wind River Workbench
User's Guide, 2.6.1

126

wall clock time

Wall clock time is time as measured in the real world by the clock on the wall. (As
opposed, for instance, to the time elapsed in a particular application’s partition
window.)

warm restart

A warm restart occurs when a module or partition is restarted but persistent data
is retained, shortening the time required for the restart.

WDB

WDB refers to the Wind River debug agent.

Wind

Wind is the adjective applied to certain OS objects to distinguishes them from
POSIX objects. For example, Wind semaphores to distinguishes from POSIX
semaphores.

WindSh

WindSh is a host shell.

Workbench

Workbench is the Wind River Workbench development environment.

worker task

A worker task is a core OS task that is associated with a specific partition. Worker
tasks perform blocking operations (typically blocking I/O) on behalf of the
partition they are associated with.

write-protect

To write-protect is to guard an entity by a mechanism that prevents it from being
changed or erased. For example, memory can be write-protected by using an
MMU.

XInclude

XInclude is a W3C standard for including one XML file in another.

B Glossary

127

B

XML

XML: Extensible Markup Language. It is a standard for defining markup
languages.

XML attribute

An XML attribute is an additional piece of information added to an XML element
in the form of a key/value pair.

XML declaration

The XML declaration identifies a file as an XML document and contains
information such as the version of XML used and the character encoding used in
the file.

XML document

A document written using XML syntax.

XML document type

An XML document type is the grammar of a particular XML file as defined by the
applicable XML schema.

XML editor

An XML editor is a program that provides support for editing XML files. This
usually includes support for inserting tags and for validating the file against an
XML schema.

XML element

An XML document consists of XML elements, each of which may contain data
content and/or other elements. The elements allowed in a particular document
type is determined by the applicable XML schema.

XML file

An XML file is an instantiation of an XML schema.

XML schema

An XML schema is a document that defines the structure of an XML document. In
defines what elements are permitted in an XML document, the order and nesting
of elements, and the types of data each element can contain.

Wind River Workbench
User's Guide, 2.6.1

128

XML schema file

An XML schema file is a file that contains all or part of the definition of an XML
schema. An XML schema file can include other schema files by reference to
construct a complete schema definition.

XPath

XPath is a W3C standard for expressing the location of an element or attribute in
an XML file.

	Wind River Workbench (VxWorks 653 Version) User's Guide, 2.6.1
	Contents
	1 Overview
	1.1 Introduction

	2 Setup
	2.1 Setting up Your Development Environment
	2.2 Planning a Cross-Development Environment
	2.3 Setting up a Cross-Development Environment
	2.3.1 Installing bootApp
	2.3.2 Configuring the Host
	2.3.3 Configuring bootApp

	2.4 Installing a ROM Payload System Image

	3 Boot
	3.1 Booting VxWorks 653
	3.2 Booting VxWorks 653 on the Simulator
	3.3 Booting a Network Loadable System Image
	3.4 Booting RAM Payload System Images
	3.5 Booting ROM Payload System Images
	3.6 Booting an online-loaded partition

	4 Connect
	4.1 Connecting Workbench to the Running Target
	4.1.1 Connecting Workbench to the Simulator
	4.1.2 Connecting to the Target via the Network
	4.1.3 Setting up a Host-Target Connection via a Serial Connection

	5 Debug
	5.1 Understanding Cross-development Debugging
	5.2 Understanding ARINC 653 Debugging
	5.3 Understanding the Workbench Debugger
	5.4 Planning Debugging
	System mode or task mode?
	Do you need to debug C++ code?

	5.5 Planning Debugging in a Certified Environment
	Enable debugging for applications post deployment

	5.6 Using the Debugger
	5.7 Controlling Execution
	5.8 Viewing and Manipulating Data
	5.8.1 Special debugging situations
	How do I overcome the constraints of partitions?
	How do I debug application initialization?

	5.8.2 Examining Memory

	5.9 Monitoring Resources
	5.10 Configuring the Debugger

	6 Tools
	6.1 Introduction
	6.2 Boot Program
	6.2.1 Description of Boot Parameters

	6.3 wrMonitor
	6.4 Shells
	6.4.1 Host Shell
	6.4.2 Target Shell
	6.4.3 vThreads Shell
	Strengths
	Limitations

	6.5 Monitoring Tools
	6.5.1 Memory Usage Monitoring
	6.5.2 Performance Monitoring
	Parameters

	6.5.3 Port Monitoring
	System Impact
	Using the Port Monitoring Tool

	6.6 VxWorks 653 Simulator
	6.6.1 Running the Simulator
	6.6.2 File Systems
	6.6.3 Building a Module for the Simulator
	6.6.4 Differences between the Simulator and VxWorks 653
	Architecture Considerations

	6.7 Configuration and Build Tools
	6.7.1 XMLGen
	6.7.2 crDump
	6.7.3 VxWorks 653 2.2 Development Shell
	6.7.4 VerIMAx
	6.7.5 Table Viewer
	Generating a Complete Set of Reports
	Generating Individual Reports

	6.7.6 VeroStyle

	A Debugger Tutorial
	A.1 Introduction
	A.2 Debugger Tutorial

	B Glossary

