
VxWorks 653

PROGRAMMER'S GUIDE

2.2

®

VxWorks 653 Programmer's Guide, 2.2

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks 653 Programmer's Guide, 2.2

29 Oct 07
Part #: DOC-15951-ND-02

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 About This Documentation .. 1

1.2 Overview of VxWorks 653 .. 2

1.2.1 Overview of the vThreads Partition OS .. 3

1.2.2 Overview of COIL .. 4

1.3 Run-time System .. 4

1.3.1 Run-time Layers ... 5

Core OS Layer ... 6
vThreads Layer ... 7
COIL Layer .. 7
APEX Layer ... 8
POSIX Layer .. 8

1.3.2 Loading and Booting ... 8

1.3.3 Run-time Model .. 9

1.4 RTCA/DO-178B Certifiability .. 9

VxWorks 653
Programmer's Guide, 2.2

iv

2 Developing vThreads Applications ... 13

2.1 Introduction ... 13

2.2 vThreads Time Management .. 15

2.2.1 vThreads Timer Queue .. 15

2.2.2 vThreads Scheduling ... 16

Priority-Preemptive Scheduling ... 17
Round-Robin Scheduling .. 18

2.3 Handling External Stimuli .. 18

2.3.1 vThreads Pseudo-Interrupt Signals ... 19

Pseudo-Interrupt Events Forbidden in User Handlers 21
Pseudo-interrupt Events Permitted in User Handlers 22

2.3.2 vThreads Synchronous Exception Handling .. 23

2.4 vThreads Memory Management ... 24

2.5 vThreads Initialization and Restart .. 25

2.5.1 vThreads Boot Sequence ... 25

2.5.2 vThreads Restart ... 27

Cold Versus Warm Restarts .. 27
Cooperative Warm Partition Restart Mechanism 28
Partition Restart and Device Drivers ... 30

2.6 Stack Overflow Protection .. 30

2.6.1 Guard Pages .. 31

2.6.2 Defaults .. 31

2.6.3 Limitations .. 32

2.7 vThreads Device I/O .. 33

2.8 vThreads APIs ... 33

2.9 vThreads System Calls .. 34

 Contents

v

3 Developing COIL Applications .. 35

3.1 Introduction ... 35

3.2 VxWorks 653 Architecture and COIL ... 36

3.3 Accessing Core OS Services ... 37

3.4 Communicating with Other Partitions .. 37

3.5 Handling Interrupts and Exceptions .. 38

3.5.1 Handling Pseudo-Interrupts .. 39

3.5.2 Handling Exceptions ... 40

3.6 Restarting COIL Partitions ... 41

3.7 Device I/O in COIL Partitions ... 41

3.8 Monitoring Health in COIL Partitions ... 41

3.9 COIL API .. 41

4 Developing APEX Applications .. 43

4.1 Introduction ... 43

4.2 Adding APEX Support to vThreads Partitions ... 45

4.3 Terminology and Concepts: APEX Versus vThreads 45

4.4 Managing APEX Partitions ... 46

4.4.1 Allocating Partition Memory .. 46

4.4.2 Initializing Partitions: Cold and Warm Starts 47

4.4.3 Partition Attributes .. 47

4.4.4 Getting Partition Status ... 48

4.4.5 Setting the Partition Mode .. 49

4.4.6 Controlling Preemption in Partitions .. 50

4.4.7 Setting New Partition Schedules .. 51

VxWorks 653
Programmer's Guide, 2.2

vi

4.5 Managing APEX Processes ... 51

4.5.1 Creating Processes .. 52

4.5.2 Changing the Current Priority of Processes ... 53

4.5.3 Increasing Deadline Times .. 53

4.5.4 Getting the Current Status of Processes .. 53

4.5.5 Getting Process IDs .. 54

4.5.6 Getting and Using vThreads Task Information 54

4.5.7 Types of Processes .. 54

4.5.8 Scheduling Processes ... 55

4.5.9 Process State Transitions ... 56

DORMANT State .. 56
WAITING State ... 57
RUNNING State ... 58
READY State ... 58

4.5.10 Suspending and Resuming Processes ... 59

4.5.11 Stopping and Starting Processes .. 60

4.5.12 Controlling Preemption ... 61

4.6 Managing Time in APEX Partitions .. 61

4.6.1 Scheduling Partitions ... 61

4.6.2 System Clock Time ... 61

4.6.3 Requesting Resources and Timeouts ... 61

4.6.4 Scheduling Processes ... 62

4.6.5 Deadlines ... 62

4.6.6 Release Points ... 66

4.7 Communicating between Partitions ... 67

4.7.1 Limitations of APEX for Communicating between Partitions 68

4.7.2 APEX Messages .. 68

 Contents

vii

4.7.3 APEX Channels .. 68

Sampling Mode .. 69
Queuing Mode .. 69

4.7.4 Ports ... 70

4.7.5 Working with Queuing Messages .. 72

4.7.6 Working with Sampling Messages .. 73

4.8 Communicating with Other Modules .. 74

4.8.1 Communicating Through Pseudo-Ports in a Pseudo-Partition 74

Communicating Through Direct-Access Ports in a
Pseudo-Partition ... 75

4.8.2 Communicating Through Direct-Access Ports in a Partition 76

Sending and Receiving Messages .. 77

4.9 Communicating within APEX Partitions ... 77

4.9.1 Communicating Using APEX Buffers ... 77

4.9.2 Communicating Using APEX Blackboards .. 79

4.9.3 Communicating Using APEX Semaphores .. 82

4.9.4 Synchronizing Using APEX Events ... 83

4.10 Monitoring Health in APEX Partitions .. 86

4.10.1 Raising Process-Level Errors .. 86

4.10.2 APEX Errors .. 86

4.10.3 Creating Error Handler Processes .. 86

5 Developing POSIX Applications ... 89

5.1 Introduction ... 89

5.2 POSIX Clocks and Timers .. 90

5.3 POSIX Memory-Locking Interface ... 91

VxWorks 653
Programmer's Guide, 2.2

viii

5.4 POSIX Threads .. 92

5.4.1 pThread Attributes ... 92

Stack Size ... 92
Stack Address .. 92
Detach State ... 93
Contention Scope .. 93
Inherit Scheduling .. 94
Scheduling Policy ... 94
Scheduling Parameters .. 95
Specifying Attributes when Creating pThreads 95

5.4.2 pThread Private Data ... 96

5.4.3 pThread Cancellation ... 97

5.5 POSIX Scheduling Interface .. 97

5.5.1 Comparison of POSIX and Wind Scheduling 98

5.5.2 Getting and Setting POSIX Task Priorities .. 98

5.5.3 Getting and Displaying the Current Scheduling Policy 100

5.5.4 Getting Scheduling Parameters: Priority Limits and Time Slice 101

5.6 POSIX Semaphores .. 101

5.6.1 Comparison of POSIX and Wind Semaphores 102

5.6.2 Using Unnamed Semaphores ... 103

5.6.3 Using Named Semaphores ... 105

5.7 POSIX Mutexes and Condition Variables ... 108

5.8 POSIX Message Queues .. 109

5.8.1 Comparison of POSIX and Wind Message Queues 109

5.8.2 POSIX Message Queue Attributes ... 110

5.8.3 Displaying Message-Queue Attributes ... 112

5.8.4 Communicating through a Message Queue ... 112

5.8.5 Notifying a Task That a Message Is Waiting .. 115

 Contents

ix

5.9 POSIX Queued Signals ... 120

5.10 POSIX API for vThreads Partitions .. 121

6 Developing C++ Applications ... 123

6.1 Introduction ... 123

6.2 Configuring vThreads to Use C++ .. 124

6.2.1 Specifying Additional Sections for Loading .. 124

6.2.2 Adding C++ Support to vThreads ... 124

6.2.3 Demangling C++ Symbol Names in the Target Shell 124

6.3 Writing C++ Applications ... 124

6.3.1 Making C Symbols Accessible to C++ Code .. 125

Making C++ Symbols Accessible to C code ... 125

6.3.2 Adding Floating-Point Support to Tasks .. 125

6.3.3 Handling Exceptions ... 125

Turning off Exception Handling .. 125
Using the Pre-Exception Model of C++ Compilation 125
Installing Your Own Termination Handler .. 126

6.3.4 Using Namespaces ... 126

6.3.5 Disabling Run Time Type Information (RTTI) 126

6.3.6 Constructors and Destructors ... 127

6.4 Using C++ Libraries ... 127

6.4.1 Using the iostream Library ... 127

Standard iostream Objects .. 127

6.4.2 Using Standard Template Library (STL) ... 128

6.5 Writing C++ Cert Applications .. 128

6.5.1 Features Not Supported .. 129

VxWorks 653
Programmer's Guide, 2.2

x

6.5.2 Persistent Global Constructors ... 129

Specifying Persistent Global Constructors in Makefiles 129
Allocating Persistent Global Constructors ... 129

6.5.3 Calling Pure Virtual Functions ... 130

6.5.4 Deallocating Heap .. 130

7 Programming in the Core OS .. 133

7.1 Introduction ... 134

7.2 Partitions .. 135

7.2.1 Partition Configuration ... 135

System Call Permission Bitmasks .. 138
PPS Scheduling Parameters .. 140

7.3 VxWorks 653 Stacks ... 141

System Call Stacks .. 141
Task Stacks ... 141
Task Exception Stacks .. 141
Interrupt Stack .. 142

7.4 Shared Libraries .. 142

7.4.1 Adding User-supplied Code to a Partition OS 143

7.5 Shared Data Regions .. 143

7.6 User Configuration Records ... 147

7.7 Multitasking .. 147

7.8 Managing Memory ... 147

7.8.1 Managing Memory Partitions and Heaps .. 148

Managing Memory Partitions .. 148
Managing Typed Memory Partitions .. 149
Managing the Current Heap ... 149

 Contents

xi

7.8.2 Managing Virtual Memory ... 150

Accessing the MMU ... 151
Ensuring Cache Coherency ... 151
Write-Protecting Text Segments ... 152
Write-Protecting the Exception Vector Table .. 152
Virtual Memory Contexts and Domains ... 152

7.8.3 Managing Page-oriented Memory ... 153

Managing Physical Memory ... 153
Managing Virtual Pages .. 153

7.8.4 POSIX Memory-Locking Interface ... 156

7.9 Restart Functionality .. 156

7.9.1 System Cold Start or Restart ... 157

7.9.2 System Warm Restart ... 159

Including Warm Restart in a BSP ... 159

7.9.3 Partition Cold Start or Restart .. 160

7.9.4 Partition Warm Restart .. 161

7.9.5 Restart Implications for Drivers ... 162

7.9.6 Restart Implications for I/O ... 163

7.9.7 Persistent Data Support for Restart ... 163

7.10 Partition Support .. 165

7.10.1 Core OS Partition-Related Components ... 165

7.10.2 Core OS Partition-Related Routines .. 165

7.10.3 Online-Loaded Partitions .. 165

7.11 Worker Tasks ... 168

7.12 System Time .. 169

7.13 Partition Scheduling .. 169

7.13.1 TPS Scheduling ... 170

Scheduling Rules .. 170
Partition Activation .. 170

VxWorks 653
Programmer's Guide, 2.2

xii

Spare-Time Monitoring ... 171
Mode-Based Scheduling .. 171

7.13.2 APPS Scheduling .. 172

How the Kernel Identifies Idle Time ... 175
vThreads and APPS Scheduling ... 176
Ticks and Timeouts .. 176
Pseudo-Interrupts ... 177
Examples of APPS Scheduling ... 178

7.13.3 Partition-Scheduling Routines ... 181

7.14 Design Models for Ports ... 181

7.14.1 Design Model for Queuing Ports ... 181

Memory Use .. 181
Blocking Processes ... 182
System Calls and Events for Port Operations 183
Effect of Restarting Partitions ... 183

7.14.2 Design Model for Sampling Ports .. 183

7.15 Setting up Communication with Other Modules .. 185

7.15.1 Configuring a Supervisor-Level Driver .. 186

7.15.2 Adding a Driver ... 186

7.15.3 Driver Routines ... 186

Attaching the Name of a Driver to a Pseudo-Port ID 187
Reading Messages from a Pseudo-Port ... 187
Writing Messages to a Pseudo-Port ... 188
Determining the Availability of a Pseudo-Port 188
Getting the Status of a Pseudo-Port ... 189
Determining Whether a Pseudo-Port Is Direct Access 189
Function Pointer Structure for Drivers ... 189

7.15.4 Sending and Receiving Messages .. 189

Sending Messages .. 189
Receiving Messages ... 190
Time Partitioning .. 190

7.15.5 Example: Communicating between Modules 191

Configuration of Module A .. 191
Configuration of Module B ... 192

 Contents

xiii

User-Supplied Code for Module A's Send Operation 193
User-Supplied Code for Module B's Receive Operation 194

8 Health Monitoring ... 195

8.1 Introduction ... 195

8.2 Basic Health Monitor Concepts ... 196

8.2.1 Health Monitor Events .. 196

Health Monitor Alarms ... 196
Health Monitor Messages ... 196

8.2.2 Health Monitor Hierarchy .. 197

8.2.3 Event Structure (HM_EVENT) ... 199

System Status and Modes ... 200

8.2.4 Injecting Alarms ... 202

Dispatching and Logging Messages .. 208

8.2.5 Health Monitor Thresholds .. 209

Notification Queue Threshold .. 209
Log Threshold ... 209
Event Queue Threshold ... 209
Error Handler Queue Threshold .. 210

8.3 Health Monitor Actions .. 210

8.3.1 Escalating Alarms .. 210

8.3.2 Logging Events ... 211

8.3.3 Notifying Other Partitions .. 212

8.3.4 Issuing Callbacks .. 212

8.3.5 Detecting and Reporting Application Errors 213

Reporting for ARINC 653 Applications .. 213
ARINC 653 Errors and Health Monitor Equivalents 214
Reporting for Non-ARINC 653 Applications 215

8.4 Initializing the Health Monitor ... 215

8.5 Getting Health Monitor Information at Run-time .. 215

VxWorks 653
Programmer's Guide, 2.2

xiv

8.6 Defining the Health Monitor Handler Table .. 216

8.6.1 Guidelines for Writing Handlers .. 216

8.7 Health Monitoring for COIL Partitions ... 217

8.8 Other Facilities That Inject Alarms ... 218

8.9 Public Information ... 218

9 I/O Support .. 221

9.1 Introduction ... 221

9.2 I/O and vThreads .. 221

9.2.1 vThreads I/O and Worker Tasks .. 222

9.2.2 Device Driver Models .. 223

vThreads Model of Device Drivers .. 224
Core OS Model of Device Drivers .. 225
Split Model of Device Drivers .. 226

9.2.3 Select Capability ... 228

Supervisor-Level Device Driver Model .. 256

9.3 Application Multiplexed I/O ... 256

9.3.1 Serialized I/O Protocol .. 257

9.3.2 Architecture ... 258

9.3.3 Setting up and Using Application Multiplexed I/O in Partitions 260

Making the Driver Available .. 260
Redirecting Standard I/O to the pamio Driver 260
Using Application Multiplexed I/O .. 260

9.3.4 Using Application Multiplexed I/O in the Core OS 261

Setting the Mux/Demux Algorithm .. 261
Using the ioctl() Routine .. 262
Using the mamio Driver for All I/O in the Core OS 263

 Contents

xv

9.4 I/O and COIL ... 264

Blocking Versus Non-blocking I/O (Compared to vThreads) 264
Non-blocking COIL I/O (Worker Tasks Present) 266
Blocking I/O (No Worker Tasks) ... 267

A VxWorks 5.5 .. 269

A.1 Introduction ... 269

A.2 VxWorks Tasks .. 270

A.2.1 Multitasking .. 270

A.2.2 Task State Transition .. 271

A.2.3 Wind Task Scheduling ... 273

Priority-Preemptive Scheduling ... 273
Round-Robin Scheduling .. 274
Preemption Locks ... 275
A Comparison of taskLock() and intLock() .. 276
Driver Support Task Priority .. 276

A.2.4 Task Control .. 277

Task Creation and Activation ... 277
Task Stack .. 278
Task Names and IDs .. 278
Task Options ... 279
Task Information .. 280
Task Deletion and Deletion Safety ... 280
Task Control .. 282

A.2.5 Tasking Extensions ... 283

A.2.6 Task Error Status: errno ... 285

Layered Definitions of errno .. 285
A Separate errno Value for Each Task ... 286
Error Return Convention .. 286
Assignment of Error Status Values .. 287

A.2.7 Task Exception Handling .. 287

A.2.8 Shared Code and Reentrancy ... 288

Dynamic Stack Variables ... 289
Guarded Global and Static Variables .. 290

VxWorks 653
Programmer's Guide, 2.2

xvi

Task Variables .. 290
Multiple Tasks with the Same Main Routine 292

A.2.9 VxWorks System Tasks .. 292

Root Task: tUsrRoot ... 293
Logging Task: tLogTask ... 293
Exception Task: tExcTask ... 293
Tasks for Optional Components ... 293

A.3 Intertask Communications ... 294

A.3.1 Shared Data Structures .. 294

A.3.2 Mutual Exclusion ... 295

Interrupt Locks and Latency ... 295
Preemptive Locks and Latency .. 296

A.3.3 Semaphores ... 296

Semaphore Control .. 297
Binary Semaphores .. 298
Mutual-Exclusion Semaphores ... 302
Counting Semaphores ... 305
Special Semaphore Options .. 306
Semaphores and VxWorks Events ... 307

A.3.4 Message Queues ... 309

Wind Message Queues .. 310
Displaying Message Queue Attributes ... 312
Servers and Clients with Message Queues ... 312
Message Queues and VxWorks Events ... 313

A.3.5 Pipes ... 315

A.3.6 Signals .. 315

Basic Signal Routines ... 316
Signal Configuration .. 316

A.4 VxWorks Events .. 317

A.4.1 Free Resource Definition ... 318

A.4.2 Single-Task Resource Registration ... 319

A.4.3 Option for Immediate Send .. 319

A.4.4 Option for Automatic Unregister ... 320

 Contents

xvii

A.4.5 Automatic Unpend upon Resource Deletion 320

A.4.6 Task Events Register .. 320

A.4.7 VxWorks Events API .. 321

A.4.8 Show Routines .. 321

A.5 Watchdog Timers .. 322

A.6 Interrupt Service Routines ... 323

A.6.1 Interrupt Stack .. 324

A.6.2 Writing and Debugging ISRs .. 324

A.6.3 Special Limitations of ISRs .. 324

A.6.4 Exceptions at Interrupt Level ... 327

A.6.5 Reserving High Interrupt Levels ... 327

A.6.6 Additional Restrictions for ISRs at High Interrupt Levels 327

A.6.7 Interrupt-to-Task Communication ... 328

B PowerPC Considerations .. 329

B.1 Introduction ... 329

B.2 Building Applications ... 330

Defining the CPU-Type Configuration Variable (CPU) 330
Setting Compiler Options ... 331

B.3 Memory Management Unit .. 332

B.3.1 Enabling or Disabling Instruction MMUs and Data MMUs 332

B.3.2 Mapping Memory (PowerPC 60x) ... 332

BAT Model for Mapping Memory ... 332
Segment Model for Mapping Memory ... 332

B.3.3 Setting MMU Access Rights ... 333

B.3.4 Setting MMU Cache Attributes .. 334

Determining the Size of Hash Tables (PowerPC 604) 335
Resizing and Moving Hash Tables (PowerPC 604) 336

VxWorks 653
Programmer's Guide, 2.2

xviii

B.3.5 ELF-Specific Tools .. 336

B.3.6 Detecting NULL Pointer Dereferences .. 337

B.4 Protection Domains (PowerPC 60x) .. 337

B.5 Architecture Considerations ... 337

Processor Mode .. 338
24-bit Addressing ... 338
Byte Order ... 338
PowerPC Registers ... 338
HI and HIADJ Macros ... 339
Cache and Kernel Heap ... 340
Floating-Point Routines ... 340
Support for Floating-Point Exceptions in Partitions 342
Shared Library Support (PowerPC 604) .. 343
Debugging ... 343

C Glossary .. 347

Index .. 371

1

 1
Overview

1.1 About This Documentation 1

1.2 Overview of VxWorks 653 2

1.3 Run-time System 4

1.4 RTCA/DO-178B Certifiability 9

1.1 About This Documentation

This documentation describes the VxWorks 653 real-time operating system (RTOS)
and how to use its run-time facilities to develop embedded, safety-critical
applications and systems.

Cross-references to libraries, routines, commands, and utilities refer to reference
entries in the API reference documentation that is available from the Wind River
Workbench online help. To access the reference entry, click Help > Search, type the
name of the entry in the Search Expression box, and click Go.

VxWorks 653
Programmer's Guide, 2.2

2

Alternatively, click Help > Help Contents. In the left pane of the help system that
opens, click Wind River Documentation > References. Under Operating System
and Host Tools are numerous API reference documentation.

1.2 Overview of VxWorks 653

VxWorks 653 fully complies with the Avionics Application Software Standard
Interface, ARINC 653, Supplement 2, Part 1 Required Services. VxWorks 653 does
not support any Supplement 2, Part 1 optional features, all of which reduce the
strength of the specification.

VxWorks 653 also supports standard service access point (SAP) ports, which are
defined in ARINC 653, Supplement 2, Part 2 Extended Services.

Subsets of VxWorks 653 are available that can be certified to Level A of the
RTCA/DO-178B avionics software guidelines. VxWorks 653 is, therefore, suitable
for safety-critical applications.

A VxWorks 653 module is the system controlled by one RTOS, and that RTOS is the
core OS of VxWorks 653. Unless it states otherwise, this documentation assumes
you are working within one module.

Within a module, VxWorks 653 supports complete separation between
applications and between applications and the module’s core OS. As a result,
applications can interact with each other only through explicit mechanisms that
the core OS controls. Applications cannot affect the operation of the module,
except in a controlled manner through resources that the core OS explicitly
allocates to them.

For Information On: See:

Configuring and building
systems

VxWorks 653 Configuration and Build Guide
VxWorks 653 Configuration and Build Reference

Loading, running, and
debugging

Wind River Workbench User’s Guide (VxWorks 653
Version)

Terms used in the
documentation

C. Glossary

1 Overview
1.2 Overview of VxWorks 653

3

1Each application runs in a discrete partition. The core OS controls the partitions by
providing time and space partitioning and memory management services.
Partitions manage their own resources within the time slot that the core OS
provides. Performance is optimized by keeping as many routine calls as possible
within the partition. Partitions run in user mode. The core OS runs in supervisor
mode.

Each partition contains a partition-level OS (the partition OS) with a set of OS
services. VxWorks 653 provides the vThreads partition OS and COIL (a partition
OS independent of vThreads). You can augment COIL to suit specific partition OS
needs. For vThreads partitions, VxWorks 653 supports the POSIX and APEX
interfaces.

VxWorks 653 supports warm start and cold start of partitions and of the entire
module.

VxWorks 653 includes libraries for developing and debugging applications.
Included is support for the Wind River System Viewer GUI-based software logic
analyzer, back-ends for host-target communication, and a loader.

1.2.1 Overview of the vThreads Partition OS

The vThreads partition OS includes its own set of objects (for example threads,
semaphores, and mutexes), other libraries, and internal scheduling. The core OS
performs the following for vThreads:

■ timer facility

■ I/O operations

■ some scheduling

■ interpartition communication

vThreads can access only its own memory heap.

vThreads cannot directly access I/O devices or supervisor-level processor
resources. The core OS provides these services through system calls.

vThreads does not directly receive hardware interrupts or exceptions. The core OS
sends a pseudo-interrupt to the appropriate partition, and vThreads handles it as
if it were the real interrupt.

A subset of vThreads is available that is certifiable to Level A of the
RTCA/DO-178B avionics software guidelines.

For details, see 2. Developing vThreads Applications.

VxWorks 653
Programmer's Guide, 2.2

4

1.2.2 Overview of COIL

The core OS interface library (COIL) is a library that lets you implement a partition
OS that is not based on vThreads. COIL includes the minimum services needed for
an application to communicate with the core OS. These services include the
following:

■ interrupt and exception management

■ device I/O

■ interpartition messaging

■ injection of health monitor events

COIL supports APPS scheduling.

A subset of COIL is available that can be certified to Level A of the
RTCA/DO-178B avionics software guidelines.

For details, see 3. Developing COIL Applications.

1.3 Run-time System

Applications are compiled against the appropriate partition OS header files and
are linked against the libraries available within the partition. At boot time, the core
OS loads each application to its own partition.

The vThreads partition OS offers the vThreads API for C applications. Also,
vThreads lets applications use either the Ada, APEX, or POSIX interfaces or use the
C++ language. You can add application or third-party header files and libraries to
the compiling and linking mechanisms for both the core OS and partition OSs.

Applications call routines located in their partition OS. The partition OS completes
the routine autonomously if it provides the requested service. Otherwise, if the
application’s privileges permit, the partition OS makes a system call to the core OS.
For example, a system call occurs when the I/O subsystem calls read() or when a
message is sent to an application in another partition.

1 Overview
1.3 Run-time System

5

11.3.1 Run-time Layers

A VxWorks 653 module consists of up to four basic types of layers:

■ core OS—Required.

■ partition—At least one is required (vThreads or COIL-based), each in a
partition OS.

■ APEX shared library—Required for ARINC 653 applications.

■ POSIX shared library—Required for POSIX applications.

Figure 1-1 shows a VxWorks 653 module with five partitions. In this example, the
two vThreads partitions share the same partition OS. For shared libraries and
partition OSs, the figure shows relative virtual addresses within a partition, not
within the module.

Figure 1-1 A VxWorks 653 Module with Five Partitions

target hardware

core OS

APEX
application

vThreads
Partition OS

APEX
shared lib.

POSIX
shared lib.

vThreads
Partition OS

vThreads
Partition OS

COIL
Partition OS

POSIX
application

vThreads
application

vThreads
application

C
application

Note:
All partition OSs can be either
full or certifiable subsets

a partition

user mode

supervisor mode

VxWorks 653
Programmer's Guide, 2.2

6

Core OS Layer

The core OS provides services to the partitions.

By default, the core OS schedules partitions by ARINC 653 (time-preemptive)
scheduling (TPS) and in partition order. However, if a partition is enabled for
priority-preemptive scheduling (PPS), the core OS considers the partition for APPS
scheduling. APPS scheduling schedules PPS-enabled partitions during the idle
time within a TPS schedule. For more information on scheduling partitions, see
7.13 Partition Scheduling, p.169.

Key Core OS Services for vThreads

The core OS does the following for each vThreads partition OS:

■ Allocates system resources.

■ Schedules partitions.

■ Traps exceptions on behalf of the partition OS.

■ Defines and enforces partition boundaries.

■ Loads partitions.

■ Passes messages between partitions using ports and channels

■ Handles I/O.

■ Performs system calls on behalf of the applications.

■ Supports debugging of partitions.

■ Monitors the health of partitions and the system.

Key Core OS Services for COIL

The core OS does the following for each COIL-based partition OS:

■ Manages interrupts and exceptions by pseudo-interrupts.

■ Provides I/O support for devices and ports.

■ Provides interpartition messaging via ports.

■ Monitors health at these levels: VxWorks 653 module, partition, and process.

1 Overview
1.3 Run-time System

7

1
Core OS Certifiability

You can use a core OS certifiable subset, whose features have been selected for
predictability, functionality, and certifiability under Level A objectives of the
RTCA/DO-178B avionics software guidelines.

The subset provides an operating environment that supports the development of
safety-critical applications. In addition, the subset includes a set of debug libraries
that supports minimal debugging over a serial connection. The libraries must be
removed before the application is deployed.

vThreads Layer

The core OS does not schedule vThreads threads. The scheduler in the partition OS
schedules them during the time that the core OS allocates to the partition.

vThreads does not directly interact with devices, but instead defers those
operations to the core OS by making system calls. System calls are also made for
the timer, some scheduling facilities, and interpartition communication.

For more information, see 2. Developing vThreads Applications and 6. Developing C++
Applications.

vThreads Certifiability

You can use a vThreads certifiable subset, whose features have been selected for
certifiability to Level A of the RTCA/DO-178B avionics software guidelines. The
certifiable subset supports the functionality of the APEX layer, as described in the
ARINC 653 specification.

The vThreads certifiable subset can be used with the core OS certifiable subset and
a COIL certifiable subset.

COIL Layer

COIL provides an API for the minimum functionality for an application to
communicate with the core OS: interrupt and exception management, device I/O,
interpartition messaging, and the injection of health monitor events.

For more information, see 3. Developing COIL Applications.

VxWorks 653
Programmer's Guide, 2.2

8

COIL Certifiability

You can use a COIL certifiable subset, whose features have been selected for
certifiability to Level A of the RTCA/DO-178B avionics software guidelines.

The COIL certifiable subset can be used with the core OS certifiable subset and a
vThreads certifiable subset.

APEX Layer

The APEX layer is built on top of vThreads and conforms to the ARINC 653
specification for functionality and API. For details, see 4. Developing APEX
Applications.

POSIX Layer

This POSIX layer is built on top of vThreads and conforms to the POSIX standard
for real-time extensions (1003.1b). For details, see 5. Developing POSIX Applications.

1.3.2 Loading and Booting

When power is applied to the target, the following happens:

■ The initial boot code loads the core OS, partition OSs, shared libraries, and
applications.

■ The core OS initializes itself, starting its own subsystems.

■ The core OS creates the partitions.

■ The core OS starts the partition scheduler, letting applications initialize
themselves.

Because the core OS loads applications as part of the boot sequence, incremental
loading is not available. However, the core OS can download online-loaded
applications into partitions after initialization is complete. The application is
identified as destined for online loading. The application and the rest of the
VxWorks 653 module are built together. Then the application can be loaded into
the partition after the partition is running. For more information, see
7.10.3 Online-Loaded Partitions, p.165.

Restart requires a mechanism for reloading partitions from flash on restart. This is
implemented using payload images rather than a boot application or the standard

1 Overview
1.4 RTCA/DO-178B Certifiability

9

1ROM-resident image. These images provide section information to the restart
mechanism to load the images from either RAM or flash without the use of a boot
application. For more information, see the VxWorks 653 Configuration and Build
Guide.

1.3.3 Run-time Model

The core OS handles system calls from each partition and validates all arguments
of each system call before running it. Applications that use the vThreads partition
OS have the complete set of vThreads intertask communication mechanisms
available to them for use within a partition.

In addition, applications that use APEX libraries to provide ARINC 653 support
have additional capabilities. APEX provides partition management, process
management, and time management that conform to the ARINC 653 specification.
APEX provides messages, channels, and ports for interpartition communication,
as well as buffers, blackboards, semaphores, and events for intra-partition
communication For more information, see 4.7 Communicating between Partitions,
p.67 and 4.9 Communicating within APEX Partitions, p.77.

Port mapping allows communicating outside the VxWorks 653 module. For
details, see 4.8 Communicating with Other Modules, p.74.

1.4 RTCA/DO-178B Certifiability

To support Level A certification to the RTCA/DO-178B avionics software
guidelines, a certifiable subset of VxWorks 653 is available. The certifiable subset
is selected to comply with the objectives of RTCA/DO-178B. Selection is based on
the deterministic nature of the code. The subset excludes operations that can
compromise the integrity of safety-critical systems (for example, dynamically
deallocating memory).

After you develop, debug, and fine-tune an application on the full VxWorks 653
(by using the debug build spec), you can move it to the certifiable subset (by using
the cert build spec).

VxWorks 653
Programmer's Guide, 2.2

10

Because VxWorks 653 configuration does not prevent you from including
debugging components in the certifiable image, it is your responsibility to ensure
all debugging components are removed before the application is deployed.

The following combinations of debug core OS, debug vThreads (or debug COIL),
and their certifiable subsets are recommended:

Recommendations to Ensure RTCA/DO-178B Level A Certifiability

The following recommendations are made to ensure VxWorks 653 is used in a
manner consistent with the Level A objectives defined by RTCA/DO-178B:

■ System objects and resources (for example memory, queues, tasks, and
semaphores) must be allocated only when an application is initialized.

■ The system must be configured so that allocating memory is not possible after
an application is initialized.

■ The system must be configured so that system objects and resources cannot be
deleted or freed.

■ Application tasks must be designed to run forever.

■ Because VxWorks 653 might not detect an invalid pointer that an application
passes to it, when an application requests that data be stored, it must first
check that memory pointers are not corrupted. (The core OS validates all
pointers that a partition OS passes to it.)

■ Applications must not modify a task control block (TCB) directly, but must use
the provided API only.

■ Applications must use semaphore types and options that protect against
priority inversion.

■ Applications must use exclusion mechanisms that protect against deadlock
and race conditions.

■ All interrupt vectors must have handlers assigned to them.

Debug vThreads
Debug COIL

vThreads certifiable subset or
COIL certifiable subset

Debug core OS For development
work.

For debugging certifiable
applications.

Core OS certifiable
subset

N/A For deployed systems.

1 Overview
1.4 RTCA/DO-178B Certifiability

11

1
■ Handlers (interrupt, watchdog, and exception) must not call blocking

routines.

■ The target hardware must have enough CPU power to handle interrupts and
to process the computing load.

VxWorks 653
Programmer's Guide, 2.2

12

13

 2
Developing vThreads

Applications

2.1 Introduction 13

2.2 vThreads Time Management 15

2.3 Handling External Stimuli 18

2.4 vThreads Memory Management 24

2.5 vThreads Initialization and Restart 25

2.6 Stack Overflow Protection 30

2.7 vThreads Device I/O 33

2.8 vThreads APIs 33

2.9 vThreads System Calls 34

2.1 Introduction

The vThreads partition OS (vThreads) is a multithreading technology that is based
on VxWorks 5.5.

This documentation discusses programming concepts for developing applications
that run in vThreads partitions.

VxWorks 653
Programmer's Guide, 2.2

14

vThreads consists of a kernel plus a subset of the libraries supported in
VxWorks 5.5. It has its own priority-preemptive scheduler and its own set of
libraries that provide the API. vThreads runs at user level in an application domain
under the core OS. One instance of vThreads is completely distinct from both the
core OS and other vThreads instances running in other partitions in the same
VxWorks 653 module.

Threads

In its partition, vThreads has its own set of objects, including threads. These
threads are scheduled by the scheduler associated with each partition. The core OS
is unaware of the existence of vThreads threads and the scheduling that happens
inside partitions. vThreads threads communicate with the outside world and with
other vThreads domains by making system calls to the core OS. For more
information, see 2.2.2 vThreads Scheduling, p.16.

Memory

On startup, the core OS provides each vThreads partition with a memory heap.
vThreads uses this memory heap to manage all allocations required for its objects.
This is the only memory vThreads can access. Any memory access outside this
range is trapped by the core OS and is illegal. For more information, see
2.4 vThreads Memory Management, p.24.

I/O

Unless the I/O device is mapped to the partition, vThreads cannot directly access
the device or supervisor-level processor resources. (For more information, see
vThreads Model of Device Drivers, p.224.) All I/O, interdomain communication, and
so on, are accomplished by system calls to the core OS. A set of system calls is
provided for this purpose. For more information, see 2.8 vThreads APIs, p.33.

Interrupts and Exceptions

The occurrence of hardware interrupts and exceptions is transparent to vThreads.
External events such as clock ticks and status of I/O operations are communicated
by the core OS to vThreads by a pseudo-interrupt. The signal handler operates like
a hardware interrupt handler: it advances time, manages the delay queue, and
unblocks threads waiting for I/O to complete. For more information, see
2.3.1 vThreads Pseudo-Interrupt Signals, p.19.

NOTE: This documentation describes differences between vThreads and
VxWorks 5.5, the basics of which are described in A. VxWorks 5.5.

2 Developing vThreads Applications
2.2 vThreads Time Management

15

2

vThreads can be configured to let I/O system calls run asynchronously. If you
configure asynchronous I/O, blocking I/O system calls made by vThreads threads
are deferred to core OS worker tasks. This lets the partition itself continue running
and schedule other vThreads threads while the worker task blocks on the I/O
operation. When the I/O completes, the worker task sends a pseudo-interrupt to
notify the partition, which in turn unblocks the thread that made the blocking call.
For more information on asynchronous I/O, see 9.2 I/O and vThreads, p.221.

Pseudo-interrupt and asynchronous I/O facilities give vThreads applications the
same view and semantics as if they were running in a VxWorks 5.5 system that
controls the hardware directly. On the other hand, the core OS partition scheduler
and memory protection facilities ensure the time and space partitioning required
of a partitioned operating system are satisfied.

Certification

A subset of vThreads is available that is certifiable to Level A of the
RTCA/DO-178B avionics software guidelines.

2.2 vThreads Time Management

vThreads keeps track of the passage of time, which the core OS announces to
vThreads by a pseudo-interrupt mechanism similar to a software signal. This is the
only major difference in time management between VxWorks 5.5 and vThreads.

Time management within a vThreads partition is accomplished with a single timer
queue. This queue manages watchdog timers and timeouts on various operations.
It also performs round-robin scheduling of equal priority vThreads threads (if
round-robin scheduling is enabled).

2.2.1 vThreads Timer Queue

Elements on the queue are advanced when a system clock tick is announced to
vThreads. Each tick denotes the passage of a single unit of time. Ticks are
announced to vThreads from the core OS through the pseudo-interrupt
mechanism. For information about the pseudo-interrupt mechanism, see
2.3.1 vThreads Pseudo-Interrupt Signals, p.19.

VxWorks 653
Programmer's Guide, 2.2

16

There are no limits on the clock tick rate that can be accommodated by vThreads,
other than the available processor cycles that can be utilized by the VxWorks 653
module in servicing clock hardware interrupts and issuing pseudo-interrupt
signals.

As a performance optimization, multiple clock ticks are announced to vThreads
within a single pseudo-interrupt. Rather than announcing every tick into the
partition, a single event is issued against the partition only after a specified
number of ticks have expired.

The batch delivery of clock ticks lets the core OS conserve processor cycles.
Although the core OS is still required to service the clock hardware interrupts,
processor cycles are conserved by elimination of the overhead involved in issuing
pseudo-interrupt signals, and the subsequent processing of the ticks within
vThreads. This is particularly true for systems that require a timeout specification
granularity of 0.25 milliseconds (which translates into 4000 ticks per second).

Clock ticks are delivered to a partition only during its window of execution. When
the core OS schedules in a new partition, the clock ticks are delivered to the newly
scheduled partition.

The issuance of clock ticks to the scheduled-out partition recommences at the start
of the partition's next window. At this point, the core OS announces, in batch
mode, all the clock ticks that have transpired since the last tick announced to the
partition in its previous window. This means that a timeout (or delay) can expire
outside the partition's window, but the timeout is acted on only at the beginning of
the next partition window.

2.2.2 vThreads Scheduling

vThreads is comprised of the core portions of VxWorks 5.5, modified to operate
solely in a non-privileged processor mode of the CPU (that is, user level). The
vThreads scheduler has the same characteristics as the VxWorks 5.5 scheduling
algorithm: a priority-preemptive scheduler that allocates the CPU to the
highest-priority thread that is ready to run.

NOTE: The system integrator decides the system clock rate. It is set in the BSP by
calling sysClkRateSet(). vThreads can get the clock tick rate by calling
sysClkRateGet(), but cannot alter it.

2 Developing vThreads Applications
2.2 vThreads Time Management

17

2

Priority-Preemptive Scheduling

vThreads threads are scheduled using a priority-preemptive algorithm by default.
The vThreads scheduler uses the priority assigned to each vThreads thread to
allocate the CPU to the highest-priority vThreads thread that is ready to run.

Preemption occurs when a thread of higher priority than the running thread
becomes ready to run. A higher-priority thread becomes ready to run as a result of
either the expiration of a timeout, or the new availability of a resource the thread
had been pending on. The preemptive events are delivered from the core OS to the
partition, through the pseudo-interrupt mechanism described in 2.3.1 vThreads
Pseudo-Interrupt Signals, p.19. These events include, but are not limited to, the
system clock tick and the system-call completed signals.

The scheduling of equal-priority threads complies with the SCHED_FIFO method
of the POSIX 13.2.1 specification when round-robin scheduling is disabled.
Round-robin scheduling is disabled by default.

In a queue of equal-priority threads, the head of the queue is occupied by the first
thread placed on the queue. Threads are placed on the queue in FIFO order. The
thread at the head of queue is assigned the CPU when there are no higher-priority
threads ready to run.

When the thread is preempted by a higher-priority thread, it remains at the head
of the queue of equal-priority threads. Therefore, when the higher-priority thread
relinquishes the CPU, that same thread is reassigned the CPU.

When a thread becomes unblocked, it is placed at the tail of the queue of
equal-priority threads.

Finally, when the priority of a thread is changed, the thread is also placed at the tail
of the queue of equal-priority threads.

This scheduling algorithm is the default one used in VxWorks 5.5. For more
information on that algorithm, see A.2.3 Wind Task Scheduling, p.273.

When no threads are ready to run, and no events are left to be processed, the
partition is in an idle state. An idle partition does not spin in a tight loop. Rather,
it enters the core OS via a system call and blocks there until the core OS sends it
one or more events to process. Only then does the partition run again. Events are
processed, and any threads that may have become ready to run are run.

VxWorks 653
Programmer's Guide, 2.2

18

Round-Robin Scheduling

The vThreads scheduler provides an optional round-robin scheduling mode.
Round-robin scheduling lets the processor be shared fairly by all threads of the
same priority. Without round-robin scheduling, when multiple threads of equal
priority must share the processor, a single non-blocking thread can usurp the
processor until preempted by a thread of higher priority, thus never giving the
other equal-priority threads a chance to run.

Round-robin scheduling is disabled by default. It can be enabled or disabled by
calling kernelTimeSlice(), which takes an argument for the time slice (or interval)
that each thread is allowed to run before relinquishing the processor to another
equal-priority thread (if the value is zero, round-robin scheduling is turned off).

If round-robin scheduling is enabled and preemption is enabled for the running
thread, the system tick handler increments the thread's time-slice count.

When the specified time-slice interval is completed, the system tick handler clears
the counter, and the thread is placed at the tail of the list of threads for its priority.

New threads joining a given priority group are placed at the tail of the group, with
a run-time counter initialized to zero.

Enabling round-robin scheduling does not affect the performance of thread context
switches, nor is additional memory allocated.

If a thread blocks or is preempted by a higher-priority thread during its interval,
its time-slice count is saved, and then restored when the thread is eligible to run.
In the case of preemption, the thread resumes running once the higher-priority
thread completes, assuming that no other thread of a higher priority is ready to
run. If the thread blocks, it is placed at the tail of the list of threads for its priority.
If preemption is disabled during round-robin scheduling, the time-slice count of
the running thread is not incremented.

Time-slice counts are accrued against the thread that is running when a system tick
occurs, regardless of whether the thread has run for the entire tick interval. Under
certain circumstances, a thread may run for more or less than its allotted CPU time
(for example, when preempted by higher-priority threads, or when
pseudo-interrupt routines steal CPU time from the thread.)

2 Developing vThreads Applications
2.3 Handling External Stimuli

19

2

2.3 Handling External Stimuli

vThreads provides threading capability. It does not provide a mechanism to
deliver interrupts from hardware devices requesting service. However,
notification of various hardware interrupts and other significant conditions must
still be communicated asynchronously from the core OS to the partition. These
notifications primarily take the form of pseudo-interrupts. In other words,
notifications are delivered asynchronously by the core OS, instead of a hardware
interrupt or synchronous exception.

2.3.1 vThreads Pseudo-Interrupt Signals

The occurrence and handling of hardware interrupts is transparent to a partition.
Software interrupts are the mechanism by which the core OS notifies a partition of
relevant events. Because signals are delivered asynchronously and often reflect the
occurrence of hardware conditions, but are not directly raised by a hardware
device, they are called pseudo-interrupt signals or pseudo-interrupts.

For a list of pseudo-interrupt event types, see Table 2-1.

A pseudo-interrupt is sent to a partition when the partition needs to process events
and attempt thread rescheduling. Sending a pseudo-interrupt always involves
queuing an event in the event queue. If necessary, exactly one signal is sent to the
partition. No data is sent with this signal. It simply serves to change the control
flow, thereby assuring that vThreads reads the event queue and takes the necessary
action. If vThreads is in kernel mode, at pseudo-interrupt level, or in the core OS,
the control flow naturally processes events and attempts rescheduling, so an
additional signal is not required. The pseudo-interrupt handler dequeues the
queued event and processes it.

Applications are not allowed to install their own pseudo-interrupt handler. Thus,
intConnect() is not supported in vThreads. User handlers can be installed only for
some event types, using vThreadsEventHandlerRegister(). Most events received
by the partition are meant to be processed only by the vThreads OS. An attempt to
register a user-defined handler for those events returns an error.

Table 2-1 Pseudo-Interrupt Event Types

User Handler Forbidden User Handler Permitted

VT_EVENT_CLOCK_TICK VT_EVENT_PORT_INT_RECV

 VT_EVENT_PARTITION_SAFE_TEXT_IO VT_EVENT_PORT_INT_SEND

VxWorks 653
Programmer's Guide, 2.2

20

Applications within a vThreads environment communicate with other partitions
or the outside world through I/O or through the ports facility. They never directly
field an asynchronous signal or event from outside the partition.

The intLock() and intUnlock() routines are provided to lock out
pseudo-interrupts when entering a critical section of code. Typically, a vThreads
application calls intLock() and intUnlock() to prevent interactions with an
application routine that is run by a vThreads watchdog timer (wdLib).

For performance reasons, the pseudo-interrupt lockout mechanism does not
require a system call for each lock-unlock pair. However, if the core OS attempts to
deliver a pseudo-interrupt while vThreads is in a critical section, a system call is
required to dequeue the event type and associated data when leaving the critical
section.

The handling of a pseudo-interrupt often causes a vThreads thread other than the
interrupted one to become the highest-priority ready-to-run thread. In such cases,
vThreads provides the core OS with an alternative user-level register set to load the
vThreads core OS task after the pseudo-interrupt handler has completed. If no
alternative register is provided, the core OS uses the register that was saved before
delivering the pseudo-interrupt to vThreads.

Various core OS-based tools are provided to interpret vThreads data structures.
The core OS issues a pseudo-interrupt prior to accessing any vThreads data
structures. This serves to ensure that vThreads is not in a critical section when the
core OS tools access the data structures.

If vThreads is running within a critical section, the handling of the
pseudo-interrupt is deferred until vThreads exits the critical section. Otherwise,
the pseudo-interrupt is handled immediately. Handling of this pseudo-interrupt
involves performing a specified core OS system call, thereby indicating that
vThreads is not running in a critical section.

VT_EVENT_SC_COMPLETE VT_EVENT_RELEASE_POINT

VT_EVENT_SYNC VT_EVENT_USER

VT_EVENT_TIME_MONITOR

VT_EVENT_WARM_RESTART

Table 2-1 Pseudo-Interrupt Event Types (cont’d)

User Handler Forbidden User Handler Permitted

2 Developing vThreads Applications
2.3 Handling External Stimuli

21

2

The entire vThreads partition blocks during the system call until the core OS has
completed accessing the vThreads data structures.

Pseudo-Interrupt Events Forbidden in User Handlers

VT_EVENT_CLOCK_TICK (System Clock Ticks)

The delivery of a clock tick is used to announce the passage of time to vThreads.
Each tick denotes the passage of a single unit of time. Multiple ticks may be
announced to vThreads within a single pseudo-interrupt.

vThreads maintains a timer queue that is used for managing watchdog timers and
timeouts on various operations, and for performing round-robin scheduling of
equal-priority vThreads threads (if enabled). Announcing ticks to vThreads is
necessary to advance elements in the timer queue as time passes.

For more information, see 2.2 vThreads Time Management, p.15.

VT_EVENT_SC_COMPLETE (System Call Complete)

A system call is performed by vThreads to request a service from the core OS. For
system calls that block, the core OS assigns a core OS task to complete the request,
and returns control to vThreads. vThreads moves the requesting thread from the
ready queue to a pend queue, and then schedules the highest-priority thread that
is ready to run.

When the assigned core OS task completes the system call, a system-call-complete
pseudo-interrupt is issued to inform vThreads of the completion. At this point,
vThreads moves the requesting thread back to the ready queue.

For more information, see 2.9 vThreads System Calls, p.34.

VT_EVENT_SYNC

This event is used to synchronize vThreads and the core OS when the debugger is
active. With this event, vThreads can be stopped in a safe state in which no kernel
data is being updated. As a result, the debugger and tools can access vThreads data
without the risk of using invalid data structures.

VT_EVENT_WARM_RESART

When a partition has locked preemption, a warm restart needs to be handled in a
cooperative way between the core OS and the partition. This event is sent to the
partition when a warm restart is requested and lets data be changed atomically in
the partition.

VxWorks 653
Programmer's Guide, 2.2

22

VT_EVENT_TIME_MONITOR

This event is used to notify a partition that time-monitoring information is
available.

VT_EVENT_PARTITION_SAFE_TEXT_IO

This event is used to notify a partition that data from application multiplexed I/O
is available.

Pseudo-interrupt Events Permitted in User Handlers

VT_EVENT_RELEASE_POINT

This event is used by the vThreads scheduler to start periodic processes. Each
window in the schedule is associated with a flag that indicates whether the
beginning of the window defines the start of the partition's period. When the flag
is set, this event is sent, and the vThreads scheduler starts periodic processes.

VT_EVENT_PORT_INT_RECV (APEX Port RECV)

This event is sent to the partition of a source port after a successful receive
operation on one of the destination ports. It permits the partition to
asynchronously resume processes that may be blocked on the full source port.

VT_EVENT_PORT_INT_SEND (APEX Port SEND)

This event is sent to the partition of a destination port after a successful send
operation. It permits the destination port to asynchronously resume processes that
may be blocked on the empty destination port.

VT_EVENT_USER

This event is reserved for application use and is the only event meant to be used
with vThreadsEventHandlerRegister().

It is also possible to send a user event from the core OS to a partition by calling
valPseudoInt(), which can be called only from a kernel protection domain task or
an ISR. For details, see the reference entry.

2 Developing vThreads Applications
2.3 Handling External Stimuli

23

2

2.3.2 vThreads Synchronous Exception Handling

Synchronous exceptions refer to the class of exceptions that are caused directly by
running (or attempted running) an instruction. The synchronous exceptions of
interest to vThreads are the ones caused by a programming fault, for example,
divide by zero, floating-point exception, data access, or illegal instruction.
Synchronous exceptions caused by an MMU TLB miss are not significant for
vThreads because they are handled by the core OS.

In addition, handling of vThreads application-generated exceptions in the core OS
can be performed only at a fairly coarse level. For example, if a vThreads thread
generates a data-access exception, the core OS must suspend the entire partition,
and, therefore, all vThreads threads in the partition are suspended. Due to this
limitation, exceptions are reported to vThreads so that vThreads can provide a
finer-grained handling of the fault.

When an exception is processed, vThreads may choose to reschedule to another
thread, resume or restart the thread receiving the exception, restart the partition,
or idle, depending on the nature of the exception.

Providing exception notification to vThreads enables vThreads thread-level
handling of the fault. The default behavior is to suspend the running vThreads
thread, unless the fault occurred during a critical section of the vThreads kernel. In
that case the entire partition is restarted. That is, an internally initiated restart is
performed.

The same logic that is used in VxWorks 5.5 to process exceptions is used in
vThreads, except that the exception stack frame is provided by the core OS rather
than by vThreads. As mentioned above, suspending the offending vThreads
thread is the default behavior. In addition, a summary of the exception is displayed
on the system console. The displayed information includes the offending vThreads
thread ID, the exception type, the program counter of the vThreads thread when
the fault occurred, and additional information depending on the exception type.

In addition to the exception diagnosis performed by VxWorks 5.5, vThreads also
diagnoses vThreads thread stack-overflow conditions. If enabled, core OS support
provides a system call to enable and disable memory protection for guard pages at
the end of each vThreads thread stack.

As with VxWorks 5.5, an application can register a handler to be run whenever any
vThreads thread in the partition generates a fault. This lets an application perform
its own fault handling and bypass the default vThreads behavior.

VxWorks 653
Programmer's Guide, 2.2

24

2.4 vThreads Memory Management

The vThreads memory manager is the same as VxWorks 5.5, in other words,
memPartLib.c. Applications in a partition call malloc() or memPartAlloc() to
allocate memory dynamically from the partition system heap (which is the only
heap).

In addition, vThreads lets applications disable dynamic allocations when a
partition has completed booting and reached its normal operating mode. The
memPartAllocDisable() routine serves this purpose. In addition, it is up to the
application to allow the disabling of dynamic allocations after bootup and
initialization. Disabling dynamic allocation can be done for each partition at
configuration and build time by setting the allocDisable parameter to true in the
XML configuration file. For more information, see the VxWorks 653 Configuration
and Build Reference. To get the value at run-time, call configRecordFieldGet() with
the PARTITION_ALLOC_DISABLE selector.

If the partition configuration selects this feature, and once
memPartAllocDisable() has been called in the partition, any subsequent call to
partition-level allocation or free routines results in an error. In addition, errno is set
to S_memLib_FUNC_NOT_AVAILABLE. If health monitoring is configured into the
VxWorks 653 module, a health monitor event is logged. Once disabled, allocations
cannot be enabled except by a partition restart.

After dynamic allocation has been disabled, the following memLib routines return
NULL, with errno set as described above:

■ calloc()
■ cfree()
■ free()
■ malloc()
■ memalign()
■ memPartAlignedAlloc()
■ memPartAlloc()
■ memPartFree()
■ memPartRealloc()
■ realloc()
■ valloc()

APEX applications typically issue the SET_PARTITION_MODE service to alter the
partition operating mode. When set to NORMAL mode, memPartAllocDisable()
is called automatically to prevent additional memory allocations.

2 Developing vThreads Applications
2.5 vThreads Initialization and Restart

25

2

C applications can call memPartAllocDisable() directly when they have allocated
all the memory they expect to need. The routine takes no arguments and returns
nothing.

As a consequence of disabling dynamic allocation, no vThreads objects, such as
threads, semaphores, or message queues, can be created. Hence, partitions start
booting with allocations enabled and call memPartAllocDisable() only when they
are ready to do so.

Disabling allocation for each partition is independent of other partitions and the
core OS. The core OS disables allocation when it has booted and created all
partitions and their associated infrastructure. A partition disables allocation after
its own initialization is complete.

2.5 vThreads Initialization and Restart

The core OS creates and launches each partition as a native core OS task. The core
OS is not aware of the threads and scheduling that occur inside partitions after they
are started. The entry point for the partition is always the boot code for vThreads.
vThreads runs in user mode as a core OS task. After vThreads initialization is
complete, vThreads starts additional partition-level components and user
applications.

2.5.1 vThreads Boot Sequence

Once started, each partition initializes itself as follows:

1. The first step in the vThreads boot sequence involves making a system call to
the core OS to find required initialization parameters. The core OS transfers the
following initialization parameters as part of the SYSINFO_GET system call:

a. partition heap start address and size

b. number of worker tasks if any

c. partition operating mode (that is, PARTITION_IDLE,
PARTITION_COLD_START, or PARTITION_WARM_START)

d. reason or type of the last restart

VxWorks 653
Programmer's Guide, 2.2

26

e. maximum number of core OS files the partition can open

f. system clock rate

g. MMU page size

h. memory allocation disable flag

i. copy of the partition configuration record in the partition space

j. list of shared data regions used by the partition

k. partition symbol table

l. list of initialization routines for the partition’s shared library and
application components

Most parameters are specific to a partition and can vary from one partition to
another. Others, including the system clock rate and MMU page size, are
global to the VxWorks 653 module and do not vary.

2. The vThreads kernel initializes itself in the given heap of memory and enters
multi-tasking mode by starting tRootTask.

3. tRootTask carries on system initialization by initializing other OS facilities
such as intertask communication mechanisms, the I/O system, exception
handling, and signal handling. vThreads proper is now functional and ready
to initialize additional OS layers.

4. The POSIX libraries are initialized (if selected) or the APEX facilities (if
selected). Initialization of APEX facilities involves further system calls to get
the partition configuration record information for APEX object initialization.

5. Finally, vThreads initializes any application components configured into the
VxWorks 653 module.

6. The application code is now running.

This vThreads boot sequence is a modified version of the VxWorks 5.5 boot
sequence. All hardware and processor initialization steps have been handled in
one of the following ways:

■ Removed entirely, because they are no longer relevant in the context of a
partitioned operating system.

■ Removed because the core OS performed them when it booted.

■ Replaced by a system call to the core OS.

Additionally, a few vThreads-specific steps and ordering have been added as
applicable.

2 Developing vThreads Applications
2.5 vThreads Initialization and Restart

27

2

Individual vThreads threads are not schedulable entities for the core OS. All
vThreads thread scheduling is done entirely by vThreads in user mode. The
vThreads scheduler is the same as the VxWorks 5.5 scheduler, which is a
priority-preemptive scheduler with an option to enable round-robin scheduling
for all threads at a given priority level. All resource allocations performed by
vThreads are made from its assigned memory pool. This pool (the partition heap)
is defined by the system integrator and remains fixed at that size. In other words,
the partition heap cannot dynamically grow beyond the size set in the
configuration file.

2.5.2 vThreads Restart

A partition restart can be initiated either externally (for example, by the core OS)
or by the partition itself. A partition can choose to restart itself in response to
exceptional conditions, application errors, and so on. Restarts can be of two types:
cold or warm. In both cases, vThreads is rebooted, but some subsequent actions are
not performed for warm restarts.

Cold Versus Warm Restarts

When a restart is externally initiated (either cold or warm), any outstanding
system calls in progress are aborted before the partition restarts itself. All restart
activity is performed within the partition’s schedule window. No dynamic
memory allocation is performed during a partition restart.

A cold partition restart assumes that the partition has corrupted itself irretrievably.
The following actions are performed:

■ Outstanding system calls are flushed.

■ vThreads task is stopped.

■ Partition memory is cleared.

■ Text and data sections for the partition executable are reloaded.

■ The uninitialized data area (.bss) is cleared.

■ Per-client data for any attached shared libraries is reloaded.

■ Persistent data sections are reloaded.

■ vThreads boots again from the original entry point.

■ Devices controlled by the partition (if any) are re-initialized.

VxWorks 653
Programmer's Guide, 2.2

28

A warm partition restart assumes that only the partition’s application has been
corrupted. The following actions are performed:

■ Outstanding system calls are flushed.

■ vThreads thread is stopped.

■ Non-persistent data sections, including those from any attached shared
libraries, are reloaded.

■ The uninitialized data area (.bss) is cleared.

■ vThreads boots again from the original entry point.

Applications can choose to bypass certain steps in their initialization sequence on
warm restarts. In other words, the application developer is the one who specifies
the initialization sequences for both cold and warm starts, and can design both
options to best serve the application.

Cooperative Warm Partition Restart Mechanism

When a warn partition restart is requested, the vThreads abstraction layer (VAL)
valPartitionRestart() routine performs the VAL- and vThreads-related portion of
a restart operation. This routine issues a VT_EVENT_WARM_RESTART
pseudo-interrupt event into the partition.

The core OS task that is performing the restart operation (the partition restart task)
delays until an acknowledgement is received from the partition. If the delay
expires without an acknowledgment, a cold partition restart is performed.

For a non-APEX partition (POSIX or vThreads partition), the
VT_EVENT_WARM_RESTART pseudo-interrupt handler in vThreads uses the
preemption lock count of the running thread to determine whether the partition is
in a critical section. Normally, taskIdCurrent indicates the running task, except in
the case where a process-level health monitor thread has forcefully preempted a
preemption-locked thread. In this case, taskIdCurrent indicates the thread that the
health monitor thread preempted.

For an APEX partition, the VT_EVENT_WARM_RESTART pseudo-interrupt
handler uses the lock level of the APEX partition to determine whether the
partition is in a critical section.

If the partition is in critical section, a global variable in the partition is set to
indicate that a warm partition restart has been requested. This variable is always
checked by taskUnlock(). If a warm partition restart has been requested,
taskUnlock() performs a SYSCALL_WARM_RESTART_ACK system call to unblock

2 Developing vThreads Applications
2.5 vThreads Initialization and Restart

29

2

the core OS partition restart task as soon as the blocking call is complete. At this
point, the core OS proceeds with the warm restart operation. If the partition is not
in a critical section, the pseudo-interrupt handler immediately performs the
SYSCALL_WARM_RESTART_ACK system call to unblock the core OS partition
restart task.

There is no need for the VT_EVENT_WARM_RESTART pseudo-interrupt handler to
check whether the thread has locked out pseudo-interrupts. When the application
eventually unlocks pseudo-interrupts, via intUnlock(), vThreads services any
pending events in the queue. When the VT_EVENT_WARM_RESTART event is
encountered, a SYSCALL_WARM_RESTART_ACK system call is performed
(assuming that the application did not also lock preemption).

This mechanism lets applications trust their critical data across warm partition
restarts. The purpose of a warm restart, as opposed to a cold restart, is to preserve
certain sections of memory (ELF sections with a specific name, such as
.persistent.data) over the restart. An application could not trust the integrity of
critical data over warm restarts if a warm restart could occur while a thread is in
the midst of updating that data. A cooperative mechanism lets that data be trusted.

A cooperative warm partition restart does not occur if the partition is running a
SYSCALL method even though an application thread may have previously locked
preemption. Thus, applications should not call routines that may result in a
SYSCALL method call after locking preemption.

The partition’s watchDogDuration parameter in the XML configuration file (see
the VxWorks 653 Configuration and Build Reference) determines the length of
partition time that the core OS waits for an acknowledgement from the
VT_EVENT_WARM_RESTART event. To get the value at run-time, call
configRecordFieldGet() with the PARTITION_WD_DURATION selector. If
vThreads fails to acknowledge in the specified time frame, warm partition restart
is escalated to a cold partition restart.

Comparison with Non-Cooperative Warm Partition Restart

For situations where a partition itself requests a warm restart, through the
SYSCALL_PARTITION_MODE_SET system call, the core OS partition restart task
does not block during the invocation of valPartitionRestart(). Also, if the partition
requests a partition restart, for example, due to a fatal error, while the core OS
partition restart task is waiting for an acknowledgement, valPartitionRestart()
unblocks so that the warm restart can proceed.

VxWorks 653
Programmer's Guide, 2.2

30

Partition Restart and Device Drivers

When a driver resides completely in the core OS, issues arise between device use
by partitions and a partition restart. To ensure reliability in terminating system
calls in progress, core OS device drivers that are used by partitions should follow
the following rules to make theVxWorks 653 module safe during partition restart:

■ The driver’s open(), creat(), remove(), and close() routines should be
deterministic in execution and bounded in time. They should not block for an
arbitrarily long time (in other words, they should not have unbounded
execution characteristics).

■ The FIORESET ioctl command code should be supported by the device driver.
It is called during restart of partition, if the driver was in the midst of a read(),
write(), or ioctl() operation on the device.

■ The FIORESET command should make the thread of control that is running the
driver’s read(), write(), or ioctl() operation complete. This could involve
either:

– Wake up the partition thread if it was blocking on I/O and make it return
from the I/O operation.

– If the thread is in the middle of the I/O operation but is not blocking, it
could do a longjump() from the thread so that it returns from the I/O
operation.

FIORESET must never terminate a thread that is performing an I/O operation.

2.6 Stack Overflow Protection

Stack overflow protection is a feature new to vThreads, one not present in
VxWorks 5.5. It consists of one or more pages of memory at the top of the stack that
cannot be written to. If a write operation is attempted, a stack overrun error is
issued.

NOTE: Partition-based I/O does not have these constraints because it is reset
during restart.

2 Developing vThreads Applications
2.6 Stack Overflow Protection

31

2

2.6.1 Guard Pages

The number of guard pages can be set for each partition at configuration and build
time by setting the numStackGuardPages parameter in the XML configuration
file. For more information, see the VxWorks 653 Configuration and Build Reference. To
get the value at run-time, call configRecordFieldGet() with the
PARTITION_NUM_STK_GUARD_PAGES selector.

The taskSpawn() routine rounds the thread stack size up to the nearest page
boundary. The amount of memory consumed by the guard pages is added
automatically to the requested thread stack size. You need not factor the guard
page size into your stack size calculations.

The stack guard page is accessible from supervisor level only. Any access to this
page from a vThreads thread (for example, by a stack overflow) causes a data
access exception.

Guard pages are created and their access permissions set when a vThreads thread
is created.

When a thread that is running in user mode (in other words, not running a system
call) overflows its stack, a data access exception is generated by the CPU. As with
all other synchronous exceptions (except debugging-related exceptions), the
exception information is passed up to vThreads. The exception is delivered to the
offending thread where a SIGBUS signal is delivered if a signal handler has been
registered (sigaction) for this signal. If a signal handler has not been registered for
the offending thread, a HM event injection occurs with the
HM_STACK_OVERFLOW code.

User-level read and write privileges are removed from the guard pages; however,
supervisor read and write privileges remain. This prevents an access exception due
to stack overflow during a system call. When a system call is issued, the VAL and
core OS operate on the stack of the calling thread.

If the VAL or core OS generate an access exception due to a stack overflow, the
entire module is rebooted. In fact, a cold system restart is performed. In contrast, if
a thread overflows its stack, vThreads or the application can issue a partition
restart in the worst case.

2.6.2 Defaults

The default number of stack guard pages is one for a PowerPC and zero for the
simulator. Stack guard pages are disabled for the simulator because the MMU page

VxWorks 653
Programmer's Guide, 2.2

32

size for a Pentium is 64 KB. Due to this large size, too much memory is consumed
by guard pages, which thus easily causes memory exhaustion within the partition.

The number of stack guard pages is defined by the NUM_STACK_GUARD_PAGES
parameter. For information on setting parameters, see the VxWorks 653
Configuration and Build Guide. For information on a particular parameter, see the
VxWorks 653 Configuration and Build Reference.

2.6.3 Limitations

The following limitations of the guard-page method of stack overflow protection
should be kept in mind:

■ If a system call overflows the guard page, the entire VxWorks 653 module is
rebooted using a cold restart (in the case of the simulator only).

■ Underflow conditions cannot be caught.

■ Overflows of huge stack frames that may cross over the guard page completely
cannot be caught.

■ There is no user-callable API. Guard pages are always set.

■ The initial thread spawn sets as many bytes above the start of the guard page
as the stack size requested for the thread. Therefore, asking for a small amount,
such as 100 bytes, gives you one page of memory, but any access above 100
bytes causes a trap. Calculate your sizes carefully.

■ A stack overflow exception is treated by vThreads as a synchronous exception.
These exceptions are handled by vThreads in the same way as other
synchronous exceptions.

■ The guard pages are disabled when the exception handler is running in the
partition for stack overflow exceptions. Therefore, stack overflow detection is
disabled while the stack overflow handler runs.

! CAUTION: If setjmp() and longjmp() are used to recover from a stack overflow
exception, you must be sure that there are at least 1170 bytes of stack memory
remaining between the setjmp() call and the end of the stack. This is because
longjmp() uses the context saved by setjmp() to re-enable stack overflow
detection.

2 Developing vThreads Applications
2.7 vThreads Device I/O

33

2

2.7 vThreads Device I/O

For details of vThreads device I/O, see 9.2 I/O and vThreads, p.221.

2.8 vThreads APIs

vThreads provides threading facilities as well as facilities for intertask and
interpartition communication.

vThreads provides APIs for the following:

■ vThreads (similar to VxWorks 5.5)

Figure 2-1 Stack Guard Pages in Memory

high memory

low memory

WIND_TCB

task stack

one guard page

(supervisor access)

stack bottom

initial stack pointer position

stack top

amount of stack requested at stack creation

Note: this figure represents processors
whose stacks grow downward.

VxWorks 653
Programmer's Guide, 2.2

34

■ ANSI

■ utility libraries to support buffer management, linked lists, ring buffers, and
the event logging (for the Wind River System Viewer)

■ debugging library (userlib) for the target shell

■ show routines

■ POSIX (if INCLUDE_POSIX is included in the VxWorks 653 module)

For detailed information about the libraries and their routines, see their reference
entries in the VxWorks 653 vThreads API Reference.

2.9 vThreads System Calls

Examples of system services provided by vThreads include open(), read(),
write(), close(), and ioctl(), I/O system routines. These are used by the vThreads
device driver to access non-local devices.

A partition’s access to system calls to the core OS is granted by permission
bitmasks, which are defined by the partition’s syscallPermissions parameter in
the XML configuration file. For more information, see the VxWorks 653
Configuration and Build Reference. The SYSCALL_ALL_PERMISSION bitmask grants
access to all methods. For more information, see System Call Permission Bitmasks,
p.138. To get the value at run-time, call configRecordFieldGet() with the
PARTITION_SC_PERMISSION selector.

35

 3
Developing COIL Applications

(Core OS Interface Library)

3.1 Introduction 35

3.2 VxWorks 653 Architecture and COIL 36

3.3 Accessing Core OS Services 37

3.4 Communicating with Other Partitions 37

3.5 Handling Interrupts and Exceptions 38

3.6 Restarting COIL Partitions 41

3.7 Device I/O in COIL Partitions 41

3.8 Monitoring Health in COIL Partitions 41

3.9 COIL API 41

3.1 Introduction

The core OS interface library (COIL) is a partition OS that provides the minimum
necessary functionality to let an application communicate with the core OS. The
library routines are independent of the vThreads partition OS.

This documentation discusses programming concepts for writing applications that
run in COIL or COIL-based partitions.

VxWorks 653
Programmer's Guide, 2.2

36

COIL supports the following:

■ interpartition messaging via ARINC ports

■ management of interrupts and exceptions

■ device I/O

■ injection of health monitoring events

COIL is often augmented, and the result is called the user partition OS. For
example, if an APEX service for ports is required, the user partition OS must
provide it. It is also the responsibility of the user partition OS to provide any
additional management required around the provided COIL API. An application
in a COIL partition can use either straight-line code or implement its own
process-scheduling mechanism.

COIL and the Core OS Certifiable Subset

If the application calls a COIL library routine that in turn calls a routine no longer
in the core OS due to certification, the COIL routine fails gracefully.

3.2 VxWorks 653 Architecture and COIL

Figure 3-1 shows the relationship between applications, partition OSs, and the core
OS.

Figure 3-1 Relationship between Applications, Partition OSs, and the Core OS

core OS

vThreads
partition OS

COIL
partition OS

vThreads application COIL application

3 Developing COIL Applications
3.3 Accessing Core OS Services

37

3

Linking with Shared Libraries

A COIL partition is configured the same way as a vThreads partition, except the
linkage path for the COIL partition is set to the COIL partition OS instead of to a
vThreads partition OS.

COIL supports shared libraries, except in the case where the shared library
requires code from vThreads. Shared libraries attached to a COIL partition cannot
have any dependency on a vThreads partition OS. That is, any core OS accesses
from a COIL-attached shared library must use the COIL API and not the vThreads
API. Access restrictions and configuration information for COIL-dependent
shared libraries are identical to vThreads shared libraries. As well, COIL partitions
can access shared data regions in the same manner as vThreads partitions, with all
the same access restrictions and configuration information.

For information on linking to shared libraries, see the Workbench User’s Guide,
VxWorks 653 Version.

For information on programming in vThreads partitions, see 2. Developing vThreads
Applications.

3.3 Accessing Core OS Services

A COIL application’s ultimate accesses to core OS services is controlled using the
same mechanism as for vThreads. Specifically, the system call permissions
specified when the system is configured indicate which core OS calls can be made
on behalf of the application. For information of configuring system call
permissions, see the VxWorks 653 Configuration and Build Reference.

3.4 Communicating with Other Partitions

COIL supports interpartition messaging through ARINC 653 ports. As a result,
COIL partitions can communicate with each other. In addition, they can
communicate with APEX partitions (and vThreads partitions that have minimal
APEX support) and vice versa. However, the API to access ports does not comply

VxWorks 653
Programmer's Guide, 2.2

38

with the ARINC 653 specification; that is, it is not APEX. If this compliance is
needed, the user partition OS must provide the appropriate APEX API. For
information on the APEX API for ports, see 4.7 Communicating between Partitions,
p.67.

Ports for COIL partitions are configured in the same manner as ports for APEX
partitions. For details, see the VxWorks 653 Configuration and Build Guide.

Ports in COIL partitions are subject to the same access restrictions as ports in APEX
partitions. For information, see 4.7 Communicating between Partitions, p.67.

Calls for interpartition messaging are non-blocking. However, pseudo-interrupts
may be used to avoid constant polling, as described in the following sections.

Avoiding Polling When Destination Buffers Are Full

During a send operation to a port, the destination buffer might be full. If this is the
case, the send operation returns a failure (the operation is non-blocking). When a
message is subsequently removed from the destination buffer, the
COIL_EVENT_PORT_INT_RECV pseudo-interrupt is sent to the source partition. At
this point, the application can call coilPortIntRecv() to determine which port the
pseudo-interrupt applies to, and it can then resume sending messages.

Avoiding Polling When Incoming Message Queues Are Empty

During a read operation from a port, the incoming queue might be empty. If this is
the case, the read operations returns a failure (the operation is non-blocking).
When the source partition subsequently adds a message to the incoming queue,
the COIL_EVENT_PORT_INT_SEND pseudo-interrupt is sent to the destination
partition. At this point, the application can call coilPortIntSend() to determine
which port the pseudo-interrupt applies to, and it can then resume reading
messages.

3.5 Handling Interrupts and Exceptions

Table 3-1 lists the routines that provide pseudo-interrupt and exception handling
in a COIL partition. For details, see the coilLib reference entry in the VxWorks 653
vThreads API Reference.

3 Developing COIL Applications
3.5 Handling Interrupts and Exceptions

39

3

As for a vThreads partition OS, a COIL partition OS includes a copy of run-time
data for each attached partition. Therefore, each partition can install, or not install,
its own pseudo-interrupt handler, exception handler, or both.

3.5.1 Handling Pseudo-Interrupts

COIL always handles some pseudo-interrupts. If the user partition OS has defined
its own pseudo-interrupt handler (by calling coilIntConnect()), COIL forwards
the remaining pseudo-interrupts to this handler. If the handler is not defined,
COIL discards the events. Table 3-2 lists the only events that user-defined handlers
need to handle.

Table 3-1 COIL Interrupt and Exception Handling Routines

Routine Description

coilExcConnect() Defines a routine to handle exceptions in the partition
(optional).

For information on the behavior if an exception handler is
not defined, see 3.5.2 Handling Exceptions, p.40.

coilIntConnect() Defines a routine to handle pseudo-interrupts in the
partition (optional).

For information on the behavior if a pseudo-interrupt
handler is not defined, see 3.5.1 Handling Pseudo-Interrupts,
p.39.

coilIntLock() Prevents all pseudo-interrupts from occurring in the
partition.

coilIntTickGet() Returns the number of ticks received so far by the partition.

coilIntUnlock() Lets pseudo-interrupts occur in the partition.

Table 3-2 Events that User-Defined Pseudo-Interrupt Handlers Need to Handle

Pseudo-Interrupt Event Meaning

COIL_EVENT_CLOCK_TICK Timer ticks have been received.

COIL_EVENT_PORT_INT_RECV Messages have been removed from a full
port message queue.

VxWorks 653
Programmer's Guide, 2.2

40

When the handler returns, the context that it preempted is restored.

Pseudo-interrupts can be locked by calling coilIntLock(). When
pseudo-interrupts are locked for a partition, the partition is not preempted to
deliver incoming pseudo-interrupts. Instead, pseudo-interrupts destined for the
partition are queued until they are subsequently unlocked. When they are
unlocked, coilIntUnlock() calls the pseudo-interrupt handler to process queued
pseudo-interrupt events.

As for vThreads partitions, the queued pseudo-interrupts for a COIL partition
cannot be flushed. They must be processed by the partition.

3.5.2 Handling Exceptions

The user partition OS can optionally define its own exception handler by calling
coilExcConnect(). If a handler is so defined, COIL calls it when an exception
occurs and passes the exception information to the handler. If the handler returns
and the exception is not fatal, the context that it preempted is restored.

If the user partition OS does not define an exception handler, all exceptions are
considered fatal. That is, when an exception is detected from a partition, the core
OS suspends the partition.

COIL_EVENT_PORT_INT_SEND Messages have been sent to an empty port
message queue.

COIL_EVENT_RELEASE_POINT The scheduler major frame has started.

COIL_EVENT_SC_COMPLETE A pending system call has completed.

COIL_EVENT_USER User-defined pseudo-interrupt event that
can be used by the user partition OS.

COIL_EVENT_WARM_RESTART Warm restart has been requested. The
application should call
coilWarmRestartAck() when it is ready to
be restarted.

Table 3-2 Events that User-Defined Pseudo-Interrupt Handlers Need to Handle (cont’d)

Pseudo-Interrupt Event Meaning

3 Developing COIL Applications
3.6 Restarting COIL Partitions

41

3

3.6 Restarting COIL Partitions

A COIL partition can be restarted by calling coilPartitionModeSet() and
specifying an operating mode as is done for APEX partitions. For information on
restarting APEX partitions, see 4.4.5 Setting the Partition Mode, p.49.

For warm restarts, the COIL pseudo-interrupt event,
COIL_EVENT_WARM_RESTART, is passed to the partition. This pseudo-interrupt
event gives the partition some time to perform any cleanup activities that might be
necessary before the partition is restarted. The partition is expected to perform the
necessary cleanup and then respond by calling coilWarmRestartAck().

3.7 Device I/O in COIL Partitions

For information, see 9.4 I/O and COIL, p.264.

3.8 Monitoring Health in COIL Partitions

For information, see 8.7 Health Monitoring for COIL Partitions, p.217.

3.9 COIL API

For details about the COIL API, see the reference entries for coilLib in the
VxWorks 653 vThreads API Reference.

VxWorks 653
Programmer's Guide, 2.2

42

43

 4
Developing APEX Applications

(ARINC 653 API)

4.1 Introduction 43

4.2 Adding APEX Support to vThreads Partitions 45

4.3 Terminology and Concepts: APEX Versus vThreads 45

4.4 Managing APEX Partitions 46

4.5 Managing APEX Processes 51

4.6 Managing Time in APEX Partitions 61

4.7 Communicating between Partitions 67

4.8 Communicating with Other Modules 74

4.9 Communicating within APEX Partitions 77

4.10 Monitoring Health in APEX Partitions 86

4.1 Introduction

APEX is an API between an application program and an operating system that
supports the ARINC 653 specification. For VxWorks 653, the operating system is
the vThreads partition OS, and ultimately the core OS. The major enhancement
APEX brings to a vThreads partition is in time and process management and the
ability to manage periodic and aperiodic processes and their associated deadlines.

VxWorks 653
Programmer's Guide, 2.2

44

This chapter discusses programming concepts for writing APEX applications that
run in vThreads partitions in a VxWorks 653 module. It explains the Wind River
implementation of APEX. It does not discuss what is included in the ARINC 653
specification. If you need that level of detail, read the specification before you read
this chapter.

With the addition of an APEX component, an application in a vThreads partition
can use the full or partial (called minimal) APEX API. This documentation calls a
vThreads partition with full APEX support an APEX partition.

In addition to APEX interfaces, an APEX partition has access to the vThreads API.
However, except where noted, this chapter describes APEX interfaces only. For
information on the vThreads API, see 2.8 vThreads APIs, p.33.

APEX Services

Full APEX support provides services to do the following:

■ Manage partitions.

■ Manage processes.

■ Manage time.

■ Communicate with other partitions (using messages, ports, and channels).

■ Communicate within partitions (using buffers, blackboards, semaphores, and
events).

■ Monitor health.

Some of these services (such as communicating within and outside partitions) can
instead be handled using vThreads or POSIX objects (such as pipes, message
queues, and semaphores). However, such an implementation does not comply
with the ARINC 653 specification.

Minimal APEX support provides services to do the following:

■ Manage partitions.

■ Communicate between partitions (using messages, ports, and channels).

4 Developing APEX Applications
4.2 Adding APEX Support to vThreads Partitions

45

4

4.2 Adding APEX Support to vThreads Partitions

A VxWorks 653 module (or part of one) can have either full or minimal APEX
support, but not both. In this documentation, only a partition with full APEX
support is called an APEX partition.

To provide a vThreads partition with the full set of APEX services, include the
INCLUDE_APEX component in one or more of the following domains:

■ vThreads partition

■ one or more shared libraries with which the vThreads partition links

■ the partition OS with which the vThreads partition links

The domain cannot include INCLUDE_POSIX. The resulting VxWorks 653 module
cannot include INCLUDE_APEX_MINIMAL.

To provide a minimal APEX interface, include the INCLUDE_APEX_MINIMAL
component in one or more of the above domains. The domain can include
INCLUDE_POSIX. In other words, a vThreads partition or POSIX partition can
have minimal APEX support. The resulting VxWorks 653 module cannot include
INCLUDE_APEX.

4.3 Terminology and Concepts: APEX Versus vThreads

Some of the terminology in this chapter is specific to the ARINC 653 specification
and APEX. Table 4-1 lists some ARINC 653 terms and concepts and their vThreads
equivalents.

Table 4-1 Terminology and Concepts: APEX Versus vThreads

Term or Concept APEX vThreads

Service or routine Service Routine

ALLCAPS mixedCase()

ACTION_OBJECT

(for example
CREATE_PROCESS)

objectAction()

(for example taskDelete())

VxWorks 653
Programmer's Guide, 2.2

46

4.4 Managing APEX Partitions

Managing a partition includes allocating partition memory and initializing the
partition in accordance with the ARINC 653 specification.

4.4.1 Allocating Partition Memory

Each partition has predetermined areas of physical memory allocated to it. These
unique memory spaces vary in size based on the requirements of the individual
partitions. At most, one partition has write access to any particular area of memory.
Memory partitioning is ensured by prohibiting write access outside a partition's
defined memory areas. To ensure complete separation of applications, read access
is also prohibited outside a partition.

Services are issued or
requested

Routines are called

Schedulable unit Process Task
(APEX processes are
implemented as vThreads tasks)

Scheduling method FIFO Priority-preemptive (FIFO) or
round-robin

Priority numbering Higher the value, higher
the priority

Lower the value, higher the
priority (0 is the highest
priority)

Buffer Buffer N/A

Event Event vThreads event

Table 4-1 Terminology and Concepts: APEX Versus vThreads (cont’d)

Term or Concept APEX vThreads

4 Developing APEX Applications
4.4 Managing APEX Partitions

47

4

4.4.2 Initializing Partitions: Cold and Warm Starts

Whereas the resource allocation necessary for each partition is specified in the
XML-based configuration and build process (see the VxWorks 653 Configuration
and Build Guide), the corresponding objects are defined when the partition is
initialized. The core OS exclusively controls the allocation of resources to the
partition by reserving specific memory. The partition uses this reserved memory to
create the specified objects.

COLD_START
The cold-start partition operating mode is used when a partition is created and
when the VxWorks 653 module starts from a powered-off state. During a cold
start, partition objects are allocated and initialized.

WARM_START
The warm-start partition operating mode causes a partition to be re-initialized
or restarted because of an error. During a warm start, persistent data is not
re-initialized, and the partition code is not reloaded.

4.4.3 Partition Attributes

Partition attributes are defined in the XML configuration file at configuration and
build time. For details, see the VxWorks 653 Configuration and Build Reference.

Fixed Partition Attributes

■ Identifier

Uniquely defined within a VxWorks 653 module, and used to facilitate
activating the partition and routing messages.

■ Memory requirements

The amount of physical memory to be allocated and mapped for the partition.

■ Period

The activation period of the partition. It is used to determine the partition’s
run-time placement within the core OS overall time frame.

■ Duration

The amount of processor time the core OS gives to the partition every period
of the partition.

VxWorks 653
Programmer's Guide, 2.2

48

■ Criticality level

The RTCA/DO-178B criticality level of the partition (from A down to E).

■ Communication requirements

Those partitions with which the partition communicates by linking it to
communication channels.

■ Partition health monitor table (health monitor configurations)

Instructions to the health monitor on the actions required. For example, the
health monitor supervisory facility can restart the partition in response to a
fatal fault.

4.4.4 Getting Partition Status

The GET_PARTITION_STATUS service gets the partition status of the current
condition (also called the start condition or the partition mode reason). Table 4-2
lists the possible values and their meanings.

The apexPartitionModeReasonPtrGet() routine gets a pointer to the partition
mode reason. This routine is not an APEX service.

NOTE: The partition scheduler in the core OS does not use period and duration
attributes directly. It only ensures that periods and durations are compatible
with specified schedules. Up to 16 schedules can be defined, which allows for
time partitioning where a partition can be activated several times within a
major time frame. Scheduler validation can be disabled by a system parameter.

Table 4-2 APEX Partition Status Values

Partition Status
(Start Condition,
Partition Mode Reason)

Reason for Current Partition Mode

HM_MODULE_RESTART Recovery action taken at the VxWorks 653 module
level.

HM_PARTITION_RESTART Recovery action taken at the partition level.

NORMAL_START Power-up.

4 Developing APEX Applications
4.4 Managing APEX Partitions

49

4

4.4.5 Setting the Partition Mode

The SET_PARTITION_MODE service sets the operation mode for the current
partition. Table 4-3 lists the available modes and their resulting actions.

Figure 4-1 shows the allowable transitions in a partition’s operating mode.

PARTITION_RESTART Request for a COLD_START or WARM_START
partition mode.

POWER_ERROR_RESTART (A Wind River extension to the ARINC 653
specification.)

Table 4-2 APEX Partition Status Values (cont’d)

Partition Status
(Start Condition,
Partition Mode Reason)

Reason for Current Partition Mode

Table 4-3 APEX Partition Modes

Partition Mode Resulting Action

COLD_START The partition restarts using the cold start
initialization sequence.

IDLE The partition shuts down. The partition is not
initialized (that is, none of the ports associated with
the partition are initialized), no processes are
running, but the time windows allocated to the
partition are unchanged.

NORMAL The activate process is scheduled.

WARM_START The partition restarts using the warm start
sequence.

VxWorks 653
Programmer's Guide, 2.2

50

4.4.6 Controlling Preemption in Partitions

A process can issue the LOCK_PREEMPTION service (defined in the apexProcess
library) to lock preemption in the partition. The service increments the lock level
of the partition and disables processes from being rescheduled in the partition.
This ability is important when processes are accessing critical sections or resources
that are shared by multiple processes in the same partition. These critical sections
may be specific areas of memory, certain physical devices, or the normal
calculations and activity of a particular process.

The ability to intervene with normal rescheduling operations does not imply that
the application is directly controlling vThreads. Since vThreads provides this
service and knows all resulting actions and effects beforehand, the integrity of
vThreads is not affected.

In addition, the LOCK_PREEMPTION service does not affect the scheduling of
other partitions: if a process within a critical section is interrupted when the
partition window ends, that process is the first to run when the partition runs
again.

A process can issue the UNLOCK_PREEMPTION service (defined in the
apexProcess library) to unlock preemption in the partition. The service decrements
the lock level of the partition. Rescheduling of processes resumes only when the
lock level is zero.

Figure 4-1 APEX Partition Mode Transitions

COLD_
START

IDLE

WARM_
START

NORMAL

NOTE:
It is not possible to go from
COLD_START to WARM_START
directly or through a transition to IDLE.

4 Developing APEX Applications
4.5 Managing APEX Processes

51

4

The partitionCurrentLockLevelPtrGet() routine gets a pointer to the partition’s
current lock level. This routine is not an APEX service.

4.4.7 Setting New Partition Schedules

The SET_SCHEDULE_MODE service selects a new schedule (including an empty
schedule) and transition time for a partition. Table 4-4 lists the available
scheduling modes.

:

4.5 Managing APEX Processes

APEX processes are programming units contained within an APEX partition. Each
process runs concurrently with other processes in the same partition. A process
consists of the following:

■ the executable program

■ data and stack areas

■ program counter

NOTE: Preemption locking does not prevent the error handler process from
running.

Table 4-4 APEX Scheduling Modes

Scheduling Mode The Transition Is Effective at the:

TRANSITION_MAJOR Major frame boundary

TRANSITION_MINOR End of the current window

TRANSITION_TICK Next clock tick

NOTE: The SET_SCHEDULE_MODE service is not part of the ARINC 653, Part 1
specification, but is being considered for a subsequent edition.

VxWorks 653
Programmer's Guide, 2.2

52

■ stack pointer

■ priority deadline

4.5.1 Creating Processes

The CREATE_PROCESS service is used to create a process with certain attributes
and allocate resources for it. Since the service can be called only during warm or
cold start of a partition, creation attributes cannot be changed after a partition is
initialized. Each process is created only once during the life of the partition. Also,
all the processes in a partition must be defined in such a way that the necessary
memory resources for each process can be determined at system build time. For
information of configuring memory, see the VxWorks 653 Configuration and Build
Guide.

For information on getting creation attributes dynamically, see 4.5.4 Getting the
Current Status of Processes, p.53.

The following names are field names in a PROCESS_ATTRIBUTE_TYPE structure,
which is an argument to the CREATE_PROCESS service.

BASE_PRIORITY
Process initial priority.

DEADLINE
Type of deadline (SOFT, HARD, or no deadline. This indicates the correct
remedial action to the health monitor.

ENTRY_POINT
Starting address of the process.

NAME
String identifier for the process. It must be unique within the partition.

PERIOD
Delay between two activations (for periodic processes only).

STACK_SIZE
Size (in bytes) of the stack allocated to the process.

TIME_CAPACITY
The elapsed time within which the process should complete running.

4 Developing APEX Applications
4.5 Managing APEX Processes

53

4

4.5.2 Changing the Current Priority of Processes

Although the initial priority is set when the process is created (BASE_PRIORITY),
the current priority can by changed dynamically through the SET_PRIORITY
service.

For information on getting the current priority, see 4.5.4 Getting the Current Status
of Processes, p.53.

4.5.3 Increasing Deadline Times

Deadline time is the absolute time by which the process should be complete. It
starts as the return value of the GET_TIME service (current system time) plus the
TIME_CAPACITY that is specified when the process is created. vThreads
periodically evaluates deadline time to determine whether the process is
satisfactorily completing its processing within the allotted time (time capacity).
Deadline time can be increased by issuing the REPLENISH service (defined in the
apexTime library).

For information on getting the value of deadline time, see 4.5.4 Getting the Current
Status of Processes, p.53.

4.5.4 Getting the Current Status of Processes

The GET_PROCESS_STATUS service gets the current status of a process. The return
value is of PROCESS_STATUS_TYPE type, which contains the fields listed in
Table 4-5.

Table 4-5 APEX Process Status Information

Field in PROCESS_STATUS_TYPE Description

ATTRIBUTES The creation attributes for the process. See
4.5.1 Creating Processes, p.52.

CURRENT_PRIORITY Current priority of the process. See
4.5.2 Changing the Current Priority of Processes,
p.53.

VxWorks 653
Programmer's Guide, 2.2

54

4.5.5 Getting Process IDs

The GET_MY_ID service gets the process ID of the calling process.

The GET_PROCESS_ID service gets the process ID of the process with the specified
name.

4.5.6 Getting and Using vThreads Task Information

Because APEX processes are implemented as vThreads tasks, they have vThreads
task IDs. The following routines are available:

The taskIdFromProcIdGet() routine gets the vThreads task ID for the specified
APEX process ID.

The procIdFromTaskIdGet() routine gets the APEX process ID for the specified
vThreads task ID.

4.5.7 Types of Processes

There are two types of processes:

■ Periodic processes

A periodic process is a process that is activated at regular times (defined by the
PERIOD creation attribute). At activation time, the process becomes eligible for
scheduling. When that happens, the state of the process changes to RUNNING,
or READY if it is preempted by a higher-priority process (periodic or not).

DEADLINE_TIME Current deadline time for the process. See
4.5.3 Increasing Deadline Times, p.53.

PROCESS_STATE Current state of the process. See 4.5.9 Process
State Transitions, p.56.

Table 4-5 APEX Process Status Information (cont’d)

Field in PROCESS_STATUS_TYPE Description

4 Developing APEX Applications
4.5 Managing APEX Processes

55

4

■ Aperiodic processes

An aperiodic process is the same as a periodic process, but without an
activation time. That is, an aperiodic process has a PERIOD creation attribute
equal to INFINITE_TIME_VALUE.

4.5.8 Scheduling Processes

Figure 4-2 illustrates an example of process scheduling. Processes are scheduled
according to the POSIX SCHED_FIFO method. In the example, P2 does not
complete during the second time period. It is preempted by P3 most of the time, so
it misses its deadline.

Figure 4-2 Example of Processes Scheduled with FIFO Scheduling

P2

HM

P3P3

P2 P2 P2

P1

time

time capacity

period

pr
io

rit
y

Deadline

Process completion

Preemption

Periodic activation

Process is eligible

Process is not eligible

Process is running

P1: aperiodic

P2: periodic

P3: aperiodic

HM: health monitor

VxWorks 653
Programmer's Guide, 2.2

56

4.5.9 Process State Transitions

Figure 4-3 shows the relationships between the various states for APEX processes.

DORMANT State

The DORMANT state indicates that the process is ineligible to receive resources. A
process is in the DORMANT state before it is started and after it is terminated (that
is, after a STOP service has been issued). Processes are created in the DORMANT
state.

The DORMANT state moves to the following states:

READY

■ When a process is started by another process while in NORMAL mode.

WAITING

■ When a process is started during INIT mode.

■ When a periodic process is started during NORMAL mode and is waiting for
its next release point.

Figure 4-3 APEX Process State Transitions

WAITING READY

RUNNING

WAITING

DORMANTDORMANT

for the start of
NORMAL mode
or for a resume

to access a
resource,
for the next
release
point,
for a resume

Aperiodic or periodic process
Periodic process or suspended aperiodic process
Aperiodic process

NORMAL partition modeCOLD/WARM_START partition mode

Create a
process

4 Developing APEX Applications
4.5 Managing APEX Processes

57

4

■ When an aperiodic process is started with a delay during NORMAL mode.

DORMANT

■ When a process is not started before the transition to NORMAL mode.

WAITING State

The WAITING state indicates that the process is not allowed to receive resources
until a particular event occurs. The process is waiting for one or both of the
following reasons:

■ It is waiting on a resource, such as a semaphore or an event.

■ It is suspended.

The WAITING state moves to the following states:

DORMANT

■ When another process stops the process.

■ When an error occurs and the health monitor stops the process.

READY

■ When an unavailable resource becomes available and the process is not
suspended.

■ When the RESUME service is requested for the process and the process is not
waiting for any resources.

■ When the TIMED_WAIT service was requested, and the delay has expired.

■ For a periodic process, when the time to activate the process (deadline time) is
reached.

■ For an aperiodic process started during INIT mode (which is started in the
WAITING state), when the partition enters NORMAL mode.

WAITING

■ When a process that is waiting to access a resource (delay, semaphore, period,
event, message, and so on) is suspended.

■ When a process that is both waiting to access a resource and suspended is
resumed, or the resource becomes available, or the timeout expires.

VxWorks 653
Programmer's Guide, 2.2

58

■ For a periodic process started during INIT mode (which is started in the
WAITING state), when the VxWorks 653 module enters NORMAL mode.

■ For an aperiodic process started using the DELAYED_START service in the INIT
mode, when the partition enters NORMAL mode.

RUNNING State

The RUNNING state indicates that the process is running. Only one process can be
running at a time. The previous state of a running process is always READY.

The RUNNING state moves to the following states:

DORMANT

■ When the running process stops itself.

■ When the health monitor stops the process because an error occurred.

READY

■ When the running process requests a service delay with a delay time of zero
(this is equivalent to round-robin scheduling of processes of the same priority).

■ When another process with a higher priority enters the READY state.

WAITING

■ When the running process suspends itself.

■ When the running process attempts to access an unavailable resource
(semaphore, buffer, event, blackboard, queuing port) with a non-zero timeout.

■ When the running process requests a delay service (such as a timed wait or
periodic wait) with a non-zero delay.

READY State

The READY state indicates that the process is eligible to be scheduled and is
waiting to run. The process is not running for either or both of these reasons:

■ A higher-priority process is running.

■ Preemption is locked.

4 Developing APEX Applications
4.5 Managing APEX Processes

59

4

The READY state moves to the following states:

DORMANT

■ When another process issues a STOP service on the process.

■ When the health monitor stops the process because an error occurred.

RUNNING

■ When the scheduler selects the process to run. (This is the only way to enter
the RUNNING state.)

WAITING

■ When another process issues a SUSPEND service on the running process.

4.5.10 Suspending and Resuming Processes

When a process is suspended, the process is not allowed to run, and its state is
WAITING until another process resumes it. When a process waits on a resource
such as a semaphore or an event, it can also be suspended. The services to suspend
or resume processes are:

■ SUSPEND_SELF

If the current process is an aperiodic process, the service suspends it until
RESUME is issued or the specified timeout expires.

If preemption is disabled and the process being suspended is the one holding
the preemption lock, SUSPEND_SELF returns INVALID_MODE.

■ SUSPEND

The service lets the current process suspend any aperiodic process, except
itself, until another process resumes the suspended process. If the process is
pending in a queue at the time it is suspended, it stays in the queue. When it is
resumed, it continues pending unless it was removed from the queue before
the end of its suspension. The process might have been removed if a particular
condition occurred, a timeout expired, or the queue was reset.

A process may suspend any other process asynchronously.

If process B suspends an already suspended or self-suspended process A, the
service has no effect.

If preemption is disabled and the process being suspended is the one holding
the preemption lock, SUSPEND returns INVALID_MODE.

VxWorks 653
Programmer's Guide, 2.2

60

■ RESUME

The service lets the current process resume another previously suspended
process. The resumed process becomes ready if it is not waiting on a resource
such as a delay, semaphore, period, event, or message. Since a periodic process
cannot be suspended, it cannot be resumed.

4.5.11 Stopping and Starting Processes

The STOP service makes a process ineligible for processor resources (in other
words, its state is DORMANT) until another process issues the START service
(causing the first process to enter the READY state). After it is created, a process is
also in a DORMANT state. The DELAYED_START service applies only to periodic
processes and lets process schedules be phased. The services to stop and start
processes are:

■ STOP_SELF

The service lets the current process stop itself. If the current process is not the
error handler process, the partition is placed in the unlocked condition. The
service should not be called when the partition is in WARM_START or
COLD_START modes. If it is, the behavior is not defined.

■ STOP

The service makes a process ineligible for processor resources until another
process issues START. The STOP service lets the current process abort any
process except itself. When a process aborts another process that is pending in
a queue, the aborted process is removed from the queue.

■ START

The service initializes all attributes of a process to their default values and
resets the process’s run-time stack. If the partition is in NORMAL mode, the
process’s deadline expiration time and next release point are calculated. The
service lets the current process start another process.

■ DELAYED_START

The service initializes all attributes of a process to their default values, resets
the processes’s run-time stack, and places the process in the WAITING state
(that is, the specified process goes from DORMANT to WAITING). If the
partition is in NORMAL mode, the process’s release point is calculated with the
specified delay time. In addition, the process’s deadline expiration time is
calculated. The service lets the current process start another process.

4 Developing APEX Applications
4.6 Managing Time in APEX Partitions

61

4

4.5.12 Controlling Preemption

Preemption locking or unlocking disables or enables process rescheduling in a
partition. For details, see 4.4.6 Controlling Preemption in Partitions, p.50.

4.6 Managing Time in APEX Partitions

Time partitioning is a major characteristic of VxWorks 653 and all ARINC 653
systems.

4.6.1 Scheduling Partitions

For information on how the core OS schedules partitions, see 7.13 Partition
Scheduling, p.169.

4.6.2 System Clock Time

The system clock time gives the unique time of the system. Time is unique and
independent of partition execution within a VxWorks 653 module. All time values
or capacities are related to this unique time and are not relative to any partition
execution.The timer provides the time of day, and it is used as a stamp or for
anything that needs time or date information.

The GET_TIME service gets the system clock time.

For a description of system time, see 7.12 System Time, p.169.

4.6.3 Requesting Resources and Timeouts

When a process requests an APEX resource (such as a semaphore or an event), it
can specify a timeout of one of the following types:

INFINITE_TIME_VALUE
Never expire. It is equivalent to wait forever.

ZERO_TIME_VALUE
Do not wait for the resource. If the resource is not available, return an error.

VxWorks 653
Programmer's Guide, 2.2

62

Finite value of timeout
The maximum amount of time to wait for a resource.

The timeout’s units are of SYSTEM_TIME_TYPE type, which defines time in
nanoseconds. Although expressed in nanoseconds, the time is rounded up to ticks,
and the actual timeout is a multiple of the system clock period.

A timeout usually results in an early return from the service and a TIMED_OUT
return code.

If a timeout expires outside the partition window, it is acted on at the beginning of
the next partition window (as with deadlines; see 4.6.5 Deadlines, p.62).

4.6.4 Scheduling Processes

APEX time management services let partitions control their processes.

At the end of each processing cycle, a periodic process requests the
PERIODIC_WAIT service to get a new deadline. The new deadline is calculated
from the next periodic release point for that process. For all processes, the
TIMED_WAIT service lets the process suspend itself for a minimum amount of
elapsed time. After the wait time has elapsed, the process becomes available to be
scheduled.

The REPLENISH service lets a process postpone its current deadline by the amount
of time that has already passed.

Each process in a partition can specify an amount of elapsed time (called the time
capacity) it is allowed to consume in order to satisfy its processing requirement.
This time capacity is used to set a processing deadline time that vThreads
periodically evaluates to determine whether the process is satisfactorily
completing its processing within the allotted time.

4.6.5 Deadlines

Each process has associated with it a fixed time capacity, which represents the
response time allotted to it for satisfying its processing requirements.

The deadline time (a variable process attribute) determines whether the process is
satisfactorily completing its processing within its time capacity. Deadline time can
be increased by issuing the REPLENISH service. The PERIODIC_WAIT service
cancels the current deadline, and a new deadline is created at the next activation.

4 Developing APEX Applications
4.6 Managing Time in APEX Partitions

63

4

A deadline can expire outside the partition window, but it is acted on at the
beginning of the next partition window (as with timeouts).

There are three types of deadlines:

■ Hard deadlines

If a process fails to meet a hard deadline within the specified time period,
vThreads takes remedial action.

■ Soft deadlines

If a process fails to meet a soft deadline within the specified time period,
typically, the failure is recorded and processing continues.

■ No deadline

No action is taken if a process fails to complete processing within the specified
time period.

For a periodic process, the countdown on deadline time starts when the process’s
active period starts. Countdown is disabled when the process requests the
PERIODIC_WAIT service. Deadline time is ended when the process is stopped or
when it calls the REPLENISH or PERIODIC_WAIT services. Countdown is
deactivated when the partition is in an operating mode other than NORMAL.

For an aperiodic process, the deadline time countdown starts when the process
starts and the partition mode is NORMAL. The deadline time is rearmed with
additional time equal to the time budget specified when the process requests a
REPLENISH service (see Figure 4-4). The process can specify the additional time. A
periodic process deadline cannot be postponed beyond its next release point.

VxWorks 653
Programmer's Guide, 2.2

64

The deadline ends when the process is stopped, or when the partition state is not
NORMAL.

Figure 4-4 Process with Replenish (Periodic or Aperiodic Processes)

replenish

time
capacity

start

1st deadline 2nd deadline

deadline
is missed

time capacity

time budget
time budget

NOTE: To make Figure 4-4 through Figure 4-6 easier to read, the time capacity (the
time initially allotted to the process to complete its work) and the amount of time
added by REPLENISH (specified by the BUDGET_TIME parameter) appear to be
equal and constant. In reality, BUDGET_TIME can be larger or smaller than the time
capacity.

4 Developing APEX Applications
4.6 Managing Time in APEX Partitions

65

4

In Figure 4-5, the periodic process is in the following states:

1. DORMANT.

2. RUNNING (or READY if another process has preempted it).

3. WAITING.

4. RUNNING (or READY if another process has preempted it).

5. READY until the health monitor takes an action. The process has not completed
within the deadline interval.

In Figure 4-6, the periodic process is in the following states:

1. DORMANT.

Figure 4-5 Periodic Process Examples with PERIODIC_WAIT and Deadline

periodic
start

time capacity

time budget time budget

wait

1 2 3 4 5

1st period 2nd period

deadline release point

VxWorks 653
Programmer's Guide, 2.2

66

2. RUNNING (or READY if another process has preempted it).

3. RUNNING (or READY if another process has preempted it).

4. WAITING.

5. RUNNING (or READY if another process has preempted it).

6. READY until the health monitor takes an action. The process has not completed
within the deadline interval.

4.6.6 Release Points

The first release point for a periodic process is relative to the start of its partition’s
first window in the major time frame. Using a DELAY in the DELAYED_START
service enables phasing of the process schedule. Subsequent release points are
based on the previous release point and the process period.

Figure 4-6 Periodic Process with REPLENISH and PERIODIC_WAIT

periodic
start

time capacity

time budget time budget

wait

1 2 4 5 6

1st period 2nd period

deadline release point

3

replenish

4 Developing APEX Applications
4.7 Communicating between Partitions

67

4

4.7 Communicating between Partitions

Interpartition communication includes all communication between two or more
partitions in a VxWorks 653 module.

APEX partitions within a VxWorks 653 module communicate with each other by
messages, ports, and channels. The same is true for vThreads partitions that have
access to the minimal APEX services. In addition, APEX partitions can
communicate with COIL partitions. For details, see 3.4 Communicating with Other
Partitions, p.37.

For information on communicating outside the VxWorks 653 module, see
4.8 Communicating with Other Modules, p.74. The API for communicating between
partitions and for communicating outside the module is the same. However, under
some circumstances, there are minor behavioral differences when communicating
outside the module. For details, see 4.8 Communicating with Other Modules, p.74.

A message can be sent from one source port to one or more destination ports.
Processes read from these destination ports.

The configuration of this messaging system is defined when the VxWorks 653
module is configured. For more information, see the VxWorks 653 Configuration and
Build Guide.

Figure 4-7 Sending Messages between Partitions

partition 1

partition 2 partition 3

receiving port

sending port

receiving port

channel

A
processes

processes

B C

D E F

VxWorks 653
Programmer's Guide, 2.2

68

4.7.1 Limitations of APEX for Communicating between Partitions

Although the ARINC 653 standard specifies the following, APEX does not support
them:

■ multicast and client-server messages

■ acknowledgement of messages

4.7.2 APEX Messages

APEX messages are contiguous blocks of data.

Although the ARINC 653 standard lets messages be decomposed into small
blocks, communicated individually, and re-assembled before delivery,
VxWorks 653 transmits full messages only. This avoids checking for message
completeness and retransmitting segments.

Messages can be of fixed or variable lengths. Fixed length means a fixed size for
every occurrence of a particular message. A variable-length message can vary in
size. The sender specifies the length when the message is sent. To accommodate
various message lengths, the messaging system allocates resources for the
maximum length, which is defined in the ARINC 653 standard.

A message can be sent periodically or on demand (aperiodically). The messaging
system operates independently of the content of the messages it transmits.

Any given message can be sent from a single partition only. In addition, once
delivered, messages are destroyed. That is, it is not possible to request old versions
of messages.

4.7.3 APEX Channels

A channel defines the following:

■ logical link between one source port and one or more destination ports

■ mode of transfer of the messages from the source to the destination

■ characteristics of the messages to be sent

A message sent to one destination port is called a directed message. A message
sent to multiple destination ports is called a broadcast message.

4 Developing APEX Applications
4.7 Communicating between Partitions

69

4

Each channel can be configured to operate in a specific mode. Two modes of
transfer are defined: sampling mode and queuing mode. The messaging service
returns an error if the port configuration (mode, direction) is not compatible with
the request.

For information on how to configure ports and their associated channels in an
XML configuration file, see the VxWorks 653 Configuration and Build Guide.

The consistency of the configuration is checked at built time and startup time. For
a channel, the size of the sending port cannot exceed the size of any of the receiving
ports.

Sampling Mode

In sampling mode, messages typically carry similar, but updated, data. No
queuing is performed. A message remains in the source port until it is sent or
overwritten. Messages arrive at the destination port or ports in the order in which
they were sent. Each new message overwrites the previous one when it reaches the
destination port and remains there until it is overwritten itself. Sampling mode
supports variable-length messages.

Refresh Rate

Refresh rates applies to destination ports in sampling mode. The refresh rate
indicates the maximum acceptable age of a valid message, from the time it was
received at the port. It is specified when the port is created. When the message is
read, a validity output parameter indicates whether the age of the message is
consistent with the port’s refresh rate.

Queuing Mode

In queuing mode, each new instance of a message may contain uniquely different
data. Therefore, overwriting previous messages is not allowed during the transfer.
Messages are queued in the source port until they are sent, and no message is lost
(except in the case of a full message queue with the RECEIVER_DISCARD
protocol). Messages are stored in the receiver port until a process reads them. For
information about the protocols required to manage message queues, see Port
Protocols, p.72. Queuing mode supports variable-length messages.

VxWorks 653
Programmer's Guide, 2.2

70

4.7.4 Ports

A port can be one of the following general types:

■ Local Ports

Local ports are APEX ports that let applications communicate with each other
within a VxWorks 653 module. They are attached to partitions within the
module.

■ Pseudo-Ports

Pseudo-ports are used to communicate outside the VxWorks 653 module. A
pseudo-port connects a port to a driver, using a specialized API. For
information on pseudo-ports, see 4.8 Communicating with Other Modules, p.74.

■ Direct-Access Ports

Direct-access ports implement APEX queuing ports without software
buffering. They are also used to communicate outside the VxWorks 653
module. A channel that has a direct-access port must have a single source and
destination. Direct-access ports can be in partitions or pseudo-partitions. For
details on those in partitions, see 4.8.2 Communicating Through Direct-Access
Ports in a Partition, p.76. For details on those in pseudo-partitions, see
4.8.1 Communicating Through Pseudo-Ports in a Pseudo-Partition, p.74.

■ Null Ports

Null ports are APEX ports that are used to ease incremental system
integration, where some part of a system may not be present during the
integration of other parts. To this end, a channel can initially be configured
with a null source port, which is equivalent to a port that is always empty.
Also, a channel can initially be configured with one, some, or all null
destination ports, which are equivalent to ports that are always ready to accept
data and always consume it without error. Null ports can be attached to
partitions, the core OS, or pseudo-partitions. For information on
pseudo-partitions, see 4.8 Communicating with Other Modules, p.74.

The same APEX messaging services can be used for all types of ports.

Ports are defined by a set of unique attributes that are specified by the ARINC 653
standard. The attributes are specified in the XML configuration file at
configuration and build time. For details, see the VxWorks 653 Configuration and
Build Guide.

To get a value at run-time from the core OS, call configRecordFieldGet() with
PORT_CFG_RECORD and the appropriate field selector, as shown below:

4 Developing APEX Applications
4.7 Communicating between Partitions

71

4

CFG_PORT_CHANNEL
Parent channel.

CFG_PORT_DIRECTION
SOURCE or DESTINATION.

CFG_PORT_DRIVER_NAME
The name of the driver (for pseudo-ports only).

CFG_PORT_MAPPING
Whether the port is one of:

■ direct-access pseudo-port in the core OS (DIRECT_ACCESS_PORT)

■ local port in a partition (LOCAL_PORT)

■ null port in the core OS or a partition (NULL_PORT)

■ pseudo-port in the core OS or a partition (PSEUDO_PORT)

CFG_PORT_MODE
QUEUING or SAMPLING.

CFG_PORT_MODULE
Parent VxWorks 653 module.

CFG_PORT_MSG_SIZE
Maximum size (in bytes) of a message that can be sent or received by this port.

CFG_PORT_NAME
Port name, 1 to MAX_NAME_LENGTH (as set in apexType.h)
NULL-terminated ASCII string.

CFG_PORT_NB_MSGS
Message queue size (for queuing ports only).

CFG_PORT_PARTITION
Parent partition, as defined in the partition definition record
(PARTITION_CFG_RECORD).

CFG_PORT_PROTOCOL
Port message protocol. One of RECEIVER_DISCARD, SENDER_BLOCK, or
NOT_APPLICABLE. For more information, see Port Protocols, p.72.

CFG_PORT_REFRESH
Port refresh rate in SYSTEM_TIME_TYPE increments (for sampling ports only).

VxWorks 653
Programmer's Guide, 2.2

72

Port Protocols

The ARINC 653 standard does not specify port protocols, but VxWorks 653 does
provide the following:

SENDER_BLOCK
A queuing message is sent to all the channel’s destination ports. If any one is
full, the message is queued in the source port in FIFO order.

When the source port is full and if a timeout was specified, sender processes
are blocked during the SEND_QUEUING_MESSAGE service.

When a destination port is emptied, retransmission is attempted. Whether it
succeeds depends on the state of the channel’s other destination ports.

The main advantage of using the SENDER_BLOCK protocol is that no
messages are lost, as the ARINC 653 specification requires. The main
drawback is that it introduces coupling between partitions. A nonresponsive
receiving partition blocks the entire channel, affecting the normal behavior of
other receiving partitions.

Because the SENDER_BLOCK attribute that is set on a single destination port
can block the entire channel, it is considered a channel-wide attribute and is
attached to the channel’s source port.

RECEIVER_DISCARD
If one of the channel’s destination ports is full, the source port discards the
message for that port. Therefore, if all the destination ports are full, the
message might be lost. When a message is so discarded, the port’s overflow
flag is set to notify the application of the discarded (lost) message.

The RECEIVER_DISCARD protocol avoids the problem caused by a faulty
application that fails to read or empty its destination ports, thereby preventing
other partitions from receiving messages.

4.7.5 Working with Queuing Messages

Creating Queuing Ports

The CREATE_QUEUING_PORT service creates an empty port in queuing mode and
returns a port ID. The QUEUING_DISCIPLINE attribute indicates whether blocked
processes are queued in FIFO or priority order.

4 Developing APEX Applications
4.7 Communicating between Partitions

73

4

Sending Queuing Messages

The SEND_QUEUING_MESSAGE service sends a message to the specified queuing
port. If there is sufficient space at the queuing port, the message is added to the end
of the port’s queue. If there is insufficient space, the sending process is blocked and
added to the sending port’s queue, according to the port’s queuing discipline. The
process stays on the queue until the specified timeout expires (if it is finite) or until
space for the message becomes free at the queuing port.

Receiving Queuing Messages

The RECEIVE_QUEUING_MESSAGE service receives a message from the specified
queuing port. If the queuing port is not empty, the message at the head of the port’s
queue is removed and returned to the caller. If the queuing port is empty, the
process is blocked until the specified timeout or until a message arrives.

Getting Queuing Port Information

The GET_QUEUING_PORT_ID service gets the port ID for a specified queuing port
name.

The GET_QUEUING_PORT_STATUS service gets the following information for a
queuing port:

■ direction

■ number of messages at the port

■ number of waiting processes

■ size

4.7.6 Working with Sampling Messages

Creating Sampling Queues

The CREATE_SAMPLING_PORT service creates an empty sampling port and
returns a port ID.

Writing Sampling Messages

The WRITE_SAMPLING_MESSAGE service writes a message at the specified
sampling port, overwriting a previous message.

VxWorks 653
Programmer's Guide, 2.2

74

Reading Sampling Messages

The READ_SAMPLING_MESSAGE service reads a message at the specified
sampling port and returns a validity parameter that indicates whether the age of
the message is consistent with the port’s refresh rate. The age is the difference
between the value of the system clock when the message is written into the port
and the value of the system clock when the messages is read at the destination port.

Getting Sampling Port Information

The GET_SAMPLING_PORT_ID service gets the port ID for a specified sampling
port name.

The GET_SAMPLING_PORT_STATUS service gets the following for a sampling
port:

■ direction

■ refresh rate

■ size

■ validity of the last message read by the specified sampling port

4.8 Communicating with Other Modules

Applications can use the APEX message services to communicate with other
modules. The services are the same services that applications use to communicate
with other partitions within the module. For information on the API as it relates to
communicating within a module, see 4.7 Communicating between Partitions, p.67.

4.8.1 Communicating Through Pseudo-Ports in a Pseudo-Partition

For an application to use APEX queuing-message services to communicate with
other modules through pseudo-ports in pseudo-partitions, the platform provider
needs to do the following:

■ Configure the remote port

Configure the remote port in the pseudo-partition of the partition’s
communication channel as a pseudo-port or a direct-access port. For

4 Developing APEX Applications
4.8 Communicating with Other Modules

75

4

configuration details, see the port and channel documentation in the
VxWorks 653 Configuration and Build Guide. An application cannot determine
which type of ports it is communicating through. If the remote port is a
direct-access port, the application may see differences compared to using a
pseudo-port that is not direct access. For details, see Communicating Through
Direct-Access Ports in a Pseudo-Partition, p.75.

■ Supply a driver

Supply a supervisor-level port driver in the core OS. For information on
writing such a driver and adding it to the core OS, see 7.15 Setting up
Communication with Other Modules, p.185.

Communicating Through Direct-Access Ports in a Pseudo-Partition

If the remote port of an application's channel is a direct-access port in a
pseudo-partition, the application can send and receive queuing messages at any
time in its partition window.

If an application specifies a non-zero timeout for sending or receiving messages,
the timeout is ignored and treated as zero.

Receiving Messages

Table 4-6 shows what happens when an application issues the
RECEIVE_QUEUING_MESSAGE service on a channel with a direct-access port
attached to a pseudo-partition.

Table 4-6 Receiving Messages on a Channel with a Direct-Access Port in a Pseudo-Partition

Message?

Time Enough in
Partition Window
to Read? Result of Issuing RECEIVE_QUEUING_MESSAGE

No N/A Service immediately returns the
NOT_AVAILABLE APEX return-code parameter
to the application. (The return code for a
pseudo-port that is not direct access would be
TIMED_OUT.)

VxWorks 653
Programmer's Guide, 2.2

76

Sending Messages

If an application issues the SEND_QUEUING_MESSAGE service on a channel with
a direct-access port in a pseudo-partition and there is not time for the core OS to
complete the write operation, vThreads retries the operation until the end of the
partition window, rewriting the message at the start of the partition's next window.

4.8.2 Communicating Through Direct-Access Ports in a Partition

For an application to use APEX message services (for queuing, sampling, and SAP
messages) to communicate with other modules through direct-access ports in its
partition, the following must be done:

■ Configure ports

The platform provider and system integrator configure the channel’s ports in
the partition. For details, see the port and channel documentation in the
VxWorks 653 Configuration and Build Guide.

■ Supply a driver

The platform provider supplies a user-level port driver in the partition. The
interface is the same as the interface for the supervisor-level port driver in the
core OS. For information on writing a supervisor-level driver for the core OS,
see 7.15 Setting up Communication with Other Modules, p.185. Consider the
following differences as you follow this information:

■ Because the port driver is in a partition, you can use only the vThreads
API.

■ vThreads passes to the driver the time remaining in the partition window.
This value is always infinite.

Yes Yes Service immediately returns the message to the
application.

Yes No vThreads retries the operation until the end of
the partition window, rereading the message at
the start of the partition's next window.

Table 4-6 Receiving Messages on a Channel with a Direct-Access Port in a Pseudo-Partition (cont’d)

Message?

Time Enough in
Partition Window
to Read? Result of Issuing RECEIVE_QUEUING_MESSAGE

4 Developing APEX Applications
4.9 Communicating within APEX Partitions

77

4

Sending and Receiving Messages

An application cannot determine which type of port it is communicating through.
The only difference between the behavior of message services that use APEX ports
and those that use direct-access ports occurs when an application issues a service
with a non-zero timeout. In this case, the service returns an INVALID_PARAM
return-code parameter.

4.9 Communicating within APEX Partitions

APEX provides the following APEX objects so that processes can communicate
with each other within a partition:

■ buffers

■ blackboards

■ semaphores

■ events

4.9.1 Communicating Using APEX Buffers

APEX buffers let processes communicate with each other within a partition.
Buffers support a single message type between multiple source and destination
processes. Communication is indirect: participating processes address the buffer
rather than the opposing processes directly, thus providing a level of process
independence.

Buffers store multiple messages in message queues and no messages are lost.
Figure 4-8 summarizes how processes use a buffer to communicate.

VxWorks 653
Programmer's Guide, 2.2

78

Creating APEX Buffers

APEX buffers can be created only when a partition is being initialized, that is,
when the partition mode is anything but NORMAL. Processes can create as many
buffers as are supported by the memory that is pre-allocated for the partition’s
buffers.

The CREATE_BUFFER service creates an empty buffer with the following specified
information:

■ name, which must be unique within the partition

■ maximum number of messages

■ maximum message size

■ discipline for queuing waiting processes (FIFO or PRIORITY)

The service returns a buffer ID.

Sending Messages to APEX Buffers

The SEND_BUFFER service sends a message to a specified buffer.

Figure 4-8 Processes Using a Buffer to Communicate

process 1

process 2

process 3

process 4

FIFO
message

queue

GET_BUFFER_ID

SEND_BUFFER GET_BUFFER_STATUS

RECEIVE_BUFFER

send
process
queue

receive
process
queue

priority or
FIFO order

priority or
FIFO order

buffer

4 Developing APEX Applications
4.9 Communicating within APEX Partitions

79

4

If the buffer is empty, the message is stored in FIFO order. If processes are waiting
for messages, the first process is removed from the queue and put in the READY
state.

If the buffer is full, the sending process is put in the WAITING state and put in the
buffer’s send queue according to the buffer’s queuing discipline and the specified
timeout value.

If the service times out, it returns TIMED_OUT.

Receiving Messages from APEX Buffers

The RECEIVE_BUFFER receives a message from a specified buffer.

If the buffer is not empty, the message is removed from the FIFO queue.

If the buffer is full and processes are waiting for messages, the first process is
removed from the send queue and put in the READY state.

If the buffer is empty, the receiving process is put in the WAITING state and put in
the receive queue according to the buffer’s queuing discipline and the specified
timeout value.

If the service times out, it returns TIMED_OUT.

Getting APEX Buffer Information

The GET_BUFFER_ID service gets the buffer ID of a specified buffer.

The GET_BUFFER_STATUS service gets the following information for the specified
buffer:

■ current number of messages

■ number of waiting processes

■ maximum allowable number of messages

■ maximum allowable message size

4.9.2 Communicating Using APEX Blackboards

APEX blackboards let processes communicate with each other within a partition.
Blackboards support a single message type between multiple source and
destination processes. Communication is indirect: participating processes address
the blackboard rather than the opposing processes directly, thus providing a level
of process independence.

VxWorks 653
Programmer's Guide, 2.2

80

Figure 4-9 summarizes how processes use a blackboard to communicate.

Creating Blackboards

Blackboards can be created only when a partition is being initialized, that is, when
the partition mode is anything but NORMAL. Processes can create as many
blackboards as are supported by the memory that is pre-allocated for the
partition’s blackboards.

The CREATE_BLACKBOARD service creates an empty blackboard with the
following specified information:

■ name, which must be unique within the partition

■ maximum number of messages

The service returns a blackboard ID.

Displaying Blackboard Messages

The DISPLAY_BLACKBOARD service writes a message on a blackboard and
remove all waiting processes from the process queue, putting them in the READY
state. The message remains on the blackboard.

Figure 4-9 Processes Using a Blackboard to Communicate

process 1

process 5

process 3

process 4

message

GET_BLACKBOARD_ID

DISPLAY_BLACKBOARD
GET_BLACKBOARD_STATUS

READ_BLACKBOARD

process queue

process 2
CLEAR_BLACKBOARD

blackboard

4 Developing APEX Applications
4.9 Communicating within APEX Partitions

81

4

Reading Blackboard Messages

If the specified blackboard is not empty, the READ_BLACKBOARD service reads
the displayed message from it.

If the blackboard is empty, the reading process is put in the WAITING state
according to the specified timeout value.

If the service times out, it returns TIMED_OUT.

Clearing Blackboards

The CLEAR_BLACKBOARD service clears the message from the specified
blackboard. As a result, the blackboard becomes empty.

Getting Blackboard Information

The GET_BLACKBOARD_ID service gets the blackboard ID for the specified name.

The GET_BLACKBOARD_STATUS service gets the following information for the
specified blackboard:

■ state (EMPTY or OCCUPIED)

■ number of processes waiting for a message

■ maximum allowable message size

State Transitions for Blackboards

Figure 4-10 shows state transitions for blackboards.

VxWorks 653
Programmer's Guide, 2.2

82

4.9.3 Communicating Using APEX Semaphores

APEX semaphores are counting semaphores. A process waits on a semaphore to
gain access to a resource and then signals the semaphore when it is finished. A
semaphore's current value indicates the number of times that it is currently
available to be taken.

For information on vThreads semaphores, see A.3.3 Semaphores, p.296. For
information on POSIX semaphores, see 5.6 POSIX Semaphores, p.101.

Creating APEX Semaphores

APEX semaphores can be created only when a partition is being initialized, that is,
when the partition mode is anything but NORMAL. Processes can create as many
APEX semaphores as are supported by the memory that is pre-allocated for the
partition’s APEX semaphores.

The CREATE_SEMAPHORE service creates a semaphore with the following
specified information:

■ name, which must be unique within the partition

■ maximum value

■ current value

Figure 4-10 State Transitions for Blackboards

EMPTY

(no message)

OCCUPIED

(message is
present)

CREATE_BLACKBOARD

CLEAR_BLACKBOARD

READ_BLACKBOARD
(put calling process in
the process queue
(WAITING state))

CLEAR_BLACKBOARD
(clear message)

DISPLAY_BLACKBOARD
(write a message, put waiting
processes in READY state)

DISPLAY_BLACKBOARD
(write a message)

READ_BLACKBOARD
(read message)

4 Developing APEX Applications
4.9 Communicating within APEX Partitions

83

4

■ queuing discipline (FIFO or PRIORITY)

The service returns a semaphore ID.

Waiting for APEX Semaphores

If the specified semaphore’s current value is not zero, the WAIT_SEMAPHORE
service decrements the value, and the process continues to run.

If the current value is zero, the process is put in the WAITING state and queued
according to the semaphore’s queuing discipline and the specified timeout.

If the service times out, it returns TIMED_OUT.

Signalling APEX Semaphores

If there are no processes waiting for the specified semaphore, the
SIGNAL_SEMAPHORE service increments the semaphore’s current value.

If there are processes waiting for the semaphore, the service uses the semaphore’s
queuing discipline to determine which process will receive the signal and sets that
process’s state to READY.

Getting APEX Semaphore Information

The GET_SEMAPHORE_ID service gets the semaphore ID for the specified name.

The GET_SEMAPHORE_STATUS service gets the following information for the
specified semaphore:

■ current count

■ number of processes waiting for the semaphore

■ maximum value

4.9.4 Synchronizing Using APEX Events

APEX events let processes in a partition synchronize. Processes that are waiting for
a condition are notified when the condition happens. An event can be in one of two
states: UP or DOWN.

Figure 4-11 summarizes how processes use an APEX event to synchronize.

VxWorks 653
Programmer's Guide, 2.2

84

Event Queuing

Rescheduling of processes occurs when a process attempts to wait for an event that
is down. The calling process is queued for a specified amount of time (the time can
be infinite). If the event is not set (up) in that amount of time, VxWorks 653
automatically removes the process from the queue, sets the return code to
TIMED_OUT, and puts the process back into the ready state.

Creating APEX Events

APEX events can be created only when a partition is being initialized, that is, when
the partition mode is anything but NORMAL. Processes can create as many APEX
events as are supported by the memory that is pre-allocated for the partition’s
APEX events.

The CREATE_EVENT service creates an event with a specified name, which must
be unique within the partition. The service returns an event ID. The event starts in
the DOWN state.

Figure 4-11 Synchronizing Using an APEX Event

process 1

process 5

process 3

process 4

GET_EVENT_ID

SET_EVENT GET_EVENT_STATUS

WAIT_EVENT

process queue

process 2 RESET_EVENT

event

state

UP

DOWN

! CAUTION: Processes should not count the occurrences of an event. Multiple
SET_EVENT conditions that occur in a short period of time, or conditions that occur
when no processes are waiting for the event, are coalesced into one UP state.

4 Developing APEX Applications
4.9 Communicating within APEX Partitions

85

4

Setting and Resetting APEX Events

The SET_EVENT service sets the specified event to the UP state. All the processes
waiting for the event are put into the READY state.

The RESET_EVENT service sets the specified event to the DOWN state.

Waiting for APEX Events

If the specified event is in the DOWN state, the WAIT_EVENT service moves the
calling process from the RUNNING state to the WAITING state. If the event is in the
UP state, the calling process continues to run.

Getting APEX Event Information

The GET_EVENT_ID service gets the event ID for the specified event.

The GET_EVENT_STATUS service gets the following status information for the
specified event:

■ state (UP or DOWN)

■ number of waiting processes

State Transitions for APEX Events

Figure 4-12 shows state transitions for APEX events.

Figure 4-12 State Transitions for APEX Events

DOWN

UP

CREATE_EVENT

RESET_EVENT

WAIT_EVENT
(put calling process in
the process queue
(WAITING state))

RESET_EVENT SET_EVENT
(put waiting processes in
the READY state)

SET_EVENT
WAIT_EVENT

VxWorks 653
Programmer's Guide, 2.2

86

4.10 Monitoring Health in APEX Partitions

APEX error services (in the apexError library) support process-level health
monitoring as defined in the ARINC 653 standard.

When an APEX process raises an error, the partition’s error handler process runs.

4.10.1 Raising Process-Level Errors

When an APEX partition detects an error, it issues the
RAISE_APPLICATION_ERROR service with an error code and a fault message. The
service causes the error handler process to run.

Depending on its nature and scope, an error raised at the process level with the
RAISE_APPLICATION_ERROR service could propagate to the partition level,
where it is processed.

4.10.2 APEX Errors

The following are process-level APEX error codes:

■ APPLICATION_ERROR

■ DEADLINE_MISSED

■ HARDWARE_FAULT

■ ILLEGAL_REQUEST (invalid or illegal OS call)

■ MEMORY_VIOLATION

■ NUMERIC_ERROR

■ POWER_FAIL

■ STACK_OVERFLOW (process stack overflow)

A faulty process can continue to run only in the cases of APPLICATION_ERROR or
DEADLINE_MISSED.

4.10.3 Creating Error Handler Processes

An APEX application creates an error handler process for a partition by issuing the
CREATE_ERROR_HANDLER service with the error handler entry point and stack
size. The application supplies the error handler code.

4 Developing APEX Applications
4.10 Monitoring Health in APEX Partitions

87

4

The error handler is an aperiodic process that runs in the partition window with
the highest priority of any process in the partition. It preempts any process
regardless of its priority, even if preemption is disabled for the partition. It has no
process ID and cannot be accessed by other processes within the partition. That is,
other processes cannot suspend it, stop it, or change its priority.

An application developer writes the error handler. It could do a selection of the
following:

■ Get information about the error (issue GET_ERROR_STATUS):

■ error code (see 4.10.2 APEX Errors, p.86)

■ error address

■ process ID of the faulty process

■ fault message

If more than one process is faulty, the error handler process must issue
GET_ERROR_STATUS in a loop until there are no more processes in error
(that is, until the service returns NO_ACTION).

■ Get information about the failed process (issue GET_PROCESS_STATUS).

■ Stop (issue STOP) or restart (issue START) the failed process.

■ Restart the partition (issue SET_PARTITION_MODE with WARM_START or
COLD_START).

■ Shut down the partition (issue SET_PARTITION_MODE with IDLE).

■ Escalate the error to the partition level (issue
REPORT_APPLICATION_ERROR).

■ Log the fault message with the health monitor (issue
REPORT_APPLICATION_MESSAGE).

■ Stop itself (issue STOP_SELF).

If code running in the context of the error handler calls LOCK_PREEMPTION or
UNLOCK_PREEMPTION, no action is taken. This is because the error handler is
already the highest-priority process and cannot be interrupted or blocked. It can
transmit the error context to health monitoring via the
REPORT_APPLICATION_MESSAGE service for maintenance purpose.

An error handler process cannot do the following:

■ Correct an error. For example, it cannot limit a value in the case of overflow.

■ Call blocking services.

VxWorks 653
Programmer's Guide, 2.2

88

Errors that occur while the error handler process runs are partition-level errors.

89

 5
Developing POSIX Applications

5.1 Introduction 89

5.2 POSIX Clocks and Timers 90

5.3 POSIX Memory-Locking Interface 91

5.4 POSIX Threads 92

5.5 POSIX Scheduling Interface 97

5.6 POSIX Semaphores 101

5.7 POSIX Mutexes and Condition Variables 108

5.8 POSIX Message Queues 109

5.9 POSIX Queued Signals 120

5.10 POSIX API for vThreads Partitions 121

5.1 Introduction

The POSIX standard for real-time extensions (1003.1b) specifies a set of interfaces
to kernel facilities. To improve application portability, for vThreads partitions,
VxWorks 653 provides POSIX interfaces as well as vThreads (both C and C++) and
APEX.

VxWorks 653
Programmer's Guide, 2.2

90

This chapter discusses programming concepts for writing POSIX applications that
run in vThreads partitions.

This chapter uses the qualifier Wind to identify facilities designed for use with
layers other than the POSIX API. For example, you can find a discussion of Wind
semaphores contrasted to POSIX semaphores in 5.6.1 Comparison of POSIX and
Wind Semaphores, p.102.

POSIX asynchronous I/O (AIO) routines are available in the aioPxLib library. The
VxWorks 653 AIO implementation meets the specification in the POSIX 1003.1b
standard.

5.2 POSIX Clocks and Timers

A clock is a software construct (struct timespec, defined in time.h) that keeps time
in seconds and nanoseconds. The software clock is updated by system-clock ticks.
VxWorks 653 provides a POSIX 1003.1b standard clock and timer interface.

The POSIX standard provides a means of identifying multiple virtual clocks, but
only one clock is required: the VxWorks 653 module-wide real-time clock. No
virtual clocks are supported in VxWorks 653.

The VxWorks 653 module-wide real-time clock is identified in the clock and timer
routines as CLOCK_REALTIME, and is defined in time.h. VxWorks 653 provides
routines to access the module-wide real-time clock. For more information, see the
reference entry for clockLib.

The POSIX timer facility provides routines for tasks to signal themselves at some
time in the future. Routines are provided to create, set, and delete a timer. For more
information, see the reference entry for timerLib. When a timer goes off, the
default signal, SIGALRM, is sent to the task. To install a signal handler that runs
when the timer expires, use sigaction() (see A.3.6 Signals, p.315).

Example 5-1 POSIX Timers

/* This example creates a new timer and stores it in timerid. */

/* includes */
#include "vxWorks.h"
#include "time.h"

int createTimer (void)

5 Developing POSIX Applications
5.3 POSIX Memory-Locking Interface

91

5

{
timer_t timerid;

/* create timer */
if (timer_create (CLOCK_REALTIME, NULL, &timerid) == ERROR)

{
printf ("create FAILED\n");
return (ERROR);
}

return (OK);
}

An additional POSIX routine (nanosleep()) provides specification of sleep or
delay time in units of seconds and nanoseconds, in contrast to the ticks used by the
Wind taskDelay() routine. Nevertheless, the precision of both is the same and is
determined by the system clock rate. Only the units differ.

5.3 POSIX Memory-Locking Interface

To use more virtual memory than there is physical memory, many operating
systems page and swap memory. This technique causes unpredictable delays in
running time, so it is not desirable in real-time systems. Since VxWorks 653 is
designed for real-time systems, it does not page or swap memory.

However, the POSIX 1003.1b standard for real-time extensions covers operating
systems that do page and swap. Such systems that want real-time performance can
use the POSIX page-locking facilities to declare that certain memory blocks must
not be paged or swapped.

To increase portability between other POSIX-compliant systems and VxWorks 653,
VxWorks 653 includes POSIX page-locking routines. Since all memory is always
locked in a VxWorks 653 system, calling the routines has no effect.

The POSIX page-locking routines are in the mmanPxLib. The library name
indicates the POSIX memory-management library. All routines return OK (0).

POSIX libraries are available when INCLUDE_POSIX is included in a vThreads
partition. For detailed information about the libraries and their routines, see their
reference entries in the VxWorks 653 vThreads API Reference.

VxWorks 653
Programmer's Guide, 2.2

92

5.4 POSIX Threads

POSIX threads (pThreads) are similar to vThreads tasks (called vThreads threads
in VxWorks 653), but with some additional characteristics, including a thread ID
that differs from its task ID.

5.4.1 pThread Attributes

POSIX characteristics are called attributes. Each attribute contains a set of values,
and a set of access routines to get and set those values. You can specify all pThread
attributes in an attributes object, pthread_attr_t, at pThread creation. In a few
cases, you can dynamically modify the attribute values in a running pThread.

The POSIX attributes and their corresponding access routines are described below.

Stack Size

The stack size attribute specifies the size of the stack to be used. This value can be
rounded up to a page boundary.

■ Attribute name: stacksize

■ Default value: default stack size set for taskLib

■ Access routines:

■ pthread_attr_getstacksize()
■ pthread_attr_setstacksize()

Stack Address

The stack address attribute specifies the base of a region of user-allocated memory
to be used as a stack region for the created pThread. Because the default value is
NULL, the VxWorks 653 module should allocate a stack for the pThread when it is
created.

■ Attribute name: stackaddr

■ Default value: NULL

■ Access routines:

■ pthread_attr_getstackaddr()

5 Developing POSIX Applications
5.4 POSIX Threads

93

5

■ pthread_attr_setstackaddr()

Detach State

The detach state attribute describes the state of a thread. With pThreads, the creator
of a thread can block until the thread exits (see the entries for pthread_exit() and
pthread_join() in the VxWorks 653 vThreads API Reference). In this case, the
pThread is a joinable thread. Otherwise, it is a detached thread. A pThread that
was created as a joinable thread can dynamically make itself a detached thread by
calling pthread_detach().

■ Attribute name: detachstate

■ Possible values:

■ PTHREAD_CREATE_DETACHED
■ PTHREAD_CREATE_JOINABLE

■ Default value: PTHREAD_CREATE_JOINABLE

■ Access routines:

■ pthread_attr_getdetachstate()
■ pthread_attr_setdetachstate()

■ Dynamic access routine: pthread_detach()

Contention Scope

The contention scope attribute describes how pThreads compete for resources,
namely the CPU. Under VxWorks 653, all threads compete for the CPU, so the
competition is VxWorks 653 module-wide. Although POSIX allows two values,
only PTHREAD_SCOPE_SYSTEM is implemented.

■ Attribute name: contentionscope

■ Possible values:

■ PTHREAD_SCOPE_SYSTEM
(PTHREAD_SCOPE_PROCESS is not implemented)

■ Default value: PTHREAD_SCOPE_SYSTEM

■ Access routines:

■ pthread_attr_getscope()

VxWorks 653
Programmer's Guide, 2.2

94

■ pthread_attr_setscope()

Inherit Scheduling

The inherit scheduling attribute determines whether the pThread is created with
scheduling parameters inherited from its parent thread, or with parameters that
are explicitly specified.

■ Attribute name: inheritsched

■ Possible values:

■ PTHREAD_EXPLICIT_SCHED
■ PTHREAD_INHERIT_SCHED

■ Default value: PTHREAD_INHERIT_SCHED

■ Access routines:

■ pthread_attr_getinheritsched()
■ pthread_attr_setinheritsched()

Scheduling Policy

The scheduling policy attribute describes the scheduling policy for the pThread,
and is valid only if the value of the inheritsched attribute is
PTHREAD_EXPLICIT_SCHED.

■ Attribute name: schedpolicy

■ Possible values:

■ SCHED_FIFO (priority-preemptive scheduling)
■ SCHED_RR (round-robin scheduling by priority)

■ Default value: SCHED_RR

■ Access routines:

■ pthread_attr_getschedpolicy()
■ pthread_attr_setschedpolicy()

Because the default value for the inheritsched attribute is
PTHREAD_INHERIT_SCHED, the schedpolicy attribute is not used by default. For
more information, see 5.5.3 Getting and Displaying the Current Scheduling Policy,
p.100.

5 Developing POSIX Applications
5.4 POSIX Threads

95

5

Scheduling Parameters

The scheduling parameters attribute describes the scheduling parameters for the
pThread, and is valid only if the value of the inheritsched attribute is
PTHREAD_EXPLICIT_SCHED.

■ Attribute name: schedparam

■ Range of values: 0 – 255

■ Default value: default task priority set for taskLib

■ Access routines:

■ pthread_attr_getschedparam()
■ pthread_attr_setschedparam()

■ Dynamic access routines:

■ pthread_getschedparam() using thread ID
■ pthread_setschedparam() using thread ID
■ sched_getparam() using task ID
■ sched_setparam() using task ID

Because the default value the inheritsched attribute is
PTHREAD_INHERIT_SCHED, the schedparam attribute is not used by default. For
more information, see 5.5.2 Getting and Setting POSIX Task Priorities, p.98.

Specifying Attributes when Creating pThreads

Following are examples of creating a pThread using the default attributes and
using explicit attributes.

Example 5-2 Creating a pThread Using Explicit Scheduling Attributes

pthread_t tid;
pthread_attr_t attr;
int ret;
pthread_attr_init(&attr);

/* set the inheritsched attribute to explicit */
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);

/* set the schedpolicy attribute to SCHED_FIFO */
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* create the pthread */
ret = pthread_create(&tid, &attr, entryFunction, entryArg);

VxWorks 653
Programmer's Guide, 2.2

96

Example 5-3 Creating a pThread Using Default Attributes

pthread_t tid;
int ret;

/* create the pthread with NULL attributes to designate default values */
ret = pthread_create(&tid, NULL, entryFunction, entryArg);

Example 5-4 Designating Your Own Stack for a pThread

pthread_attr_init(&attr);

/* allocate memory for a stack region for the thread */
stackbase = malloc(2 * 4096);

if (stackbase == NULL)
{
printf("FAILED: mystack: malloc failed\n");
exit(-1);
}

/* set the stack pointer to the base address */
stackptr = (void *)((int)stackbase);

/* explicitly set the stackaddr attribute */
pthread_attr_setstackaddr(&attr, stackptr);

/* set the stacksize attribute to 4096 */
pthread_attr_setstacksize(&attr, (4096));

/* set the schedpolicy attribute to SCHED_FIFO */
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* create the pthread */
ret = pthread_create(&tid, &attr, mystack_thread, 0);

5.4.2 pThread Private Data

When a pThread needs access to private data, POSIX uses a key to access that data.
A location is created by calling to pthread_key_create() and released by calling
pthread_key_delete(). The location is then accessed by calling
pthread_getspecific() and pthread_setspecific(). The pthread_key_create()
routine has an option for a destructor routine, which is called when the creating
pThread exits, if the value associated with the key is non-NULL.

5 Developing POSIX Applications
5.5 POSIX Scheduling Interface

97

5

5.4.3 pThread Cancellation

POSIX provides a mechanism, called cancellation, to terminate a thread gracefully.
There are two types of cancellation:

■ Synchronous: Synchronous cancellation causes the pThread to explicitly check
to determine if it was cancelled or to call a routine that contains a cancellation
point.

■ Asynchronous: Asynchronous cancellation causes the running of the pThread
to be interrupted and a handler to be called, much like a signal. (Asynchronous
cancellation is actually implemented with a special signal, SIGCANCEL, which
applications should be careful not to block or ignore.)

Routines that can be used with cancellation are in pthreadLib and are listed in
Table 5-1. For more information, see reference entries in the VxWorks 653 vThreads
API Reference.

5.5 POSIX Scheduling Interface

The POSIX 1003.1b scheduling routines are in schedPxLib. The routines let you use
a portable interface to get the following:

■ task priority (and set it)

■ scheduling policy

Table 5-1 pThreads Cancellation Routines

Routine Meaning

pthread_cleanup_pop() Unregisters a routine to be called when a pThread
is cancelled, and then optionally calls the routine.

pthread_cleanup_push() Registers a routine to be called when the pThread
is cancelled.

pthread_setcancelstate() Enables or disables cancellation.

pthread_setcanceltype() Selects between synchronous and asynchronous
cancellation.

VxWorks 653
Programmer's Guide, 2.2

98

■ maximum and minimum priority for tasks

■ length of a time slice if round-robin scheduling is in effect

For details about the library and its routines, see their reference entries in the
VxWorks 653 vThreads API Reference.

This section describes how to use these routines, beginning with a list of the minor
differences between the POSIX and Wind methods of scheduling.

5.5.1 Comparison of POSIX and Wind Scheduling

POSIX and Wind scheduling routines differ in the following ways:

■ POSIX scheduling is based on processes. Wind scheduling is based on tasks.

■ The POSIX standard uses the term FIFO scheduling. VxWorks 653
documentation uses the term priority-preemptive scheduling. Only the terms
differ. Both describe the same priority-based policy.

■ POSIX applies scheduling algorithms on a process-by-process basis. Wind
applies scheduling algorithms on a partition-wide basis, meaning that all tasks
in a partition use either a round-robin scheme or a priority-preemptive
scheme.

■ The POSIX priority numbering scheme is the inverse of the Wind scheme. In
POSIX, the higher the number, the higher the priority. In the Wind scheme, the
lower the number, the higher the priority, where 0 is the highest priority.
Accordingly, the priority numbers used with the POSIX scheduling library,
schedPxLib, do not match those used and reported by all other components of
VxWorks 653. You can override this default by setting the global variable
posixPriorityNumbering to FALSE. If you do this, schedPxLib uses the Wind
numbering scheme (smaller number = higher priority) and its priority
numbers match those used by the other components of VxWorks 653.

5.5.2 Getting and Setting POSIX Task Priorities

The sched_setparam() and sched_getparam() routines set and get a task’s
priority. Both routines take a task ID and a sched_param structure (defined in
installDir/target/h/sched.h). A task ID of 0 sets or gets the priority for the calling
task.

5 Developing POSIX Applications
5.5 POSIX Scheduling Interface

99

5

When sched_setparam() is called, the sched_priority member of the
sched_param structure specifies the new task priority. The sched_getparam()
routine fills in the sched_priority with the specified task’s current priority.

Example 5-5 Getting and Setting POSIX Task Priorities

/* This example sets the calling task’s priority to 150, then verifies
* that priority. To run from the shell, spawn as a task: -> sp priorityTest
*/

/* includes */
#include "vxWorks.h"
#include "sched.h"

/* defines */
#define PX_NEW_PRIORITY 150

STATUS priorityTest (void)
{
struct sched_param myParam;

/* initialize param structure to desired priority */

myParam.sched_priority = PX_NEW_PRIORITY;
if (sched_setparam (0, &myParam) == ERROR)

{
printf ("error setting priority\n");
return (ERROR);
}

/* demonstrate getting a task priority as a sanity check; ensure it
* is the same value that was just set.
*/

if (sched_getparam (0, &myParam) == ERROR)
{
printf ("error getting priority\n");
return (ERROR);
}

if (myParam.sched_priority != PX_NEW_PRIORITY)
{
printf ("error - priorities do not match\n");
return (ERROR);
}

else
printf ("task priority = %d\n", myParam.sched_priority);

return (OK);
}

The sched_setscheduler() routine is designed to set both scheduling policy and
priority for a single POSIX process, which corresponds in most other cases to a
single Wind task. In the core OS, sched_setscheduler() controls only task priority,

VxWorks 653
Programmer's Guide, 2.2

100

because the kernel does not let tasks have scheduling policies that differ from one
another. If its policy specification matches the current VxWorks 653 module-wide
scheduling policy, sched_setscheduler() sets only the priority, thus acting like
sched_setparam(). If its policy specification does not match the current one,
sched_setscheduler() returns an error.

The only way to change the scheduling policy is to change it for all tasks. There is
no POSIX routine for this purpose. To set a VxWorks 653 module-wide scheduling
policy, use the Wind kernelTimeSlice() routine described in Round-Robin
Scheduling, p.274.

5.5.3 Getting and Displaying the Current Scheduling Policy

The sched_getscheduler() POSIX routine returns the current scheduling policy.
There are two valid scheduling policies in VxWorks 653: priority-preemptive
scheduling (in POSIX terms, SCHED_FIFO) and round-robin scheduling by
priority (SCHED_RR). For more information, see Scheduling Policy, p.94.

Example 5-6 Getting POSIX Scheduling Policy

/* This example gets the scheduling policy and displays it. */

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS schedulerTest (void)
{
int policy;

if ((policy = sched_getscheduler (0)) == ERROR)
{
printf ("getting scheduler failed\n");
return (ERROR);
}

/* sched_getscheduler returns either SCHED_FIFO or SCHED_RR */

if (policy == SCHED_FIFO)
printf ("current scheduling policy is FIFO\n");

else
printf ("current scheduling policy is round robin\n");

return (OK);
}

5 Developing POSIX Applications
5.6 POSIX Semaphores

101

5

5.5.4 Getting Scheduling Parameters: Priority Limits and Time Slice

The sched_get_priority_max() and sched_get_priority_min() routines return the
maximum and minimum possible POSIX priority.

If round-robin scheduling is enabled, you can use sched_rr_get_interval() to
determine the length of the current time-slice interval. This routine takes as an
argument a pointer to a timespec structure (defined in time.h) and writes the
number of seconds and nanoseconds per time slice to the appropriate elements of
that structure.

Example 5-7 Getting the POSIX Round-Robin Time Slice

/* The following example checks that round-robin scheduling is enabled,
* gets the length of the time slice, and then displays the time slice.
*/

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS rrgetintervalTest (void)
{
struct timespec slice;

/* turn on round robin */

kernelTimeSlice (30);

if (sched_rr_get_interval (0, &slice) == ERROR)
{
printf ("get-interval test failed\n");
return (ERROR);
}

printf ("time slice is %l seconds and %l nanoseconds\n",
slice.tv_sec, slice.tv_nsec);

return (OK);
}

5.6 POSIX Semaphores

POSIX defines both named and unnamed semaphores, which have the same
properties, but use slightly different interfaces. The POSIX semaphore library

VxWorks 653
Programmer's Guide, 2.2

102

provides routines for creating, opening, and destroying both named and unnamed
semaphores. When opening a named semaphore, you assign a symbolic name,
which the other named-semaphore routines accept as an argument. The POSIX
semaphore routines are in semPxLib. For details about the library and its routines,
see their reference entries in the VxWorks 653 vThreads API Reference.

5.6.1 Comparison of POSIX and Wind Semaphores

POSIX semaphores are counting semaphores. That is, they keep track of the
number of times they are given. The Wind semaphore mechanism is similar to that
specified by POSIX, except that Wind semaphores offer additional features listed
below:

■ priority inheritance

■ task-deletion safety

■ the ability for a single task to take a semaphore multiple times

■ ownership of mutual-exclusion semaphores

■ semaphore timeouts

■ the choice of queuing mechanism

The POSIX terms wait (or lock) and post (or unlock) correspond to the VxWorks 653
terms take and give. The POSIX routines for locking, unlocking, and getting the
value of semaphores are used for both named and unnamed semaphores.

The sem_init() and sem_destroy() routines are used for initializing and
destroying unnamed semaphores only. The sem_destroy() call terminates an
unnamed semaphore and deallocates all associated memory.

The sem_open(), sem_unlink(), and sem_close() routines are for opening and
closing (destroying) named semaphores only. The combination of sem_close() and
sem_unlink() has the same effect for named semaphores as sem_destroy() does
for unnamed semaphores. That is, it terminates the semaphore and deallocates the
associated memory.

NOTE: Some host operating systems, such as UNIX, require symbolic names for
objects that are to be shared among processes. This is because processes do not
normally share memory in such operating systems. In VxWorks 653, there is no
requirement for named semaphores, because all kernel objects have unique
identifiers. However, using named semaphores of the POSIX variety provides a
convenient way to determine the object’s ID.

5 Developing POSIX Applications
5.6 POSIX Semaphores

103

5

5.6.2 Using Unnamed Semaphores

When using unnamed semaphores, typically one task allocates memory for the
semaphore and initializes it. A semaphore is represented with the data structure
sem_t, defined in semaphore.h. The semaphore initialization routine (sem_init())
lets you specify the initial value.

Once the semaphore is initialized, any task can use the semaphore by locking it
with sem_wait() (blocking) or sem_trywait() (non-blocking), and unlocking it
with sem_post().

Semaphores can be used for both synchronization and exclusion.

When a semaphore is used for synchronization, it is typically initialized to zero
(locked). The task waiting to be synchronized blocks on a sem_wait(). The task
doing the synchronizing unlocks the semaphore using sem_post(). If the task that
is blocked on the semaphore is the only one waiting for that semaphore, the task
unblocks and becomes ready to run. If other tasks are blocked on the semaphore,
the task with the highest priority is unblocked.

When a semaphore is used for mutual exclusion, it is typically initialized to a value
greater than zero, meaning that the resource is available. Therefore, the first task to
lock the semaphore does so without blocking. Subsequent tasks block if the
semaphore value was initialized to 1.

Example 5-8 POSIX Unnamed Semaphores

/* This example uses unnamed semaphores to synchronize an action between the
* calling task and a task that it spawns (tSyncTask). To run from the shell,
* spawn as a task:
* -> sp unnameSem
*/

/* includes */

#include "vxWorks.h"
#include "semaphore.h"

/* forward declarations */
void syncTask (sem_t * pSem);

! CAUTION: When deleting semaphores, particularly mutual-exclusion semaphores,
avoid deleting a semaphore still required by another task. Do not delete a
semaphore unless the deleting task first succeeds in locking that semaphore.
Similarly for named semaphores, close semaphores only from the same task that
opens them.

VxWorks 653
Programmer's Guide, 2.2

104

void unnameSem (void)
{
sem_t * pSem;

/* reserve memory for semaphore */
pSem = (sem_t *) malloc (sizeof (sem_t));

/* initialize semaphore to unavailable */
if (sem_init (pSem, 0, 0) == -1)

{
printf ("unnameSem: sem_init failed\n");
free ((char *) pSem);
return;
}

/* create sync task */
printf ("unnameSem: spawning task...\n");
taskSpawn ("tSyncTask", 90, 0, 2000, syncTask, pSem);

/* do something useful to synchronize with syncTask */

/* unlock sem */
printf ("unnameSem: posting semaphore - synchronizing action\n");
if (sem_post (pSem) == -1)

{
printf ("unnameSem: posting semaphore failed\n");
sem_destroy (pSem);
free ((char *) pSem);
return;
}

/* all done - destroy semaphore */
if (sem_destroy (pSem) == -1)
{
printf ("unnameSem: sem_destroy failed\n");
return;
}

free ((char *) pSem);
}

void syncTask
(
sem_t * pSem
)
{
/* wait for synchronization from unnameSem */
if (sem_wait (pSem) == -1)

{
printf ("syncTask: sem_wait failed \n");
return;
}

5 Developing POSIX Applications
5.6 POSIX Semaphores

105

5

else
printf ("syncTask:sem locked; doing sync’ed action...\n");

/* do something useful here */
}

5.6.3 Using Named Semaphores

The sem_open() routine either opens a named semaphore that already exists or, as
an option, creates a new semaphore. You can specify which of these possibilities
you want by combining the following flag values:

O_CREAT
Create the semaphore if it does not already exist (if it exists, either fail or open
the semaphore, depending on whether O_EXCL is specified).

O_EXCL
Open the semaphore only if newly created. Fail if the semaphore exists.

The results, based on the flags and whether the accessed semaphore already exists,
are shown in Table 5-2. There is no entry for O_EXCL alone, because using that flag
alone is not meaningful.

A POSIX named semaphore, once initialized, remains usable until explicitly
destroyed. Tasks can explicitly mark a semaphore for destruction at any time, but
the semaphore remains until no task has the semaphore open.

For a group of collaborating tasks to use a named semaphore, one of the tasks first
creates and initializes the semaphore, by calling sem_open() with the O_CREAT
flag. Any task that needs to use the semaphore thereafter, opens it by calling
sem_open() with the same name (but without setting O_CREAT). Any task that
has opened the semaphore can use it by locking it with sem_wait() (blocking) or
sem_trywait() (non-blocking) and unlocking it with sem_post().

Table 5-2 Possible Outcomes of Calling sem_open()

Flag Settings If Semaphore Exists If Semaphore Does Not Exist

None Semaphore is opened. Routine fails.

O_CREAT Semaphore is opened. Semaphore is created.

O_CREAT and O_EXCL Routine fails. Semaphore is created.

VxWorks 653
Programmer's Guide, 2.2

106

To remove a semaphore, all tasks using it must first close it with sem_close(), and
one of the tasks must also unlink it. Unlinking a semaphore with sem_unlink()
removes the semaphore name from the name table. After the name is removed
from the name table, tasks that have the semaphore open can still use it, but no new
tasks can open this semaphore. The next time a task tries to open the semaphore
without the O_CREAT flag, the operation fails. The semaphore vanishes when the
last task closes it.

Example 5-9 POSIX Named Semaphores

/*
* In this example, nameSem() creates a task for synchronization. The
* new task, tSyncSemTask, blocks on the semaphore created in nameSem().
* Once the synchronization takes place, both tasks close the semaphore,
* and nameSem() unlinks it. To run this task from the shell, spawn
* nameSem as a task:
* -> sp nameSem, "myTest"
*/

/* includes */
#include "vxWorks.h"
#include "semaphore.h"
#include "fcntl.h"

/* forward declaration */
int syncSemTask (char * name);

int nameSem
(
char * name
)
{
sem_t * semId;

/* create a named semaphore, initialize to 0*/
printf ("nameSem: creating semaphore\n");
if ((semId = sem_open (name, O_CREAT, 0, 0)) == (sem_t *) -1)

{
printf ("nameSem: sem_open failed\n");
return;
}

printf ("nameSem: spawning sync task\n");
taskSpawn ("tSyncSemTask", 90, 0, 2000, syncSemTask, name);

/* do something useful to synchronize with syncSemTask */

/* give semaphore */
printf ("nameSem: posting semaphore - synchronizing action\n");
if (sem_post (semId) == -1)

{
printf ("nameSem: sem_post failed\n");
return;

5 Developing POSIX Applications
5.6 POSIX Semaphores

107

5

}

/* all done */
if (sem_close (semId) == -1)

{
printf ("nameSem: sem_close failed\n");
return;
}

if (sem_unlink (name) == -1)
{
printf ("nameSem: sem_unlink failed\n");
return;
}

printf ("nameSem: closed and unlinked semaphore\n");
}

int syncSemTask
(
char * name
)
{
sem_t * semId;

/* open semaphore */
printf ("syncSemTask: opening semaphore\n");
if ((semId = sem_open (name, 0)) == (sem_t *) -1)

{
printf ("syncSemTask: sem_open failed\n");
return;
}

/* block waiting for synchronization from nameSem */
printf ("syncSemTask: attempting to take semaphore...\n");
if (sem_wait (semId) == -1)

{
printf ("syncSemTask: taking sem failed\n");
return;
}

printf ("syncSemTask: has semaphore, doing sync’ed action ...\n");

/* do something useful here */

if (sem_close (semId) == -1)
{
printf ("syncSemTask: sem_close failed\n");
return;
}

}

VxWorks 653
Programmer's Guide, 2.2

108

5.7 POSIX Mutexes and Condition Variables

Mutexes and condition variables provide compatibility with the POSIX standard
(1003.1c). They perform essentially the same role as mutual exclusion and binary
semaphores (and are in fact implemented using them). They are available with
pthreadLib. Like POSIX threads, mutexes and condition variables have attributes
associated with them.

Mutex attributes are held in a data type called pthread_mutexattr_t, which
contains two attributes, protocol and prioceiling.

Protocol

The protocol attribute describes how the mutex deals with the priority-inversion
problem described in the section for mutual-exclusion semaphores
(Mutual-Exclusion Semaphores, p.302).

■ Attribute name: protocol

■ Possible values:

■ PTHREAD_PRIO_INHERIT
■ PTHREAD_PRIO_PROTECT

■ Access routines:

■ pthread_mutexattr_getprotocol()
■ pthread_mutexattr_setprotocol()

To create a mutual-exclusion semaphore with priority inheritance, use the
SEM_Q_PRIORITY and SEM_PRIO_INHERIT options to semMCreate().
Mutual-exclusion semaphores created with the priority protection value use the
notion of a priority ceiling, which is the other mutex attribute.

Priority Ceiling

The priority ceiling attribute is the POSIX priority ceiling for a mutex created with
the protocol attribute set to PTHREAD_PRIO_PROTECT.

■ Attribute name: prioceiling

■ Possible values: any valid (POSIX) priority value

■ Access routines:

■ pthread_mutexattr_getprioceiling()
■ pthread_mutexattr_setprioceiling()

5 Developing POSIX Applications
5.8 POSIX Message Queues

109

5

■ Dynamic access routines:

■ pthread_mutex_getprioceiling()
■ pthread_mutex_setprioceiling()

A priority ceiling is defined by the following conditions:

■ Any thread attempting to acquire a mutex, whose priority is higher than the
ceiling, cannot acquire the mutex.

■ Any thread whose priority is lower than the ceiling value has its priority
elevated to the ceiling value for the duration that the mutex is held.

■ The thread’s priority is restored to its previous value when the mutex is
released.

5.8 POSIX Message Queues

The POSIX message queue routines are in mqPxLib. For details on the library and
its routines, see their reference entries in the VxWorks 653 vThreads API Reference.

5.8.1 Comparison of POSIX and Wind Message Queues

The POSIX message queues are similar to Wind message queues, except that
POSIX message queues provide messages with a range of priorities. The
differences between the POSIX and Wind message queues are summarized in
Table 5-3.

NOTE: The POSIX priority numbering scheme is the inverse of the Wind scheme.
See 5.5.1 Comparison of POSIX and Wind Scheduling, p.98.

Table 5-3 Message Queue Feature Comparison

Feature Wind Message Queues POSIX Message Queues

Blocked task queues FIFO or priority-based Priority-based

Close and unlink
semantics

No Yes

VxWorks 653
Programmer's Guide, 2.2

110

POSIX message queues are also portable, if you are migrating to VxWorks 653 from
another 1003.1b-compliant system.

5.8.2 POSIX Message Queue Attributes

A POSIX message queue has the following attributes:

■ an optional O_NONBLOCK flag

■ the maximum number of messages in the message queue

■ the maximum message size

■ the number of messages on the queue

Tasks can set or clear the O_NONBLOCK flag (but not the other attributes) using
mq_setattr(), and get the values of all the attributes using mq_getattr().

Example 5-10 Setting and Getting Message-Queue Attributes

/*
* This example sets the O_NONBLOCK flag and examines message queue
* attributes.
*/

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define MSG_SIZE 16

int attrEx
(
char * name
)
{
mqd_t mqPXId; /* mq descriptor */

Message priority levels 1 32

Receive with timeout Optional Not available

Task notification Not available Optional (one task)

Table 5-3 Message Queue Feature Comparison (cont’d)

Feature Wind Message Queues POSIX Message Queues

5 Developing POSIX Applications
5.8 POSIX Message Queues

111

5

struct mq_attr attr; /* queue attribute structure */
struct mq_attr oldAttr; /* old queue attributes */
char buffer[MSG_SIZE];
int prio;

/* create read write queue that is blocking */
attr.mq_flags = 0;
attr.mq_maxmsg = 1;
attr.mq_msgsize = 16;
if ((mqPXId = mq_open (name, O_CREAT | O_RDWR , 0, &attr))

== (mqd_t) -1)
return (ERROR);

else
printf ("mq_open with non-block succeeded\n");

/* change attributes on queue - turn on non-blocking */
attr.mq_flags = O_NONBLOCK;
if (mq_setattr (mqPXId, &attr, &oldAttr) == -1)

return (ERROR);
else

{
/* paranoia check - oldAttr should not include non-blocking. */
if (oldAttr.mq_flags & O_NONBLOCK)

return (ERROR);
else

printf ("mq_setattr turning on non-blocking succeeded\n");
}

/* try receiving - there are no messages but this shouldn't block */
if (mq_receive (mqPXId, buffer, MSG_SIZE, &prio) == -1)

{
if (errno != EAGAIN)

return (ERROR);
else

printf ("mq_receive with non-blocking didn’t block on empty queue\n");
}

else
return (ERROR);

/* use mq_getattr to verify success */
if (mq_getattr (mqPXId, &oldAttr) == -1)

return (ERROR);
else

{ /* test that we got the values we think we should */
if (!(oldAttr.mq_flags & O_NONBLOCK) || (oldAttr.mq_curmsgs != 0))

return (ERROR);
else

printf ("queue attributes are:\n\tblocking is %s\n\t
message size is: %d\n\t
max messages in queue: %d\n\t
no. of current msgs in queue: %d\n",
oldAttr.mq_flags & O_NONBLOCK ? "on" : "off",
oldAttr.mq_msgsize, oldAttr.mq_maxmsg,
oldAttr.mq_curmsgs);

}

VxWorks 653
Programmer's Guide, 2.2

112

/* clean up - close and unlink mq */
if (mq_unlink (name) == -1)

return (ERROR);
if (mq_close (mqPXId) == -1)

return (ERROR);
return (OK);
}

5.8.3 Displaying Message-Queue Attributes

The VxWorks 653 show() command produces a display of the key message-queue
attributes, for either POSIX or Wind message queues. POSIX libraries are available
when INCLUDE_POSIX is included in a vThreads partition. For detailed
information about the libraries and their routines, see their reference entries in the
VxWorks 653 vThreads API Reference.

For example, if mqPXId is a POSIX message queue:

-> show mqPXId
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message queue name : MyQueue
No. of messages in queue : 1
Maximum no. of messages : 16
Maximum message size : 16

Compare this to the output when myMsgQId is a Wind message queue:

-> show myMsgQId
Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0
Send timeouts : 0
Receive timeouts : 0

5.8.4 Communicating through a Message Queue

Before a set of tasks can communicate through a POSIX message queue, one of the
tasks must create the message queue by calling mq_open() with the O_CREAT flag

NOTE: The built-in show() routine handles Wind message queues. You can also
use the Wind River Workbench inspector to get information on Wind message
queues.

5 Developing POSIX Applications
5.8 POSIX Message Queues

113

5

set. Once a message queue is created, other tasks can open that queue by name to
send and receive messages on it. Only the first task opens the queue with the
O_CREAT flag. Subsequent tasks can open the queue for receiving only
(O_RDONLY), sending only (O_WRONLY), or both sending and receiving
(O_RDWR).

To put messages on a queue, use mq_send(). If a task attempts to put a message
on the queue when the queue is full, the task blocks until some other task reads a
message from the queue, making space available. To avoid blocking on
mq_send(), set O_NONBLOCK when you open the message queue. In that case,
when the queue is full, mq_send() returns -1 and sets errno to EAGAIN instead
of pending, letting you try again or take other action.

One of the arguments to mq_send() specifies a message priority. Priorities range
from 0 (lowest priority) to 31 (highest priority). See 5.5.1 Comparison of POSIX and
Wind Scheduling, p.98.

When a task receives a message using mq_receive(), the task receives the
highest-priority message on the queue. Among multiple messages with the same
priority, the first message placed on the queue is the first received (FIFO order). If
the queue is empty, the task blocks until a message is placed on the queue.

To avoid pending on mq_receive(), open the message queue with O_NONBLOCK.
in that case, when a task attempts to read from an empty queue, mq_receive()
returns -1 and sets errno to EAGAIN.

To close a message queue, call mq_close(). Closing the queue does not destroy it,
but only asserts that your task is no longer using the queue. To request that the
queue be destroyed, call mq_unlink(). Unlinking a message queue does not
destroy the queue immediately, but it does prevent any further tasks from opening
that queue, by removing the queue name from the name table. Tasks that have the
queue open can continue to use it. When the last task closes an unlinked queue, the
queue is destroyed.

Example 5-11 POSIX Message Queues

/* In this example, the mqExInit() routine spawns two tasks that
* communicate using the message queue.
*/

/* mqEx.h - message example header */

/* defines */
#define MQ_NAME "exampleMessageQueue"

/* forward declarations */
void receiveTask (void);
void sendTask (void);

VxWorks 653
Programmer's Guide, 2.2

114

/* testMQ.c - example using POSIX message queues */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"
#include "mqEx.h"

/* defines */
#define HI_PRIO 31
#define MSG_SIZE 16

int mqExInit (void)
{
/* create two tasks */
if (taskSpawn ("tRcvTask", 95, 0, 4000, receiveTask, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0) == ERROR)
{
printf ("taskSpawn of tRcvTask failed\n");
return (ERROR);
}

if (taskSpawn ("tSndTask", 100, 0, 4000, sendTask, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0) == ERROR)

{
printf ("taskSpawn of tSendTask failed\n");
return (ERROR);
}

}

void receiveTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */
char msg[MSG_SIZE]; /* msg buffer */
int prio; /* priority of message */

/* open message queue using default attributes */
if ((mqPXId = mq_open (MQ_NAME, O_RDWR | O_CREAT, 0, NULL))

== (mqd_t) -1)
{
printf ("receiveTask: mq_open failed\n");
return;
}

/* try reading from queue */
if (mq_receive (mqPXId, msg, MSG_SIZE, &prio) == -1)

{
printf ("receiveTask: mq_receive failed\n");
return;
}

else
{
printf ("receiveTask: Msg of priority %d received:\n\t\t%s\n",

prio, msg);

5 Developing POSIX Applications
5.8 POSIX Message Queues

115

5

}
}

/* sendTask.c - mq sending example */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "mqEx.h"

/* defines */
#define MSG "greetings"
#define HI_PRIO 30

void sendTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */

/* open msg queue; should already exist with default attributes */

if ((mqPXId = mq_open (MQ_NAME, O_RDWR, 0, NULL)) == (mqd_t) -1)
{
printf ("sendTask: mq_open failed\n");
return;
}

/* try writing to queue */
if (mq_send (mqPXId, MSG, sizeof (MSG), HI_PRIO) == -1)

{
printf ("sendTask: mq_send failed\n");
return;
}

else
printf ("sendTask: mq_send succeeded\n");

}

5.8.5 Notifying a Task That a Message Is Waiting

A task can use mq_notify() to request notification when a message for it arrives at
an empty queue. The advantage of this is that a task can avoid blocking or polling
to wait for a message.

The mq_notify() routine specifies a signal to be sent to the task when a message is
placed on an empty queue. This mechanism uses the POSIX data-carrying
extension to signaling, which lets you, for example, carry a queue identifier with
the signal (see 5.9 POSIX Queued Signals, p.120).

The mq_notify() routine is designed to alert the task only for new messages that
are actually available. If the message queue already contains messages, no
notification is sent when more messages arrive. If another task is blocked on the

VxWorks 653
Programmer's Guide, 2.2

116

queue with mq_receive(), that other task unblocks, and no notification is sent to
the task registered with mq_notify().

Notification is exclusive to a single task: each queue can register only one task for
notification at a time. Once a queue has a task to notify, no attempts to register with
mq_notify() can succeed until the notification request is satisfied or cancelled.

When a queue sends notification to a task, the notification request is satisfied, and
the queue has no further special relationship with that particular task. That is, the
queue sends a notification signal only once per mq_notify() request. To arrange
for one particular task to continue receiving notification signals, the best approach
is to call mq_notify() from the same signal handler that receives the notification
signals. This reinstalls the notification request as soon as possible.

To cancel a notification request, specify NULL instead of a notification signal. Only
the currently registered task can cancel its notification request.

Example 5-12 Notifying a Task That a Message Is Waiting

/*
*In this example, a task uses mq_notify() to discover when a message
* is waiting for it on a previously empty queue.
*/

/* includes */
#include "vxWorks.h"
#include "signal.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define QNAM "PxQ1"
#define MSG_SIZE 64 /* limit on message sizes */

/* forward declarations */
static void exNotificationHandle (int, siginfo_t *, void *);
static void exMqRead (mqd_t);

/*
* exMqNotify - example of how to use mq_notify()
*

* This routine illustrates the use of mq_notify() to request notification
* via signal of new messages in a queue. To simplify the example, a
* single task both sends and receives a message.
*/

int exMqNotify
(
char * pMess /* text for message to self */
)

5 Developing POSIX Applications
5.8 POSIX Message Queues

117

5

{
struct mq_attr attr; /* queue attribute structure */
struct sigevent sigNotify; /* to attach notification */
struct sigaction mySigAction; /* to attach signal handler */
mqd_t exMqId /* id of message queue */

/* Minor sanity check; avoid exceeding msg buffer */
if (MSG_SIZE <= strlen (pMess))

{
printf ("exMqNotify: message too long\n");
return (-1);
}

/*
* Install signal handler for the notify signal and fill in
* a sigaction structure and pass it to sigaction(). Because the handler
* needs the siginfo structure as an argument, the SA_SIGINFO flag is
* set in sa_flags.
*/

mySigAction.sa_sigaction = exNotificationHandle;
mySigAction.sa_flags = SA_SIGINFO;
sigemptyset (&mySigAction.sa_mask);

if (sigaction (SIGUSR1, &mySigAction, NULL) == -1)
{
printf ("sigaction failed\n");
return (-1);
}

/*
* Create a message queue - fill in a mq_attr structure with the
 * size and no. of messages required, and pass it to mq_open().
 */

attr.mq_flags = O_NONBLOCK; /* make nonblocking */
attr.mq_maxmsg = 2;
attr.mq_msgsize = MSG_SIZE;

if ((exMqId = mq_open (QNAM, O_CREAT | O_RDWR, 0, &attr)) ==
 (mqd_t) - 1)
{
printf ("mq_open failed\n");
return (-1);
}

/*
* Set up notification: fill in a sigevent structure and pass it
 * to mq_notify(). The queue ID is passed as an argument to the
 * signal handler.
 */

VxWorks 653
Programmer's Guide, 2.2

118

sigNotify.sigev_signo = SIGUSR1;
sigNotify.sigev_notify = SIGEV_SIGNAL;
sigNotify.sigev_value.sival_int = (int) exMqId;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return (-1);
}

/*
* We just created the message queue, but it may not be empty;
 * a higher-priority task may have placed a message there while
 * we were requesting notification. mq_notify() does nothing if
 * messages are already in the queue; therefore we try to
 * retrieve any messages already in the queue.
 */

exMqRead (exMqId);

/*
* Now we know the queue is empty, so we will receive a signal
 * the next time a message arrives.
 *
 * We send a message, which causes the notify handler to be invoked.
* It is a little silly to have the task that gets the notification
* be the one that puts the messages on the queue, but we do it here
* to simplify the example. A real application would do other work
* instead at this point.
*/

if (mq_send (exMqId, pMess, 1 + strlen (pMess), 0) == -1)
{
printf ("mq_send failed\n");
return (-1);
}

/* Cleanup */
if (mq_close (exMqId) == -1)

{
printf ("mq_close failed\n");
return (-1);
}

/* More cleanup */
if (mq_unlink (QNAM) == -1)

{
printf ("mq_unlink failed\n");
return (-1);
}

return (0);
}

5 Developing POSIX Applications
5.8 POSIX Message Queues

119

5

/*
* exNotificationHandle - handler to read in messages
*
* This routine is a signal handler; it reads in messages from a
* message queue.
*/

static void exNotificationHandle
(
int sig, /* signal number */
siginfo_t * pInfo, /* signal information */
void * pSigContext /* unused (required by posix) */
)
{
struct sigevent sigNotify;
mqd_t exMqId;

/* Get the ID of the message queue out of the siginfo structure. */
exMqId = (mqd_t) pInfo->si_value.sival_int;

/*
* Request notification again; it resets each time
 * a notification signal goes out.
 */

sigNotify.sigev_signo = pInfo->si_signo;
sigNotify.sigev_value = pInfo->si_value;
sigNotify.sigev_notify = SIGEV_SIGNAL;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return;
}

/* Read in the messages */
exMqRead (exMqId);
}

/*
* exMqRead - read in messages
*
* This small utility routine receives and displays all messages
* currently in a POSIX message queue; assumes queue has O_NONBLOCK.
*/

static void exMqRead
(
mqd_t exMqId
)
{
char msg[MSG_SIZE];
int prio;

VxWorks 653
Programmer's Guide, 2.2

120

/*
* Read in the messages - uses a loop to read in the messages
 * because a notification is sent ONLY when a message is sent on
 * an EMPTY message queue. There could be multiple msgs if, for
 * example, a higher-priority task was sending them. Because the
 * message queue was opened with the O_NONBLOCK flag, eventually
 * this loop exits with errno set to EAGAIN (meaning we did an
 * mq_receive() on an empty message queue).
 */

while (mq_receive (exMqId, msg, MSG_SIZE, &prio) != -1)
{
printf ("exMqRead: received message: %s\n",msg);
}

if (errno != EAGAIN)
{
printf ("mq_receive: errno = %d\n", errno);
}

}

5.9 POSIX Queued Signals

The sigqueue() routine provides an alternative to kill() for sending signals to a
task. The important differences between the two are:

kill()
The kill() routine includes an application-specified value that is sent as part
of the signal. You can use this value to supply whatever context your signal
handler finds useful. This value is of type sigval (defined in signal.h). The
signal handler finds it in the si_value field of one of its arguments, a siginfo_t
structure. An extension to the POSIX sigaction() routine registers signal
handlers that accept this additional argument.

sigqueue()
The sigqueue() routine enables the queuing of multiple signals for any task.
The kill() routine, by contrast, delivers a single signal, even if multiple signals
arrive before the handler runs.

VxWorks 653 includes seven signals reserved for application use, numbered
consecutively from SIGRTMIN. The presence of these reserved signals is required
by POSIX 1003.1b, but the specific signal values are not. For portability, specify
these signals as offsets from SIGRTMIN (for example, write SIGRTMIN+2 to refer
to the third reserved signal number). All signals delivered with sigqueue() are

5 Developing POSIX Applications
5.10 POSIX API for vThreads Partitions

121

5

queued in numeric order, with lower-numbered signals queuing ahead of
higher-numbered signals.

POSIX 1003.1b also includes an alternative means of receiving signals. The
sigwaitinfo() routine differs from sigsuspend() or pause() in that it lets your
application respond to a signal without going through the mechanism of a
registered signal handler: when a signal is available, sigwaitinfo() returns the
value of that signal as a result, and does not call a signal handler even if one is
registered. The sigtimedwait() routine is similar, except that it can time out.

For detailed information on signals, see the reference entry for sigLib.

To include POSIX queued signals, include the INCLUDE_POSIX component. This
component automatically initializes POSIX queued signals with sigqueueInit().
The sigqueueInit() routine allocates buffers for use by sigqueue(), which requires
a buffer for each queued signal. A call to sigqueue() fails if no buffer is available.

5.10 POSIX API for vThreads Partitions

POSIX libraries are available when INCLUDE_POSIX is included in a vThreads
partition. For detailed information about the libraries and their routines, see their
reference entries in the VxWorks 653 vThreads API Reference.

VxWorks 653
Programmer's Guide, 2.2

122

 6

Developing C++ Applications
6.1 Introduction 123

6.2 Configuring vThreads to Use C++ 124

6.3 Writing C++ Applications 124

6.4 Using C++ Libraries 127

6.5 Writing C++ Cert Applications 128

6.1 Introduction

You can develop C++ applications that run in full vThreads partitions. You can also
develop applications with a subset of C++ that lets safety-critical applications be
certified to Level A of the RTCA/DO-178B avionics software guidelines.

This documentation calls this subset the C++ cert subset and applications based on
it C++ cert applications. It uses other terms as they are used by the C++ standard.

This documentation describes how to develop C++ applications that run in full
vThreads partitions and includes additional information when developing C++
cert applications differs.
123

VxWorks 653
Programmer's Guide, 2.2
6.2 Configuring vThreads to Use C++

6.2.1 Specifying Additional Sections for Loading

The GNU C++ compiler generates special ELF sections that are not loaded by
default. As a result, these sections need to be accounted for in the XML
configuration file. This is done by specifying an AdditionalSection attribute in
MemorySize elements. For details, see the configuration information in the
VxWorks 653 Configuration and Build Guide.

6.2.2 Adding C++ Support to vThreads

By default, a vThreads partition does not support C++. You can add C++ support
for full C++ or C++ cert applications. For details, see the build information in the
VxWorks 653 Configuration and Build Guide.

6.2.3 Demangling C++ Symbol Names in the Target Shell

If you use the C++ demangler, symbol table queries in a vThreads target shell
return human-readable (demangled) forms of C++ symbol names.

6.3 Writing C++ Applications

This section describes how to write C++ applications in general. For additional
information specific to writing C++ cert applications, see 6.5 Writing C++ Cert
Applications, p.128.

For information on the GNU C++ toolchain, see Using the GNU Compiler Collection.
124

6 Developing C++ Applications
6.3 Writing C++ Applications

6

6.3.1 Making C Symbols Accessible to C++ Code

To make C symbols accessible to C++ code, use the extern "C" syntax:

#ifdef __cplusplus
extern "C" void myEntryPoint ();
#else
void myEntryPoint ();
#endif

Symbols in VxWorks 653 are automatically available to C++, because the
VxWorks 653 header files use this mechanism for declarations

Making C++ Symbols Accessible to C code

To reference a (non-overloaded, global) C++ symbol from C code, use the extern
"C" syntax.

6.3.2 Adding Floating-Point Support to Tasks

Any vThreads task that uses C++ code must be spawned with the VX_FP_TASK
option. Failure to use the option can result in hard-to-debug, unpredictable
run-time corruption of floating-point registers.

6.3.3 Handling Exceptions

Since the C++ cert subset does not support exception handling (catch and throw),
this section applies to full C++ only.

Turning off Exception Handling

By default, the GNU C++ compiler enables exception handling. To turn the feature
off, use the -fno-exceptions compiler option.

Using the Pre-Exception Model of C++ Compilation

You can write code according to the pre-exception model of C++ compilation. For
example, calls to new can check the returned pointer for a failure value of zero.
125

VxWorks 653
Programmer's Guide, 2.2
However, if you are concerned that exception-handling enhancements will not
compile correctly, follow these guidelines:

■ Use new (nothrow).

■ Do not explicitly turn on exceptions in your iostream objects.

GNU iostream does not throw unless IO_THROW is defined when the library
is built and exceptions are explicitly enabled for the particular iostream object
in use. The default is no exceptions. Exceptions have to be explicitly turned on
for each iostate flag that needs to throw.

■ Do not use string objects or, if you must, wrap them in blocks of:

try { } catch (...) { }

The Standard Template Library (STL) does not throw except in some methods
in the basic_string class (of which “string” is a specialization).

Installing Your Own Termination Handler

As specified by the ANSI C++ standard, unhandled exceptions ultimately call
terminate(). This routine suspends the offending task and sends a warning
message to the console. You can modify this behavior by installing your own
termination handler. To do so, call set_terminate(), which is defined in the
exception header file.

6.3.4 Using Namespaces

You can use namespaces for your own code, according to the C++ standard. If you
use the std namespace syntax, identifiers in the namespace are global. Therefore,
they must be globally unique.

6.3.5 Disabling Run Time Type Information (RTTI)

For full C++, the GNU C++ compiler enables RTTI by default. The feature adds a
small overhead to any C++ program that contains classes with virtual functions.
To turn off the feature, use the -fno-rtti compiler option.

The C++ cert subset does not support RTTI.
126

6 Developing C++ Applications
6.4 Using C++ Libraries

6

6.3.6 Constructors and Destructors

Global constructors are called when a partition starts. They are called again when
the partition is restarted (warm or cold). Destructors are not called, because the
C++ objects are not retained through the restart process.

6.4 Using C++ Libraries

Since the C++ cert subset does not support C++ libraries, this section applies to full
C++ only.

6.4.1 Using the iostream Library

To use the iostream library, include one or more of its header files after the
vxWorks.h header file in the appropriate modules of your application. The most
frequently used header file is iostream, but others are available. For information,
see the C++ reference entries.

Standard iostream Objects

The standard iostream objects (cin, cout, cerr, and clog) are global. That is, they are
not private to any particular vThreads task. They are correctly initialized
regardless of the number of tasks or modules that reference them, and they can
safely be used across multiple tasks that have the same definitions of stdin, stdout,
and stderr. However, they cannot safely be used when different tasks have
different standard I/O file descriptors. In such cases, the application is responsible
for handling mutual exclusion.

! WARNING: Do not use the -nostdinc compiler option if you are using the iostream
library or Standard Template Library (STL).

If you do, you will get warnings about missing header files. This is because,
without the option, the compiler includes the directories containing the header
files that are needed for the iostream library or STL.
127

VxWorks 653
Programmer's Guide, 2.2
Simulating Private Standard iostream Objects

To simulate private standard iostream objects, create a new iostream object of the
same class as the standard iostream object (for example, cin is an
istream_withassign), and assign to it a new filebuf object tied to the appropriate
file descriptor. The new filebuf and iostream objects are private to the calling task,
ensuring that other tasks cannot corrupt them.

ostream my_out (new filebuf (1)); /* 1 == STDOUT */
istream my_in (new filebuf (0), &my_out); /* 0 == STDIN;

* TIE to my_out */

6.4.2 Using Standard Template Library (STL)

The GNU port of the STL for vThreads is thread-safe at the class level. This means
that two tasks in the same domain can safely reference the same class-level data at
the same time. However, the STL is not thread-safe at the object level. That is, if two
tasks need to reference the same object at the same time, they must use a mutex
semaphore.

You can use the STL in client code that is compiled with exception handling turned
off. In vThreads, this means the following:

■ For all checks that the caller can reasonably make (such as bounds checking),
no action is taken where an exception would be thrown. Optimization being
on is equivalent to removing these checks.

■ If you are using default allocators and memory exhaustion occurs where
bad_alloc would be thrown, the following message is logged (if logging is
included):

"STL Memory allocation failed and exceptions disabled -calling terminate"

and the task calls terminate(). However, you can define custom allocators that
behave differently.

6.5 Writing C++ Cert Applications

In addition to the information on writing C++ applications that is described
elsewhere in this documentation, this section is specific to writing C++ cert
applications.
128

6 Developing C++ Applications
6.5 Writing C++ Cert Applications

6

6.5.1 Features Not Supported

To ensure certifiability, the C++ cert subset does not support the following C++
features:

■ C++ standard library

■ exception handling (catch and throw)

■ pure virtual functions (virtual functions are supported)

■ RTTI

■ STL

6.5.2 Persistent Global Constructors

Regular global constructors are called when a partition starts (warm or cold starts).
For the C++ cert subset, persistent global constructors are called during partition
cold start, but not during partition warm restart.

Specifying Persistent Global Constructors in Makefiles

The munch facility puts regular and persistent global constructors in separate data
sections. For persistent global constructors only, you must specify them with the
-persistent-def option. The following is an example of a makefile rule for handling
C++ global persistent constructors:

MUNCHFLAGS_EXTRA = -persistent-def myPersistentContructorsFile

Allocating Persistent Global Constructors

Applications are responsible for allocating persistent global constructors from
persistent memory. This can be done in any of the following ways:

■ allocating from a pool of persistent objects

■ allocating from persistent heap

■ using linker scripts

Allocating from a Pool of Persistent Objects

The follow code is an example of how to allocate pools of persistent objects.
129

VxWorks 653
Programmer's Guide, 2.2
#define MAX_POOL 512
int objectPool[MAX_POOL] __attribute__((__section__(".persistent.bss")));
int objectPoolCount __attribute__((__section__(".persistent.data"))) = 0;

The follow code is an example of a persistent constructor allocating an object from
the storage:

if (objectPoolCount < MAX_POOL)
myObject = &objectPool[objectPoolCount++];

Allocating from Persistent Heap

To have a persistent heap, an application needs to create a memory pool in the
persistent BSS section. The following code is an example of how to do this:

#define HEAP_SIZE (64*1024)
char persistentHeap[HEAP_SIZE]
__attribute__((__section__(".persistent.bss")));
PART_ID persistentHeapId __attribute__((__section__(".persistent.bss"));
BOOL persistentHeapInitialized

__attribute__((__section__(".persistent.data")) = FALSE;

The follow example code excerpt is from an allocation routine for the persistent
heap:

if (!persistentHeapInitialized)
memPartInit (&persistentHeapId, persistentHeap, HEAP_SIZE);

return memPartAlloc (&persistentHeapId, bytes_wanted)

Using Linker Scripts

A linker script can be used to place variables into .persistent.bss and
.persistent.data sections.

6.5.3 Calling Pure Virtual Functions

The C++ cert subset catches erroneously called pure virtual functions, such as ones
called because of an application run-time defect. If a pure virtual function is called
from a C++ cert application, a health monitor event (code VX_ERROR_KERNEL,
subcode VX_ERR_NO_SUB_CODE) is injected and the offending task is suspended.

6.5.4 Deallocating Heap

If a C++ cert application tries to deallocate heap by calling free() (directly or
indirectly from other routines that the application calls), a health monitor event
(code VX_ERROR_KERNEL, subcode VX_ERR_UNHANDLED_EVENT) is injected.
130

6 Developing C++ Applications
6.5 Writing C++ Cert Applications

6

The memory is not freed. The offending task is suspended unless the health
monitor is configured not to suspend offending tasks for this type of event.
131

VxWorks 653
Programmer's Guide, 2.2
132

133

 7
Programming in the Core OS

7.1 Introduction 134

7.2 Partitions 135

7.3 VxWorks 653 Stacks 141

7.4 Shared Libraries 142

7.5 Shared Data Regions 143

7.6 User Configuration Records 147

7.7 Multitasking 147

7.8 Managing Memory 147

7.9 Restart Functionality 156

7.10 Partition Support 165

7.11 Worker Tasks 168

7.12 System Time 169

7.13 Partition Scheduling 169

7.14 Design Models for Ports 181

7.15 Setting up Communication with Other Modules 185

VxWorks 653
Programmer's Guide, 2.2

134

7.1 Introduction

The core OS consists of the kernel, the BSP, and user-supplied code that runs in
supervisor mode.

The following elements can be part of a VxWorks 653 module managed by the core
OS:

■ partitions

■ shared libraries

■ shared data regions

■ online-loaded partitions

A configuration might resemble Figure 7-1, which shows five partitions, and two
(vThreads) of them sharing the same partition OS. For shared libraries and
partition OSs, the figure shows relative virtual addresses within a partition, not
within the module.

Figure 7-1 Sample Configuration with Five Partitions

core OS

APEX
application

vThreads
partition OS

APEX
shared lib.

POSIX
shared lib.

vThreads
partition OS

vThreads
partition OS

COIL
partition OS

POSIX
application

vThreads
application

C
application

a partition

vThreads
application

(includes the kernel, BSP, and user-supplied code)

7 Programming in the Core OS
7.2 Partitions

135

7

7.2 Partitions

Partitions provide usage isolation of system resources for applications running in
a VxWorks 653 module. Resources are CPU time, memory, and I/O. Each partition
is allowed to use as much of these resources as is specified in the system
configuration. A partition cannot access memory reserved for another partition,
and it can run tasks only during its allocated time slot. For more information see
7.12 System Time, p.169.

Partitions are implemented as application domains. Only partitions can be
application domains. A partition can run code that is included directly in the
application domain, or code in attached shared libraries. Only partition OS
components and application code can be included in partitions. Each such domain
runs exactly one user-mode core OS task, running an instance of the partition OS.
The partition OS can be either a vThreads partition OS (or a certifiable subset of it)
or a partition OS based on COIL. For information on the vThreads partition OS, see
2. Developing vThreads Applications. For information on COIL, see 3. Developing
COIL Applications.

7.2.1 Partition Configuration

Partitions are created at system startup according to their configuration in the XML
configuration file. The configuration for vThreads and COIL partitions is similar.
For details, see the VxWorks 653 Configuration and Build Guide.

To get the partition configuration information at run-time from the core OS, call
configRecordFieldGet() with PARTITION_CFG_RECORD record and the
appropriate field selector as shown below. The same routine can be called from a
vThreads partition, but the record type is not needed. As noted below, some
information is not available from a vThreads partition.

PARTITION_ALLOC_DISABLE
When set to TRUE, dynamically allocating and freeing partition heap memory
is disabled when NORMAL operation mode is set with
PARTITION_MODE_SET() or explicitly by calling memPartAllocDisable().

PARTITION_CRITICALITY
The RTCA/DO-178B criticality level of the partition.

PARTITION_DURATION
Amount of processor time, in SYSTEM_TIME_TYPE increments, given to a
partition every period. It is used to validate schedules. If set to
ZERO_TIME_VALUE, a duration is not specified.

VxWorks 653
Programmer's Guide, 2.2

136

PARTITION_EVENTQ_STALL_DURATION
Maximum time allowed, in SYSTEM_TIME_TYPE units, for a pseudo-interrupt
event to remain in the pseudo-interrupt event queue. The value is used to
detect stalled partitions. The associated timer runs only when the partition is
active and is, therefore, immune to changes in schedule. If set to
INFINITE_TIME_VALUE, the feature is disabled.

PARTITION_FP_EXC_ENABLE
When set to TRUE, support for floating-point exceptions is enabled in the
vThreads partition.

PARTITION_HM
Pointer to the partition’s health monitor table. For details, see 8.5 Getting Health
Monitor Information at Run-time, p.215. This information is not available from a
vThreads partition.

PARTITION_ISR_STACK_SIZE
Size, in bytes, of the partition’s interrupt stack. If set to NONE, the size is the
value specified for the partition OS component; for a vThreads partition, the
value is ISR_STACK_SIZE.

PARTITION_MAX_FDS
Maximum number of global file descriptors that can be opened by the
partition.

PARTITION_NAME
Partition name, from 1 to MAX_NAME_LENGTH (as specified in apexType.h)
characters in a NULL-terminated ASCII string.

PARTITION_NUM_DRIVERS
Maximum number of I/O device drivers in the partition OS. If set to NONE,
the maximum number is the value specified for the partition OS component;
for a vThreads partition, the value is NUM_DRIVERS.

PARTITION_NUM_FILES
Maximum number of open files allowed in the partition, including the number
of global file descriptors. For example, if the partition opens 130 channels, the
number of global file descriptors must be at least 130 and
PARTITION_NUM_FILES must be at least 130. If set to NONE, the maximum
number is the value specified for the partition OS component. For a vThreads
partition, the value is NUM_FILES.

PARTITION_NUM_LOG_MSGS
Maximum number of messages allowed in the logging queue. If set to NONE,
the maximum number is the value specified for the partition OS component.
For a vThreads partition, the value is MAX_LOG_MSGS.

7 Programming in the Core OS
7.2 Partitions

137

7

PARTITION_NUM_SD_RGNS
Number of shared data regions in the PARTITION_SD_RGN_NAME field. This
information is not available from a vThreads partition.

PARTITION_NUM_STK_GUARD_PAGES
The number of stack guard pages at the end of each vThreads task’s stack. The
partition OS uses the value to detect interrupt stack overflow and task stack
overflow. If set to NONE, the number is the value specified for the partition OS
component; for a vThreads partition, the value is
NUM_STACK_GUARD_PAGES.

PARTITION_NUM_WORKER_TASKS
Number of worker tasks that the core OS provides for the partition. The value
should be zero, except to support some Wind River tools, such as the partition
shell, which requires two worker tasks for the partition in which it is enabled.

PARTITION_NUMBER
A number from 1 to MAX_NUMBER_OF_PARTITIONS (as specified in
apexType.h) that uniquely identifies the partition. It is used in the schedule
and port configuration records. By convention, the first partition is partition 1.

PARTITION_PERIOD
Activation period, in SYSTEM_TIME_TYPE increments, of the partition. It is
used to validate schedules. If set to ZERO_TIME_VALUE, a period is not
specified.

PARTITION_PPS_SCHED_CFG
PPS scheduling parameters. For details, see PPS Scheduling Parameters, p.140.
This information is not available from a vThreads partition.

PARTITION_SC_PERMISSION
Bitmask that determines the set of system calls a partition is allowed to
perform. For details, see System Call Permission Bitmasks, p.138.

PARTITION_SD_RGN_NAME
NULL or the address of the array of shared data region names to attach (that is,
give access) to the partition. This information is not available from a vThreads
partition.

PARTITION_SELECT_SERVER_QSIZE
Maximum number of concurrent vThreads tasks allowed to do a select
operation on global file descriptors. If set to NONE, the maximum number is
the value specified for the partition OS component; for a vThreads partition,
the value is SELECT_SERVER_QSIZE.

PARTITION_USER1
For user-specified extension.

VxWorks 653
Programmer's Guide, 2.2

138

PARTITION_USER2
For user-specified extension.

PARTITION_WD_DURATION
Maximum partition time, in SYSTEM_TIME_TYPE increments, that an
application can lock preemption while protecting critical sections. If set to
ZERO_TIME_VALUE, the watchdog is disabled.

System Call Permission Bitmasks

The system call permission field in a partition configuration record
(PARTITION_SC_PERMISSION selector) is the logical OR of various permission
bitmasks. Interpreting the field is described in the following sections.

If default permissions are set (that is, no permission to make any system calls), the
field is equal to the SYSCALL_DEFAULT_PERMISSION group bitmask.

If all permissions are set, the field is equal to the SYSCALL_ALL_PERMISSION
group bitmask.

I/O Permission Bitmasks

If all I/O permissions are set, the field is equal to the
SYSCALL_IORW_PERMISSION group bitmask, which is the logical OR of the
bitmasks below.

If just read I/O permissions are set, the field is equal to the
SYSCALL_IOR_PERMISSION group bitmask, which is the logical OR of all the
following bitmasks except the ones for write, ioctl, and create.

Individual I/O permission bitmasks are (called with SYSCALL_SHIFT()):

■ SYSCALL_IO_CLOSE

■ SYSCALL_IO_CREAT

■ SYSCALL_IO_DEVICE_FIND

■ SYSCALL_IO_IOCTL

■ SYSCALL_IO_OPEN

■ SYSCALL_IO_READ

NOTE: If you use an individual bitmask rather than a group bitmask to determine
the value of the field, do so as follows:

SYSCALL_SHIFT(individualBitmask)

7 Programming in the Core OS
7.2 Partitions

139

7

■ SYSCALL_IO_REMOVE

■ SYSCALL_IO_SELECT

■ SYSCALL_IO_UNSELECT

■ SYSCALL_IO_WRITE

Port Permission Bitmasks

If all port permissions are set, the field is equal to the
SYSCALL_PORT_PERMISSION group bitmask, which is the logical OR of the
following individual bitmasks (called with SYSCALL_SHIFT()):

■ SYSCALL_PORT_ATTACH

■ SYSCALL_PORT_DETACH

■ SYSCALL_PORT_INT_RECV

■ SYSCALL_PORT_INT_SEND

■ SYSCALL_PORT_SEND

■ SYSCALL_PORT_STATUS

Message Queue Permission Bitmasks

If all message queue permissions are set, the field is equal to the
SYSCALL_MSGQ_PERMISSION group bitmask, which is the logical OR of the
following individual bitmasks (called with SYSCALL_SHIFT()):

■ SYSCALL_MSGQ_CLOSE

■ SYSCALL_MSGQ_OPEN

■ SYSCALL_MSGQ_RECV

■ SYSCALL_MSGQ_SEND

Scheduler Permission Bitmask

If all scheduler permissions are set, the field is equal to the
SYSCALL_SCHEDULER_PERMISSION group bitmask. Since there is only one
scheduler permission, this group bitmask is equivalent to (called with
SYSCALL_SHIFT()):

■ SYSCALL_SCHEDULER_MODE_SET

PPS Scheduling Bitmasks

If all PPS scheduling permissions are set, the field is equal to the
SYSCALL_PPS_SET_MY_PRIORITY_PERMISSION group bitmask. Since there is

VxWorks 653
Programmer's Guide, 2.2

140

only one permission in this group, it is equivalent to (called with
SYSCALL_SHIFT()):

■ SYSCALL_PPS_MY_SCHED

If all PPS scheduling permissions are set for “my” partition, the field is equal to the
SYSCALL_PPS_SET_PRIORITY_PERMISSION group bitmask. Since there is only
one permission in this group, it is equivalent to (called with SYSCALL_SHIFT()):

■ SYSCALL_PPS_SCHED

Custom Permission Bitmask

If all custom permissions are set, the field is equal to the
SYSCALL_CUSTOM_PERMISSION group bitmask. Since there is only one custom
permission, this group bitmask is equivalent to (called with SYSCALL_SHIFT()):

■ SYSCALL_CUSTOM

PPS Scheduling Parameters

PPS scheduling parameters are defined by the following structure:

typedef struct pps_cfg_record
{
CONFIGURATION_RECORD_TYPE type;
int crSize;
BOOL appsIdleRelinquishEnabled;
int appsPriority;

} PPS_CFG_RECORD;

type
Type of configuration record; always CFG_TYPE_PPS.

crSize
Number of bytes in the structure.

appsIdleRelishquishEnabled
When set to TRUE, the partition is willing to relinquish its remaining partition
window when the partition is determined to be idle or when the application
forces the idle condition.

appsPriority
A value of -1 disables PPS scheduling for the partition. Values of 0 to 255 are
valid partition priorities and indicate that the partition should be considered
for PPS scheduling. Zero is the highest priority.

7 Programming in the Core OS
7.3 VxWorks 653 Stacks

141

7

7.3 VxWorks 653 Stacks

System Call Stacks

VxWorks 653 supports one system call stack per partition. The system call stack
services a partition’s system call handler, which runs when a partition thread
makes a system call request of the kernel. As a result, system call handlers run in
the context of the core OS, thus providing better robustness and security compared
to running on the partition task stack.

For each partition, the system call stack handles blocking and non-blocking system
calls.

Statistics (such as high-water marks and margins) for system call stacks are
persistent over partition restart.

For information on how to specify the size of a system call stack, see the
VxWorks 653 Configuration and Build Guide.

Task Stacks

A task stack is the stack that is used for all routines that a particular task calls. Its
size is defined when the core OS spawns the task. The kernel allocates the stack
from the application domain’s memory resources and adjusts the size as follows:

■ Rounds up the size to a page boundary.

■ If the core OS requested guard pages for stack overflow protection when it
spawned the task, adds an additional mapped, but inaccessible page. For
details, see the taskLib entry in the core OS.

Task Exception Stacks

Each task has an exception stack where the kernel saves system-critical
information when the task encounters an exception. The TASK_EXC_STACK_SIZE
configuration parameter determines the size of each task exception stack in the
VxWorks 653 module. The kernel allocates the stack from kernel memory. The only
user code that runs on this stack is user-supplied exception handlers; that is,
routines that are connected to exceptions using excConnect(). During a system
call, after the kernel saves system-critical data on the task exception stack, the
kernel switches back to the task stack and the system call runs using that stack.

VxWorks 653
Programmer's Guide, 2.2

142

The kernel does not provide overflow protection on task exception stacks. The
platform provider must either increase the size or ensure that handlers use only the
minimal amounts.

Interrupt Stack

A VxWorks 653 module has one interrupt stack. It is similar to a task exception
stack, except there is only one.

7.4 Shared Libraries

Shared libraries are used to share code among partitions. In a VxWorks 653 system,
shared libraries can include only partition OS components and application code.
Each VxWorks 653 module must contain at least one partition OS, and may contain
one or more additional shared libraries. All shared libraries are created at system
startup as shared library domains.

Any number of shared libraries may exist in a VxWorks 653 module. Shared library
code can reference symbols declared as entry points in other shared libraries and
in the partition’s partition OS, but cannot reference entry points of the core OS.

VxWorks 653 shared libraries can attach to other shared libraries. They can also
make calls to the partition’s partition OS. However, circular dependencies are not
permitted: no shared library should call another library that depends on it.

Partitions can attach to any number of shared libraries, as long as the exclusion
restrictions specified by the included components are respected. Attachments are
specified in the XML file for the partition and cannot be changed after system
startup. A partition is attached only to the shared libraries specified directly in its
PartitionDescription element. The attachment is not recursive. There is no limit
for the length of the attachment chain, but it cannot be cyclical. For more
information, see the VxWorks 653 Configuration and Build Reference.

! WARNING: Increasing the size TASK_EXC_STACK_SIZE affects the entire
VxWorks 653 module and can greatly increase memory usage.

7 Programming in the Core OS
7.5 Shared Data Regions

143

7

Partitions attached to a shared library share their read-only sections (.text, .rodata),
but have private copies of the writable data sections (.data, .bss, .persistent.data,
and .persistent.bss).

7.4.1 Adding User-supplied Code to a Partition OS

You can add your own code to a partition OS. There are two ways to get its
initialization routine (myInit() in the following example) to run:

■ Add the following line to your code:

void * myInitFuncPtr _VTH_COM_INIT = myInit;

To avoid namespace conflicts, the myInitFuncPtr name must be either unique
or defined as static.

The _VTH_COM_INIT macro (defined in vxWorks.h) causes myInit() to be
called from sslMain.c, which is included with VxWorks 653.

If multiple initialization routines are defined this way, the routines are called
in the order they are listed in the partition OS’s dependency list.

or

■ In the makefile, override sslMain.c and call myInit() there. For information,
see the VxWorks 653 Configuration and Build Guide.

7.5 Shared Data Regions

A shared data region is a memory region or I/O region that can be accessed by one
or more partitions. Shared data regions are implemented as shared data domains.
They are created during system initialization according to the XML configuration
file. For more information, see the VxWorks 653 Configuration and Build Guide.

A shared data region must have exactly one memory pool or one I/O pool
associated with it. The pool is specified in the XML file for the shared data region.
The physical and virtual address, when specified in the XML file, must be MMU
page size aligned and must be valid addresses in the associated pool. When either
the physical or virtual address is not specified (its value is NULL), they are
allocated at run-time from the associated pool. The size of the shared data region

VxWorks 653
Programmer's Guide, 2.2

144

specified in the XML file must be a multiple of the MMU page size. For more
information, see the VxWorks 653 Configuration and Build Guide.

In the core OS, shared data regions can be accessed using the sdLib API. You can
get information about data regions with pdShow(). In the partition OS, the
sdRgnLib library provides access to shared data regions attached by the partition.

Shared memory regions are always persistent: the kernel does not clear or store
data when attached partitions are restarted. If the memory pool used to create the
region is part of the system memory, the region is cleared during system startup. If
necessary, it is the application’s responsibility to preload any required data before
the partitions are started.

Shared Data Region Configuration

The shared data region is defined in the XML file at configuration and build time.
For details, see the VxWorks 653 Configuration and Build Guide.

To get the information at run-time from the core OS, call configRecordFieldGet()
with the SD_RGN_CFG_RECORD record and the appropriate selector as described
below:

SD_RGN_MMU_ATTR
MMU attributes for the shared data region.

SD_RGN_NAME
Name of the shared data region.

SD_RGN_PHYS_ADRS
NULL or the physical map address. If the address is allocated at run-time from
the associated pool, the field is NULL.

SD_RGN_POOL_NAME
Name of the shared data region’s memory pool.

SD_RGN_SIZE
Number of bytes in the shared data region.

SD_RGN_VIRT_ADRS
NULL or the VxWorks 653 virtual address. If the address is allocated at
run-time from the associated pool, the field is NULL.

7 Programming in the Core OS
7.5 Shared Data Regions

145

7

Example 7-1 Accessing a Memory Region from a Partition

This example assumes that the VxWorks 653 module has a shared data region
defined (in the XML file at configuration and build time) as follows:

<SharedDataDescription
SystemAccess="READ_WRITE"
UserAccess="READ_WRITE"
DataType="DATABASE"
CachePolicy="DEFAULT"
Size="0">
<Description
Name="sdRgn1"
Version="0.1.1">

This region has MMU settings that allow both reading and writing in the region.
The virtual address is allocated at run-time from the associated memory pool,
sdRgn1Pool. The partition running the following code must list this shared data
region in its configuration in the XML file. For more information about configuring
shared data regions, see the VxWorks 653 Configuration and Build Guide.

/**
* sdRgnDemo.c - example showing usage shared data regions
*
* This example shows usage of a writable shared data region.
* In this example, for simplicity, the same partition writes,
* then reads data in the region.
*/

#include "vxWorks.h"
#include "sdRgnLib.h"
#include "stdio.h"

#define SD_RGN_NAME "sdRgn1"

typedef struct test_data
{
int data1;
int data2;
} TEST_DATA;

STATUS sdRgnDataSet
(
char * sdName,
int data1,
int data2
)
{
void * sdRgnAddr;
TEST_DATA * pTest;

/* get the base address of the shared data region */

VxWorks 653
Programmer's Guide, 2.2

146

if ((sdRgnAddr = sdRgnAddrGet (sdName)) == (void *) NONE)
{
printf ("sdRgnAddrGet() failed for %s", sdName);
return (ERROR);
}

/* set data in shared data region */

pTest = (TEST_DATA *) sdRgnAddr;

pTest->data1 = data1;
pTest->data2 = data2;
return (OK);
}

STATUS sdRgnDataShow
(
char * sdName
)
{
void * sdRgnAddr;
TEST_DATA * pTest;

/* get the base address of the data region */

if ((sdRgnAddr = sdRgnAddrGet (sdName)) == (void *) NONE)
{
printf ("sdRgnAddrGet() failed for %s", sdName);
return (ERROR);
}

/* print data stored in the region */

pTest = (TEST_DATA *) sdRgnAddr;

printf ("data in %s: %d %d", sdName, pTest->data1, pTest->data2);
return (OK);
}

void sdRgnDemo ()
{
if (sdRgnDataSet (SD_RGN_NAME, 123, 234) == ERROR)

return;

sdRgnDataShow (SD_RGN_NAME);
}

7 Programming in the Core OS
7.6 User Configuration Records

147

7

7.6 User Configuration Records

If memory for one or more user configuration record regions is configured in the
core OS XML configuration file at configuration and build time, you can use that
(read-only) memory. To access a particular user configuration record region, use
the value of the Base_Address attribute of the appropriate
userConfigRecordRegion element in the XML configuration file. For details, see
the VxWorks 653 Configuration and Build Reference.

7.7 Multitasking

Multitasking in the core OS is similar to multitasking in a vThreads partition. For
details, see A.2 VxWorks Tasks, p.270 and A.3 Intertask Communications, p.294.

7.8 Managing Memory

In a VxWorks 653 module, the core OS domain, shared libraries, partition OSs, and
shared data regions each occupy a discrete space in virtual memory. However,
application domains all occupy the same space in virtual memory. As a result, they
are provided complete protection from errant code.

Each application domain has its own virtual memory context, consisting of a
translation table (used to map virtual and physical memory) and other information
about each page of memory. The task context of each task that holds a partition OS
effectively includes the virtual memory context of the domain to which it belongs.

The core OS domain is mapped into the virtual memory context of each application
domain, shared library, partition OS, and shared data region. However, a shared
library, partition OS, or shared data region is mapped into the virtual context of an
application domain only if the application attaches to it.

Applications can access kernel memory only by system calls to the kernel’s API.

The kernel provides stack overflow detection: each task has a task exception stack,
and the kernel maintains an interrupt stack for the entire VxWorks 653 module.

VxWorks 653
Programmer's Guide, 2.2

148

The kernel also reclaims resources to ensure that memory is freed whenever the
owner of an object is deleted, thus helping to prevent memory leaks. (See
7.3 VxWorks 653 Stacks, p.141.)

In the core OS, the following types of memory management are available:

■ Managing Memory Partitions and Heaps

Routines are available to manage memory partitions (including typed
memory partitions) and the current heap. For details, see 7.8.1 Managing
Memory Partitions and Heaps, p.148.

■ Managing Virtual Memory

Routines are available to provide the following:

■ caching on a per-page basis

■ write-protection of text sections, read-only data sections, the exception
vector table, and MMU translation tables

For details, see 7.8.2 Managing Virtual Memory, p.150.

■ Managing Page-oriented Memory

With the routines that are available to manage page-oriented memory, the core
OS can isolate and discretely manage each domain’s memory. Routines are
available to directly access each domain’s virtual and physical pages. For
details see, 7.8.3 Managing Page-oriented Memory, p.153.

7.8.1 Managing Memory Partitions and Heaps

Managing Memory Partitions

Memory partitions are contiguous areas of memory that the kernel uses to
dynamically allocate memory. The memPartLib library lets the core OS do the
following with memory partitions:

■ Create and delete memory partitions by calling memPartCreate() and
memPartDestroy().

■ Add memory to memory partitions by calling memPartAddToPool().

■ Allocate and free memory blocks from memory partitions by calling
memPartAlloc(), memPartAlignedAlloc() and memPartFree().

7 Programming in the Core OS
7.8 Managing Memory

149

7

■ Reallocate blocks of memory in memory partitions by calling
memPartRealloc().

■ Set and get the options of memory partitions by calling memPartOptionsSet()
and memPartOptionsGet().

■ Locate the largest free block in a memory partition by calling
memPartFindMax().

■ Handle errors in memory partitions.

Managing Typed Memory Partitions

Kernel routines are available to create and access memory partitions that have
specific memory-access permissions. Access permissions correspond to any valid
combination of MMU attributes, including cache states (see Table 7-1). For
example, the core OS can create a memory partition in which all allocated and free
buffers are write-protected in supervisor and user modes. The memAttrLib library
lets the core OS do the following with typed memory partitions:

■ Create memory partitions with access permission attributes by calling
memAttrCreate().

■ Allocate and free memory blocks from typed memory partitions by calling
memAttrAlloc() and memAttrFree().

■ Copy data buffers to blocks allocated from typed memory partitions by calling
memAttrWrite().

Managing the Current Heap

The heap is the default memory partition from which the kernel dynamically
allocates and frees blocks of memory. The kernel creates one heap for each
application domain. The current heap is the heap of the current task’s home
domain. The memLib library lets the core OS do the following with the current
heap:

■ Allocate and deallocate memory blocks from the current heap by calling the
ANSI-compatible malloc() and free().

■ Add memory to the current heap by calling memAddToPool().

■ Allocate memory aligned to a specific boundary by calling memalign() and
aligned to a page by calling valloc().

VxWorks 653
Programmer's Guide, 2.2

150

■ Call the ANSI-compatible realloc(), calloc(), and cfree().

■ Locate of the largest free block in the current heap by calling memFindMax().

■ Set and get options for the current heap by calling memOptionsSet() and
memOptionsGet().

7.8.2 Managing Virtual Memory

Virtual memory contexts (also called virtual contexts) define the memory views
that the core OS can access. The kernel creates a virtual context for each domain in
the VxWorks 653 module. A virtual context includes virtual-to-physical page
mappings, page access permissions, and page caching modes. The system virtual
context is the virtual context of the current task’s home domain.

The kernel provides an architecture-independent API of virtual-memory routines
and the ability to do the following:

■ Set the cache mode on a per-page basis.

■ Write-protect text segments.

■ Write-protect the VxWorks 653 exception vector table.

■ Write-protect the virtual context translation table.

The kernel uses the MMU to create virtual-to-physical memory mappings. It also
uses the MMU to enforce page-level attributes for access permissions and cache
modes. Access permissions protect data and text from accidental corruption and
prevent unauthorized (user mode) tasks from accessing supervisor text and
supervisor data.

Table 7-1 lists the MMU access and cache attributes that can be set on a page basis
for page mappings on the PowerPC architecture.

The kernel sets the MMU’s default caching policy based on the cache mode that the
core OS specifies with cacheLibInit(). For example, if the core OS calls
cacheLibInit() with CACHE_COPYBACK, the kernel sets
MMU_ATTR_CACHE_DEFAULT to MMU_ATTR_CACHE_COPYBACK.

7 Programming in the Core OS
7.8 Managing Memory

151

7

Accessing the MMU

The virtual memory library (vmLib) provides the core OS with an
architecture-independent interface to the MMU. For details, see the reference
entries for the core OS.

Ensuring Cache Coherency

Kernel facilities let the core OS perform DMA and interprocessor communication
more efficiently by rendering associated buffers not cacheable. This is necessary to
ensure that data is not buffered locally when other processors or DMA devices
access the same memory location. Without the ability to make portions of memory

Table 7-1 MMU Page-Level Attributes

Description Attribute

User mode read MMU_ATTR_PROT_USR_READ

User mode write MMU_ATTR_PROT_USR_WRITE

User mode execute MMU_ATTR_PROT_USR_EXE

Supervisor mode read MMU_ATTR_PROT_SUP_READ

Supervisor mode write MMU_ATTR_PROT_SUP_WRITE

Supervisor mode execute MMU_ATTR_PROT_SUP_EXE

Caching disabled MMU_ATTR_CACHE_OFF

Copyback cache mode MMU_ATTR_CACHE_COPYBACK

Write-through cache mode MMU_ATTR_CACHE_WRITETHRU

Architecture-specific cache mode
for I/O memory

MMU_ATTR_CACHE_IO

Default cache mode MMU_ATTR_CACHE_DEFAULT

Architecture-specific MMU
modes

MMU_ATTR_SPL_[0-7]

VxWorks 653
Programmer's Guide, 2.2

152

not cacheable, the core OS would need to turn off caching globally (resulting in
performance degradation) or flush and invalidate buffers manually.

By calling vmPgAttrSet(), the core OS can change the MMU attributes of a block
of virtual memory (a page). For example, pages can be defined as read-only or
writable. Memory accesses to pages marked as not cacheable always result in a
memory cycle, bypassing the cache. This is useful for multiprocessing, multiple
bus masters, hardware control registers, and systems without a bus-snooping
mechanism.

Write-Protecting Text Segments

When a VxWorks 653 system is loaded, the kernel uses the MMU to prevent
portions of memory from being overwritten. As a result, all text and read-only data
are write-protected. Writing to write-protected memory causes a bus error.

For online-loaded partitions, the kernel marks text and read-only data sections as
write-protected, so the core OS does not need to take additional steps to
write-protect them.

The core OS can allocate and free memory blocks for the module sections using the
routines in the memAttrLib library.

Write-Protecting the Exception Vector Table

During system initialization, the kernel write-protects the exception vector table.
However, the core OS can change write-protection by calling intConnect(), which
write-enables the table for the duration of the call.

Virtual Memory Contexts and Domains

The core OS domain is mapped into the virtual context of all applications, shared
libraries, and shared data domains. The kernel pages are accessible only in
supervisor mode.

Shared library domains to which an application is attached are also mapped into
the virtual context of the application, but the pages corresponding to a shared
library’s writable data have a different mapping in each virtual context of the
attached applications. These different mappings let all attached applications share
a shared library’s text and read-only data, but the writable data is private to each
attached application.

7 Programming in the Core OS
7.8 Managing Memory

153

7

The MMU mappings of the virtual pages that are available to each domain are
maintained in the domain’s virtual memory context. When the kernel schedules a
task in another domain, the system’s context is switched to the virtual memory
context of the new task’s domain.

7.8.3 Managing Page-oriented Memory

Managing Physical Memory

The kernel manages the physical memory that a domain can use as a set of pages
in a physical page pool. The kernel uses the pool to allocate physical pages used
for a mapping to virtual memory. When the core OS unmaps the pages, the kernel
returns them to the pool. To ensure only one mapping for a given physical page,
the kernel manages the allocation of all physical pages and allocates them only
when the core OS requests a mapping. When multiple domains need to share the
same physical page, a shared data region must be used.

The core OS manages page-oriented memory with routines in the pgMgrLib,
pgPoolLib, and pgPoolLstLib libraries. The libraries use MMU hardware to map
virtual and physical pages and to set access and cache modes for mappings made
with routines in the vmLib library.

Configuring Physical Memory

For details on configuring physical memory (for example RAM, ROM, and I/O
regions), see the VxWorks 653 Configuration and Build Guide.

Managing Virtual Pages

The kernel uses a virtual page pool to manage the virtual memory that it allocates
to a domain. A domain has one virtual page pool associated with it. A domain also
contains a physical page pool list that specifies the physical page pools that the
domain can use.

When the core OS creates a domain, the kernel associates a page manager with the
domain (the primary page manager). This page manager has access to all the
physical page pools that are available to the domain. Therefore, the core OS can use
the primary page manager’s API to control any page that belongs to the domain.

In addition, the core OS can create additional, specialized page managers for a
domain.

VxWorks 653
Programmer's Guide, 2.2

154

When the core OS allocates or maps a page, it can override the page manager’s
default MMU attributes and page-allocation policy.

The page manger libraries are pgMgrLib and pgMgrShow.

Creating Page Managers

The core OS can create a specialized page manager by calling pgMgrCreate(). This
manger is in addition to the primary page manager that the kernel creates when a
domain is created. The specialized page manager can be created to do the
following:

■ Allocate physical memory from a subset of the domain’s physical page pools
by specifying a physical page pool list parameter.

■ Allocate mapped or unmapped virtual pages by setting the option to either of
the following:

■ PAGE_MGR_ATTR_ALLOC_MAPPED

■ PAGE_MGR_ATTR_ALLOC_UNMAPPED

■ Allocate contiguous or noncontiguous physical pages by default by setting the
following options:

■ PAGE_MGR_ATTR_ALLOC_CONTIG

■ PAGE_MGR_ATTR_ALLOC_NONCONTIG

■ Specify with options the default MMU attributes, protection and cache modes
for mapped pages. (For information about page attributes, see 7.8.2 Managing
Virtual Memory, p.150.)

Getting a Page Manager’s Current Options

The core OS can get a page manager’s current options by calling
pgMgrOptsGet(). In addition, the shell command pgMgrShow() displays
information about a page manager.

Allocating Pages

The core OS allocates mapped or unmapped pages by calling pgMgrPageAlloc()
or pgMgrPageAllocAt(). Both routines let you specify the following:

■ Type of allocation; one of the following:

■ unmapped

■ mapped to contiguous physical memory

7 Programming in the Core OS
7.8 Managing Memory

155

7

■ mapped to noncontiguous physical memory

■ MMU attributes (optional). If not specified, the page manager values are used.

In addition, pgMgrPageAllocAt() gives extra control over allocation by letting the
caller optionally specify the virtual address, physical address, or both. If you call
the routine with a specific physical address, the allocation type is mapped to
contiguous physical memory, regardless of the options specified.

Mapping Pages

At any time, the core OS can map pages by calling pgMgrPageMap() and
optionally specifying the MMU attributes and the type of mapping (to either
contiguous physical memory or noncontiguous physical memory). If the MMU
attributes or mapping are not specified, the page manager values are used.

Setting a Page’s MMU Attributes

The core OS can set a page’s MMU attributes by calling pgMgrPageAttrSet(). The
result depends on the MMU architecture.

Getting a Page’s MMU Attributes

The core OS can get a page’s current MMU attributes by calling
pgMgrPageAttrGet(). However, the returned attributes might not correspond to
the attributes set with pgMgrPageAttrSet() or set when the page was allocated or
mapped, because the page manager or MMU libraries might have changed the
attributes to a set more appropriate for the architecture. For more information, see
the pgMgrLib entry for the core OS and the appropriate MMU library reference.

Translating between Virtual and Physical Addresses

The core OS can translate between the virtual and physical addresses of mapped
pages by calling pgMgrVirtToPhys() and pgMgrPhysToVirt().

Unmapping Pages

The core OS can unmap pages by calling pgMgrPageUnmap(). The routine
returns the page’s associated physical pages to the appropriate physical page
pools.

Freeing Pages

The core OS can free mapped or unmapped pages by calling pgMgrPageFree().
The routine returns the pages to the domain’s virtual page pool, and they can then

VxWorks 653
Programmer's Guide, 2.2

156

be reallocated. The routine also unmaps all mapped virtual pages and returns the
corresponding physical pages to the appropriate physical page pools.

Deleting Page Managers

The core OS cannot directly delete a domain’s primary page manager. The core OS
deletes a non-primary page manager by calling pgMgrDelete(). The routine
removes only the control functionality. The status of all the pages that it allocated
or mapped does not change. The core OS can later free or unmap the pages using
the domain’s primary page manager. The kernel reclaims all pages in the domain
only when the core OS deletes the domain. At that time, the kernel unmaps the
pages and releases the corresponding physical pages to the appropriate physical
page pools.

7.8.4 POSIX Memory-Locking Interface

For details, see 5.3 POSIX Memory-Locking Interface, p.91.

7.9 Restart Functionality

VxWorks 653 supports the following four types of restart:

■ System cold start or restart

This corresponds to the initialization or re-initialization of the whole
VxWorks 653 module from power-on.

■ System warm restart

This corresponds to the re-initialization of the VxWorks 653 module, following
a power loss that lasts less than the time that causes RAM content to be lost.

■ Partition cold start or restart

Initialization or re-initialization of a single partition. The RAM used by the
partition is assumed to be corrupted.

■ Partition warm restart

Re-initialization of a single partition.

7 Programming in the Core OS
7.9 Restart Functionality

157

7

7.9.1 System Cold Start or Restart

System cold start or restart has two versions, depending on which image is used.

■ The ROM payload image loads from flash. This version is the one that is
certified. It is described first.

■ The RAM payload image is used during the development phase. It is
described second, and is described by how it differs from the ROM payload
version.

Deployed Configuration: ROM Payload Image

A system cold start of the ROM payload image consists of the following steps:

1. The boot loader code runs, initializing the CPU and RAM, then loading the
core OS and the configuration record table from ROM to RAM and jumping to
the core OS entry point.

2. The kernel initializes the hardware and runs any BSP initialization routines. It
creates the kernel and initializes the partition scheduler.

3. The kernel parses the configuration records and creates partition OSs, shared
libraries, and shared data domains according to their contents.

4. For each partition, including online-loaded partitions, the core OS performs
the following operations according to the partition configuration information:

a. Creates the partition application domain.

b. Attaches the partition domain to all required shared libraries.

c. Attaches the partition domain to all required shared data domains.

d. Creates and initializes the partition health monitor context.

e. Creates the partition OS task. This is a user-level task that runs the
partition OS as well as the partition application during the partition’s
schedule windows. This task is not activated at this point.

f. Maps the remaining RAM from the partition memory pool.

g. Initializes the VAL for this partition.

h. Creates the partition restart task. This is a core OS task that runs in
supervisor mode and only during the partition’s schedule window. The
purpose of this task is to run the partition restart and shutdown
operations. This task is activated, but runs only when partitioning is
turned on.

VxWorks 653
Programmer's Guide, 2.2

158

5. The kernel notifies all partitions, except online-loaded partitions, to be cold
restarted. This is achieved by requesting each partition restart task to run a
cold restart on its dedicated partition. These partition cold restarts start only
when partitioning is turned on.

6. Dynamic allocation in the kernel heap is disabled as well as dynamic mapping.
This is done only if requested in the core OS configuration record (the
allocDisable element in the XML configuration file). For more information,
see the VxWorks 653 Configuration and Build Reference.

7. Enables partitioning and sets the first schedule-defined configuration record
table. At this point, all the partitions start their cold restart during their own
schedule windows, providing that a schedule window is defined in the initial
schedule for the partition in question. Online-loaded partitions are not cold
restarted. For the steps of a partition cold restart, see 7.9.3 Partition Cold Start
or Restart, p.160.

For the steps of a system warm restart, see 7.9.2 System Warm Restart, p.159.

Development Configuration: RAM Payload Image

In the development configuration, flash or ROM is replaced by RAM in order to
accelerate the debugging cycle. The boot loader programmed in ROM or flash is
used to download the single file of the RAM payload image into holding RAM. A
specific region of RAM must be defined for this purpose in the XML configuration
file. For details, see the configuration information in the VxWorks 653 Configuration
and Build Guide.

The payload part of a RAM payload image consists of the core OS, shared libraries,
partition OSs, configuration records, and applications. The remainder of the RAM
payload image is the boot loader code linked with the payload map, resulting in
the file sms_ramPayload. For more information, see the reference entry for
payloadLib and the VxWorks 653 Configuration and Build Guide.

Once the boot loader loads the RAM payload image and jumps to the entry point
of the image, the initialization steps are identical to the deployed configuration,

NOTE: The payload map is linked with the boot loader code at the end of the
system build, resulting in file sms_romPayload. This file is programmed into the
board flash or ROM. This lets the boot loader load both the core OS and the
configuration record sections into RAM. Later, the kernel queries this payload map
to load shared library and partition code. The payload map remains in flash or
ROM.

7 Programming in the Core OS
7.9 Restart Functionality

159

7

starting with the boot loader running. (In this configuration, the boot loader makes
sure that only the operational RAM is initialized.)

7.9.2 System Warm Restart

In many VxWorks 653 modules, restarting the entire module can be desirable. The
need to restart can have any number of reasons, but in almost all cases,
user-supplied software is needed to accomplish the restart operation. This
software needs to save the system state on a cold start, then restore it when a warm
restart is required. It also needs to manage hardware-specific reset requirements
before initiating the warm restart.

A large part of the time for a cold restart is spent loading RAM from the payload
(typically, flash). The coreOsWarmRestart() routine is available to reduce this time
and to do the following:

■ Reset the processor state to the state that it was when the module was
initialized.

■ Reload any writable memory sections (such as .data and .bss). Persistent data
and .bss data are untouched.

■ Restart the core OS.

Including Warm Restart in a BSP

To include warm restart in a BSP, a BSP developer must ensure the following:

■ The BSP initializes the L1, L2, and L3 caches in _sysInit() (not in
sysHwInit()).

■ Level 3 cache routines initialize the following function pointers:

■ _pSysL3CacheDisable

■ _pSysL3CacheEnable

■ _pSysL3CacheFlush

NOTE: The following pieces of code are assumed to be provided by the system
integrator:

■ power-down interrupt- and exception-handler code

■ changes to romInit.s to reload the CPU context

VxWorks 653
Programmer's Guide, 2.2

160

■ _pSysL3CacheInvFunc

■ A initialization-stage function pointer (_pSysHwRequiringMmuInit) is
initialized so that the BSP can initialize devices that require the MMU. If the
function pointer is not NULL, its routine is called after the MMU is initialized.

■ The BSP provides a routine (sysHwCacheFunctsInit()) to initialize the L2
cache function pointers and the above L3 cache function pointers.

■ To use ROM payloads, the loader requires that the BSP map the ROM payload
image (which may be in flash) to a BAT register. This mapping lets the shared
library and partition sections be accessed properly from the shared library and
partition contexts.

7.9.3 Partition Cold Start or Restart

For partition cold start or restart, the development system (the RAM payload
image) behaves the same as the deployed system (the ROM payload image). The
partition restart task is requested to run the cold restart operation of the specified
partition. This request can be initiated by calling partitionModeSet() from code
within the core OS. The health monitor may also call partitionModeSet(). Finally,
the partition application can cold restart itself by calling
SET_PARTITION_MODE().

While initialization is in progress, preemption is disabled with lock level 0. As a
result, process scheduling is disabled.

Once the partition restart task acknowledges the cold-start request, it performs the
following main steps:

1. Flushes outstanding system calls.

2. Stops the partition OS task.

3. Zeroes the RAM assigned to the partition. For more details, see the reference
entry for partitionMemClearHookAdd().

4. Copies the partition text sections to RAM from ROM, flash, or RAM. In the
case of a ROM payload image, the sections are copied from ROM or flash. A
RAM payload image is copied from RAM.

5. Copies the partition rodata sections from ROM or RAM to RAM.

6. Copies the partition persistent and non-persistent data sections from ROM or
RAM to RAM.

7 Programming in the Core OS
7.9 Restart Functionality

161

7

7. Zeroes the partition persistent and non-persistent .bss sections (this is skipped
if step 3 was successful).

8. Copies the non-persistent and persistent data sections of shared libraries from
ROM or RAM to RAM, for each shared library attached to the partition.

9. Zeroes the non-persistent and persistent .bss sections of shared libraries, for
each shared library attached to the partition. This step is skipped if Step 3 was
successful.

10. Resets the partition OS task so that it resumes running at the entry point of the
partition OS. The application code starts running once the partition OS
completes its initialization steps and all the shared libraries attached to the
partition are initialized.

7.9.4 Partition Warm Restart

For partition warm restart, the development system (the RAM payload image)
behaves the same as the deployed system (the ROM payload image). The partition
restart task is requested to run the warm restart operation of the specified
partition. This request can be initiated by calling partitionModeSet() from code
within the core OS. The health monitor may also call partitionModeSet(). Finally,
the partition application can warm restart itself by calling
SET_PARTITION_MODE().

While initialization is in progress, preemption is disabled with lock level 0. As a
result, process scheduling is disabled.

Once the partition restart task acknowledges the warm restart request, it performs
the following main steps:

1. Flushes outstanding system calls.

2. Stops the partition OS task.

3. Copies the partition non-persistent data section from ROM or RAM to RAM.

4. Zeroes the partition non-persistent .bss sections.

5. Copies the non-persistent data section of shared libraries from ROM or RAM
to RAM, for each shared library attached to the partition.

6. Zeroes the non-persistent .bss section of shared libraries, for each shared
library attached to the partition.

7. Resets the partition OS task so that it resumes running at the entry point of the
partition OS. The application code starts running once the partition OS

VxWorks 653
Programmer's Guide, 2.2

162

completes its initialization steps and all the shared libraries attached to the
partition are initialized.

The main difference between a partition cold and warm restart is that on a warm
restart, the partition memory is assumed not to be corrupted. This is why only the
data and .bss sections are re-initialized on a warm restart, while a partition cold
restart clears the whole partition memory and reloads all the partition code. The
other important difference is that persistent data variables are not re-initialized on
a warm restart.

The application code can detect whether the partition re-initializes via a cold or
warm restart by calling GET_PARTITION_STATUS() to retrieve the start condition
information. For instance, an application may skip the re-initialization code of
persistent data structures in the case of a warm partition restart. For more
information refer to the reference entry for GET_PARTITION_STATUS().

It is also possible to stop the execution of a single partition: the partition OS task is
suspended after the pending system calls for that partition are flushed. The only
way to have a partition run again after being shut down is to request a cold or
warm restart on the partition. Again, partitionModeSet() or
SET_PARTITION_MODE() can be used to request the shutdown of a single
partition.

7.9.5 Restart Implications for Drivers

Core OS device drivers that are used by partitions should follow the following
rules to make the VxWorks 653 module safe during partition restart.

1. The driver’s open(), creat(), remove(), and close() should be deterministic in
execution and bounded in time.

2. The FIORESET ioctl command code should be supported by the device driver.
It is called during restart of a partition if it was in the midst of a read(), write(),
or ioctl() operation on the device.

3. FIORESET should cause the thread of control, which is in the device driver
doing a read(), write(), or ioctl() operation, to complete. FIORESET should
never terminate the thread. Instead, the driver might do the following:

■ If the thread is blocking on I/O, wake the thread and cause it to return
from the I/O operation.

■ If the thread is performing an I/O operation but not blocking, perform a
longjump() of the thread so that it returns from the I/O operation.

7 Programming in the Core OS
7.9 Restart Functionality

163

7

7.9.6 Restart Implications for I/O

System warm restart and partition restarts (both cold and warm) are supported
only if all the devices that include initialization routines and their corresponding
I/O layers (for instance ttyLib for SIO device drivers) are moved into the space
that the partition can call directly. The one exception is timer drivers, which are left
in the core OS.

A given device can be in either the core OS or a partition, but not both. When a
device is moved into a partition, only that partition can control the device. In
addition, the device can be configured in polling mode only. Interrupt mode is not
supported when the device is moved into partition space.

A device configured to generate interrupts can reside in the core OS only.

For more information on vThreads I/O, see 9.2 I/O and vThreads, p.221. For more
information COIL I/O see 9.4 I/O and COIL, p.264.

7.9.7 Persistent Data Support for Restart

Persistent data support is provided to let certain data in the partition OS preserve
its value during partition warm restart. Such data is placed in several sections of
the partition itself, or in a shared library that the partition attaches to. In the case
of shared libraries, each partition has access to a private copy of the data, resident
in the partition domain. It is this private copy of the data that can be modified by
the partition.

When a partition runs a warm restart, all normal data sections except the
.persistent.data sections are reloaded and all normal .bss sections are zeroed
except the .persistent.bss sections. Persistent data sections (.persistent.data) are
loaded only during a partition initial start or cold restart. Persistent .bss sections
(.persistent.bss) are zeroed only during a partition initial start or cold restart.

Specifying Persistent Data

All persistent data is marked in the source code for placement into specifically
named ELF sections. Initialized persistent variables are placed in a section named
.persistent.data, while uninitialized persistent variables are placed into a section
named .persistent.bss. In C code, this is achieved using the __attribute__ GNU
directive.

For instance, an initialized persistent variable is defined as:

int initializedPersist __attribute__((__section__(".persistent.data"))) = 123;

VxWorks 653
Programmer's Guide, 2.2

164

An uninitialized persistent variable is defined as:

int uninitializedPersist __attribute__((__section__(".persistent.bss")));

Unlike the normal uninitialized data in the .bss sections, the GNU compiler creates
content for uninitialized persistent data in the .persistent.bss section. However,
the .persistent.bss sections are excluded from the RAM and ROM payload images.
Only their size and location are described in the payload map entries, as is the case
for .bss sections.

How Persistent Data Is Handled

These elements always take up space in the .sm ELF module, unlike normal
uninitialized data, which is placed into a .bss section. However, the .persistent.bss
sections do not become part of a RAM or ROM payload image. Only their size and
location are described in the payload map entries, as is the case for .bss sections.

When a partition runs a warm restart, all normal data sections (except the
.persistent.data sections) are reloaded, and all normal .bss sections are zeroed
(except the .persistent.bss sections). Persistent data sections (.persistent.data) are
also reloaded during a partition cold start or restart. Persistent .bss sections,
.persistent.bss, are zeroed only during a partition cold start or restart.

Important Limitation

! CAUTION: It is important that the correct persistent section (.persistent.data or
.persistent.bss) is selected in the source code. Neither the toolchain nor the kernel
validates the selection.

For example, if a persistent initialized variable has the section attribute set to
.persistent.bss in the source code, the kernel always initializes it to zero on cold
restarts, even if its initial value in the ELF section was not zero. No check is
performed to verify that only non-initialized persistent variables end up in
.persistent.bss sections.

7 Programming in the Core OS
7.10 Partition Support

165

7

7.10 Partition Support

The API provided in the core OS can be used primarily to get configuration
information and to control the operation of partitions. There are no direct API
routines for creating or deleting partitions. Instead, partitions are created and
initialized automatically by the kernel during its boot sequence according to the
configuration information described in the configuration record data.

7.10.1 Core OS Partition-Related Components

INCLUDE_KERNEL_SHOW
This optional component enables partitionShow().

INCLUDE_PARTITION_TOOL
This optional component provides support in the core OS for partition tools.

INCLUDE_WDB
This optional component allows collected activity data on sampling and
queuing ports to be displayed.

7.10.2 Core OS Partition-Related Routines

The following core OS libraries relate to partitions:

■ configRecordLib
■ partitionLib
■ partitionShow
■ payloadLib

For details, see the reference entries in the VxWorks 653 Core OS API Reference.

7.10.3 Online-Loaded Partitions

This section provides example code for a loader that loads an online-loaded
partition. It then changes the partition mode from the initial idle mode to cold-start
mode so that the partition is scheduled to run. The code needs to be included in a
kernel component. Additional code to call the loader needs to be added to a kernel
component.

For information on configuring a system to use online-loaded partitions, see the
VxWorks 653 Configuration and Build Guide.

VxWorks 653
Programmer's Guide, 2.2

166

Example 7-2 Online-Partition Loader: Example Code

/* Simple online-partition loader */

#include "vxWorks.h"
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "taskLib.h"
#include "partitionLib.h"
#include "pdLib.h"
#include "pgMgrLib.h"
#include "private/pdLibP.h"
#include "vmLib.h"

#define BUF_SIZE 0x1000 /* 4 KB buffer */

STATUS onlinePartitionLoad
(
char *fileName,
int partNum
)
{
FILE * file;
UINT32 numBytes;
PD_ID kernelPdId = NULL;
MMU_ATTR mmuAttr;
char * payloadAddr = NULL;
char * pCurr;
void * address;
REGION_NODE *pRgnNode;
STATUS status;

if ((fileName == NULL) || (address == NULL))
return (ERROR);

kernelPdId = pdIdKernelGet();

pRgnNode = rgnLookupByPoolName("onlinePayloadPool", 0);

if (pRgnNode == NULL)
{
printf ("\nERROR - online partition payload region address lookup\n");
return (ERROR);
}

address = (void *)pRgnNode->physAdrs;

/* Find the virtual address of the online-partition payload */

if (pgMgrPhysToVirt (kernelPdId->memInfo->primPgMgrId,
 (PHYS_ADDR) address,
 (VIRT_ADDR *) &payloadAddr) == ERROR)

{

7 Programming in the Core OS
7.10 Partition Support

167

7

printf ("\nERROR - online partition payload address translation 0x%x (errno=0x%x)\n",
(int)address, errno);

return (ERROR);
}

/* Write-enable the online-partition payload */

if ((pgMgrPageAttrGet (kernelPdId->memInfo->primPgMgrId,
 (VIRT_ADDR) payloadAddr, &mmuAttr) == ERROR) ||

(pgMgrPageAttrSet (kernelPdId->memInfo->primPgMgrId,
 (VIRT_ADDR) payloadAddr,
 pRgnNode->size / vmPageSizeGet(),
 MMU_ATTR_SUP_DATA) == ERROR))

{
printf ("\nERROR-couldn’t write enable online partition payload source addr 0x%x \n",

(int) payloadAddr);

return (ERROR);
}

/* Load the online-partition payload */

pCurr = payloadAddr;

/* Open the file */

if((file = fopen(fileName, "r")) == NULL)
{
printf ("\nonlinePartitionLoad: failed to open file %s.\n", fileName);
return (ERROR);
}

while (((numBytes = fread (buf, sizeof(char), BUF_SIZE, file)) != EOF)
&&(numBytes != 0))
{
/* Copy to the destination */

bcopy (buf, pCurr, numBytes);
pCurr += numBytes;
}

printf ("\nonlinePartitionLoad: load of %s at adress 0x%x successful.\n",
fileName, (UINT) payloadAddr);

/* Reset the online-partition payload MMU attributes */

if (pgMgrPageAttrSet (kernelPdId->memInfo->primPgMgrId,
(VIRT_ADDR) payloadAddr, (pRgnNode->size / vmPageSizeGet()), mmuAttr) == ERROR)
{
printf ("\nERROR - couldn’t reset MMU attributes for online partition payload source

addr 0x%x \n", (int) payloadAddr);
return (ERROR);
}

VxWorks 653
Programmer's Guide, 2.2

168

/* Change the partition mode from idle to cold start */

status = partitionModeSet (partNum, PARTITION_COLD_START,
PARTITION_RESTART, "Cold Start of Online Loaded Partition", PART_ANY_PENDED);

if (status == ERROR)
{

printf ("\nERROR - partitionModeSet failed, partition number %d errno 0x%x\n",
partNum, errno);

return(ERROR);
}
else

return (OK);
}

7.11 Worker Tasks

Each partition can have worker tasks associated with it. They run in the context of
the core OS to perform blocking operations (typically blocking I/O) on behalf of
their partition. The core OS asynchronously passes back results to the partition.
Worker tasks run within their partition’s window (vThreads and COIL).

The number of worker tasks for a partition is specified by the numWorkerTasks
element in the partition’s XML configuration file. For details, see the VxWorks 653
Configuration and Build Reference.

To get the number of worker tasks at run-time, call configRecordFieldGet() with
the partition configuration record and the PARTITION_NUM_WORKER_TASKS
field selector.

If a partition is configured with no worker tasks, the core OS performs all system
calls for the partition in the context of the partition OS. As a result, the entire
partition is blocked until the call completes.

If an application makes so many system calls that it runs out of worker tasks, the
partition blocks until a worker task is available.

If you include the vThreads target shell in a vThreads partition, two worker tasks
need to be assigned to the partition shell task. The worker tasks are needed because
the shell task pends on a read operation from the standard input file descriptor.

7 Programming in the Core OS
7.12 System Time

169

7

If no worker tasks are available to process a partition’s blocking system call, the
health monitor logs an event. This is an indication that more worker tasks might
be needed.

The application developer or system integrator needs to understand the activity of
the threads in the partition in order to determine whether they perform blocking
operations in the core OS. The level of concurrency that the application requires
also governs the number of worker tasks required.

The valShow() routine displays the value of the partition’s highWaterMark field,
which represents the maximum number of worker tasks that were dispatched at
any time for the partition. You can use this value to determine whether the number
of worker tasks needs to be adjusted.

7.12 System Time

All time values and capacities are unique and independent of partition execution.

System time is used for timestamping (GET_TIME) and is expressed in
nanoseconds. Because kernel ticks do not provide nanosecond accuracy, an
additional service provides a high-resolution time based on the current tick count
and a hardware-based high-precision clock (decrementer, real-time clock, and so
forth).

The kernel transmits clock ticks to each partition during its time window. Outside
its own time window, a partition is not active and does not receive any clock ticks.
At the next time window, the time of this partition is updated to reflect the absolute
time of the VxWorks 653 module. The time update is done in a manner to ensure
that no time event is lost in a delay queue.

7.13 Partition Scheduling

This section explains how the kernel schedules partitions. It also explains how to
change schedules and scheduling.

VxWorks 653
Programmer's Guide, 2.2

170

By default, the kernel uses ARINC 653 scheduling to schedule partitions.
ARINC 653 scheduling is time-preemptive scheduling (TPS). However, if there is
idle time within a TPS schedule, the kernel uses priority-preemptive scheduling
(PPS) for those partitions that have been enabled for it. The combination of the two
scheduling methods is called APPS scheduling (ARINC plus PPS scheduling).

This section describes TPS scheduling first, then APPS.

7.13.1 TPS Scheduling

Scheduling Rules

TPS is strictly deterministic over time. The main characteristics are as follows:

■ From the point of view of the core OS, the scheduling unit is a partition.

■ Partitions have no priority.

■ The scheduling algorithm is predetermined by the configuration file, is
repetitive, and has a fixed periodicity.

At least one time period should be allocated to each partition during each cycle.
There can be more than one assigned to a partition, and the partition windows
need not be contiguous. It is acceptable to have some idle time within a time frame.
During idle time, no partition is activated, and only kernel tasks can run. A
partition is activated by allocating time to it within the major time frame. Each
partition time period (or quantum) is defined by its offset from the start of the
major time frame and its expected duration.

Core OS tasks associated with a partition are considered to be part of the partition
itself and scheduled accordingly. For instance, the kernel tasks that process system
calls on behalf of a partition are treated as part of the partition. How long a
partition can run is defined in increments. The increment is configurable, but its
minimum cannot be less than 0.25 milliseconds.

Partition Activation

The major frame is defined by its constituent quanta. These quanta consist of
minor frames defined sequentially and specified by their duration and the
partition to be scheduled. The activation time of a quantum is the sum of the
preceding minor frame durations.

7 Programming in the Core OS
7.13 Partition Scheduling

171

7

In Figure 7-2, both the partition attributes and the partition time frame table define
the major time frame. The health monitor validates the content of the major time
frame at startup time.

Partition attributes:

Spare-Time Monitoring

The kernel monitors spare time per partition and makes the information available
for debugging. The information can be viewed using the host shell or target shell.

Mode-Based Scheduling

Mode-based scheduling is an enhancement to APEX that allows for a set of
partition schedules to be defined and to be selectively enabled at the appropriate
time by the kernel. It can support up to 16 partition schedules and a routine to
allow transition between the schedules.

The routine supporting transitions between partition schedules is
arincSchedSet() for the core OS and SET_SCHEDULE_MODE() for the partition.
The routines let you select a transition at any of the following points:

Figure 7-2 TPS Scheduling of Three Partitions

partition 1 partition 2 partition 3 partition 1 partition 2 partition 1 partition 2

Major time frame

activation 2

activation 1

duration 1 duration 2

timet0 t1 t2 t3 t4 t5 t6

Partition idle

Quantum 1: Activation = t1
Duration = (t2 - t1)
Partition = 2

Quantum 2: Activation = t5
Duration = (t6 - t5)
Partition = 2

VxWorks 653
Programmer's Guide, 2.2

172

■ next major frame boundary

■ next partition window boundary

■ next timer tick

The transition jumps to the start of the new major frame.

The routines supporting transitions between partition schedules lets the caller be
in either user mode or supervisor mode. (This lets schedules be changed by
health-monitor fault-recovery routines, or by a privileged partition that acts as the
mode manager for the VxWorks 653 module.) The routines supporting transitions
between partition schedules are independent of other application APIs, so that
access to them can be granted to specific partitions.

Multiple schedules can be configured for each partition by defining additional
schedules in the XML configuration file at configuration and build time. For
details, see the VxWorks 653 Configuration and Build Guide.

7.13.2 APPS Scheduling

APPS scheduling allows for the VxWorks 653 module-wide scheduling of
partitions in a global priority-preemptive scheme during a TPS schedule’s idle
time.

The kernel switches to PPS scheduling under either of these circumstances:

■ There is idle time within a TPS schedule (that is, there is unused time left at the
end of a running TPS partition window or the idle partition is scheduled next)

■ The application forces idle time.

During PPS scheduling, all PPS-enabled partitions (and those configured with PPS
priorities) are available for scheduling, and the non-idle partition with the highest
PPS priority is scheduled to run. The partition configuration defines whether a
partition is enabled for PPS scheduling. For details, see 7.2.1 Partition Configuration,
p.135.

When a partition is scheduled to run during PPS scheduling, all threads within
that partition run as they would normally.

TPS scheduling is not affected by PPS scheduling, which is strictly an alternate
scheduling mechanism for partitions during idle time. If at any time during PPS
scheduling, the TPS-scheduled partition that was idle must run due to an incoming
non-tick pseudo-interrupt, PPS scheduling ceases, and the TPS-scheduled
partition runs.

7 Programming in the Core OS
7.13 Partition Scheduling

173

7

Pseudo-interrupts are the basic asynchronous communications mechanism from
the kernel to the partition OS. They are used to deliver timer ticks, port message
events, I/O subsystem events, and restart events.

While the scheduler is in PPS mode, if the TPS partition (which is idle) is delivered
a pseudo-interrupt, PPS mode terminates, and the TPS partition starts to run
immediately. This pseudo-interrupt is not a tick pseudo-interrupt (tick
pseudo-interrupts are delivered to the current partition only), but rather a
pseudo-interrupt generated by port message delivery, I/O subsystem responses,
or warm restart.

Similarly, while the scheduler is in PPS mode, if a port message delivery, I/O
subsystem response, or a warm restart is sent to an idle PPS partition, that partition
becomes available for PPS scheduling, and may preempt the current (PPS)
partition.

In addition, PPS scheduling is activated only if the amount of time remaining in a
TPS partition window exceeds the value of an VxWorks 653 module-wide
parameter (PPS_ACTIVATION_WINDOW, defined in 00comp_kernel_basic.cdf).

When partitions are switched in either PPS or TPS scheduling, all partition switch
hooks are run normally.

When PPS mode is switched back to TPS at the end of a TPS-scheduled window, if
the same partition is to be scheduled to run (that is, the next TPS partition is
identical to the current PPS partition), a partition switch is not performed.

NOTE: When designing partition schedules, only TPS time allocations should be
taken into account, because PPS scheduling cannot provide any guarantee of CPU
time.

VxWorks 653
Programmer's Guide, 2.2

174

Figure 7-3 shows TPS scheduling.

Figure 7-4 shows a PPS-enabled partition that runs without going idle. It is the
same as for TPS-only scheduling.

Figure 7-3 TPS-Only Partition Scheduling

time

partition switch
partition OS

core OS

TPS scheduling

Figure 7-4 PPS-Enabled Partition Scheduling without Going Idle

time

partition switch
partition OS

core OS

TPS scheduling

7 Programming in the Core OS
7.13 Partition Scheduling

175

7

Figure 7-5 shows a PPS-enabled partition becoming idle and allowing PPS
scheduling. Other partitions run during the PPS scheduling.

How the Kernel Identifies Idle Time

Since ARINC scheduling is time-preemptive, platform providers often allocate
generous amounts of time to partitions to ensure all their work can be performed.
In pure TPS scheduling, after the work is completed, the partition remains the
current partition, and simply waits until the next partition switch. In PPS
scheduling, the partition OS (vThreads) determines this idle time by the following
combination of factors, both of which must be true:

■ There is a transition into the kernel idle state, and the amount of time
remaining in the TPS partition exceeds the value of
PPS_ACTIVATION_WINDOW.

■ There is no delay operation in the partition (delayed task, deadline, or
watchdog) whose delay could expire before the end of the current partition
window.

When the partition OS in an ARINC partition determines that it is idle, there will
be no threads ready to run.

Forcing Idle

Any partition can force the idle state by calling appsIdleNotify(). The routine
indicates to the kernel that the partition has no ready-to-run threads and no

Figure 7-5 PPS-Enabled Partition Scheduling with Going Idle

time

partition switch partition OS

core OS

TPS scheduling

partition switch

PPS scheduling

time less than
PPS_ACTIVATION_
WINDOW
(no PPS scheduling)

idle detected

VxWorks 653
Programmer's Guide, 2.2

176

timeouts within its remaining partition window. (If timeouts do remain, they are
ignored.) As a result, the only way for the partition to be rescheduled before its
next TPS window is to receive a pseudo-interrupt.

vThreads and APPS Scheduling

When a vThreads partition is scheduled to run, vThreads schedules the
highest-priority ready-to-run thread. vThreads continues to run and schedule
threads until any one of the following occurs:

■ vThreads goes idle.

■ The application forces idle.

■ A non-tick pseudo-interrupt is sent as a result of any API (port message, I/O
subsystem, or warm restart). This could make another partition ready to run,
and that partition could potentially be of a higher priority.

■ The ARINC partition window expires.

If either one of the first two occurs, the partition is no longer available for PPS
scheduling until such time as the following happens:

■ Its next partition window.

■ A non-tick pseudo-interrupt is sent to it.

Ticks and Timeouts

Ticks are delivered in PPS scheduling the same way as they are in TPS mode. This
is true at the start of a partition window, whenever a PPS partition is scheduled,
and if the TPS-scheduled partition again becomes ready to run due to a
pseudo-interrupt (except a tick pseudo-interrupt.) For more information, see
Pseudo-Interrupts, p.177.

7 Programming in the Core OS
7.13 Partition Scheduling

177

7

Figure 7-6 shows how timer ticks are delivered.

Pseudo-Interrupts

In PPS scheduling, a non-timer pseudo-interrupt to a PPS-enabled partition causes
the partition to be ready to run if it was previously not ready to run because of
indicating an idle condition. This could cause a reschedule of which partition is the
current highest priority.

If a pseudo-interrupt is sent to the TPS-scheduled partition, the scheduling
immediately switches from PPS back to TPS and lets the partition run until its
window expires or the partition indicates another idle condition.

(Tick pseudo-interrupts are not delivered in PPS scheduling.)

Figure 7-6 Delivery of Timer Ticks

time

partition switch
partition OS

core OS

TPS mode PPS mode

partition switch

PPS
partition 2

PPS
partition 1

ARINC
partition

ARINC partition

TPS mode

Key:

accumulated
ticks delivered

tick delivered

VxWorks 653
Programmer's Guide, 2.2

178

Examples of APPS Scheduling

Figure 7-7 shows what happens when the TPS partition has no threads to run or
calls appsIdleNotify().

In Figure 7-8, Partition A (the TPS partition) runs and then notifies the kernel that
it is idle. Partition B (the partition with the highest PPS priority) is subsequently
allowed to run during PPS mode. At the start of the next TPS-scheduling cycle,
Partition C is then run in TPS mode.

Figure 7-7 TPS Partition with No Treads to Run or Calls appsIdleNotify()

time

partition switch
partition OS

core OS

TPS scheduling

partition switch

PPS scheduling

time less than
PPS_ACTIVATION_
WINDOW
(no PPS scheduling)

no threads to run
or appsIdleNotify()
called

Figure 7-8 TPS Partition Notifies Idle, PPS Partition Runs

time

partition switch
partition OS

core OS

TPS scheduling PPS scheduling

idle notified

TPS scheduling

Partition A (TPS) Partition B (PPS) Partition C

7 Programming in the Core OS
7.13 Partition Scheduling

179

7

In Figure 7-9, Partition B (running in PPS mode) also goes idle. Partition D (the
partition with the next-highest PPS priority) is then allowed to run.

In Figure 7-10, while Partition B is running in PPS mode, a non-timer
pseudo-interrupt (such as happens when a port call is made) is sent to Partition A
(an ARINC partition). As a result, TPS scheduling is resumed and Partition A runs
again.

Figure 7-9 TPS Partition Notifies Idle, PPS Partition Runs and Goes Idle, PPS Partition Runs

time

partition switch
partition OS

core OS

TPS scheduling PPS scheduling

idle notified

TPS scheduling

Partition A (TPS) Partition B
(PPS)

Partition C

idle notified

Partition D
(PPS)

Figure 7-10 PPS Partition Runs, Pseudo-Interrupt Occurs

time

partition switch
partition OS

core OS

TPS scheduling PPS scheduling

idle notified

TPS scheduling

Partition A (TPS) Partition B
(PPS)

Partition C

non-timer
pseudo-interrupt

Partition A
(TPS)

TPS scheduling

VxWorks 653
Programmer's Guide, 2.2

180

In Figure 7-11, Partition A declares itself idle, but the idle declaration occurs within
the PPS_ACTIVATION_WINDOW time at the end of the partition’s time budget,
and, therefore, PPS scheduling is not entered because there is not enough time.

In Figure 7-12, Partition D is running in PPS mode, and a pseudo-interrupt is sent
to Partition B. Partition B has a higher PPS priority and is thus scheduled to run,
preempting Partition D.

Figure 7-11 APPS Scheduling and PPS_ACTIVATION_WINDOW

time

partition switch
partition OS

core OS

TPS scheduling

idle notified

TPS scheduling

Partition A (TPS) Partition C

PPS_ACTIVATION_WINDOW

Figure 7-12 PPS Partition Runs, Pseudo-Interrupt Preempts

time

partition switch
partition OS

core OS

TPS scheduling PPS scheduling

idle notified

TPS scheduling

Partition A (TPS) Partition D
(PPS)

Partition C

pseudo-interrupt

Partition B
(PPS)

7 Programming in the Core OS
7.14 Design Models for Ports

181

7

7.13.3 Partition-Scheduling Routines

The following partition-scheduling routines are available from the core OS:

■ To register a callout routine that runs on partition context switches:
partitionSwitchHookAdd().

■ To register a callout routine that runs on start of major frames:
partitionMajorFrameHookAdd().

7.14 Design Models for Ports

This section discusses the design models to support queuing and sampling ports
in partitions.

7.14.1 Design Model for Queuing Ports

The memory for queuing ports is in the kernel. The sending and receiving
partitions access it through system calls, which validate all parameters. Messaging
code resides in the kernel.

Memory Use

To reduce memory use, the kernel copies a message only once. Receiving partitions
get the message from the same location. After the last destination port reads the
message, the kernel makes the space available for new messages.

VxWorks 653
Programmer's Guide, 2.2

182

The source port is part of the message area. During transfers, the kernel does not
move messages from source-port memory to destination-port memory. Instead, it
moves only pointers to the messages. The maximum size of a message is the
maximum size of the source port messages.

Messages and lists of pointers are in the kernel. They survive partition restart.

Blocking Processes

Since vThreads uses a many-to-many thread model (a worker-task mechanism) for
system calls, sender processes that are blocked on full ports and receiver processes
that are blocked on empty ports are queued in vThreads (user) space, not in kernel
space.

Figure 7-13 Memory Model for Queuing Ports (Common Memory Used for All Queuing Ports)

msg 1
(1 unread) pmsg 1

pmsg 2

pmsg 3

portA

pmsg 2

pmsg 3

portB

pmsg 3

portC

message area

msg 2
(2 unread)

msg 3
(3 unread)

free

7 Programming in the Core OS
7.14 Design Models for Ports

183

7

System Calls and Events for Port Operations

Figure 7-14 shows the system calls and events that occur when a message is sent
from a source port to a destination port.

Effect of Restarting Partitions

When a partition is restarted, messages are lost only in the ports of the restarted
partition. Therefore, when a source port's partition is restarted, its destination-port
messages are preserved. Also, when a destination port's partition is restarted, its
source-port messages are preserved.

7.14.2 Design Model for Sampling Ports

In sampling ports, messages carry similar, but updated, data. Messages and
processes are not queued. A message remains in the source port until it is sent or

Figure 7-14 System Calls and Events for a Port Operation

Source partition Core OS Destination partition

SYSCALL_PORT_SEND

VT_EVENT_PORT_INT_RECV

SYSCALL_PORT_INT_RECV

remove info about source port

write data to source port

if destination is not full

transfer

read data from port
may trigger another transfer

VT_EVENT_PORT_INT_SEND
SYSCALL_PORT_INT_SEND

retrieve info about dest port

SYSCALL_PORT_RECV

...

VxWorks 653
Programmer's Guide, 2.2

184

overwritten. Messages arrive in the order in which they are sent. When a new
message reaches the destination port, it overwrites the previous message and
remains there until it is overwritten itself. Sampling ports support variable-length
messages.

The attributes of sampling ports are similar to those of queuing ports, but the
behavior is different. The main difference is that a queuing port has a unique
instance per message. As a result, there is no need to handle exclusion or
synchronization. With sampling ports, there is only one message, and it can be
overwritten at any time. The receiver could be reading data and get scheduled out.
When it starts reading again at the next time window, it does not know whether a
new message has replaced the original one.

Using a single data buffer to control access is not sufficient, because the sender or
receiver would need to lock access during the write or read operation. If the sender
or receiver got scheduled out, the data would remain locked, and no other
partition could use it. Therefore, ports use a double buffer, as shown in Figure 7-15.
The sender uses a temporary buffer, and the receivers use a valid buffer. When the
sender completes the write operation, it indicates changes in buffer status: valid
becomes temporary, and temporary becomes valid.

Figure 7-15 Design of Sampling Ports

sender receiver

partition 2partition 1

core OS

write area

read area
valid

temporary

7 Programming in the Core OS
7.15 Setting up Communication with Other Modules

185

7

7.15 Setting up Communication with Other Modules

VxWorks 653 supports pseudo-ports and pseudo-partitions as defined by
ARINC 653. As such, ports can be used to route messages to external modules or
specialized devices, for example, to avionic busses.

In addition, partitions can communicate with other modules using partition
direct-access ports. For details, see 4.8.2 Communicating Through Direct-Access Ports
in a Partition, p.76.

Communication with external modules is made through pseudo-ports. A
pseudo-port is a port attached to a pseudo-partition. It can be equated to routing
(mapping) information required to direct messages between the source port and
the destination port or ports over the intermodule communications channel.

When a channel’s source port is configured with the SENDER_BLOCK message
policy, only one of the channel’s destination ports can be a pseudo-port.

Pseudo-ports are mapped to a particular supervisor-level driver, such as an AFDX
device driver. For information on configuring pseudo-ports, see the VxWorks 653
Configuration and Build Guide.

A pseudo-port is identified by the following:

■ a module-wide unique name

■ whether it is direct access or not

■ parameters (for example, size)

■ its pseudo-partition

■ the name of a supervisor-level driver

A direct-access pseudo-port is an APEX queuing port with no queuing. If queuing
is needed, the driver must supply it. For information on how direct-access
pseudo-ports might affect applications, see 4.8 Communicating with Other Modules,
p.74.

The driver can service multiple pseudo-ports. It is identified by the following:

■ a module-wide unique name

The APEX port library in the core OS uses the name of the driver to identify
the set of routines to use when it deals with a pseudo-port. The name of the
driver has no relationship to the name of the port driver.

■ a set of routines

VxWorks 653
Programmer's Guide, 2.2

186

7.15.1 Configuring a Supervisor-Level Driver

The supervisor-level driver needs to be configured and added to the module, and
this needs to be done before the APEX port library is initialized in the core OS. This
configuration is achieved by adding the following to the core OS makefile. (In this
example, pseudoPortCreate() is user-supplied code.)

PseudoPortComponent:
prjCreate -type kernelComponent -build (CPU)(TOOL).debug -prjdir \

$(PORT_DRIVER) \
-srcfiles "$(SRC)/pseudoPortDrv.c"

prj compAttributeSet -p $(PORT_DRIVER) CONFIGLETTES \
"$(SRC)/pseudoPortCreate.c"

prj compAttributeSet -p $(PORT_DRIVER) PROTOTYPE \
"extern STATUS pseudoPortCreate (void);"

prj compAttributeSet -p $(PORT_DRIVER) INIT_RTN "pseudoPortCreate();"
prj compAttributeSet -p $(PORT_DRIVER) INIT_BEFORE "INCLUDE_APEX_PORT"
prj compAttributeSet -p $(PORT_DRIVER) _INIT_ORDER "usrIosCoreInit"
prj domComponentAdd -p $(BIN)/coreOS $(PORT_DRIVER) "INCLUDE_PORTDRIVER"

7.15.2 Adding a Driver

Based on the makefile in 7.15.1 Configuring a Supervisor-Level Driver, p.186, the
configlette that initializes the driver calls the user-supplied pseudoPortCreate().
This routine needs to add the driver by calling portPseudoDrvAdd().

The portDrvName argument is either the DriverName attribute in the XML port
configuration or an appended value of it. For example, if the DriverName attribute
is /myPseudoDrvPort_net, the portDrvName argument could be, for example,
/myPseudoDrvPort_net or /myPseudoDrvPort_net/1.

If a device with the specified name already exists, the routine returns an error.

STATUS portPseudoDrvAdd
(
PORT_DRV_FCT * pPortDrvFct, /* pointer to driver routines*/
char * portDrvName, /* name of the driver */
PORT_MODE_TYPE mode /* QUEUING or SAMPLING */
)

7.15.3 Driver Routines

The prototypes for the driver's routines are defined in:

installDir/target/h/apex/apexPortLib.h

7 Programming in the Core OS
7.15 Setting up Communication with Other Modules

187

7

The routines must follow the PORT_DRV_FCT definition, also defined in
apexPortLib.h. (See Function Pointer Structure for Drivers, p.189.)

Attaching the Name of a Driver to a Pseudo-Port ID

After the APEX port library initializes all ports and creates all channels, it calls the
following routine to attach the name of a previously added (see 7.15.2 Adding a
Driver, p.186) driver (name) to a pseudo-port ID (pPseudoPortId), which the routine
creates and returns. The pseudo-port ID becomes an argument to the driver
routines that get statuses, read, and write.

typedef STATUS (*PORT_Q_FUNCPTR_ATTACH)(
char * name, /* name of the driver */
PORT_ID portId, /* identifier created by the core OS */
PORT_CFG_RECORD * pCfg, /* XML configuration of the port */
int * pPseudoPortId, /* pseudo-port ID */
PORT_MODE_TYPE mode /* QUEUING or SAMPLING */
);

Reading Messages from a Pseudo-Port

The APEX port library calls the following routine to read messages from a
pseudo-port.

typedef int (*PORT_Q_FUNCPTR_READ)(
int pPseudoPortId, /* pseudo-port ID */
PORT_CFG_RECORD * pCfg, /* XML configuration of the port */
PORT_MODE_TYPE mode, /* QUEUING or SAMPLING */
PORT_MSG * pOsMsg, /* complete message structure */
char * pUserBuffer, /* partition payload pointer */
SAP_ADDRESS_TYPE * pSrcUserHeader, /* SAP source header */
SAP_ADDRESS_TYPE * pDstUserHeader, /* SAP destination header */
UINT64 remainingTime, /* time left before switch out */
BOOL * canAcceptMore, /* another msg for next read? */
int * copyStatus /* status of the read */
BOOL * overflow /* TRUE returned if overflow occurs */
);

Service access point (SAP) ports are defined by the ARINC 664 specification,
Part 7, which defines the Avionics Full Duplex Switched Ethernet (AFDX)
protocol. SAP ports are used to communicate between AFDX systems and
non-AFDX systems.

VxWorks 653
Programmer's Guide, 2.2

188

Writing Messages to a Pseudo-Port

The APEX port library calls the following routine to send a message to a
pseudo-port.

typedef int (*PORT_Q_FUNCPTR_WRITE)(
int pPseudoPortId, /* pseudo-port ID */
PORT_CFG_RECORD * pCfg, /* XML configuration of the port */
PORT_MODE_TYPE mode, /* QUEUING or SAMPLING */
PORT_MSG * pOsMsg, /* complete message structure */
UINT64 remainingTime, /* time left before switch out */
BOOL * canAcceptMore, /* space available for next write? */
char * channelBuf, /* if not NULL, driver should use DMA to

copy pOsMsg->payload data to channelBuf
if possible */

int * copyStatus /* status of the write, return
PORT_S_DMA_OPTIMIZED if channelBuf copy
has happened*/

);

Determining the Availability of a Pseudo-Port

The APEX port library calls the following routine to determine whether a
pseudo-port is available to read from or write to:

typedef BOOL (*PORT_Q_FUNCPTR_AVAILABLE)(
int pPseudoPortId, /* pseudo-port ID */
PORT_DIRECTION_TYPE direction /* SOURCE or DESTINATION */
);

For a pseudo-port to send or receive messages, the port must be available. The
partition switch hook routine determines the availability by calling the driver's
availability routine (PORT_Q_FUNCPTR_AVAILABLE). If the routine returns TRUE,
the APEX port library can continue the read or write operation.

For a source pseudo-port, the APEX port library calls the driver's availability
routine under the following conditions:

■ The source pseudo-port was previously not available.

■ The switched-in partition has a destination port connected to the same channel
that contains this source pseudo-port.

For a destination pseudo-port, the APEX port library calls the driver's availability
routine under the following conditions:

■ The destination pseudo-port was previously not available.

■ The switched-in partition has a source port or other destination ports
connected to the same channel that contains this destination pseudo-port.

7 Programming in the Core OS
7.15 Setting up Communication with Other Modules

189

7

Getting the Status of a Pseudo-Port

The APEX port library calls the following routine to get the status of a pseudo-port.
Status for a queuing pseudo-port is the number of messages stored at the port and
the number of free messages.

typedef STATUS (*PORT_Q_FUNCPTR_STATUS)(
int pPseudoPortId, /* pseudo-port ID */
PORT_INFO * pPortInfo
);

Determining Whether a Pseudo-Port Is Direct Access

The driver can determine whether a pseudo-port is direct access or not from the
configuration record of the pseudo-partition to which the pseudo-port is attached.
It can also determine the queue length from this configuration record. The driver
can use the queue-length information to do its own queuing for direct-access
pseudo-ports. Also, if the pseudo-port is direct access, the driver’s read and write
routines must act differently. For details, see Sending Messages, p.189 and Receiving
Messages, p.190.

Function Pointer Structure for Drivers

typedef struct port_drv_fct /* function pointers for the driver */
{
PORT_Q_FUNCPTR_ATTACH attachRtn; /* called at port attach time */
PORT_Q_FUNCPTR_READ readRtn; /* read data from port */
PORT_Q_FUNCPTR_WRITE writeRtn; /* write data to port */
PORT_Q_FUNCPTR_AVAILABLE availableRtn; /* get port availability */
PORT_Q_FUNCPTR_STATUS statusRtn; /* get port status */
} PORT_DRV_FCT;

7.15.4 Sending and Receiving Messages

Sending Messages

The APEX port library in the core OS uses the user-supplied write routine
(writeRtn()) to write a message to a source queuing port. The routine has the same
arguments as the PORT_Q_FUNCPTR_WRITE routine (see Writing Messages to a
Pseudo-Port, p.188) and returns the number of bytes written.

VxWorks 653
Programmer's Guide, 2.2

190

For direct-access pseudo-ports, if writeRtn() does not have time to write the
message during the partition window, it must return RETRY to the kernel. The
kernel propagates the status to vThreads, which in turn immediately retries the
write operation.

The APEX port library creates a port-driver task and schedules it in the same
window as the partition that owns the source port of the channel that contains the
destination pseudo-port. The APEX port library activates the task each time a
message cannot be distributed as a result of the APEX port library having called
writeRtn().

Receiving Messages

The APEX port library in the core OS uses the user-supplied read routine
(readRtn()) to read a message from a destination queuing port. The routine has the
same arguments as the PORT_Q_FUNCPTR_READ routine (see Reading Messages
from a Pseudo-Port, p.187) and returns the number of bytes read.

If the pseudo-port is direct access, readRtn() must ignore any specified timeouts
and treat them as zero. Also, for direct-access pseudo-ports, if readRtn() does not
have time to read the message during the partition window, it must return RETRY
to the kernel. The kernel propagates the status to vThreads, which in turn
immediately retries the read operation.

Time Partitioning

To avoid disturbing time partitioning with interrupts, the partition switch hook
routine polls pseudo-ports to determine whether they are available to send or
receive messages.

The writeRtn() and readRtn() routines have a remainingTime argument, which
indicates to the driver the amount of time (in nanoseconds) until the current
partition will be switched out. If the driver determines that it does not have enough
time to copy the data, it should return PORT_Q_RETRY instead of OK, and the
APEX port library retries the next time the partition is switched in.

7 Programming in the Core OS
7.15 Setting up Communication with Other Modules

191

7

7.15.5 Example: Communicating between Modules

In this example, a message is sent from one module to another. The pseudo-ports
are not direct access. Figure 7-16 shows the configuration.

The source port on Module A (Src A_1) needs to connect with the destination port
on Module B (Dst B_2).

The mechanism in this example allows for the one-to-many distribution of
messages in both modules.

Configuration of Module A

The XML configuration for each module contains the channel definition. The
configuration of Module A is as follows:

<PseudoPartition Name="pseudoPartitionA" Id="4" Type="IO_PARTITION">
<PseudoPartitionDescription>

<Ports>
<QueuingPort

Attribute="PSEUDO_PORT"
Name="Dst A_2"
Direction="DESTINATION"
MessageSize="500"
QueueLength="100"
DriverName="pseudoQPort"
Protocol="NOT_APPLICABLE"/>

</Ports>
</PseudoPartitionDescription>

Figure 7-16 Example: Communication between Modules

Module A

Partition 1

Driver

Src A_1 Dst A_2

Module B

Partition 2

Driver

Src B_1 Dst B_2

User-supplied code

VxWorks 653
Programmer's Guide, 2.2

192

</PseudoPartition>

<Applications>
<Application Name="Partition 1">

. . .
<Ports>

<QueuingPort
MessageSize="500"
Name="Src A_1"
Direction="SOURCE"
Protocol="SENDER_BLOCK"
QueueLength="100"/>

</Ports>
</ApplicationDescription>

</Application>
</Applications>
. . .
<Connections>

<Channel Id="1">
<Source PartitionNameRef="Partition 1"

PortNameRef="Src A_1"/>
<Destination PartitionNameRef="pseudoPartitionA"

PortNameRef="Dst A_2"/>
</Channel>

</Connections>

Configuration of Module B

The XML configuration for each module contains the channel definition. The
configuration of Module B is as follows:

<PseudoPartition Name="pseudoPartitionB" Id="4" Type="IO_PARTITION">
<PseudoPartitionDescription>

<Ports>
<QueuingPort

Attribute="PSEUDO_PORT"
Name="Src B_1"
Direction="SOURCE"
MessageSize="500"
QueueLength="100"
DriverName="pseudoQPort"
Protocol="SENDER_BLOCK"/>

</Ports>
</PseudoPartitionDescription>

</PseudoPartition>

<Applications>
 <Application Name="Partition 2">
. . .

<Ports>
<QueuingPort

MessageSize="500"
Name="Dst B_2"

7 Programming in the Core OS
7.15 Setting up Communication with Other Modules

193

7

Direction="DESTINATION"
Protocol="NOT_APPLICABLE"
QueueLength="100"/>

</Ports>
</ApplicationDescription>

</Application>
</Applications>
. . .
<Connections>

<Channel Id="1">
<Source PartitionNameRef="pseudoPartitionB"

PortNameRef="Src B_1"/>
<Destination PartitionNameRef="Partition 2"

PortNameRef="Dst B_2"/>
</Channel>

</Connections>

User-Supplied Code for Module A's Send Operation

The user-supplied code in the core OS of Module A does the following for the send
operation in this example:

■ The user-supplied code registers the driver pseudoQPort by calling
portPseudoDrvAdd().

■ (When the core OS APEX port library is initialized, it initializes all ports and
also calls attachRtn() for Dst A_2.)

■ The user-supplied code creates a port-driver task and associates it with the
Partition 1 window. The task handles the distribution of Dst A_2 messages if
needed.

■ When the application in Partition 1 issues the SEND_QUEUING_MESSAGE
service, the message is sent to Src A_1, and the user-supplied code marks this
port as available.

■ If Dst A_2 is available, the user-supplied code sends the message directly by
calling the driver's writeRtn().

If Dst A_2 is not available, the user-supplied code does not send the message.

■ At each partition switch into Partition 1, the partition switch hook routine
examines the state of Dst A_2 by calling the driver's availableRtn(). If the
pseudo-port becomes available, the port-driver task is awakened to
handle the distribution.

■ After the port-driver task distributes the message, the user-supplied code
removes the message from Src A_1 and calls the driver's writeRtn() to send
the message to the external module.

VxWorks 653
Programmer's Guide, 2.2

194

User-Supplied Code for Module B's Receive Operation

The user-supplied code in the core OS of Module B does the following for the
receive operation in this example:

■ The user-supplied code registers the driver pseudoQPort by calling
portPseudoDrvAdd().

■ (When the core OS creates the APEX port library, it initializes all ports and also
calls attachRtn() for Src B_1.)

■ The user-supplied code does not create a port-driver task, because the task is
not needed for source pseudo-ports.

■ When Partition 2 is scheduled and if Src B_1 is not available, the APEX port
library calls the driver's availableRtn(). If Src B_1 becomes available, the state
of Dst B_2 becomes available too.

■ When the application in Partition 2 issues the RECEIVE_QUEUING_MESSAGE
service, the APEX port library calls the driver's readRtn() for Src B_1 and
distributes the message.

195

 8
Health Monitoring

8.1 Introduction 195

8.2 Basic Health Monitor Concepts 196

8.3 Health Monitor Actions 210

8.4 Initializing the Health Monitor 215

8.5 Getting Health Monitor Information at Run-time 215

8.6 Defining the Health Monitor Handler Table 216

8.7 Health Monitoring for COIL Partitions 217

8.8 Other Facilities That Inject Alarms 218

8.9 Public Information 218

8.1 Introduction

Health monitoring provides a framework to raise and handle events, which can be
alarms or messages, in a system. Alarms are injected to represent faults in the
system, and handlers perform health recovery actions.

The bulk of this chapter describes health monitoring for vThreads partitions, and
most of it also applies to partitions based on COIL. Differences are described in
8.7 Health Monitoring for COIL Partitions, p.217.

VxWorks 653
Programmer's Guide, 2.2

196

8.2 Basic Health Monitor Concepts

This section describes the following basic health monitor concepts:

■ events (alarms and messages)

■ health monitor hierarchy

■ alarm injection

■ thresholds

8.2.1 Health Monitor Events

An event is the base unit of injection within the health monitor. An event can be an
alarm or a message.

Health Monitor Alarms

An alarm is an event that is the software representation of a fault that needs
attention. It could have a positive or negative effect. Examples include
hardware-generated exceptions, error paths in the code, and crossed thresholds.

Alarms have information associated with them. For details, see Table 8-1.

Health Monitor Messages

A message is an event that has a code of HM_MSG. If the message is sent from
within a partition, the partition health monitor handles it. If it is sent from outside
the partition, the module health monitor handles it. A default handler is provided
that logs the message. However, a system integrator can replace the handler with
another by means of the XML configuration file. For more information, see the
VxWorks 653 Configuration and Build Reference.

Messages, like alarms, have information associated with them. For details, see
Table 8-1.

8 Health Monitoring
8.2 Basic Health Monitor Concepts

197

8

8.2.2 Health Monitor Hierarchy

There are three levels of health monitoring:

■ module health monitor

■ partition health monitor

■ process health monitor

The partition health monitor and the module health monitor are driven by static
tables that relate event codes to their appropriate handlers. There is one module
health monitor table for the VxWorks 653 module. There is a partition health
monitor table for each partition. The tables are loaded as part of the configuration
loading for the VxWorks 653 module and partitions.

Messages have a hard-coded dispatch level. That is, the system health monitor
table cannot be used to configure their dispatch level. At initialization, the
hard-coded dispatch rules override anything in the XML configuration file that
pertains to health monitor messages.

There is the potential for a process health monitor (also called the error handler
process) for each partition. The application must create the process health monitor
by calling hmErrorHandlerCreate() or, for ARINC 653 applications, by issuing
CREATE_ERROR_HANDLER. The routines create a highest-priority task in the
partition OS with which to run the process health monitor handler.

The relationship among the process health monitor, partition health monitor, and
module health monitor, plus the general architecture of the health monitor from a
scheduling perspective (not a memory containment perspective) is shown in
Figure 8-1.

VxWorks 653
Programmer's Guide, 2.2

198

After an event is injected, the system health monitor table determines how to
dispatch the event. Because dispatching is hard-coded, events are automatically
dispatched to the process, partition, or module level, depending on where they
were injected.

The system health monitor table relates the event code and system status at
injection time to a dispatch level, which can be one of the following:

■ no level

■ process level

■ partition level

■ module level

Figure 8-1 Health Monitor Architecture (Showing vThreads Partitions)

partition
HM

table process
HM
task

partition
HM
task

Another VxWorks 653
application

running vThreads

system HM
table module HM task

module HM
table

core OS

vThreads

VxWorks 653 application
 running vThreads

request

dispatch

partition
HM
log

8 Health Monitoring
8.2 Basic Health Monitor Concepts

199

8

The system integrator creates the system health monitor table in the XML
configuration file for the VxWorks 653 module. For information on specifying the
table, see the VxWorks 653 Configuration and Build Guide. The table is read as part of
the configuration tables of the core OS.

In terms of memory, the process health monitor (error handler process) is within
the partition OS.

The partition health monitor runs as a core OS task (its stack is in the core OS kernel
domain) with a higher priority than the core OS task that is running the associated
partition OS (also higher than any worker tasks). But, it is scheduled during its
associated partition’s window.

The module health monitor runs as a highest-priority task in the core OS and is the
only task at this priority. Its priority is higher than the partition health monitor
tasks.

8.2.3 Event Structure (HM_EVENT)

Table 8-1 describes the fields of the structure (HM_EVENT) that defines a health
monitor event.

Table 8-1 HM_EVENT Structure

Field Description

code The code associated with the event. If the code is HM_MSG, the
event is a message.

subCode The subcode associated with the event. If a subcode is not
needed, the field is 0. For injecting events, applications must
use HM_SUB_CODE_USER (defined in hmTypes.h) + offset.

If the event has been reformatted, the field has the previous
value of code. See Reformatting Events, p.208.

historicalCode If the event has not been reformatted, the field is 0. If the event
has been reformatted, the field has the previous value of
subCode. See Reformatting Events, p.208.

level The level at which the event was initially dispatched.

timeStamp The time when the event was injected.

VxWorks 653
Programmer's Guide, 2.2

200

System Status and Modes

When an event is injected, the health monitor facility determines and sets the value
of the systemStatus field in the HM_EVENT structure and passes it to the system
health monitor, which uses it to determine the level to which to dispatch the event.

The systemStatus is a bitmap that can have one of the following values:

■ HM_MODULE_MODE

■ HM_PARTITION_MODE

sysStatus The status of the system when the event was injected. For
details, see System Status and Modes, p.200.

addInfo Additional information specified by the injector.

addr The address where the injection was made.

partNumber The partition number, indicating from which partition the
event was injected. If the event was not injected from a
partition, the field is 0.

taskName A NULL-terminated string representing the name of the task
that injected the event. If the event was injected from an
interrupt context, the string is INTERRUPT.

taskId The task ID of the task that injected the event. If the event was
injected from an interrupt context, the field is 0.

msgLen The length (in bytes) of the message body (msg). In the case of
an exception, this is the sum of the sizes of “EXC_INFO\0” and
the EXC_INFO structure.

msg The message body, also known as the event payload and
message payload. If the event is the result of an exception, msg
contains text and data: the string “EXC_INFO\0” followed by
the EXC_INFO data structure.

If the event is the result of a second reformatting, see
Reformatting Events, p.208.

Table 8-1 HM_EVENT Structure (cont’d)

Field Description

8 Health Monitoring
8.2 Basic Health Monitor Concepts

201

8

■ HM_PROCESS_MODE

Each injection of a health monitor event results in partitions or processes being
preempted. The mechanism is not explicit. It results from the fact that the event is
dispatched to a higher-priority task for handling, so that the partition OS scheduler
preempts the current injecting task.

System Status for Core OS Context

For code running in the core OS context, system status can be the logical OR of the
following:

■ HM_MODULE_HM_STATUS

■ HM_MODULE_INIT_STATUS

■ HM_PARTITION_HM_STATUS

■ HM_PARTITION_SWITCH_STATUS

■ HM_SYS_FUNC_STATUS

■ HM_SYSCALL_STATUS

System Status for Partition OS Context

For code running in the partition OS context, system status can be the logical OR
of the following:

■ HM_PARTITION_INIT_STATUS
(Even though this status corresponds to code running in the partition OS, the
mode of the system is still partition mode, because the partition OS is not yet
prepared to handle events.)

■ HM_PROCESS_EXEC_STATUS

■ HM_PROCESS_MGMT_STATUS

Module Mode (HM_MODULE_MODE)

Injections made from HM_MODULE_MODE are dispatched to the module level
only. All partitions are preempted until the module-level handler handles the
alarm. The handler can control the duration of preemption. But, since the situation
that caused the alarm probably needs to be corrected before it is safe for partitions
to continue running, the duration would not be an issue. If this is not the case, the
alarm probably could and should have been handled by the partition health
monitor.

VxWorks 653
Programmer's Guide, 2.2

202

HM_MODULE_MODE is equal to the logical OR of the following status values:

■ HM_MODULE_HM_STATUS—module health monitor task

■ HM_MODULE_INIT_STATUS—module initialization

■ HM_PARTITION_SWITCH_STATUS—rescheduling as a result of a partition
switch

■ HM_SYS_FUNC_STATUS—not a health monitor task or a partition-related task;
that is, an ISR

■ HM_UNKNOWN_STATUS—unable to determine the system status.

Partition Mode (HM_PARTITION_MODE)

Injections made from HM_PARTITION_MODE are dispatched to the partition or
module levels. The current partition is preempted, and the handler runs.

HM_PARTITION_MODE is equal to the logical OR of the following status values:

■ HM_PARTITION_HM_STATUS—partition health monitor task

■ HM_PARTITION_INIT_STATUS—partition OS initialization

■ HM_SYSCALL_STATUS—in a core OS task that is related to a partition, but not
the partition health monitor task

Process Mode (HM_PROCESS_MODE)

Injections made from HM_PROCESS_MODE are dispatched to the process,
partition, or module levels. The current task in the partition is preempted until the
alarm is handled.

HM_PROCESS_MODE is equal to the logical OR of the following status values:

■ HM_PROCESS_EXEC_STATUS—running a partition OS task

■ HM_PROCESS_MGMT_STATUS—in the partition OS kernel or partition OS
interrupt state

8.2.4 Injecting Alarms

The core OS or an application injects an alarm by calling hmEventInject() or
HM_EVENT_INJECT() with a code other than HM_MSG. ARINC 653 applications
must issue the RAISE_APPLICATION_ERROR service with the
APPLICATION_ERROR code.

8 Health Monitoring
8.2 Basic Health Monitor Concepts

203

8

Information about the alarm injection is collected from the viewpoint of where the
injecting routine is called, which is not necessarily where the fault occurred. For
instance, when HM_EVENT_INJECT() is called, the address is that of the program
counter when HM_EVENT_INJECT() was called.

HM_EVENT_INJECT() is a macro to hmEventInject() that fills in the addr and
taskId parameters to the program counter and the current task ID at the time that
HM_EVENT_INJECT() is called.

The following routines can be used when calling hmEventInject():

■ taskPcGet()—Specifies the program counter of a non-running task.

■ vxCurrentPcGet()—Specifies the current program counter.

The alarm goes first to the system health monitor table, which decides at what level
to dispatch. Figure 8-2 shows the logic of the alarm injection. Figure 8-3 shows the
subsequent dispatching to the appropriate level for handling.

VxWorks 653
Programmer's Guide, 2.2

204

Figure 8-2 Alarm Injection (vThreads)

HM_EVENT_INJECT()
addr=vxCurrentPcGet()

hmEventInject()taskId=taskIdSelf()

* partNumber=current partition
* sysStatus=current system status
* Add timestamp and evtTag
* Resolve taskId to taskName if possible

Exception
panic case?

yes
level=HM_DIRECT

Entry
in system HM

matches code and
no

Entry in
system HM matches

HME_DEFAULT
and sysStatus?

Access entry at
code and

sysStatus to
determine level.

Access entry at
HME_DEFAULT

code and
sysStatus to

determine level.

Dispatch event. *

Access entry at
HME_DEFAULT code and
HM_UNKNOWN_STATUS

sysStatus (this entry
is required)

to determine level.

sysStatus?

system call boundary

* See the next figure for dispatch.

8 Health Monitoring
8.2 Basic Health Monitor Concepts

205

8

Dispatching Rules

This section outline the rules for dispatching events. In the descriptions, interrupt
context includes ISRs, watchdog routines, and kernel hooks (for example, partition
switch hooks).

No Process Health Monitor Installed

Events dispatched to the process health monitor when the process health monitor
is not installed are dispatched unchanged to the partition health monitor.

Alarms Injected in Exception or Interrupt Context

Alarms injected from exception or interrupt context are treated like alarms injected
from task level. This means that the handling of events when injected from an ISR
is deferred to task context. Except in the case of an exception panic, events injected
due to an unhandled exception have their information (such as task information
and system status) set according to what was happening at injection time.

Figure 8-3 Alarm Dispatch (vThreads)

Re-inject event
(this reformats event

with code
HME_HM_ERROR).

Call hmCallback
if present, auto
log if necessary

FOUND=
FALSE

FOUND=
TRUE

FOUND=
TRUE

Is FOUND=
TRUE?

Is a notification
present?

Is an event
present?

Wait on
semaphore.

Call notification
handler.

Access entry at
code and call

handler.

Handler
returns OK?

no

no

no

VxWorks 653
Programmer's Guide, 2.2

206

In the case of an exception panic, the module-level handler is called directly. An
exception panic can be any of the following:

■ an exception in kernel state

■ an exception from interrupt level

■ a nested exception

■ an exception in the root task

Events Injected from Tasks in the Partition OS

Events injected from a task in the partition OS that has a priority equal to the
process health monitor (error handler) task, which ordinarily are dispatched to the
process level, are dispatched unchanged to the partition level. This includes
injection from the process health monitor task. The exception is for the
APPLICATION_ERROR event code, which can be injected from the error handler
process and handled by it.

Events Injected from Tasks outside the Partition OS

■ Priority Greater than or Equal to the Partition Health Monitor Task

Events injected from a task outside the partition OS that has a priority equal to
or greater than the partition health monitor task, which ordinarily are
dispatched to the partition level, are dispatched unchanged to the module
level. This includes injection from the partition health monitor task.

■ Priority Equal to the Module Health Monitor Task

Events injected from a task outside the partition OS that has a priority equal to
the module health monitor task, have their handlers called directly and
synchronously. This applies to injection from within a module health monitor
handler only.

Full Health Monitor Queues

If dispatch is not possible because the partition health monitor queue is full, the
event is reformatted with the HME_HM_ERROR code and dispatched to the
partition according to the rules for injecting from the partition health monitor task.

If dispatch is not possible because the process health monitor queue is full, the
event is reformatted with the HME_HM_ERROR code and dispatched to the
partition according to the rules for injecting from the process health monitor task.

8 Health Monitoring
8.2 Basic Health Monitor Concepts

207

8

If dispatch is not possible because the module health monitor queue is full, the
module-level HME_HM_ERROR handler is called directly and synchronously
according to the rules for injecting from the module health monitor task.

Task-Lock Condition Exists

If an event is injected while a task-lock condition exists, the following rules are
followed:

■ Injected from the Task Context

If an event is injected from the task context while a task-lock condition exists,
the lock is broken and the error handler process runs. However, before
breaking the lock, the partition OS raises the task’s priority to one less than the
error handler’s priority. This strategy is an attempt to have the task regain its
task lock. The preempted task then runs immediately after the error handler,
at which point the partition OS restores the task-lock count and original
priority. However, if an application uses task priorities 0 or 1 (contrary to the
ARINC 653 specification), there is no guarantee that the preempted task is the
first to run after the error handler.

■ Injected from the Interrupt Context

If an event is injected from the interrupt context while a task-lock condition
exists and watchDogDuration (as specified in the partition XML
configuration file) is 0, locks (preemption and task locks) are broken
immediately and the error handler process runs. The error handler process
restores the locks and instructs the partition OS to run the preempted task first
(unless the task has stopped).

If watchDogDuration is INFINITE_TIME, the error handler process runs when
the task unlocks itself.

If watchDogDuration is between 0 and INFINITE_TIME, any APEX locks (the
result of the application issuing the LOCK_PREEMPTION service) are broken
immediately. If there are any other task locks remaining (the result of the
kernel calling taskLock()), the watchdog is started. When the watchdog
expires, task locks are broken, and the error handler process runs. The error
handler process restores the locks and instructs the partition OS to run the
preempted task first (unless the task has stopped).

Handlers Cannot Handle the Alarm

Handlers that cannot handle an alarm must inject an alarm of their own or return
ERROR so that the health monitor can reformat the event with the
HME_HM_ERROR code.

VxWorks 653
Programmer's Guide, 2.2

208

However, returning ERROR does not apply at the process health monitor level. At
this level, the application must inject another event from the process health
monitor, which the health monitor reformats with the HME_HM_ERROR code. For
rules pertaining to injecting from the process health monitor task, see Events
Injected from Tasks outside the Partition OS, p.206.

All system health monitor tables should include a handler for HME_HM_ERROR.

The return code from calling an HM_DIRECT-level handler is not checked, because
no further escalation is possible. If an HME_HM_ERROR module-level handler is
not declared (or any handler for that matter), the HME_DEFAULT handler is called.

Reformatting Events

When the health monitor facility reformats an event, the event gets a new code.
The old code moves to the subCode, and the old subCode moves to the
historicalCode. If this is a second reformatting, historicalCode information would
be lost. In this case, an event is injected with the following information:

■ code of HME_DATA_LOSS (subCode of 0, historicalCode of 0)

■ msg containing the old code, subCode, and historicalCode (retrievable by
casting msg as an HM_DATA_LOSS data structure)

Dismissing Alarms

An alarm is dismissed under any of the following circumstances:

■ In the partition health monitor table or module health monitor table, for a
given code, a NULL handler (CFG_NO_HANDLER) is set.

■ In the system health monitor table, for a given code and systemStatus
combination, the dispatch level is set to HM_NO_LVL.

Dispatching and Logging Messages

A message event differs from an alarm event as follows:

■ Alarms are dispatched according to the system health monitor table. Messages
are not dispatched by this mechanism. If a message is injected within the
partition, it is dispatched to the partition health monitor. If it is injected outside
the partition, it is dispatched to the module health monitor. Each level has a
default handler that logs the message to the partition or module log. The
system integrator can replace the default handler through the XML

8 Health Monitoring
8.2 Basic Health Monitor Concepts

209

8

configuration file. For more information, see the VxWorks 653 Configuration and
Build Reference.

■ Alarms are logged only if automatic logging is enabled or if a handler
explicitly logs the alarm by calling hmEventLog(). The system integrator must
specify the handler in the XML configuration file. For information, see the
VxWorks 653 Configuration and Build Guide.

8.2.5 Health Monitor Thresholds

Thresholds apply to the following:

■ notification queues

■ logs

■ event queues

Notification Queue Threshold

The notification queue threshold equals the depth of the notification queue. An
event is injected when the notification queue overflows. For information on
enabling and disabling overflow notification, see the VxWorks 653 Configuration
and Build Reference. If overflow notification is disabled and if an event is injected
because of overflow, the event is dispatched to the partition health monitor or
module health monitor with which the notification queue is associated.

Log Threshold

The log threshold defines if and when an event should be injected when the log has
a certain number of entries. For information on specifying, enabling, and disabling
the log threshold, see the VxWorks 653 Configuration and Build Reference.

Event Queue Threshold

The event queue threshold defines if and when an event should be injected when
the event queue has a certain number of entries. For information on specifying,
enabling, and disabling the event queue threshold, see the VxWorks 653
Configuration and Build Reference.

VxWorks 653
Programmer's Guide, 2.2

210

Error Handler Queue Threshold

The error handler queue threshold defines the event threshold of the error handler.
It is analogous to the event queue threshold that applies to the partition health
monitor or module health monitor.

8.3 Health Monitor Actions

The health monitor facility does the following when an application runs:

■ escalates alarms

■ logs events

■ notifies other partitions

■ issues a callback

In addition to detecting and reporting its own faults, an application needs to
respond to the above actions.

8.3.1 Escalating Alarms

Alarms are not automatically escalated, because it is the system integrator who
knows the level and handler that best services each alarm. The system integrator
configures the system health monitor table in the XML configuration file. For
details, see the VxWorks 653 Configuration and Build Guide.

If the specified handler from the partition health monitor table or module health
monitor table cannot handle the alarm, it should return ERROR or inject an alarm
of its own.

If a handler returns ERROR, this indicates that the alarm was not handled correctly.
In this situation, the health monitor facility reformats the alarm, using the first
alarm information, but with code equal to HME_HM_ERROR (see Reformatting
Events, p.208).

As a result of the above, the system integrator can choose whether to handle alarms
that result from alarms not being handled and, if so, which ones.

8 Health Monitoring
8.3 Health Monitor Actions

211

8

8.3.2 Logging Events

For information on configuring, enabling, and disabling the logging of alarms and
messages, see the VxWorks 653 Configuration and Build Reference.

When logging is enabled, if an event is injected from within a partition (sysStatus
is HM_PROCESS_MODE or HM_PARTITION_MODE), the event is logged to the
partition health monitor log.

When logging is enabled, if an event is injected from outside the partition
(sysStatus is HM_MODULE_MODE), the event is logged to the module health
monitor log.

When logging is not enabled, a handler must call hmEventLog(), which might
generate an additional system call to log the alarm, depending on where the
current event processing is occurring.

Application code can log messages to the health monitor log by calling
hmEventInject() with the HM_MSG code (assuming the default handler
behavior).

There is one log for each partition and one log for the VxWorks 653 module. By
default, the logs are stored in volatile memory. If logs need to survive module or
system restart, handlers need to be provided that write the logs to non-volatile
memory.

Each log is a circular buffer of configurable size. As a result, for log sizes greater
than zero, the request to log an event is never denied. For a log size of n, only the
n most-recent entries are in the log. Old information could be overwritten.

Logs can be accessed by calling hmLogEntriesGet() with the partition ID and the
number of entries to retrieve. Partition ID 0 accesses the module log. The log can
be read in FIFO or LIFO order. Entries that have been read can be preserved in the
log or purged. An offset can be specified to retrieve the log in segments.
Read-purge with LIFO-order reading is not permitted, because it would result in a
discontinuous log. Table 8-1 lists the information in each entry of each log.

NOTE: Only the health monitor facility can inject alarms with the
HME_HM_ERROR code. This is enforced so that a rogue task cannot directly inject
these types of alarms, possibly forcing escalation and affecting the protection
guarantees between partitions.

VxWorks 653
Programmer's Guide, 2.2

212

8.3.3 Notifying Other Partitions

When an alarm is injected and fault-recovery action is taken, other partitions might
want to be notified. For example, partitions might want to know when another
partition shuts down. All calls to notify and to notification handlers reside in the
core OS. As such, notification does not apply to the error handler process.

A partition must register in order to be notified of events. The system integrator
defines this in the XML configuration file by specifying, for the VxWorks 653
module and each partition, to which event code it wants to be notified and from
which partitions it will accept notification (known as trusted partitions). This
combination of event codes and trusted partitions is called an allowable
notification. For configuration details, see the VxWorks 653 Configuration and Build
Reference.

The notification facility creates a queue for each partition that wants notification.
The health monitor task (either the partition health monitor task or module health
monitor task) services its notification queue and services it after servicing its event
queue.

A module or partition health monitor handler notifies partitions of an event by
calling hmNotificationSend(). The partition sending the notification is
determined by where the call to hmNotificationSend() is made and not by where
the event was injected. If the call to hmNotificationSend() is made from outside
the context of a partition health monitor, the notification is considered to be from
the VxWorks 653 module and, hence, trusted by all.

Each partition has a registered notification handler that is called in response to an
allowable notification. The associated queue holds messages of HM_EVENT type.
If the queue fills, the notification agent does not block. Instead, it injects an event
to the associated partition health monitor or module health monitor and flags the
queue as invalid. This action excludes that partition from future notifications. The
code of this event is HME_HMQ_OVERFLOW and the subCode is
HME_HMQ_OVERFLOW_NOTIF. The event handler must fix the problem and then
re-register the partition with the notification agent by calling
hmNotificationReReg(). The queue is not flushed until the partition re-registers
for notification. This gives the handler for HME_HMQ_OVERFLOW a chance to
flush the queue and preserve data before the queue is forcefully flushed.

8.3.4 Issuing Callbacks

The health monitor callback facility can be used for such things as error reporting
to an external entity or NVM file system. It is enabled by specifying a non-NULL

8 Health Monitoring
8.3 Health Monitor Actions

213

8

name for the health monitor callback routine in the XML configuration file. This
routine can be mapped in the handler table in usrHm.c to a function pointer. There
can be one callback routine per partition and one for the VxWorks 653 module. For
details, see the VxWorks 653 Configuration and Build Reference.

If the function pointer is available, the callback routine is called whenever a
partition event (or module event) arrives for the partition health monitor task (or
module health monitor task). The callback routine is called before the handler.

8.3.5 Detecting and Reporting Application Errors

Applications are responsible for detecting their own errors and reporting
(injecting) associated alarms.

An application can fail in such a way that it cannot correctly report the failure or
cannot report a failure at all. System integrators may need to account for this
possibility when they design the overall system.

Reporting for ARINC 653 Applications

For an application to conform to the ARINC 653 specification, it must use the
APEX API. That is, to inject an alarm, it must issue the
RAISE_APPLICATION_ERROR service and must report only the
APPLICATION_ERROR ARINC 653-defined error. Other errors must be identified
by potentially non-portable use of the service’s message parameter.

The message that the RAISE_APPLICATION_ERROR service passes is read with the
GET_ERROR_STATUS service. If the partition’s error handler is created, it is then
started to take the recovery action for the process that raises the error code. If the
error handler is not created, the error is considered a partition-level error.

Table 8-2 shows all the ARINC 653-defined errors, their numeric values, and
equivalent health monitor alarm codes. If the application uses this service to inject
any of the health monitor alarm codes or health monitor extended codes, the
events are lost. The system integrator is responsible for preventing this.

ARINC 653 applications that want to handle a health monitor event code can first
determine its equivalent ARINC 653 error by issuing the GET_ERROR_STATUS
service.

If an ARINC 653 application wants to inject and handle health monitor alarm
codes within the partition OS context, it would need to call HM_EVENT_INJECT(),
hmEventInject(), or hmErrorHandlerEventGet(). Since this does not comply

VxWorks 653
Programmer's Guide, 2.2

214

with the ARINC 653 specification, the partition or module health monitor must
handle them.

ARINC 653 Errors and Health Monitor Equivalents

Table 8-2 ARINC 653 Errors and Their Health Monitor Alarm Code Equivalents

ARINC 653 Error Value
Health Monitor Alarm
Code

Examples

APPLICATION_ERROR 1 HME_APPLICATION_
ERROR

Errors raised by
application processes.

DEADLINE_MISSED 0 HME_DEADLINE_
MISSED

Process deadline
violations.

HARDWARE_FAULT 6 HME_HARDWARE_
FAULT

Memory-parity errors,
I/O-access errors.

ILLEGAL_REQUEST 3 HME_ILLEGAL_
REQUEST

Illegal OS request by a
process.

MEMORY_VIOLATION 5 HME_MEMORY_
VIOLATION

Memory-protection
errors, supervisor
privilege violations.

NUMERIC_ERROR 2 HME_NUMERIC_
ERROR

Overflow errors, divide
by zero, floating-point
errors.

POWER_FAIL 7 HME_POWER_
FAIL

Notification of power
interruption so that, for
example,
application-specific state
data can be saved.

STACK_OVERFLOW 4 HME_STACK_
OVERFLOW

Process stack overflow.

8 Health Monitoring
8.4 Initializing the Health Monitor

215

8

Reporting for Non-ARINC 653 Applications

Applications that do not need to conform to the ARINC 653 specification can inject
alarms by calling HM_EVENT_INJECT() or hmEventInject(). For more
information about these routines, see 8.2.4 Injecting Alarms, p.202.

A partition that uses the APEX layer and wants to inject alarms within the partition
OS context can inject an alarm by issuing RAISE_APPLICATION_ERROR with
APPLICATION_ERROR or any of the other ARINC 653-defined codes in Table 8-2.

8.4 Initializing the Health Monitor

The health monitor facility is initialized in the following stages:

1. The core OS initializes the module health monitor after it enables support for
protection domains and before it initializes the ARINC 653 schedule.

2. As the core OS creates each partition, it initializes the associated partition
health monitor after it assigns the partition to the proper window, but before
it activates the partition.

3. If the application requested it, the core OS creates the error handler for the
application.

8.5 Getting Health Monitor Information at Run-time

Configuration information is specified for the partition and module health
monitors in the XML configuration file. For details, see the VxWorks 653
Configuration and Build Guide. User-supplied code in the core OS can get this
information by calling configRecordFieldGet() with the appropriate
HM_TABLE_CFG_RECORD configuration record (partition or module) and the
appropriate field selector (defined in configRecordLib.h). The selectors are as
follows:

■ HM_ATTRIBUTE_MASK

■ HM_CALLBACK

VxWorks 653
Programmer's Guide, 2.2

216

■ HM_ENTRY_COUNT

■ HM_ERROR_HANDLER_QUEUE_THRESHOLD

■ HM_EVENT_CODE

■ HM_EVENT_FILTER_MASK

■ HM_HANDLER

■ HM_LOG_ENTRIES_THRESHOLD

■ HM_MAX_ERROR_HANDLER_QUEUE_DEPTH

■ HM_MAX_LOG_ENTRIES

■ HM_MAX_QUEUE_DEPTH

■ HM_NOTIF_MAX_QUEUE_DEPTH

■ HM_NOTIFICATION_HANDLER

■ HM_QUEUE_THRESHOLD

■ HM_STACK_SIZE

■ HM_TRUSTED_PARTITION_MASK

8.6 Defining the Health Monitor Handler Table

The health monitor handler table, which is defined in the usrHm.c configlette,
must define all handlers that are specified in the health monitor configuration. At
initialization time, handler names in the table are resolved to function pointers.

8.6.1 Guidelines for Writing Handlers

Handlers should not make blocking calls without first making sure the alarm’s
injector cannot run until the health concern is fully handled. The health monitor
facility assumes the handler is called synchronously within the context of the task
or interrupt that injects the alarm. The facility dispatches the alarm to the
appropriate level. In addition, it assumes the health monitor task at that level
preempts the current context (the one that injected the alarm) or, if the alarm is
injected from interrupt context, the handler is intentionally deferred. Thus, if the
handler is pended due to a blocking call, the injecting context (if the injector is a
task and not an interrupt handler) might be scheduled to run without having fully

8 Health Monitoring
8.7 Health Monitoring for COIL Partitions

217

8

handled the health concern that occurred in that task. In such a situation, it might
be desirable to suspend the offending task before issuing a blocking call in the
context of the handler.

Handlers must be located in the proper location for their level, as follows:

8.7 Health Monitoring for COIL Partitions

(For information about COIL partitions, see 3. Developing COIL Applications.)

COIL provides an event API similar to what vThreads provides. Events injected by
COIL-based applications are dispatched at the module level, partition level, or
process level, in the same manner as for vThreads.

However, COIL-based applications get the configured dispatch level for an event
by calling coilHmEventInject(). If the level is partition level
(HM_PARTITION_LVL) or module level (HM_MODULE_LVL), the application need
do nothing further. If the level is HM_PROCESS_LVL, the application must handle
the event.

Example 8-1 Injecting a Health Monitor Event from a COIL-based Application

The following code fragment shows how to inject a health monitor event from a
COIL-based application and detect its level. Constants are defined in the following
file:

installDir/target/vThreads/h/hmTypes.h

int i;
int level = 0;
COIL_HM_EVENT event;
event.level = -1;
event.sysStatus = HM_PROCESS_EXEC_STATUS;
event.historicalCode = 0;

Type of Health Monitor
Handler

Required Location

Process Same partition OS that created the handler’s context to
run.

Partition Kernel domain

Module Kernel domain

VxWorks 653
Programmer's Guide, 2.2

218

event.code = HM_MSG;
event.subCode = HM_SUB_CODE_STRING;
event.addInfo = 0;
event.addr = 0;
event.taskId = 1;
strcpy (event.taskName, "taskA");
strcpy (event.msg, "Message");
event.msgLen = strlen (event.msg);

coilHmEventInject(&event, 1, 1, &level);
if (level == HM_PROCESS_LVL)

{
/* Handle event locally */
}

8.8 Other Facilities That Inject Alarms

The core OS injects alarms when conditions cause the system to restart.

The partition OS injects alarms under various conditions, such as when conditions
cause the partition to restart.

The APEX layer injects alarms according to the ARINC 653 specification; for
example, when a process misses its deadline.

Where possible and where appropriate, faults are mapped to a health monitor
equivalent of an ARINC 653-defined code. This is especially true when handling
the fault is possible or appropriate at the process level, such as in the case when
applications generate exceptions.

8.9 Public Information

Table 8-3 shows public health monitor information and where it is located. For
information about a library and its routines, see their reference entries.

8 Health Monitoring
8.9 Public Information

219

8

Table 8-3 Health Monitor Public Information

Type of Information Location Details

Header files
(bring in the shared
public header file
installDir/target/share/
h/hmTypes.h

installDir/target/h/hmLib.h Header file for the core
OS.

installDir/target/vThreads/
h/hmLib.h

Header file for vThreads
applications.

installDir/target/val/h/
coilLib.h

Header file for
COIL-based applications.

Constants and data
structures

hmTypes.h ■ System status fields
and modes

■ Dispatch levels

■ ARINC 653-defined
event codes

■ Wind River-defined
event codes

■ Dispatch levels

■ Event subcodes

Core OS API hmLib
hmNotificationLib
hmShow

vThreads API hmErrorHandlerLib
hmLib
hmShow

COIL API coilLib

Default handlers hmDefaultHandlers Example health monitor
handlers, available to
module and partition
health monitors.

VxWorks 653
Programmer's Guide, 2.2

220

hmDbgDefaultHandlers Example debug health
monitor handlers,
available to module and
partition health monitors.
Handlers try to suspend a
task to allow debugging.
When the task cannot be
identified, the handlers
suspend all tasks except
the shell task, effectively
shutting down the system
to allow debugging.

Table 8-3 Health Monitor Public Information (cont’d)

Type of Information Location Details

221

 9
I/O Support

9.1 Introduction 221

9.2 I/O and vThreads 221

9.3 Application Multiplexed I/O 256

9.4 I/O and COIL 264

9.1 Introduction

This chapter describes I/O support for vThreads partition OSs and a partition OSs
based on COIL.

9.2 I/O and vThreads

An application performs synchronous I/O operations in a vThreads partition
using the standard interface of open(), close(), read(), write(), and ioctl(). The
POSIX AIO interface is available for asynchronous I/O operations. The POSIX AIO
driver (aioSysDrv) issues read and write operations in the context of vThreads
high-priority threads.

VxWorks 653
Programmer's Guide, 2.2

222

Applications can access devices created and managed by the core OS and devices
created and managed within the vThreads partition (intrapartition devices).

A pipe device created by a thread in a partition is an example of an intrapartition
device. Other threads in the partition can access the pipe device also. Intrapartition
devices use the standard driver in the vThreads I/O system. In addition, a
vThreads-based device driver manages a device namespace inherited from the
core OS device namespace. The device driver handles all I/O requests from
application threads to devices outside the partition.

The device driver uses the system-call mechanism (see 2.9 vThreads System Calls,
p.34) to call core OS services to perform the I/O request. The mechanism allocates
to the thread one of the core OS tasks (vThreads worker tasks, see 9.2.1 vThreads I/O
and Worker Tasks, p.222) that is assigned to the partition. The thread (and only the
thread) pends until the worker task completes the system call. Other threads in the
partition continue to run. They can also perform I/O operations on an
interpartition device. If that occurs, each thread is allocated a worker task to
perform the I/O request when the interpartition device driver performs a system
call.

The ANSI stdio facility (fopen(), fclose(), fread(), and fwrite()) uses the
standard read and write routines to perform I/O. Therefore, no additional
considerations are required to ensure that a blocking I/O operation does not stall
the entire partition.

9.2.1 vThreads I/O and Worker Tasks

Each vThreads partition has a configurable number of worker tasks that are used
to perform blocking operations. Worker tasks are core OS task that are associated
with a given partition. They perform work on behalf of only their partition, in the
time slot assigned to their partition. If worker tasks are not configured for a
partition, all system calls run in the context of the partition, causing the partition
to block until the call completes. Worker tasks are configurable when the
INCLUDE_DEBUG_UTIL component is added to the core OS.

I/O operations might block even when all of the following are true:

NOTE: Although other threads in the partition do not block, the worker task
performing the I/O call usually takes a global mutex. If the partition time slice
completes before the I/O operation does, other partitions attempting to take the
same mutex block until the first task completes, which will not be until the next
partition time slice. An example of an I/O operation that may block is printf().

9 I/O Support
9.2 I/O and vThreads

223

9

■ The INCLUDE_DEBUG_UTIL component is added to the core OS.

■ The number of worker tasks is configured to non-zero.

■ The O_NONBLOCK I/O flag is set when core OS-managed devices are opened.
(For information on O_NONBLOCK, see 5.8.2 POSIX Message Queue Attributes,
p.110.)

If the number of worker tasks in the partition is not enough to allocate a worker
task to the I/O operation in every case, blocking might occur.

When the last worker task is used, a health monitor alarm is injected. When a
system call cannot be dispatched because no worker tasks are available, a second
alarm is injected.

Where I/O operations might block (as described above), do the following to ensure
no I/O operations block:

■ Add INCLUDE_DEBUG_UTIL to the core OS and configure a large enough
number of worker tasks so that blocking of the I/O operation by a shortage of
worker tasks does not occur.

Where I/O operations might block (as described above), do either of the following
to ensure all I/O operations block:

■ Exclude the INCLUDE_DEBUG_UTIL component from the core OS and do not
create worker tasks for blocking system services.

or

■ Configure the number of worker tasks to zero and do not create worker tasks
for blocking system services.

9.2.2 Device Driver Models

Device drivers for vThreads partitions can follow one of the following models:

■ located entirely in a vThreads partition (user mode)

■ located entirely in the core OS (supervisor mode)

■ split between the core OS and a vThreads partition (user mode and supervisor
mode)

VxWorks 653
Programmer's Guide, 2.2

224

vThreads Model of Device Drivers

The vThreads model of device driver accesses the memory-mapped I/O registers
directly from the I/O partition. The driver does not generate system calls to the
core OS. In order for the I/O partition to read from and write to the
memory-mapped I/O device, the I/O pool region must allow user-level access.
This is best done by specifying the I/O space in a shared region that is accessible
from the I/O partition only. The region map is specified at configuration and build
time. For details, see the VxWorks 653 Configuration and Build Guide. Only the I/O
partition can access the device directly. Other partitions communicate with the
device through the I/O partition using an interpartition communication method.

Usually, non-I/O partitions rely on a local I/O device driver that uses ARINC 653
ports to communicate with the I/O partition. When the I/O partition is restarted,
this device and its I/O layers are automatically reinitialized. For more information,
see 7.9 Restart Functionality, p.156.

Because the vThreads model allows reading and writing of the I/O pool region
from a partition, it is important that the region not cause bus errors or other critical
errors that generate exceptions, which the core OS must handle.

In the vThreads model, the device is controlled entirely by the partition, right
down to accessing the physical hardware. As a result, the device driver, its data

Figure 9-1 vThreads Model of Device Driver

partition I/O partition

partition application

“user-level”
device driver

core OS

partition
application

communication
using ports

creat(), open(),
read(), etc.

I/O layers

xxCreat(), xxOpen,
xxRead(), etc.

hardware device

9 I/O Support
9.2 I/O and vThreads

225

9

structures, and the I/O system reside in the partition. The device hardware must
be mapped and accessible from user mode for the model to work. No system calls
are used to access the device.

Because partitions do not receive hardware interrupts, vThreads-based device
drivers operate in polled mode only. They operate only during the partition
schedule window.

Due to the intrinsic limitations of polling, it is possible to lose data input to the
device. This is an issue only when data is received. Whether data is lost depends
on the following:

■ size of the read buffer of the device’s FIFO buffer

■ frequency of the I/O partition window

■ configuration in the I/O partition

■ speed of the device connection

While either the I/O partition or the task that is waiting for the data-receive in the
I/O partition is blocked, device access is pended. During this time, the data might
be over-written when the device’s FIFO buffer becomes full. To improve the
stability of polling drivers, do any of the following:

■ Use a larger FIFO buffer.

■ Schedule the partition to run more often.

■ Use a slower connection.

The platform provider must configure the VxWorks 653 module and schedule the
I/O partition properly to reduce the risk of data loss.

Communication between the device-owning partition and other partitions is done
through ARINC 653 ports. For information on ports, see 4.7.4 Ports, p.70.

Core OS Model of Device Drivers

For the core OS model of device driver, the device driver is entirely in the core OS.
The I/O pool region attribute must be set to allow supervisor-level access only. All
partitions can access the device using the global open(), close(), read(),
write(),and ioctl() routines. Interrupt and polling modes are supported.
However, to respect ARINC scheduling, polling access to the device is strongly
recommended.

VxWorks 653
Programmer's Guide, 2.2

226

When a partition restarts, the core OS issues the ioctl() FIORESET code to the file
descriptor being accessed in order to force pending I/O system calls for the
partition to complete. All the core OS file descriptors owned by the partition are
closed. The HME_POWER_FAIL handler must initialize the core OS device drivers
(except the system clock). The system integrator must ensure that the state of the
core OS I/O layers is resynchronized with the new state of these device drivers.

The core OS model supports system warm restart, but not system cold restart.

Split Model of Device Drivers

In the split model of device drivers, part of the driver is in the core OS and part is
in a vThreads partition (usually an I/O partition). Only the I/O partition can
access the device. Other partitions access the device by sending messages to the
I/O partition using an ARINC 653 port.

The core OS part of the driver accesses the device by generating a system call.
Although interrupt-driven operation is possible in the core OS, to respect the time
partitioning between the I/O partition and other partitions, polling access to the
device is strongly recommended.

Figure 9-2 Core OS Model of Device Driver

partition B

partition application

creat(), open(),
read(), etc.

I/O layers

hardware device

IO_CREATE,
IO_OPEN, etc.

core OS

I/O layer

device driver

partition A

partition application

creat(), open(),
read(), etc.

I/O layers

IO_CREATE,
IO_OPEN, etc.

9 I/O Support
9.2 I/O and vThreads

227

9

For a split-model driver, the I/O system (ioLib) and driver state information are in
the partition. As a result, open(), close(), read(), write(), and so on, run in the
partition. Since the device hardware is not mapped into the partition space, a
system call is necessary to access the physical device. The core OS part of the driver
need only implement rudimentary routines to access the device itself, along with
routines to validate parameters. Because issues can arise when an I/O partition is
restarted, the core OS part must be a stateless entity that does little more than
access the physical device.

The split model accesses the I/O registers from an I/O partition through system
calls to the core OS. Only the I/O partition can control the driver directly. Access
to the device generates system calls that access routines in the core OS part. The
I/O pool region attribute must be set to supervisor level. Other partitions access
the device through the I/O partition using an interpartition communication
method. Typically, non-I/O partitions rely on a local I/O device driver that uses
ARINC 653 ports to communicate with the I/O partition.

When the I/O partition is restarted, the device and its I/O layers are also restarted.
For more information, see 7.9 Restart Functionality, p.156.

Figure 9-3 Split Model of Device Driver

partition I/O partition

partition application

“User-level”
device driver

partition
application

communication
using ports

creat(), open(),
read(), etc.

I/O layers

xxCreat(), xxOpen(),
xxRead(), etc.

hardware device

creat(), open(),
read(), etc.

core OS

I/O layer

supervisor-level
stateless driver

VxWorks 653
Programmer's Guide, 2.2

228

Validating the Read/Write Address Space

It is strongly recommended that the core OS portion of the driver validate the
following for the read/write address space:

■ page attributes

■ strings

■ partition buffers

■ kernel buffer

For more information, see the reference entry for valValidateLib.

ioctl() code FIORESET Support

The split-model driver must support the ioctl() FIORESET code, which is called
during partition restart if the read(), write(), or ioctl() operations on the device
are not finished. (For more information, see 7.9.5 Restart Implications for Drivers,
p.162.) Because the driver assumes that no events cause a blocking I/O operation,
the only requirement is that ioctl() return OK.

9.2.3 Select Capability

A task can perform a select operation on file descriptors opened on vThreads
(local) devices or core OS (global) devices.

Local select operations are those where a select() operation is done on a local file
descriptor. Global select operations are performed on global file descriptors. The
fd_set passed to select() can have a mixture of local and global file descriptors.

As part of the selectLib initialization, a select-server vThreads task
(tSelGblFdTask) is spawned. The select server accepts global select() requests
from vThreads tasks and performs global select operations serially on their behalf.

The select server uses a vThreads-wide global queue to serialize global select()
operations done by multiple vThreads tasks. The vThreads
SELECT_SERVER_QSIZE configuration parameter establishes the queue size and
implies the concurrency level of global select operations in vThreads. Increasing
the queue size correspondingly increases the number of tasks that can perform
concurrent select operations on core OS file descriptors. The cost of increasing the
parameter is 4 bytes per unit of increase. That is, each queue element is 4 bytes.

9 I/O Support
9.2 I/O and vThreads

229

9

The select server uses a blocking system call to perform the global select operation.
A single worker task for that partition is used to do the actual select() in the core
OS.

Sample Drivers for Communicating Using ARINC 653 Ports

These code examples demonstrate how to communicate between the I/O partition
and other partitions. The code is not included with the VxWorks 653 installation.

The communication mechanism requires the sets of ports listed in the following
tables. You must add the ports to the XML configuration file at configuration and
build time. For details, see the VxWorks 653 Configuration and Build Guide.

One of the above is required for each VxWorks 653 module.

One set of the above is required for each partition that communicates with the I/O
partition.

NOTE: The concurrency level for the global select operation in vThreads space is
equal to SELECT_SERVER_QSIZE. In the core OS space, it is always 1 because there
is a single select() server task that accomplishes the select operation in the core OS.

Table 9-1 Sampling Port Created in the I/O Partition

Name Type Source/Destination Role

sMSync Sampling,
source

To all partitions The I/O partition uses the port to send
its status to other partitions.

Table 9-2 Queuing Ports Created in the I/O Partition

Name Type Source/Destination Role

qPDrvInPx Queuing,
source

To partition x The I/O partition uses the port to
send data read from the device
that the I/O partition manages.

qPDrvOutPx Queuing,
destination

From partition x The I/O partition uses the port to
receive the type of request and
output data.

VxWorks 653
Programmer's Guide, 2.2

230

One set of the above is required for each partition that communicates with the I/O
partition.

If the I/O partition is Partition 1 and the partition communicating with it is
Partition 2, only Partition 2 sends read and write requests to the I/O partition
through the ports.

Example 9-1 portRecords Structure

LOCAL PORT_CFG_RECORD portRecords[] =
 {

 /* The S port P1 to all partition SRC */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSync", 1, 1, 1,
 SOURCE, SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},

 /* The S port P1 to P2 DST */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSyncP2", 2, 1,
 1, DESTINATION, SAMPLING, NOT_APPLICABLE, 1, 0,
 100000000, 0,0},

 /* The Q port P2 to P1 SRC */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutP2", 2, 1,
 2, SOURCE, QUEUING, SENDER_BLOCK, 256, 10, ZERO_TIME_VALUE ,0,0 },

 /* The Q port P2 to P1 DST */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutP2", 1, 1,
 2, DESTINATION, QUEUING, NOT_APPLICABLE, 256, 10,
 ZERO_TIME_VALUE ,0,0 },

 /* The Q port P1 to P2 SRC */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInP2", 1, 1, 3,
 SOURCE, QUEUING, SENDER_BLOCK, 256, 10, ZERO_TIME_VALUE ,0,0 },

Table 9-3 Sampling and Queuing Ports Created in Other Partitions

Name Type Source/Destination Role

qPDrvInPx Queuing,
destination

From I/O partition The data read from the device
managed by the I/O partition
is sent through the port.

qPDrvOutPx Queuing,
source

To I/O partition The type of the request and the
output data are sent through
the port.

sMSyncPx Sampling,
destination

From I/O partition I/O partition status is sent
through the port.

9 I/O Support
9.2 I/O and vThreads

231

9

 /* The Q port P1 to P2 DST */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInP2", 2, 1,
 3, DESTINATION, QUEUING, NOT_APPLICABLE, 256, 10,
 ZERO_TIME_VALUE ,0,0 },

 };

Example 9-2 Partition I/O Handler Driver

This code example shows how to do the following:

■ Establish communications between partitions and an I/O partition.

■ Handle the read and write requests sent from non-I/O partitions through
ARINC 653 ports.

■ Call the TTY driver’s read() and write() routines.

■ Return the results using ARINC 653 ports.

Place the code in the following location:

installDir/target/vThreads/config/comps/src/usrPartHandleIO.c

/* usrPartHandleIO.c - stub partition I/O handler routine */

/* Copyright 2005 Wind River Systems, Inc. */

/*
DESCRIPTION
This is the source configlette for the INCLUDE_PART_IO_HANDLER component. It
creates two tasks that receive/send messages through queuing ports and
write/read consoleFd.

The partition I/O handler requires sMSync source sampling port, and
qPDrvOutPx destination and qPDrvInPx source queuing ports for each partition
domain that partition I/O device is installed.

for the I/O handler partition:
 /* The S port Py to all partition SRC */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSync", y, 1, 1, SOURCE,
 SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},

for each partition domain:
 /* The Q port Px to Py DST */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutPx", y, 1, 2,

DESTINATION, QUEUING, NOT_APPLICABLE, PART_DRV_QUEU_MAX_MSG_SIZE,
 PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0},

 /* The Q port Py to Px SRC */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInPx", y, 1, 3,
 SOURCE, QUEUING, SENDER_BLOCK, PART_DRV_QUEU_MAX_MSG_SIZE,
 PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE, ,0,0},

 x = partition number I/O device is installed
 y = partition number I/O handler is installed

VxWorks 653
Programmer's Guide, 2.2

232

the channel numbers (1, 2, and 3) may need to be adapted to your
specific configuration

CONFIG PARAMETERS
The following parameters can be set and adjusted to alter the behaviour of
this component.

PART_IO_DEV_FIRST_PARTITION
The first partition domain number that requires the I/O handler.

PART_IO_DEV_LAST_PARTITION
The last partition domain number that requires the I/O handler.

PART_DRV_TASK_PRI
The I/O handler task priority. The range is between 100 and 254.

PART_DRV_TASK_OPT
The I/O handler task option.

PART_DRV_TASK_STACK
The I/O handler task stack size.

PART_DRV_QUEU_MAX_MSG_SIZE
The queuing port max message size. This must match the XML configuration
file.

PART_DRV_QUEU_MAX_NB_MSG
The queuing port max message number. This must match the XML configuration
file.

PART_DRV_RCV_BUFF_SIZE
The receive buffer size.
*/

#include "taskLib.h"
#include "ioLib.h"
#include "string.h"
#include "stdio.h"
#include "apex/apexLib.h"

/* defines */

#define PART_SYNC_PORT_NAME ("sMSync")
#define PART_OUT_PORT_BASE_NAME ("qPDrvOutP")
#define PART_IN_PORT_BASE_NAME ("qPDrvInP")
#define DRV_OUT_TASK_BASE_NAME ("drvOutTaskP")
#define DRV_IN_TASK_BASE_NAME ("drvInTaskP")
#define PART_DRV_MAX_MSG_SIZE (PART_DRV_QUEU_MAX_MSG_SIZE - 1)
#define READ_REQ_BYTES readReqBytes [partNum - 1]

typedef enum PART_IO_REQUEST_CODE_TYPE /* request code type */
 {
 PART_IO_READ,
 PART_IO_WRITE,
 PART_IO_SYNC,
 PART_IO_CANCEL

9 I/O Support
9.2 I/O and vThreads

233

9

 } PART_IO_REQUEST_TYPE;

typedef enum PART_IO_STATUS_CODE_TYPE /* status code type */
 {
 PART_IO_SETUP,
 PART_IO_READY
 } PART_IO_STATUS_TYPE;

/* externs */

IMPORT int consoleFd;

/* local */

LOCAL STATUS partIOHandlerInit (int);
LOCAL void partDrvOutputRtn (QUEUING_PORT_ID_TYPE, QUEUING_PORT_ID_TYPE, \

 SEM_ID, int, char *);
LOCAL void partDrvInputRtn (QUEUING_PORT_ID_TYPE, SEM_ID, int, char *);

/* global */

/* partition create status. The value remains after partition warm restart and
 * is re-initialized to FALSE at partition cold restart.
 */

LOCAL BOOL partCreate __attribute__((__section__(".persistent.data"))) = FALSE;

/* read request max size from PDx. The value remains after partition warm
* restart and is cleared at partition cold restart.
*/

LOCAL int readReqBytes [PART_IO_DEV_LAST_PARTITION] \
__attribute__((__section__(".persistent.bss")));

/**
*
* usrPartIOHandlerInit--call the partition I/O handler initialization routine
*
* Calls the I/O handler initialization routine for each partition
* domain that partition I/O device is installed. It is called automatically
* by the root task, vThreadsCompInit(), in
* prjConfig.c when the configuration macro INCLUDE_PART_IO_HANDLER is
* defined.
*
* This routine requires sMSync source sampling port.
*
* /* The S port Py to all partition SRC */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSync", y, 1, "", 0, 1, SOURCE,
* SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},
*
* y = partition number I/O handler is installed
* the channel number (1) may need to be adapted to your configuration
*
* RETURNS: N/A.

VxWorks 653
Programmer's Guide, 2.2

234

*/

void usrPartIOHandlerInit (void)
 {
 SAMPLING_PORT_ID_TYPE sMSyncId; /* sMSync sampling port ID */
 RETURN_CODE_TYPE retCode;
 int partNum; /* partition number */
 char status;

 /* create a sampling port */

 CREATE_SAMPLING_PORT (PART_SYNC_PORT_NAME,
 1,
 SOURCE,
 (SYSTEM_TIME_TYPE) 100000000,
 &sMSyncId,
 &retCode);

 if (retCode == NO_ACTION)
{
/* get sampling port ID if already attached */

GET_SAMPLING_PORT_ID (PART_SYNC_PORT_NAME, &sMSyncId, &retCode);
}

 if (retCode != NO_ERROR)
return;

 /* write the status to sMSync and notice the partition I/O device
 * the handler is in setup
 */

 status = PART_IO_SETUP;

 WRITE_SAMPLING_MESSAGE (sMSyncId, &status, 1, &retCode);

 if (retCode != NO_ERROR)
return;

 if (partCreate != TRUE)
{
/* if cold start, clean the read request */

for (partNum = PART_IO_DEV_FIRST_PARTITION; \
 partNum <= PART_IO_DEV_LAST_PARTITION; partNum++)
READ_REQ_BYTES = 0;

partCreate = TRUE;
}

 for (partNum = PART_IO_DEV_FIRST_PARTITION; \
partNum <= PART_IO_DEV_LAST_PARTITION; partNum++)
{
/* Initialize I/O handler for each partition I/O device */

partIOHandlerInit (partNum);

9 I/O Support
9.2 I/O and vThreads

235

9

}

 /* write the status to sMSync and notice the partition I/O device
 * the handler is ready
 */

 status = PART_IO_READY;

 WRITE_SAMPLING_MESSAGE (sMSyncId, &status, 1, &retCode);

 if (retCode != NO_ERROR)
return;

 }

/**
*
* partIOHandlerInit - initialize the partition I/O handler
*
* This routine initializes the handler.
*
* This routine requires qPDrvOutPx and qPDrvInPx queuing ports.
*
* /* The Q port Px to Py DST */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutPx", y, 1,
* 2, DESTINATION, QUEUING, NOT_APPLICABLE, PART_DRV_QUEU_MAX_MSG_SIZE,
* PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0},
*
* /* The Q port Py to Px SRC */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInPx", y, 1, "", 0, 1,
* SOURCE, QUEUING, SENDER_BLOCK, PART_DRV_QUEU_MAX_MSG_SIZE,
* PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE, 0,0},
*
* x = partition number I/O device is installed
* y = partition number I/O handler is installed
* the channel number (2) may need to be adapted to your configuration

* RETURNS: OK, or ERROR if fails.
*/

LOCAL STATUS partIOHandlerInit
 (
 int partNum /* partition number */
)
 {
 QUEUING_PORT_ID_TYPE qPSendId; /* qPDrvOutPx queuing port ID */
 QUEUING_PORT_ID_TYPE qPRecvId; /* qPDrvInPx queuing port ID */
 RETURN_CODE_TYPE retCode;
 SEM_ID semId; /* binary semaphore ID */
 int tid;
 char * sendBuff; /* transmit buffer pointer */
 char * rcvBuff; /* receive buffer pointer */
 char objName [20];

 /* set name of qPDrvOutPx */

 sprintf (objName, "%s%d", PART_OUT_PORT_BASE_NAME, partNum);

VxWorks 653
Programmer's Guide, 2.2

236

 /* create a queuing port */

 CREATE_QUEUING_PORT (objName,
PART_DRV_QUEU_MAX_MSG_SIZE,
PART_DRV_QUEU_MAX_NB_MSG,
DESTINATION,
FIFO,
&qPSendId,
&retCode);

 if (retCode == NO_ACTION)
{
/* get queuing port ID */

GET_QUEUING_PORT_ID (objName, &qPSendId, &retCode);
}

 if (retCode != NO_ERROR)
return (ERROR);

 /* set name of qPDrvInPx */

 sprintf (objName, "%s%d", PART_IN_PORT_BASE_NAME, partNum);

 /* create a queuing port */

 CREATE_QUEUING_PORT (objName,
PART_DRV_QUEU_MAX_MSG_SIZE,
PART_DRV_QUEU_MAX_NB_MSG,
SOURCE,
FIFO,
&qPRecvId,
&retCode);

 if (retCode == NO_ACTION)
{
/* get queuing port ID */

GET_QUEUING_PORT_ID (objName, &qPRecvId, &retCode);
}

 if (retCode != NO_ERROR)
return (ERROR);

 /* create counting semaphore */

 semId = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

 if ((sendBuff = malloc (PART_DRV_QUEU_MAX_MSG_SIZE)) == NULL)
return (ERROR);

 if ((rcvBuff = malloc (PART_DRV_RCV_BUFF_SIZE + 1)) == NULL)
{
free (rcvBuff);
return (ERROR);

9 I/O Support
9.2 I/O and vThreads

237

9

}

 /* set name of drvOutTaskPx */

 sprintf (objName, "%s%d", DRV_OUT_TASK_BASE_NAME, partNum);

 /* cerate output task drvOutTaskPx */

 tid = taskSpawn (objName,
 PART_DRV_TASK_PRI,
 PART_DRV_TASK_OPT,
 PART_DRV_TASK_STACK,
 (FUNCPTR) partDrvOutputRtn,
 qPSendId,
 qPRecvId,
 (int) semId,
 partNum,
 (int) sendBuff,
 6, 7, 8, 9, 10);

 if (tid == ERROR)
{
free (sendBuff);
free (rcvBuff);
return (ERROR);
}

 /* set name of drvInTaskPx */

 sprintf (objName, "%s%d", DRV_IN_TASK_BASE_NAME, partNum);

 /* cerate input task drvInTaskPx */

 tid = taskSpawn (objName,
 PART_DRV_TASK_PRI + 1,
 PART_DRV_TASK_OPT,
 PART_DRV_TASK_STACK,
 (FUNCPTR) partDrvInputRtn,
 qPRecvId,
 (int) semId,
 partNum,
 (int) rcvBuff,
 5, 6, 7, 8, 9, 10);

 if (tid == ERROR)
{
free (rcvBuff);
return (ERROR);
}

 /* release semaphore if read request is in progress*/

 if (READ_REQ_BYTES != 0)

VxWorks 653
Programmer's Guide, 2.2

238

semGive (semId);

 return (OK);
 }

/**
*
* partDrvOutputRtn - partition Output handler task for the x partition
*
* This task waits the I/O handling requests. If READ request is received,
* release semaphore to unblock the partition Input handler task. If WRITE
* request, write data to the I/O. If CANCEL request, call ioctl and cancel
* the read request.
*
* RETURNS: N/A.
*/

LOCAL void partDrvOutputRtn
 (
 QUEUING_PORT_ID_TYPE qPSendId, /* qPDrvOutPx queuing port ID */
 QUEUING_PORT_ID_TYPE qPRecvId, /* qPDrvInPx queuing port ID */
 SEM_ID semId, /* binary semaphore ID */
 int partNum, /* partition number */
 char * sendBuff /* transmit buffer pointer */
)
 {
 RETURN_CODE_TYPE retCode;
 MESSAGE_SIZE_TYPE msgLength;

 /* infinit loop */

 FOREVER
{
/* wait request messages from x partition */

RECEIVE_QUEUING_MESSAGE (qPSendId,
 INFINITE_TIME_VALUE, /* wait forever */
 sendBuff,
 &msgLength,
 &retCode);

if (retCode == NO_ERROR)
{
/* check the request */

switch (sendBuff [0])
{
case PART_IO_READ: /* READ request */

{
/* set read request bytes */
READ_REQ_BYTES = sendBuff [1] << 24 |

 sendBuff [2] << 16 |
 sendBuff [3] << 8 |
 sendBuff [4];

semGive (semId); /* release semaphore */

9 I/O Support
9.2 I/O and vThreads

239

9

break;
}

case PART_IO_WRITE: /* WRITE request */
{
/* write the data to consoleFd */

write (consoleFd, &sendBuff [1], msgLength - 1);

break;
}

case PART_IO_SYNC: /* SYNC request */
{
/* send it back to x partition */

SEND_QUEUING_MESSAGE (qPRecvId,
 sendBuff,
 1,
 INFINITE_TIME_VALUE,
 &retCode);

/* go through CANCEL request */
}

case PART_IO_CANCEL: /* CANCEL request */
{
if (READ_REQ_BYTES != 0)

{
/* if read is in progress, cancel it */

READ_REQ_BYTES = 0;
ioctl (consoleFd, FIORFLUSH, 0);
}

break;
}

default: /* unexpected */
break;

}
}

}
 }

/**
*
* partDrvInputRtn - partition Input handler task for the x partition
*
* This task waits on the semaphore from Output handler task that is released
* when READ request is received by the Output handler task and reads the I/O.
*
* RETURNS: N/A.
*/

VxWorks 653
Programmer's Guide, 2.2

240

LOCAL void partDrvInputRtn
 (
 QUEUING_PORT_ID_TYPE qPRecvId, /* qPDrvInPx queuing port ID */
 SEM_ID semId, /* binary semaphore ID */
 int partNum, /* partition number */
 char * rcvBuff /* message buffer */
)
 {
 RETURN_CODE_TYPE retCode;
 int maxbytes; /* read max bytes */
 int msgLength; /* message read bytes */
 int bytesPut; /* message send bytes */
 char * buffer;

 /* infinite loop */

 FOREVER
{
/* wait for receive request from x partition */
semTake (semId, WAIT_FOREVER);

maxbytes = READ_REQ_BYTES;

if (maxbytes > PART_DRV_RCV_BUFF_SIZE)
maxbytes = PART_DRV_RCV_BUFF_SIZE;

 /* don not exceed PART_DRV_RCV_BUFF_SIZE */

/* read consoleFd if any input arrives */
msgLength = read (consoleFd, &rcvBuff [1], maxbytes);

buffer = rcvBuff;

if (msgLength == 0) /* read canceled */
retCode = NO_ERROR;

while (msgLength > 0)
{
if (msgLength > PART_DRV_MAX_MSG_SIZE)

{
buffer [0] = TRUE; /* continued */
bytesPut = PART_DRV_MAX_MSG_SIZE;
}

else
{
buffer [0] = FALSE; /* end */
bytesPut = msgLength;
}

/* send it to x partition */
SEND_QUEUING_MESSAGE (qPRecvId,

 buffer,
 bytesPut + 1,
 INFINITE_TIME_VALUE,
 &retCode);

if (retCode == NO_ERROR)

9 I/O Support
9.2 I/O and vThreads

241

9

{
msgLength -= bytesPut;
READ_REQ_BYTES = msgLength;

buffer += bytesPut;
}

}

/* unexpected */

if (retCode != NO_ERROR)
semGive (semId); /* release semaphore, read and send

 * the message again.
 */

}
 }

Example 9-3 Component Configuration File for the Partition I/O Handler

The following component configuration code specifies the configuration for the
partition I/O handler driver in Example 9-2. Place the code in the following
location:

installDir/target/vThreads/config/comps/vxWorks/00comp_part_io_handler.cdf.

For information on how to install the partition I/O handler component, see the
VxWorks 653 Configuration and Build Guide.

/* 00comp_part_io_handler.cdf - Component configuration file */

/* Copyright 2005 Wind River Systems, Inc. */

Component INCLUDE_PART_IO_HANDLER {
 NAME Partition I/O Handler
 SYNOPSIS Partition I/O Handler component
 REQUIRES INCLUDE_APEX \

 INCLUDE_SIO
 CONFIGLETTES usrPartHandleIO.c
 _INIT_ORDER vThreadsCompInit
 INIT_RTN usrPartIOHandlerInit ();
 CFG_PARAMS PART_IO_DEV_FIRST_PARTITION \

 PART_IO_DEV_LAST_PARTITION \
 PART_DRV_TASK_PRI \
 PART_DRV_TASK_OPT \
 PART_DRV_TASK_STACK \
 PART_DRV_QUEU_MAX_MSG_SIZE \
 PART_DRV_QUEU_MAX_NB_MSG \
 PART_DRV_RCV_BUFF_SIZE

 PREF_DOMAIN APPLICATION
}

Parameter PART_IO_DEV_FIRST_PARTITION {
 NAME first partition number requires partition I/O
 DEFAULT 2

VxWorks 653
Programmer's Guide, 2.2

242

 TYPE int
}

Parameter PART_IO_DEV_LAST_PARTITION {
 NAME last partition number requires part I/O
 DEFAULT 2
 TYPE int

}

Parameter PART_DRV_TASK_PRI {
 NAME IO handler task priority
 DEFAULT 100
 TYPE int

}

Parameter PART_DRV_TASK_OPT {
 NAME IO handler task option.
 DEFAULT 0
 TYPE uint

}

Parameter PART_DRV_TASK_STACK {
 NAME IO handler task stack size
 DEFAULT 0x1000
 TYPE uint

}

Parameter PART_DRV_QUEU_MAX_MSG_SIZE {
 NAME partition queuing port max message size
 DEFAULT 256
 TYPE int

}

Parameter PART_DRV_QUEU_MAX_NB_MSG {
 NAME partition queuing port max message number
 DEFAULT 10
 TYPE int

}

Parameter PART_DRV_RCV_BUFF_SIZE {
 NAME receive buffer size
 DEFAULT 255
 TYPE int

}

Example 9-4 Driver to Communicate between I/O Partitions

The following code sample shows how to do the following:

■ Establish communication between partitions and an I/O partition.

■ Send the read and write requests to the I/O partition.

■ Receive the results through ARINC 653 ports.

9 I/O Support
9.2 I/O and vThreads

243

9

Place the code in the following location:

installDir/target/vThreads/config/comps/src/usrPartIODev.c

/* usrPartIODev.c - stub partition I/O driver file */

/* Copyright 2005 Wind River Systems, Inc. */

/*
DESCRIPTION

This is the source configlette for the INCLUDE_PART_IO_DEV component.

The partition I/O device requires sMSyncPx sampling destination port and
qPDrvOutPx source and qPDrvInPx destination queuing ports to synchronize and
communicate to the partition I/O handler.

 /* The S port P1 to Px DST */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSyncPx", x, 1, 1,
 DESTINATION, SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},

 /* The Q port Px to P1 SRC */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutPx", x, 1, 2,
 SOURCE, QUEUING, SENDER_BLOCK, PART_DRV_QUEU_MAX_MSG_SIZE,
 PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE, 0,0},

 /* The Q port P1 to Px DST */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInPx", x, 1, 3,

DESTINATION, QUEUING, NOT_APPLICABLE, PART_DRV_QUEU_MAX_MSG_SIZE,
 PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0},

x = PART_IO_PARTITION_NUMBER, y = partition number I/O handler is installed

CONFIG PARAMETERS
The following parameters can be set and adjusted to alter the behaviour of
this component.

PART_IO_PARTITION_NUMBER
This partition’s domain number.

PART_IO_SYNC_TIME_OUT_SEC
Synchronize time out period in seconds.

PART_DRV_QUEU_MAX_MSG_SIZE
The queuing port max message size. This must match the XML configuration
file.

PART_DRV_QUEU_MAX_NB_MSG
The queuing port max message number. This must match the XML configuration
file.
*/

#include "taskLib.h"
#include "stdlib.h"
#include "stdio.h"
#include "string.h"

VxWorks 653
Programmer's Guide, 2.2

244

#include "errnoLib.h"
#include "iosLib.h"
#include "vThreads.h"
#include "apex/apexLib.h"

/* defines */

#define PART_IO_NAME ("/partIOP")
#define PART_SYNC_PORT_BASE_NAME ("sMSyncP")
#define PART_OUT_PORT_BASE_NAME ("qPDrvOutP")
#define PART_IN_PORT_BASE_NAME ("qPDrvInP")
#define PART_DRV_MAX_MSG_SIZE (PART_DRV_QUEU_MAX_MSG_SIZE - 1)
#define REQUEST_BUFF_SIZE 5

typedef enum PART_IO_REQUEST_CODE_TYPE /* request code type */
 {
 PART_IO_READ,
 PART_IO_WRITE,
 PART_IO_SYNC,
 PART_IO_CANCEL
 } PART_IO_REQUEST_TYPE;

typedef enum PART_IO_STATUS_CODE_TYPE /* status code type */
 {
 PART_IO_SETUP,
 PART_IO_READY
 } PART_IO_STATUS_TYPE;

typedef struct /* PART_IO_DEV - partition I/O device descriptor */
 {
 DEV_HDR devHdr; /* I/O device header */

 /* buffer for read */
 char rcvBuffer[PART_DRV_MAX_MSG_SIZE+1];
 SEM_ID mutSemId; /* reader mutex semaphore */
 SAMPLING_PORT_ID_TYPE sMSyncId; /* synchronization port */
 QUEUING_PORT_ID_TYPE qPSendId; /* transmit port */
 QUEUING_PORT_ID_TYPE qPRecvId; /* reception port */
 } PART_IO_DEV;

/* externs */

IMPORT int consoleFd;

/* forward declarations */

STATUS usrPartIODrv (void);
STATUS usrPartIODevCreate (char *);

/* locals */

LOCAL int usrPartIOOpen (PART_IO_DEV *, char *, int, int);

9 I/O Support
9.2 I/O and vThreads

245

9

LOCAL int usrPartIOClose (PART_IO_DEV *);
LOCAL int usrPartIORead (PART_IO_DEV *, char *, int);
LOCAL int usrPartIOWrite (PART_IO_DEV *, char *, int);

LOCAL int partIODrvNum = ERROR;

/**
*
* usrPartIOInit - initialize the partition I/O
*
* This routine calls the the driver install and initialization routines. It is
* called automatically by the root task, vThreadsCompInit(), in prjConfig.c
* when the configuration macro INCLUDE_PART_IO_DEV is defined.
*
* RETURNS: N/A.
*/

void usrPartIOInit (void)
 {
 /* install the driver */

 if (usrPartIODrv () != OK)
return;

 /* create the device */

 if (usrPartIODevCreate (PART_IO_NAME) != OK)
return;

 /* open the device */

 consoleFd = open (PART_IO_NAME, O_RDWR, 0);

 ioGlobalStdSet (STD_IN, consoleFd);
 ioGlobalStdSet (STD_OUT, consoleFd);
 ioGlobalStdSet (STD_ERR, consoleFd);
 }

/**
*
* usrPartIODrv - initialize the part I/O driver
*
* This routine initializes and installs the driver.
*
* RETURNS: OK, or ERROR if the driver installation fails.
*/

STATUS usrPartIODrv (void)
 {
 /* check if driver already installed */

 if (partIODrvNum != ERROR)
return (OK);

VxWorks 653
Programmer's Guide, 2.2

246

 partIODrvNum = iosDrvInstall ((FUNCPTR) NULL, (FUNCPTR) NULL,
usrPartIOOpen, usrPartIOClose, usrPartIORead,
usrPartIOWrite, (FUNCPTR) NULL);

 return (partIODrvNum == ERROR ? ERROR : OK);
 }

/**
*
* usrPartIODevCreate - create a part I/O device
*
* This routine creates a part I/O device.
*
* This routine requires sMSyncPx sampling port, qPDrvOutPx and qPDrvInPx
* queuing ports.
*
* /* The S port P1 to Px DST */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSyncPx", x, 1, 1,
* DESTINATION, SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},
*
* /* The Q port Px to P1 SRC */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutPx", x, 1, 2,
* SOURCE, QUEUING, SENDER_BLOCK, PART_DRV_QUEU_MAX_MSG_SIZE,
* PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0 },
*
* /* The Q port P1 to Px DST */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInPx", x, 1, 3,
* DESTINATION, QUEUING, NOT_APPLICABLE, PART_DRV_QUEU_MAX_MSG_SIZE,
* PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0},
*
* x = PART_IO_PARTITION_NUMBER, y = partition number I/O handler is installed
*
* RETURNS: OK, or ERROR if the call fails.
*
* ERRNO
* S_ioLib_NO_DRIVER - driver not initialized
*/

STATUS usrPartIODevCreate
 (
 char *name /* name of part I/O driver device to be created */
)
 {
 PART_IO_DEV *pPartIODrvDev;
 RETURN_CODE_TYPE retCode;
 char objName [20];

 if (partIODrvNum == ERROR)
{
errnoSet (S_ioLib_NO_DRIVER);
return (ERROR);
}

 pPartIODrvDev = (PART_IO_DEV *) malloc (sizeof (PART_IO_DEV));

9 I/O Support
9.2 I/O and vThreads

247

9

 if (pPartIODrvDev == NULL)
return (ERROR);

 /* I/O device to system */

 if (iosDevAdd (&pPartIODrvDev->devHdr, name, partIODrvNum) != OK)
{
free ((char *) pPartIODrvDev);
return (ERROR);
}

 /* set name of sMSyncPx */

 sprintf (objName, "%s%d", PART_SYNC_PORT_BASE_NAME, \
 PART_IO_PARTITION_NUMBER);

 /* create a sampling port */

 CREATE_SAMPLING_PORT (objName,
 1,
 DESTINATION,
 (SYSTEM_TIME_TYPE) 100000000,
 &pPartIODrvDev->sMSyncId,
 &retCode);

 if (retCode == NO_ACTION)
{
/* get sampling port ID */

GET_SAMPLING_PORT_ID (objName,
 &pPartIODrvDev->sMSyncId,
 &retCode);

}

 if (retCode != NO_ERROR)
{
free ((char *) pPartIODrvDev);
return (ERROR);
}

 /* set name of qPDrvOutPx */

 sprintf (objName, "%s%d", PART_OUT_PORT_BASE_NAME, \
 PART_IO_PARTITION_NUMBER);

 /* create a queuing port */

 CREATE_QUEUING_PORT (objName,
PART_DRV_QUEU_MAX_MSG_SIZE,
PART_DRV_QUEU_MAX_NB_MSG,
SOURCE,
FIFO,
&pPartIODrvDev->qPSendId,
&retCode);

 if (retCode == NO_ACTION)

VxWorks 653
Programmer's Guide, 2.2

248

{
/* get queuing port ID */
GET_QUEUING_PORT_ID (objName,

 &pPartIODrvDev->qPSendId,
 &retCode);

}

 if (retCode != NO_ERROR)
{
free ((char *) pPartIODrvDev);
return (ERROR);
}

 /* set name of qPDrvInPx */

 sprintf (objName, "%s%d", PART_IN_PORT_BASE_NAME, PART_IO_PARTITION_NUMBER);

 /* create a queuing port */

 CREATE_QUEUING_PORT (objName,
PART_DRV_QUEU_MAX_MSG_SIZE,
PART_DRV_QUEU_MAX_NB_MSG,
DESTINATION,
FIFO,
&pPartIODrvDev->qPRecvId,
&retCode);

 if (retCode == NO_ACTION)
{
/* get queuing port ID */

GET_QUEUING_PORT_ID (objName,
 &pPartIODrvDev->qPRecvId,
 &retCode);

}

 if (retCode != NO_ERROR)
{
free ((char *) pPartIODrvDev);
return (ERROR);
}

 /* create a mutex semaphore */

 pPartIODrvDev->mutSemId = semMCreate (SEM_DELETE_SAFE);

 return (OK);
 }

/**
*
* usrPartIODevDelete - delete a part I/O device
*
* Deletes a part I/O device of a given name. The name must match
* that passed to usrPartIODevCreate() else ERROR will be returned. This
* routine frees memory for the necessary structures and deletes the device.

9 I/O Support
9.2 I/O and vThreads

249

9

*
* RETURNS: OK, or ERROR if the call fails.
*
* ERRNO
* S_ioLib_NO_DRIVER - driver not initialized
*/

STATUS usrPartIODevDelete
 (
 char *name /* name of part I/O driver device to be deleted */
)
 {
 PART_IO_DEV *pPartIODrvDev;
 char *pTail = NULL;

 if (partIODrvNum == ERROR)
{
errnoSet (S_ioLib_NO_DRIVER);
return (ERROR);
}

 if ((pPartIODrvDev = (PART_IO_DEV *) iosDevFind (name, &pTail))
== NULL)
{
return (ERROR);
}

 /* I/O device no longer in system */

 iosDevDelete (&pPartIODrvDev->devHdr);

 /* delete the semaphore */

 semDelete (pPartIODrvDev->mutSemId);

 /* free part I/O memory */

 free ((char *)pPartIODrvDev);

 return (OK);
 }

/**
*
* usrPartIOOpen - open a part I/O file
*
* This routine is called to open a part I/O file. It returns a pointer to the
* device.
*
* RETURNS: pPartIODrvDev or ERROR if time out synchronize the partition I/O
* handler.
*/

LOCAL int usrPartIOOpen
 (
 PART_IO_DEV * pPartIODrvDev, /* device to control */

VxWorks 653
Programmer's Guide, 2.2

250

 char * name, /* device name */
 int flags, /* flags */
 int mode /* mode selected */
)
 {
 MESSAGE_SIZE_TYPE msgLength; /* length received */
 VALIDITY_TYPE validity; /* validity for sync port */
 RETURN_CODE_TYPE retCode;
 int n100mSec; /* x 100m sec */
 char message; /* message */

 n100mSec = 0; /* set time 0 */

 FOREVER
{
/* synchronize the partition I/O handler */

READ_SAMPLING_MESSAGE (pPartIODrvDev->sMSyncId,
 &message,
 &msgLength,
 &validity,
 &retCode);

if ((retCode == NO_ERROR) && (msgLength > 0) && \
(message == PART_IO_READY))
break;

if (n100mSec < PART_IO_SYNC_TIME_OUT_SEC * 10) /* time out 5 sec */
taskDelay (sysClkRateGet()/10);

else
return (ERROR);

n100mSec++;
}

 FOREVER
{
message = PART_IO_SYNC; /* SYNC request */

/* send a SYNC request. It will cancel the previous READ request */

SEND_QUEUING_MESSAGE (pPartIODrvDev->qPSendId,
 &message,
 1,
 INFINITE_TIME_VALUE,
 &retCode);

if (retCode != NO_ERROR)
return (ERROR);

/* receive SYNC message from partition I/O */

RECEIVE_QUEUING_MESSAGE (pPartIODrvDev->qPRecvId,
 (SYSTEM_TIME_TYPE) 1000000000, /* 1 sec */
 pPartIODrvDev->rcvBuffer,
 &msgLength,

9 I/O Support
9.2 I/O and vThreads

251

9

 &retCode);

if (retCode == NO_ERROR)
{
if ((msgLength == 1) && \

(pPartIODrvDev->rcvBuffer [0] == PART_IO_SYNC))
break;

else
return (ERROR);

}
else if (retCode == TIMED_OUT)

{
if (n100mSec < PART_IO_SYNC_TIME_OUT_SEC * 10) /* time out 5 sec */

n100mSec += 10;
else

return (ERROR);
}

else
return (ERROR);

}

 return ((int) pPartIODrvDev);
 }

/**
*
* usrPartIOClose - close a part I/O file
*
* This routine is called to close a part I/O file.
*
* RETURNS: pPartIODrvDev or ERROR if NULL part I/O device pointer.
*/

LOCAL int usrPartIOClose
 (
 PART_IO_DEV *pPartIODrvDev /* device to control */
)
 {
 RETURN_CODE_TYPE retCode;
 char message; /* message for cancel request */

 if (pPartIODrvDev != NULL)
{
message = PART_IO_CANCEL; /* CANCEL request */

/* send a CANCEL request */

SEND_QUEUING_MESSAGE (pPartIODrvDev->qPSendId,
 &message,
 1,
 INFINITE_TIME_VALUE,
 &retCode);

if (retCode != NO_ERROR)
return (ERROR);

VxWorks 653
Programmer's Guide, 2.2

252

return ((int) pPartIODrvDev);
}

 else
return (ERROR);

 }

/**
*
* usrPartIORead - read a partition I/O file
*
* This routine is called to read a part I/O file.
* It reads into the buffer up to <maxbytes> available bytes.
*
* RETURNS: The number of bytes actually read into the buffer.
*/

LOCAL int usrPartIORead
 (
 PART_IO_DEV * pPartIODrvDev, /* device to control */
 char * buffer, /* buffer to read into */
 int maxbytes /* maximum length of read */
)
 {
 RETURN_CODE_TYPE retCode;
 MESSAGE_SIZE_TYPE msgLength;
 int bytesRcvd; /* total received bytes */
char reqBuff [REQUEST_BUFF_SIZE];

 bytesRcvd = 0; /* clear the bytesRcvd */

 if (maxbytes > 0)
{
/* block receive process from other tasks */

semTake (pPartIODrvDev->mutSemId, WAIT_FOREVER);

reqBuff [0] = PART_IO_READ; /* READ request */

/* set max receive bytes */

reqBuff [1] = (maxbytes & 0xff000000) >> 24;
reqBuff [2] = (maxbytes & 0x00ff0000) >> 16;
reqBuff [3] = (maxbytes & 0x0000ff00) >> 8;
reqBuff [4] = (maxbytes & 0x000000ff);

/* send a READ request */

SEND_QUEUING_MESSAGE (pPartIODrvDev->qPSendId,
 reqBuff,
 REQUEST_BUFF_SIZE,
 INFINITE_TIME_VALUE,
 &retCode);

if (retCode == NO_ERROR)
{
pPartIODrvDev->rcvBuffer [0] = TRUE;

9 I/O Support
9.2 I/O and vThreads

253

9

/* loop if continued status */

while (pPartIODrvDev->rcvBuffer [0] == TRUE)
{
/* receive a message */

RECEIVE_QUEUING_MESSAGE (pPartIODrvDev->qPRecvId,
 INFINITE_TIME_VALUE, /* wait forever */
 pPartIODrvDev->rcvBuffer,
 &msgLength,
 &retCode);

if ((retCode != NO_ERROR) || !(msgLength > 0))
{
/* release semaphore */

semGive (pPartIODrvDev->mutSemId);
return (bytesRcvd);
}

msgLength -= 1; /* adjust received length */

/* copy the received message to buffer */

bcopy (&pPartIODrvDev->rcvBuffer [1], buffer, msgLength);

maxbytes -= msgLength;
bytesRcvd += msgLength;
buffer += msgLength;
}

}

/* release semaphore */

semGive (pPartIODrvDev->mutSemId);
}

 return (bytesRcvd);
 }

/**
*
* usrPartIOWrite - write a partition I/O file
*
* This routine is called to write a partition I/O file.
*
* RETURNS: The number of bytes actually written to the device.
*/

LOCAL int usrPartIOWrite
 (
 PART_IO_DEV * pPartIODrvDev, /* device to control */
 char * buffer, /* buffer of data to write */
 int nbytes /* number of bytes in buffer */
)

VxWorks 653
Programmer's Guide, 2.2

254

 {
 RETURN_CODE_TYPE retCode;
 int bytesSend; /* total bytes sent */
 int bytesPut; /* bytes message sent through port */
 char sendBuffer [PART_DRV_MAX_MSG_SIZE + 1];

 bytesSend = 0; /* clear the bytesSend */

 /* loop till all messages sent through the port */

 while (nbytes > 0)
{
sendBuffer [0] = PART_IO_WRITE; /* WRITE request */

if (nbytes > PART_DRV_MAX_MSG_SIZE)
bytesPut = PART_DRV_MAX_MSG_SIZE;

else
bytesPut = nbytes;

/* copy the message to transmit buffer */

bcopy (buffer, &sendBuffer [1], bytesPut);

/* send a message with WRITE request */

SEND_QUEUING_MESSAGE (pPartIODrvDev->qPSendId,
 sendBuffer,
 bytesPut + 1,
 INFINITE_TIME_VALUE,
 &retCode);

if (retCode == NO_ERROR)
{
nbytes -= bytesPut;
bytesSend += bytesPut;
buffer += bytesPut;
}

else
break;

}

 return (bytesSend);
 }

Example 9-5 Component Configuration File for the Driver to Communicate between I/O Partition and Non-I/O

Partitions

The following component configuration code explains how to configure the driver
to communicate between I/O partition and non-I/O partitions in Example 9-4.

Place the code in the following location:

installDir/target/vThreads/config/comps/vxWorks/00comp_part_io_dev.cdf

9 I/O Support
9.2 I/O and vThreads

255

9

For information on how to include a partition I/O device component, see the
VxWorks 653 Configuration and Build Guide.

/* 00comp_part_io_dev.cdf - Component configuration file */

/* Copyright 2005 Wind River Systems, Inc. */

Component INCLUDE_PART_IO_DEV {
 NAME Partition I/O Device
 SYNOPSIS Partition I/O Device component
 REQUIRES INCLUDE_APEX
 CONFIGLETTES usrPartIODev.c
 _INIT_ORDER vThreadsCompInit
 INIT_RTN usrPartIOInit ();
 CFG_PARAMS PART_IO_PARTITION_NUMBER \

 PART_IO_SYNC_TIME_OUT_SEC \
 PART_DRV_QUEU_MAX_MSG_SIZE \
 PART_DRV_QUEU_MAX_NB_MSG

 PREF_DOMAIN APPLICATION
 ENTRY_POINTS usrPartIODrv \

 usrPartIODevCreate
}

EntryPoint usrPartIODrv {
 TYPE TEXT

}

EntryPoint usrPartIODevCreate {
 TYPE TEXT

}

Parameter PART_IO_PARTITION_NUMBER {
 NAME partition number to be installed
 DEFAULT 2
 TYPE int

}

Parameter PART_IO_SYNC_TIME_OUT_SEC {
 NAME IO port synchronous time out sec
 DEFAULT 5
 TYPE int

}

Parameter PART_DRV_QUEU_MAX_MSG_SIZE {
 NAME partition queuing port max message size
 DEFAULT 256
 TYPE int

}

Parameter PART_DRV_QUEU_MAX_NB_MSG {
 NAME partition queuing port max message number
 DEFAULT 10
 TYPE int

}

VxWorks 653
Programmer's Guide, 2.2

256

Table 9-4 shows where the drivers can be placed.

Supervisor-Level Device Driver Model

For information on available routines and ioctl commands, see the reference entry
for the core OS ioLib.

9.3 Application Multiplexed I/O

Application multiplexed I/O provides application developers with a
communications channel to output text to and receive responses from a dedicated
maintenance or test terminal. The feature could be used for running automated test
scripts or for debugging.

Application multiplexed I/O runs over a single, dedicated serial communications
channel operating in polled mode. All partitions in the VxWorks 653 module share
the same serial line for sending and receiving text. All data is sent in ASCII format
with a header that indicates to which partition the data is assigned.

Application multiplexed I/O consists of two drivers: one in the partition and one
in the core OS. The driver in the partition provides blocking read and write
operations that do not block the entire partition. The driver in the core OS provides
multiple partitions access to the shared serial I/O device.

Data received from or sent to the host is written into circular FIFO buffers. There is
one input buffer and one output buffer per partition, plus a pair for the core OS.
For read operations, data is overwritten when the input buffer is full. After data is
overwritten, a read operation is still FIFO and reads the ‘new’ oldest data. That is,
it reads the data available just after the overwritten data.

Table 9-4 Components and Associated Domains

Component Where Can it Go?

INCLUDE_PART_IO_HANDLER I/O partition

INCLUDE_PART_IO_DEV Other partitions, but not the partition in
which INCLUDE_PART_IO_HANDLER is
installed

9 I/O Support
9.3 Application Multiplexed I/O

257

9

For application multiplexed I/O, the core OS allocates each partition a dynamic
bandwidth that is based on the duration of the partition’s time window and the
bandwidth of the serialized I/O driver. Thus, for any time window, a partition that
uses application multiplexed I/O can send and receive only a limited number of
bytes. As a result, the partition’s application multiplexed I/O does not affect other
partitions. Throughput is proportional to the CPU time that the core OS allocates
to the partition.

9.3.1 Serialized I/O Protocol

Application multiplexed I/O can use any serialized I/O driver, such as a terminal
driver, pseudo-terminal, or pipe driver. The supported serialized I/O has the
following protocol in both directions:

■ The flow supports eight-bit data only.

■ Each channel in the VxWorks 653 module has a unique channel ID.

■ The channel ID is coded by two hexadecimal ASCII characters: 256 values from
0 to FF.

■ Channel 0 identifies the core OS.

■ Channels 1 through 255 identify partitions 1 through 255.

■ Only the transition from one channel to another is identified, which is
identified by this character sequence:

STX + channelID1 + channelID2 + data

■ The link partner is made aware of system restart by this character sequence:

STX + NULL + NULL

■ The ownership for each direction of the channel is independent. For example,
the host can write to one partition while another partition is writing to the host.

■ Data associated with an invalid channel ID is discarded.

■ The target requests a new baud setting by sending:

STX + 0x01 + BRI

VxWorks 653
Programmer's Guide, 2.2

258

where BRI is encoded as follows:

9.3.2 Architecture

Figure 9-4 illustrates the general architecture of application multiplexed I/O.

BRI Baud (in bps)

0x00 default
0x01 9600
0x02 9200
0x03 38400
0x04 57600
0x05 76800
0x06 115200

9 I/O Support
9.3 Application Multiplexed I/O

259

9

Figure 9-4 Application Multiplex I/O Architecture

Partition1

core OS

dedicated serial line

serial port

mux/demux

core OS

task A

read()

write()

mamio driver

partition OS

input

buffer

output

buffer

write()

read()

APEX

pamio
driver

Application1

PUT
PUT_LINE

GET
GET_LINE

Partition2

partition OS

input

buffer

output

buffer

write()

read()

POSIX

pamio
driver

Application2

PUT
PUT_LINE

GET

GET_LINE

input buffer

output buffer

VxWorks 653
Programmer's Guide, 2.2

260

9.3.3 Setting up and Using Application Multiplexed I/O in Partitions

Making the Driver Available

If the optional INCLUDE_AMIO component is included in the application’s
partition, application multiplexed I/O is available to the application.

Redirecting Standard I/O to the pamio Driver

In order for standard open(), read(), write(), and ioctl() to use the pamio driver,
standard I/O must be redirected to the driver.

If the INCLUDE_AMIO_REDIRECT component is included in the partition or one
of its shared libraries, standard I/O is automatically redirected.

Alternatively, and for increased granularity, the application can redirect I/O by
calling ioGlobalStdSet(), which overrides the standard file descriptor and causes
the pamio file descriptor to be used instead. Example code follows:

int pamioFd = open ("/pamio", O_RDWR, 0);
ioGlobalStdSet (0, pamioFd); /* STD IN */
ioGlobalStdSet (1, pamioFd); /* STD OUT */
ioGlobalStdSet (2, pamioFd); /* STD ERROR */

Using Application Multiplexed I/O

The API for the pamio driver uses the standard VxWorks 653 system calls:

■ SYSCALL_IO_OPEN

■ SYSCALL_IO_READ

■ SYSCALL_IO_WRITE

■ SYSCALL_IO_IOCTL

The read() and write() routines are blocking. For example, if a channel’s input
buffer is empty, read() waits until an ASCII character is available. Each read or
write operation is normally equivalent to a system call and subsequent read or
write operation in the core OS. To avoid this potential inefficiency when there are
no characters to read or no space to write to, the pamio driver blocks the requesting
task. When characters are available for reading or space for writing, the mamio
driver in the core OS sends a pseudo-interrupt to the partition, and the pamio
driver unblocks the requesting task.

9 I/O Support
9.3 Application Multiplexed I/O

261

9

The ioctl() routine takes the following command codes:

FIOGETOPTIONS
Gets the current device-option word.

FIORELINQUISH
Frees all resources (the blocking semaphore) for the stopped task.

FIOSETOPTIONS
Sets the device-option word to the specified value.

9.3.4 Using Application Multiplexed I/O in the Core OS

The core OS driver that supports application multiplexed I/O in partitions (the
mamio driver) is installed automatically when the kernel calls the mamioLibInit()
routine. (The term mamio stands for module application multiplexed I/O.) The
routine returns a mamio device file descriptor. The mamio driver follows the
standard open, read, write, ioctl I/O model.

For information on how the core OS can use application multiplexed I/O for all
I/O in the core OS, see Using the mamio Driver for All I/O in the Core OS, p.263.

Setting the Mux/Demux Algorithm

When the VxWorks 653 module is cold started, mamioLIbInit() calls
muxDemuxIOLibInit(), which must be called after the mamio driver is
initialized, but before any other mamio driver calls are made. The routine sets the
polling period. In addition, it initializes the mux/demux algorithm according to
these options:

MUX_BLOCKING_DEVICE
If this option is used, the mux write routine uses a FIONWRITE control
operation on the serialized output device before writing a character. The mux
read routine uses a FIONREAD control operation on the serialized output
device before reading a character.

MUX_KERNEL_ALL_WINDOW
If this option is used, the core OS sends data during the time available from
any partition, including ones that do not include the application multiplexed
I/O component.

Since the core OS by default sends data only during spare partition windows,
the platform provider must take care when configuring the system. That is, if
the default mux/demux option is not changed, the platform provider must

VxWorks 653
Programmer's Guide, 2.2

262

include at least one spare time window in the schedule if the core OS uses the
mamio driver.

MUX_KERNEL_SPARE_AND_AMIO_WINDOW
If this option is used, the core OS sends data during the time available from
any partition that includes the application multiplexed I/O component. Core
OS operations preempt the partition.

Using the ioctl() Routine

The ioctl() routine takes the following command codes:

FIOBAUDRATE
Sets the baud of the associated serialized device (same as SIO_BAUD_SET).

FIOGETOPTIONS
Gets the current device option word. For more information, see Setting Line
Modes, p.263.

FIONREAD
Returns the number of characters that are available to be read from the
specified partition’s input buffer. However, if the MAMIO_OPTIONS_CRMOD
option is enabled, ioctl() returns the number of characters copied plus the
number of lines in the buffer. For example, if five lines of NEWLINES are in the
input buffer, the routine returns 10. For more information, see Setting Line
Modes, p.263.

FIONWRITE
Returns the number of characters queued to the specified partition’s output
buffer.

FIOSETOPTIONS
Sets the device option word to the specified value. For more information, see
Setting Line Modes, p.263.

MAMIO_IOCTL_BUFF_INPUT_PUT
Puts the specified number of characters from the specified buffer into the
specified partition’s input buffer. If the MAMIO_OPTIONS_CRMOD option is
enabled, the number of characters that are put might be different from that
specified. For more information, see Setting Line Modes, p.263.

MAMIO_IOCTL_BUFF_OUTPUT_GET
Gets characters from the specified partition’s output buffer and puts them in
the specified buffer. The number of characters that are gotten is returned.

9 I/O Support
9.3 Application Multiplexed I/O

263

9

MAMIO_IOCTL_NOTICE_REGISTER
Registers the notification routine that is to be called when characters are
available in the channel’s output buffer or when the channel requests data to
read.

SIO_BAUD_GET
Gets the baud of the associated serialized device.

SIO_BAUD_SET
Sets the baud of the associated serialized device (same as FIOBAUDRATE).

Setting Line Modes

If the MAMIO_OPTIONS_CRMOD option is enabled for the mamio driver’s option
word, the following occurs:

If the MAMIO_OPTIONS_CRMOD option is not enabled, no replacement is made.

If the MAMIO_OPTIONS_LINE option is enabled for the mamio driver’s option
word, the input character stream is not available for reading until a NEWLINE
character or 255 characters are received. In addition, the input may be modified by
the special characters of backspace (0x8), line-delete (0x15), and end-of-file (0x4). If
the option is not enabled, these special characters are not removed.

Using the mamio Driver for All I/O in the Core OS

To have all I/O in the core OS be redirected to the mamio driver, calls must be
made to ioGlobalStdSet(), which override the standard file descriptors and
causes the mamio file descriptors to be used instead. Example code follows:

int mamioFd = open ("/mamio", O_RDWR, 0);
ioGlobalStdSet (0, mamioFd); /* STD IN */
ioGlobalStdSet (1, mamioFd); /* STD OUT */
ioGlobalStdSet (2, mamioFd); /* STD ERROR */

The above is not required for partitions to use application multiplexed I/O.

This character: Is replaced with:

Received CR
(‘\r’ or 0xD)

NEWLINE
(‘\n’ or 0xA)

Sent NEWLINE CR + NEWLINE

VxWorks 653
Programmer's Guide, 2.2

264

9.4 I/O and COIL

(For information about the core OS interface library, see 3. Developing COIL
Applications.)

An application that runs in a partition with a partition OS based on COIL has
available an API for device I/O system calls. The application has access to kernel
device drivers, including user-supplied kernel device drivers.

COIL supplies a COIL API for I/O. These routines use the same device name
strings as the vThreads device I/O routines and use them in the same manner.

Blocking Versus Non-blocking I/O (Compared to vThreads)

Both vThreads and COIL support blocking and non-blocking I/O system calls.
However, vThreads abstracts the details so that the caller is not aware of whether
the call blocks or whether the I/O work is handed off to a worker task. This
non-blocking I/O infrastructure is not provided in COIL, and so the user partition
OS must provide non-blocking I/O if it is needed.

The blocking I/O case is simple, since the system call simply does not return until
the device I/O activity has been completed and the results are returned. This
occurs identically in both a vThreads partition and a partition based on COIL

Consider the case where worker tasks are present and an application in a
COIL-based partition makes a device I/O call. The call returns immediately to the
caller with a return value of COIL_SYSCALL_PENDING. It is then up to the
application to determine what to do until the device I/O work is complete. (If a
vThreads partition makes the call, the calling thread is blocked on a semaphore
and, therefore, does not return to the calling application.)

When the device I/O operation completes, a COIL_EVENT_SYSCALL_COMPLETE
pseudo-interrupt is delivered to the partition. (In a vThreads partition, this
pseudo-interrupt releases the calling thread from its semaphore and lets it return
to the caller.) In the case of a partition OS based on COIL, it is up to the
user-provided pseudo-interrupt handler routine to determine how to proceed.

9 I/O Support
9.4 I/O and COIL

265

9

Figure 9-5 shows the flow of control for a vThreads application running I/O with
worker tasks. Note that the application is unaware that worker tasks are used.

Figure 9-5 Non-blocking vThreads I/O (Worker Tasks Present)

application makes
I/O device call
to vThreads

vThreads
runs

system call

results returned
to caller

pseudo-interrupt
handler receives

SYSCALL_COMPLETE

release caller’s
semaphore

SYSCALL_PENDING? caller blocked
on semaphore

semaphore
released?

Yes

Yes No

No

VxWorks 653
Programmer's Guide, 2.2

266

In contrast, Figure 9-6 shows the flow of control for a COIL-based application
running I/O without worker tasks.

It is the responsibility of the application to check whether
COIL_SYSCALL_PENDING was returned from the system call and to decide what
to do until the COIL_EVENT_SYSCALL_COMPLETE pseudo-interrupt arrives.

Non-blocking COIL I/O (Worker Tasks Present)

When worker tasks are present, the core OS might defer device I/O calls. In this
case, the I/O system call returns immediately with the COIL_SYSCALL_PENDING
return code. Once the device I/O operation completes, the core OS delivers a
COIL_EVENT_SYSCALL_COMPLETE pseudo-interrupt to the COIL-based partition
OS, which in turn passes it to the application’s pseudo-interrupt handler.

To correlate the original device I/O call with the subsequent
COIL_EVENT_SYSCALL_COMPLETE pseudo-interrupt, the application passes two
user-provided, unique IDs to each device I/O API routine; the IDs are returned in
the corresponding pseudo-interrupt structure. It is the responsibility of the user
partition OS to manage the unique IDs and to perform the correlation. The
pseudo-interrupt structure is defined as follows, where the first two data fields

Figure 9-6 Blocking COIL I/O (No Worker Tasks)

application makes
I/O device call

to COIL

COIL
runs

system call

results returned
to caller

9 I/O Support
9.4 I/O and COIL

267

9

(data1 and data2) correspond to the IDs if evtType is
COIL_EVENT_SYSCALL_COMPLETE:

typedef struct COIL_EVENT
{
COIL_EVENT_TYPE evtType; /* event type */
int data1; /* event data word 1 */
int data2; /* event data word 2 */
int data3; /* event data word 3 */
int data4; /* event data word 4 */
} coil_event;

Figure 9-7 shows an overall flow of a COIL I/O call when worker tasks are present
(non-blocking I/O).

Blocking I/O (No Worker Tasks)

In the case where worker tasks are not used, the device I/O routines may block in
the core OS. In this case, the COIL I/O system call does not return to the
application until the operation has been completed.

When worker tasks are absent, the unique IDs provided in the device I/O APIs are
ignored.

Figure 9-7 Non-blocking COIL I/O (Worker Tasks Present)

time

notify worker
task and return

immediately

application may
perform other work

partition processes
I/O result

worker task
runs I/O call

core OS

I/O system call
complete

I/O call

COIL-based
partition OS

VxWorks 653
Programmer's Guide, 2.2

268

Figure 9-8 shows an overall flow of a COIL I/O call when worker tasks are not
present.

Figure 9-8 Blocking COIL I/O (No Worker Tasks)

time

caller blocks

application is blocked partition processes
I/O result

runs I/O call

core OS

call returns

I/O call

COIL-based
partition OS

269

 A
VxWorks 5.5

A.1 Introduction 269

A.2 VxWorks Tasks 270

A.3 Intertask Communications 294

A.4 VxWorks Events 317

A.5 Watchdog Timers 322

A.6 Interrupt Service Routines 323

A.1 Introduction

Real-time systems are based on the complementary concepts of multitasking and
intertask communications. A multitasking environment lets a real-time

NOTE: The vThreads partition OS is based on the VxWorks 5.5 RTOS. The basics
of VxWorks 5.5 are described in this appendix, which is taken almost verbatim
from the VxWorks Programmer’s Guide, 5.5. In this appendix, VxWorks refers to
VxWorks 5.5. In addition, what this appendix calls tasks are called threads in a
vThreads partition. The scheduler that is mentioned is equivalent to the one that
schedules threads in a partition.

For information on how vThreads differs from VxWorks 5.5, see 2. Developing
vThreads Applications.

VxWorks 653
Programmer's Guide, 2.2

270

application be constructed as a set of independent tasks, each with its own thread
of execution and set of system resources. The intertask communication facilities let
these tasks synchronize and communicate in order to coordinate their activity. In
VxWorks, the intertask communication facilities range from fast semaphores to
message queues and from pipes to network-transparent sockets.

Another key run-time facility is hardware interrupt handling, because interrupts
are the usual mechanism to inform a system of external events.

This appendix uses the qualifier Wind to identify certain VxWorks kernel objects.

A.2 VxWorks Tasks

It is often essential to organize applications into independent, though cooperating,
programs. Each of these programs, while running, is called a task. In VxWorks,
tasks have immediate, shared access to most system resources, while also
maintaining enough separate context to maintain individual threads of control.

The POSIX standard includes the concept of a thread, which is similar to a task, but
with some additional features. For details, see 5.4 POSIX Threads, p.92.

A.2.1 Multitasking

Multitasking provides the fundamental mechanism for an application to control
and react to multiple, discrete real-world events. The VxWorks real-time kernel
provides the basic multitasking environment. Multitasking creates the appearance
of many threads of execution running concurrently when, in fact, the kernel
interleaves their running on the basis of a scheduling algorithm. Each task has its
own context, which is the CPU environment and system resources that the task
sees each time it is scheduled to run by the kernel. On a context switch, a task’s
context is saved in the task control block (TCB).

A task’s context includes:

■ a thread of execution (that is, the task’s program counter)

■ the CPU registers and (optionally) floating-point registers

■ a stack for dynamic variables and routine calls

A VxWorks 5.5
A.2 VxWorks Tasks

271

A

■ I/O assignments for standard input, output, and error

■ a delay timer

■ a time-slice timer

■ kernel control structures

■ signal handlers

■ debugging and performance monitoring values

A.2.2 Task State Transition

The kernel maintains the current state of each task in the system. A task changes
from one state to another as a result of kernel routine calls made by the application.
When created, tasks enter the suspended state. Activation is necessary for a created
task to enter the ready state. The activation phase is extremely fast, enabling
applications to pre-create tasks and activate them in a timely manner. An
alternative is the spawning primitive, which lets a task be created and activated
with a single routine. Tasks can be deleted from any state.

Table A-1 Task State Symbols

State Symbol Description

READY The state of a task that is not waiting for any resource other than
the CPU.

PEND The state of a task that is blocked due to the unavailability of some
resource.

DELAY The state of a task that is asleep for some duration.

SUSPEND The state of a task that is unavailable to run. This state is used
primarily for debugging. Suspension does not inhibit state
transition, only the task’s running. Thus, pended-suspended tasks
can still unblock and delayed-suspended tasks can still awaken.

DELAY + S The state of a task that is both delayed and suspended.

PEND + S The state of a task that is both pended and suspended.

PEND + T The state of a task that is pended with a timeout value.

VxWorks 653
Programmer's Guide, 2.2

272

Table A-1 describes the state symbols that you see when working with the
development tools. Figure A-1 shows the corresponding state diagram of the Wind
kernel states.

PEND + S + T The state of a task that is both pended with a timeout value and
suspended.

state + I The state of task specified by state, plus an inherited priority.

Table A-1 Task State Symbols (cont’d)

State Symbol Description

Figure A-1 Task State Transitions

suspended

pended

taskInit()

The highest-priority ready task is running.

ready delayed

ready pended
ready delayed
ready suspended

pended ready
pended suspended
delayed ready
delayed suspended

suspended ready
suspended pended
suspended delayed

semTake() or msgQReceive()
taskDelay()
taskSuspend()
semGive() / msgQSend()
taskSuspend()
expired delay
taskSuspend()
taskResume() / taskActivate()
taskResume()
taskResume()

A VxWorks 5.5
A.2 VxWorks Tasks

273

A

A.2.3 Wind Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.
The default algorithm in VxWorks is priority-preemptive scheduling. You can also
select round-robin scheduling for your applications. Both algorithms rely on the
task’s priority. The Wind kernel has 256 priority levels, numbered 0 through 255.
Priority 0 is the highest and priority 255 is the lowest. Tasks are assigned a priority
when created. You can also change a task’s priority level while it is running by
calling taskPrioritySet(). The ability to change task priorities dynamically lets
applications track precedence changes in the real world.

The routines that control task scheduling are listed in Table A-2.

POSIX also provides a scheduling interface. For more information, see 5.5 POSIX
Scheduling Interface, p.97.

Priority-Preemptive Scheduling

A priority-preemptive scheduler preempts the CPU when a task has a higher
priority than the running task. Thus, the kernel ensures that the CPU is always
allocated to the highest-priority task that is ready to run. This means that if a task—
with a higher priority than that of the current task—becomes ready to run, the
kernel immediately saves the current task’s context, and switches to the context of
the higher-priority task. For example, in Figure A-2, task t1 is preempted by
higher-priority task t2, which in turn is preempted by t3. When t3 completes, t2
continues running. When t2 completes running, t1 continues running.

Table A-2 Task Scheduler Control Routines

Call Description

kernelTimeSlice() Controls round-robin scheduling.

taskPrioritySet() Changes the priority of a task.

taskLock() Disables task rescheduling.

taskUnlock() Enables task rescheduling.

VxWorks 653
Programmer's Guide, 2.2

274

The disadvantage of this scheduling algorithm is that, when multiple tasks of
equal priority must share the processor, if a single task is never blocked, it can
usurp the processor. Thus, other equal-priority tasks are never given a chance to
run. Round-robin scheduling solves this problem.

Round-Robin Scheduling

A round-robin scheduling algorithm attempts to share the CPU fairly among all
ready tasks of the same priority. Round-robin scheduling uses time slicing to
achieve fair allocation of the CPU to all tasks with the same priority. Each task, in
a group of tasks with the same priority, runs for a defined interval or time slice.

Round-robin scheduling is enabled by calling kernelTimeSlice(), which takes a
parameter for a time slice, or interval. This interval is the amount of time each task
is allowed to run before relinquishing the processor to another equal-priority task.
Thus, the tasks rotate, each running for an equal interval of time. No task gets a
second slice of time before all other tasks in the priority group have been allowed
to run.

In most systems, it is not necessary to enable round-robin scheduling, the
exception being when multiple copies of the same code are to be run, such as in a
user interface task.

If round-robin scheduling is enabled, and preemption is enabled for the running
task, the system tick handler increments the task’s time-slice count. When the
specified time-slice interval is completed, the system tick handler clears the

Figure A-2 Priority Preemption

t1

KEY = preemption

time

High

Low

pr
io

rit
y

t3

t2

= task completion

t1

t2

A VxWorks 5.5
A.2 VxWorks Tasks

275

A

counter and the task is placed at the tail of the list of tasks at its priority level. New
tasks joining a given priority group are placed at the tail of the group with their
run-time counter initialized to zero.

Enabling round-robin scheduling does not affect the performance of task context
switches, nor is additional memory allocated.

If a task blocks or is preempted by a higher-priority task during its interval, its
time-slice count is saved and then restored when the task becomes eligible to run.
In the case of preemption, the task resumes running once the higher-priority task
completes, assuming that no other task of a higher priority is ready to run. In the
case where the task blocks, it is placed at the tail of the list of tasks at its priority
level. If preemption is disabled during round-robin scheduling, the time-slice
count of the running task is not incremented.

Time-slice counts are accrued by the task that is running when a system tick occurs,
regardless of whether the task has run for the entire tick interval. Due to
preemption by higher-priority tasks or ISRs stealing CPU time from the task, it is
possible for a task to effectively run for either more or less total CPU time than its
allotted time slice.

Figure A-3 shows round-robin scheduling for three tasks of the same priority: t1,
t2, and t3. Task t2 is preempted by a higher-priority task t4 but resumes at the count
where it left off when t4 is finished.

Preemption Locks

Figure A-3 Round-Robin Scheduling

t1

KEY = preemption

time

High

Low

pr
io

rit
y

t2 t3 t1

t4

t2 t2

= task completion

time slice

t3

VxWorks 653
Programmer's Guide, 2.2

276

The Wind scheduler can be explicitly disabled and enabled on a per-task basis with
taskLock() and taskUnlock(). When a task disables the scheduler by calling
taskLock(), no priority-based preemption can take place while that task is
running.

However, if the task explicitly blocks or suspends, the scheduler selects the next
highest-priority eligible task to run. When the preemption-locked task unblocks
and begins running again, preemption is again disabled.

Note that preemption locks prevent task context switching, but do not lock out
interrupt handling.

Preemption locks can be used to achieve mutual exclusion; however, keep the
duration of preemption locking to a minimum. For more information, see
A.3.2 Mutual Exclusion, p.295.

For information on possible interaction with health monitoring, see Dispatching
Rules, p.205.

A Comparison of taskLock() and intLock()

When using taskLock(), consider that it does not achieve mutual exclusion.
Generally, if interrupted by hardware, the system eventually returns to your task.
However, if you block, you lose task lockout. Thus, before you return from the
routine, taskUnlock() should be called.

When a task is accessing a variable or data structure that is also accessed by an ISR,
you can use intLock() to achieve mutual exclusion. Using intLock() makes the
operation atomic in a single processor environment. It is best if the operation is
kept minimal, meaning a few lines of code and no routine calls. If the call is too
long, it can directly impact interrupt latency and cause the system to become far
less deterministic.

Driver Support Task Priority

All application tasks should be priority 100 - 250. However, driver support tasks
(tasks associated with an ISR) can be in the range of 51-99. These tasks are crucial.
For example, if a support task fails while copying data from a chip, the device loses
that data (for example, a network interface, an HDLC, and so on). The system
netTask() is at priority 50, so user tasks should not be assigned priorities below
that task. If they are, the network connection could die and prevent debugging
capabilities with Workbench.

A VxWorks 5.5
A.2 VxWorks Tasks

277

A

A.2.4 Task Control

The following sections give an overview of the basic VxWorks task routines, which
are found in the VxWorks library taskLib. These routines provide the means for
task creation and control, as well as for retrieving information about tasks. See the
VxWorks 653 vThreads API Reference entry for taskLib for further information.

For interactive use, you can control VxWorks tasks from the host or target shell. See
the Workbench User’s Guide, VxWorks 653 Version.

Task Creation and Activation

The routines listed in Table A-3 are used to create tasks.

The arguments to taskSpawn() are the new task’s name (an ASCII string), the
task’s priority, an options word, the stack size, the main routine address, and ten
arguments to be passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, arg1, …arg10);

The taskSpawn() routine creates the new task context, which includes allocating
the stack and setting up the task environment to call the main routine (an ordinary
routine) with the specified arguments. The new task begins running at the entry to
the specified routine.

The taskSpawn() routine embodies the lower-level steps of allocation,
initialization, and activation. The initialization and activation routines are
provided by taskInit() and taskActivate(); however, Wind River recommends
you use these routines only when you need greater control over allocation or
activation.

Table A-3 Task Creation Routines

Call Description

taskSpawn() Spawns (creates and activates) a new task.

taskInit() Initializes a new task.

taskActivate() Activates an initialized task.

VxWorks 653
Programmer's Guide, 2.2

278

Task Stack

It is hard to know exactly how much stack space to allocate without
reverse-engineering the system configuration. To help avoid a stack overflow, and
task stack corruption, you can take the following approach. When initially
allocating the stack, make it much larger than anticipated (for example, from 20 KB
to up to 100 KB, depending upon the type of application). Then, periodically
monitor the stack with checkStack(), and if it is safe to make them smaller, modify
the size.

Task Names and IDs

When a task is spawned, you can specify an ASCII string of any length to be the
task name. VxWorks returns a task ID, which is a four-byte handle to the task’s
data structures. Most VxWorks task routines take a task ID as the argument
specifying a task. VxWorks uses a convention that a task ID of 0 (zero) always
implies the calling task.

VxWorks does not require that task names be unique, but it is recommended that
unique names be used in order to avoid confusing the user. Furthermore, to use the
development tools to their best advantage, task names should not conflict with
globally visible routine or variable names. To avoid name conflicts, VxWorks uses
a convention of prefixing all task names started from the target with the character
t and task names started from the host with the character u.

You may not want to name some or all your application’s tasks. If a NULL pointer
is supplied for the name argument of taskSpawn(), VxWorks assigns a unique
name. The name is of the form tN, where N is a decimal integer that is incremented
by one for each unnamed task that is spawned.

The taskLib routines listed in Table A-4 manage task IDs and names.

Table A-4 Task Name and ID Routines

Call Description

taskName() Gets the task name associated with a task ID.

taskNameToId() Looks up the task ID associated with a task name.

taskIdSelf() Gets the calling task’s ID.

taskIdVerify() Verifies the existence of a specified task.

A VxWorks 5.5
A.2 VxWorks Tasks

279

A

Task Options

When a task is spawned, you can pass in one or more option parameters, which are
listed in Table A-5. The result is determined by performing a logical OR operation
on the specified options.

You must include the VX_FP_TASK option when creating a task that:

■ Performs floating-point operations.

■ Calls any routine that returns a floating-point value.

■ Calls any routine that takes a floating-point value as an argument.

For example:

tid = taskSpawn ("tMyTask", 90, VX_FP_TASK, 20000, myFunc, 2387, 0, 0,
0, 0, 0, 0, 0, 0, 0);

Some routines perform floating-point operations internally. The VxWorks
documentation for each of these routines clearly states the need to use the
VX_FP_TASK option.

After a task is spawned, you can examine or alter task options by using the
routines listed in Table A-6. Only the VX_UNBREAKABLE option can be altered.

Table A-5 Task Options

Name Hex Value Description

VX_FP_TASK 0x0008 Runs with the floating-point coprocessor.

VX_NO_STACK_FILL 0x0100 Does not fill the stack with 0xee.

VX_PRIVATE_ENV 0x0080 Runs a task with a private environment.

VX_UNBREAKABLE 0x0002 Disables breakpoints for the task.

VX_DSP_TASK 0x0200 1 = DSP coprocessor support.

VX_ALTIVEC_TASK 0x0400 1 = ALTIVEC coprocessor support.

VxWorks 653
Programmer's Guide, 2.2

280

Task Information

The routines listed in Table A-7 get information about a task by taking a snapshot
of a task’s context when the routine is called. Because the task state is dynamic, the
information may not be current unless the task is known to be dormant (that is,
suspended).

Task Deletion and Deletion Safety

Tasks can be dynamically deleted from the system. VxWorks includes the routines
listed in Table A-8 to delete tasks and to protect tasks from unexpected deletion.

Table A-6 Task Option Routines

Call Description

taskOptionsGet() Examines task options.

taskOptionsSet() Sets task options.

Table A-7 Task Information Routines

Call Description

taskIdListGet() Fills an array with the IDs of all active tasks.

taskInfoGet() Gets information about a task.

taskPriorityGet() Examines the priority of a task.

taskRegsGet() Examines a task’s registers (cannot be used with the current
task).

taskRegsSet() Sets a task’s registers (cannot be used with the current task).

taskIsSuspended() Checks whether a task is suspended.

taskIsReady() Checks whether a task is ready to run.

taskTcb() Gets a pointer to a task’s control block.

A VxWorks 5.5
A.2 VxWorks Tasks

281

A

Tasks implicitly call exit() if the entry routine specified during task creation
returns. A task can kill another task or itself by calling taskDelete().

When a task is deleted, no other task is notified of this deletion. The routines
taskSafe() and taskUnsafe() address problems that stem from unexpected
deletion of tasks. The taskSafe() routine protects a task from deletion by other
tasks. This protection is often needed when a task runs in a critical region or
engages a critical resource.

For example, a task might take a semaphore for exclusive access to some data
structure. While running inside the critical region, the task might be deleted by
another task. Because the task is unable to complete the critical region, the data
structure might be left in a corrupt or inconsistent state. Furthermore, because the
semaphore can never be released by the task, the critical resource is now
unavailable for use by any other task and is essentially frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an
outcome. Any task that tries to delete a task protected with taskSafe() is blocked.
When finished with its critical resource, the protected task can make itself available
for deletion by calling taskUnsafe(), which readies any deleting task. To support

Table A-8 Task-Deletion Routines

Call Description

exit() Terminates the calling task and frees memory
(task stacks and task control blocks only)

Memory that a task allocates while it runs is not freed when
the task is terminated.

taskDelete() Terminates a specified task and frees memory
(task stacks and task control blocks only).*

taskSafe() Protects the calling task from deletion.

taskUnsafe() Undoes a taskSafe() (makes the calling task available for
deletion).

! WARNING: Make sure that tasks are not deleted at inappropriate times. Before an
application deletes a task, the task should release all shared resources that it holds.

NOTE: You can use VxWorks events to send an event when a task finishes running.
For more information, see A.4 VxWorks Events, p.317.

VxWorks 653
Programmer's Guide, 2.2

282

nested deletion-safe regions, a count is kept of the number of times taskSafe() and
taskUnsafe() are called. Deletion is allowed only when the count is zero, that is,
there are as many “unsafes” as “safes.” Only the calling task is protected. A task
cannot make another task safe or unsafe from deletion.

The following code fragment shows how to use taskSafe() and taskUnsafe() to
protect a critical region of code:

taskSafe ();
semTake (semId, WAIT_FOREVER); /* Block until semaphore available */
.
. /* critical region code */
.
semGive (semId); /* Release semaphore */
taskUnsafe ();

Deletion safety is often coupled closely with mutual exclusion, as in this example.
For convenience and efficiency, a special kind of semaphore, the mutual-exclusion
semaphore, offers an option for deletion safety. For more information, see
Mutual-Exclusion Semaphores, p.302.

Task Control

The routines listed in Table A-9 provide direct control over a task’s running.

VxWorks debugging facilities require routines for suspending and resuming a
task. They are used to freeze a task’s state for examination.

While they run, tasks may need to be restarted in response to some catastrophic
error. The restart mechanism, taskRestart(), recreates a task with the original
creation arguments.

Table A-9 Task Control Routines

Call Description

taskSuspend() Suspends a task.

taskResume() Resumes a task.

taskRestart() Restarts a task.

taskDelay() Delays a task. Delay units are ticks, resolution in ticks.

nanosleep() Delays a task. Delay units are nanoseconds, resolution in ticks.

A VxWorks 5.5
A.2 VxWorks Tasks

283

A

Delay operations provide a simple mechanism for a task to sleep for a fixed
duration. Task delays are often used for polling applications. For example, to delay
a task for half a second without making assumptions about the clock rate, call:

taskDelay (sysClkRateGet () / 2);

The sysClkRateGet() routine returns the speed of the system clock in ticks per
second. Instead of taskDelay(), you can use the POSIX nanosleep() routine to
specify a delay directly in time units. Only the units are different. The resolution of
both delay routines is the same, and depends on the system clock. For details, see
5.2 POSIX Clocks and Timers, p.90.

As a side effect, taskDelay() moves the calling task to the end of the ready queue
for tasks of the same priority. In particular, you can yield the CPU to any other
tasks of the same priority by “delaying” for zero clock ticks:

taskDelay (NO_WAIT); /* allow other tasks of same priority to run */

A delay of zero duration is possible only with taskDelay(). The nanosleep()
routine considers it an error.

System clock resolution is typically 60 Hz (60 times per second). This is a relatively
long time for one clock tick, and would be long even at 100 Hz or 120 Hz. Thus,
since periodic delaying is effectively polling, you may want to consider using
event-driven techniques as an alternative.

A.2.5 Tasking Extensions

To let additional task-related facilities be added to the system, VxWorks provides
hook routines that let additional routines be called when a task is created, a task
context switch occurs, or a task is deleted. There are spare fields in the task control
block (TCB) available for application extension of a task’s context.

These hook routines are listed in Table A-10. For more information, see the
reference entry for taskHookLib.

Table A-10 Task Create, Switch, and Delete Hooks

Call Description

taskCreateHookAdd() Adds a routine to be called at every task create.

taskCreateHookDelete() Deletes a previously added task create routine.

taskSwitchHookAdd() Adds a routine to be called at every task switch.

VxWorks 653
Programmer's Guide, 2.2

284

When using hook routines, be aware of the following restrictions:

■ Task switch hook routines must not assume any VM context is current other
than the kernel context (as with ISRs).

■ Task switch and swap hooks must not rely on knowledge of the current task or
call any routine that relies on this information (for example, taskIdSelf()).

■ A switch or swap hook must not rely on the taskIdVerify(pOldTcb)
mechanism to determine if the delete hook, if any, has already run for the
self-destructing task case. Instead, some other state information needs to be
changed. For example, using a NULL pointer in the delete hook to be detected
by the switch hook.

The taskCreateAction hook routines run in the context of the creator task, and any
new objects are owned by the creator task’s home protection domain, or the creator
task itself. It may, therefore, be necessary to assign the ownership of new objects to
the task that is created in order to prevent undesirable object reclamation in the
event that the creator task terminates.

User-installed switch hooks are called within the kernel context and therefore do
not have access to all VxWorks facilities. Table A-11 summarizes the routines that
can be called from a task switch hook. In general, any routine that does not involve
the kernel can be called.

taskSwitchHookDelete() Deletes a previously added task switch routine.

taskDeleteHookAdd() Adds a routine to be called at every task delete.

taskDeleteHookDelete() Deletes a previously added task delete routine.

Table A-10 Task Create, Switch, and Delete Hooks (cont’d)

Call Description

A VxWorks 5.5
A.2 VxWorks Tasks

285

A

For information about POSIX extensions, see 5. Developing POSIX Applications.

A.2.6 Task Error Status: errno

By convention, C library routines set a single global integer variable errno to an
appropriate error number whenever the routine encounters an error. This
convention is specified as part of the ANSI C standard.

Layered Definitions of errno

In VxWorks, errno is simultaneously defined in two different ways. There is, as in
ANSI C, an underlying global variable called errno, which you can display by

Table A-11 Routines that Can Be Called by Task Switch Hooks

Library Routines

bLib All routines

fppArchLib fppRestore()
fppSave()

intLib intContext()
intCount()
intLock()
intVecSet()
intVecGet()
intUnlock()

lstLib All routines except lstFree()

mathALib All are callable if fppRestore() or fppSave() is used

rngLib All routines except rngCreate() and roundlet()

taskLib taskIdDefault()
taskIdVerify()
taskIsReady()
taskIsSuspended()
taskTcb()

vxLib vxTas()

VxWorks 653
Programmer's Guide, 2.2

286

name using the development tools. (See the Workbench User’s Guide, VxWorks 653
Version.) However, errno is also defined as a macro in errno.h. This is the definition
visible to all VxWorks, except one routine. The macro is defined as a call to an
__errno() routine that returns the address of the global errno variable. The
__errno() routine is the one routine that does not itself use the macro definition for
errno). This yields a useful feature: because __errno() is a routine, you can place
breakpoints on it to determine where a particular error occurs.

Nevertheless, because the result of the errno macro is the address of the global
errno variable, C programs can set the value of errno in the standard way:

errno = someErrorNumber;

As with any other errno implementation, do not have a local variable of the same
name.

A Separate errno Value for Each Task

In VxWorks, the underlying global errno is a single predefined global variable that
can be referenced directly by application code that is linked with VxWorks (either
statically on the host or dynamically at load time). However, for errno to be useful
in the multitasking environment of VxWorks, each task must see its own version
of errno. Therefore errno is saved and restored by the kernel as part of each task’s
context every time a context switch occurs. Similarly, ISRs see their own versions
of errno.

This is accomplished by saving and restoring errno on the interrupt stack as part
of the interrupt enter and exit code. Thus, regardless of the VxWorks context, an
error code can be stored or consulted with direct manipulation of the global
variable errno.

Error Return Convention

Almost all VxWorks routines follow a convention that indicates simple success or
failure of their operation by the actual return value of the routine. Many routines
return only the status values OK (0) or ERROR (-1). Some routines that normally
return a nonnegative number (for example, open() returns a file descriptor) also
return ERROR to indicate an error. Routines that return a pointer usually return
NULL (0) to indicate an error. In most cases, a routine returning such an error
indication also sets errno to the specific error code.

A VxWorks 5.5
A.2 VxWorks Tasks

287

A

The global variable errno is never cleared by VxWorks routines. Thus, its value
always indicates the last error status set. When a VxWorks routine gets an error
indication from a call to another routine, it usually returns its own error indication
without modifying errno. Thus, the value of errno that is set in the lower-level
routine remains available as the indication of error type.

For example, if malloc() fails because insufficient memory remains in the pool, it
sets errno to a code indicating an insufficient-memory error was encountered in
the memory allocation library, memLib. The malloc() routine then returns NULL
to indicate the failure. The calling routine, receiving the NULL from malloc(), then
returns its own error indication of ERROR. However, it does not alter errno leaving
it at the “insufficient memory” code set by malloc(). For example:

if ((pNew = malloc (CHUNK_SIZE)) == NULL)
return (ERROR);

It is recommended that you use this mechanism in your own routines, setting and
examining errno as a debugging technique. A string constant associated with
errno can be displayed using printErrno() if the errno value has a corresponding
string entered in the error-status symbol table, statSymTbl. See the reference entry
errnoLib for details on error-status values and building statSymTbl.

Assignment of Error Status Values

A VxWorks errno value encodes the module (library) that issues the error in the
most significant two bytes. It uses the least significant two bytes for individual
error numbers. Module numbers are in the range 1–500; errno values with a
“module” number of zero are used for source compatibility.

All other errno values (that is, positive values greater than or equal to 501
left-shifted 16, and all negative values) are available for application use.

See the reference entry on errnoLib for more information about defining and
decoding errno values with this convention.

A.2.7 Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as
illegal instructions, bus or address errors, divide by zero, and so forth. The
VxWorks exception handling package takes care of all such exceptions. The default
exception handler suspends the task that caused the exception, and saves the state
of the task at the point of the exception. The kernel and other tasks continue
uninterrupted. A description of the exception is transmitted to the development

VxWorks 653
Programmer's Guide, 2.2

288

tools, which can be used to examine the suspended task. For details, see the
Workbench User’s Guide, VxWorks 653 Version.

Tasks can also attach their own handlers for certain hardware exceptions through
the signal facility. If a task has supplied a signal handler for an exception, the
default exception handling described above is not performed. A user-defined
signal handler is useful for recovering from catastrophic events. Typically,
setjmp() is called to define the point in the program where control is restored, and
longjmp() is called in the signal handler to restore that context. The longjmp()
routine restores the state of the task’s signal mask.

Signals are also used for signaling software exceptions as well as hardware
exceptions. They are described in more detail in A.3.6 Signals, p.315 and in the
reference entry for sigLib.

A.2.8 Shared Code and Reentrancy

In VxWorks, it is common for a single copy of a routine or routine library to be
called by many different tasks. For example, many tasks may call printf(), but
there is only a single copy of the routine in the system. A single copy of code that
is run by multiple tasks is called shared code. VxWorks dynamic linking facilities
make this especially easy. Shared code makes a system more efficient and easier to
maintain. See Figure A-4.

Figure A-4 Shared Code

tasks shared code

...

taskTwo (void)
{
myFunc();

...
}

myFunc();

taskOne (void)
{
...

...
}

}

myFunc (void)
{
...

A VxWorks 5.5
A.2 VxWorks Tasks

289

A

Shared code must be reentrant. A routine is reentrant if a single copy of the routine
can be called from several task contexts simultaneously without conflict. Such
conflict typically occurs when a routine modifies global or static variables, because
there is only a single copy of the data and code. A routine’s references to such
variables can overlap and interfere in invocations from different task contexts.

Most routines in VxWorks are reentrant. However, you should assume that any
routine someName() is not reentrant if there is a corresponding routine named
someName_r() — the latter is provided as a reentrant version of the routine. For
example, because ldiv() has a corresponding ldiv_r() routine, you can assume
that ldiv() is not reentrant.

VxWorks I/O and driver routines are reentrant, but require careful application
design. For buffered I/O, Wind River recommends using file-pointer buffers on a
per-task basis. At the driver level, it is possible to load buffers with streams from
different tasks, due to the global file descriptor table in VxWorks.

This may or may not be desirable, depending on the nature of the application. For
example, a packet driver can mix streams from different tasks because the packet
header identifies the destination of each packet.

The majority of VxWorks routines use the following reentrancy techniques:

■ dynamic stack variables

■ global and static variables guarded by semaphores

■ task variables

Wind River recommends applying these same techniques when writing
application code that can be called from several task contexts simultaneously.

In some cases, reentrant code is not preferable. A critical section should use a
binary semaphore to guard it, or use intLock() or intUnlock() if called from by an
ISR.

Dynamic Stack Variables

Many routines are pure code, having no data of their own except dynamic stack
variables. They work exclusively on data provided by the caller as parameters. The

NOTE: Init() routines should be callable multiple times, even if logically they
should be called only once. As a rule, routines should avoid static variables that
keep state information. Init() routines are one exception, where using a static
variable that returns the success or failure of the original Init() is appropriate.

VxWorks 653
Programmer's Guide, 2.2

290

linked-list library, lstLib, is a good example of this. Its routines operate on lists and
nodes provided by the caller in each routine call.

Routines of this kind are inherently reentrant. Multiple tasks can use such routines
simultaneously, without interfering with each other, because each task does indeed
have its own stack. See Figure A-5.

Guarded Global and Static Variables

Some libraries encapsulate access to common data. This kind of library requires
some caution because the routines are not inherently reentrant. Multiple tasks
simultaneously calling the routines in the library might interfere with access to
common variables. Such libraries must be made explicitly reentrant by providing
a mutual-exclusion mechanism to prohibit tasks from simultaneously running
critical sections of code. The usual mutual-exclusion mechanism is the mutex
semaphore facility provided by semMLib and described in Mutual-Exclusion
Semaphores, p.302.

Task Variables

Some routines that can be called by multiple tasks simultaneously may require
global or static variables with a distinct value for each calling task. For example,

Figure A-5 Stack Variables and Shared Code

tasks common routinetask stacks

...
var = 1
...

...
var = 2
...

comFunc(1);

taskOne ()
{
...

...
}

comFunc(2);

taskTwo ()
{
...

...
}

}

comFunc (arg)
{
int var = arg;

A VxWorks 5.5
A.2 VxWorks Tasks

291

A

several tasks may reference a private buffer of memory and yet refer to it with the
same global variable.

To accommodate this, VxWorks provides a facility called task variables that lets
four-byte variables be added to a task’s context, so that the value of such a variable
is switched every time a task switch occurs to or from its owner task. Typically,
several tasks declare the same variable (four-byte memory location) as a task
variable. Each of those tasks can then treat that single memory location as its own
private variable. See Figure A-6. This facility is provided by taskVarAdd(),
taskVarDelete(), taskVarSet(), and taskVarGet(), which are described in the
reference entry for taskVarLib.

Use this mechanism sparingly. Each task variable adds a few microseconds to the
context switching time for its task, because the value of the variable must be saved
and restored as part of the task’s context. Consider collecting all a module’s
(library’s) task variables into a single dynamically allocated structure, and then
making all accesses to that structure indirectly through a single pointer. This
pointer can then be the task variable for all tasks using that module (library).

Figure A-6 Task Variables and Context Switches

old TCB

pTaskVar globDat

new TCB

pTaskVar

value saved
in old

task’s TCB

value restored
from new

task’s TCB

current value of
globDat

globDat

VxWorks 653
Programmer's Guide, 2.2

292

Multiple Tasks with the Same Main Routine

With VxWorks, it is possible to spawn several tasks with the same main routine.
Each spawn creates a new task with its own stack and context. Each spawn can also
pass the main routine different parameters to the new task. In this case, the same
rules of reentrancy described in Task Variables, p.290 apply to the entire task.

This is useful when the same routine needs to be performed concurrently with
different sets of parameters. For example, a routine that monitors a particular kind
of equipment might be spawned several times to monitor several different pieces
of that equipment. The arguments to the main routine could indicate the piece of
equipment the task is to monitor.

In Figure A-7, multiple joints of the mechanical arm use the same code. The tasks
manipulating the joints call joint(). The joint number (jointNum) is used to
indicate which joint on the arm to manipulate.

A.2.9 VxWorks System Tasks

Depending on its configuration, VxWorks may include a variety of system tasks.
These are described below.

Figure A-7 Multiple Tasks Using the Same Code

joint_1

joint_2

joint_3

joint
(
int jointNum
)
{
/* joint code here */
}

A VxWorks 5.5
A.2 VxWorks Tasks

293

A

Root Task: tUsrRoot

The root task is the first task that the kernel runs. The entry point of the root task
is usrRoot() in:

installDir/target/config/all/usrConfig.c

and initializes most VxWorks facilities. It spawns such tasks as the logging task, the
exception task, the network task, and the tRlogind daemon. Normally, the root
task terminates and is deleted after all initialization has occurred.

Logging Task: tLogTask

The log task, tLogTask, is used by VxWorks modules (libraries) to log system
messages without having to perform I/O in the current task context. For more
information, see the reference entry for logLib.

Exception Task: tExcTask

The exception task, tExcTask, supports the VxWorks exception handling package
by performing functions that cannot occur at interrupt level. It is also used for
actions that cannot be performed in the current task’s context, such as task suicide.
It must have the highest priority in the system. Do not suspend, delete, or change
the priority of this task. For more information, see the reference entry for excLib.

Tasks for Optional Components

The following VxWorks system tasks are created if their associated configuration
constants are defined.

tShell
If you have included the target shell in the VxWorks configuration, it is
spawned as this task. Any routine or task that is called from the target shell,
rather than spawned, runs in the tShell context. Configure VxWorks with the
INCLUDE_SHELL component to include the target shell.

tTelnetd
If you have included the target shell and the telnet facility in the VxWorks
configuration, this daemon lets remote users log in to VxWorks with telnet. It
accepts a remote login request from another VxWorks or host system and
spawns the input task tTelnetInTask and output task tTelnetOutTask. These

VxWorks 653
Programmer's Guide, 2.2

294

tasks exist as long as the remote user is logged on. During the remote session,
the shell’s (and any other task’s) input and output are redirected to the remote
user. A tty-like interface is provided to the remote user through the use of the
VxWorks pseudo-terminal driver, ptyDrv. See the reference entry for ptyDrv
for further explanation. Configure VxWorks with the INCLUDE_TELNET
component to include the telnet facility.

A.3 Intertask Communications

The complement to the multitasking routines described in A.2 VxWorks Tasks,
p.270 is the intertask communication facilities. These facilities permit independent
tasks to coordinate their actions.

VxWorks supplies a rich set of intertask communication mechanisms, including:

■ Shared memory for simple sharing of data.

■ Semaphores for basic mutual exclusion and synchronization.

■ Mutexes and condition variables for mutual exclusion and synchronization
using POSIX interfaces.

■ Message queues and pipes for intertask message passing within a CPU.

■ Sockets and remote procedure calls for network-transparent intertask
communication.

■ Signals for exception handling.

A.3.1 Shared Data Structures

The most obvious way for tasks to communicate is by accessing shared data
structures. Because all tasks in VxWorks exist in a single linear address space,
sharing data structures between tasks is trivial. See Figure A-8. Global variables,
linear buffers, ring buffers, linked lists, and pointers can be referenced directly by
code running in different contexts.

A VxWorks 5.5
A.3 Intertask Communications

295

A

A.3.2 Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to
memory is crucial to avoid contention. Many methods exist for getting exclusive
access to resources, and vary only in the scope of the exclusion. Such methods
include disabling interrupts, disabling preemption, and resource locking with
semaphores.

For information about POSIX mutexes, see 5.7 POSIX Mutexes and Condition
Variables, p.108.

Interrupt Locks and Latency

The most powerful method available for mutual exclusion is the disabling of
interrupts. Such a lock guarantees exclusive access to the CPU:

funcA ()
{
int lock = intLock();
.
. /* critical region of code that cannot be interrupted */
.
intUnlock (lock);
}

While this solves problems involving mutual exclusion with ISRs, it is
inappropriate as a general-purpose mutual-exclusion method for most real-time
systems, because it prevents the system from responding to external events for the
duration of these locks. Interrupt latency is unacceptable whenever an immediate

Figure A-8 Shared Data Structures

tasks memory

task 1

task 2

task 3

access
sharedData

access
sharedData

access
sharedData

sharedData

VxWorks 653
Programmer's Guide, 2.2

296

response to an external event is required. However, interrupt locking can
sometimes be necessary where mutual exclusion involves ISRs. In any situation,
keep the duration of interrupt lockouts short.

Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.
While no other task is allowed to preempt the running task, ISRs are able to run the
following:

funcA ()
{
taskLock ();
.
. /* critical region of code that cannot be interrupted */
.
taskUnlock ();
}

However, this method can lead to unacceptable real-time response. Tasks of higher
priority are unable to run until the locking task leaves the critical region, even
though the higher-priority task is not itself involved with the critical region. While
this kind of mutual exclusion is simple, if you use it, make sure to keep the
duration short. A better mechanism is provided by semaphores, discussed in
A.3.3 Semaphores, p.296.

A.3.3 Semaphores

VxWorks semaphores are highly optimized and provide the fastest intertask
communication mechanism in VxWorks. Semaphores are the primary means for
addressing the requirements of both mutual exclusion and task synchronization,
as described below:

■ For mutual exclusion semaphores interlock access to shared resources. They
provide mutual exclusion with finer granularity than either interrupt
disabling or preemptive locks, discussed in A.3.2 Mutual Exclusion, p.295.

! WARNING: Do not call VxWorks system routines with interrupts locked. Violating
this rule may re-enable interrupts unpredictably.

! WARNING: The critical region code should not block. If it does, preemption could
be re-enabled.

A VxWorks 5.5
A.3 Intertask Communications

297

A

■ For synchronization semaphores coordinate a task’s running with external
events.

There are three types of Wind semaphores, optimized to address different classes
of problems:

■ Binary

The fastest, most general-purpose semaphore. Optimized for synchronization
or mutual exclusion.

■ Mutual exclusion

A special binary semaphore optimized for problems inherent in mutual
exclusion: priority inheritance, deletion safety, and recursion.

■ Counting

Like the binary semaphore, but keeps track of the number of times a
semaphore is given. Optimized for guarding multiple instances of a resource.

VxWorks provides not only the Wind semaphores, designed expressly for
VxWorks, but also POSIX semaphores, designed for portability. An alternate
semaphore library provides the POSIX-compatible semaphore interface. See
5.6 POSIX Semaphores, p.101.

The semaphores described here are for use on a single CPU.

Semaphore Control

Instead of defining a full set of semaphore control routines for each type of
semaphore, the Wind semaphores provide a single uniform interface for
semaphore control. Only the creation routines are specific to the semaphore type.
Table A-12 lists the semaphore control routines.

Table A-12 Semaphore Control Routines

Call Description

semBCreate() Allocates and initializes a binary semaphore.

semCCreate() Allocates and initializes a counting semaphore.

semDelete() Terminates and frees a semaphore.

semFlush() Unblocks all tasks that are waiting for a semaphore.

VxWorks 653
Programmer's Guide, 2.2

298

The semBCreate(), semMCreate(), and semCCreate() routines return a
semaphore ID that serves as a handle on the semaphore during subsequent use by
the other semaphore-control routines. When a semaphore is created, the queue
type is specified. Tasks pending on a semaphore can be queued in priority order
(SEM_Q_PRIORITY) or in first-in first-out order (SEM_Q_FIFO).

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements
of both forms of task coordination: mutual exclusion and synchronization. The
binary semaphore has the least overhead associated with it, making it particularly
applicable to high-performance requirements. The mutual-exclusion semaphore
described in Mutual-Exclusion Semaphores, p.302 is also a binary semaphore, but it
has been optimized to address problems inherent to mutual exclusion.
Alternatively, the binary semaphore can be used for mutual exclusion if the
advanced features of the mutual-exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a flag that is available (full) or unavailable
(empty). When a task takes a binary semaphore, with semTake(), the outcome
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call. See Figure A-9. If the semaphore is available (full), the semaphore
becomes unavailable (empty) and the task continues running immediately. If the
semaphore is unavailable (empty), the task is put on a queue of blocked tasks and
enters a state of pending on the availability of the semaphore.

semGive() Gives a semaphore.

semMCreate() Allocates and initializes a mutual-exclusion semaphore.

semTake() Takes a semaphore.

Table A-12 Semaphore Control Routines (cont’d)

Call Description

! WARNING: The semDelete() routine terminates a semaphore and deallocates all
associated memory. Take care when deleting semaphores, particularly those used
for mutual exclusion, to avoid deleting a semaphore that another task still requires.
Do not delete a semaphore unless the same task first succeeds in taking it.

A VxWorks 5.5
A.3 Intertask Communications

299

A

When a task gives a binary semaphore, using semGive(), the outcome also
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call. See Figure A-10. If the semaphore is already available (full), giving
the semaphore has no effect at all. If the semaphore is unavailable (empty) and no
task is waiting to take it, the semaphore becomes available (full). If the semaphore
is unavailable (empty) and one or more tasks are pending on its availability, the
first task in the queue of blocked tasks is unblocked, and the semaphore is left
unavailable (empty).

Figure A-9 Taking a Semaphore

no nosemaphore
available?

timeout =
NO_WAIT

yes yes

task continues;
semaphore

not taken

task continues;
semaphore

taken

task is
pended for

timeout
value

Figure A-10 Giving a Semaphore

no nosemaphore
available?

task continues;
semaphore

remains
unchanged

tasks
pended?

task continues,
semaphore

made available

task at front of
queue made ready;
semaphore remains

unavailable

yes yes

VxWorks 653
Programmer's Guide, 2.2

300

Mutual Exclusion

Binary semaphores interlock access to a shared resource efficiently. Unlike
disabling interrupts or preemptive locks, binary semaphores limit the scope of the
mutual exclusion to only the associated resource. In this technique, a semaphore is
created to guard the resource. Initially the semaphore is available (full).

/* includes */
#include "vxWorks.h"
#include "semLib.h"

SEM_ID semMutex;

/* Create a binary semaphore that is initially full. Tasks *
* blocked on semaphore wait in priority order. */

semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. As long
as the task keeps the semaphore, all other tasks seeking access to the resource are
blocked from running. When the task is finished with the resource, it gives back
the semaphore, allowing another task to use the resource.

Thus, all accesses to a resource requiring mutual exclusion are bracketed with
semTake() and semGive() pairs:

semTake (semMutex, WAIT_FOREVER);
.
. /* critical region, only accessible by a single task at a time */
.
semGive (semMutex);

Synchronization

When used for task synchronization, a semaphore can represent a condition or
event that a task is waiting for. Initially, the semaphore is unavailable (empty). A
task or ISR signals the occurrence of the event by giving the semaphore (see
A.6 Interrupt Service Routines, p.323 for a complete discussion of ISRs). Another
task waits for the semaphore by calling semTake(). The waiting task blocks until
the event occurs and the semaphore is given.

Note the difference in sequence between semaphores used for mutual exclusion
and those used for synchronization. For mutual exclusion, the semaphore is
initially full, and each task first takes, then gives back the semaphore. For
synchronization, the semaphore is initially empty, and one task waits to take the
semaphore given by another task.

In Example A-1, init() creates the binary semaphore, attaches an ISR to an event,
and spawns a task to process the event. The task1() routine runs until it calls

A VxWorks 5.5
A.3 Intertask Communications

301

A

semTake(). It remains blocked until an event causes the ISR to call semGive().
When the ISR completes, task1() runs to process the event. There is an advantage
of handling event processing within the context of a dedicated task: less processing
takes place at interrupt level, thereby reducing interrupt latency. This model of
event processing is recommended for real-time applications.

Example A-1 Using Semaphores for Task Synchronization

/* This example shows the use of semaphores for task synchronization. */

/* includes */
#include "vxWorks.h"
#include "semLib.h"
#include "arch/arch/ivarch.h" /* replace arch with architecture type */

SEM_ID syncSem; /* ID of sync semaphore */

init (
int someIntNum
)
{

/* create semaphore */
syncSem = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

/* spawn task used for synchronization. */
taskSpawn ("sample", 100, 0, 20000, task1, 0,0,0,0,0,0,0,0,0,0);
}

task1 (void)
{
...
semTake (syncSem, WAIT_FOREVER); /* wait for event to occur */
printf ("task 1 got the semaphore\n");
... /* process event */
}

eventInterruptSvcRout (void)
{
...
semGive (syncSem); /* let task 1 process event */
...
}

Broadcast synchronization lets all processes that are blocked on the same
semaphore to be unblocked atomically. Correct application behavior often requires
a set of tasks to process an event before any task of the set has the opportunity to
process further events. The semFlush() routine addresses this class of
synchronization problem by unblocking all tasks pended on a semaphore.

VxWorks 653
Programmer's Guide, 2.2

302

Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to
address issues inherent in mutual exclusion, including priority inversion, deletion
safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the
binary semaphore, with the following exceptions:

■ It can be used only for mutual exclusion.

■ It can be given only by the task that took it.

■ It cannot be given from an ISR.

■ The semFlush() operation is illegal.

Priority Inversion

Figure A-11 illustrates a situation called priority inversion.

Priority inversion arises when a higher-priority task is forced to wait an indefinite
period of time for a lower-priority task to complete. Consider the scenario in
Figure A-11: t1, t2, and t3 are tasks of high, medium, and low priority, respectively.
t3 has acquired some resource by taking its associated binary guard semaphore.

Figure A-11 Priority Inversion

t3

t1

t3

t2

High

Low

KEY = preemption= take semaphore

= give semaphore

= own semaphore

pr
io

rit
y

= priority inheritance/release

= block

time

t1

t3

A VxWorks 5.5
A.3 Intertask Communications

303

A

When t1 preempts t3 and contends for the resource by taking the same semaphore,
it becomes blocked. If you can be assured that t1 will block no longer than the time
it normally takes t3 to finish with the resource, there is no problem, because the
resource cannot be preempted. However, the low-priority task is vulnerable to
preemption by medium-priority tasks (like t2), which could inhibit t3 from
relinquishing the resource. This condition could persist, blocking t1 for an
indefinite period of time.

The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which
enables a priority-inheritance algorithm. The priority-inheritance protocol assures
that a task that holds a resource runs at the priority of the highest-priority task
blocked on that resource. Once the task priority has been elevated, it remains at the
higher level until all mutual-exclusion semaphores that the task holds are released.
Then, the task returns to its normal, or standard, priority. Hence, the “inheriting”
task is protected from preemption by any intermediate-priority tasks. This option
must be used in conjunction with a priority queue (SEM_Q_PRIORITY).

In Figure A-12, priority inheritance solves the problem of priority inversion by
elevating the priority of t3 to the priority of t1 during the time t1 is blocked on the
semaphore. This protects t3, and indirectly t1, from preemption by t2.

Figure A-12 Priority Inheritance

t3

t1 t3 t1

t2

High

Low

pr
io

rit
y

time

KEY = preemption= take semaphore

= give semaphore

= own semaphore

= priority inheritance/release

= block

VxWorks 653
Programmer's Guide, 2.2

304

The following example creates a mutual-exclusion semaphore that uses the
priority inheritance algorithm:

semId = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE);

Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical
region guarded by semaphores, it is often desirable to protect the running task
from being unexpectedly deleted. Deleting a task that is running in a critical region
can be catastrophic. The resource might be left in a corrupted state and the
semaphore guarding the resource left unavailable, effectively preventing all access
to the resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.
However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,
which enables an implicit taskSafe() with each semTake(), and a taskUnsafe()
with each semGive(). In this way, a task can be protected from deletion while it
has the semaphore. This option is more efficient than the primitives taskSafe()
and taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

semId = semMCreate (SEM_Q_FIFO | SEM_DELETE_SAFE);

Recursive Resource Access

Mutual-exclusion semaphores can be taken recursively. This means that the
semaphore can be taken more than once by the task that holds it before finally
being released. Recursion is useful for a set of routines that must call each other but
that also require mutually exclusive access to a resource. This is possible because
the system keeps track of which task is holding the mutual-exclusion semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be
given the same number of times it is taken. This is tracked by a count that
increments with each semTake() and decrements with each semGive().

Example A-2 Recursive Use of a Mutual-Exclusion Semaphore

/* Function A requires access to a resource which it acquires by taking
* mySem;
* Function A may also need to call function B, which also requires mySem:
*/

/* includes */
#include "vxWorks.h"
#include "semLib.h"
SEM_ID mySem;

/* Create a mutual-exclusion semaphore. */
init ()

A VxWorks 5.5
A.3 Intertask Communications

305

A

{
mySem = semMCreate (SEM_Q_PRIORITY);
}

funcA ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcA: Got mutual-exclusion semaphore\n");
...
funcB ();
...

semGive (mySem);
printf ("funcA: Released mutual-exclusion semaphore\n");
}

funcB ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcB: Got mutual-exclusion semaphore\n");
...
semGive (mySem);
printf ("funcB: Releases mutual-exclusion semaphore\n");
}

Counting Semaphores

Counting semaphores are another means to implement task synchronization and
mutual exclusion. The counting semaphore works like the binary semaphore
except that it keeps track of the number of times a semaphore is given. Every time
a semaphore is given, the count is incremented. Every time a semaphore is taken,
the count is decremented. When the count reaches zero, a task that tries to take the
semaphore is blocked. As with the binary semaphore, if a semaphore is given and
a task is blocked, it becomes unblocked. However, unlike the binary semaphore, if
a semaphore is given and no tasks are blocked, the count is incremented. This
means that a semaphore that is given twice can be taken twice without blocking.
Table A-13 shows an example time sequence of tasks taking and giving a counting
semaphore that was initialized to a count of three (3).

Table A-13 Counting Semaphore Example

Semaphore Call Count after Call Resulting Behavior

semCCreate() 3 Semaphore initialized with an initial count of 3.

semTake() 2 Semaphore taken.

semTake() 1 Semaphore taken.

semTake() 0 Semaphore taken.

VxWorks 653
Programmer's Guide, 2.2

306

Counting semaphores are useful for guarding multiple copies of resources. For
example, the use of five tape drives might be coordinated using a counting
semaphore with an initial count of five, or a ring buffer with 256 entries might be
implemented using a counting semaphore with an initial count of 256. The initial
count is specified as an argument to semCCreate().

Special Semaphore Options

The uniform Wind semaphore interface includes two special options. These
options are not available for the POSIX-compatible semaphores described in
5.6 POSIX Semaphores, p.101.

Timeouts

As an alternative to blocking until a semaphore becomes available, semaphore take
operations can be restricted to a specified period of time. If the semaphore is not
taken within that period, the take operation fails.

This behavior is controlled by a parameter to semTake() that specifies the amount
of time in ticks that the task is willing to wait in the pended state. If the task
succeeds in taking the semaphore within the allotted time, semTake() returns OK.
The errno set when a semTake() returns ERROR due to timing out before
successfully taking the semaphore depends upon the timeout value passed.

A semTake() with NO_WAIT (0), which means do not wait at all, sets errno to
S_objLib_OBJ_UNAVAILABLE. A semTake() with a positive timeout value returns
S_objLib_OBJ_TIMEOUT. A timeout value of WAIT_FOREVER (-1) means wait
indefinitely.

semTake() 0 Task blocks waiting for semaphore to be
available.

semGive() 0 Task waiting is given semaphore.

semGive() 1 No task waiting for semaphore. Count
incremented.

Table A-13 Counting Semaphore Example (cont’d)

Semaphore Call Count after Call Resulting Behavior

A VxWorks 5.5
A.3 Intertask Communications

307

A

Queues

Wind semaphores include the ability to select the queuing mechanism employed
for tasks blocked on a semaphore. They can be queued based on either of two
criteria: first-in first-out (FIFO) order, or priority order. See Figure A-13.

Priority ordering better preserves the intended priority structure of the system at
the expense of some overhead in semTake() in sorting the tasks by priority. A FIFO
queue requires no priority sorting overhead and leads to constant-time
performance. The selection of queue type is specified during semaphore creation
with semBCreate(), semMCreate(), or semCCreate(). Semaphores using the
priority inheritance option (SEM_INVERSION_SAFE) must select priority-order
queuing.

Semaphores and VxWorks Events

This section describes using VxWorks events with semaphores. You can also use
VxWorks events with other VxWorks objects. For more information, see
A.4 VxWorks Events, p.317.

Figure A-13 Task Queue Types

TCB

110

TCB

200

priority queue FIFO queue

priority

TCB

120 TCB

80

TCB

110

TCB

90
TCB

100
TCB

140

VxWorks 653
Programmer's Guide, 2.2

308

Using Events

A semaphore can send events to a task, if it is requested to do so by the task. To
request that a semaphore send events, a task must register with the semaphore
using semEvStart(). From that point on, every time the semaphore is released with
semGive(), and as long as no other tasks are pending on it, the semaphore sends
events to the registered task. To request that the semaphore stop sending events,
the registered task calls semEvStop().

Only one task can be registered with a semaphore at any given time. The events a
semaphore sends to a task can be retrieved by the task using routines in eventLib.
Details on when semaphores send events are documented in the reference entry for
semEvStart().

In some applications, the creator of a semaphore may want to know when a
semaphore failed to send events. Such a scenario can occur if a task registers with
a semaphore, and is subsequently deleted before having time to unregister. In this
situation, a given operation could cause the semaphore to attempt to send events
to the deleted task. Such an attempt would obviously fail. If the semaphore is
created with the SEM_EVENTSEND_ERROR_NOTIFY option, the given operation
returns an error. Otherwise, VxWorks handles the error quietly.

Using eventReceive(), a task may pend on events meant to be sent by a
semaphore. If the semaphore is deleted, the task pending on events is returned to
the ready state, just like the tasks that may be pending on the semaphore itself.

Existing VxWorks API

The VxWorks event implementation does not propose to keep track of all the
resources a task is currently registered with. Therefore, a resource can attempt to
send events to a task that no longer exists. For example, a task may be deleted or
may self-destruct while still registered with a resource to receive events. This error
is detected only when the resource becomes free, and is reported by having
semGive() return ERROR. However, in this case, the error does not mean the
semaphore was not given or that the message was not properly delivered. It simply
means the resource could not send events to the registered task.

Performance Impact

When a task is pending for the semaphore, there is no performance impact on
semGive(). However, if this is not the case (for example, if the semaphore is free),
the call to semGive() takes longer to complete since events may have to be sent to
a task. Furthermore, the call may unpend a task waiting for events, which means
the caller may be preempted, even if no task is waiting for the semaphore.

A VxWorks 5.5
A.3 Intertask Communications

309

A

The semDestroy() routine performance is impacted in cases where a task is
waiting for events from the semaphore, since the task has to be awakened. Also
note that, in this case, events need not be sent.

A.3.4 Message Queues

Modern real-time applications are constructed as a set of independent but
cooperating tasks. While semaphores provide a high-speed mechanism for the
synchronization and interlocking of tasks, often a higher-level mechanism is
necessary to let cooperating tasks communicate with each other. In VxWorks, the
primary intertask communication mechanism within a single CPU is message
queues. (The VxWorks distributed message queue component provides for
sharing message queues between processors across any transport media).

Message queues let a variable number of messages, each of variable length, be
queued. Tasks and ISRs can send messages to a message queue, and tasks can
receive messages from a message queue.

Multiple tasks can send to and receive from the same message queue. Full-duplex
communication between two tasks generally requires two message queues, one for
each direction. See Figure A-14.

There are two message-queue libraries in VxWorks. The first of these, msgQLib,
provides Wind message queues, designed expressly for VxWorks. The second,
mqPxLib, is compatible with the POSIX standard (1003.1b) for real-time

Figure A-14 Full Duplex Communication Using Message Queues

task 2task 1

message queue 1

message queue 2

message

message

VxWorks 653
Programmer's Guide, 2.2

310

extensions. See 5.5.1 Comparison of POSIX and Wind Scheduling, p.98 for a
discussion of the differences between the two message-queue designs.

Wind Message Queues

Wind message queues are created, used, and deleted with the routines shown in
Table A-14. This library provides messages that are queued in FIFO order, with a
single exception: there are two priority levels, and messages marked as high
priority are attached to the head of the queue.

A message queue is created with msgQCreate(). Its parameters specify the
maximum number of messages that can be queued in the message queue and the
maximum length in bytes of each message. Enough buffer space is allocated for the
specified number and length of messages.

A task or ISR sends a message to a message queue with msgQSend(). If no tasks
are waiting for messages on that queue, the message is added to the queue’s buffer
of messages. If any tasks are already waiting for a message from that message
queue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If
messages are already available in the message queue’s buffer, the first message is
immediately dequeued and returned to the caller. If no messages are available, the
calling task blocks and is added to a queue of tasks waiting for messages. This
queue of waiting tasks can be ordered either by task priority or FIFO, as specified
in an option parameter when the queue is created.

Timeouts

Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, the timeout specifies how many ticks to wait for buffer space to become
available, if no space is available to queue the message. When receiving a message,

Table A-14 Wind Message Queue Control

Call Description

msgQCreate() Allocates and initializes a message queue.

msgQDelete() Terminates and frees a message queue.

msgQReceive() Receives a message from a message queue.

msgQSend() Sends a message to a message queue.

A VxWorks 5.5
A.3 Intertask Communications

311

A

the timeout specifies how many ticks to wait for a message to become available, if
no message is immediately available. As with semaphores, the value of the timeout
parameter can have the special values of NO_WAIT (0), meaning always return
immediately, or WAIT_FOREVER (-1), meaning never time out the routine.

Urgent Messages

The msgQSend() routine lets specification of the priority of the message as either
normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal priority
messages are added to the tail of the list of queued messages, while urgent priority
messages are added to the head of the list.

Example A-3 Wind Message Queues

/* In this example, task t1 creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply
* displays the message.
*/

/* includes */
#include "vxWorks.h"
#include "msgQLib.h"

/* defines */
#define MAX_MSGS (10)
#define MAX_MSG_LEN (100)

MSG_Q_ID myMsgQId;

task2 (void)
{
char msgBuf[MAX_MSG_LEN];

/* get message from queue; if necessary wait until msg is available */
if (msgQReceive(myMsgQId, msgBuf, MAX_MSG_LEN, WAIT_FOREVER) == ERROR)

return (ERROR);

/* display message */
printf ("Message from task 1:\n%s\n", msgBuf);
}

#define MESSAGE "Greetings from Task 1"
task1 (void)

{
/* create message queue */
if ((myMsgQId = msgQCreate (MAX_MSGS, MAX_MSG_LEN, MSG_Q_PRIORITY))

== NULL)
return (ERROR);

VxWorks 653
Programmer's Guide, 2.2

312

/* send a normal priority message, blocking if queue is full */
if (msgQSend (myMsgQId, MESSAGE, sizeof (MESSAGE), WAIT_FOREVER,

MSG_PRI_NORMAL) == ERROR)
return (ERROR);

}

Displaying Message Queue Attributes

The VxWorks show() command produces a display of the key message queue
attributes, for either kind of message queue. For example, if myMsgQId is a Wind
message queue, the output is sent to the standard output device, and looks like the
following:

-> show myMsgQId
Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0
Send timeouts : 0
Receive timeouts : 0

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this
model, server tasks accept requests from client tasks to perform some service, and
usually return a reply. The requests and replies are usually made in the form of
intertask messages. In VxWorks, message queues or pipes (see A.3.5 Pipes, p.315)
are a natural way to implement this.

For example, client-server communications might be implemented as shown in
Figure A-15. Each server task creates a message queue to receive request messages
from clients. Each client task creates a message queue to receive reply messages
from servers. Each request message includes a field containing the msgQId of the
client’s reply message queue. A server task’s “main loop” consists of reading
request messages from its request message queue, performing the request, and
sending a reply to the client’s reply message queue.

The same architecture can be achieved with pipes instead of message queues, or by
other means that are tailored to the needs of the particular application.

A VxWorks 5.5
A.3 Intertask Communications

313

A

Message Queues and VxWorks Events

This section describes using VxWorks events with message queues. You can also
use VxWorks events with other VxWorks objects. For more information, see
A.4 VxWorks Events, p.317.

Using Events

A message queue can send events to a task, if it is requested to do so by the task.
To request that a message queue send events, a task must register with the message
queue using msgQEvStart(). From that point on, every time the message queue
receives a message and there are no tasks pending on it, the message queue sends
events to the registered task. To request that the message queue stop sending
events, the registered task calls msgQEvStop().

Only one task can be registered with a message queue at any given time. The
events a message queue sends to a task can be retrieved by the task using routines

Figure A-15 Client-Server Communications Using Message Queues

reply queue 1

reply queue 2

server task

request queue

message

message

message

client 2

client 1

VxWorks 653
Programmer's Guide, 2.2

314

in eventLib. Details on when message queues send events are documented in the
reference entry for msgQEvStart().

In some applications, the creator of a message queue may want to know when a
message queue failed to send events. Such a scenario can occur if a task registers
with a message queue, and is subsequently deleted before having time to
unregister. In this situation, a send operation could cause the message queue to
attempt to send events to the deleted task. Such an attempt would obviously fail.
If the message queue is created with the SG_Q_EVENTSEND_ERROR_NOTIFY
option, the send operation returns an error. Otherwise, VxWorks handles the error
quietly.

Using eventReceive(), a task may pend on events meant to be sent by a message
queue. If the message queue is deleted, the task pending on events is returned to
the ready state, just like the tasks that may be pending on the message queue itself.

Existing VxWorks API

The VxWorks events implementation does not propose to keep track of all the
resources a task is currently registered with. Therefore, a resource can attempt to
send events to a task that no longer exists. For example, a task may be deleted or
may self-destruct while still registered with a resource to receive events. This error
is detected only when the resource becomes free, and is reported by having
msgQSend() return ERROR. However, in this case the error does not mean the
semaphore was not given or that the message was not properly delivered. It simply
means the resource could not send events to the registered task. This is a different
behavior than the one presently in place under VxWorks.

Performance Impact

There is no performance impact on msgQSend() when a task is pending for the
message queue. However, when this is not the case, the call to msgQSend() takes
longer to complete, since events may have to be sent to a task. Furthermore, the call
may unpend a task waiting for events, which means the caller may be preempted,
even if no task is waiting for the message.

The msgQDestroy() routine performance is impacted in cases where a task is
waiting for events from the message queue, since the task has to be awakened.
Also note that, in this case, events need not be sent.

A VxWorks 5.5
A.3 Intertask Communications

315

A

A.3.5 Pipes

Pipes provide an alternative interface to the message queue facility that goes
through the VxWorks I/O system. Pipes are virtual I/O devices managed by the
driver pipeDrv. The pipeDevCreate() routine creates a pipe device and the
underlying message queue associated with that pipe. The call specifies the name
of the created pipe, the maximum number of messages that can be queued to it,
and the maximum length of each message:

status = pipeDevCreate ("/pipe/name", max_msgs, max_length);

The created pipe is a normally named I/O device. Tasks can use the standard I/O
routines to open, read, and write pipes, and call ioctl routines. As they do with
other I/O devices, tasks block when they read from an empty pipe until data is
available, and block when they write to a full pipe until there is space available.
Like message queues, ISRs can write to a pipe, but cannot read from a pipe.

As I/O devices, pipes provide one important feature that message queues
cannot—the ability to be used with select(). This routine lets a task wait for data
to be available on any of a set of I/O devices. The select() routine also works with
other asynchronous I/O devices including network sockets and serial devices.
Thus, by using select(), a task can wait for data on a combination of several pipes,
sockets, and serial devices.

Pipes let you implement a client-server model of intertask communications. See
Servers and Clients with Message Queues, p.312.

A.3.6 Signals

VxWorks supports a software signal facility. Signals asynchronously alter the
control flow of a task. Any task or ISR can raise a signal for a particular task. The
task being signaled immediately suspends its current thread of execution and runs
the task-specified signal handler routine the next time it is scheduled to run. The
signal handler runs in the receiving task’s context and makes use of that task’s
stack. The signal handler is called even if the task is blocked.

Signals are more appropriate for error and exception handling than as a
general-purpose intertask communication mechanism. In general, signal handlers
should be treated like ISRs. No routine should be called from a signal handler that
might cause the handler to block. Because signals are asynchronous, it is difficult
to predict which resources might be unavailable when a particular signal is raised.
To be perfectly safe, call only those routines that can safely be called from an ISR

VxWorks 653
Programmer's Guide, 2.2

316

(see Table A-19). Deviate from this practice only when you are sure your signal
handler cannot create a deadlock situation.

The Wind kernel supports two types of signal interface: UNIX BSD-style signals
and POSIX-compatible signals. The POSIX-compatible signal interface, in turn,
includes both the fundamental signaling interface specified in the POSIX standard
1003.1, and the queued-signals extension from POSIX 1003.1b. For more
information, see 5.9 POSIX Queued Signals, p.120. For the sake of simplicity, Wind
River recommends that you use only one interface type in a given application,
rather than mixing routines from different interfaces.

For more information about signals, see the reference entry for sigLib.

Basic Signal Routines

By default, VxWorks uses the basic signal facility component INCLUDE_SIGNALS.
This component automatically initializes signals with sigInit(). Table A-15 shows
the basic signal routines.

The name kill()harks back to the origin of these interfaces in UNIX BSD. Although
the interfaces vary, the functionality of BSD-style signals and basic POSIX signals
is similar.

In many ways, signals are analogous to hardware interrupts. The basic signal
facility provides a set of 31 distinct signals. A signal handler binds to a particular
signal with sigvec() or sigaction(). A signal can be asserted by calling kill(). This
is analogous to the occurrence of an interrupt. The sigsetmask() and sigblock() or
sigprocmask() routines let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors,
illegal instructions, and floating-point exceptions raise specific signals.

Signal Configuration

The basic signal facility is included in VxWorks by default with the
INCLUDE_SIGNALS component.

NOTE: The VxWorks implementation of sigLib does not impose any special
restrictions on operations on SIGKILL, SIGCONT, and SIGSTOP signals such as
those imposed by UNIX. For example, the UNIX implementation of signal()
cannot be called on SIGKILL and SIGSTOP.

A VxWorks 5.5
A.4 VxWorks Events

317

A

A.4 VxWorks Events

VxWorks events are included in the standard VxWorks facilities. This section
provides a brief summary of VxWorks events. Then, it describes VxWorks events
in detail, including their API.

VxWorks events are a means of communication between tasks and interrupt
routines (ISRs), between tasks and other tasks, or between tasks and VxWorks
objects. In the context of VxWorks events, these objects are referred to as resources,

Table A-15 Basic Signal Calls (BSD and POSIX 1003.1b)

POSIX 1003.1b
Compatible
Call

UNIX BSD
Compatible
Call

Description

kill() kill() Sends a signal to a task.

raise() N/A Sends a signal to yourself.

sigaction() sigvec() Examines or sets the signal handler for a signal.

sigemptyset()
sigfillset()
sigaddset()
sigdelset()
sigismember()

sigsetmask() Manipulates a signal mask.

signal() signal() Specifies the handler associated with a signal.

sigpending() N/A Retrieves a set of pending signals blocked from
delivery.

sigprocmask() sigsetmask() Sets the mask of blocked signals.

sigprocmask() sigblock() Adds to a set of blocked signals.

sigsuspend() pause() Suspends a task until a signal is delivered.

NOTE: This section uses the term events to describe VxWorks events. Do not
confuse these references with WindView events.

VxWorks 653
Programmer's Guide, 2.2

318

and they include semaphores and message queues. Only tasks can receive events;
whereas tasks, ISRs, or resources can send them.

In order for a task to receive events from a resource, the task must register with the
resource. In order for the resource to send events, the resource must be free. The
communication between tasks and resources is peer-to-peer, meaning that only the
registered task can receive events from the resource. In this respect, events are like
signals, in that they are directed at one task. A task, however, can wait on events
from multiple resources. Thus, it can be waiting for a semaphore to become free
and for a message to arrive in a message queue.

Events are synchronous in nature (unlike signals), meaning that a receiving task
must block or pend while it waits for the events to occur. When the desired events
are received, the pending task continues to run, as it would after a call to
msgQReceive() or semTake(), for example. Thus, unlike signals, events do not
require a handler.

Tasks can also wait on events that are not linked to resources. These are events that
are sent from another task or from an ISR. A task does not register to receive these
events. The sending task or ISR simply has to know of the task’s interest in
receiving the events. As an example, this scenario is similar to having an ISR give
a binary semaphore, knowing there is a task interested in getting that semaphore.

The meaning of each event differs for each task. For example, when an event,
eventX, is received, it can be interpreted differently by each task that receives it.
Also, once an event is received by a task, the event is ignored if it is sent again to
the same task. Consequently, it is not possible to track the number of times each
event has been sent to a task.

A.4.1 Free Resource Definition

A key concept in understanding events sent by resources, is that resources send
events when they become free. Thus, it is crucial to define what it means for a
resource to be free for VxWorks events.

! WARNING: Because events cannot be reserved, two independent applications can
attempt to use the same events on the same task. As a precaution, middleware
applications using VxWorks events should always publish a list of the events they
are using.

A VxWorks 5.5
A.4 VxWorks Events

319

A

■ Mutex Semaphore

A mutex semaphore is considered free when it no longer has an owner and no
one is pending on it. For example, following a call to semGive(), the
semaphore does not send events if another task is pending on a semTake() for
the same semaphore.

■ Binary Semaphore

A binary semaphore is considered free when no task owns it and no one is
waiting for it.

■ Counting Semaphore

A counting semaphore is considered free when its count is nonzero and no one
is pending on it. Thus, events cannot be used as a mechanism to compute the
number of times a semaphore is released or given.

■ Message Queue

A message queue is considered free when a message is present in the queue
and no one is pending for the arrival of a message in that queue. Thus, events
cannot be used as a mechanism to compute the number of messages sent to a
message queue.

A.4.2 Single-Task Resource Registration

When a task registers with a resource to send events, it could inadvertently
deregister another task that had previously registered with the resource. This
prevents the first task from receiving events from the resource with which it
registered. Consequently, the task that first registered with the resource could
stay in a pend state indefinitely.

VxWorks events provide an option whereby the second task is not allowed to
register with the resource if another task is already registered with it. If a
second task tries to register with the resource, an error is returned.

A.4.3 Option for Immediate Send

When a task registers with a resource, the default behavior is that the resource
does not send VxWorks events to the task immediately, even if it is free at the
time of registration. VxWorks events provide an option that lets a task, at the
time of registration, request that the resource send the events immediately, if
the resource is free at the time of registration.

VxWorks 653
Programmer's Guide, 2.2

320

A.4.4 Option for Automatic Unregister

There are situations in which a task may want to receive events from a resource
only once, and then unregister. VxWorks provides an option whereby a
registering task can tell the resource to send events only once, and
automatically unregister the task when this occurs.

A.4.5 Automatic Unpend upon Resource Deletion

When a resource (a semaphore or message queue) is deleted, semDelete() and
msgQDelete() unpends any task. This prevents the task from pending
indefinitely, while waiting for events from the resource being deleted. The
pending task then resumes running, and receives an ERROR return value from
the eventReceive() call that caused the task to pend. See also, Existing
VxWorks API, p.308 and Existing VxWorks API, p.314.

A.4.6 Task Events Register

Each task has its own events field or container, referred to as the task events
register. The task events register is a per task 32-bit field used to store the events
that a task receives from resources, ISRs, and other tasks.

You do not access the task events register directly. Tasks, ISRs, and resources fill the
events register of a particular task by sending events to that task. A task can also
send itself events, thereby filling its own events register. Events 25 to 32 (VXEV25
or 0x01000000 to VXEV32 or 0x80000000) are reserved for system use only, and are
not available to VxWorks users. Table A-16 describes the routines that affect the
contents of the events register.

Table A-16 Event Register Routines

Routine Effects

eventReceive() Clears or leaves the contents of the event register intact,
depending on the options selected.

eventClear() Clears the contents of the event register.

eventSend() Copies events into the event register.

A VxWorks 5.5
A.4 VxWorks Events

321

A

A.4.7 VxWorks Events API

For details on the API for VxWorks events, see the reference entries for eventLib,
semEvLib, and msgQEvLib.

A.4.8 Show Routines

For the purpose of debugging systems that make use of events, the taskShow,
semShow, and msgQShow libraries display event information.

The taskShow library displays the following information:

■ the contents of the event register

■ the desired events

■ the options specified when eventReceive() was called

The semShow() and msgQShow() libraries display the following information:

■ the task registered to receive events

■ the events the resource is meant to send to that task

■ the options passed to semEvStart() or msgQEvStart()

semGive() Copies events into the event register, if a task is registered with
the semaphore.

msgQSend() Copies events into the event register, if a task is registered with
the message queue.

Table A-16 Event Register Routines (cont’d)

Routine Effects

VxWorks 653
Programmer's Guide, 2.2

322

A.5 Watchdog Timers

VxWorks includes a watchdog-timer mechanism that lets any C routine be
connected to a specified time delay. Watchdog timers are maintained as part of the
system clock ISR. For information about POSIX timers, see 5.2 POSIX Clocks and
Timers, p.90.

Routines called by watchdog timers run as interrupt service code at the interrupt
level of the system clock. However, if the kernel is unable to run the routine
immediately for any reason (such as a previous interrupt or kernel state), the
routine is placed on the tExcTask work queue. Routines on the tExcTask work
queue run at the priority level of the tExcTask (usually 0).

Restrictions on ISRs apply to routines connected to watchdog timers. The routines
in Table A-17 are provided by the wdLib library.

A watchdog timer is first created by calling wdCreate(). Then the timer can be
started by calling wdStart(), which takes as arguments the number of ticks to
delay, the C routine to call, and an argument to be passed to that routine. After the
specified number of ticks have elapsed, the routine is called with the specified
argument. The watchdog timer can be canceled any time before the delay has
elapsed by calling wdCancel().

Example A-4 Watchdog Timers

/* Creates a watchdog timer and sets it to go off in 3 seconds.*/

/* includes */
#include "vxWorks.h"
#include "logLib.h"
#include "wdLib.h"

/* defines */
#define SECONDS (3)

Table A-17 Watchdog Timer Calls

Call Description

wdCancel() Cancels a counting watchdog timer.

wdCreate() Allocates and initializes a watchdog timer.

wdDelete() Terminates and deallocates a watchdog timer.

wdStart() Starts a watchdog timer.

A VxWorks 5.5
A.6 Interrupt Service Routines

323

A

WDOG_ID myWatchDogId;
task (void)

{
/* Create watchdog */
if ((myWatchDogId = wdCreate()) == NULL)

return (ERROR);

/* Set timer to go off in SECONDS - printing a message to stdout */
if (wdStart (myWatchDogId, sysClkRateGet() * SECONDS, logMsg,

"Watchdog timer just expired\n") == ERROR)
return (ERROR);

/* ... */
}

A.6 Interrupt Service Routines

Hardware interrupt handling is of key significance in real-time systems, because it
is usually through interrupts that the system is informed of external events. For the
fastest possible response to interrupts, VxWorks runs interrupt service routines
(ISRs) in a special context outside of any task’s context. Thus, interrupt handling
involves no task context switch. Table A-18 lists the interrupt routines provided in
intLib and intArchLib.

Table A-18 Interrupt Routines

Call Description

intContext() Returns TRUE if called from interrupt level.

intCount() Gets the current interrupt nesting depth.

intLevelSet() Sets the processor interrupt mask level.

intLock() Disables interrupts.

intUnlock() Re-enables interrupts.

intVecBaseGet() Gets the vector base address.

intVecBaseSet() Sets the vector base address.

intVecGet() Gets an exception vector.

intVecSet() Sets an exception vector.

VxWorks 653
Programmer's Guide, 2.2

324

A.6.1 Interrupt Stack

All ISRs use the same interrupt stack. This stack is allocated and initialized by the
system at start-up according to specified configuration parameters. It must be
large enough to handle the worst possible combination of nested interrupts.

Some architectures, however, do not permit using a separate interrupt stack. On
such architectures, ISRs use the stack of the interrupted task. If you have such an
architecture, you must create tasks with enough stack space to handle the worst
possible combination of nested interrupts and the worst possible combination of
ordinary nested calls. See the reference entry for your BSP to determine whether
your architecture supports a separate interrupt stack.

Use the checkStack() facility during development to see how close your tasks and
ISRs have come to exhausting the available stack space.

A.6.2 Writing and Debugging ISRs

There are some restrictions on the routines you can call from an ISR. For example,
you cannot use routines like printf(), malloc(), and semTake() in your ISR. You
can, however, use semGive(), logMsg(), msgQSend(), and bcopy().

A.6.3 Special Limitations of ISRs

Many VxWorks facilities are available to ISRs, but there are some important
limitations. These limitations stem from the fact that an ISR does not run in a
regular task context and has no task control block, so all ISRs share a single stack.

Table A-19 Routines that Can Be Called by Interrupt Service Routines

Library Routines

bLib All routines

errnoLib errnoGet()
errnoSet()

fppArchLib fppRestore()
fppSave()

A VxWorks 5.5
A.6 Interrupt Service Routines

325

A

intLib intContext()
intCount()
intVecGet()
intVecSet()

intArchLib intLock()
intUnlock()

logLib logMsg()

lstLib All routines except lstFree()

mathALib All routines, if fppRestore() or fppSave() is used

msgQLib msgQSend()

pipeDrv write()

rngLib All routines except rngCreate() and rngDelete()

selectLib selWakeup()
selWakeupAll()

semLib semGive() except mutual-exclusion semaphores
semFlush()

sigLib kill()

taskLib taskIdDefault()
taskIdVerify()
taskIsReady()
taskIsSuspended()
taskPriorityGet()
taskPrioritySet()
taskResume()
taskSuspend()
taskTcb()

tickLib tickAnnounce()
tickGet()
tickSet()

Table A-19 Routines that Can Be Called by Interrupt Service Routines (cont’d)

Library Routines

VxWorks 653
Programmer's Guide, 2.2

326

For this reason, the basic restriction on ISRs is that they must not call routines that
might cause the caller to block. For example, they must not try to take a semaphore,
because if the semaphore is unavailable, the kernel tries to switch the caller to the
pended state. However, ISRs can give semaphores, releasing any tasks waiting on
them.

Because the memory facilities malloc() and free() take a semaphore, they cannot
be called by ISRs, and neither can routines that make calls to malloc() and free().
For example, ISRs cannot call any creation or deletion routines.

ISRs also must not perform I/O through VxWorks drivers. Although there are no
inherent restrictions in the I/O system, most device drivers require a task context
because they might block the caller to wait for the device. An important exception
is the VxWorks pipe driver, which is designed to permit writes by ISRs.

VxWorks supplies a logging facility, in which a logging task prints text messages
to the system console. This mechanism was specifically designed for ISR use, and
is the most common way to print messages from ISRs. For more information, see
the reference entry for logLib.

An ISR also must not call routines that use a floating-point coprocessor. In
VxWorks, the interrupt driver code does not save and restore floating-point
registers. Thus, ISRs must not include floating-point instructions. If an ISR requires
floating-point instructions, it must explicitly save and restore the registers of the
floating-point coprocessor using routines in fppArchLib.

All VxWorks utility libraries, such as the linked-list and ring-buffer libraries, can
be used by ISRs. As discussed earlier (A.2.6 Task Error Status: errno, p.285), the
global variable errno is saved and restored as a part of the interrupt enter and exit
code. Thus, errno can be referenced and modified by ISRs as in any other code.
Table A-19 lists routines that can be called from ISRs.

tyLib tyIRd()
tyITx()

vxLib vxMemProbe()
vxTas()

wdLib wdCancel()
wdStart()

Table A-19 Routines that Can Be Called by Interrupt Service Routines (cont’d)

Library Routines

A VxWorks 5.5
A.6 Interrupt Service Routines

327

A

A.6.4 Exceptions at Interrupt Level

When a task causes a hardware exception such as an illegal instruction or bus error,
the task is suspended and the rest of the system continues uninterrupted.
However, when an ISR causes such an exception, there is no safe recourse for the
system to handle the exception. The ISR has no context that can be suspended.
Instead, VxWorks stores the description of the exception in a special location in low
memory and runs a system restart.

The VxWorks boot programs test for the presence of the exception description in
low memory and if it is detected, display it on the system console. The e command
in the boot ROMs re-displays the exception description.

One example of such an exception is the following message:

workQPanic: Kernel work queue overflow.

This exception usually occurs when kernel calls are made from interrupt level at a
high rate. It generally indicates a problem with clearing the interrupt signal or a
similar driver problem.

A.6.5 Reserving High Interrupt Levels

The VxWorks interrupt support described earlier in this section is acceptable for
most applications. However, on occasion, low-level control is required for events
such as critical motion control or system failure response. In such cases it is
desirable to reserve the highest interrupt levels to ensure zero-latency response to
these events. To achieve zero-latency response, VxWorks provides
intLockLevelSet(), which sets the system-wide interrupt-lockout level to the
specified level. If you do not specify a level, the default is the highest level
supported by the processor architecture. For information about
architecture-specific implementations of intLockLevelSet(), see the appropriate
VxWorks architecture supplement.

A.6.6 Additional Restrictions for ISRs at High Interrupt Levels

ISRs connected to interrupt levels that are not locked out (either an interrupt level
higher than that set by intLockLevelSet(), or an interrupt level defined in
hardware as non-maskable) have special restrictions:

! CAUTION: Some hardware prevents masking certain interrupt levels. Check the
hardware manufacturer’s documentation.

VxWorks 653
Programmer's Guide, 2.2

328

■ The ISR can be connected only by calling intVecSet().

■ The ISR cannot use any VxWorks operating system facilities that depend on
interrupt locks for correct operation. The effective result is that the ISR cannot
safely make any call to any VxWorks routine, except reboot.

A.6.7 Interrupt-to-Task Communication

While it is important that VxWorks supports direct connection of ISRs that run at
interrupt level, interrupt events usually propagate to task-level code. Many
VxWorks facilities are not available to interrupt-level code, including I/O to any
device other than pipes. The following techniques can be used to communicate
from ISRs to task-level code:

■ Shared Memory and Ring Buffers

ISRs can share variables, buffers, and ring buffers with task-level code.

■ Semaphores

ISRs can give semaphores (except for mutual-exclusion semaphores) that tasks
can take and wait for.

■ Message Queues

ISRs can send messages to message queues for tasks to receive. If the queue is
full, the message is discarded.

■ Pipes

ISRs can write messages to pipes that tasks can read. Tasks and ISRs can write
to the same pipes. However, if the pipe is full, the message written is discarded
because the ISR cannot block. ISRs must not call any I/O routine on pipes
other than write().

■ Signals

IISRs can “signal” tasks, causing asynchronous scheduling of their signal
handlers.

! WARNING: The use of NMI with any VxWorks functionality, other than reboot, is
not recommended. Routines marked as “interrupt safe” do not imply they are NMI
safe and, in fact, are usually the very ones that NMI routines must not call (because
they typically use intLock() to achieve the interrupt safe condition).

329

 B
PowerPC Considerations

B.1 Introduction 329

B.2 Building Applications 330

B.3 Memory Management Unit 332

B.4 Protection Domains (PowerPC 60x) 337

B.5 Architecture Considerations 337

B.1 Introduction

This documentation includes information specific to VxWorks 653 for PowerPC
targets.

For information on BSP-specific issues and device drivers, see the relevant BSP
documentation.

For information on configuring and building VxWorks 653 systems, see the
VxWorks 653 Configuration and Build User’s Guide.

VxWorks 653
Programmer's Guide, 2.2

330

B.2 Building Applications

If you customize your BSP or need to change how it is built, you may need the
information in this section.

Defining the CPU-Type Configuration Variable (CPU)

Setting the CPU-type configuration variable (CPU) ensures that VxWorks 653 and
applications are compiled with features enabled that are specific to the PowerPC.
Table B-1 shows the values for the CPU variable for supported processors.

As an example, to specify CPU for a PowerPC 750 in a header or source file, include
the following line in the file:

#define CPU PPC604

NOTE: The GNU compiler for PowerPC conforms to the Embedded Application
Binary Interface (EABI). Therefore, type-checking is more rigorous than for some
other architectures.

Table B-1 CPU-Type Configuration Variable: Values for Supported Processors

CPU Value Processor

PPC603 PowerPC 82xx

PowerPC 8349E

PPC604 PowerPC 750

PowerPC 74xx

Only the mpc74xx microprocessor core is supported. The Altivec
technology implemented in the PowerPC 74xx Vector Unit is not
supported.

PowerPC 8641D

Only single core is supported.

PPC85XX PowerPC 8560

B PowerPC Considerations
B.2 Building Applications

331

B

Setting Compiler Options

The following is an example of a command line that compiles an application
(applic.language_id) that is to run on a PowerPC 750:

% ccppc -O2 -mcpu=604 -IinstallDir/target/h -fno-builtin \
-fno-for-scope -DCPU=PPC604 -c applic.language_id -g

The options have the following meaning:

-O2
Optional. Performs level-2 optimization.

-mcpu=604
Required. Produces code for the specified PowerPC architecture.

Other values are 603 and 8540.

-IinstallDir/target/h
Required. Gives access to VxWorks 653 include files. Include additional -I
options to specify additional header files.

-fno-builtin
Required. Uses library calls even for common library routines.

-fno-for-scope
Required. Lets the scope of variables declared in a for loop be outside the for
loop.

-DCPU=PPC604
Required. Instructs VxWorks 653 to include code for the specified architecture.
For other values, see Table B-1.

-c
Required. Causes the application to be compiled, but not linked.

applic.language_id
Required. Specifies the file or files to compile. For C files, specify a .c
language_id. For C++ files, specify .cpp. The output is an unlinked object
module in ELF format with the .o extension.

-g
Optional. Generates debug information for the application.

VxWorks 653
Programmer's Guide, 2.2

332

B.3 Memory Management Unit

The following sections supplement MMU information in 7.8.3 Managing
Page-oriented Memory, p.153.

B.3.1 Enabling or Disabling Instruction MMUs and Data MMUs

The PowerPC distinguishes between an instruction MMU and a data MMU. You
can enable or disable each separately.

B.3.2 Mapping Memory (PowerPC 60x)

The MMU for PowerPC 603 and 604 supports two models for mapping memory:
the BAT model and the segment model. VxWorks 653 supports both.

BAT Model for Mapping Memory

The BAT model for memory mapping maps into a BAT register a memory block
ranging in size from 128 KB to 256 MB.

A BAT register is two 32-bit words. The PowerPC 603 and 604 have eight BAT
registers: four for the instruction MMU and four for the data MMU. The
sysBatDesc[] data structure (defined in sysLib.c) handles configuring BAT
registers. The initialization routines in the MMU library set the registers. By
default, they are set to zero.

Segment Model for Mapping Memory

The segment model for memory mapping specifies the configuration for each
memory page. For the PowerPC, memory pages are 4 KB.

The configuration and build facility generates a data structure (sysMemCfgTbl[])
from the region information in the XML configuration file and puts it in
configRecord.reloc. The data structure describes the entire physical memory and
consists of configuration constants for each page or group of pages.

B PowerPC Considerations
B.3 Memory Management Unit

333

B

B.3.3 Setting MMU Access Rights

MMU access rights for a shared data region depend on the following XML
attributes:

■ /Module/SharedDataRegions/SharedData/SharedDataDescription/@SystemAc
cess

■ /Module/Partitions/Partition/PartitionDescription/SharedDataRegion/@UserA
ccess

MMU access rights for a shared I/O region depend on the following XML
attributes:

■ /Module/SharedDataRegions/SharedData/SharedIODescription/@SystemAcce
ss

■ /Module/Partitions/Partition/PartitionDescription/SharedDataRegion/@UserA
ccess (this is the same Xpath as for the shared data region)

For details, see the VxWorks 653 Configuration and Build Reference.

Table B-2 shows the following PowerPC MMU access information for shared data
regions and shared I/O regions:

■ Allowable combinations of values for their associated SystemAccess and
UserAccess attributes.

■ Resulting values of the page protection (PP) field in the page table entry (PTE).

■ Actual meanings of the PP field. (Because VxWorks 653 programs the
no-execute (N) field of the segment register (SR) to allow execute access, the
actual meaning of the PP field is different.)

Table B-2 PowerPC MMU Access Information for Shared Data Regions and Shared I/O Regions

SystemAccess UserAccess PP Value PP Meaning

READ_WRITE NONE 0 Supervisor read-write-execute
User none

READ_WRITE READ_ONLY 1 Supervisor read-write-execute
User read-execute

VxWorks 653
Programmer's Guide, 2.2

334

For details on memory page attributes, see the 7.8.3 Managing Page-oriented
Memory, p.153.

B.3.4 Setting MMU Cache Attributes

Table B-3 lists valid combinations of MMU cache attributes for the PowerPC. You
can specify any of the attributes based on 4-KB pages. For more information on
cache attributes, see the information on programming environments in the
PowerPC Microprocessor Family.

MMUs in the Guarded State

If the MMU is in the guarded state, instructions and data cannot be accessed out of
order. If the MMU is not in the guarded state, instructions and data can be accessed
out of order. With the PowerPC, when the MMU is enabled, the guarded state is
readable, but not executable.

MMUs in the Coherent State

If the MMU is in the coherent state, store operations by all processors to the same
memory location are ordered, and no processor is able to observe any subset of
those store operations as occurring in a conflicting order. If the MMU is not in the
coherent state, the order in which store operations from different processors occur
is undefined.

READ_WRITE READ_WRITE 2 Supervisor read-write-execute
User read-write-execute

READ_ONLY READ_ONLY 3 Supervisor read-execute
User read-execute

Table B-2 PowerPC MMU Access Information for Shared Data Regions and Shared I/O Regions (cont’d)

SystemAccess UserAccess PP Value PP Meaning

Table B-3 PowerPC MMU Cache Attributes

OFF COPY-BACK WRITE-THRU GUARDED COHERENCY

x

x x

x x

B PowerPC Considerations
B.3 Memory Management Unit

335

B

Determining the Size of Hash Tables (PowerPC 604)

PowerPC processors use a two-level translation table to store MMU translation
information. Processors based on the PowerPC 604 use a hash table as a cache,
where entries are copies of entries in the translation table. These processors handle
TLB reload operations faster if the MMU translation information is fetched from
the hash table rather than from the translation table. As a consequence, for
maximum performance, the size of the hash table must be large enough to hold all
the translation entries in the translation table. The size of the hash table depends
on the total memory to be mapped. The larger the memory to be mapped, the
larger the hash table needs to be. The VxWorks 653 implementation of the segment
model follows the recommendations given in the PowerPC Microprocessor Family.
The total size of the memory to be mapped is calculated when the MMU library is
initialized, allowing the size of the hash table to be dynamically determined.
Table B-4 shows the correspondence between the total memory to map and the size
of the hash table.

x x x

x

x x

x x

x x x

x

x x

x x

x x x

Table B-3 PowerPC MMU Cache Attributes (cont’d)

OFF COPY-BACK WRITE-THRU GUARDED COHERENCY

Table B-4 PowerPC 604 MMU Hash Table Size

Total Memory to Map MMU Hash Table Size

8 MB or less 64 KB

16 MB 128 KB

VxWorks 653
Programmer's Guide, 2.2

336

Resizing and Moving Hash Tables (PowerPC 604)

To change the size of the MMU hash table, set the value of the
USER_HASH_TABLE_SIZE configuration parameter with the following command:

prj domParameterValueSet -p coreOsDirectory USER_HASH_TABLE_SIZE newSize

where newSize is 2^n, 16 <= n <= 25.

You can change the size of the hash table without moving it.

To change the location, change the value of the USER_HASH_TABLE_ADDRESS
configuration parameter with the following command:

prj domParameterValueSet -p coreOsDirectory USER_HASH_TABLE_ADDRESS newAddress

By default, the hash table is allocated from the kernel heap. The hash table must
align on an address (newAddress) that is an integral multiple of the hash table’s size.

If you move the hash table, you must reserve memory for the table by creating a
kernelRegion element in the XML configuration file. For details, see the
VxWorks 653 Configuration and Build Reference.

B.3.5 ELF-Specific Tools

The GNU compiler provides the PowerPC-specific objcopyppc command. For
details, see the reference entry for objcopy in the GNU Binary Utilities.

32 MB 256 KB

64 MB 512 KB

128 MB 1 MB

256 MB 2 MB

512 MB 4 MB

1 GB 8 MB

2 GB 16 MB

4 GB 32 MB

Table B-4 PowerPC 604 MMU Hash Table Size (cont’d)

Total Memory to Map MMU Hash Table Size

B PowerPC Considerations
B.4 Protection Domains (PowerPC 60x)

337

B

B.3.6 Detecting NULL Pointer Dereferences

The implementation for detecting NULL pointer dereferences in the PowerPC
means that accesses to the first 16 KB of memory generate an exception. Accesses
include read, write, or execute operations in supervisor or user mode.

B.4 Protection Domains (PowerPC 60x)

The implementation of virtual-memory support for the PowerPC 603 and 604
means that VxWorks 653 modules for the PowerPC 60x family cannot consist of
more that a specific number of protection domains.

To reach the maximum number of protection domains that can be present in a
VxWorks 653 module, change the configuration parameter
(PD_MAX_NUMBER_OF_PDS) from its default value of 64 to the maximum as
shown in Table B-5.

B.5 Architecture Considerations

This section describes characteristics of PowerPC processors that affect
VxWorks 653 modules.

For comprehensive documentation of PowerPC architectures, see the appropriate
Motorola microprocessor user’s manual or the IBM user’s manual.

Table B-5 Maximum Number of Protection Domains

Processor Family Maximum Number of Protection Domains

PowerPC 603 4096

PowerPC 604 2016

PowerPC 85xx Limited only by available memory

VxWorks 653
Programmer's Guide, 2.2

338

Processor Mode

The PowerPC supports supervisor mode and user mode.

24-bit Addressing

To conform to the Embedded Application Binary Interface (EABI) standard, the
PowerPC limits its relative addressing to 24-bit offsets.

Byte Order

VxWorks 653 for the PowerPC uses big-endian byte order.

PowerPC Registers

The Application Binary Interface (ABI) and the EABI protocols define PowerPC
conventions on register usage, stack-frame formats, parameter passing between
routines, and other factors involving code interoperability. VxWorks 653 for the
PowerPC follows these protocols.

Table B-6 shows PowerPC register usage in VxWorks 653.

Table B-6 PowerPC Registers

Register Description Volatile or Non-Volatile

fpr0 Floating-point register. Volatile

fpr1 Floating-point register for passing
parameters and returning values.

Volatile

fpr2 - fpr8 Floating-point registers for passing
parameters.

Volatile

fpr9 - fpr13 Floating-point registers. Volatile

fpr14 - fpr31 Floating-point registers for local
variables.

Non-volatile

gpr0 Register for routine linkage. Volatile

gpr1 Stack-frame pointer. It is always valid. Non-volatile

B PowerPC Considerations
B.5 Architecture Considerations

339

B

HI and HIADJ Macros

The HI and HIADJ macros are used in PowerPC assembly code. HI(x) is the
high-order 16 bits of the value x. HIADJ(x) is the high-order 16 bits adjusted by
bit 15. If bit 15 is set, the value is adjusted by adding 1.

You must use HIADJ(x) if the low-order 16 bits are to be used with an instruction
that interprets them as a signed quantity (for instance addi and lwz). If the
low-order bits are used in an instruction that interprets them as an unsigned
quantity (for instance ori), use HI.

For example, addi uses a signed quantity, so HIADJ is the correct macro:

lis rx, HIADJ(VALUE)
addi rx, rx, LO(VALUE)

And, ori uses an unsigned quantity, so HI is the correct macro:

lis rx, HI(VALUE)
ori rx, rx, LO(VALUE)

gpr2 Register for the pointer to the second
small data area (_SDA2_BASE_)

Volatile

gpr3, gpr4 Registers for passing parameters and
returning values.

Volatile

gpr5 - gpr10 Registers for passing parameters. Volatile

gpr11 - gpr12 Registers for routine linkage. Volatile

gpr13 Register for the pointer to the small
data area (_SDA_BASE_).

Non-volatile

gpr14 - gpr30 Registers for local variables. Non-volatile

gpr31 Register for local variables or
environment pointers.

Non-volatile

Table B-6 PowerPC Registers (cont’d)

Register Description Volatile or Non-Volatile

VxWorks 653
Programmer's Guide, 2.2

340

Cache and Kernel Heap

To ensure cache coherency, the kernel heap must be created in cacheable mode:
copy-back or write-through.

With protection-domain support, the location and size of the kernel heap is defined
by the KERNEL_MEM_POOL_START and KERNEL_MEM_POOL_SIZE parameters.
The initial cache mode is defined in the XML configuration file.

If protection-domain support is not included, the kernel heap extends up to user
reserved memory, which is the value returned by sysMemTop().

You can allocate non-cacheable buffers from the kernel heap. Routines that can
mark buffers non-cacheable (such as cacheDmaMalloc() and cacheDmaFree())
work properly. It is recommended that you use these sorts of routines. However, if
you need to manually alter cache mode for a buffer through the virtual-memory
interface, you must restore the previous state before you release the buffer.

If you need to disable caching for all memory—for example, when debugging—
undefine the USER_D_CACHE_ENABLE and USER_I_CACHE_ENABLE macros,
rather than use the MMU to mark each individual page non-cacheable.

Floating-Point Routines

Table B-7 lists the floating-point routines that are available for PowerPC
processors. A subset is optimized using Motorola libraries.

Table B-7 Floating-Point Routines

Routine Optimized Using Motorola Libraries

acos() Yes

asin() Yes

atan() Yes

atan2() Yes

ciel()

cos() Yes

cosh()

B PowerPC Considerations
B.5 Architecture Considerations

341

B

Routines Not Available

The following floating-point routines are not available on PowerPC processors:

■ cbrt()
■ infinity()
■ irint()
■ iround()
■ log2()
■ round()
■ sincos()
■ trunc()

No single-precision routines are available for PowerPC processors.

exp() Yes

fabs()

floor()

fmod()

log() Yes

log10() Yes

pow() Yes

sin() Yes

sinh()

sqrt() Yes

tan()

tanh()

Table B-7 Floating-Point Routines (cont’d)

Routine Optimized Using Motorola Libraries

VxWorks 653
Programmer's Guide, 2.2

342

Support for Floating-Point Exceptions in Partitions

Floating-point exceptions are supported for PowerPC processors and support is
enabled by default. Only partitions support floating-point exceptions. Core OS
tasks do not.

To disable support for floating-point exceptions for a particular partition, set the
partition’s fpExcEnable parameter to false in the XML configuration file at
configuration and build time. For details, see the VxWorks 653 Configuration and
Build Reference.

Machine State Register

When support for floating-point exceptions is enabled, the machine state register
(MSR) is saved and restored on each process context switch.

Only a supervisor-level task can change the MSR. An application cannot alter it.

When support for floating-point exceptions is enabled, the MSR for the partition is
set to floating-point precise mode; that is, MSR[FE0] and MSR[FE1] are set to 1.

If support for floating-point exceptions is disabled, the MSR for the partition is set
to floating-point exceptions-disabled mode; that is, MSR[FE0] and MSR[FE1] are
set to 0. In this mode, floating-point exceptions return a predefined value instead
of causing an exception.

Floating-Point Status and Control Register

An application can modify settings for the floating-point status and control
register (FPSCR) for its partition. For example, an application might enable or
disable types of floating-point exceptions, such as underflow and overflow
exceptions.

If changes are made to the register for an application task, the changes affect only
that thread of execution. Changes are saved for that task's context when a context
switch occurs. Context switches include a task context switch within a partition or
a partition context switch.

By default, the value of the FPSCR is 0x000000D0. This enables the following bits
and their associated exceptions:

■ VE (invalid)

■ ZE (divide by zero)

■ OE (overflow)

B PowerPC Considerations
B.5 Architecture Considerations

343

B

Shared Library Support (PowerPC 604)

The MMU implementation for the PowerPC 604 forces limitations in
shared-library support in VxWorks 653. The shared-library size requirements are
the same as in other architectures, and theoretically the maximum number of
shared libraries is the same. But for the PowerPC 604, the following applies:

■ The time to attach and detach shared libraries is longer.

■ The use of hash-table entries is increased, not only because of more shared
libraries, but because of attachments made to them.

If your VxWorks 653 module has many attachments to shared libraries, you may
need to increase the default size of the PowerPC 604 MMU hash table. Increasing
the size ensures that translation information is fetched from the hash table instead
of from the two-level translation tables, thereby guaranteeing the best
performance. You can monitor hash-table usage by calling
mmuPpcHashTblShow() from the shell. To use this routine, you must include the
INCLUDE_KERNEL_SHOW component in the kernel domain. For more
information, see Resizing and Moving Hash Tables (PowerPC 604), p.336 and the
reference entry for mmuPpcHashTblShow().

Debugging

Caches

If you need to disable caching for all memory—for example, when debugging—
undefine the USER_D_CACHE_ENABLE and USER_I_CACHE_ENABLE macros,
rather than use the MMU to mark each individual page as non-cacheable.

Memory Layout

The VxWorks 653 virtual memory layout is the same for all PowerPC processors.
Figure B-1 shows the memory layout, labeled as follows:

VxWorks 653
Programmer's Guide, 2.2

344

Addresses shown in Figure B-1 are relative to the start of memory for a particular
board. The start of memory (corresponding to 0x0 in the memory-layout diagram)
is defined by the LOCAL_MEM_LOCAL_ADRS parameter. For information on
setting parameters, see the VxWorks 653 Configuration and Build Guide. For
information on a particular parameter, see the VxWorks 653 Configuration and Build
Reference.

Interrupt vector table Table of exception and interrupt vectors.

SM anchor Anchor for the shared memory network objects (if there is
shared memory on the board).

Boot line ASCII string of boot parameters.

Exception message ASCII string specifying the fatal-exception message.

Initial stack Initial stack for usrInit() until usrRoot() is allocated a
stack.

System image VxWorks 653 itself (three sections: text, data, bss). The
entry point for VxWorks 653 is at the start of this region,
whose address depends on the BSP. The entry point for
most supported BSPs is 0x100,000. For a list of supported
BSPs, see the Platform release notes.

Interrupt stack The size (in bytes) of the interrupt stack is defined by the
ISR_STACK_SIZE parameter. For information on setting
parameters, see the VxWorks 653 Configuration and Build
Guide. For information on a particular parameter, see the
VxWorks 653 Configuration and Build Reference.

System memory pool Size depends on the size of the module image. The
sysMemTop() routine returns the address of the end of
the free memory pool.

B PowerPC Considerations
B.5 Architecture Considerations

345

B

Figure B-1 VxWorks 653 System Memory Layout for the Core OS (PowerPC)

+0x0000

+0x3000

+0x4200

+0x4300

+0x4400

BSP-dependent

Address

Initial stack

Interrupt vector table
(12KB)

Exception message

Boot line

System image

text

data

bss

System memory pool

Available

Reserved

LOCAL_MEM_LOCAL_ADRS

_end
Interrupt stack

SM anchor

+0x10 000

With PD support: KERNEL_MEM_POOL_START
and KERNEL_MEM_POOL_SIZE

+0x4100

KEY

No PD support (for example, bootapp): sysMemTop()

VxWorks 653
Programmer's Guide, 2.2

346

347

 C
Glossary

acceptance

Acceptance is the acknowledgement by a certification authority that the ARINC
653 module, application, or system meets its defined requirements.

ACE

ACE: Agent for the Certified Environment.

AFDX

AFDX: Avionics Full Duplex Switched Ethernet. It is defined by the ARINC 664
specification, Part 7.

alarm

In the context of health monitoring, an alarm is an event. See also message.

AMIO

Application multiplexed I/O (AMIO) allows you to provide input to and view
output from multiple partitions over a single serial connection.

APEX

APEX: Application/Executive. The general-purpose interface between an OS and
application software, specified by the ARINC 653 specification. The specification
includes the list of services that lets the application control scheduling,
communication, and status information of its internal processing elements.

VxWorks 653
Programmer's Guide, 2.2

348

APEX port

APEX port: see port.

API

API: application programming interface.

application

An application is a collection of software components that together perform a
specific function in an embedded system. See also application partition.

application developer

An application developer develops one or more applications that will reside in a
partition. This person or group may also be responsible for developing data
binaries, which contain any databases used by the application. See also platform
provider and system integrator.

application partition

An application partition is a partition that includes an application.

APPS

APPS: ARINC PPS. It is the module-wide scheduling scheme for partitions. This is
a combination of ARINC 653 scheduling (TPS) and PPS scheduling in which the
PPS scheme is used during idle time within the TPS scheme. The scheduling
scheme applies to all PPS-enabled partitions in the module.

ARINC 653

ARINC 653 refers to ARINC Specification 653: “Avionics Application Software
Standard Interface.”

ARINC 653 scheduling

ARINC 653 scheduling is the scheduling that is specified by the ARINC 653
specification. It is time-preemptive scheduling (TPS). See also APPS scheduling
and PPS scheduling.

ARINC PPS

ARINC PPS: see APPS scheduling.

C Glossary

349

C

black box

A black box is a set of configuration parameters that represent the memory
requirements of an application, a shared library, or the core OS. The use of black
boxes allows a VxWorks 653 module to be configured before all the applications
and libraries are available. Applications, libraries, and the core OS must fit within
the memory limits set by their black boxes.

board support package

BSP: board support package. It provides the libraries required to support a
platform on a particular board. The BSP, along with the kernel and user-supplied
extensions, make up the core OS.

BSP

BSP: see board support package.

BSP developer

A BSP developer is a person or organization responsible for the development of a
board support package.

BSS

BSS: block started by symbol. It is a data section in an ELF file that contains
uninitialized global and static variables that are zeroed.

build spec

A build spec specifies compiler and linker options to produce particular output,
such as cert, debug, or release.

callback routine

In the context of health monitoring, a callback routine is called when an event
arrives at a partition health monitor task or module health monitor task. It is called
before the handler for the given event is called.

CDF

CDF: component description file. It has the .cdf extension. It uses the component
description language (CDL) to name and give values to the parameters of VxWorks
653 components.

VxWorks 653
Programmer's Guide, 2.2

350

cert

cert is the build spec that produces a certifiable image.

certifiable

An image that is certifiable can be certified to a specific level of the DO-178B
avionics software standard.

certifiable subset

A certifiable subset is a subset of the core OS or a partition OS that can be certifiable
to Level A of the DO-178B avionics software standard.

certification

Certification refers to certification to a specific level of the DO-178B avionics
software standard.

channel

A channel defines a logical link between one source port and one or more
destination ports. It also defines the message transfer mode and the characteristics
of the messages. Channels are used for interpartition communication, which can
be between local partitions, pseudo-partitions, or both. Channels conform to the
ARINC 653 specification.

COIL

COIL: core OS interface library. A partition OS that provides a library of routines
independent of the vThreads partition OS. The library supports the management
of interrupts and exceptions, device I/O, interpartition messaging, and injection of
health monitoring events.

COIL partition

A COIL partition is a partition whose partition OS is based on COIL. See also
vThreads partition.

cold restart

A cold restart occurs when a module or partition is restarted and all data is
reloaded. A cold restart takes longer than a warm restart.

C Glossary

351

C

configlette

A configlette is a component or part of a component that is distributed in source
form, allowing compile-time parameters to be set when the component is included
in a build.

configuration parameter

A configuration parameter is used to change the configuration of a VxWorks 653
component.

configuration record

A configuration record is a record of the information that makes up the
configuration of a VxWorks 653 module or a part of it. Configuration records
include both the system configuration record and user configuration records.

core OS

The core OS is the core operating system for a VxWorks 653 module. It provides
fundamental operating system services and schedules partitions.

core OS interface library

Core OS interface library: see COIL.

CPU page size

The CPU page size is the smallest addressable unit of memory for the MMU. It is
also called MMU page size. The page size depends on the CPU and is generally not
configurable.

cross-development tools

Cross-development tools are programs that run on a host computer (running, for
example, Windows or UNIX) and that are used to develop, debug, or control
software running on an embedded processor that is running a real-time operating
system (for example, VxWorks 653). For VxWorks 653, the cross-development tools
are based on Workbench. See also run-time software.

current partition

The current partition is the partition that is running. In an APPS scheduling
environment, the current partition and the TPS partition may not be the same.

VxWorks 653
Programmer's Guide, 2.2

352

default schedule

The schedule that will be run when the module is started.

destination port

A destination port is one of possibly many ports at the receiving end of a channel.
See also source port.

direct-access port

A direct-access port is a type of pseudo-port that does not use software buffering.
Buffering support is assumed to be provided by the communications hardware.

DO-178B

DO-178B: “Software Considerations in Airborne Systems and Equipment
Certification.” The avionics software standard developed by RTCA.

domain

A domain is a software container. Each element of a VxWorks 653 module—the
core OS (kernel), partitions (applications), shared libraries, and shared data
regions—exists in a domain.

dynamic memory allocation

Dynamic memory allocation refers to allocating memory from the heap at
run-time.

EABI

EABI: Embedded Application Binary Interface.

ELF

ELF: Executable and Linking Format. It is an object module format used to
encapsulate compiled software.

error handler process

See process health monitor.

C Glossary

353

C

event

In the context of health monitoring, an event is the base unit that is injected into the
event handling framework. It represents an alarm or a message, depending on the
event code.

event code number

In the context of health monitoring, an event code number is the value of the event
code, as defined in the HM_CODE enumeration type in hmTypes.h.

event queue

The module health monitor table and partition health monitor table each have an
event queue. The module and partition health monitor event queues are
sometimes called, simply, the module and partition health monitor queues. An
event queue holds the events that have been dispatched to its associated health
monitor for handling. Event queues are serviced before health monitor notification
queues are serviced.

FAA

FAA: U.S. Federal Aviation Administration.

FIFO

FIFO: first-in, first-out queuing.

FPSCR

Floating-point status and control register.

global file descriptor

Global file descriptors (standard in, standard out, and standard error) are available
to all tasks in a partition. Their global assignment is controlled by the
ioGlobalStdSet() and ioGlobalStdGet() routines, but may be overridden by the
ioTaskStdSet() and ioTaskStdGet() routines.

GUI

GUI: graphical user interface.

VxWorks 653
Programmer's Guide, 2.2

354

health monitor

Health monitoring provides a framework to raise and handle events (which can be
alarms or messages) in a VxWorks 653 module. Alarms are injected to represent
faults, and handlers provide the opportunity to perform recovery actions. See
module health monitor, partition health monitor, process health monitor, and
system health monitor.

hosted function supplier

Hosted function supplier: see application developer.

IDE

IDE: integrated development environment.

injection

Injection is the act of creating a health monitor alarm event or message event.

interface subset

An interface subset defines part of the interface of a shared library. The use of
interface subsets allows you to reuse parts of the interface definition among
libraries that share some parts of their interface. For example, two different
vThreads libraries containing different components would share the core
vThreads interface.

interrupt level

Saying an event is injected at an interrupt level means the event is injected from an
interrupt execution context.

ISR

ISR: interrupt service routine.

jitter

Jitter is a variation or deviation in the frequency of an expected occurrence. See also
partition switch jitter.

kernel

Kernel is another term for the core OS.

C Glossary

355

C

kernel I/O region

A kernel I/O region is a region of target memory that corresponds to the address
of an I/O device on the target and can be accessed only by the core OS.

Level A

Level A is the highest certification level for the DO-178B software standard.

loadable shared data region

A loadable shared data region is a data source, such as a database, that can be
loaded into a shared data region as part of the module payload.

local partition

A local partition is a partition that is local to a VxWorks 653 module. Unless it
might be confused with a pseudo-partition, it is called, simply, a partition.

local port

A local port is a port that is attached to a local partition. Unless it might be
confused with a pseudo-port, it is called, simply, a port. See also null port.

log queue

The module health monitor and partition health monitor each have a log queue
(sometimes called simply a log). Health monitor messages are always logged,
whereas alarms are logged only if health monitor logging is enabled. If an event is
injected from within a partition (HM_PROCESS_MODE or
HM_PARTITION_MODE), the event is logged to the partition health monitor log.
If the event is injected from outside the partition (HM_MODULE_MODE), the
event is logged to the module health monitor log.

major frame

Each schedule consists of a major frame, which is divided into a series of
variable-length minor frames.

message

In the context of health monitoring, a message is an event. See also alarm.

VxWorks 653
Programmer's Guide, 2.2

356

minor frame

Each schedule consists of a major frame, which is divided into a series of
variable-length minor frames. Each minor frame defines the partition to run, its
allowed duration, and whether or not the minor frame is a release point.

MMU

MMU: memory management unit.

module

A module is the “system” controlled by one RTOS, and in VxWorks 653, that RTOS
is the core OS.

module health monitor

The module health monitor is present in parallel with all partitions in a VxWorks
653 module, and hence all partition health monitors in the module. The module
health monitor is not part of any partition window and has priority over all
partitions. The module health monitor resides in the core OS. It is associated with
the module health monitor table, which among other things, defines notification
queues, a log queue, and an event queue. See also system health monitor, partition
health monitor, and process health monitor.

MSR

Machine state register.

namespace

An XML namespace provides a unique identifier which can be associated with an
XML element by means of a prefix. The namespace uniquely identifies the XML
schema in which the element is defined.

NMI

NMI: non-maskable interrupt.

normal mode

Normal mode is the partition mode during which processes or threads are
scheduled. (Other partition modes include idle, cold start, and warm start.)

C Glossary

357

C

notification

In the health monitoring context, notification is the act of informing another
partition health monitor or the module health monitor of an event that has
occurred in a given partition.

notification queue

The module health monitor table and partition health monitor table each have
notification queues, one for each partition that wants to accept notification of
events. Notification queues are serviced after health monitor event queues are
serviced.

null port

A null port is a port that is created at system initialization time, but is not used. It
is always considered to be empty when read from and have space when written to.
A null port can be attached to a partition, the core OS, or a pseudo-partition. See
also local port and pseudo-port.

NVM

NVM: non-volatile memory.

online-loaded partition

With online-loaded partitions, the core OS does not install the partition code from
flash or RAM into its final domain location in RAM as it does during the system
initialization phase for regular partitions. Instead, an empty application domain is
created for an online-loaded partition during the core OS initialization phase. The
code of the online-loaded partition is made available to the core OS only at a later
stage. In some cases this may not be until after all the regular partitions are already
running.

OS

OS: operating system.

partition

A partition is a container for an application. An application running in a partition
cannot interfere with applications in other partitions or with the core OS.

VxWorks 653
Programmer's Guide, 2.2

358

partition direct-access port

A partition direct-access port is a type of direct-access port residing in a partition.
A partition direct-access port can communicate only with a local port in the
application resident in the partition.

partition health monitor

The partition health monitor is the health monitor that is present in parallel with
vThreads to handle vThreads partition errors and events that may affect the
operation of vThreads within the partition. The partition health monitor is
scheduled as part of the partition window. It is associated with the partition health
monitor table, which among other things, defines notification queues, a log queue,
and an event queue. See also system health monitor, module health monitor, and
process health monitor.

partition OS

A partition OS is a user-level software library running within a partition that
provides operating system services to the partition. See also vThreads and COIL.

partition OS scheduler

The partition OS scheduler is the scheduler in a partition OS that allocates CPU
time to threads in the partition. It is a priority-preemptive scheduler and is not
related to the ARINC schedule.

partition port

Partition port: see local port.

partition scheduler

The partition scheduler is the scheduler in the core OS that allocates CPU time to
partitions, allowing CPU time to become available to threads in those partitions.
By default, the partition scheduler uses ARINC 653 (TPS) scheduling, but can
optionally schedule designated partitions with APPS scheduling. See also
partition OS scheduler.

partition switch jitter

Partition switch jitter is a variation or deviation in the configured partition
switching schedule. For example, partition switch jitter might be caused by
hardware latencies or by the core OS locking interrupts.

C Glossary

359

C

partition window

A partition window is the time in which a partition is allowed to run before being
scheduled out.

payload

A payload is an image file (or files) that contains the code for a VxWorks 653
module in a form that is suitable for running on a target.

payload region

A payload region is the region of RAM or ROM where a payload is loaded.

periodic process

A periodic process is a process within a partition that is run on a schedule based
on the passage of wall clock time. That is, the countdown to the next invocation of
a periodic process runs even when the partition itself is not scheduled.

PersistentBSS

A BSS section that is persistent across a warm restart.

platform

A platform is software on which applications can be built and from which a
VxWorks 653 module can be developed.

platform provider

A platform provider is responsible for configuring the base system on which
application developers will build their applications.

port

A port is one end of a channel, which is used for interpartition communication.
Ports have attributes, for example, direction (source or destination), mode
(queuing or sampling), protocol (receiver discard, sender block, or none), and
refresh rate. Ports conform to the ARINC 653 specification and its APEX interface
and are also called APEX ports. See also pseudo-port.

POS

POS: See partition operating system.

VxWorks 653
Programmer's Guide, 2.2

360

POSIX

POSIX: Portable Operating Systems Interface. In this documentation, POSIX refers
to the standard for real-time extensions (1003.1b), which specifies a set of interfaces
to OS facilities. The POSIX API can be included in a vThreads partition if the APEX
API is not included.

PPS

PPS: priority-preemptive scheduling. It allows for scheduling of partitions in a
module-wide priority-preemptive scheme during the idle time within an ARINC
653 (TPS) schedule. See also APPS scheduling.

PPS-enabled

A PPS-enabled partition is a partition that is configured to indicate that it should
be considered during APPS scheduling.

preemption locking

Preemption locking disables the scheduling of processes, threads, or tasks, and
only the current process, thread, or task can be run until it decrements the lock
level back to zero.

priority-preemptive scheduling

Priority-preemptive scheduling: see PPS.

process

Process is the APEX term for a thread. In the vThreads context, the term thread is
preferred. See also task.

process health monitor

The process health monitor is the health monitor that is present within vThreads
to handle process-related errors and events. It is also known as the error handler
process. See also system health monitor, module health monitor, and partition
health monitor.

pseudo-partition

A pseudo-partition is a communications object that is outside a VxWorks 653
module. See also local partition and pseudo-port.

C Glossary

361

C

pseudo-port

The term pseudo-port applies generally to any port that represents a data source
or destination outside the current module. The term pseudo-port is also used in a
more restrictive sense for a type of pseudo-port that uses software buffering. In this
sense it is contrasted with direct-access port which is a type of pseudo-port that
does not use software buffering. See also local port and null port.

queuing port

A queuing port is a port in queuing mode. In queuing ports, messages are queued.
A protocol manages the queues. See also sampling port.

RAM

RAM: random access memory.

RAM payload

A RAM payload is a payload that is designed to be downloaded into RAM on the
target.

real-world time

Real-world time: see wall clock time.

receiver discard protocol

Receiver discard protocol is a port message protocol. If one of the channel’s
destination ports is full, the source port discards the message for that port.
Therefore, if all the destination ports are full, the message might be lost. When a
message is so discarded, the port’s overflow flag is set to notify the application of
the discarded (lost) message. See also sender block protocol.

refresh rate

The refresh rate (in seconds) indicates the maximum acceptable age of a valid
message, from the time it was received by the port. It applies to destination
sampling ports only.

release point

A release point is a way to synchronize a periodic process with the partition
window of a partition. A periodic process spawned in a partition starts only at the
next release point.

VxWorks 653
Programmer's Guide, 2.2

362

ROM

ROM: read-only memory.

ROM payload

A ROM payload is a payload that is designed to be installed in ROM on the target.

root element

The root element is the element of an XML document that contains all the other
elements in the document.

RTCA

RTCA: Radio Technical Commission for Aeronautics. The private, not-for-profit
corporation that develops recommendations on communications, navigation,
surveillance, and air-traffic management issues. RTCA developed the DO-178B
avionics software standard.

RTOS

RTOS: real-time operating system.

run-time software

Run-time software is the operating system and application software that together
run on a target. See also cross-development tools.

sampling port

A sampling port is a port in sampling mode. In sampling ports, messages are not
queued. A message remains in the source port until it is sent or overwritten. Each
new message overwrites the previous one when it reaches the destination port and
remains there until it is overwritten itself. Sampling ports have refresh rates. See
also queuing port.

SAP port

A service access point (SAP) is a special kind of queuing port. It is different from a
normal queuing port because it allows access to addressing information when
sending and receiving messages. The SAP services are similar to the ARINC 653
queuing port services but has additional parameters to support address
information. ARINC 653 Part 2, Supplement 2, defines two types of SAP services.
Standard SAP services provide limited addressing capability to ensure that the
source cannot alter its identity and that the destination is unambiguous. Extended

C Glossary

363

C

SAP services provide complete accessibility to addressing. VxWorks 653 supports
standard SAP ports, but not extended SAP ports.

schedule

Schedules define how the core OS schedules partitions. Each schedule consists of
a major frame.

scheduler

See partition scheduler and partition OS scheduler.

select operation

The select operation refers to calling select() to pend on a set of file descriptors.

sender block protocol

Sender block protocol is a port message protocol. A queuing message is sent to all
the channel’s destination ports. If any one is full, the message is queued in the
source port in FIFO order. When the source port is full and if a timeout was
specified, sender processes are blocked during the SEND_QUEUING_MESSAGE
service. When a destination port is emptied, retransmission is attempted. Whether
it succeeds depends on the state of the channel’s other destination ports. See also
receiver discard protocol.

service access point

Service access point: see SAP port.

shared data region

A shared data region (sometimes called a shared data domain) is a data region that
can be used by applications within partitions to share data. Outside a shared data
region, applications have no access to the data of other applications. See also
loadable shared data region.

shared I/O region

A shared I/O region is a region of target memory that corresponds to the address
of an I/O device on the target and can be shared by partitions and the core OS.

shared library

A shared library is a library that contains code that can be shared by multiple
applications. See also system shared library.

VxWorks 653
Programmer's Guide, 2.2

364

shared library region

A shared library region is the area of RAM that holds a shared library.

source port

A source port is the one port at the sending end of a channel. See also destination
port.

standard port

Standard port: see local port.

static module

A static module file is a fully located object file that has been compiled and linked
for use in a VxWorks 653 module. A static module file has a .sm file extension.

straight-line code

Straight-line code is code that does not use threads.

system call

A system call is a call from a partition to the core OS.

system clock

System clock refers to the system clock for a VxWorks 653 module.

system configuration record

The system configuration record is the record of all the configuration parameters
in a VxWorks 653 module. During the configuration process, configuration
information is expressed in the Module configuration document. The build
process produces a binary version of this information in configRecord.reloc or
configRecord.bin.

system health monitor

The system health monitor is the dispatcher for the health monitoring system. See
also module health monitor, partition health monitor, and process health monitor.

system heap

System heap refers to the heap for the core OS.

C Glossary

365

C

system initialization

System initialization refers to the initialization of a VxWorks 653 module.

system integrator

A system integrator is responsible for integrating the applications created by the
application developers with the platform created by the platform provider to
create the final module.

system memory

System memory refers to memory controlled by the core OS.

system object

A system object is an object created by the core OS (or vThreads) for use by the core
OS (or vThreads). An example is a semaphore.

system resource

A system resource is a resource allocated by the core OS for use by the core OS.

system restart

System restart refers to restarting a VxWorks 653 module.

system shared library

A system shared library is a special shared library that contains the code for a
partition OS.

system start

System start refers to starting a VxWorks 653 module.

target

The target is the board for which you are developing an embedded system.

task

A task is an execution context. In VxWorks 653, it refers to a core OS object. See also
thread.

VxWorks 653
Programmer's Guide, 2.2

366

TCB

TCB: task control block. The structure that contains critical run-time information
for a single task.

thread

A thread is an execution context. It is the preferred term for what is sometimes
called a process. A thread is a programming unit contained within a vThreads
partition. It runs concurrently with other threads of the same partition. See also
task and process.

time-preemptive scheduling

Time-preemptive scheduling: see TPS.

TLB

TLB: translation look-aside buffer. It is a specialized cache that holds a table of
physical addresses as generated from the virtual addresses that program code
uses.

TPS

TPS: time-preemptive scheduling. It is also called ARINC 653 scheduling. See also
APPS scheduling and PPS scheduling.

TPS partition

A TPS partition is the partition that has been scheduled to be run by the ARINC
653 (TPS) scheduler. In an APPS scheduling environment, the current partition and
the TPS partition may not be the same.

trusted partition

From the point of view of a given partition, a trusted partition is a partition from
which it will allow the health monitor to accept health monitor notifications on its
behalf. Since health monitor notifications are processed in the time slice of the
partition on whose behalf they are received, limiting the number of partitions that
a partition trusts limits the effect of health monitor notifications on the partition's
time allotment.

user configuration record

A user configuration record is a collection of data that can be used for configuring
user extensions to the core OS.

C Glossary

367

C

user memory region

The user memory region is that area of RAM that is needed for memory other than
health monitor logs, core OS configuration records, core OS memory, core OS page
pools, core OS pools, ports, and RAM payload.

user partition OS

A user partition OS is a partition OS that is based on COIL, augmented to perform
other functions that are required by the application.

VAL

VAL: vThreads abstraction layer. It is a layer of the core OS. When a vThreads
partition makes a system call, it communicates with this layer. It is a concept
internal to VxWorks 653.

validation

In XML terms, validation is a process that ensures that an XML file is well formed
according to the rules of XML and adheres to the structure specified in the
appropriate XML schema. Validation is performed by an XML validator.

VME

VME: Versa Module Europa. VME is an open-ended bus system that makes use of
the Eurocard standard. The VME bus was intended to be a flexible environment,
supporting a variety of computing-intensive tasks, and has become a popular
protocol in the computer industry. It is defined by the IEEE 1014-1987 standard.

vThreads

vThreads is the priority-preemptive OS that serves as a partition OS.

vThreads partition

A vThreads partition is a partition whose partition OS is based on vThreads. See
also COIL partition.

vThreads scheduler

vThreads scheduler: see partition OS scheduler.

VxWorks 653
Programmer's Guide, 2.2

368

VxWorks 5.5

VxWorks 5.5 is the Wind River operating system on which the vThreads partition
OS of VxWorks 653 is based.

VxWorks 653

VxWorks 653 is the Wind River operating system that supports the ARINC 653
specification.

W3C

W3C refers to the World Wide Web consortium at www.w3.org.

wall clock time

Wall clock time is time as measured in the real world by the clock on the wall. (As
opposed, for instance, to the time elapsed in a particular application’s partition
window.)

warm restart

A warm restart occurs when a module or partition is restarted but persistent data
is retained, shortening the time required for the restart.

WDB

WDB refers to the Wind River debug agent.

Wind

Wind is the adjective applied to certain OS objects to distinguishes them from
POSIX objects. For example, Wind semaphores distinguishes from POSIX
semaphores.

WindSh

WindSh is a host shell.

Workbench

Workbench is the Wind River Workbench development environment.

C Glossary

369

C

worker task

A worker task is a core OS task that is associated with a specific partition. Worker
tasks perform blocking operations (typically blocking I/O) on behalf of the
partition they are associated with.

write-protect

To write-protect is to guard an entity by a mechanism that prevents it from being
changed or erased. For example, memory can be write-protected by using an
MMU.

XInclude

XInclude is a W3C standard for including one XML file in another.

XML

XML: Extensible Markup Language. It is a standard for defining markup
languages.

XML attribute

An XML attribute is an additional piece of information added to an XML element
in the form of a key-value pair.

XML declaration

The XML declaration identifies a file as an XML document and contains
information such as the version of XML used and the character encoding used in
the file.

XML document

A document written using XML syntax.

XML document type

An XML document type is the grammar of a particular XML file as defined by the
applicable XML schema.

XML editor

An XML editor is a program that provides support for editing XML files. This
usually includes support for inserting tags and for validating the file against an
XML schema.

VxWorks 653
Programmer's Guide, 2.2

370

XML element

An XML document consists of XML elements, each of which may contain data
content, other elements, or both. The elements allowed in a particular document
type are determined by the applicable XML schema.

XML file

An XML file is an instantiation of an XML schema.

XML schema

An XML schema is a document that defines the structure of an XML document. In
defines what elements are permitted in an XML document, the order and nesting
of elements, and the types of data each element can contain.

XML schema file

An XML schema file is a file that contains all or part of the definition of an XML
schema. An XML schema file can include other schema files by reference to
construct a complete schema definition.

XPath

XPath is a W3C standard for expressing the location of an element or attribute in
an XML file.

371

Index

Symbols
_VTH_COM_INIT macro 143

Numerics
24-bit addressing 338

A
access routines (POSIX) 92
actions

health monitoring 210
addressing

24-bit 338
AFDX 187
aioPxLib 90
alarm escalation

health monitoring 210
alarm injection

health monitoring 204
alarms

health monitoring 196
allowable notifications 212

APEX
blackboards

queuing 80
services 79
state transition 81

buffers 77
channels 68
deadline time 62
events 83

handling 84
queuing 84
state transitions 85

inter-partition
communication 67

APEX port RECV 22
APEX port SEND 22
application multiplexed I/O 256
APPS scheduling 172

examples 178
forcing idle 175
idle time 175
partition-scheduling routines 181
pseudo-interrupts 177
ticks and timeouts 176
vThreads and 176

ARINC 664 187
askRegsGet() 280
asynchronous I/O (POSIX)

aioPxLib 90

VxWorks 653
Programmer's Guide, 2.2

372

attribute (POSIX)
prioceiling attribute 108
protocol attribute 108

attributes (POSIX) 92
contentionscope attribute 93
detachstate attribute 93
inheritsched attribute 94
schedparam attribute 95
schedpolicy attribute 94
specifying 95
stackaddr attribute 92
stacksize attribute 92

B
BAT

model (PPC 60x) 332
binary semaphores 298, 301
boot sequence, vThreads 25
booting 8
broadcast messages 68
byte order 338

C
C++ development

C and C++, referencing symbols between 125
exception handling 125
iostreams 127
Run-Time Type Information (RTTI) 126
Standard Template library (STL) 128

C++ support
see also iostreams (C++)
configuring 124

cache
mode, selecting 150

caches 340
heap 340

callback
health monitoring 212

cancelling threads (POSIX) 97

certifiability
COIL 8
core OS 7
vThreads 7

certification
vThreads 15

channel mapping 74
checkStack() 324
client-server communications 312, 314
CLOCK_REALTIME 90
clockLib(1)
clocks

see alsosystem clock
POSIX 90, 91
system 283

code
interrupt service, see interrupt service routines
pure 289
shared 288

code examples
message queues

attributes, examining (POSIX) 110
checking for waiting message

(POSIX) 116, 120
POSIX 113
Wind 311

mutual exclusion 300
semaphores

binary 300
named 106
recursive 304
unnamed (POSIX) 103

tasks
deleting safely 282
round-robin time slice (POSIX) 101
scheduling (POSIX) 100
setting priorities (POSIX) 99
synchronization 300, 301

threads
creating, with attributes 95

watchdog timers
creating and setting 322

 Index

373

Index

COIL
certifiability 8
key features 4
overview 7

COIL I/O 264
blocking (no worker tasks) 267
blocking versus non-blocking (comparison with

vThreads) 264
non-blocking (with worker tasks) 266

cold start/restart
partitions 160
system 157

COLD versus WARM restarts (vThreads) 27
configRecordLib 165
configuration

C++ support 124
signals 316

configuration tables
health monitoring 215

contexts
task 270

creating 277
conventions

task names 278
core OS

APPS scheduling 172
certifiability 7
key functions for COIL 6
key functions for vThreads 6
overview 6, 134
partition configuration record 135
partition support 165
partition-related components 165
partition-related routines 165
partitions 135

cold start/restart 160
warm restart 161

PPS scheduling 140, 172
scheduling partitions 169
shared data regions 143
shared libraries 142
system call permission bitmasks 138
system call stacks 141
system cold start/restart 157
system warm restart 159

TPS scheduling 170
core OS interface library see COIL
counting semaphores 102, 305
CPU type, defining 330
custom permission bitmask 140

D
daemons

telnet tTelnetd 293
data MMU 332
data structures, shared 294
debugging

error status values 285, 287
defining CPU type 330
delayed tasks 271
delayed-suspended tasks 271
deployed configurations

ROM payload image 157
development configurations

RAM payload image 158
device driver models

vThreads I/O 223
device I/O

vThreads 33
directed messages 68
dispatching

health monitoring 205
DO-178B certifiability

recommendations to ensure 10
VxWorks 653 9

DO-178B certification
vThreads 15

drivers
interrupt service routine limitations 326

VxWorks 653
Programmer's Guide, 2.2

374

E
__errno() 286
errno 285, 287, 326

and task contexts 286
example 287
return values 286

error status values 285, 287
event payload 200
event reformatting

health monitoring 208
eventClear() 320
eventReceive() 320
events

health monitoring 196
VxWorks events 321

API 321
freeing resources 318
show routines 321
task events register 320

eventSend() 320
examples

mutual exclusion 300
exception handling 287

C++ 125
and interrupts 327
signal handlers 288
task tExcTask 293

exception handling, synchronous 23
exceptions

vThreads 14
execution model 9
exit() 281
external stimuli, handling in vThreads 18

F
fault detection

health monitoring 213
FIFO

message queues, Wind 310
POSIX 98

floating-point
(PowerPC) 340

routines unavailable 341
floating-point exceptions, support for in

partitions 342
floating-point support

interrupt service routine limitations 326
task options 279

-fno-exceptions compiler option (C++) 125
-fno-rtti compiler option (C++) 126
fpExcEnable parameter 342
fppArchLib 326
FPSCR 342
free() 326

G
global variables 290
GNU compiler

configuring 331
CPU type, defining 330

guard pages (vThreads) 31
defaults 31
limitations 32

H
hardware

interrupts, see interrupt service routines
hash table, resizing and relocating 336
health monitoring

actions 210
alarm escalation 210
alarm injection 204
alarms 196
basic concepts 196
callback 212
configuration tables 215
dispatching 205
event reformatting 208
events 196
fault detection 213

 Index

375

Index

for COIL partitions
health monitoring 217

hierarchy 197
injection 202
introduction 195
logging 211
messages 196
module mode (HM_MODULE_MODE) 201
notification 212
partition mode

(HM_PARTITION_MODE) 202
process mode (HM_PROCESS_MODE) 202
public information 218
thresholds 209

heaps
cache 340
kernel 340

HI macro 339
HIADJ macro 339
HM_MODULE_MODE 201
HM_PARTITION_MODE 202
HM_PROCESS_MODE 202
hooks, task

routines callable by 285

I
I/O

application multiplexed I/O 256
vThreads 14

I/O permission bitmasks 138
I/O system

asynchronous I/O
aioPxLib 90

INCLUDE_POSIX_SIGNALS 121
INCLUDE_SIGNALS 316
initialization

user-supplied code in system shared
libraries 143

vThreads 25
injection

health monitoring 202
instruction MMU 332

intConnect()
write protection, changing 152

intCount() 323
inter-module communication 74
interrupt handling

application code, connecting to
callable routines 323

and exceptions 327
hardware, see interrupt service routines
stacks 324

interrupt latency 295
interrupt levels 327
interrupt masking 327
interrupt service routines (ISR) 323

see also interrupt handling; interrupts;
intArchLib(1); 323

limitations 324
logging 326

see also logLib(1)
and message queues 328
and pipes 328
routines callable from 324
and semaphores 328
and signals 316, 328

interrupt stacks 324
interrupts

locking 295
task-level code, communicating to 328
vThreads 14

intertask communications 294, 316
intLevelSet() 323
intLock() 323
intLockLevelSet() 327
intUnlock() 323
intVecBaseGet() 323
intVecBaseSet() 323
intVecGet() 323
intVecSet() 323
iostreams (C++) 127
ISR, see interrupt service routines

VxWorks 653
Programmer's Guide, 2.2

376

K
kernel

see also Wind facilities
and multitasking 270
POSIX and Wind features, comparison of 89

message queues 109, 110
scheduling 98
semaphores 102

priority levels 273
kernel heap 340
kernelTimeSlice() 273, 274
kill() 120, 316, 317
killing

tasks 281

L
latency

interrupt locks 295
preemptive locks 296

loading 8
loading and booting 8
local ports 70
locking

interrupts 295
semaphores 101
task preemptive locks 276, 296

logging
health monitoring 211

logging facilities
and interrupt service routines 326
task tLogTask 293

longjmp() 288

M
malloc()

interrupt service routine limitations 326
memAttrAlloc() 149
memAttrFree() 149
memAttrWrite() 149

memory
locking (POSIX) 91
pool 290
vThreads 14

memory layout (PowerPC) 343
memory management

vThreads 24
memory partitions 148

see online memAttrLib; memPartBaseLib;
memPartLib

access permissions, working with 149
message payload 200
message queue permission bitmasks 139
message queues 309

see also msgQLib(1)
and VxWorks events 313
client-server example 312
displaying attributes 112, 312
and interrupt service routines 328
POSIX 109

see also mqPxLib(1)
attributes 110, 112
code examples

attributes, examining 110, 112
checking for waiting message 116,

120
communicating by message

queue 113, 115
notifying tasks 115
unlinking 113
Wind facilities, differences from 109, 110

priority setting 311
Wind 310, 312

code example 311
creating 310
deleting 310
queueing order 310
receiving messages 310
sending messages 310
timing out 310
waiting tasks 310

messages
broadcast 68
directed 68
health monitoring 196

 Index

377

Index

MMU 332
attributes, access 150
data 332
instruction 332

MMU_ATTR_CACHE_COPYBACK 151
MMU_ATTR_CACHE_DEFAULT 151
MMU_ATTR_CACHE_IO 151
MMU_ATTR_CACHE_OFF 151
MMU_ATTR_CACHE_WRITETHRU 151
MMU_ATTR_PROT_SUP_EXE 151
MMU_ATTR_PROT_SUP_READ 151
MMU_ATTR_PROT_SUP_WRITE 151
MMU_ATTR_PROT_USR_EXE 151
MMU_ATTR_PROT_USR_READ 151
MMU_ATTR_PROT_USR_WRITE 151
MMU_ATTR_SPL_[0-7] 151
module mode (HM_MODULE_MODE)

health monitoring 201
mq_close() 113
mq_getattr() 110
mq_notify() 115, 120
mq_open() 112
mq_receive() 113
mq_send() 113
mq_setattr() 110
mq_unlink() 113
mqPxLib 109
msgQCreate() 310
msgQDelete() 310
msgQReceive() 310
msgQSend() 310, 321
MSR 342
multitasking 270, 288

example 292
mutexes (POSIX) 108
mutual exclusion 295

see also semLib(1)
code example 300
counting semaphores 305
interrupt locks 295
preemptive locks 296
and reentrancy 290

Wind semaphores 302, 305
binary 300
deletion safety 304
priority inheritance 303
priority inversion 302
recursive use 304

N
named semaphores (POSIX) 101

using 105
nanosleep() 282, 283

using 91
notification

health monitoring 212
NULL pointer dereference detection 337
null ports 70

O
O_NONBLOCK 110
O_CREAT 105
O_EXCL 105
O_NONBLOCK 113
OE exception 342
online-loaded partitions 165

P
PAGE_MGR_ATTR_ALLOC_CONTIG 154
PAGE_MGR_ATTR_ALLOC_MAPPED 154
PAGE_MGR_ATTR_ALLOC_NONCONTIG 154
PAGE_MGR_ATTR_ALLOC_UNMAPPED 154
page-oriented memory 153

see online mmanPxLib; pgMgrLib; pgPoolLib;
pgPoolLstLib; rgnLib

partition activation
TPS scheduling 170

partition configuration record 135

VxWorks 653
Programmer's Guide, 2.2

378

partition I/O
COIL, see COIL I/O 264
vThreads, see vThreads I/O 221

partition mode (HM_PARTITION_MODE)
health monitoring 202

partition restart and device drivers (vThreads) 30
partitionLib 165
partition-related components

core OS 165
partition-related routines

core OS 165
partitions 135

cold start/restart 160
floating-point exceptions, support for 342
partition-related components in core OS 165
partition-related routines in core OS 165
scheduling by core OS 169
support in core OS 165
TPS scheduling 170
warm restart 161

partition-safe text I/O
see application multiplexed I/O

partitionShow 165
pause() 317
payload images

RAM 158
ROM 157

payloadLib 165
pended tasks 271
pended-suspended tasks 271
persistent data

how handled 164
limitation 164
specifying 163
support for restart 163

pgMgrPageAlloc() 154, 155
pgMgrPageAllocAt() 154, 155
pipeDevCreate() 315
pipes 315

interrupt service routines 328
select(), using with 315

port mapping 74
port permission bitmasks 139

ports
local ports 70
null ports 70
pseudo-ports 70
queuing ports 69
refresh rate 69
sampling ports 69
SAP ports 187

POSIX
clocks 90, 91

see also clockLib(1)
and kernel 89, 90
memory-locking interface 91
message queues 109

see also message queues; mqPxLib(1)
mutex attributes 108

prioceiling attribute 108
protocol attribute 108

priority limits, getting task 101
priority numbering 98
scheduling 97

see also scheduling; 97
semaphores 101, 107

see also semaphores; semPxLib(1)
signal functions 120

see also signals; sigLib(1)
routines 317

task priority, setting 98, 100
code example 99

thread attributes 92
contentionscope attribute 93
detachstate attribute 93
inheritsched attribute 94
schedparam attribute 95
schedpolicy attribute 94
specifying 95
stackaddr attribute 92
stacksize attribute 92

threads 92
timers 90

see also timerLib(1)
Wind features, differences from 90

message queues 109
scheduling 98
semaphores 102

 Index

379

Index

posixPriorityNumbering global variable 98
PowerPC 604 core 343
PowerPC considerations 329
PPC 60x

BAT model 332
memory mapping 332
segment model 332

PPS
scheduling bitmasks 139
scheduling parameters 140

PPS scheduling 17, 172
PPS scheduling bitmasks 139
preemptive locks 276, 296
preemptive priority scheduling 100, 274
printErrno() 287
prioceiling attribute 108
priority

inheritance 303
inversion 302
message queues 311
numbering 98
preemptive, scheduling 100, 274
task, setting

POSIX 98
Wind 273

priority-preemptive scheduling 17
process mode (HM_PROCESS_MODE)

health monitoring 202
processes (POSIX) 98
processor mode 338
protection domains

page-oriented memory 153
virtual contexts 152

protocol attribute 108
pseudo-interrupts

events
forbidden in user handlers 21
permitted in user handlers 22

signals 19
pseudo-ports 70, 185
pthread_attr_getdetachstate() 93
pthread_attr_getinheritsched() 94
pthread_attr_getschedparam() 95
pthread_attr_getscope() 93
pthread_attr_getstackaddr() 92

pthread_attr_getstacksize() 92
pthread_attr_setdetachstate() 93
pthread_attr_setinheritsched() 94
pthread_attr_setschedparam() 95
pthread_attr_setscope() 93
pthread_attr_setstackaddr() 92
pthread_attr_setstacksize() 92
pthread_attr_t 92
pthread_cleanup_pop() 97
pthread_cleanup_push() 97
PTHREAD_CREATE_DETACHED 93
PTHREAD_CREATE_JOINABLE 93
PTHREAD_EXPLICIT_SCHED 94
pthread_getschedparam() 95
pthread_getspecific() 96
PTHREAD_INHERIT_SCHED 94
pthread_key_create() 96
pthread_key_delete() 96
pthread_mutex_getprioceiling() 109
pthread_mutex_setprioceiling() 109
pthread_mutexattr_getprioceiling() 108
pthread_mutexattr_getprotocol() 108
pthread_mutexattr_setprioceiling() 108
pthread_mutexattr_setprotocol() 108
pthread_mutexattr_t 108
PTHREAD_PRIO_INHERIT 108
PTHREAD_PRIO_PROTECT 108
PTHREAD_SCOPE_PROCESS 93
PTHREAD_SCOPE_SYSTEM 93
pthread_setcancelstate() 97
pthread_setcanceltype() 97
pthread_setschedparam() 95
pthread_setspecific() 96
pure code 289

Q
queued signals 120
queues

see also message queues
ordering (FIFO vs. priority) 307
semaphore wait 307

queuing ports 69

VxWorks 653
Programmer's Guide, 2.2

380

R
raise() 317
RAM payload images 158
ready tasks 271
reentrancy 289
refresh rate 69
register usage 338
restart

cold
system 157, 160

implications for drivers 162
implications for I/O 163
vThreads 25
warm

partitions 161
system 159

restart, vThreads 27
ring buffers 326, 328
ROM payload images 157
root task tUsrRoot 293
round-robin scheduling 18

defined 274
using 100, 101

routines
scheduling, for 97

rtasks
spawning 292

run-time
execution model 9
layers 5
system 4

Run-Time Type Information (RTTI) 126

S
sampling ports 69
SAP ports 187
SCHED_FIFO 100
sched_get_priority_max() 101
sched_get_priority_min() 101
sched_getparam()

scheduling parameters, describing 95
sched_getscheduler() 100

SCHED_RR 100
sched_rr_get_interval() 101
sched_setparam() 100

scheduling parameters, describing 95
sched_setscheduler() 99
schedPxLib 97, 98
scheduler permission bitmask 139
scheduling 273, 276

POSIX 97, 101
see also schedPxLib(1) 97
algorithms 98
code example 100
FIFO 98, 100
policy, displaying current 100
preemptive priority 100
priority limits 101
priority numbering 98
round-robin 100, 101
routines for 97
time slicing 101
Wind facilities, differences from 98

Wind
preemptive locks 276, 296
preemptive priority 274
round-robin 274, 275

scheduling (vThreads) 16
scheduling rules

TPS scheduling 170
segment model (PPC 60x) 332
select()

and pipes 315
sem_close() 106
SEM_DELETE_SAFE 304
sem_init() 103
SEM_INVERSION_SAFE 303
sem_open() 105
sem_unlink() 106
semaphores 107, 296

and VxWorks events 307
see also semLib(1)
counting 102

example 305
deleting 102, 298
giving and taking 101, 298
and interrupt service routines 328, 326

 Index

381

Index

locking 101
POSIX 101, 107

see also semPxLib(1)
named 101, 105, 107

code example 106
unnamed 101, 102, 103, 105

code example 103
Wind facilities, differences from 102

posting 101
recursive 304

code example 304
synchronization 297, 305

code example 300, 301
unlocking 101
waiting 101
Wind 297, 309

binary 298
code example 300

control 297
counting 305
mutual exclusion 300, 302
queuing 307
synchronization 300, 301
timing out 306

semBCreate() 297
semCCreate() 297
semDelete() 297
semFlush() 297, 302
semGive() 298, 321
semMCreate() 298
semPxLib 102
semTake() 298
service access point ports 187
set_terminate() (C++) 126
setjmp() 288
shared code 288
shared data regions 143

configuration structure 144
shared data structures 294, 295
shared libraries 142

support 343
show() 312
show() 112
sigaction() 120, 316, 317
sigaddset() 317

sigblock() 316, 317
sigdelset() 317
sigemptyset() 317
sigfillset() 317
sigInit() 316
sigismember() 317
sigmask() 317
signal handlers 316
signal() 317
signals 316

see also sigLib(1)
configuring 316
and interrupt service routines 316, 328
POSIX 120, 121

queued 120
routines 317

signal handlers 316
UNIX BSD 316

routines 317
sigpending() 317
sigprocmask() 316, 317
sigqueue() 120

buffers to, allocating 121
sigqueueInit() 121
sigsetmask() 316, 317
sigsuspend() 317
sigtimedwait() 121
sigvec() 316, 317
sigwaitinfo() 121
spare-time monitoring

TPS scheduling 171
spawning tasks 277, 292
sslMain.c 143
stack overflow protection (vThreads) 30
stacks

interrupt 324
no fill 279
task exception 141

Standard Template library (STL) 128
start/restart

cold
system 157, 160

suspended tasks 271

VxWorks 653
Programmer's Guide, 2.2

382

synchronization (task) 297
code example 300, 301
counting semaphores, using 305
semaphores 300, 301

system call permission bitmasks 138
custom permissions 140
I/O permissions 138
message queue permissions 139
port permissions 139
PPS scheduling 139
scheduler permissions 139

system call stacks 141
system calls, for vThreads 34
system clock 283
system cold start/restart 157
system shared library, init routines for user-supplied

code 143
system tasks 292
system time 169
system warm restart 159

T
target shell

task tShell 293
task control blocks (TCB) 270, 283, 291, 324
task exception stacks 141
TASK_EXC_STACK_SIZE 141
taskActivate() 277
taskCreateHookAdd() 283
taskCreateHookDelete() 283
taskDelay() 282
taskDelete() 281
taskDeleteHookAdd() 284
taskDeleteHookDelete() 284
taskIdListGet() 280
taskIdSelf() 278
taskIdVerify() 278
taskInfoGet() 280
taskInit() 277
taskIsReady() 280
taskIsSuspended() 280
taskLock() 273
taskName() 278

taskNameToId() 278
taskOptionsGet() 280
taskOptionsSet() 280
taskPriorityGet() 280
taskPrioritySet() 273
taskRegsSet() 280
taskRestart() 282
taskResume() 282
tasks

blocked 276
contexts 270

creating 277
control blocks 270, 283, 291, 324
creating 277
delayed 271
delayed-suspended 271
delaying 271, 282, 322, 323
deleting safely 280

code example 282
semaphores, using 304

displaying information about 280
error status values 285

see also errnoLib(1)
exception handling 287, 288

see also signals; sigLib(1); excLib(1)
tExcTask 293

executing 282
hooks

see also taskHookLib(1)
extending with 283
troubleshooting 284

IDs 278
interrupt level, communicating at 328
logging (tLogTask) 293
names 278

automatic 278
option parameters 279
pended 271
pended-suspended 271
priority, setting

driver support tasks 276
POSIX 98, 100

code example 99
Wind 273

ready 271

 Index

383

Index

root (tUsrRoot) 293
scheduling

POSIX 97, 101
preemptive locks 276, 296
preemptive priority 100, 274
priority limits, getting 101
round-robin 274

see also round-robin scheduling
time slicing 101
Wind 273

shared code 288
and signals 288, 316
spawning 277, 292
stack allocation 278
states 271
suspended 271
suspending and resuming 282
synchronization 297

code example 300, 301
counting semaphores, using 305

system 292
target shell (tShell) 293
task events register 320

API 320
telnet (tTelnetd, tTelnetInTask,

tTelnetOutTask) 293
variables 291

see also taskVarLib(1)
context switching 291

taskSafe() 281
taskSpawn() 277
taskStatusString() 280
taskSuspend() 282
taskSwitchHookAdd() 283
taskSwitchHookDelete() 284
taskTcb() 280
taskUnlock() 273
taskUnsafe() 281
taskVarAdd() 291
taskVarDelete() 291
taskVarGet() 291
taskVarSet() 291
telnet

daemon tTelnetd 293
terminate() (C++) 126

threads 14
threads (POSIX) 92

attributes 92, 96
specifying 95

keys 96
private data, accessing 96
terminating 97

thresholds
health monitoring 209

time management
vThreads 15

time slicing 274
determining interval length 101

timeout
message queues 310
semaphores 306

timeouts
semaphores 306

timer queue (vThreads) 15
timers

see also timerLib(1)
message queues, for (Wind) 310
POSIX 90, 91
semaphores, for (Wind) 306
watchdog 322, 323

code examples 322
TPS scheduling 170

mode-based scheduling 171
partition activation 170
scheduling rules 170
spare-time monitoring 171

trusted partitions 212

U
unnamed semaphores (POSIX) 101, 102, 103
user configuration record regions 147

VxWorks 653
Programmer's Guide, 2.2

384

V
variables

global 290
static data 290
task 291

VE exception 342
virtual memory

see also vmLib
attributes, MMU access 150

virtual memory contexts
protection domains, and 152

vmPgAttrSet() 152
VT_EVENT_CLOCK_TICK 21
VT_EVENT_PORT_INT_RECV 22
VT_EVENT_PORT_INT_SEND 22
VT_EVENT_RELEASE_POINT 22
VT_EVENT_SC_COMPLETE 21
VT_EVENT_SYNC 21
VT_EVENT_USER 22
VT_EVENT_WARM_RESART 21
vThreads

APIs 33
APPS scheduling and 176
boot sequence 25
certifiability 7
certification 15
COLD versus WARM restarts 27
cooperative WARM partition restart

mechanism 28
device I/O 33
exception handling, synchronous 23
exceptions 14
external stimuli, handling 18
guard pages 31

defaults 31
limitations 32

I/O 14
initialization 25
iterrupts 14
key features 3
memory 14
memory management 24
overview 13
partition restart and device drivers 30

priority-preemptive scheduling 17
pseudo-interrupts

events
forbidden in user handlers 21
permitted in user handlers 22

signals 19
restart 25, 27
round-robin scheduling 18
scheduling 16
stack overflow protection 30
system call complete 21
system calls 34
system clock ticks 21
threads 14
time management 15
timer queue 15

vThreads I/O 221
device driver models 223

core OS level 225
split level 226
vThreads level 224

sample drivers, communicating using ARINC
ports 229

select() 228
worker tasks 222

vThreads Layer 7
VX_ALTIVEC_TASK 279
VX_DSP_TASK 279
VX_FP_TASK 279
VX_FP_TASK 125
VX_FP_TASK option 279
VX_NO_STACK_FILL 279
VX_PRIVATE_ENV 279
VX_UNBREAKABLE 279
VxWorks 653

DO-178B certifiability 9
VxWorks 653

overview 2

 Index

385

Index

W
WAIT_FOREVER 306
warm restart

partitions 161
system 159

watchdog timers 322
code examples

creating a timer 322
wdCancel() 322
wdCreate() 322
wdDelete() 322
wdStart() 322
Wind facilities 90

message queues 310
POSIX, differences from 90

message queues 109, 110
scheduling 98
semaphores 102

scheduling 273, 276
semaphores 297

wind kernel, see kernel
worker tasks 168

vThreads I/O 222
workQPanic 327
write protection

exception vector tables, of 152

Z
ZE exception 342

	VxWorks 653 Programmer's Guide, 2.2
	Contents
	1 Overview
	1.1 About This Documentation
	1.2 Overview of VxWorks 653
	1.2.1 Overview of the vThreads Partition OS
	1.2.2 Overview of COIL

	1.3 Run-time System
	1.3.1 Run-time Layers
	Core OS Layer
	vThreads Layer
	COIL Layer
	APEX Layer
	POSIX Layer

	1.3.2 Loading and Booting
	1.3.3 Run-time Model

	1.4 RTCA/DO-178B Certifiability

	2 Developing vThreads Applications
	2.1 Introduction
	2.2 vThreads Time Management
	2.2.1 vThreads Timer Queue
	2.2.2 vThreads Scheduling
	Priority-Preemptive Scheduling
	Round-Robin Scheduling

	2.3 Handling External Stimuli
	2.3.1 vThreads Pseudo-Interrupt Signals
	Pseudo-Interrupt Events Forbidden in User Handlers
	Pseudo-interrupt Events Permitted in User Handlers

	2.3.2 vThreads Synchronous Exception Handling

	2.4 vThreads Memory Management
	2.5 vThreads Initialization and Restart
	2.5.1 vThreads Boot Sequence
	2.5.2 vThreads Restart
	Cold Versus Warm Restarts
	Cooperative Warm Partition Restart Mechanism
	Partition Restart and Device Drivers

	2.6 Stack Overflow Protection
	2.6.1 Guard Pages
	2.6.2 Defaults
	2.6.3 Limitations

	2.7 vThreads Device I/O
	2.8 vThreads APIs
	2.9 vThreads System Calls

	3 Developing COIL Applications
	3.1 Introduction
	3.2 VxWorks 653 Architecture and COIL
	3.3 Accessing Core OS Services
	3.4 Communicating with Other Partitions
	3.5 Handling Interrupts and Exceptions
	3.5.1 Handling Pseudo-Interrupts
	3.5.2 Handling Exceptions

	3.6 Restarting COIL Partitions
	3.7 Device I/O in COIL Partitions
	3.8 Monitoring Health in COIL Partitions
	3.9 COIL API

	4 Developing APEX Applications
	4.1 Introduction
	4.2 Adding APEX Support to vThreads Partitions
	4.3 Terminology and Concepts: APEX Versus vThreads
	4.4 Managing APEX Partitions
	4.4.1 Allocating Partition Memory
	4.4.2 Initializing Partitions: Cold and Warm Starts
	4.4.3 Partition Attributes
	4.4.4 Getting Partition Status
	4.4.5 Setting the Partition Mode
	4.4.6 Controlling Preemption in Partitions
	4.4.7 Setting New Partition Schedules

	4.5 Managing APEX Processes
	4.5.1 Creating Processes
	4.5.2 Changing the Current Priority of Processes
	4.5.3 Increasing Deadline Times
	4.5.4 Getting the Current Status of Processes
	4.5.5 Getting Process IDs
	4.5.6 Getting and Using vThreads Task Information
	4.5.7 Types of Processes
	4.5.8 Scheduling Processes
	4.5.9 Process State Transitions
	DORMANT State
	WAITING State
	RUNNING State
	READY State

	4.5.10 Suspending and Resuming Processes
	4.5.11 Stopping and Starting Processes
	4.5.12 Controlling Preemption

	4.6 Managing Time in APEX Partitions
	4.6.1 Scheduling Partitions
	4.6.2 System Clock Time
	4.6.3 Requesting Resources and Timeouts
	4.6.4 Scheduling Processes
	4.6.5 Deadlines
	4.6.6 Release Points

	4.7 Communicating between Partitions
	4.7.1 Limitations of APEX for Communicating between Partitions
	4.7.2 APEX Messages
	4.7.3 APEX Channels
	Sampling Mode
	Queuing Mode

	4.7.4 Ports
	4.7.5 Working with Queuing Messages
	4.7.6 Working with Sampling Messages

	4.8 Communicating with Other Modules
	4.8.1 Communicating Through Pseudo-Ports in a Pseudo-Partition
	Communicating Through Direct-Access Ports in a Pseudo-Partition

	4.8.2 Communicating Through Direct-Access Ports in a Partition
	Sending and Receiving Messages

	4.9 Communicating within APEX Partitions
	4.9.1 Communicating Using APEX Buffers
	4.9.2 Communicating Using APEX Blackboards
	4.9.3 Communicating Using APEX Semaphores
	4.9.4 Synchronizing Using APEX Events

	4.10 Monitoring Health in APEX Partitions
	4.10.1 Raising Process-Level Errors
	4.10.2 APEX Errors
	4.10.3 Creating Error Handler Processes

	5 Developing POSIX Applications
	5.1 Introduction
	5.2 POSIX Clocks and Timers
	5.3 POSIX Memory-Locking Interface
	5.4 POSIX Threads
	5.4.1 pThread Attributes
	Stack Size
	Stack Address
	Detach State
	Contention Scope
	Inherit Scheduling
	Scheduling Policy
	Scheduling Parameters
	Specifying Attributes when Creating pThreads

	5.4.2 pThread Private Data
	5.4.3 pThread Cancellation

	5.5 POSIX Scheduling Interface
	5.5.1 Comparison of POSIX and Wind Scheduling
	5.5.2 Getting and Setting POSIX Task Priorities
	5.5.3 Getting and Displaying the Current Scheduling Policy
	5.5.4 Getting Scheduling Parameters: Priority Limits and Time Slice

	5.6 POSIX Semaphores
	5.6.1 Comparison of POSIX and Wind Semaphores
	5.6.2 Using Unnamed Semaphores
	5.6.3 Using Named Semaphores

	5.7 POSIX Mutexes and Condition Variables
	5.8 POSIX Message Queues
	5.8.1 Comparison of POSIX and Wind Message Queues
	5.8.2 POSIX Message Queue Attributes
	5.8.3 Displaying Message-Queue Attributes
	5.8.4 Communicating through a Message Queue
	5.8.5 Notifying a Task That a Message Is Waiting

	5.9 POSIX Queued Signals
	5.10 POSIX API for vThreads Partitions

	6 Developing C++ Applications
	6.1 Introduction
	6.2 Configuring vThreads to Use C++
	6.2.1 Specifying Additional Sections for Loading
	6.2.2 Adding C++ Support to vThreads
	6.2.3 Demangling C++ Symbol Names in the Target Shell

	6.3 Writing C++ Applications
	6.3.1 Making C Symbols Accessible to C++ Code
	Making C++ Symbols Accessible to C code

	6.3.2 Adding Floating-Point Support to Tasks
	6.3.3 Handling Exceptions
	Turning off Exception Handling
	Using the Pre-Exception Model of C++ Compilation
	Installing Your Own Termination Handler

	6.3.4 Using Namespaces
	6.3.5 Disabling Run Time Type Information (RTTI)
	6.3.6 Constructors and Destructors

	6.4 Using C++ Libraries
	6.4.1 Using the iostream Library
	Standard iostream Objects

	6.4.2 Using Standard Template Library (STL)

	6.5 Writing C++ Cert Applications
	6.5.1 Features Not Supported
	6.5.2 Persistent Global Constructors
	Specifying Persistent Global Constructors in Makefiles
	Allocating Persistent Global Constructors

	6.5.3 Calling Pure Virtual Functions
	6.5.4 Deallocating Heap

	7 Programming in the Core OS
	7.1 Introduction
	7.2 Partitions
	7.2.1 Partition Configuration
	System Call Permission Bitmasks
	PPS Scheduling Parameters

	7.3 VxWorks 653 Stacks
	System Call Stacks
	Task Stacks
	Task Exception Stacks
	Interrupt Stack

	7.4 Shared Libraries
	7.4.1 Adding User-supplied Code to a Partition OS

	7.5 Shared Data Regions
	7.6 User Configuration Records
	7.7 Multitasking
	7.8 Managing Memory
	7.8.1 Managing Memory Partitions and Heaps
	Managing Memory Partitions
	Managing Typed Memory Partitions
	Managing the Current Heap

	7.8.2 Managing Virtual Memory
	Accessing the MMU
	Ensuring Cache Coherency
	Write-Protecting Text Segments
	Write-Protecting the Exception Vector Table
	Virtual Memory Contexts and Domains

	7.8.3 Managing Page-oriented Memory
	Managing Physical Memory
	Managing Virtual Pages

	7.8.4 POSIX Memory-Locking Interface

	7.9 Restart Functionality
	7.9.1 System Cold Start or Restart
	7.9.2 System Warm Restart
	Including Warm Restart in a BSP

	7.9.3 Partition Cold Start or Restart
	7.9.4 Partition Warm Restart
	7.9.5 Restart Implications for Drivers
	7.9.6 Restart Implications for I/O
	7.9.7 Persistent Data Support for Restart

	7.10 Partition Support
	7.10.1 Core OS Partition-Related Components
	7.10.2 Core OS Partition-Related Routines
	7.10.3 Online-Loaded Partitions

	7.11 Worker Tasks
	7.12 System Time
	7.13 Partition Scheduling
	7.13.1 TPS Scheduling
	Scheduling Rules
	Partition Activation
	Spare-Time Monitoring
	Mode-Based Scheduling

	7.13.2 APPS Scheduling
	How the Kernel Identifies Idle Time
	vThreads and APPS Scheduling
	Ticks and Timeouts
	Pseudo-Interrupts
	Examples of APPS Scheduling

	7.13.3 Partition-Scheduling Routines

	7.14 Design Models for Ports
	7.14.1 Design Model for Queuing Ports
	Memory Use
	Blocking Processes
	System Calls and Events for Port Operations
	Effect of Restarting Partitions

	7.14.2 Design Model for Sampling Ports

	7.15 Setting up Communication with Other Modules
	7.15.1 Configuring a Supervisor-Level Driver
	7.15.2 Adding a Driver
	7.15.3 Driver Routines
	Attaching the Name of a Driver to a Pseudo-Port ID
	Reading Messages from a Pseudo-Port
	Writing Messages to a Pseudo-Port
	Determining the Availability of a Pseudo-Port
	Getting the Status of a Pseudo-Port
	Determining Whether a Pseudo-Port Is Direct Access
	Function Pointer Structure for Drivers

	7.15.4 Sending and Receiving Messages
	Sending Messages
	Receiving Messages
	Time Partitioning

	7.15.5 Example: Communicating between Modules
	Configuration of Module A
	Configuration of Module B
	User-Supplied Code for Module A's Send Operation
	User-Supplied Code for Module B's Receive Operation

	8 Health Monitoring
	8.1 Introduction
	8.2 Basic Health Monitor Concepts
	8.2.1 Health Monitor Events
	Health Monitor Alarms
	Health Monitor Messages

	8.2.2 Health Monitor Hierarchy
	8.2.3 Event Structure (HM_EVENT)
	System Status and Modes

	8.2.4 Injecting Alarms
	Dispatching and Logging Messages

	8.2.5 Health Monitor Thresholds
	Notification Queue Threshold
	Log Threshold
	Event Queue Threshold
	Error Handler Queue Threshold

	8.3 Health Monitor Actions
	8.3.1 Escalating Alarms
	8.3.2 Logging Events
	8.3.3 Notifying Other Partitions
	8.3.4 Issuing Callbacks
	8.3.5 Detecting and Reporting Application Errors
	Reporting for ARINC 653 Applications
	ARINC 653 Errors and Health Monitor Equivalents
	Reporting for Non-ARINC 653 Applications

	8.4 Initializing the Health Monitor
	8.5 Getting Health Monitor Information at Run-time
	8.6 Defining the Health Monitor Handler Table
	8.6.1 Guidelines for Writing Handlers

	8.7 Health Monitoring for COIL Partitions
	8.8 Other Facilities That Inject Alarms
	8.9 Public Information

	9 I/O Support
	9.1 Introduction
	9.2 I/O and vThreads
	9.2.1 vThreads I/O and Worker Tasks
	9.2.2 Device Driver Models
	vThreads Model of Device Drivers
	Core OS Model of Device Drivers
	Split Model of Device Drivers

	9.2.3 Select Capability
	Supervisor-Level Device Driver Model

	9.3 Application Multiplexed I/O
	9.3.1 Serialized I/O Protocol
	9.3.2 Architecture
	9.3.3 Setting up and Using Application Multiplexed I/O in Partitions
	Making the Driver Available
	Redirecting Standard I/O to the pamio Driver
	Using Application Multiplexed I/O

	9.3.4 Using Application Multiplexed I/O in the Core OS
	Setting the Mux/Demux Algorithm
	Using the ioctl() Routine
	Using the mamio Driver for All I/O in the Core OS

	9.4 I/O and COIL
	Blocking Versus Non-blocking I/O (Compared to vThreads)
	Non-blocking COIL I/O (Worker Tasks Present)
	Blocking I/O (No Worker Tasks)

	A VxWorks 5.5
	A.1 Introduction
	A.2 VxWorks Tasks
	A.2.1 Multitasking
	A.2.2 Task State Transition
	A.2.3 Wind Task Scheduling
	Priority-Preemptive Scheduling
	Round-Robin Scheduling
	Preemption Locks
	A Comparison of taskLock() and intLock()
	Driver Support Task Priority

	A.2.4 Task Control
	Task Creation and Activation
	Task Stack
	Task Names and IDs
	Task Options
	Task Information
	Task Deletion and Deletion Safety
	Task Control

	A.2.5 Tasking Extensions
	A.2.6 Task Error Status: errno
	Layered Definitions of errno
	A Separate errno Value for Each Task
	Error Return Convention
	Assignment of Error Status Values

	A.2.7 Task Exception Handling
	A.2.8 Shared Code and Reentrancy
	Dynamic Stack Variables
	Guarded Global and Static Variables
	Task Variables
	Multiple Tasks with the Same Main Routine

	A.2.9 VxWorks System Tasks
	Root Task: tUsrRoot
	Logging Task: tLogTask
	Exception Task: tExcTask
	Tasks for Optional Components

	A.3 Intertask Communications
	A.3.1 Shared Data Structures
	A.3.2 Mutual Exclusion
	Interrupt Locks and Latency
	Preemptive Locks and Latency

	A.3.3 Semaphores
	Semaphore Control
	Binary Semaphores
	Mutual-Exclusion Semaphores
	Counting Semaphores
	Special Semaphore Options
	Semaphores and VxWorks Events

	A.3.4 Message Queues
	Wind Message Queues
	Displaying Message Queue Attributes
	Servers and Clients with Message Queues
	Message Queues and VxWorks Events

	A.3.5 Pipes
	A.3.6 Signals
	Basic Signal Routines
	Signal Configuration

	A.4 VxWorks Events
	A.4.1 Free Resource Definition
	A.4.2 Single-Task Resource Registration
	A.4.3 Option for Immediate Send
	A.4.4 Option for Automatic Unregister
	A.4.5 Automatic Unpend upon Resource Deletion
	A.4.6 Task Events Register
	A.4.7 VxWorks Events API
	A.4.8 Show Routines

	A.5 Watchdog Timers
	A.6 Interrupt Service Routines
	A.6.1 Interrupt Stack
	A.6.2 Writing and Debugging ISRs
	A.6.3 Special Limitations of ISRs
	A.6.4 Exceptions at Interrupt Level
	A.6.5 Reserving High Interrupt Levels
	A.6.6 Additional Restrictions for ISRs at High Interrupt Levels
	A.6.7 Interrupt-to-Task Communication

	B PowerPC Considerations
	B.1 Introduction
	B.2 Building Applications
	Defining the CPU-Type Configuration Variable (CPU)
	Setting Compiler Options

	B.3 Memory Management Unit
	B.3.1 Enabling or Disabling Instruction MMUs and Data MMUs
	B.3.2 Mapping Memory (PowerPC 60x)
	BAT Model for Mapping Memory
	Segment Model for Mapping Memory

	B.3.3 Setting MMU Access Rights
	B.3.4 Setting MMU Cache Attributes
	Determining the Size of Hash Tables (PowerPC 604)
	Resizing and Moving Hash Tables (PowerPC 604)

	B.3.5 ELF-Specific Tools
	B.3.6 Detecting NULL Pointer Dereferences

	B.4 Protection Domains (PowerPC 60x)
	B.5 Architecture Considerations
	Processor Mode
	24-bit Addressing
	Byte Order
	PowerPC Registers
	HI and HIADJ Macros
	Cache and Kernel Heap
	Floating-Point Routines
	Support for Floating-Point Exceptions in Partitions
	Shared Library Support (PowerPC 604)
	Debugging

	C Glossary
	Index

