WIND RIVER

VxWorks 653

CONFIGURATION AND BUILD GUIDE

2.2

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks 653 Configuration and Build Guide, 2.2

26 Oct 07
Part #: DOC-16046-ND-01

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

1

Contents

OVEIVICW ..eerireeiirenssiressirsnssisesssrsnssssasssrsnssssnssssenssssnssssanssssnssssanssssnnsssnnnns

1.1 Introduction

1.2 Quick Start

1.3 Organization of This Documentation

1.4 Conventions Used in This Documentation

Understanding VXWOrKs 653cccoccmmmmmmmmnnnssssmmmmmmmnnnnssnssssssssnsssnes

2.1 VxWorks 653

2.2 Certification

Configuration System ... —————

31 Understanding VxWorks 653 Configuration

3.2 XML Configuration Files

fii

VxWorks 653
Configuration and Build Guide, 2.2

=BT [IS5 (=T 1 o 19
41 Understanding the Build Process 19
4.2 Planning a Build 20
4.3 Building for VxWorks 653 21
1T 3 Lo 23
51 Understanding Memory 23
5.2 Planning Memory 27
5.3 Configuring Memory 28
COre OS ...t 33
6.1 Understanding the Core OS 33
6.2 Planning the Core OS 34
6.3 Configuring the Core OS 36
6.4 Building the Core OS 41
User Configuration Recordscccciiiimmmmiinnnninssssssssnnsssssssneenas 43
71 Understanding User Configuration Records 43
7.2 Planning User Configuration Records 44
7.3 Configuring User Configuration Records 44
74 Building a User Configuration Record 46

10

11

Partition OSS ...ciiceiiiieiiresiiresiressisssssrssssrsnsssrsnssrsssssrenssrensssranssssnsssrannns

Contents

81 Understanding Partition OSs

8.2 Planning Partition OSs

8.3 Configuring a Partition OS

8.4 Building a Partition OS

Shared LiDrariesiccciieeciireesiremssiressiremsssresssressssrssssrsnssssssssrsnsssssssssnnssses

9.1 Understanding Shared Libraries

9.2 Planning Shared Libraries

9.3 Configuring Shared Libraries

9.4 Building a Shared Library

37 g E=T=To [D 2= = T 5 (=T o [0 o 1=

10.1 Understanding Shared Data Regions

10.2 Planning a Shared Data Region
10.3 Configuring a Shared Data Region

10.4 Building a Shared Data Region

Shared I/0 RegiONscccciiiiiimmriinine s ssssssss s s s ssss s s ssms s ensas

11.1 Understanding Shared I/O Regions

11.2 Planning Shared I/O Regions

11.3 Configuring Shared I/O Regions

11.4 Building a Shared I/O Region

47

48

50

55

57

58

59

65

67

68

68

71

73

74

74

75

12

13

14

15

VxWorks 653

Configuration and Build Guide, 2.2

12.1 Understanding ACE

12.2 Planning ACE

12.3 Configuring ACE

12.4 Building ACE

o = 18 {0 Y 1 1 =

13.1 Understanding Platforms

13.2 Planning a Platform

13.3 Building a Platform

13.4 Packaging a Platform

Applications ... ——

14.1 Understanding Applications

14.2 Planning Applications

14.3 Configuring Applications

14.4 Building an Application

14.5 Packaging an Application

Partitionscccecevreirmireiresiresiressressrensssnssenssenssenssennns

151 Understanding Partitions

15.2 Planning Partitions

15.3 Configuring Partitions

15.4 Building Partitions

Vi

77

78

78

82

85

86

87

87

89

90

92

97

98

101

102

104

104

16

17

18

19

15.5 Configuring a Module for Online-Loaded Partitions

15.6 Building an Online-Loaded Partition

Ports and Channelsccoieeciireeimmmeiiressireesserenssrensssrenssrsnsssrenssssnssssansss

16.1 Understanding Ports and Channels

Contents

16.2 Planning Ports and Channels

16.3 Configuring Ports and Channels

16.4 Building Ports and Channels

ST o3 1= o [0] =

17.1 Understanding Schedules

17.2 Planning Schedules

17.3 Configuring Schedules

17.4 Building Schedules

Health MONITOFcciieeiieireireireires s s rasresrassrasssasssasssassennsrnnsnnn

18.1 Understanding the Health Monitor

18.2 Planning Health Monitoring

18.3 Configuring the Health Monitor

19.1 Understanding Modules

19.2 Planning Modules

19.3 Configuring a Module

19.4 Building a Module

vii

113

114

116

116

129

130

132

134

VxWorks 653
Configuration and Build Guide, 2.2

Configuration Recordcccccoviiiiirsisssssssnnssssssssnssmnnmsnmenmmen e nnnnnes 135
20.1 Understanding the Configuration Record 135
20.2 Planning the Configuration Record 136
20.3 Configuring the Configuration Record 137
20.4 Building the Configuration Record 139
System IMAQESccciiirimmmrrriiiissessr s ss s s smnna s s s e s s mmmnnns 141
21.1 Understanding System Images 141
21.2 Planning a System Image 144
21.3 Configuring a Network-Loadable System Image 144
214 Configuring a RAM Payload System Image 147
21.5 Configuring a ROM Payload System Image 149
21.6 Building a System Image 152
Reference ProCeSScciieeeceeerisisiiirnenccnmssssssssrersssnnnssssssssseesesssnnmnnnnss 155
22.1 Introduction 155
22.2 Quick Start 158
22.3 Hello World 159
22.3.1 Hello WOTILA COTt oviieiiieieieeeeeeee ettt 176

224 Module OS 179
2241 Building and Exporting a Basic Modulecccccocoevviiniiiininininnnnes 180

2242 Module OS Cert Buildcccooiiiiiiieiiiiciececeeeeeeee et 180

2243 Module OS With ACEcoooiiiiieeeeeeeeeee et 180

2244 Module OS with Binary Componentsccccoocvveeeireicninccinncnennnns 183

2245 Module OS with Source Componentscccoeeueveeeiriineincciniceeienns 184

viii

Contents

22,5 Partition OS 185
22.5.1 Building and Exporting a Basic Modulecccccoviiiniiiiinnnnn 186
22.5.2 Partition OS with Binary Componentscccccovuviviiiiicninninnnnen 186
22,53 Partition OS with Source Componentscccccoceevvvrririniniiceinnennenns 188
2254 Partition OS with Shared Data Regionc.ccccccvuvvinininiicniiccinicnnn. 189
22.6 Application 191
22.6.1 Building and Exporting a Basic Moduleccccooveiiiiiininniiiniinne, 192
22.6.2 Application in CH+ ..o 192
22.6.3 Two APPlicationsccovoicueiiieiiiciecec 194
22.7 Shared Library 196
22.7.1 Building and Exporting a Basic Moduleccccccoooviinnnnnnnn. 197
22.7.2 Hello from the Shared Library ..., 197
22.7.3 Shared Library Versioningcccooveennniinnnnnnccceeenns 201
22.8 Integration 203
22.8.1 Building and Exporting a Basic Moduleccccccoiiiiiiiiinnnn 204
22.8.2 Network-Loadable System Imagecccccocooiviviiiinnini 204
22.8.3 RAM Payload System Imageccccocvvvirniicciniiciiicncecces 205
22.8.4 ROM Payload System Imageccccocoeurieeiniciniiceiiccencecees 206
L] Lo L= 209

VxWorks 653
Configuration and Build Guide, 2.2

Overview

1.1 Introduction 1
1.2 Quick Start 2
1.3 Organization of This Documentation 2

1.4 Conventions Used in This Documentation 3

1.1 Introduction

This documentation describes the configuration and build process for

VxWorks 653. The configuration and build process is designed to be flexible and to
meet the needs of diverse organizations. In particular, it is designed to support
distributed development of systems that comply with the ARINC 653 Avionics
Application Software Standard Interface, Supplement 2, Part 1, and to make it as easy
as possible for organizations to develop configuration and build systems that
enable them to manage distributed development and certification of ARINC 653
modules.

The configuration and build of VxWorks 653 systems involves a collection of XML
documents, source code files, binary components, and command-line tools. The
system offers flexibility in the use of these elements, and allows significant
customization of the configuration and build process.

To illustrate the possibilities offered by the configuration and build process,
VxWorks 653 includes a reference process that contains a number of different use

VxWorks 653

Configuration and Build Guide, 2.2

cases that illustrate the configuration and build of the major components of an
ARINC 653 module and the most commonly used optional features. You may
develop your own configuration and build system either by adapting one of the
use cases in the reference process to your needs, or by creating the required files
from scratch.

1.2 Quick Start

To get started on building a project right away, see the quick start in the reference
process (22.2 Quick Start, p.158).

1.3 Organization of This Documentation

This document is organized as follows:

Chapter 1 (this chapter) provides an overview of the system and the
documentation.

Chapter 2 provides an overview of VxWorks 653.
Chapter 3 describes the configuration system.
Chapter 4 describes the build system.

Chapters 5 through 21 describe the components of an ARINC 653 module and
how they are configured and built in the VxWorks 653 build system.

Chapter 22 describes the use cases that make up the VxWorks 653
configuration and build reference process.

This document is supported by the VxWorks 653 Configuration and Build Reference,
which contains detailed reference information for the XML files and binary
components that are used to configure and build a VxWorks 653 system.

1 Overview
1.4 Conventions Used in This Documentation

1.4 Conventions Used in This Documentation

This documentation uses the following conventions:

Directory paths that are relative to the directory in which VxWorks 653 is
installed on your system are indicated with the prefix installDir.

Filenames shown in italic, for example, my-ApplicationDescription.xml refer to
files that are named by the user. You, or the people providing the files, may
give them different names.

File names shown in bold, for example, configRecord.xml, refer to files that
have a set name in VxWorks 653, either as part of the VxWorks 653 installation,
or as a generated file that has a fixed name in the VxWorks 653 configuration
and build process.

Several XML files are used in configuring a VxWorks 653 system. In this
documentation, each of these files is referred to by its XML document type.
The document type is the name of the root element of the document. Thus, a
document whose document type is ApplicationDescription would have a
root element called ApplicationDescription. It is referenced in this
documentation as the ApplicationDescription document.

Elements within an XML document are referred to using XPath expressions.
An XPath expression uses a syntax similar to that used to describe file paths.
Thus the title element of an HTML page would be identified by an XPath
expression like this:

/html/head/title

An attribute of an element is identified by @ before the name. For example, the
following XPath expression identifies the Name attribute of an Application
element in a Module document:

/Module/Applications/Application/@Name

The root element of an XPath expression corresponds to the document type of
the document. In the VxWorks 653 Configuration and Build Reference, each
document type is listed separately and individual XML elements and
attributes are identified by Xpath expressions. To locate information on a
particular element, start with the document type and then navigate the
element tree to find the element you are interested in.

VxWorks 653
Configuration and Build Guide, 2.2

Understanding VxWorks 653

2.1 VxWorks 653 5
2.2 Certification 7

2.1 VxWorks 653

VxWorks 653 is an OS designed for safety-critical applications. In a safety-critical
system, applications and operating systems must be protected from the errant
behavior of other applications and libraries. To achieve this, VxWorks 653 divides
the software system into partitions. Each partition is protected from applications
running in other partitions. A set of partitions running on a common core OS is
referred to as a module.

The module is controlled by the core OS. The task of the core OS is to schedule the
partitions and to provide services to the applications running in partitions. To
protect the core OS from errant behavior by applications, applications can
communicate only with the partition OS running in the application's partition. The
partition OS in turn communicates with the core OS through a controlled APL

VxWorks 653 includes a configurable partition OS called vThreads. VxWorks 653
also supports the development and use of user-provided custom partition OSs
based on the core OS interface library (COIL).

You can have more than one type of partition OS in the same module. For example,
you can have:

Table 2-1

VxWorks 653
Configuration and Build Guide, 2.2

= one or more partitions running different subsets of vThreads
= one or more partitions running a user-defined partition OS based on COIL

* one or more partitions based on a different user-defined partition OS based on
COIL

A VxWorks 653 module is made up of domains. A domain is a software container.
Each element of the system—the core OS, partitions, and shared libraries—exists
in a domain. Domains are established at runtime by the core OS based on
information provided in the configuration documents. Table 2-1 summarizes the
types of domains in a module.

Types of Domains in a Module

Type of Domain Contents of Each

Kernel domain Core OS

ACE domain ACE

Configuration record domain System configuration record

User configuration record domains ~ User configuration record

Application domains Partition and its associated application
Shared library domains Shared library
Shared data domains Shared data region or shared I/0O region

The configuration of a VxWorks 653 module is expressed in a configuration record
which is used by the core OS at boot time to correctly configure all the domains of
the system.

For information about programming for VxWorks 653, vThreads, and COIL, see
the VxWorks 653 Programmer’s Guide.

2 Understanding VxWorks 653
2.2 Certification

2.2 Certification

A subset of VxWorks 653 is available that is certifiable to Level A of the RTCA/
DO-178B avionics software standard. The build system supports building modules
in either cert or debug modes.

VxWorks 653
Configuration and Build Guide, 2.2

Configuration System

3.1 Understanding VxWorks 653 Configuration 9
3.2 XML Configuration Files 13

3.1 Understanding VxWorks 653 Configuration

NOTE: The VxWorks 653 build system is not compatible with the Wind River
Workbench 2.6.1 build system. To successfully configure and build a VxWorks 653
module you must use the command-line tools.

The VxWorks 653 configuration and build system is designed to minimize the cost
associated with developing a safety-critical system by allowing you to manage the
cost of change.

First, the configuration system is designed to minimize dependencies between
elements of the module. This allows you to build and certify different elements of
amodule separately, and to avoid the need to rebuild the entire module if a change
is required in one element. This also allows organizations to manage the cost of
certifying systems by allowing each component to be certified separately, and to
avoid to the need to recertify the whole module if one applications changes.

Second, the configuration system is designed to support incremental building of
module components and the module as a whole, reducing the number of files that
have to be rebuilt when a change is made. This documentation contains diagrams

VxWorks 653
Configuration and Build Guide, 2.2

thatillustrate the configuration and build process for each component of a module.
You can use these diagrams as dependency graphs to determine which elements of
a particular module component need to be rebuilt following a change in a
particular file.

Third, the configuration and build system is designed to facilitate the independent
development of different components of the module by different groups of
developers. This allows development to be distributed between development
groups playing different roles. In this documentation, tasks are described as the
responsibility of specific developer roles. However, the configuration and build
system does not enforce these distinctions. Rather, it is designed to allow
development organizations the maximum flexibility in distributing development
roles in a way that best suits their organization and objectives, as well as the ability
to develop their build system in a way that enforces the developer roles that best
suit their organization.

The Configuration Record

The configuration of a VxWorks 653 module is expressed in a configuration record
that forms part of the payload installed on the target. The core OS reads the
information in the configuration record at boot time and run-time to configure the
module.

The configuration record is a separate binary file that can be built independently
of the other components of the module. To facilitate this, the configuration
documents contain all of the resource and memory information for each
component. Resources are thus pre-allocated for each application, library, and
shared data region. This means that the certification of the configuration record is
separate from the certification of the applications and libraries. You can certify
each of the applications and libraries independently and then certify the
configuration record. Alternatively, configuration data can be certified and the
configuration record built before applications and libraries are complete.

The finished applications and libraries must conform to the resource allocations
specified in the configuration documents. In particular, the configuration and
build system requires you to pre-assign blocks of memory to individual
components so that the memory map of the module as a whole can be fixed
independently of the development of components.

Each of the components of a module is built separately. Building the module itself
consists of creating the configuration record, assembling the other built
components, and generating an appropriate system image to boot the target.

10

3 Configuration System
3.1 Understanding VxWorks 653 Configuration

User Configuration Records

VxWorks 653 provides for the inclusion of user configuration records in the core
OS. The structure of user configuration records is entirely in the hands of the
developer.

Development Roles

To understand the design of the configuration and build system, it is useful to
understand the developer roles it is designed to support, the way in which it
supports separate build of different system components, and the organization of
the files that are used to configure a module.

Developing a complete embedded system from platform development to final
system integration is a complex task that usually involves the cooperation of
developers playing different roles.

Three principal roles are defined for purposes of this documentation:
» platform provider, who is responsible for developing the platform
= application developer, who is responsible for developing applications

= system integrator, who is responsible for the design and specification of the
module and for integrating a set of applications with a platform to create a
module.

In order to work together effectively, developers playing these roles need to
negotiate requirements and constraints to determine the characteristics of the
various components that will go together to make up a system.

Models of Development

There are many different ways in which development responsibilities can be
distributed and VxWorks 653 is designed to be as flexible as possible in allowing
you to create a model of development that suits your organization. For clarity and
consistency, this documentation is built around a single model of development.
This model is illustrated in the examples in the reference process and is assumed
in the discussion of the configuration and build of each of the elements of the
module.

This model is based on the assumption that development is divided between
developers playing the three roles specified above, and that the platform provider
and application developers work independently to create a core OS, libraries, and
applications which the system integrator must then integrate to create a complete
module. In this model, it is the responsibility of the platform provider to determine
the needs of their core OS, partition OSs, and shared libraries and to write and

11

VxWorks 653
Configuration and Build Guide, 2.2

provide to other developers the CoreOSDescription and
SharedLibraryDescription documents as well as the system module (.sm) files for
the core OS, partition OSs, and shared libraries. Likewise, in this model, it is the
responsibility of the application developer to decide on the requirements for their
application and to write and provide to other developers the
ApplicationDescription document and system module (.sm) file for their
application. It is then the responsibility of the system integrator to assemble these
files, write a Module document to incorporate them, and to build the configuration
record and system image of the final module.

Another possible model of development is this: The system integrator designs the
entire module and writes all of the configuration documents for the core OS,
partition OSs, shared libraries, shared data regions, and applications. They then
use these documents to compile and certify a configuration record and distribute
the configuration files and configuration record to the platform provider and
application developers who must then provide a platform and applications that
meet the constraints expressed in the pre-certified configuration provided by the
system integrator.

These are only two of the many development models that are possible with
VxWorks 653. Bear in mind when reading this documentation that the model of
development that it presents is only one of the many possible models. You are free
to devise and implement a model of development that meets your own needs.

Components of the Configuration System

The configuration system consists of the following components:

XML Configuration Files

The configuration information that is used to build the configuration record of a
module is specified in a set of XML files.

Binary Component Files

VxWorks 653 is packaged as a collection of binary component files. To configure a
particular module, core OS, partition OS, or application, you will need to specify
the components to include, resolve any dependencies of your chosen components,
and provide appropriate values for any initialization parameters required by these
components. This is generally done through makefiles.

Configlettes

Many binary components have compile-time configuration options. Since the
compile-time options cannot be set in binary files, source files, called configlettes,

12

3 Configuration System
3.2 XML Configuration Files

are distributed for the portions of the components that are compile-time
configurable. Sometimes the entire component is contained in a configlette and
there is no precompiled binary. Some components have no compile-time options
and thus include no configlette code. When including a component in a build, you
must make sure that both the binary file and the configlette are included (where
they exist), and that the compile-time parameters, if any, are set appropriately. For
information on each component and its configlettes, see the VxWorks 653
Configuration and Build Reference.

Makefiles

The configuration and build of each of the elements that make up a module is
managed by makefiles. VxWorks 653 includes makefile variable and rules files to
make it easier for you to write your makefiles.

3.2 XML Configuration Files

The VxWorks 653 configuration and build system uses a number of different XML
files. Each XML file is based on an XML document type defined in one of two XML
schemas. The schemas are:

= VxWorks 653 Configuration Schema, which has an XML namespace identifier
of:

“http:/ /www.windriver.com/vxWorks653/ConfigRecord”

» VxWorks 653 Shared Library API schema, which has an XML namespace
identifier of:

“http:/ /www.windriver.com/vxWorks653/SharedLibrary API”

The VxWorks 653 Configuration Schema is defined in these schema definition files:

* Module.xsd describes the configuration of the module itself, including
schedules, health monitoring, and ports.

» CoreOS.xsd describes the configuration of the core OS and ACE.

» Application.xsd describes the configuration of applications, shared libraries,
system shared libraries, and shared data and I/O regions.

» Partition.xsd describes the configuration of partitions.

13

Table 3-1

VxWorks 653
Configuration and Build Guide, 2.2

= TypeLib.xsd contains type definitions used by the other schemas.

* WR_ConfigRecord.xsd contains the definition of the configuration record
document type, which is used to assemble the various parts of the
configuration record.

= WR_Extensions.xsd contains the definition of resource allocations calculated
by the build tools.

* XlInclude.xsd is the W3C XInclude schema, which is used to incorporate the
different configuration documents to form a complete configuration record.

The VxWorks 653 Shared Library API Schema is defined in these schema definition
files:

= SharedLibraryAPI.xsd describes the configuration of a shared library
interface.

* XlInclude.xsd is the W3C XInclude schema, which is used to incorporate
interface subset definitions to create a complete interface definition.

The document types defined by these schemas have a hierarchical relationship to
one another, meaning that one document type fits inside another document type
at a particular point. For instance, the ApplicationDescription document type fits
inside the Module document type in the /Module/Applications/Application
element. These relationships are normally expressed by using an xi:include
element to include the document by reference. However, it is also possible to
include the document inline.

Table 3-1 lists the document types, the schemas that define them, and the schema
files in which the particular document type is defined.

Document Types and the Schemas that Define Them

Document Type Schema Schema File

Module VxWorks 653 Module.xsd
Configuration

Ace VxWorks 653 CoreOS.xsd
Configuration

ApplicationDescription VxWorks 653 Application.xsd
Configuration

PartitionDescription VxWorks 653 Partition.xsd
Configuration

14

Table 3-1

3 Configuration System
3.2 XML Configuration Files

Document Types and the Schemas that Define Them (cont'd)

Document Type Schema Schema File

PseudoPartitionDescription VxWorks 653 Partition.xsd
Configuration

SharedLibraryDescription =~ VxWorks 653 Application.xsd
Configuration

CoreOSDescription VxWorks 653 CoreOS.xsd
Configuration

SharedDataDescription VxWorks 653 Application.xsd
Configuration

SharedIODescription VxWorks 653 Application.xsd
Configuration

ConfigRecord VxWorks 653 WR_ConfigRecord.xsd
Configuration

SharedLibrary API VxWorks 653 Shared SharedLibraryAPI.xsd
Library API

InterfaceSubset VxWorks 653 Shared SharedLibraryAPI.xsd
Library API

For information on creating any of these document types, see the VxWorks 653
Configuration and Build Reference. Examples of the configuration documents,
together with detailed explanations of what they achieve, are found in 22Reference
Process, p.155.

In the default build process, the ConfigRecord document is generated by the build
tools based on the information contained in the Module document and its
subsidiary configuration documents. If you substitute your own build process,
you will need to generate a valid ConfigRecord document or write one by hand.

Creating XML Files

You can create XML configuration files using any editor you choose. If you use a
schema-aware XML editor, it will guide you through the creation of the files and
make sure that your files comply with the schema.

To create XML files with a schema-aware editor:

15

VxWorks 653
Configuration and Build Guide, 2.2

1. Following the instructions in your editor documentation, open the appropriate
schema for the file you are creating. The schemas are located in:

installDirlvxworks653-2.2/target/config/xml/cleanschema

2. Following the instructions in your editor documentation, create or edit the
appropriate files. You can also choose a file from the reference process that is
closest to the file you want to create and edit it. The reference process files are
located in:

installDirlvxworks653-2.2/target/reference/helloWorld

3. Check your document for conformance to the business rules used by the
configuration and build process using VerIMAXx. For information on VerIMAX,
see the Wind River Workbench User’s Guide, (VxWorks 653 Version).

To create XML files with an editor that is not schema-aware:

1. Choose a file from the reference process that is closest to the file you want to
create or create the file from scratch following the instructions for the
appropriate document type in the VxWorks 653 Configuration and Build
Reference. The reference process files are located in:

installDirlvxworks653-2.2/target/reference/helloWorld
Name the file to suit your project.
Open the file in your editor.

Edit the document as required to achieve your desired configuration.

SR

Validate your XML document against the appropriate schema using the
validation tool of your choice.

6. Check for conformance to the business rules used by the configuration and
build process using VerIMAXx. For information on VerIMAX, see the Wind River
Workbench User’s Guide.

Extending the Document Types

The VxWorks 653 Configuration Schema allows you to create your own extensions
to the configuration document types at specific points. You may want to make use
of this facility to include your own configuration parameters in the configuration
files. To see where you can insert your extensions, look for the Extensions elements
in the schema.

You will need to create custom tools to act on this custom configuration data.
Extensions will not be included in the configuration record in the payload. You can
create your own configuration record if you want and store it in a user

16

3 Configuration System
3.2 XML Configuration Files

configuration record region of core OS memory. Only the core OS has access to this
configuration record region. Information that is needed by applications can be
placed in a shared data region. For information on user configuration records, see
the VxWorks 653 Programmer’s Guide. For information on shared data regions, see
10. Shared Data Regions.

17

VxWorks 653
Configuration and Build Guide, 2.2

18

Build System

4.1 Understanding the Build Process 19
4.2 Planning a Build 20
4.3 Building for VxWorks 653 21

4.1 Understanding the Build Process

VxWorks 653 has a command-line build system designed to support separate
building of the various components of a system (core OS, shared libraries,
applications, shared data regions, and system images). The build system is driven
by makefiles.

NOTE: The VxWorks 653 build system is not compatible with the Workbench 2.6.1
build system. To successfully configure and build VxWorks 653 you must use the
command-line tools.

There are a number of supporting tools that are used in the build process. For
details on the build tools, see the Wind River Workbench User’s Guide, (VxWorks 653
Version).

The invocation of the build tools is managed by makefiles supplied with
VxWorks 653. Unless you intend to customize the build system, you do not need
to understand how these tools work.

19

VxWorks 653
Configuration and Build Guide, 2.2

There are several parts to the build of a VxWorks 653 module:
= core OS build

= ACEbuild

» user configuration record build

= shared library build

= shared data region build

» application build

* integration build

Eachbuild part can be performed independently of the others. Individual elements
of the module can be compiled separately. However, in order to link each element
into a system module (.sm) file, the following dependencies must be met:

= The shared library build requires that the virtual address of the shared library
be specified. The virtual address depends on the memory configuration of the
core OS. It also depends on the size and virtual address of the other shared
libraries in the module.When building a shared library, therefore, you need to
create a virtual memory map for the module in order to calculate a reasonable
virtual address for each shared library.

» Theapplication build requires stubs files for all the shared libraries used by the
application. The stubs files are created as part of the shared library build.

4.2 Planning a Build

The following are some of the key questions to keep in mind when planning your
build strategy:

Are you building a cert or debug image?

You must choose whether to build a cert or a debug image. A cert image is an
image that is suitable for deployment as a certified system. A debug image
contains debugging code that cannot be included in a cert image. (ACE can be used
to debug a cert image. For more information on debugging, see the Wind River
Workbench Users Guide, VxWorks 653 version.). A debug image will bind in a
different set of libraries. An error will occur if you attempt to include a debug

20

4 Build System
4.3 Building for VxWorks 653

component in a cert build. When you choose a cert image, the CERT macro is
defined when compiling C, C++, and assembly language files.

Which CPU are you building for?

You must choose a build spec for the CPU that you are building for. This will cause
the build to produce code appropriate for the selected CPU. The available build
specs will depend on the BSPs that you have installed. You select a cert or debug
build by choosing the appropriate build spec for your CPU, build tool, and image
type. The names of build specs encode these pieces of information, so that, for
instance, the build spec PPC604gnu.debug specifies a PPC604 target, the gnu tool
chain, and a debug image

Which system image type will you build?

VxWorks 653 supports three different image types: network loadable, RAM
payload, and ROM payload. Each is used for a different part of the development
and deployment cycle. The type of image that you build will be determined by the
build target that you choose in you system image makefile. For more information
on system images, see 21. System Images.

4.3 Building for VxWorks 653

In VxWorks 653 the building of the various components of a module, and the
module itself, is handled by makefiles. Explanations of the makefiles used for each
of the components can be found in topics on each component and in 22Reference
Process, p.155.

Makefile.vars and Makefile.rules

VxWorks 653 provides a number of makefiles to help you build the components of
a module. For each type of module component that you can build, there are two
makefiles, Makefile.vars, which contains variable definitions, and Makefile.rules,
which contains rules for building different outputs. You will include one or both of
these makefiles in your makefiles for each module component.

21

VxWorks 653
Configuration and Build Guide, 2.2

22

Memory

51 Understanding Memory 23
5.2 Planning Memory 27
5.3 Configuring Memory 28

5.1 Understanding Memory

ROM

There are two parts to the memory configuration of a VxWorks 653 module: the
physical memory configuration and the virtual memory configuration. Figure 5-1
shows the organization of physical and virtual memory in a VxWorks 653 module.
The diagram shows a module with two applications: App-1 and App-2. The
physical memory map on the left shows the organization of physical memory on
the target for a sample system. (This sample includes some optional elements but
not all of the elements that can possibly occur in a VxWorks 653 module.) The two
virtual memory maps on the right show how virtual memory appears to App-1
and App-2.

The ROM section of the diagram shows how the components of a module might
be arranged in a ROM payload. The core OS and applications are smaller in ROM
than they are in RAM, since the copies in RAM require additional space for stack

23

VxWorks 653
Configuration and Build Guide, 2.2

Figure 5-1 Physical and Virtual Memory Allocation

Physical Memory Virtual Memory

SIOR
App-2
App-1
App-2 SDR-Blackboard SDR-Blackboard
Loader
SDR-Database SDR-Database
App-1
SIOR SIOR
App-2
SDR-Database
App-1 SDR-Blackboard SL SL
SDR-Database SL POS-2
SL POS-2 POS-1
POS-2 POS-1
POS-1 ConfigRecord ConfigRecord ConfigRecord
ConfigRecord
COS COSs COS
COSs

24

/0

RAM

5 Memory
5.1 Understanding Memory

and heap. There is no sharing of memory in VxWorks 653, so each application
requires its own stack and heap space, as does the core OS. Each application must
also set aside memory for the stack and heap requirements of each shared library
that it accesses, including the partition OS that it uses. The ROM section also
contains the loader, which is typically located at the top of ROM and is used to load
the system image from ROM to RAM at boot time.

The I/0O section of the diagram represents the I/O hardware on the target board.

One part of this I/O address space has been mapped to a shared I/O region (SIOR).

The RAM section of the diagram shows how the components of the system might
be located in RAM after they have been loaded. The space required by each
application and by the core OS has been set by the information contained in the
configuration record, which includes their stack and heap requirements. The space
required by the partition operating systems (POS-1 and POS-2) and by the shared
library (SL) have not been increased, as their stack and heap space is provided by
each application that uses them.

RAM contains two shared data regions: SDR-Database and SDR-Blackboard.
SDR-Database is a loadable shared data region, meaning that it contains
pre-compiled data that is loaded into RAM at boot time. Thus SDR-Database
occurs in the ROM payload as one of the items to be loaded into RAM at boot time.
SDR-Blackboard, however, is a non-loadable shared data region, meaning that it
contains no precompiled data. It is simply an area of memory that is set aside for
the use of two or more applications. Applications may use a non-loadable shared
data region as a place to exchange data.

App-1 and App-2 are loaded into separate areas of RAM. There is no sharing of
memory between applications (except in the form of shared data regions) and each
application receives its full allocation of memory at load time.

Virtual Memory

In virtual memory, every component of the system has a fixed address. However,
all applications have the same virtual address. Each application starts at the same
address in virtual memory. Applications are not aware of the existence of other
applications (though they may be aware of resources that are shared with other
applications). Thus, an application is configured almost as if it were the only
application in the system. The size of the virtual address space available for

25

VxWorks 653
Configuration and Build Guide, 2.2

applications is the same for all applications, even if some applications are larger
than others. The shared I/O region is also mapped into virtual memory space.

Applications cannot see all of the module components that exist in virtual memory,
however. Each application exists in a virtual container called a partition, and the
partition configuration governs which resources are available to a particular
application. Each application uses a different partition OS. Thus App-1’s virtual
memory space includes POS-1, but not POS-2, and similarly for App-2. Both
applications have access to shared library (SL) so it is visible to both of them.
Similarly, the shared I/O region and both shared data regions are visible to both.

The core OS and configuration record are not directly visible to the application, but
are shown in the diagram to show their location in the overall virtual memory
space of the module. Applications are not visible to each other at all since they
occupy the same location in virtual memory. However, applications can
communicate with each other through shared data regions or through ARINC
ports, if they exist in the module.

Partitions

Applications know nothing about the other applications in the module. Each
application resides in a container called a partition. The partition is responsible for
the application’s interactions with the rest of the module and for the objects that
the application can access in the module. Partitions provide the memory in which
each application runs. The partition also determines which shared resources
(libraries, I/O, data regions) the application has access to. Because each application
must execute in a separate area of physical memory, each partition must also
provide the read /write memory required to execute any shared library code that
the application has access to.

Domains

VxWorks 653 is designed to protect each application and the core OS from
interference by other parts of the module. This protection requires that memory
access for each object in the system must be restricted to that object itself (except
where specific and limited permissions are given, as in the case of shared libraries,
I/0, and data). This protection is provided by domains. Domains are also referred
to as protection domains because their role is to protect the elements of the system
that they contain. The core OS, shared libraries, shared data regions, and partitions
all exist in separate domains and have no access to each other except as specifically
permitted and configured in the module configuration record.

26

5 Memory
5.2 Planning Memory

5.2 Planning Memory

Planning memory usage for a module involves looking at the memory

configuration of the target as well as the memory requirements of the various

components of a module. Different targets reserve different portions of memory

for different purposes. Some processors have limits on how close together different

types of memory may be located. All of this must be taken into consideration when
you are deciding where to place different components of your module in memory.

Many build errors result from a failure to consider all the factors affecting memory
configuration. You should study your BSP documentation carefully to determine

what the constraints and requirements are for memory configuration on your

chosen target.

When planning memory, you should consider the following questions:

How will physical memory be organized?

The physical memory of the target must be configured for the use of the various
components of the module. In many cases, the settings in the template
CoreOSDescription document will be sufficient. In some cases you may need to
adjust memory allocations if the memory regions defined are too small for some
part of your module.

How will virtual memory be organized?

As part of the configuration of a module, you will need to determine where each
element of the module is located in virtual memory. This requires that you make a
virtual memory map of your module, taking into consideration the specific
requirements of your target and the size and type of each of the components in
your module. For shared libraries and shared data regions, VxWorks 653 provides
a tool that can be used to suggest available virtual addresses in your module
configuration. For information, see the reference entry for XMLGen.

How will memory configuration affect certification?

VxWorks 653 is designed to reduce costs associated with certification by allowing
each component of a module, and the module configuration as a whole, to be
certified separately, and to isolate the different components from the impact of
changes in other components. A large part of this isolation is achieved through the
use of memory black boxes which predefine the memory resources that each
component will need. You can help to minimize certification costs by making your
memory calculations as accurate as possible, and also by making sure that enough
memory is assigned to each component to accommodate unforeseen changes in

27

VxWorks 653
Configuration and Build Guide, 2.2

that component so that if the component does have to change, this change does not
impact other components of the module.

5.3 Configuring Memory
The configuration of memory is divided into several parts.

Physical Memory Configuration

The configuration of physical memory is done as part of configuration of the core
OS by specifying the appropriate value in the CoreOSDecription document in the
element CoreOSDescription/HardwareConfiguration/PhysicalMemory. This
element contains settings for the following memory regions:

kernelMemoryRegion
Contains the memory for the core OS black box and the core OS task stacks and
heap.

kernelPgPool
Optional area used only when dynamic loading is enabled in a debug build.

kernelRegion
Contains memory for user regions which must reside in the core OS memory
context. This is primarily used for online-loaded partitions. For information on
online-loaded partitions, see 15. Partitions.

portRegion
Contains memory for the heap of the APEX ports component. The size
requirement for this region depends on the number of ports in the module. For
information on APEX ports, see 16. Ports and Channels and the VxWorks 653
Programmer’s Guide.

hmLogRegion
Contains memory set aside for storing health monitor logs. For information on
health monitoring, see 18. Health Monitor.

userConfigRecordRegion
Contains memory set aside for a user configuration record. For information on
user configuration records, see the VxWorks 653 Programmer’s Guide.

28

5 Memory
5.3 Configuring Memory

ramPayloadRegion
Contains the memory allocated for the use of a RAM payload. For information
on RAM payloads, see 21. System Images.

aceMemoryRegion
Contains the memory allocated for the use of the ACE. For information on
ACE, see 12. ACE.

kernelConfigRecordRegion
Contains the memory allocated for the use of the system configuration record.
For information on the system configuration record, see 20. Configuration
Record.

userMemoryRegion
Contains the memory allocated for every partition, shared data pool, and
shared library pool in the module.

VxWorks 653 includes a CoreOSDescription document for each supported BSP
which contains a set of defaults for these values that are appropriate to the
particular BSP. You may need to adjust one or more of these values depending on
the physical memory requirements of your module.

Virtual Memory Configuration

VxWorks 653 is designed to facilitate the independent building of different
components of the module, and to minimize the impact that changes in one
component of the module have on other components. To this end, virtual memory
assignment for each component can be determined separately from the actual
build of the component. This allows a component to be changed and rebuilt,
without affecting its memory assignment, or the location of its various sections in
memory. This helps reduce the development and certification costs for certified
systems by allowing the memory configuration of the module to be certified
independently of the certification of the components. This means that as long as
each component continues to fit into its assigned memory area, the memory
configuration of the module does not have to be recertified when an individual
component changes.

Black Boxes

This pre-determined memory configuration is achieved using black boxes. A black
box is a section of memory set aside for a component of the system (core OS, shared
library, application, partition, or shared region). Memory allocation for the
component as a whole, and for each section of the component ELF file, is based on
black box sizes, not on the actual memory footprint of the components. For
instance, in the MemorySize element of an application or library configuration,

29

VxWorks 653
Configuration and Build Guide, 2.2

each section of an ELF file is specified with a separate black box value, as in this
example:
<MemorySize

MemorySizeBss="0x1000"

MemorySizeData="0x1000"

MemorySizePersistentBss="0x1000"

MemorySizePersistentData="0x1000"

MemorySizeRoData="0"

MemorySizeText="0x1000"/>
The actual sizes of these sections in the application or library ELF file must be less
than or equal to the black box sizes in the configuration document. The black box
sizes are used to assign memory for the component they describe, regardless of the
actual sizes of the respective ELF sections.

Each section aligns on the start of its black box. This allows jump tables to be
calculated even if the application or library is not finalized. This helps to ensure
that changes to one part of a module do not lead to the need to recertify the entire
module. A linker script is generated from the black box data to align the sections
on the black box boundaries.

Heap and stack space for applications and the core OS is not defined in black
boxes, but must be added to the overall memory allocation of the partition or core
0s.

For shared libraries, including the system shared libraries that contain the partition
OS, the read-only portions of the library are shared, and space is allocated for them
in the shared library configuration. The read /write requirements for each library,
including stack and heap, are provided separately by each partition that uses the
library. As part of the configuration of a partition, you will designate which
libraries a particular partition will use. It is important that a partition designate
only those libraries that it actually uses, or memory will be wasted.

Distributed Configuration

The component black boxes, and of total core OS and partition memory, are
configured with the configuration of the individual components. The settings
affecting virtual memory are found in the following locations:

CoreOSDescription/KernelConfiguration/
@addressSpaceRegionAllocationUnit
The size of the virtual memory allocation unit for the target.

CoreOSDescription/KernelConfiguration/@addressSpaceSize
The total size of the virtual memory address space. This is specific to the target.

30

5 Memory
5.3 Configuring Memory

CoreOSDescription/KernelConfiguration/@kernel Virtual Address
The virtual address of the kernel.

CoreOSDescription/MemorySize
The black box for the core OS.

CoreOSDescription/KernelConfiguration/@partition Virtual Address
The virtual address of every application.

ApplicationDescription/MemorySize
The black box for an application.

PartitionDescription/Settings/@RequiredMemorySize
The total size of the partition memory, which must include the application
black box, the application stack and heap space, and read / write memory space
for the partition OS and all shared libraries accessed by the partition.

SharedLibraryDescription/MemorySize
The black box for a partition OS or shared library.

SharedLibraryDescription/@VirtualAddress
The virtual address of a partition OS or shared library.

SharedDataDescription/@Size
The size of a shared data region.

SharedDataDescription/@VirtualAddress
The virtual address of a shared data region.

SharedIODescription/@VirtualAddress
The virtual address of a shared I/O region.

CoreOSDescription/HardwareConfiguration/shared1O/@Size
The size of a shared I/0O region.

Payload Memory Configuration

Payload memory configuration for ROM payloads is specified in the Module
configuration document in the element /Module/Payloads. For more information,
see the VxWorks 653 Configuration and Build Reference. Payload memory is based on
the virtual memory configuration for the module. The only additional
configuration required is the assignment of an appropriate amount of RAM as a
RAM payload region in the CoreOSDescription document in the element
CoreOSDescription/HardwareConfiguration/PhysicalMemory/
ramPayloadRegion.

31

VxWorks 653
Configuration and Build Guide, 2.2

32

Core OS

6.1 Understanding the Core OS 33
6.2 Planning the Core OS 34

6.3 Configuring the Core OS 36
6.4 Building the Core OS 41

6.1 Understanding the Core OS

The core OS is responsible for partition scheduling, resource allocation, and health
monitoring for the applications running in partitions. It also facilitates
communication between partitions by means of ARINC ports. It reports hardware
events and other information to the partitions by way of pseudo-interrupts. It
manages partition access to shared resources such as shared data regions and
shared I/O regions.

The overall memory configuration of a module is determined by the core OS
configuration. The core OS memory configuration includes the provision of kernel
memory regions, the RAM payload region, and the size of the application memory
area. It also determines the location into which online-loaded partitions are loaded,
and provides space for ACE, if ACE is being used.

A typical platform will include two versions of the core OS: a debug version, and
a cert version.

33

VxWorks 653
Configuration and Build Guide, 2.2

The core OS is the responsibility of the platform provider. For information on
development roles, see 3. Configuration System.

6.2 Planning the Core OS

When planning the core OS, you should consider the following questions:

Which components will be included, and where?

A core OS for a particular platform is made up of a collection of components that
provide various OS services. You can configure the core OS with different
capabilities by including different components in the core OS build.

The default core OS build process produces a core OS project that includes a
number of components by default. Default components include operating system,
device support, and development tool support components. Other available
components include support for POSIX, and additional debug tools. For a cert
system, a reduced set of components is available for the core OS and a separate set
of component binaries is used.

Several core OS components are commonly required to provide one feature or set
of functionality in the core OS. To make it easier to select the components required
for a particular feature, component bundles are provided.

For more information on core OS components and component bundles, see the
VxWorks 653 Configuration and Build Reference.

Will shared I/0 regions be required?

In order for applications to access memory-mapped I/O devices (such as LEDs) on
a target, you must configure those memory regions as shared 1/0O regions.

Will user configuration records be required?

If your core OS requires user configuration records, memory must be allocated for
each user configuration record. A user configuration record is a named memory
pool set aside for user configuration data. The form of that data and the method
for accessing it are entirely up to the user.

34

6 Core OS
6.2 Planning the Core OS

Will support for online-loaded partitions be required?

If your platform is to support online-loaded partitions, you must configure a
kernel memory region into which each partition can be loaded. You must also
ensure that you add the required components to the core OS to support the loading
of online-loaded partitions, and you must provide a partition loader. For
information on writing a partition loader, see the VxWorks 653 Programmer’s Guide.
For information on building online-loaded partitions, see 15. Partitions.

Will kernel memory regions be required?
If the custom code that you are adding to the core OS requires kernel memory
regions, you must configure them appropriately.

Will ACE support be required?
If ACE support is required, you must configure an ACE memory region in the core
OS. For information on configuring ACE itself, see 12. ACE.

Will RAM payload support be required?

If your platform is going to support RAM payloads, RAM payload memory must
be configured. The template CoreOSDescription document for your BSP may
already define a RAM payload region. If you do not want RAM payload support,
you may need to remove it from the configuration. For information on RAM
payloads, see 21. System Images.

Will boot loaders be required?

If your core OS is to support RAM or ROM payloads, you must also build boot
loaders for RAM and ROM payloads. This will be specified through a command in
the core OS makefile. In almost all cases, boot loaders will be required. For
information on payloads, see 21. System Images.

Will more than 32 partitions be required?

The template CoreOSDescription document in the BSP is configured to support up
to 32 partitions. If your platform needs to support more than 32 partitions, you will
need to adjust the core OS configuration accordingly.

To support more than 32 partitions, you may need to increase some or all of the
following settings under the
CoreOSDescription/HardwareConfiguration/PhysicalMemory element:

» kernelConfigRecordRegion

35

VxWorks 653
Configuration and Build Guide, 2.2

» portRegion

* hmLogRegion

* userMemoryRegion

You may need to change the following core OS parameters:

= PD_MAX_NUMBER_OF_PDS, which limits the number of protection domains
in a module, must be greater than or equal to the number of partitions, shared

libraries, and shared data regions, plus one (for the core OS). The default value
is 64.

» NUML_FILES, which sets the number of files that can be open at once. The
default value is 50 and the maximum is 1024. If the project is built with the
INCLUDE_PARTITION_TOOL component, the kernel will set up three
standard pseudo-1/Os for each partition. When there are multiple partitions,
the kernel may reach the default system limit.

6.3 Configuring the Core OS

Figure 6-1 summarizes the core OS configuration and build process.

The following are the inputs and outputs of the core OS configuration and build
process.

Outputs of the Core OS Configuration and Build Process

The outputs of the core OS configuration and build process are as follows:

Core OS System Module File

The core OS system module file (1my-cos.sm in the diagram) is a linked and located
ELF file that is ready to be included in a the build of a system image.

Boot Loaders

The ROM and RAM payload builds require boot loaders to load the system image
into memory. These boot loaders are specific to a particular core OS configuration
(since the core OS configuration includes the physical memory allocations for the
target). The core OS build process therefore produces ROM and RAM payload boot
loaders, named payloadObjs_rom.o and payloadObjs_ram.o. These files must be

36

6 Core OS
6.3 Configuring the Core OS

Figure 6-1 Core OS Configuration and Build Process
CoreOSDescription > XMLGen ./// my-cos.lds
/ (linker script) 7
BSP > prjCreate > 4 coreOS project %
Component .o .
'?iles > Pr
my-code.c .
(source files) prj
A
KEY
XML document
my-code.o
make > (objectfile)
Source and T
object files
Tool . my-code
d priCreate b (project files) ~ /
/' Intermediate
file
A
/ Output file / make my-cos.sm /
Supplied by boot loaders /
VxWorks 653

delivered to the system integrator as part of the platform. For more information on
RAM and ROM payload builds, see 21. System Images.

Inputs to the Core OS Configuration and Build Process

The inputs to the core OS configuration and build process are as follows:

37

VxWorks 653
Configuration and Build Guide, 2.2

CoreOSDescription document

The CoreOSDescription document is an XML document conforming to the
CoreOSDescription document type defined in the VxWorks 653 Configuration
Schema.

This document contains configuration information for the core OS in the following
areas:

= kernel configuration

= core OS memory black box

= physical memory configuration
= 1/0 configuration

Much of the configuration of a core OS involves settings that are specific to the
target hardware. For this reason, a template CoreOSDescription file is included
with each supported BSP. This file should be your starting point for configuring the
core OS. You may be able to use the file from the BSP unchanged, or you may need
to make your own CoreOSDescription document based on the CoreOSDescription
document in the BSP.

For detailed information on creating or modifying the CoreOSDescription
document, see the VxWorks 653 Configuration and Build Reference.

Core OS Project

The core OS is built using a core OS project. The creation and configuration of this
project is handled by a set of project commands. These commands create the files
necessary to build the core OS. All the files necessary to create the core OS, with the
exception of the CoreOSDescription document, must be placed in the core OS
project.

The command to create a core OS project is prjCreate. The following is a typical
prjCreate command:

prjCreate -domtype kernel -prj my-kerneldir -bsp wrSbc750gx -name coreOS

This line calls the prjCreate utility to create a core OS project. It specifies the type
of project to create (kernel), the directory to create it in (my-kerneldir) the BSP to
use (wrSbc750gx), and the name of the project (coreOS).

To create a cert kernel, you use the following command:

prjCreate -domtype kernel -prj my-kerneldir -bsp wrSbc750gx -name coreOS -ddf
certKernel

For additional prjCreate options, see the reference entry for prjCreate.

38

6 Core OS
6.3 Configuring the Core OS

Core OS Build Spec

The core OS build will access different libraries depending on whether you are
building a cert or debug core OS. You set the build spec for the core OS project with
the prj projBuildSet command. The following is an example of the prj
projBuildSet command that specifies a debug build for the PPC604 target using
the gnu tool chain.

prj projBuildSet -prj my-kerneldir PPC604gnu.debug

The default build spec for any project is based on the BSP used to create the project.
It uses the gnu tool chain and creates a debug image. For this reason, you only need
to specify the build spec if you are changing the tool chain or changing the build
type from debug to cert.

The binary files produce by building the core OS project will be located in a
directory whose name corresponds to the name of the build spec. So, for instance,
the binary files created by building the project created with the commands in this
example would be located in a directory my-kerneldir/PPC604gnu.debug.

Core OS Components

There are a number of optional core OS components that you can include in your
core OS project. You can add components to your core OS using the prj
domComponentAdd command:

prj domComponentAdd -prj my-kerneldir "REQUIRED_COMPONENTS"

The default project created by the prjCreate command includes a number of
components by default. You can remove unneeded components with the prj
domComponentRemove command:

prj domComponentRemove -prj my-kerneldir "UNNEEDED_COMPONENTS"

Component Bundles

Components are packaged into bundles by function. You can add a component
bundle with the prj domComponentBundleAdd command, specifying the project
directory (with the -p option) and the location of the .ddf file that describes the
bundle. For information on component bundles, see the VxWorks 653 Configuration
and Build Reference.

prj domComponentBundleAdd -prj my-kerneldir \
$ (WIND_BASE) /target/config/comps/vxWorks/sysTemplates/vxKernel /windview.ddf

39

VxWorks 653
Configuration and Build Guide, 2.2

Component Parameters

There are a number of core OS configuration parameters that are set with prj
commands. These parameters are listed in the VxWorks 653 Configuration and Build
Reference. The following example changes the value of the NUM_FILES parameter:

prj domParameterValueSet -prj my-kerneldir NUM_FILES 128

Component Dependencies

Many components have dependencies on other components. You can check to
make sure all the required components have been included with the
ADD_NEEDED command. Once again, the core OS project directory is specified,
along with the ADD_NEEDED command.

make -C my-kerneldir ADD_NEEDED

Custom Core OS Components

If you want to add your own code to the core OS, you must assemble your code
into a component and add that component to the core OS project. To do this, use
the following procedure:

1. Create the project for your component by adding a prjCreate command to the
coreOS build rule of your core OS project makefile:

prjCreate -type kernelComponent \
-prj my-componentdir \
-build PPC604gnu.debug \
-srcfiles "/src/my-component.c /src/other.c"

2. Add the component to your core OS project by adding a prj
domComponentAdd command to your build rule:

prj domComponentAdd -p my-kerneldir my-componentdir

3. Setany attributes required by your component. At minimum, you will need to
set the INIT_RTN parameter to specify the init routine for your component:

prj compAttributeSet -p my-componentdir INIT RTN "myComponentInit();"

For additional information on the prjCreate and prj commands used to
introduce custom code into the core OS, see the reference entries for prjCreate
and prjScriptLib.

Core OS Linker Script

Because the memory configuration of the core OS is specified by a black box
defined in the CoreOSDescription document, a custom linker script is required to
align the sections of the core OS ELF file on the correct boundaries. The linker

40

6 Core OS
6.4 Building the Core OS

script can be generated from the CoreOSDescription file using the XMLGen tool.
The following is a typical XMLGen linker script command:

xmlgen --1dScript --arch ppc -o my-kerneldir/coreOS.lds my-coreOS.xml

The --1dScript option tells XMLGen to generate a linker script.

The --arch option specifies the target architecture (“ppc”). In a makefile that
imports Makefile.vars, the architecture can be specified with the variable
$(TOOLARCH).

The -0 option specifies the name and location of the output file
(my-kerneldir/coreOS.1ds) The output file must be placed in the project directory
created by prjCreate. The name of the output file must match the value of
/CoreOSDescription/@KernelName in your CoreOSDescription document, and
the extension must be .1ds.

The command-line parameter specifies the name of the CoreOSDescription
document (my-coreOS.xml).

For a complete list of XMLGen options, see the reference entry for XMLGen.

6.4 Building the Core OS

Step 1:

To build the core OS, use the following procedure:

Create a core OS project makefile.

Create a makefile using the editor of your choice. For more information on
makefiles, see the make documentation.

The following is a typical core OS project makefile for a cert core OS. For other
examples of core OS project makefiles, see 22. Reference Process.

CPU=PPC604
include $(WIND_BASE)/target/config/make/Makefile.vars

coreOS:
prjCreate -domtype kernel -prj my-kerneldir -bsp wrSbc750gx \
-name coreOS -ddf certKernel
prj projBuildSet -p my-kerneldir PPC604gnu.cert
xmlgen --1dScript --arch $(TOOLARCH) -o my-kerneldir/coreOS.lds \
my-coreOS.xml

41

Step 2:

Step 3:

Step 4:

Step 5:

VxWorks 653
Configuration and Build Guide, 2.2

Open the VxWorks 653 Development Shell.

The VxWorks 653 build tools require a specific build environment which is
provided by the VxWorks 653 Development Shell. To open the shell, from your
program list select:

Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell

Create the core OS project.

To build the core OS project, run make, specifying the name of your core OS project
target:

make coreOS

Build the core OS.

The core OS project contains a makefile that will build the core OS. To build the
core OS, run make specifying the -C option with the core OS project directory:

make -C my-kerneldir

Rather than running this command separately, you may choose to add this line to
the core OS project makefile.

Build the boot loaders.

The core OS project makefile also contains a target to build the boot loaders. To
build the core OS, run make specifying the -C option with the core OS project
directory, and the payloadObjs target:

make -C my-kerneldir payloadObjs

Rather than running this command separately, you may choose to add this line to
the core OS project makefile.

42

User Configuration Records

7.1 Understanding User Configuration Records 43
7.2 Planning User Configuration Records 44

7.3 Configuring User Configuration Records 44
7.4 Building a User Configuration Record 46

7.1 Understanding User Configuration Records

A user configuration record is a loadable data region in the core OS that can be
used for storage of a user-defined configuration record or other data to be used by
a user extension to the core OS. A user configuration record is loaded into a user
configuration record region defined in the core OS configuration.

For information on accessing a user configuration record, see the VxWorks 653
Programmer’s Guide.

User configuration records are part of a platform. For information on platforms,
see 13. Platforms.

Memory for user configuration record regions is assigned as part of the
configuration of the core OS. For information on the core OS, see 6. Core OS.

User configuration records are usually the responsibility of the platform provider.
For information on development roles, see 3. Configuration System.

43

VxWorks 653
Configuration and Build Guide, 2.2

7.2 Planning User Configuration Records

VxWorks 653 allows you to set aside user configuration record regions, and to load
precompiled user configuration records as part of the module payload. The
structure and access mechanism for user configuration records is up to the core OS
developers who will be using the data.

CAUTION: You are responsible for the certification of your user configuration
record binary. The system configuration record is compiled to binary form by
VerIMAX, a qualified tool. Since the semantics of your user configuration record
are determined by you, there is no pre-existing qualified tool to compile your user
configuration record to binary format. You are responsible for the certification of
your user configuration record, and for the qualification of any tools you use to
build it.

7.3 Configuring User Configuration Records

Figure 7-1

Figure 7-1 summarizes the configuration and build of a user configuration record.

User Configuration Record Configuration and Build

my-ucr.c my-ucr.o

A 4

(source files) CoplEr (object files)

v

A 4

UCR virtual .
address Linker —7/ my-ucr.reloc /

XML document Tool

KEY
Output file /

™~

Source and / Intermediate Supplied by
object files file / VxWorks 653

44

7 User Configuration Records
7.3 Configuring User Configuration Records

The inputs and outputs of the user configuration record configuration and build
are as follows:

User Configuration Record Outputs

The following are the outputs of the user configuration record configuration and
build process:

User Configuration Record System Module File

The user configuration record system module file contains the compiled data for a
user configuration record. The required extension for the user configuration record
system module file is .reloc.

The following is a sample makefile rule for building a user configuration record
system module file. As noted above, you are responsible for the certification of
your user configuration record and for the qualification of any tools used to build
it. The example shown here is designed to address build issues only and does not
cover certification issues.
userCfgRgnl.reloc: userCfgRgnl.c

$(CC) S (CFLAGS) -c $< -o userCfgRgnl.o

$S(LD) userCfgRgnl.o -Tdata $(USERCFGREGION_ADDR) -e Oxffffffff \

-0 userCfgRgnl.reloc

The entry point of Oxffffffff specified by the -e option is required by the system and
must not be changed.

User Configuration Record Inputs

The following are the inputs for the user configuration record build:

User Configuration Record Source or Object Files

You will need the source or object files that comprise your user configuration
record. You must specify your source files as a dependency on the user
configuration record object file in the user configuration record makefile:

userCfgRgnl.reloc: userCfgRgnl.c

Physical Address for the User Configuration Record Region

You need to specify the physical address at which the user configuration record
region is to be located in the RAM. The value given here must match the value
given in your CoreOSDescription file in the attribute CoreOSDescription/
HardwareConfiguration/PhysicalMemory/userConfigRecordRegion/
@Base_Address. This value is represented in the makefile rule above by the

45

VxWorks 653
Configuration and Build Guide, 2.2

variable $(USERCFGREGION_ADDR), which can be defined in the makefile or
supplied on the command line.

7.4 Building a User Configuration Record

Step 1:

Step 2:

Step 3:

To build the user configuration record, use the following procedure:

Create a user configuration record makefile.
A typical user configuration record makefile looks like this:

include $(WIND_BASE)/target/vThreads/config/make/Makefile.vars

userCfgRgnl.reloc: userCfgRgnl.c
$(CC) S (CFLAGS) -c $< -o userCfgRgnl.o
$(LD) userCfgRgnl.o -Tdata $(USERCFGREGION_ADDR) -e Oxffffffff \
-0 userCfgRgnl.reloc

2

%.0: %.C
$(CC) S$S(CFLAGS) -c -o $@ $<

Open the VxWorks 653 Development Shell.

The VxWorks 653 build tools require a specific build environment which is
provided by the VxWorks 653 Development Shell. To open the shell, from your
program list, select:

Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell

Build the user configuration record.
To build the user configuration record, run make:

make USERCFGREGION_ADDR=0x0£000000

46

Partition OSs

8.1 Understanding Partition OSs 47
8.2 Planning Partition OSs 48

8.3 Configuring a Partition OS 50
8.4 Building a Partition OS 55

8.1 Understanding Partition OSs

A partition OS provides the operating system for an application running in a
partition. To conserve resources, partition OSs are located in a special kind of
shared library called a system shared library. Each partition that uses a particular
partition OS references the same system shared library. However, to maintain the
required isolation between partitions, each partition must maintain a separate
copy of all read /write sections of the partition OS, as well as the stack and heap
space required to run the partition OS. A system shared library can only contain
one partition OS and a partition can only access one system shared library. Every
module must contain at least one partition OS. For information on applications, see
14. Applications. For information on partitions, see 15. Partitions. For information
on shared libraries, see 9. Shared Libraries.

Because shared libraries and applications are built separately, the location of the
partition OS code is not known when the applications is built. VxWorks 653
manages the lookup of partition OS code at run time. When the partition OS is

47

VxWorks 653
Configuration and Build Guide, 2.2

built, stubs files are created with routine stubs to which applications can link. As
part of the partition OS build process, entry-point tables are created that
correspond to the routine stubs in the stubs file. The entry-point tables are built
into the partition OS. When the application is initialized, VxWorks 653 resolves the
calls to the stubs to the real partition OS routines using the entry-point tables.

VxWorks 653 includes a partition OS called vThreads. It also includes a number of
optional components that can add functionality to vThreads, and which allow for
more than one flavor of the vThreads partition OS to be created and used. A
module may contain more than one partition OS, and can have different partitions
running different partition OSs, including different flavors of the vThreads
partition OS and user-provided partition OSs based on the core OS interface
library (COIL).

In addition to the components supplied with VxWorks 653, you can add your own
code to the partition OS. You should keep in mind the certification implications of
adding your own code to the partition OS.

Partition OSs are the responsibility of the platform provider. For information on
development roles, see 3. Configuration System.

8.2 Planning Partition OSs

When planning a partition OS, you should consider the following issues:

What will be included with the partition 0S?

There are a number of components that can be added to a partition OS to provide
added functionality. While all the optional components supplied with

VxWorks 653 (with the exception of the C++ components) can be included in the
partition OS, it can be useful to include those components in a shared library
instead. Reasons for doing this include:

» If you have more than one flavor of partition OS in your module, but those
partition OSs contain some of the same components, you can reduce the
memory required by removing the common components from both partition
OS variants and placing them in a shared library which can be accessed by
partitions running either flavor of partition OS. Note that for this to work, the
shared library must not make calls to the partition OS.

48

8 Partition OSs
8.2 Planning Partition OSs

» If you have only one flavor of partition OS, but not all applications use all the
components in the partition OS, you can move the components that are not
used by all applications to shared libraries. Only the partitions whose
applications use those components need to reference the shared libraries and
set memory aside for their use.

» If you want to restrict the API available to certain applications, you can move
that part of the partition OS to a shared library and deny that application’s
partition access to that shared library.

C++ support components are available but can only be included in application
builds, not shared libraries or the partition OS or core OS.

For a cert system, a reduced set of components is available for shared libraries and
a separate set of component binaries is used.

For a list of available components, see the VxWorks 653 Configuration and Build
Reference.

Will multiple interfaces be required?

You may provide more than one interface to a partition OS. A shared library API
definition can be used to select a subset of the routines available in a library for use
in a particular application, and to map new routine names to the names in the
library.

You can create interfaces to provide backward compatibility for applications
written to use an earlier version of the partition OS or to provide cert and debug
interfaces to the same partition OS. To define multiple interfaces for your partition
OS, you create multiple interface definitions in the Shared_Library_API
configuration document. You must define at least one interface.

You can also restrict the API available to an application by linking it to a limited
version of the library’s interface defined in the Shared_Library_API document. For
example, in some cases you may want to provide a partition OS that only allows
the application developer to use the APEX APL. In this case you can effectively hide
the native vThreads APIby not including it in the library interface definition in the
Shared_Library_API document.

49

VxWorks 653
Configuration and Build Guide, 2.2

8.3 Configuring a Partition OS

Figure 8-1 summarizes the configuration and build process for a partition OS.

The inputs and outputs of a partition OS build are as follows. Most of these are
common to both partition OSs and regular shared libraries.

Outputs of a Partition OS Build

The following are the outputs of a partition OS build:

Partition OS System Module File

The partition OS build process produces a system module (.sm) file for the shared
library. This is an ELF file that can be included in a system image build. It is
produced by a rule like this:

pos.sm: sslMain.o vThreadsComponent.o pos-ept.o pos.lds
$(LD) $(LDFLAGS) -T pos.lds -o $@ $(filter %.0,$")

Partition OS Stubs Files

The shared library stubs file contains the stubs that are required to build an
application that uses the library. Normally, the stubs file has the same name as the
shared library object file, but with the suffix -stubs.o in place of .sm. Thus a system
shared library object file named vThreads.sm would have a stub file called
vThreads-stubs.o.

If you have provided more than one interface for your shared library, you will need
to provide a different stubs file for each interface. For example, you may provide
separate cert and non-cert interfaces for your library. In this case you would need
to build separate cert and non-cert stubs files:

posvl-stubs.c: pos-api.xml
xmlgen --linkage --arch ppc --api-version "cert" --output-stubs $@ $<

posv2-stubs.c: pos-api.xml
xmlgen --linkage --arch ppc --api-version "non-cert" --output-stubs $@ S$<

The names of the interfaces (e.g. “cert”) must match the names of the interfaces
given in Shared_Library_API/Interface/Version/@Name in the
SharedLibraryInterface document.

Inputs of a Partition OS Build

The following are the inputs to a partition OS build:

50

8 Partition OSs
8.3 Configuring a Partition OS

Figure 8-1 Partition OS Configuration and Build

my-pos.c ; my-pos.o
y-pos > Compiler — Y-POS S
(source files) % (object files) /
ssIMain.c > Compiler —» ssIMain.o —
/ /

Component .0

files
SharedLibraryDescription XMLGen y/ My-pos.lds .
.] / (linker script)
Shared_Library_API XMLGen > / my-pos-ept.c
_{—\ 7 (entry point table) 7
Include by
reference
orinline
| 4 /
Interface_Subset Compiler 4y my-pos-ept.o yam
KEY

XML document ¢
Linker —7/ my-pos.sm /
Source and

object files
Tool
/! my-pos-stubs.c ///
« . : ! e > (stubs file) Y
Intermediate R
file

/ Output file / I

Compiler —7/ my-g)os- /
Supplied by stubs.o

VxWorks 653

51

VxWorks 653
Configuration and Build Guide, 2.2

SharedLibraryDescription Document

The SharedLibraryDescription document is an XML document conforming to the
SharedLibraryDescription document type defined in the VxWorks 653
Configuration Schema.

The SharedLibraryDescription document contains configuration information for
the partition OS in the following areas:

» virtual address of the partition OS
* memory requirements of the partition OS

= aflagthat indicates that the shared library is a system shared library. A shared
library that contains a partition OS must be flagged as a system shared library.

For examples of a SharedLibraryDescription document for a partition OS, see
22.5 Partition OS, p.185. For detailed information on creating or modifying the
SharedLibraryDescription document, see the VxWorks 653 Configuration and Build
Reference.

Shared_Library_API Document

The Shared_Library_API document is an XML document conforming to the
Shared_Library_API document type defined in the VxWorks 653 Shared Library
API Schema.

This document defines one or more interfaces for the shared library. For examples
of a Shared_Library_API document, see 22.5 Partition OS, p.185. For detailed
information on creating or modifying the Shared_Library_API document, see the
VxWorks 653 Configuration and Build Reference.

Component API Interface_Subset Documents

An Interface_Subset document is an XML document conforming to the
Interface_Subset document type defined in the VxWorks 653 Shared Library API
Schema. VxWorks 653 provides an Interface_Subset definition document for the
vThreads operating system. It is located at:

installDir\vxworks653-2.2\target\vThreads\config\comps\xml\vthreads.xml

The cert version of the interface is defined in vthreads_cert.xml in the same
location. For a list of components and their corresponding default Interface_Subset
documents, the VxWorks 653 Configuration and Build Guide.

If you are including components in your partition OS, and you want to make the
routines in those components available to application developers, you must add
these interfaces to your Shared_Library_API document as an Interface_Subset

52

8 Partition OSs
8.3 Configuring a Partition OS

definition. This can be done inline, or by reference to an external Interface_Subset
document. VxWorks 653 includes Interface_Subset documents for the components
it supplies. They are located in:

installDir\vxworks653-2.2\target\vThreads\config\comps\xml

You may also create Interface_Subset documents to describe all or part of an
interface for your own library code. For detailed information on creating or
modifying the Interface_Subset document, see the VxWorks 653 Configuration and
Build Reference.

System Shared Library Initialization File

VxWorks 653 includes the system shared library initialization file sslMain.c which
is required for building a system shared library. You must include sslMain.o as the
first item in the dependency list for your partition OS in the partition OS makefile.
You must also include a rule in the makefile to automatically compile .o files from
.c files and a vpath statement to specify the location of ssilMain.c:

vpath %.c $(WIND_BASE)/target/vThreads/config/comps/src

pos.sm: sslMain.o ...
S (LD) $(LDFLAGS) -T pos.lds -o $@ S$(filter %.0,$")

%.0: %.C
$(CC) $(CFLAGS) -c -o $@ $<

Partition OS Components

Your partition OS must include either the vThreadsComponent.o component that
contains the vThreads partition OS or coilComponent.o, which supports
user-supplied partition OS based on the COIL library.

Either the vThreads or COIL component must be included in your partition OS in
the shared library makefile. You must also add a vpath statement to your partition
OS makefile to specify the location of the component files:

vpath %$.0 $(WIND_BASE)/target/vThreads/lib/obj$ (CPU)gnuvx

pos.sm: sslMain.o vThreadsComponent.o ...

Component object files are stored in different directories, depending on the target,
the tool chain, and whether they are cert or non-cert. You must choose the
directory that matches the build spec you are using. The directory name is formed
using the following pattern:

7

“obj” + <CPU name> + <toolchain name> + “.” + [“cert

//lu

VXII

53

VxWorks 653
Configuration and Build Guide, 2.2

As aresult, for instance, the directory for the PPC604 CPU with the GNU tool chain
and the debug build spec is objPPC604gnuvx.

Additional Components

VxWorks 653 provides several components that provide additional functionality
and can be included either in a partition OS or shared library.

All the component files to be included in your partition OS must be listed as
dependencies for your partition OS in the partition OS makefile. You must also add
a vpath statement to your partition OS makefile to specify the location of the
component object files:

[

vpath %.o0 $(WIND_BASE)/target/vThreads/lib/objs$ (CPU)gnuvx

pos.sm: sslMain.o vThreadsComponent.o vThreadsLibcMathComponent.o ...

Partition OS Entry-Point Tables

An entry-point table for the partition OS is required to enable applications to link
to partition OS routines. XMLGen builds the entry-point table from the
information in the Shared_Library_API definition file. You must add a target to
your partition OS makefile to build the entry-point table:
pos-ept.c: my-pos-Shared_Library API.xml

xmlgen --linkage --output-entrypoints $@ $<
You also need to add the entry-point table to the dependencies of the partition OS
in the partition OS makefile:

pos.sm: sslMain.o vThreadsComponent.o vThreadsLibcMathComponent.o \
pos-ept.o ...

Partition OS Source Files

If you are adding your own code to the partition OS, your source files must be
stated as dependencies on the partition OS in the partition OS makefile. The
following example show the rule for building a partition OS with all of the
common dependencies:

pos.sm: sslMain.o vThreadsComponent.o vThreadsLibcMathComponent.o \
pos-ept.o my-code.o ...

Partition OS Linker Script

Because the memory configuration of a partition OS is specified by a black box
defined in its SharedLibraryDescription document, a custom linker script is
required to align the sections of the partition OS ELF file on the correct boundaries.
The linker script can be generated from the SharedLibraryDescription document.

54

8 Partition OSs
8.4 Building a Partition OS

To cause the linker script to be built, you specify it as a target in the partition OS
makefile and give the SharedLibraryDescription document as a dependency:

my-pos.lds: my-pos.xml
xmlgen --1dScript --arch $(TOOLARCH) -o $@ $<

8.4 Building a Partition OS

Step 1:

Step 2:

To build a partition OS, use the following procedure:

Create a makefile for the partition OS.

A typical partition OS makefile looks something like this.

all: pos.sm pos-stubs.o

include $(WIND_BASE)/target/vThreads/config/make/Makefile.vars

vpath %.c $ (WIND_BASE) /target/vThreads/config/comps/src
vpath %.o $ (WIND_BASE) /target/vThreads/1lib/obj$ (CPU) gnuvx

pos.sm: sslMain.o vThreadsComponent.o pos-ept.o pos.lds
$(LD) $(LDFLAGS) -T pos.lds -o $@ $(filter %.0,$")

%.0: %.C
$(CC) S$(CFLAGS) -c -o $@ $<

pos-ept.c: pos-api.xml
xmlgen --linkage --output-entrypoints $@ $<

pos-stubs.c: pos-api.xml
xmlgen --linkage --arch $(TOOLARCH) --output-stubs $@ $<

pos.lds: hello-pos.xml
xmlgen --1dScript --arch $(TOOLARCH) -o $@ $<

For other sample partition OS makefiles, see 22.5 Partition OS, p.185.

Open the VxWorks 653 Development Shell.

The VxWorks 653 build tools require a specific build environment which is
provided by the VxWorks 653 Development Shell. To open the shell, from your
program list, select:

Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell

55

VxWorks 653
Configuration and Build Guide, 2.2

Step 3: Build the shared library.
To build the shared library, run make, specifying the CPU to build for:

make all CPU=PPC604

56

Shared Libraries

9.1 Understanding Shared Libraries 57
9.2 Planning Shared Libraries 58

9.3 Configuring Shared Libraries 59
9.4 Building a Shared Library 65

9.1 Understanding Shared Libraries

If you want to share code between more than one application, that code can be
placed in a shared library. Shared libraries in VxWorks 653 are not dynamically
loaded. In order to comply with the requirements of DO-178B certification, all
software must be loaded into fixed and non-overlapping sections of memory at
boot time. All libraries are loaded into memory when the module is booted. All
partitions that access a library have to set aside memory for the read / write sections
of the library, as well as the stack and heap space required to run the library
routines. Minimizing the memory footprint of a library therefore, depends on the
correct analysis and configuration of the module as a whole at design time. For
more information on applications, see 14. Applications.

You can add your own code to shared libraries, but in many cases, you will build
shared libraries entirely from components supplied with VxWorks 653. This allows
you to package VxWorks 653 functionality in the way that is optimal for your
platform. In some cases, all the shared code required by the applications in a

57

VxWorks 653
Configuration and Build Guide, 2.2

module may be contained in the partition OS. However, if you have more than one
partition OS in your module, and you have some shared code that you want all
applications to be able to access, you can avoid duplicating it in multiple partition
OSs and including it in a single shared library. Even if you have only one partition
OS in your module, you may want to limit the libraries that some applications can
access by separating that functionality into shared libraries that only some
partitions can access.

Because shared libraries and applications are built separately, the location of the
library code is not known when the applications is built. VxWorks 653 manages the
lookup of shared library code at run time. When libraries are built, stubs files are
created with routine stubs to which applications can link. As part of the library
build process, entry-point tables are created that correspond to the routine stubs in
the stubs file. The entry-point tables are built into the library. When the application
is initialized, VxWorks 653 resolves the calls to the stubs to the real library routines
using the entry-point tables.

A special kind of shared library called a system shared library is used to contain a
partition OS. For information on partition OSs, see 8. Partition OSs.

Shared libraries are usually the responsibility of the platform provider. For
information on development roles, see 3. Configuration System.

9.2 Planning Shared Libraries
When planning a shared library, you should consider the following issues:

How will the shared code be organized?

There are a number of components that can be placed in a partition OS or a shared
library. In most cases, it is appropriate to put all the components required by a
partition into the partition OS. However, if you have more than one partition OS
in your platform, you may want to place components required by partitions
running different partition OSs into a single shared library to avoid duplication.
Note that this is only possible if the components placed in the shared library do not
depend on code in a particular partition OS.

58

9 Shared Libraries
9.3 Configuring Shared Libraries

Which binary components will be included?

For shared libraries, a small set of optional components is available. None are
included by default. For a list of available components, see the VxWorks 653
Configuration and Build Reference.

C++ support components are available, but can only be included in application
builds, not shared libraries or the core OS.

For a cert system, a reduced set of components is available for shared libraries and
a separate set of component binaries is used.

Will multiple interfaces be required?

You can provide more than one interface to a shared library. A shared library
interface can be used to select a subset of the routines available in a library for use
in a particular application, and to map new routine names to the names in the
library. You can create interfaces to provide backward compatibility for
applications written to use an earlier version of the library or to provide cert and
debug interfaces to the same library. To define multiple interfaces for your library,
you create multiple interface definitions in the Shared_Library_API configuration
document. You must define at least one interface.

9.3 Configuring Shared Libraries

Figure 9-1 summarizes the shared library configuration and build process.

The inputs and outputs of the shared library configuration and build process are
as follows:

Outputs of the Shared Library Configuration and Build process

The outputs of the shared library build process are:

Shared Library System Module File

The shared library build process produces a system module (.sm) file for the
shared library. This is an ELF file that can be included in a system image build. For
information on building system images, see 21. System Images.

59

VxWorks 653
Configuration and Build Guide, 2.2

Figure 9-1 Shared Library Configuration
my-sl.c | ; / my-sl.o
(source files) i Celby (object files)
VxMain.c P Compiler —V VxMain.o %
Component .0
files
SharedLibraryDescription XMLGen > my-sl.Ids
(linker script)
pos-stubs.o Linker —7/ my-sl.sm /
sl-stubs.o / 7
Compiler —> my-sl-ept.o
Shared_Library_API > XMLGen - my-sl-ept.c
/ (entry point table) /
Include by / /
/ my-sl-stubs.c /
reference or inline XMLGen — y J

5% (stubs file)

Interface_Subset $

—7/ my-sl-stubs.o

/

Compiler
KEY
XML document Tool

/ Output file

/

Source and /" Intermediate
object files file

p Supplied by
/ VxWorks 653

60

9 Shared Libraries
9.3 Configuring Shared Libraries

A typical build rule for a shared library system module file looks something like
this:

sl.sm: vxMain.o my-code.o sl-stubs.o sl-ept.o sl.lds
$(LD) S$(LDFLAGS) -T sl.lds -o $@ S$(filter %.0,$")

The inputs to this rule are explained below.

Shared Library Stubs Files

The shared library stubs file contains the stubs that are required to build an
application that uses the library. Normally, the stubs file has the same name as the
system module file, but with the suffix -stubs.o in place of .sm. Thus a system
shared library object file named my-sl.sm would have a stub file called
my-sl-stubs.o.

A typical build rule for a shared library stubs file looks like this:

slvl-stubs.c: sl-api.xml
xmlgen --linkage --arch $(TOOLARCH) --output-stubs $@ $<

The inputs to this rule are explained below.

If you have provided more than one interface for your shared library, you will need
to provide a different stubs file for each interface. For example, you may provide
separate cert and non-cert interfaces for your library. In this case you would need
to build separate cert and non-cert stubs files.

slvl-stubs.c: sl-api.xml

xmlgen --linkage --arch $(TOOLARCH) --api-version "cert" /
--output-stubs $@ $<

slv2-stubs.c: sl-api.xml
xmlgen --linkage --arch $(TOOLARCH) --api-version "non-cert" /

--output-stubs $@ $<

The names of the interfaces (e.g. “cert”) must match the names of the interfaces
given in Shared_Library_API/Interface/Version/@Name in the
SharedLibraryInterface document.

Inputs to the Shared Library Configuration and Build Process

The following are the inputs to the shared library configuration and build process:

SharedLibraryDescription Document

The SharedLibraryDescription document is an XML document conforming to the
SharedLibraryDescription document type defined in the VxWorks 653
Configuration Schema.

61

VxWorks 653
Configuration and Build Guide, 2.2

The SharedLibraryDescription document contains configuration information for
the shared library in the following areas:

= virtual address of the shared library
* memory requirements of the shared library

* aflagindicating whether the shared library is a system shared library (a
system shared library is used to contain a partition OS)

For examples of a SharedLibraryDescription document, see 22.7 Shared Library,
p-196. For detailed information on creating or modifying the
SharedLibraryDescription document, see the VxWorks 653 Configuration and Build
Reference.

Shared_Library_API Document

The Shared_Library_API document is an XML document conforming to the
Shared_Library_API document type defined in the VxWorks 653 Shared Library
API Schema.

This document defines one or more interfaces for the shared library. For examples
of a Shared_Library_API document, see 22.7 Shared Library, p.196. For detailed
information on creating or modifying the Shared_Library_API document, see the
VxWorks 653 Configuration and Build Reference.

Component API Interface_Subset Documents

A Interface_Subset document is an XML document conforming to the
Interface_Subset document type defined in the VxWorks 653 Shared Library API
Schema.

If you are including components in your shared library, and you want to make the
routines in those components available to application developers, you must add
these interfaces to your Shared_Library_API document as an Interface_Subset
definition. This can be done inline, or by reference to an external Interface_Subset
document. VxWorks 653 includes Intreface_Subset documents for the components
it supplies. You may also create Interface_Subset documents to describe all or part
of an interface for your own library code. For detailed information on creating or
modifying the Interface_Subset document, see the VxWorks 653 Configuration and
Build Reference.

Library Initialization Files

VxWorks 653 includes the library initialization file vxMain.c which is required for
building a shared library. You must include vxMain.c as a dependency for your

62

9 Shared Libraries
9.3 Configuring Shared Libraries

shared library in the shared library makefile. The dependency is stated as a
dependency on vxMain.o. Note that vxMain.o must be first item in the
dependency list.

my-sl.sm: vxMain.o ...

You should provide a generic rule for compiling .c file to .o files using the variables
defined in Makefile.vars.

%.0: %.C
$(CC) $(CFLAGS) -c -o $@ s$<

You must also add a vpath statement to your shared library makefile to specify the
location of vxMain.c:

vpath %.c $(WIND_BASE)/target/vThreads/config/comps/src

Shared Library Entry-Point Tables

For each shared library, an entry-point table is required. XMLGen builds the
entry-point table from the information in the Shared_Library_API definition file.
You must add a target to your shared library makefile to build the entry-point
table:

my-sl-ept.c: my-SharedLibraryInterface.xml
xmlgen --linkage --output-entrypoints $@ S$<

You must also add the entry-point table to the dependencies of the shared library
in the shared library makefile:

my-sl.sm: vxMain.o my-sl-ept.o ...

Shared library Linker Script

Because the memory configuration of a shared library is specified by a black box
defined in the SharedLibraryDescription document, a custom linker script is
required to align the sections of the shared library ELF file on the correct
boundaries. XMLGen generates the linker script from the
SharedLibraryDescription document:
my-sl.lds: my-sl.xml

xmlgen --1dScript --arch $(TOOLARCH) -o $@ $<
You must also add the linker script to the dependencies of the shared library in the
shared library makefile.

my-sl.sm: vxMain.o my-sl-ept.o my-sl.lds ...

63

VxWorks 653
Configuration and Build Guide, 2.2

Shared Library Component Object Files

VxWorks 653 provides several components that provide packaged functionality
that can be included in a shared library. All the component files to be included in
your shared library must be listed as dependencies for your shared library in the
shared library makefile.

my-sl.sm: vxMain.o vThreadsLibcMathComponent.o ...

You must also add a vpath statement to your shared library makefile to specify the
location of the component object files:

vpath %$.0 $(WIND_BASE)/target/vThreads/lib/obj$ (CPU)gnuvx

Component object files are stored in different directories, depending on the target,
the tool chain, and whether they are cert or non-cert. You must choose the
directory that matches the build spec you are using. The directory name is formed
using the following pattern:

Ill/l

“obj” + <CPU name> + tool + [“cert vx”]

so that, for instance, the directory for the PPC604 BSP with the GNU tool chain and
the debug build spec is “objPPC604gnuvx”. However, the CPU name can be
represented by the $(CPU) variable, giving “obj$(CPU)gnuvx”

Shared Library Source Files

If you are adding your own code to the shared library, your source files must be
stated as dependencies on the shared library in the shared library makefile. The
following example show the rule for building a shared library with all of the
common dependencies:

my-sl.sm: vxMain.o my-sl.o my-sl.lds filel.o file2.o \
vThreadsAmioComponent.o usrAmio.o usrAmioRedirect.o my-sl-ept.o

Partition OS Stubs File

If the shared library depends on routines in the partition OS, you must provide the
stubs files for the partition OS. Partition OS stubs files must be listed as
dependencies for the shared library in the shared library makefile. Note that if a
shared library depends on routines in a partition OS it can only be used in
partitions that use that partition OS, or that use a partition OS that uses the same
interface name and interface definition as the partition OS for which it was
compiled.

64

9 Shared Libraries
9.4 Building a Shared Library

Shared Library Stubs File

If the shared library depends on routines in another shared library, you must
provide the stubs files for all the libraries that the shared library accesses. Note that
in order for the shared library to access the routines in the second library, it is
necessary that the application’s partition be configured to permit access to both
libraries in the PartitionDescription document.

Shared library stubs files must be listed as dependencies for the shared library in
the shared library makefile.

9.4 Building a Shared Library

Step 1:

To build the shared library, use the following procedure:

Create a makefile for the shared library.

A typical shared library makefile looks something like this.

all: sl.sm sl-stubs.o

include $(WIND_BASE)/target/vThreads/config/make/Makefile.vars

vpath %.c $ (WIND_BASE) /target/vThreads/config/comps/src
vpath %.o $ (WIND_BASE) /target/vThreads/1lib/obj$ (CPU) gnuvx

sl.sm: vxMain.o vThreadsComponent.o sl-ept.o sl.lds
$(LD) S$(LDFLAGS) -T sl.lds -o $@ $S(filter %.0,$")

%.0: %.C
$(CC) S$(CFLAGS) -c -o $@ $<

sl-ept.c: sl-api.xml
xmlgen --linkage --output-entrypoints $@ $<

sl-stubs.c: sl-api.xml
xmlgen --linkage --arch $(TOOLARCH) --output-stubs $@ $<

sl.lds: hello-sl.xml
xmlgen --1dScript --arch $(TOOLARCH) -o $@ $<

For other sample shared library and system shared library makefiles, see
22.7 Shared Library, p.196.

65

Step 2:

Step 3:

VxWorks 653
Configuration and Build Guide, 2.2

Open the VxWorks 653 Development Shell.

The VxWorks 653 build tools require a specific build environment which is
provided by the VxWorks 653 Development Shell. To open the shell, from your
program list, select:

Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell

Build the shared library.
To build the shared library, run make, specifying the CPU to build for:

make all CPU=PPC604

66

10

Shared Data Regions

10.1 Understanding Shared Data Regions 67
10.2 Planning a Shared Data Region 68

10.3 Configuring a Shared Data Region 68
10.4 Building a Shared Data Region 71

10.1 Understanding Shared Data Regions

A shared data region is an area of memory that can be accessed by more than one
partition. A shared data region may be either a blank area of memory that
applications can use to exchange data or a pre-compiled database that contains
information that is used by more than one application. A shared data region that
contains pre-compiled data is referred to as a loadable shared data region, since the
database becomes part of the payload. A blank shared data region is referred to as
a non-loadable shared data region, since it is not part of the payload.

Shared data regions contain shared data that can be used by multiple applications.
For more information on applications, see 14. Applications.

Shared data regions may be part of a platform. For information on platforms, see
13. Platforms.

Access to shared data regions by applications is configured as part of the partition
configuration. For information on partitions, see 15. Partitions.

67

VxWorks 653
Configuration and Build Guide, 2.2

Shared data regions are usually the responsibility of the system integrator. They
may also be created by the platform provider or the application developer. For
information on development roles, see 3. Configuration System.

10.2 Planning a Shared Data Region

VxWorks 653 provides for the setting aside of shared data regions, and for the
loading of precompiled databases as part of the module payload. The structure
and access mechanism for both loadable and non-loadable shared data regions are
up to the application developers who will be sharing the data.

Developers of applications that share a shared data region must communicate with
each other to determine the structure and method of access for the shared data
region. The system integrator must communicate with the application developers
and the platform provider to determine the number and size of the shared data
regions to be provided by the platform.

10.3 Configuring a Shared Data Region
Figure 10-1 summarizes the configuration and build of a loadable shared data
region.
The inputs and outputs of the shared data region configuration and build are as
follows:
Shared Data Region Outputs

The following are the outputs of the shared data region configuration and build
process:

Shared Data Region System Module File

The shared data region system module file contains the compiled database for a
loadable shared data region. If the shared data region is non-loadable, that is, it
consists simply of an area of memory that is shared between applications, then no

68

10 Shared Data Regions
10.3 Configuring a Shared Data Region

Figure 10-1 Shared Data Region Configuration and Build

my-sdr.c | . my-sdr.o
(source files) g Sl — (object files)
SharedDataDescription > XMLGen > my-sdr.lds
(linker script) ~ /
SDR virtual v
address .
Linker my-sdr.sm

XML document Tool / Output file /

Source and / Intermediate / Supplied by
object files y file / VxWorks 653

system module is created and no build is required. The following rule builds a
shared data region system module file:

sdr.sm: sdr.o sdr.lds
$(LD) S$(LDFLAGS) -T sdr.lds -o $@ $(filter %.0,S$%)

Shared Data Region Inputs
The following are the inputs to the user shared data region configuration and build
process:
SharedDataDescription Document

The SharedDataDescription document is an XML document conforming to the
SharedDataDescription document type defined in the VxWorks 653 Configuration
Schema.

This document contains configuration information for the shared data region in
the following areas:

» cache policy for the shared data region

» data type for the shared data region

69

VxWorks 653
Configuration and Build Guide, 2.2

= size of the shared data region
= access rights to the shared data region for the core OS
= virtual address of the shared data region

For an example of a SharedDataDescription document, see 22.5.4 Partition OS with
Shared Data Region, p.189. For detailed information on creating or modifying the
SharedDataDescription document, see the VxWorks 653 Configuration and Build
Reference.

Virtual Address for the Shared Data Region

You need to know the virtual address at which the shared data region is to be
located in the module. This information is contained in the Module document for
the module. If you have access to a Module document, you can use it to provide
the address to the build process. If you do not have a Module document, you can
specify the virtual address via the LDFLAGS_EXTRA variable in the shared data
makefile:

SD_ADDR = 0
LDFLAGS_EXTRA = -Tdata $(SD_ADDR)

Shared Data Region Source or Object files

You will need the source or object files that comprise your shared data region. The
format and access to the shared data regions is entirely up to the developer of the
shared data region. You must specify your source files as a dependency on the
shared data region object file in the shared data region makefile:

my-sdr.sm: my-sdr.o ...

Shared Data Region Linker Script

A custom linker script is required to align the sections of the shared data region
ELF file on the correct boundaries. The linker script can be generated from the
SharedDataDescription document using commands contained in Makefile.rules.

To cause the linker script to be built, you specify it as a target in the shared library
makefile and give the SharedLibraryDescription document as a dependency:

my-sdr.lds: my-sdr.xml
xmlgen --1dScript --arch $(TOOLARCH) --address $(SD_ADDR) -o $@ S$<

You must also add the linker script to the dependencies of the shared data region
in the shared data makefile:

my-sdr.sm: my-sdr.o my-sdr.lds

70

10 Shared Data Regions
10.4 Building a Shared Data Region

10.4 Building a Shared Data Region

Step 1:

Step 2:

Step 3:

To build the shared data region, use the following procedure:

Create a shared data region makefile.

The makefile for your shared data region will look something like this:
all: my-sdr.sm

include $(WIND_BASE)/target/vThreads/config/make/Makefile.vars

my-sdr.sm: my-sdr.o my-sdr.lds
$(LD) $(LDFLAGS) -T my-sdr.lds -o s$@ S$(filter %.0,$")

%.0: %.C
$(CC) S$S(CFLAGS) -c -o $@ $<

my-sdr.lds: my-sdr.xml
xmlgen --1dScript --arch $(TOOLARCH) --address $(SD_ADDR) -o $@ S$<

If the shared data region contains pointers (and therefore needs to be located at a
specific address), set SD_ADDR to the value of SharedData/
SharedDataDescription/@VirtualAddress in the SharedDataDescription file.
Otherwise the value of SD_ADDR is 0.

For an example of a shared data region makefile, see 22.5.4 Partition OS with Shared
Data Region, p.189.
Open the VxWorks 653 Development Shell.

The VxWorks 653 build tools require a specific build environment which is
provided by the VxWorks 653 Development Shell. To open the shell, from your
program list, select:

Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell

Build the shared data region.
To build the shared data region, run make, specifying the CPU to build for:

make all CPU=PPC604

71

VxWorks 653
Configuration and Build Guide, 2.2

72

11

Shared I/O Regions

11.1 Understanding Shared I/O Regions 73
11.2 Planning Shared I/O Regions 74

11.3 Configuring Shared I/0O Regions 74
11.4 Building a Shared I/O Region 75

11.1 Understanding Shared I/O Regions

A shared I/0O region represents an I/O device on the target (such as an LED) that
the core OS makes available to be shared by applications in the module.

Shared I/0O regions make target hardware I/O devices available to one or more
applications. For more information on applications, see 14. Applications.

Target I/O regions are shared as part of the configuration of the core OS. For
information on the core OS, see 6. Core OS. Applications access to shared I/O
regions is part of the partition configuration. For information on partitions, see
15. Partitions.

Creating Shared I/O regions is the responsibility of the platform provider.
Permitting applications to access shared I/0O regions is the responsibility of the
system integrator. For information on development roles, see 3. Configuration
System.

73

VxWorks 653
Configuration and Build Guide, 2.2

11.2 Planning Shared I/0 Regions

The platform provider, application developer, and system integrator each have a
role in planning shared I/O regions. The platform provider needs to tell the
application developer and system integrator what shared I/O regions are available
on the platform. The application developer needs to tell the system integrator
which shared 1/O regions are used by the application so that the system integrator
can configure access to the shared I/O region for the application.

11.3 Configuring Shared I/O Regions

There are two parts to the configuration of a shared I/O region, one belonging to
the platform provider and one belonging to the system integrator.

The platform provider defines the memory area of the shared I/0 region and
determines whether that area is shared or not. This is done by adding a
CoreOSDescription/HardwareConfiguration/sharedIO element to the
CoreOSDescription document for the core OS. For information on configuring the
core OS see 6. Core OS. For detailed information on creating or modifying the
CoreOSDescription document, see the VxWorks 653 Configuration and Build
Reference.

The system integrator configures the address and access rights for the shared I/O
region within the module by writing a SharedIODescription document. The
SharedIODescription document is an XML document conforming to the
SharedIODescription document type defined in the VxWorks 653 Configuration
Schema.

For detailed information on creating or modifying the SharedIODescription
document, see the VxWorks 653 Configuration and Build Reference.

74

11 Shared I/O Regions
11.4 Building a Shared I/O Region

11.4 Building a Shared 1/0 Region

Shared 1/0 regions are not built because they represent hardware on the target.
Shared I/O configuration information is used as part of the configuration and
build of the core OS and partitions.

75

VxWorks 653
Configuration and Build Guide, 2.2

76

12

ACE

(Agent for the Certified Environment)

12.1 Understanding ACE 77
12.2 Planning ACE 78

12.3 Configuring ACE 78
12.4 Building ACE 82

12.1 Understanding ACE

The agent for the certified environment (ACE) allows you to load the WDB (Wind
River debug) agent separately from the core OS. This allows you to certify the core
OS independently of whether the WDB agent is included in the module. ACE is
supported only when the core OS is built with the cert subset. If you are using a
debug version of the core OS, you should not configure your module to use ACE.

Since ACE limits the range of debugging options available, the platform provider
should generally ship both a debug and cert version of the core OS so that
application developers can do the majority of their debugging using the full
debugging capabilities of VxWorks 653 with the debug version of the core OS, and
use ACE only for final checking in the cert environment.

77

VxWorks 653
Configuration and Build Guide, 2.2

ACE is a debugging facility that works with a certified core OS. For information on
the core OS, see 6. Core OS. For information on debugging, see the Wind River
Workbench Users’s Guide.

ACE is part of a platform. For information on platforms, see 13. Platforms.

ACE is the responsibility of the platform provider. Including ACE in a module is
the responsibility of the system integrator. For information on development roles,
see 3. Configuration System.

12.2 Planning ACE

The overall configuration of ACE is fixed and cannot be altered by the user. The
only choice that the user has to make concerns the communication channel
between ACE and the host. Two methods are available: network and serial. The
network communications method requires that the IP address of the target be
written into the ACE configuration at build time. This means that ACE must be
rebuilt for each target. If application developers or the system integrator need to
use ACE, they can either use a version that has been configured for serial
communication or they can establish a private network around the target for
debugging. If the platform provider is providing ACE as part of the platform, it is
generally advisable to provide a version configured for serial communication
and/or to provide a version configured for network communication that uses an
IP address in the private network range (for example 192.168.x.x).

12.3 Configuring ACE

Figure 12-1 summarizes the configuration and build of ACE. For an example of
building ACE, see 22.4.3 Module OS with ACE, p.180.

The inputs and outputs of the ACE build process are as follows:

Outputs of the ACE Build

The outputs of the ACE build process are:

78

12 ACE
12.3 Configuring ACE

Figure 12-1 Configuration of ACE

ACE .o files > priCreate ACE project “—
, /
Component .o q i
files (debug) > Pr
/' coreOS project /;P prj
Ace XMLGen | » ACEIlds
. (linker script) /
CoreOSDescription
w A
make —7/ ace.ace /
KEY
XML document Tool / Output file /
Source and Intermediate / Supplied by
object files / file VxWorks 653

ACE System Module
The ACE system module (.ace) file is the ACE binary that is loaded on the target.

Inputs to the ACE Build

An ACE Project

To build ACE you must create an ACE project. You can create an ACE project using
the prjCreate command. For example:

prjCreate -domtype ace -prj my-acedir -build PPC604gnu.cert -name my-ace

The prjCreate command requires the following options:

-domtype
Specifies the type of project to create. For ACE, this is “ace”.

79

VxWorks 653
Configuration and Build Guide, 2.2

-PTj
Specifies the directory in which the project will be built. This value will be used
by subsequent commands to locate the project files.

-build
Specifies the build spec to be used to build ACE. This must be a cert build spec,
and may not be a simulator build spec.

-name
Specifies the name of the ACE project. This must match /Module/Ace/@Name.

For additional prjCreate options, see the reference entry for prjCreate.

The Core OS Project

The ACE project needs to know the name and project location of the core OS that
this ACE is to work with. For information on creating a core OS project, see 6. Core
OS. You can provide this information to the ACE project by adding prj
projBuildTagValueSet commands to the ACE build rule in your ACE makefile:
prj projBuildTagValueSet -prj my-acedir \

COREOS_DIR my-kerneldir/PPC604gnu.cert
prj projBuildTagValueSet -prj my-acedir COREOS_NAME coreOS.sm
Note that the core OS directory is the directory under the core OS project directory
with the directory name corresponding to the build spec used to build the core OS.
The core OS name must match the value of /CoreOSDescription/@KernelName in
your my-coreOS.xml file, and must have an extension of .sm.

Ace Configuration Document

The build process needs the memory black box information for ACE in order to
correctly configure memory for ACE. This information is contained in the Ace
configuration document (hello-ace.xml). Since the size of ACE is fixed, the content
of the ACE black box is fixed also:

<Ace
xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/ConfigRecord target/
config/xml/cleanschema/Module.xsd"

name="ace">

<MemorySize

MemorySizeBss="0x10000"

MemorySizeText="0x30000"

MemorySizeData="0x1000"

MemorySizeRoData="0x1000"/>
</Ace>

80

12 ACE
12.3 Configuring ACE

The value of the ace name can be changed, provided that all references to it are
changed accordingly, however it is recommended that it be left as “ace”.

CoreOSDescription Document

In order to align correctly with the core OS, the ACE build needs the core OS
memory black box information contained in the CoreOSDescription configuration
document for the target core OS. For information on the core OS configuration, see
6. Core OS.

Linker Script for ACE

Because memory sizing and allocation in VxWorks 653 is based on memory black
box information contained in configuration files, all VxWorks 653 components
require a linker script to correctly align ELF file sections on the boundaries
specified by the black boxes.You must create a linker script that will be used to link
ACE. XMLGen can generate this script for you from the Module configuration
document. To cause the linker script to be built and used:

xmlgen --1dScript --arch ppc --blackbox my-ace -o my-acedir/my-ace.lds \
my-ace.xml my-coreos.xml

The XMLGen command requires the following parameters:

--1dScript
Specifies the creation of a linker script. This option must be first in the list.

--arch
Specifies the target architecture. This must match the architecture of the core
OS. The simulator does not support ACE.

Specifies the output file. The output file must be placed in the project directory
created by prjCreate. The name of the output file must match the value of the
/Module/Ace/@Name attribute and must have a .lds extension.

You must specify both the CoreOSDescription document and the ACE
configuration document on the XMLGen command line:

Note that the name given in Ace/@Name, the name given in the --blackbox
parameter, and the name given in the -name parameter of the prjCreate command
that created the ACE project must all be the same.

81

VxWorks 653
Configuration and Build Guide, 2.2

ACE Communication Components

You can configure your ACE for either network or serial communication. Since
network communication requires configuring ACE with the IP address of the
target, you should choose an address in the private network range (for example
192.168.0.1) so that the application developer or system integrator can set up a
private network around the target, allowing it to be accessed at the pre-compiled
address.

If you are configuring ACE for network communication:
1. Add the INCLUDE_WDB_COMM_MINI_UDP component to the ACE project.

2. Add the INCLUDE_MINIMAL_MV_END component to the core OS project (on
supported BSPs only).

3. Set the IP address parameter WDB_MINI_UDP_IP_ADDR to your target IP
address "xxx.xxx.xxx.xxx" (include the quotation marks):

prj domParameterValueSet -p my-acedir WDB_MINI_UDP_IP_ADDR "192.168.0.1"
If you are configuring ACE for serial communications:
1. Add INCLUDE_WDB_COMM._SERIAL to the ACE project.

2. Set the parameter WDB_TTY_CHANNEL to an appropriate serial I/O channel
(the default is 0).

12.4 Building ACE

Step 1:

Create an ACE project makefile.

You will need a makefile to make an ACE project. The ACE project will contain a
makefile that will build ACE. Here is a typical ACE project makefile:

ace:
prjCreate -domtype ace -prj my-acedir -build $(CPU)gnu.cert -n my-ace
prj projBuildTagValueSet -prj my-acedir COREOS_DIR my-kerneldir/
$ (CPU)gnu.cert
prj projBuildTagValueSet -prj my-acedir COREOS_NAME coreOS.sm
xmlgen --1dScript --arch ppc -o my-acedir/my-ace.lds my-ace.xml
prj domComponentAdd -prj my-acedir INCLUDE_WDB_COMM_SERIAL
prj domParameterValueSet -prj my-acedir WDB_TTY_CHANNEL 0

82

Step 2:

Step 3:

Step 4:

12 ACE
12.4 Building ACE

Open the VxWorks 653 Development Shell.

The VxWorks 653 build tools require a specific build environment which is
provided by the VxWorks 653 Development Shell. To open the shell, from your
program list, select:

Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell

Run the ACE project makefile.
To create the ACE project, run the ace project makefile:

make

Build ACE.

To build ACE, run the makefile created by the ACE project, specifying the CPU to
build for:

make -C my-acedir CPU=PPC604

83

VxWorks 653
Configuration and Build Guide, 2.2

84

13

Platforms

13.1 Understanding Platforms 85
13.2 Planning a Platform 86

13.3 Building a Platform 87

13.4 Packaging a Platform 87

13.1 Understanding Platforms

A platform is the basis for developing an ARINC 653 module. Designing the
platform is the responsibility of the platform provider. A platform may be
designed to be generic, to support many different systems, or to meet the needs of
one specific module.

A platform includes the following;:

= A core OS. A platform may include more than one version of the core OS. It
will usually include a full core OS with debugging information (debug) and a
certifiable subset of the core OS (cert). It may also include routines developed
by the platform provider, such as drivers or health monitor event and
notification handlers. The debug version may include development tools such
as the target agent and the target shell. For more information on the core OS,
see 6. Core OS.

85

VxWorks 653
Configuration and Build Guide, 2.2

* ACE, the agent for the certified environment. ACE is optional and is supported
only with a cert core OS. For information on ACE, see 12. ACE.

* One or more partition OSs based either on vThreads or COIL. A partition OS
may also contain common code that is needed by all applications that use a
particular partition OS. For more information on partition OSs, see 8. Partition
OSs.

= Zero or more shared libraries containing common code that can be used by
more than one partition. For more information on shared libraries, see
9. Shared Libraries.

= Zero or more user configuration records. For information on user
configuration records see 6. Core OS.

= Zero or more loadable shared data regions, and/or the configuration of zero
or more non-loadable shared data regions. For more information on shared
data regions, see 10. Shared Data Regions.

= Configuration of zero or more shared I/O regions. For information on shared
1/0 regions, see 11. Shared 1/O Regions.

A platform is the foundation on which a module is built. For information on
modules, see 2. Understanding VxWorks 653 and 19. Modules.

The platform is the responsibility of the platform provider. For information on
development roles, see 3. Configuration System.

13.2 Planning a Platform
In planning a platform you may need to consider the following issues:

Which partition operating systems will be provided?

VxWorks 653 allows for multiple partition OSs to be used in a single module.
Partition OS choices include different combinations of vThreads partition OS with
different components (such as certified and debug versions) as well as
user-defined partition OSs based on the COIL library.

For information on components that can be added to a partition OS, see the
VxWorks 653 Configuration and Build Reference.

86

13 Platforms
13.3 Building a Platform

For more information on COIL, see the VxWorks 653 Programmer’s Guide.

Which shared libraries will be provided?

In order to reduce memory requirements, commonly used code can be placed in a
shared library. If you provide shared libraries, you must also provide linkage
information so that applications can link to the shared code. Linkage information
will be generated from the Shared_Library_API document that you will write as
part of configuring your shared library.

For information on components that can be included in a shared library, see the
VxWorks 653 Configuration and Build Reference.

13.3 Building a Platform

Building a platform consists of building each of the components in your platform.
For information on building each of the components, see the appropriate topics.

13.4 Packaging a Platform

Once your platform is complete it should be packaged for delivery to the system
integrator and application developers. To package your platform, choose the
appropriate packaging method (.zip file, tar ball, install package, etc.) and include
the following:

» core OS system module (.sm) file (including different versions of the core OS,
if you are supplying separate debug and cert versions of the core OS)

» CoreOSDescription file

» ACE system module (.sm) file (including different versions of ACE if you are
providing both network and serial versions)

» ACE configuration file
* RAM and ROM payload boot loader code files:

87

VxWorks 653
Configuration and Build Guide, 2.2

88

* payloadObjs_ram.o

* payloadObjs_rom.o

partition OS system module (.sm) files for each partition OS

shared library system module (.sm) files for each shared library

shared library stubs (-stubs.o) files for each partition OS and shared library

SharedLibraryDescription (.xml) documents for each partition OS and shared
library (the Shared_Library_Interface documents are not needed for build
purposes, but may be useful to the application developer as a means of
discovering the interface to the shared libraries)

data region system module (.sm) files
SharedDataDescription documents
user configuration record .reloc files

any documentation of your core OS or shared libraries that will be needed by
the system integrator or the application developer

14

Applications

14.1 Understanding Applications 89
14.2 Planning Applications 90

14.3 Configuring Applications 92
14.4 Building an Application 97
14.5 Packaging an Application 98

14.1 Understanding Applications

An application is a process or set of processes that runs inside a partition. An
application may be developed specifically for a particular module, or it may be a
generic application designed to run on any platform which supports an API that is
supported in VxWorks 653, such as APEX, POSIX, or vThreads. For information on
partitions, see 15. Partitions. For information on programming applications, see the
VxWorks 653 Programmers Guide.

An application runs in a protected environment and is not directly aware of other
applications running in the module, though it may be able to communicate with
other modules using ARINC ports or shared data regions. For more information
on the application’s view of its environment, see 5. Memory. For information on
ARINC ports, see 16. Ports and Channels and the VxWorks 653 Programmer’s Guide.

89

VxWorks 653
Configuration and Build Guide, 2.2

You can write your application using VxWorks 653 or you may bring in an
externally written application that was written to run on an API provided by the
partition OS. You can then bring it into a VxWorks 653 module by building it as a
VxWorks 653 application. Applications intended for certified systems are
commonly written to the APEX APIL

Configuring an application to run in a VxWorks 653 module means providing
information about the application that is required to integrate the application into
the module. This includes memory requirements, APEX port usage, health
monitoring requirements, scheduling requirements, library / API dependencies,
and shared resource requirements.

The health of applications is monitored by the health monitor. For information on
the health monitor, see 18. Health Monitor.

The execution of applications is controlled by schedules. For information on
schedules, see 17. Schedules.

Applications are the responsibility of the Application developer. For information
on development roles, see 3. Configuration System.

14.2 Planning Applications

When planning the configuration of an application, you must consider the
resources available in the system and any constraints imposed by the system
configuration. The issues you need to consider include the following:

How does the module configuration affect my application?

If you are creating a generic application, you will only need to consider the
constraints of the partition OS API for which your application is written. You will
need to document the memory requirements, time requirements, library usage,
port usage, and any access to shared resources required by your application so that
the system integrator who builds your application into a module will be able to
configure the module correctly to receive it.

If you are creating an application for a specific module, you will need to determine
if there are any restrictions imposed on your application by the memory
requirements, time requirements, library availability, port usage, and available
shared resources in the proposed module. The system integrator may have

90

14 Applications
14.2 Planning Applications

provided this information in the form of a Module configuration document along
with configuration documents for other parts of the module. For details on the
meaning of the various settings in this file, see the VxWorks 653 Configuration and
Build Reference and 19. Modules.

Does my application require binary components?

If you want to add Wind River-supplied binary components to your application
(for instance, because those components are used by this application alone, or
because they are not suitable for inclusion in a shared library), you should add
these components to the application’s build. See 4. Build System for details.

What if my application is written in C++?

VxWorks 653 supports applications written in C++. However, the C++ support
components must be added separately to each application, by adding the C++
components to the application’s build. Applications cannot access the C++ support
components in a shared library.

Will my application need to use ARINC ports?

Applications can use ARINC ports to communicate with other applications in the
module or with the outside world. In the application configuration, you must
configure the ports that your application needs to send or receive data.
Configuring the channels that connect ports to one another is the job of the system
integrator.

You must make sure that your source and destination ports are correctly
configured to communicate with the respective destination and source ports in
their home module and in other modules.

Does my application require a process health monitor?

VxWorks 653 provides a comprehensive health monitoring system that routes
messages and events to the handlers at the appropriate level. For events and
messages that you want to handle at the application level, you should provide
your own health monitor routine and register that routine with the VxWorks 653
health monitor system as the process health monitor for your application. For more
information on health monitoring, see 18. Health Monitor.

Does my application involve periodic processes?

VxWorks 653 applications share time with other applications on a schedule
determined by the system integrator. An application cannot run except in its
designated time slot, and cannot exceed its time allotment. If your application

91

VxWorks 653
Configuration and Build Guide, 2.2

involves a periodic process, that is, one that must run on a regular schedule in
real-world time, the system integrator will need to make sure that the application
is always in its scheduled window when the periodic process is due to run, and
that enough time remains in the application’s time allotment for the periodic
process to complete. You must inform the system integrator of the period and
duration of any periodic processes in your application. For more information on
schedules and periodic processes, see 17. Schedules.

Does my application depend on health monitor notifications?

The system integrator is responsible for configuring partitions to allow health
monitor notifications to be handled on their behalf. The system integrator needs to
know if application developers have made use of, or relied upon, the existence and
operation of notification handlers in the core OS. For information on health
monitoring, see 18. Health Monitor.

14.3 Configuring Applications

Figure 14-1 shows the process of configuring and building an application.

The inputs and outputs of the application configuration and build process are as
follows:

Outputs of the Application Build Process

The outputs of the application build process are:

Application System Module File

The application system module (.sm) file is the application binary that can be
included in a system image. The following is an example of a rule that builds an
application system module file:

my-app.sm: vxMain.o my-app.o pos-stubs.o my-app.lds
$(LD) $(LDFLAGS) -T my-app.lds -o $@ $(filter %.0,$")

Inputs to the Application Build Process

The following are the inputs to the application build process:

92

14 Applications
14.3 Configuring Applications

Figure 14-1 Application Configuration and Build

my-app.c . . my-app.o
(source files) i ComglEr '/ (object files)
VxMain.c > Compiler ' VxMain.o —

Component .o
files (C++)

ApplicationDescription XMLGen 4»// (Irirrli-earps?élr?;t) /;

Application
virtual address

4

A

pos-stubs.o > Linker —7/ my-app.sm /

sl-stubs.o
KEY
XML document Tool / Output file /
Source and Intermediate Supplied by
object files / file 4 VxWorks 653

ApplicationDescription Document

The ApplicationDescription document is an XML document conforming to the
ApplicationDescription document type defined in the VxWorks 653 Configuration
Schema.

This document contains configuration information for the application in the
following areas:

= memory requirements of the application

93

VxWorks 653
Configuration and Build Guide, 2.2

»= ARINC port configuration of the application

For examples of an ApplicationDescription document, see 22.6 Application, p.191.
For detailed information on creating or modifying the ApplicationDescription
document, see the VxWorks 653 Configuration and Build Reference.

Application Source or Object Files

You may compile your application to an object (.0) file as a separate step.
Alternatively, you can use your application source code and have it compiled as
part of the build process. Your application files must be listed as dependencies on
you application in the application makefile. The dependencies must be stated as .o
files, whether or not you are providing .c or .o files. If you supply .c files, they will
be compiled to .o files by the rules in the application makefile. You will also need
to specify the path to your .c files with a vpath statement in the application
makefile.

By default, the application initialization routine (contained in vxMain.o) assumes
that the application’s init routine is called usrApplInit(). If your application has a
different init routine, you must tell vxMain.o about it by redefining the
preprocessor macro USER_APPL_INIT:

CFLAGS_EXTRA = "-DUSER_APPL_INIT=myInitFunc()"

If you have provided a custom init routine that requires parameters to be passed
to it when the application is started, you can specify them here:

CFLAGS_EXTRA = "-DUSER_APPL_INIT=myInitFunc(l, 0, FALSE)"

Application Linker Script

Because the memory configuration of an application is specified by a black box
defined in the ApplicationDescription document, a custom linker script is required
to align the sections of the application ELF file on the correct boundaries. The
linker script can be generated from the ApplicationDescription document using
XMLGen. A rule to build a linker script looks like this:
my-app.lds: my-app.xml

xmlgen --1dScript --arch $(TOOLARCH) --address $(PARTADDR) -o $@ $<
The linker script must also be listed as a dependency for the application in the
application makefile.

Partition Virtual Address

All applications in a module must be linked using the same partition virtual
address. This value must match the value specified in CoreOSDescription/
KernelConfiguration/@partitionVirtual Address in the CoreOSDescription

94

14 Applications
14.3 Configuring Applications

document. This value may have been communicated to you by the platform
provider or the system integrator. To supply the partition virtual address you
must supply a value for the $(PARTADDR) variable (as used in the rule above that
generates the application linker script). You can supply this value in the makefile
or on the command line when you run make.

vxMain.o

vxMain.o provides initialization for the libraries used by the application, calls any
C++ constructors, and calls the application’s init routine. VxWorks 653 includes a
suitable vxMain.c file, or you can provide your own. vxMain.o must be the first
item in the dependency list for the application in the application makefile.

You must specify the location of the source files for vxMain.c using a vpath
statement in the application makefile:

vpath %.c $(WIND_BASE)/target/vThreads/config/comps/src

Partition OS Stubs File

In order for your application to access the partition OS that it runs on, you must
provide the stubs files for the partition OS. Note that in order for the application to
access the partition OS it is also necessary that the application’s partition be
configured to permit access to the partition OS in the PartitionDescription
document.

Partition OS stubs files must be listed as dependencies for the application in the
application makefile:

my-app.sm: vxMain.o my-app.o my-app.lds pos-stubs.o

Shared Library Stubs File

In order for your application to access the shared libraries that it uses you must
provide the stubs files for all the libraries that the application accesses. Note that
in order for the application to access these libraries in a running system it is also
necessary that the application’s partition be configured to permit access to those
libraries in the PartitionDescriptionDocument.

Shared library stubs files must be listed as dependencies for the application in the
application makefile:

my-app.sm: vxMain.o my-app.o my-app.lds sl-stubs.o

95

VxWorks 653
Configuration and Build Guide, 2.2

C++ Components

If your application is written in C++ and you make C++ library calls, you must add
one of the C++ support components to the application build by specifying it as a
dependency in the application build rule. The available components are:

* vThreadsCplusComponent.o: Provides basic C++ support and is suitable for
inclusion in cert applications.

* vThreadsCplusLibraryComponent.o: Provides extended C++ support, but
cannot be included in cert applications.

This example adds basic C++ support for the application:

my-app.sm: vxMain.o my-app.o my-app.lds pos-stubs.o vThreadsCplusComponent.o
$(LD) S$(LDFLAGS) -T partl.lds -o $@ $(filter %.o0 %.pm,S$")

%.0: $.Cpp
$(CC) S$(C++FLAGS) -c -0 $S@ $<

If your application contains C++ global constructors, you must replace the lines
above with these lines:

my-app.pm: my-app.o ssl-stubs.o vThreadsCplusComponent.o
$(LD) $(LDFLAGS_PARTIAL) -o s@ $”

my-app.sm: vxMain.o my-app.pm my-app.lds my-app-ctors.o
$(LD) $(LDFLAGS) -T my-app.lds -o $@ S$(filter %.0 %.pm,S$")

%.0: $.Cpp
$(CC) S (C++FLAGS) -c -0 $S@ $<

%-ctors.c: %.pm
$(NM) $< | $(MUNCH) $(MUNCHFLAGS) > $@

These lines break the build into two separate stages. C++ applications with global
objects require the OS to call the object constructors before starting the
application.This is accomplished with a three-step linking process:

1. The C++ application is linked into a .pm file (pm stands for partially-linked
module).

2. The $(MUNCH) tool generates the list of global constructors from the .pm file.

3. The list of constructors and the .pm file are linked into the system module
(.sm) file.

%.0: %.Ccpp
$(CC) $(C++FLAGS) -c -0 $@ $<

This rule provides a generic rule for building C++ files.

%-ctors.c: %.pm
$(NM) $< | $(MUNCH) $(MUNCHFLAGS) > $@

96

14 Applications
14.4 Building an Application

This rule provides a generic rule for building global constructors files from .pm
files.

14.4 Building an Application
To build the application, use the following procedure:

Step 1: Create an application makefile.
Create a makefile for your application. A typical makefile is shown below:
all: my-app.sm
include $(WIND_BASE)/target/vThreads/config/make/Makefile.vars
POS_DIR = ../../pos/demo

vpath %.c $ (WIND_BASE) /target/vThreads/config/comps/src
vpath %.o $ (POS_DIR)

my-app.sm: vxMain.o my-app.o pos-stubs.o my-app.lds
$(LD) S$(LDFLAGS) -T my-app.lds -o $@ s$(filter %.0,$")

%.0: %.C
$(CC) S(CFLAGS) -c -o $@ $<

my-app.lds: my-app.xml
xmlgen --1dScript --arch $(TOOLARCH) --address $(PARTADDR) -o $@ $<

A typical makefile for a C++ application is shown below:

all: my-app.sm

include $(WIND_BASE) /target/vThreads/config/make/Makefile.vars
POS_DIR = ../../pos/demo

vpath %.c S (WIND_BASE) /target/vThreads/config/comps/src
vpath %.o $ (POS_DIR)

my-app.sm: vxMain.o my-app.pm my-app-ctors.o my-app.lds
$(LD) $(LDFLAGS) -T my-app.lds -o $@ S$(filter %.0 %.pm,S$")

my-app.pm: my-app.o ssl-stubs.o
$(LD) $(LDFLAGS_PARTIAL) -o s@ $”°

%.0: %.C
$(CC) S$S(CFLAGS) -c -o $@ $<

97

VxWorks 653
Configuration and Build Guide, 2.2

%.0: $.Cpp
$(CC) $(C++FLAGS) -c -o $@ $<

%-ctors.c: %.pm
$(NM) $< | $(MUNCH) $(MUNCHFLAGS) > $@

my-app.lds: my-app.xml
xmlgen --1dScript --arch $(TOOLARCH) --address $(PARTADDR) -o $@ $<

Step 2: Open the VxWorks 653 Development Shell.

The VxWorks 653 build tools require a specific build environment which is
provided by the VxWorks 653 Development Shell. To open the shell, from your
program list, select:

Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell

Step 3: Build the application.
To build the application, run make, specifying the CPU to build for:

make all CPU=PPC604

14.5 Packaging an Application

Once your application is complete you should document it and package it for
delivery to the system integrator.

Step 1: Document your application.

There are several pieces of information that the system integrator will need in
order to integrate your application into a module. These include:

» The partition OS or API that the application runs on.

» The version of the partition OS API and stubs file that the application was
linked against.

» The memory requirements of the application. The application’s black box can
be read from the ApplicationDescription document, but you must also specify
the required stack and heap space to run the application.

» Alist of the shared libraries that the application requires.

98

Step 2:

14 Applications
14.5 Packaging an Application

= Alist of any shared data regions or shared I/O regions that the application
requires.

» The time requirements of the application, including any periodic processes it
creates.

» Which health monitor event types the application expects to handle for itself.
» Whether the application depends on health monitor notifications.

* Source and destination ports used by the application.

Package the application.

To package your application, choose an appropriate packaging method (.zip file,
tar ball, install package, and so on) and include the following:

» application system module file (.sm) file
» ApplicationDescription file

» any documentation for your application that the system integrator may need

99

VxWorks 653
Configuration and Build Guide, 2.2

100

15

Partitions

15.1 Understanding Partitions 101

15.2 Planning Partitions 102

15.3 Configuring Partitions 104

15.4 Building Partitions 104

15.5 Configuring a Module for Online-Loaded Partitions 105
15.6 Building an Online-Loaded Partition 106

15.1 Understanding Partitions

A partition is a container for an application. The partition provides the partition
operating system on which the application runs. (The partition OS is contained in
a system shared library which the partition references.) The partition also regulates
the application’s access to other shared libraries and shared data and I/O regions.
The partition supplies the stack and heap space required to run the application and
any shared library code that the application uses. For information on applications,
see 14. Applications.

Pseudo-partitions represent the outside world for purposes of communication via
ARINC ports. Partitions can also communicate with the outside world using
partition direct-access ports. For information on ports, see 16. Ports and Channels.

101

VxWorks 653
Configuration and Build Guide, 2.2

Partitions are the responsibility of the system integrator. For information on
development roles, see 3. Configuration System.

15.2 Planning Partitions
In planning a partition, you will need to consider the following issues:

Which partition operating system will be used?

Each partition must reference exactly one system shared library that contains the
partition OS for the partition. You must determine from the application developer
what partition OS or API (such as APEX) the application requires, and ensure that
the partition OS that you provide includes all the services required by the
application. The partition OS must export the correct API set and version required
by the application. (Essentially this means that the partition OS must include an
entry-point table that corresponds to the partition OS stubs file included in the
application.)

Which shared libraries does the application need?

The partition must reference each shared library that is required by the application
it contains. The system integrator must determine from each application developer
which libraries the application needs to access. Since each shared library that a
partition references requires additional memory space in the partition, a partition
should not reference a shared library unless it is required by the application.

How much memory does the partition require?

Each partition occupies a separate section of physical memory. You must specify
the amount of memory required by the partition. The partition will require
sufficient memory for the application and for the read /write sections of each of the
shared libraries which it references. These values will be found in the appropriate
application and library configuration files supplied by the application developer
and the platform provider respectively. In addition, the application will require
stack and heap space in which to execute. These space requirements are not
specified in the configuration file for the application. You must get this information
from the application developer.

102

15 Partitions
15.2 Planning Partitions

Does the application require access to shared data regions?

The application in the partition may need access to one or more shared data
regions. The system integrator must determine from the application developer
which shared data regions the application needs to access.

Does the application require access to a partition direct-access port?

Partition direct-access ports allow an application to communicate with the outside
world using a port driver in the partition operating system. For information on
partition direct-access ports, see 16. Ports and Channels.

How will the health of the application be monitored?

Each partition must specify the partition health monitor table to be used for health
monitor events that are to be handled at the partition level.

The application in a partition may have an interest in the health of other partitions.
While a partition cannot directly receive information on the health of other
partitions, the health monitor does allow a notification handler in the core OS to
receive and act on notifications of events in other partitions on behalf of a
potentially affected partition. You need to determine if the application needs
notifications to be processed on its behalf. For more information on health
monitoring, see 18. Health Monitor.

Will the partition be online loaded?

The code of the online-loaded partition is made available to the core OS after
system start. In some cases, this may be after all the regular partitions are already
running. The partition code can be provided on a removable medium such as a PC
card. To support online-loaded partitions, the platform must provide a partition
loader to load the online-loaded partition code from the removable device and
install it in the location in RAM that was defined when configuring the partition.
The implementation of this partition loader is the responsibility of the platform
provider and depends on the format used to store the partition code on the
removable device. An online-loaded partition is configured the same way as a
normal partition. However, the configuration of the payload is different for an
online-loaded partition. For information on configuring and building
online-loaded partitions, see 21. System Images.

Are pseudo-partitions required?

A pseudo-partition is a virtual representation, in the current module, of a data
source in the outside world. Pseudo-partitions are used to map communication
channels between partitions in external data sources.

103

VxWorks 653
Configuration and Build Guide, 2.2

15.3 Configuring Partitions

To configure a partition, write a PartitionDescription document for the partition.

The PartitionDescription document is an XML document conforming to the
PartitionDescription document type defined in the VxWorks 653 Configuration
Schema. The PartitionDescription document includes configuration information
on the following items:

» identity of the application that is to reside in the partition

* memory required for the partition

» partition direct-access ports required by the partition’s application
» shared data regions that the partition’s application can access

» shared libraries that the partitions’s application can access

* anumber of settings affecting the runtime behavior of the partition

The structure and content of this file is defined in the VxWorks 653 Configuration
and Build Reference. For examples of a PartitionDescription document, see
22. Reference Process.

15.4 Building Partitions

There is no separate build for a partition. Partitions are created at boot time using
information in the configuration record, which is created from the
PartitionDescription document as part of the module build process.

The exception to this is online-loaded partitions which are built separately from
the module and loaded at runtime. For information on configuring and building
online-loaded partitions, see 21. System Images.

104

15 Partitions
15.5 Configuring a Module for Online-Loaded Partitions

15.5 Configuring a Module for Online-Loaded Partitions

To configure your module for an online-loaded partition, your core OS must be
configured to support online-loaded partitions. For information on configuring the
core OS to support online-loaded partitions, see 6. Core OS.

To configure an online-loaded partition, you must designate the partition payload
as an online-loaded partition, and you must specify the memory location where
the online-loaded partition will be loaded at run time.

To configure an online-loaded partition:

1.

Open the CoreOSDescription document for your platform. Locate the name of
the memory pool set aside for the online-loaded partition. It is located in a
CoreOSDescription/HardwareConfiguration/PhysicalMemory/
kernelRegion/@PoolName attribute. (There may be several kernelRegions
defined, so be sure that you identify the correct one. If in doubt, consult your
platform provider.)

Generate the configRecord.xml file. This step is required so that the tools can
determine the correct memory location for the kernel region pool. If you
change your platform memory configuration after configuring the
online-loaded partition, you will need to repeat the configuration steps to
determine the new address of the kernel region pool. For information on
generating configRecord.xml, see 20. Configuration Record.

Open the configRecord.xml file and search for an Mmulnformation element
with a Name attribute that matches the kernel region pool name with the word
“Pool” appended to it.

Locate the VirtualAddress attribute of the Mmulnformation element.

Create a PartitionPayload element for the partition (for more information, see
21.4 Configuring a RAM Payload System Image, p.147). Set the Base_Address
attribute to the virtual address from the previous step and set the Online
attribute to true:
<PartitionPayload

NameRef="my-application-partition"

Base_Address="poolVirtualBaseAddress"
Online="true"/>

105

VxWorks 653

Configuration and Build Guide, 2.2

15.6 Building an Online-Loaded Partition

To build an online-loaded partition:

1.

For

Configure the online-loaded partition as described in 15.5 Configuring a Module
for Online-Loaded Partitions, p.105.

Build a RAM or ROM payload system as described in 21.6 Building a System
Image, p.152.

Write and build an online-partition loader to load the partition code from a
removable device to the defined RAM address. (For example code, see the
VxWorks 653 Programmer’s Guide.)

information on loading an online-loaded partition, see the Wind River

Workbench User’s Guide, VxWorks 653 Version.

106

16

Ports and Channels

16.1 Understanding Ports and Channels 107
16.2 Planning Ports and Channels 111

16.3 Configuring Ports and Channels 111
16.4 Building Ports and Channels 112

16.1 Understanding Ports and Channels

Applications can communicate with each other and with the outside world using
ARINC ports. In order for port communications to work, you must configure
connections between the ports at the module level. Connections consist of channels
that connect one sending port to one or more receiving ports. Channels can also be
configured for communication with data sources in the outside world generally.

VxWorks 653 supports four types of ports which are illustrated in Figure 16-1.
ARINC Ports

ARINC ports connect one application to another using ARINC port services in the
core OS. ARINC ports support one to one and one to many communication. For
information on programming applications to use ARINC ports, see the

VxWorks 653 Programmer’s Guide.

107

VxWorks 653
Configuration and Build Guide, 2.2

Figure 16-1 Ports Overview

Module

Partition 1 Partition 2 Pseudo Partition

Application 1 Application 2

Direct
Access
Port

User
Mode
Port
Driver

| Partition OS Partition OS

Core OS

Sup.
Mode
Port
Driver

Mode
Port
Driver

I
I
I
I
I
v v v

Outside world

APEX Port connection

108

16 Ports and Channels
16.1 Understanding Ports and Channels

Pseudo-Ports

An ARINC pseudo-port looks like a local ARINC port to other ARINC ports
within a module, but it actually communicates, via a custom driver, with data
sources outside the module. Pseudo-ports represent data sources in the outside
world. A pseudo-port can be used for one-to-one or one-to-many communication.
Because they communicate outside the module, they require a user supplied port
driver to handle communication with the external data source. For information on
port drivers, see the VxWorks 653 Programmer’s Guide.

Direct-Access Ports

A direct-access port is a type of pseudo-port that does not use the software
buffering of the ARINC port services, but communicates directly with the
communications hardware, relying on the buffering capabilities of the hardware
itself. A direct-access port can only be used for one-to-one communication.

Partition Direct-Access Ports

Pseudo-ports and direct-access ports use port drivers that reside in the core OS and
operate in supervisor mode. Partition direct-access ports allow you to place the
driver in the partition OS where it will operate in user mode. Note that regular
pseudo-ports are not permitted in a partition. Only direct-access ports can be used
in a partition. A partition direct-access port can only connect to a port in the
application that resides in the partition. Partition direct-access ports cannot be
used for communication between two partitions.

Pseudo-Partitions

Pseudo-ports and direct-access ports reside in the core OS, but for configuration
purposes they are represented as belonging to a pseudo-partition.

Configuring Port Types

In general, applications do not know what kind of port is on the other end of a
channel. Ports in an application are always configured as local ports. The type of
port communication that occurs is determined by the type of port at the other end
of the channel. If the channel connects a local port in an application to a local port
in another application, a regular ARINC port communication occurs. If the channel
connects a local port in an application to a direct-access port in its partition, for
instance, partition direct-access port communications occur.

109

Table 16-1

VxWorks 653
Configuration and Build Guide, 2.2

WARNING: While applications are theoretically unaware of what is on the other
end of a channel and regard all communication as occurring over a local ARINC
port, timing issues with different types of ports may affect how the application
reads information from the local port. For more information, see the VxWorks 653
Programmer’s Guide.

Null Ports

During development, it may be useful to configure a port as a null port, which
simply means that the port creates no data and consumes all data it receives.

Ports in applications, partitions, and pseudo-partitions, can only be of types
appropriate to their role in port communication, as shown in Table 16-1.

Allowed Port Types by Location

Location Allowed Port Types
Application local
null
Partition direct-access
null
Pseudo-partition pseudo
direct-access
null

Queuing vs. Sampling Ports

A port may be either a queuing port or a sampling port. A queueing port is a port
on which messages are queued and can be read one by one. A sampling port has
only one message at a time. To deal with the situation is which its message queue
is full, a queuing port may use one of two protocols. In the sender block protocol,
the source port cannot send a message until all the destination ports have room in
their queues to receive the message. In the receiver discard protocol, the message
is always sent and any destination port that does not have room in its queue
discards the message.

Application ports are configured as part of the application configuration. For
information on applications, see 14. Applications.

Partition ports are configured as part of the partition configuration. For
information on partitions, see 15. Partitions.

110

16 Ports and Channels
16.2 Planning Ports and Channels

Pseudo-ports are configured in the pseudo-partition configuration. For
information on pseudo-partitions, see 15. Partitions.

For information on development rules, see 3. Configuration System.

16.2 Planning Ports and Channels

Planning ports and connections requires collaboration between the platform
provider, application developer, and system integrator.

The platform provider must provide a core OS and partition OS that includes the
appropriate port drivers.

Application developers must communicate the ARINC ports used by their
applications to the system integrator so that the system integrator can configure
connections to those ports.

The system integrator must develop and communicate a communications plan for
the module as a whole so that the platform provider and the various application
developers can configure ports that will take advantage of the communications
channels provided by the module. The system integrator must ensure that ports at
the ends of channels are compatible. For the rules for matching ports, see the
VxWorks 653 Configuration and Build Reference.

16.3 Configuring Ports and Channels

The configuration of ports and connections is distributed as follows:

Application ports are configured in the ApplicationDescription document in the
element ApplicationDescription/Ports and are the responsibility of the
application developer.

Partition ports are configured in the PartitionDescription document in the element
PartitionDescription/Ports and are the responsibility of the system integrator.

Pseudo-partition ports are configured in a PseudoPartitionDescription document
and are the responsibility of the system integrator.

111

VxWorks 653
Configuration and Build Guide, 2.2

Channels to connect the ports are configured in the Module/Connections element
of the Module configuration document and are the responsibility of the system
integrator.

16.4 Building Ports and Channels

There is no separate build process for ports and channels. Ports and channels are
instantiated at boot time based on information in the configuration record. The
ports and channels information in the configuration record is created from the
ports and channels information in the Module, PartitionDescription,
PseudoPartitionDescription, and ApplicationDescription documents by the
configRecord build. For more information, see 20. Configuration Record and

21. System Images.

112

17

Schedules

17.1 Understanding Schedules 113
17.2 Planning Schedules 114

17.3 Configuring Schedules 116
17.4 Building Schedules 116

17.1 Understanding Schedules

In VxWorks 653, applications are run on a time-deterministic schedule.
Applications cannot run outside of their scheduled time. Each schedule consists of
a set of partition windows, each of which is a time slice in which a specified
partition can run. You can schedule a partition more than once in a schedule, and
you do not have to schedule every partition in every schedule. The schedule with
the ID of 0 is run at startup.

Spare Time

In addition to scheduling partitions, you can also add spare time to a schedule by
using “SPARE” as the name of the partition to run. Spare time is needed if your
platform includes device drivers or kernel tasks that run in the core OS and that
require time to run outside of a partition time slice.

113

VxWorks 653
Configuration and Build Guide, 2.2

Release Points

Each partition window can be designated as a release point. A release point is a
means for synchronizing periodic processes with a partition’s schedule. A periodic
process is a process within a partition that is scheduled in wall clock time. That is,
the schedule for the periodic process is counted whether the partition is running in
its scheduled partition window or not. It is important that the partition be in its
scheduled window when the periodic process is scheduled to run, and that there
is enough time remaining in the partition window for the periodic process to run
to completion. To help accomplish this synchronization, when a partition spawns
a periodic process, that process is not started until the next release point. A release
point occurs at the start of each partition window that is designated a release point.

Schedules determine the time allotments for applications. For information on
applications, see 14. Applications.

Schedules are the responsibility of the system integrator. For information on
development roles, see 3. Configuration System.

17.2 Planning Schedules

It is important that you obtain accurate information on the scheduling
requirements of the application from the application developer so that the
application can be scheduled appropriately. Required information includes the
amount of time needed for the application to execute in each partition window,
and the period and duration of any periodic processes created by the application.
It may also include time for processes that run in the core OS using the partition’s
time slice. For example, a health monitor notification handler is run in the core OS
on behalf of (and in the time slice of) a partition.

Partitions run as tasks in the core OS. It is important to understand the impact that
activity in the core OS can have on your schedules. The following summarizes the
major categories of core OS activity and how they can affect the timing of
partitions.

» The system is booting and the core OS has not yet started the partitions. This
has no impact on partition schedules, since they are not yet running.

» The core OS is servicing a request from a partition (that is, the partition made
a system call). This is part of the normal time calculation for an application and

114

17 Schedules
17.2 Planning Schedules

should be accounted for in the application developer’s duration calculation.
This includes all the operations that the core OS performs in handling
communication between the partitions. For instance, if partition A sends data
to a port, that operation is handled by the core OS in partition A’s time slice. If
partition B reads data from a port, that operation is handled by the core OS in
partition B’s time slice.

The core OS is running a partition-level health monitor event handler for a
health monitor event that was injected in a partition. The handling the event
will not impact the scheduling of other partitions. If there is not sufficient time
in the current partition window to complete the event handler, the event
handler process will be suspended until the next partition window for the
affected partition. It is also important to remember that a partition may have
more than one health monitor event queued for handling when its time slice
begins.

The core OS is running a module-level health monitor event handler for a
health monitor event that was injected in a partition. Health monitor event
handlers running at the module level are not interrupted by the scheduler.

The core OS is running a health monitor notification handler on behalf of a
partition. The handler is running in the time slice of the notified partition and
can potentially cause it to miss its deadline. If you configure a partition to
accept notifications, it is important to calculate the possible impact on your
schedule. You should also remember that for any event type for which you
accept notification, you will also get those notifications for core OS events as
well as events in your trusted partitions. It is also important to remember that
a partition may have more than one health monitor notification queued for
handling on its behalf when its time slice begins.

The core OS is running an event handler for an error in the health monitor
itself. Such errors are handled at a very high priority level, meaning they can
disrupt partition schedules. Such events should only occur under exceptional
circumstances.

The core OS is running a user-supplied driver or other user-supplied core OS
code. If this code has a lower priority than the partitions, then it will only run
in a SPARE partition window so it will not affect the scheduling of partitions.
However, since the code is running in the core OS, it has the privileges of a core
OS process, including the ability to change schedules. If the code is running at
a higher priority than partitions, it will preempt the partitions, meaning the
partitions will not run as scheduled. There is nothing you can do in the
schedule configuration to prevent this. In a safety-critical system, is important

115

VxWorks 653
Configuration and Build Guide, 2.2

to make sure that there is no code introduced at the platform level that can
interfere with or preempt schedules.

» The core OSis servicing interrupts. Time to service interrupts is taken from the
currently executing process, which will usually be a partition. However
interrupts are processed very quickly—they are translated into
pseudo-interrupts and queued for the appropriate partitions, which will then
process them in their own partition window.

= The core OS is running any other tasks that have a higher priority than the
partitions. This includes tasks like the target agent or the target shell. These
will preempt a partition when they become ready to run. These types of tasks
should generally be removed from a certified system. When the partition
scheduler is preempted by a higher priority task in the core OS, the scheduler
continues to keep track of the passage of time and will resume the schedule at
the correct point in time when the higher priority task ends. In other words, it
will not suspend the schedule and allow the preempted partition to finish. The
schedule keeps running and execution of scheduled partitions resumes
wherever they fall in the schedule. If any partition is unable to start at its
scheduled time, an HME_PARTITION_OVERFLOW health monitor event is
injected.

17.3 Configuring Schedules
Schedules are configured by completing the Schedules element of the Module
configuration document. For details of the Schedules element, see the VxWorks 653

Configuration and Build Reference. For an example of a Module document with
schedule information, Building the C++ Application, p.193.

17.4 Building Schedules

There is no separate build process for schedules. Schedules are instantiated at boot
time based on information in the configuration record. The schedule information

116

17 Schedules
17.4 Building Schedules

in the configuration record is created from the schedule information in the Module
document by the configRecord build.

117

VxWorks 653
Configuration and Build Guide, 2.2

118

18

Health Monitor

18.1 Understanding the Health Monitor 119
18.2 Planning Health Monitoring 123
18.3 Configuring the Health Monitor 126

18.1 Understanding the Health Monitor

The health monitor provides a central dispatch system for events that represent
either alarms or messages. All events raised in the system are handled by the
health monitor. The health monitor then hands off the events to event handling
routines either in the core OS or in the partitions.

There are four components of the health monitoring system: the system, module,
partition, and process health monitors.
System Health Monitor

The system health monitor is the dispatcher for the health monitoring system. For
each event type, the system health monitor determines if that event type will be
handled by the module health monitor, the partition health monitor, the process
health monitor, or not handled at all.

119

VxWorks 653
Configuration and Build Guide, 2.2

Module Health Monitor

The module health monitor handles events dispatched to the module level by the
system health monitor and directs them to the appropriate event handlers based
on their type. There is one module health monitor for the entire module. Event
handlers invoked by the module health monitor run in the core OS context (that is,
supervisor mode). They are not subject to the ARINC scheduler and may therefore
cause delays in the execution of the schedule.

Partition Health Monitor

The partition health monitor handles events dispatched to the partition level by
the system health monitor and directs them to the appropriate event handlers
based on their type. There is one partition health monitor for each partition,
though several partition health monitors can use the same partition health monitor
configuration. Event handlers invoked by the partition health monitor execute in
the context of the partition where the event was injected (in supervisor mode), and
in the time slice of that partition.

Process Health Monitor

The process health monitor handles events dispatched to the process level by the
system health monitor. The process health monitor is not configured at the module
level. Instead, the process health monitor is provided as a routine in the application
code of the partition. During initialization, the application must register its process
health monitor routine with the system health monitor. See the VxWorks 653
Programmer’s Guide for details. If the process health monitor is not installed, events
are dispatched to the partition health monitor instead.

Event Types

Health monitor events are divided into types, following the types specified in the
ARINC 653 specification. VxWorks 653 represents event types by their ARINC 653
code names prefixed by HME_. A number of VxWorks 653 specific types are also
included. Event types are defined in hmTypes.h.

Messages

The HM_MSG event type is used to convey messages and does not normally
represent a fault. The routing of health monitor messages is hard coded and cannot
be configured. HM_MSG events that occur in a partition are handled by the
partition health monitor and those that occur at the module level are handled by
the module health monitor. While the routing of messages is hard-coded, you must
explicitly configure the handling of messages by supplying a handler for HM_MSG

120

18 Health Monitor
18.1 Understanding the Health Monitor

events at the module and partition levels. Unless you have specific needs for
handling HM_MSG events, you can map them to the hmDH_EventLog() routine
provided by hmDefaultHandlers.c. If you do not provide a handler for HM_MSG
events, the handler configured for the HME_DEFAULT event will be used. Turning
on autologging of events does not automatically log HM_MSG events.

Event Handlers

An event handler is a routine located either in the application code (in the case of
the process health monitor) or in the core OS (in the case of the partition and
module health monitors). VxWorks 653 provides a set of event handler routines in
the file hmDefaultHandlers.c which you can use if more suitable event handlers
have not been provided as part of the platform. Note that the word “default” in the
name of this file does not mean that these handlers will be used automatically if
you do not configure alternatives. These are merely basic event handlers that you
can configure your module to use if you want. The comments in
hmDefaultHandlers.c indicate which of the routines it contains are likely to be
appropriate for certain types of events, but these are guidelines only. It is up to you
to decide which event handlers are appropriate for your module in all situations.

If you do not configure an error handler for a particular type of event, the handler
configured for the HME_DEFAULT event is used. You must configure a handler for
HME_DEFAULT events. The handler supplied in hmDefaultHandlers.c for use
with HME_DEFAULT events (hmDefaultHandler()) restarts the partition (if called
at the partition level) or the module (if called at the module level).

Event Queues

To minimize the time penalty associated with running a health monitor process,
the system health monitor dispatcher (which runs at a very high priority level)
does not call the module, partition, or process health monitors directly. Instead, it
dispatches events to the queue for the appropriate health monitor, to be handled
in the appropriate time slice for the particular health monitor. Each health monitor,
therefore, has an associated event queue that must be configured appropriately.

Event Logging

The module and partition health monitors have logs where events and messages
can be recorded. The logs can then be read by applications using the health
monitoring API or by the developer using windSh commands. Event handlers can
log events by calling the appropriate API routines. This is the responsibility of the
platform provider or application developer who writes the event handler. As
system integrator, you can cause all events to be logged automatically (with the

121

VxWorks 653
Configuration and Build Guide, 2.2

exception of HM_MSG events, which must be logged explicitly) by turning on
autologging.

Eventlogs are stored in volatile memory and do not survive a system restart. If you
want logs to be kept in non-volatile memory, you (or the platform provider) must
provide handlers that log events to non-volatile memory, or that periodically
empty the logs to non-volatile memory.

Health Monitor Notification

In addition to dispatching events, the health monitor can also dispatch health
monitor notifications. A health monitor notification is a message that a health
monitor event has occurred. It can be used to handle any impact that the
occurrence of an event in one partition may have on other partitions. (For instance,
if partition A supplies data to partition B, and partition A experiences a fault and
must be restarted, partition B may need to react to the fact that its source of data
has been interrupted.)

Notifications are not sent to partitions themselves. Notifications are sent to
notification handlers in the core OS, which handle the notification on behalf of the
affected partition. Notification handlers run in the time slice of the partition on
whose behalf they run, not the partition that injected the event. (The partition that
injected the event does not receive notification of that event—it receives the event
itself.)

The core OS can also receive notification of events in particular partitions. Such
notifications are handled in the time slice of the partition in which the event was
injected.

Since notification handlers run in the core OS, they can use any of the core OS
facilities to communicate any necessary information to the affected partition (such
as communicating via a port or a pseudo-interrupt). This communication is
entirely the responsibility of the platform provider and the application developer
and is not part of the health monitor configuration.

The health monitor monitors the health of the module. For information on
modules, see 2. Understanding VxWorks 653 and 19. Modules.

Configuration of the health monitor is the responsibility of the system integrator.
For more information on development roles, see 3. Configuration System.

122

18 Health Monitor
18.2 Planning Health Monitoring

18.2 Planning Health Monitoring

When planning your health monitoring strategy, you need to consider the
following issues:

At which level will events be handled?

Since there is only a single system health monitor table for the entire system, and
therefore only one table that governs which types of events will be dispatched to
the process level, all applications in the module will have the same set of event
types dispatched to them. If the application does not provide a process health
monitor that handles a particular type of event that is dispatched to it, the event
will be dispatched to the partition health monitor. It is important, therefore, that
the system integrator communicate with the application developers to determine
the set of event types to be mapped to the process health monitor level in the
system health monitor table.

If an event cannot be handled at the level to which it would normally be
dispatched, it will be dispatched to the next highest level. Circumstances that
could cause events to be dispatched to a higher level include an application that
fails in a way that prevents the failure from being properly reported, the absence
of a process health monitor in a particular partition, a full queue at any health
monitor level, or the injection of an event from a process with a priority higher than
that of the designated health monitor. For this reason you should plan for the
possibility that, under certain circumstance, an event that is mapped to the process
level may be dispatched to the partition or module level, and an event mapped to
the partition level may be dispatched to the module level. To prepare for this
possibility, ensure that any event handlers that are configured for an event at a
lower level are also configured for that event at all higher levels or that an
appropriate default event handler is configured at all higher levels.

How will events be logged?

You can configure logging separately for the module health monitor and each
partition health monitor. When configuring logging for a module or partition
health monitor, you need to consider the following questions:

» Should all events be logged automatically, or should logging be left to each
event handler?

* How many log entries should the log hold? (The size of a log entry depends on
the size of the hm_event type, which can vary based on certain configuration
parameters. See hmTypes.h for details.)

123

VxWorks 653
Configuration and Build Guide, 2.2

= What should happen when the log is full? Once the log is full, each new entry
overwrites the oldest entry in the log. Optionally, you can configure a log
threshold that will trigger an HME_HMQ_OVERFLOW event when the log
reaches a certain size. You can then configure a handler for the
HME_HMQ_OVERFLOW event that empties the log (transferring entries to
more permanent storage, perhaps) before it reaches its maximum size and
entries are overwritten.

How will the health monitor queues be managed?

While the health monitor is a high priority task and therefore services most events
as soon as they are injected, it is possible that events might not be handled in the
same time slice in which they are injected. This can happen if the partition runs out
of time before the event is handled. It is also possible for a core OS process running
on behalf of a partition to inject events into the partition's health monitor. If these
processes run at a high priority, the health monitor may not have time to run the
event handler in the current time slice. These events would also need to be queued
to be handled in the next time slice. A queue size of ten is considered adequate in
most circumstances.

How will notification be managed?

The use of health monitor notifications is optional, and requires communication
between the platform provider, the application developer, and the system
integrator.

Notification handlers are part of the core OS and are generally created by the
platform provider and provided as part of the platform.

Application developers do not need to be directly aware of health monitor
notifications; however, if the behavior of the notification handler provided by the
platform provider is to communicate information to the application, the
application developer needs to be aware of this, and provide the appropriate
facilities to handle the communication.

The system integrator is responsible for configuring partitions to allow health
monitor notifications to be handled on their behalf. The system integrator needs to
know if application developers have made use of, or relied upon, the existence and
operation of notification handlers in the core OS. They also need to consider the
time implications of allowing notification handlers to run in a partition’s time slice,
and to ensure that notifications are appropriately filtered so that the time impact is
minimized.

Health monitor notification does not take place automatically. The person who
writes the event handler for an event must specifically create a notification by

124

18 Health Monitor
18.2 Planning Health Monitoring

calling the hmNotificationSend() routine. When configuring notification it is
necessary to determine if the event handlers supplied as part of a platform or
application are sending notifications.

Health monitor notifications occur based on the level of the event handler that
sends the notification. That is, if an event is injected in partition A, but that type of
event is routed to the module level in the system health monitor table, the event
will then be processed at the module health monitor level. Notification of that
event generated by a module-level handler will be treated as coming from the core
OS and will be sent to all partitions that accept notification of this event type,
whether or not they trust the partition in which the event was injected.

Because a notification handler runs in the time slice of the affected partition,
partitions need to be able to control the number of notifications that are processed
on their behalf by the core OS. In effect, the partition needs a spam filter to make
sure that it surrenders time only for the processing of the notifications that are
relevant to it.

This spam filter has two parts. The first is a white-list of partitions from which it is
willing to accept notifications. This is set up in the Module document as a list of
trusted partitions. The second is a subject filter, based on the types of events that it
is willing to accept notifications of. This is set up in the Module document as an
event filter mask.

By default, a partition does not allow any notifications to be processed on its
behalf. You must explicitly configure a partition to allow notifications to be
processed on its behalf.

Health monitor notifications are placed on a queue for the affected partition. When
the affected partition receives its next time window, the notifications in the queue
are processed. This means that the partition may be giving up time to process more
than one notification in any given time slice. You can control the number of
notifications that can be queued. You can also determine whether you want an
event to be raised if the number of notifications to be queued exceeds the length of
the queue.

How will health monitor errors be handled?

The health monitor itself, as well as the event and notification handlers that it calls,
may experience faults. This will result in events being injected from the health
monitor itself, which will then be routed according to the appropriate mapping in
the system health monitor table. As part of your health monitoring strategy, you
must plan how to handle health monitor errors. The heath monitor may also
generate events to indicate that some resource, such as a log or a queue is full. You
will need to develop an appropriate recovery strategy for these types of situations.

125

VxWorks 653
Configuration and Build Guide, 2.2

Correctly written event handlers will either inject an event of the appropriate type
when they encounter an error, or will return ERROR. When an event handler
returns ERROR, the health monitor injects an HME_HM_ERROR event and
dispatches it according to the mapping of that event type in the system health
monitor table. For this reason it is important to provide an explicit routing for
HME_HM_ERROR in the system health monitor table. Note that if the module
health monitor returns ERROR, the HME_HM_ERROR handler is called directly by
the dispatcher (thus bypassing the health monitor queues). Since the health
monitor dispatcher runs at a very high priority level, this could result in partition
schedules being disrupted.

If any of the health monitor queues become full, and a new event is dispatched to
that queue, the event is reformatted as an HME_HM_ERROR event and dispatched
to the module level where it is handled as described above. If you configure a
threshold for each queue, and an event is placed on the queue that causes it to hold
more events that the threshold number, the event is placed on the queue and an
HME_HMQ_OVERFLOW event is injected and also placed on the queue. (This is
why the recommended threshold value is two less than the queue size, to allow
room for the event that breached the threshold and the HME_HMQ_OVERFLOW
event.) The HME_HMQ_OVERFLOW event is a record of the fact that an overflow
of the threshold occurred. It does not indicate whether or not the queue itself
subsequently overflowed. The health monitor sees the HME_HMQ_OVERFLOW
event only after the other events on the queue have been processed. This is useful
principally as a debugging device to check that all queues are of adequate size. It
is not a suitable mechanism for recovering from a queue overflow at run-time.

18.3 Configuring the Health Monitor

Step 1:

To configure the health monitor, use the following procedure:

Configure the system health monitor.

Configure the system health monitor by completing the /Module/HealthMonitor/
SystemHealthMonitorTable element of the Module configuration document. The
content of the SystemHealthMonitorTable element is detailed in the VxWorks 653
Configuration and Build Reference.

126

Step 2:

Step 3:

Step 4:

Step 5:

18 Health Monitor
18.3 Configuring the Health Monitor

Configure the module health monitor.

Configure the module health monitor by completing the /Module/HealthMonitor/
ModuleHealthMonitorTable element of the Module configuration document. The
content of the ModuleHealthMonitorTable element is detailed in the VxWorks 653
Configuration and Build Reference.

Configure partition health monitors.

Configure each partition health monitor by adding a /Module/HealthMonitor/
PartitionHealthMonitorTable element to the Module configuration document.
The content of the PartitionHealthMonitorTable element is detailed in the
VxWorks 653 Configuration and Build Reference.

Assign partition health monitors to partitions.

As part of the configuration of a partition you must specify the partition health
monitor table that will be used for that partition’s health monitor. The
PartitionHMTable attribute of the /PartitionDescription/Settings element
specifies the name of the partition health monitor to be used. The name of the
partition health monitor table is specified by the Name attribute of the /Module/
HealthMonitor/PartitionHMTable element.

Configure the process health monitors.

The process health monitor is written by the application developer. Its
configuration is up to the application developer.

127

VxWorks 653
Configuration and Build Guide, 2.2

128

19

Modules

19.1 Understanding Modules 129
19.2 Planning Modules 130

19.3 Configuring a Module 132
19.4 Building a Module 134

19.1 Understanding Modules

An ARINC module is a set of partitions controlled by a single core OS. In
VxWorks 653, a module build creates the system configuration record and a ROM
payload, RAM payload, or network-loadable system image that can be installed on
a target and executed. Configuration of a module, therefore, involves bringing
together all the elements of the system, ensuring that they have the resources
required to run, scheduling them appropriately, and providing appropriate health
monitoring to ensure that they are running correctly.

A module contains the following:

= A core OS, which may be a certified OS or may include debug support.
= Zero or more user configuration record regions.

= One or more partition OSs.

= Zero or more shared libraries.

129

VxWorks 653
Configuration and Build Guide, 2.2

= Zero or more shared data regions.
= Zero or more shared IO regions.

* One or more partitions, each of which contains an application. Some of these
partitions may be online-loaded partitions.

» ACE, the debug agent for use in a certified environment, if required.

Designing the module is the responsibility of the system integrator. The system
integrator works in cooperation with the platform provider and the application
developers to create a platform and a set of applications that work correctly
together as a module. For information on development roles, see 3. Configuration
System.

A module is a complete VxWorks 653 system. The module configuration brings
together all the elements that make up a module. For more information on
modules, see 2. Understanding VxWorks 653.

The configuration of a module is expressed in a configuration record. For
information on the configuration record, see 20. Configuration Record.

A module is instantiated as a system image. For information on system images, see
21. System Images.

19.2 Planning Modules
In planning a module, you should consider the following issues:

Which platform will the module use?

A module is built on a platform. Platforms provide a specific set of resources that
the module and its applications can use. You will need to decide if your module
will be built on an existing preconfigured platform or if it will it be necessary to
commission a platform with specific features to support this module. You may
need to communicate with the application developers to determine the features
they will require, and with the platform provider to determine if the platform can
support those features. The platform requirements for the various features of a
module are discussed in the sections that follow.

130

19 Modules
19.2 Planning Modules

What applications will there be?

A module contains one or more applications. Each application resides in a separate
partition. Applications are written to run on a specific partition OS, or to run on a
specific API supported by a partition OS, such as APEX. Applications may require
access to system resources such as ports, shared libraries, or shared data regions.
You will need to determine what APIs and resources each application in the system
will require and configure your module appropriately.

VxWorks 653 supports up to 255 application partitions (256 total partitions
including the core OS). However, the operating system has a number of default
settings that are suitable for modules of 32 partitions or less. If you configure a
module with more than 32 partitions, you will need to make sure that your
platform has been configured to support the appropriate number of partitions. For
information on configuring a core OS for more than 32 partitions, see 6. Core OS.

What shared memory regions will be required?

Most of the memory in a VxWorks 653 system is assigned exclusively to individual
partitions and is not shared with any other partitions or the core OS. For some
purposes, however, it is necessary to share memory between applications and /or
the core OS.

There are two kinds of shared memory region: shared I/O regions and shared data
regions. A shared I/O region is a memory location assigned to a hardware I/O
device, such as an LED, that is accessed by more than one application. A shared
data region is a region that contains data, such as a database, that is used by
multiple applications.

You must determine if any shared memory regions are required, and configure
them with the correct access rights for the applications that will use them.

What shared 1/O regions will be required?
To configure a shared I/O region you need to determine the following:

* The name of the shared I/O pool in the platform configuration. The set of
available shared I/O pools can be determined by consulting the
CoreOSDescription/HardwareConfiguration/sharedIO elements in the
appropriate CoreOSDescription document.

= Thelevel of access the core OS will have to the shared I/O region. This requires
you to communicate with the platform provider to determine what level of
access the core OS requires to the region. (Partition access to the shared I/O
region is configured in the partition configuration, which is described in
15. Partitions.)

131

VxWorks 653
Configuration and Build Guide, 2.2

» The virtual address that the shared I/O region will occupy in the module
configuration.

» The appropriate memory caching policy for the shared I/O region.

Will online-loaded partitions be required?

Online-loaded partitions are partitions that are not part of the regular payload but
are loaded into a system while it is running. The partition is not loaded during the
boot sequence for the module, but the system reserves the resources required to
run the partition, as specified in its configuration. For information on configuring
online-loaded partitions, see 15. Partitions.

How will the applications be scheduled?

The core OS allots time to partitions according to a schedule. The schedule is
established in Module configuration document. You can establish up to 16
schedules. The core OS, or an application with the appropriate syscall permissions
(as configured in PartitionDescription/Settings/@syscallPermissions), can switch
from one schedule to another at run-time. For information on schedules, see

17. Schedules.

How will the health of the system by monitored?

VxWorks 653 provides a health monitor that can be used to dispatch events to
appropriate handlers based on their type, the partition in which they were injected,
and the state of the system at the time they were injected. You will need to
configure the health monitor tables to route events appropriately for your module.
For information on health monitoring, see 18. Health Monitor.

19.3 Configuring a Module

Figure 19-1 summarizes the configuration of a module.

The configuration of a module is expressed in a Module document. The Module
document is an XML document conforming to the Module document type defined
in the VxWorks 653 Configuration Schema.

This document contains configuration information for the module in the following
areas:

132

19 Modules
19.3 Configuring a Module

Figure 19-1 Configure a Module

Include by reference
\
CoreOSDescription
Ace
SharedLibraryDescription
SharedDataDescription
SharedlODescription
PartitionDescription
PseudoPartitionDescription
ApplicationDescription

The Module document includes the following configuration documents by
reference:

CoreOSDescription document (see 6. Core OS)

Ace configuration document (see 12. ACE)
SharedLibraryDescription documents (see 9. Shared Libraries)
ApplicationDescription documents (see 14. Applications)
PartitionDecscription documents (see 15. Partitions)
SharedDataDescription documents (see 10. Shared Data Regions)
SharedIODescription documents (see 11. Shared I/O Regions)

In addition, the Module document contains the following elements inline:

Schedules element (see 17. Schedules)
HealthMonitor element (see 18. Health Monitor)
Connections element (see 16. Ports and Channels)

Payloads element (see 21. System Images)

133

VxWorks 653
Configuration and Build Guide, 2.2

19.4 Building a Module

The module configuration is expressed in the build of the configuration record or
a payload. For information on building the configuration record, see

20. Configuration Record. For information on building a payload, see 21. System
Images.

134

20

Configuration Record

20.1 Understanding the Configuration Record 135
20.2 Planning the Configuration Record 136

20.3 Configuring the Configuration Record 137
20.4 Building the Configuration Record 139

20.1 Understanding the Configuration Record

The configuration record contains configuration information for a module. It is
used at boot time to correctly set up the module and each of its components, and
to regulate many aspects of the runtime behavior of the module. For more
information on modules, see 19. Modules.

The configuration record is compiled from information contained in the
configuration documents for the module and all its constituent parts. Generating
the configuration record is a two step process. In the first step the Module
configuration document, and all the configuration documents that it references is
processed by the VxWorks 653 build tools to calculate those values that were not
specified in the component and module configuration documents, and to assign
each component its own memory location and resource access. This produces a
document called configRecord.xml.

To create the binary configRecord that can be included in the image loaded on the
target, configRecord.xml is processed by the VerIMAx tool. The output of this

135

VxWorks 653
Configuration and Build Guide, 2.2

process is the binary file configRecord.reloc or configRecord.bin. Whether the out
put is configRecord.bin or configRecord.reloc depends on the kind of system
image that you are creating. For a downloadable system image, a .reloc file is
created. For a RAM or ROM payload file, a .bin file is created.

The configuration record is part of a system image. For information on system
images, see 21. System Images.

The configuration record is the responsibility of the system integrator. For
information on development roles, see 3. Configuration System.

20.2 Planning the Configuration Record

The configuration record is a compilation of the information used to configure each
of the components of the module, and the module itself. As such, no separate
planning is required for the configuration record. However, there are certification
considerations which can affect how you organize your configuration and build
process for the configuration record.

How will certification be handled?

Because VerIMAXx is a qualified tool, its outputs are considered to be certified as
long as its inputs are certified. The input to VerIMAXx is configRecord.xml.
configRecord.xml is created by the build tools from the set of configuration files
brought together in the Module configuration document. In creating a certified
system, it is necessary to certify the Module configuration document and all of the
configuration files that it references. VerIMAx verifies that configRecord.xml had
been created correctly from the Module configuration file, however, you must
examine configRecord.xml to certify that the XInclude statements that is uses to
bring in the other configuration documents point to the correct documents.

In some cases, it may be desirable to certify a module configuration before all the
components of the system are finished. Also, it is useful to be able to certify the
module configuration independently of the components of the module so that
changes in one component do not require re-certification of the entire module. The
separation of configuration and build elements supported by VxWorks 653
facilitates this. In some cases, you may want to build and certify the module
configuration and distribute the certified binary configRecord.bin to the other
members of the development team.

136

20 Configuration Record
20.3 Configuring the Configuration Record

20.3 Configuring the Configuration Record

Figure 20-1 summarizes the build of the configuration record.

Figure 20-1 Building the configuration record

Module

Include by reference

CoreOSDescription
Ace
SharedLibraryDescription

> XMLGen ﬂ/ configRecord.xml /
’ //
configRecord.reloc
VerlMAXx !7 or configRecord.bin /
KEY

SharedDataDescription
SharedlODescription
PartitionDescription
PseudoPartitionDescription

XML document / Intermediate
file

ApplicationDescription Source and
object files / Output file /

Tool Supplied by

VxWorks 653

The inputs and outputs of the configuration record build process are as follows:

Outputs of the Configuration Record Build

The outputs of the configuration record build are:

configRecord.reloc

configRecord.reloc is the binary configuration record that can be included in a
system image. For information on system images, see 21. System Images.

configRecord.xml

configRecord.xml is an XML document conforming to the ConfigRecord
document type defined in the VxWorks 653 Configuration Schema.
ConfigRecord.xml contains memory configuration information calculated from
the information in the Module configuration document and the associated
configuration documents for the other components of the module.

137

VxWorks 653
Configuration and Build Guide, 2.2

configRecord.xml, in turn, is used to configure the memory allocation of the
module build.

In a full configuration record build, configRecord.xml is an intermediary file.
However, in a certified system, you must certify that the XInclude statements in
configRecord.xml identify the correct configuration documents before it is
processed by the qualified tool, VerIMAX, to produce the module binaries. In the
case of a certified build, therefore, configRecord.xml is the output of the first part
of the configuration record build and an input to the second part of the build.

Makefile.rules contains the rules needed to build configRecord.xml.

Inputs to the Configuration Record Build

The following are the inputs to the configuration record build:

Module Configuration Document

For information on creating the Module configuration document, see 19. Modules
and the VxWorks 653 Configuration and Build Reference. For examples of a Module
document, see 22. Reference Process.

Configuration Files for Module Components

The module build process requires all of the configuration files for the components
of the module. The Module configuration document must identify the location of
these files via xi:include elements in the appropriate places.

» CoreOSDescription document (see 6. Core OS)

* Ace configuration document (see 12. ACE)

» SharedLibraryDescription documents (see 9. Shared Libraries)

» ApplicationDescription documents (see 14. Applications)

» PartitionDescription documents (see 15. Partitions)

» SharedDataDescription documents (see 10. Shared Data Regions)
» SharedIODescription documents (see 11. Shared I/O Regions)

138

20 Configuration Record
20.4 Building the Configuration Record

20.4 Building the Configuration Record
To build the configuration record, use the following procedure:

Step 1: Create a configuration record makefile.

To build a configuration record you must create a makefile. Since building the
configuration record is part of the process of building a system image, most system
integrators will write one makefile that can be use to build the configuration record
as well as the different payload image types. The following makefile example
contains only the information required to build the configuration record:

include $(WIND_BASE)/target/config/make/Makefile.vars
XML_FILE = hello.xml

include $(WIND_BASE)/target/config/make/Makefile.rules

There are no targets for configRecord.xml and configRecord.reloc in this

makefile. Those targets are contained in Makefile.rules.

Step 2: Open the VxWorks 653 Development Shell.

The VxWorks 653 build tools require a specific build environment which is
provided by the VxWorks 653 Development Shell. To open the shell, select from the

program list:

Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell

Step 3: Build the configuration record.

To generate configRecord.xml, run make, specifying configRecord.xml as the

build target:

make configRecord.xml

To generate configRecord.reloc, run make, specifying configRecord.reloc as the

build target:

make configRecord.reloc

139

VxWorks 653
Configuration and Build Guide, 2.2

140

21

System Images

21.1 Understanding System Images 141

21.2 Planning a System Image 144

21.3 Configuring a Network-Loadable System Image 144
21.4 Configuring a RAM Payload System Image 147

21.5 Configuring a ROM Payload System Image 149

21.6 Building a System Image 152

21.1 Understanding System Images

To run a module on a target, you must transfer to the target the image files of the
various components that make up the module. Image files for the various
components of the module are produced by separate build processes as system
module (.sm) files. Collectively, the various images that make up a module are
referred to as the system image. For information on modules, see 2. Understanding
VxWorks 653 and 19. Modules.

To run the module, you must transfer the system image to the target, load it into
target memory, and boot it. The software that loads and boots the system image on
the target is referred to as a loader. You can use the loader supplied with
VxWorks 653 or you can create your own loader. For information on loading and

141

VxWorks 653
Configuration and Build Guide, 2.2

running a system image, see the Wind River Workbench User’s Guide (VxWorks 653
Version).

VxWorks 653 supports three methods for loading the system image on the target:
= network-loadable

= RAM payload

= ROM payload

Network-loadable

The simplest way of loading the image onto the target is to load it over the network
from the host. The method is used mainly used for development and debugging.

Network loading is supported by the boot ROM supplied with VxWorks 653. This
boot ROM must be installed on the target in order to use network-loadable or RAM
payload system images. To support network loading, the host must be configured
with an FIP server to which the boot ROM will connect to download the image.

You may replace the Wind River boot ROM with a custom boot ROM. If you create
your own boot ROM, you can use any method you want to load the system image.

To guide the loading and booting of the system image, the boot ROM requires a
manifest that tells it which files are part of the system image. This file is called
boot.txt. boot.txt is generated by the network-loadable image build. boot.txt is also
used by the target agent to communicate with the target for debugging purposes.

Since the target has only the copy of the payload that is being executed, and not an
original copy (which would contain, for example, initial values of variables) restart
is not available with a network-loadable system image. The only way to restart the
system is to reboot, which will download the payload again from the host.

Online-loaded partitions are not supported with a network-loadable system
image.

The network-loadable system image is the only type supported by the simulator.

RAM Payload

A RAM payload system image is one that resides in target RAM rather than on the
host. As with a network-loadable image, a RAM payload image is transferred from
the host to the target RAM over the network by the boot ROM. However, instead
of being loaded and run directly, the payload is loaded in a section of RAM
configured as a RAM payload area. Once the RAM payload is loaded in RAM, a
copy program is initiated that copies the image into the area of RAM where it will
be executed, and then executes it.

142

21 System Images
21.1 Understanding System Images

RAM payload images are used for development systems where capabilities not
supported by the network loaded image are required. These capabilities include
cold and warm restart of the module and the use of online-loaded partitions.

Because two copies of a RAM payload image reside in RAM at the same time, the
use of a RAM payload requires approximately twice the memory of other image

types.

RAM and ROM payloads also reduce the image load time by stripping extraneous
ELF sections. Since non-executable sections (.comment, .debug_info, and so on)
are removed from the image, the size and load time of the final image are reduced.

ROM Payload

A ROM payload is an image that is stored in ROM on the target. The ROM payload
includes a boot ROM generated specifically to boot that payload. The boot ROM
replaces the default boot ROM that was used to download other image types over
the network. ROM payloads are used for deployed systems.

The payload resides permanently on the target in ROM, so no network connection
to the host is required to boot the system. When the target is booted, the payload
is copied from ROM to RAM and executed. Restart is supported because the
original payload is available in ROM.

This image supports:
= all restart types (including power off/on)
* online-loaded partitions

Unlike the network loadable image, which consists of all the individual system
module files in the module, and the RAM payload image, which is a single large
image file, the ROM payload lets you configure the number and size of the binary
files that will make up the system image.

Building a system image is the responsibility of the system integrator. For
information on development roles, see 3. Configuration System.

143

VxWorks 653
Configuration and Build Guide, 2.2

21.2 Planning a System Image

Generally you will choose the type of system image to build based on where you
are in the development process. However, you should bear the following
limitation in mind when choosing a downloadable system image:

When using the VxWorks 653 generated bootApp to load a network-loadable
system image, the boot loader is limited to a maximum of 320 system module (.sm)
files. The maximum number of system module files is composed of:

» one for the core OS

» one for each partition

= one for each system shared library

» one for each loadable shared data region
» one for each shared library

» one for the configuration record

» one for each user configuration record

This sum must be less than or equal to 320, otherwise the boot loader will exit with
the following error message:

Modules to load exceeds limits, abort ...

If you have sufficient RAM on your target, you can use a RAM payload system
image instead. Otherwise, you will need to use a ROM payload.

21.3 Configuring a Network-Loadable System Image

Figure 21-1 summarizes the configuration and build of a network-loadable system
image.

The inputs and outputs of the configuration and build of a network loadable image
are as follows:

Outputs of the Network-Loadable System Image Build

The following are the outputs of a network loadable system image build:

144

21 System Images
21.3 Configuring a Network-Loadable System Image

Figure 21-1 Configuring and Building Network-Loadable System Image

L_ﬁkdule/\ > XMLGen —7/ boot.txt /L

Include by reference

|
CoreOSDescription > XMLGen > configRecord.xml

Ace /. /
SharedLibraryDescription ‘
SharedDataDescription +
SharedlODescription -
PartitionDescription VerIMAXx 47 ;‘," 22’;’5;;22‘2;,’3‘5; A

PseudoPartitionDescription
ApplicationDescription

network-loadable

core0S.sm > copy 47/ system image /

ssl.sm KEY

XML document Intermediate
sl.sm file
Source and)
sdr.sm object files Output file
app.sm Tool Supplied by
VxWorks 653

boot.txt

boot.txt describes the structure of the system image. It is used by the boot loader to
load and boot the image on the target. It is also used by the target server to
communicate with the target for debugging purposes.

Network-loadable System Image

The network-loadable system image is a collection of the system modules for each
of the module components, plus the configuration record and boot.txt.

Inputs of the Network-Loadable System Image Build

The following are the inputs of a network loadable system image build:

145

VxWorks 653
Configuration and Build Guide, 2.2

The Module Configuration Document

The Module configuration document contains configuration information for the
module as a whole. For more information on the Module configuration document,
see 19. Modules.

Configuration Files for Module Components

The module build process requires all of the configuration files for the components
of the module. The Module configuration document must identify the location of
these files via xi:include elements in the appropriate places.

» CoreOSDescription document (see 6. Core OS)

* Ace configuration document (see 12. ACE)

» SharedLibraryDescription documents (see 9. Shared Libraries)

» ApplicationDescription documents (see 14. Applications)

» PartitionDescription documents (see 15. Partitions)

» SharedDataDescription documents (see 10. Shared Data Regions)
» SharedIODescription documents (see 11. Shared I/O Regions)

Object Files for Module Components

Your system image brings together all the object files for your core OS, shared
libraries, shared data regions, and partitions, as well as the boot loader files for
your RAM and ROM payloads. You must provide a rule for each of these files to
import them into your build project. In the example below, the variable
$(IMPORTS) stands for the location of each of the files to be imported. This may be
different in each case.

coreOS.sm: $ (IMPORTS) /coreOS. sm ; $(CP) S$< s@
payloadObjs_ram.o: $(IMPORTS) /payloadObjs_ram.o ; $(CP) S$< s@
payloadObjs_rom.o: $(IMPORTS)/payloadObjs_rom.o ; S$(CP) $< s@
ssl.sm: $ (IMPORTS) /ssl.sm ; $(CP) $< se
partl.sm: $ (IMPORTS) /partl.sm ; $(CP) $< s@
part2.sm: S (IMPORTS) /part2.sm ; $(CP) $< se

Your makefile must define the following variables exactly as shown:

SM_FILES
BIN_FILES

S (shell $(XMLGEN_FILES) $(XML_FILE))
S (shell $(XMLGEN_FILES) --bin $(XML_FILE))

configRecord.xml

configRecord.xml is an XML file that contains the configuration information
calculated by the build tools based on the module configuration document and the

146

21 System Images
21.4 Configuring a RAM Payload System Image

configuration documents for each of the components of the module. For more
information on configRecord.xml, see 20. Configuration Record.

configRecord.reloc or configrecord.bin

configRecord.reloc or configRecord.bin is the binary representation of the
configuration record. A cert build creates configRecord.bin. A debug build
produces configRecord.reloc. For more information on configRecord.reloc and
configRecord.bin, see 20. Configuration Record.

21.4 Configuring a RAM Payload System Image

Figure 21-2 summarizes the configuration and build of a RAM payload system
image.

Configuring and building a RAM payload system image involves the following
items, in addition to those described under 21.3 Configuring a Network-Loadable
System Image, p.144:

payloadObjs_ram.o

payloadObjs_ram.o is the boot loader for a RAM payload system image. It is
created as part of the core OS build and should be included in the platform you
recieved from the platform provider.

boot.txt

While boot.txt is not used to load the system image, as it is with a
network-loadable image, it is still required to enable the target server to connect to
the target for debugging purposes.

CoreOSDescription Document

To configure a RAM payload image, you must allocate a RAM payload region in
the configuration of the core OS. This requires that you edit the CoreOSDescription
document for your platform. If you have questions about this file, consult you
platform provider.

To configure a RAM payload region, supply appropriate values for the
Base_Address and Size attributes of the CoreOSDescription/

147

VxWorks 653
Configuration and Build Guide, 2.2

Figure 21-2 Configuring and Building a RAM Payload System Image

L_w_\ » XMLGen

Include by reference

47/ boot.txt /
\ .
CoreOSDescription > XMLGen ﬂ/ configRecord.xml /

Ace ‘

SharedLibraryDescription
configRecord.reloc
or configRecord.bin

SharedDataDescription +
SharedlODescription
PartitionDescription VerIMAXx
PseudoPartitionDescription
ApplicationDescription

coreOS.sm > combine 47/ payloadObjs_ram.o /
ssl.sm KEY
XML document Intermediate
sl.sm file
Source and)
sdr.sm object files Output file
app.sm Tool Supplied by
VxWorks 653
boot loader

HardwareConfiguration/PhysicalMemory/ramPayloadRegion element of
my-coreOS.xml. For example:
<PhysicalMemory>
<ramPayloadRegion

Base_Address = "0x0£c00000"

Size = "0x00400000"/>
</PhysicalMemory>
For information on calculating the size of the RAM payload region, see the
VxWorks 653 Configuration and Build Reference entry for /CoreOSDescription/
HardwareConfiguration/PhysicalMemory/ramPayloadRegion.

148

21 System Images
21.5 Configuring a ROM Payload System Image

If you need to adjust other core OS settings to accommodate the RAM payload
region, see 6. Core OS for details.

Boot Loader

You must include a RAM payload boot loader in the RAM payload. You can use
the boot loader supplied with the platform you are using, or create your own.

21.5 Configuring a ROM Payload System Image

Figure 21-3 summarizes the configuration and build of a ROM payload system
image.

Configuring and building a ROM payload system image involves the following
items, in addition to those described under 21.3 Configuring a Network-Loadable
System Image, p.144:

CoreOSDescription Document

Because a ROM payload image is burned into ROM, you must configure the
addresses in ROM where each binary file will be located. The build process will
create a separate .bin file for each component of your system (core OS, shared
library, partition, etc.). You can specify the location of each component separately,
or you can allow the build tools to locate some or all components contiguously.

Locate the payload memory configuration of the CoreOSDescription file for your
platform. It is located at CoreOSDescription/HardwareConfiguration/
payloadMemory.

If only one payload memory region is defined, then you can choose either to let the
build system locate payload sections or you can locate them yourself. If more than
one section is defined, you will need to specify the base addresses of some of your
payloads in order to assign them to the correct payload memory region.

If you are configuring a system with more than one bank of payload memory, you
must set the base address of the first payload assigned to each bank to match the
base address of that bank. You must also be sure that the payloads assigned to each
individual bank fit within that bank. If the base address of a payload is not

149

VxWorks 653

Configuration and Build Guide, 2.2

Figure 21-3 Configuring and Building a ROM Payload System Image

» XMLGen

A

Include by reference
\

CoreOSDescription
Ace
SharedLibraryDescription
SharedDataDescription
SharedlODescription
PartitionDescription
PseudoPartitionDescription
ApplicationDescription

47/ boot.txt /

» XMLGen

> configRecordxml /
’

coreOS.sm

ssl.sm

sl.sm

sdr.sm

app.sm

boot loader

/ configRecord.reloc

VerlMAX or configRecord.bin /
4

N ROM Payload

> copy 47/ System Image

KEY

XML document Intermediate
file

Source and
object files

/ Output file /

Tool

Supplied by
VxWorks 653

specified, it is placed immediately after the preceding payload in the order in
which payloads are defined in the configuration document.

Module Configuration Document

The Payloads element of the Module configuration document defines the location
of each payload in ROM. For information on the Payloads element, see the
VxWorks 653 Configuration and Build Reference.

150

21 System Images
21.5 Configuring a ROM Payload System Image

boot.txt

While boot.txt is not used to load the system image, as it is with a
network-loadable image, it is still required to enable the target server to connect to
the target for debugging purposes.

Boot Loader

You must include a ROM payload boot loader in the ROM payload. You can use
the boot loader supplied with the platform you are using, or create your own.

ROM Payload System Image
A ROM payload system image consists of the following:

* payloadObjs_rom.o is linked with the payload map to create
sms_romPayload.hex.

» component-name.bin. For each component of the system (core OS, shared
library, partition), the build process creates a separate .bin file.

» sms_romPayload.hex. This is the bootstrap code that will be called by the
board during power up and will copy the payload into RAM and then jump to
the start address of the system in RAM.

= configRecord.bin. This is the binary configuration record for the system.

Your .bin output files must be padded to the size of the black boxes for their
components. This is accomplished by adding the following lines, exactly as shown,
to your makefile. (configRecord.xml is a generated file. This name should not be
changed.)

BINFLAGS_EXTRA = $(shell $(XMLGEN_BINFLAGS) -j $* configRecord.xml)

S (BIN_FILES) : configRecord.xml

If binary files do not fit in their defined black boxes, the build will fail. You can add
a rule to your makefile to check that the binaries fit their black boxes:

check: $(SM_FILES)
xmlgen --bbCheck $(addprefix -j ,$(basename $7)) configRecord.xml

151

VxWorks 653
Configuration and Build Guide, 2.2

21.6 Building a System Image

Step 1:

Step 2:

Step 3:

Create a module makefile.

To build a system image you must create a makefile that will collect the necessary
files and call the build tools to generate the image. The following is a typical system
image makefile:

all: net rom ram checkSize

include $(WIND_BASE)/target/config/make/Makefile.vars

XML_FILE = ../../my-module.xml

SM_FILES = $(shell $(XMLGEN_FILES) $(XML_FILE))
BIN_FILES = $(shell $(XMLGEN_FILES) --bin $(XML_FILE))
SYM_FILES = $(shell $(XMLGEN_FILES) --sym $(XML_FILE))

include $(WIND_BASE)/target/config/make/Makefile.rules
coreOS.sm: $(IMPORTS)/coreOS.sm ; cp $< S$S@

ssl.sm: S (IMPORTS) /ssl.sm ; cp $< s@

partl.sm: $(IMPORTS) /partl.sm ; cp S$< s@

Downloadable symbol tables

net: $(SYM_FILES)

checkSize: $(SM_FILES)
xmlgen --bbCheck $(addprefix -j ,S$(basename $”)) configRecord.xml

For other examples of a system image makefile, see 22.8 Integration, p.203.

Open the VxWorks 653 Development Shell.

The VxWorks 653 build tools require a specific build environment which is
provided by the VxWorks 653 Development Shell. To open the shell, from your
program list, select:

Wind River > VxWorks 653 2.2 > VxWorks 653 2.2 Development Shell

Build the system image.

To build the system image, run make, specifying the correct target for the image
you want to build.

For a network loadable image:
make net
For a RAM payload image:

make ram

152

Step 4:

21 System Images
21.6 Building a System Image

For a ROM image:

make rom

Generate the boot.txt file.

If you intend to connect to a running RAM or ROM payload system image via the
target server, you will need a boot.txt file. To generate a boot.txt file, run make
with the boot.txt target:

make boot.txt

153

VxWorks 653
Configuration and Build Guide, 2.2

154

22

Reference Process

22.1 Introduction 155
22.2 Quick Start 158
22.3 Hello World 159
22.4 Module OS 179
22.5 Partition OS 185
22.6 Application 191
22.7 Shared Library 196
22.8 Integration 203

22.1 Introduction

This chapter describes the VxWorks 653 configuration and build reference process.
There are eight parts to the build of a VxWorks 653 module:

* module OS build

* ACE build (if ACE is used)

» partition OS build

» shared library build (if shared libraries are used)

155

VxWorks 653
Configuration and Build Guide, 2.2

= shared data build (if loadable shared data regions are used)
= user configuration record build (if user configuration records are used)
» application build

» integration build (which includes the configuration record and system image
builds)

The reference process provides working examples of each of these parts and the
common variants of these builds. You can use the reference process as a means to
learn about the VxWorks 653 build process or as a starting point for creating your
own build system for your projects. For more information on the build process, see
4. Build System.

The reference process consists of the following examples, which are located at:

installDirlvxworks653-2.2/target/reference/helloWorld

introduction

The introduction example contains a basic Hello World program. It consists of a
module OS, partition OS, application, and integration build.

moduleOS

The moduleOS example contains several ways of building a module OS, including:
* hello-ref, a basic module OS build (the same one shown in the introduction)

» hello-ace, a module OS with ACE

* hello-bincomp, a module OS with optional binary components

* hello-srccomp, a module OS with optional source components

* hello-full, the full hello-world example set up to export various components of
the hello-world module for use with the different variations of the module OS

= hello-cert, a module OS built in cert mode

partitionOS

The partition OS example contains several ways of building a partition OS

* hello-ref, a basic partition OS build (the same one shown in the introduction)
* hello-sd, a partition OS that uses a shared data region

* hello-bincomp, a partition OS with optional binary components

156

22 Reference Process
22.1 Introduction

hello-srccomp, a partition OS with optional source components

hello-full, the full hello-world example set up to export various components of
the hello-world module for use with different variations of the partition OS

hello-cert, partition OS built in cert mode

application

The application example contains several ways of building an application.

hello-ref, a basic application build (the same one shown in the introduction)
hello-cpp, the Hello World application written in C++

hello-two, an example with two Hello World programs running in separate
partitions

hello-full, the full hello-world example set up to export various components of
the hello-world module for use with different variations of the application

hello-cert, an application built in cert mode

sharedLibrary

The sharedLibrary example contains the following examples of the use of a shared
library

hello-ref, the hello-two example from the application example, showing two
Hello World programs with duplicated code

hello-sl, an example in which the Hello World code is moved to a shared
library and is called by the two applications

hello-version, an example which shows how you can define more than one
interface for a library

hello-full, the full hello-world example set up to export various components of
the hello-world module for use with different variations of the shared library

integration

The integration example shows the different types of integration builds:

hello-net, a downloadable system image build
hello-ram, a RAM payload build
hello-rom, a ROM payload build

157

VxWorks 653
Configuration and Build Guide, 2.2

* hello-full, a full build of all the elements of a downloadable system image
build

This chapter will walk you through these examples so that you can understand
how they work. For additional information on any of the settings here, see the topic
on the specific feature in this document, or consult the appropriate setting in the
VxWorks 653 Configuration and Build Reference.

22.2 Quick Start

You will receive the maximum benefit from the reference process if you work your
way thorough each part of the build process separately, observing how the
different parts relate to each other. However, if you want to get something running
on your board as quickly as possible, you can use the following quick start
procedure to run the entire build process and produce a network loadable system
image that you can run on your target:

1. Choose which target you want to build for and identify the appropriate BSP
files in:
installDir/vxworks653-2.2/target/config

If you are unsure which BSP to use, consult the platform provider.

2. In the BSP directory for your chosen BSP, open the default
SharedLibraryDescription file for the partition OS, which is named
BSP_Name_default.xml (for example, wrSbc750gx_default.xml). Note the
value of the attribute SharedLibraryDescription/@VirtualAddress. This
value is the default virtual address for the partition OS for your target. You will
need this value to build all the use cases in the reference process.

3. Open this file:

installDirlvxworks653-2.2/target/reference/helloWorld/introduction/hello-fu
11/pos/hello-pos.xml

and locate the attribute SharedLibraryDescription/@VirtualAddress. Its
current value is “$(SSLADDR)”. Replace this value with the partition OS
virtual address that you identified in step 2.

4. Determine the CPU for your target. For instance, if your BSP is wrSbc750gx,
your CPU will be PPC604. If you are unsure of the name of the CPU for your

158

22 Reference Process
22.3 Hello World

BSP, open the Makefile in the BSP directory and find the value of the CPU
variable.

5. Determine the partition virtual address for your target. It can be found in the
attribute
CoreOSDescription/KernelConfiguration/@partition VirtualAddress in the
default CoreOSDescription document. This file is found in your BSP directory
and has the same name as the BSP directory with an .xml extension. For the
wrSbc750gx, the value is 0x40000000.

6. Open the VxWorks 653 Development Shell.
7. Change your current directory to introduction/hello-full.

8. Run make, specifying the values of the variables CPU, BSP, and PARTADDR
(partition virtual address). For example:

make BSP=wrSbc750gx CPU=PPC604 PARTADDR=0x40000000

The makefile will run the makefiles for each part of the build. This will create
a network-loadable system image in the directory:

installDirlvxworks653-2.2/target/reference/helloWorld/introduction/hello-fu
11/int/demo

For instructions on how to load and run this system image on your target, see
the Wind River Workbench User’s Guide 2.6.1 (VxWorks 653 edition).

9. If you want to remove the built files so that you can perform each of the build
steps separately, run:

make clean

22.3 Hello World

The reference process is built around a simple Hello World program. The
introduction section of the reference process contains all the build steps required
to build a basic no-frills Hello World application, as well as a partition OS for the
application to run on and a core OS to manage the module and schedule the Hello
World application to run.

There are four parts to the build of this example:

= module OS build

159

VxWorks 653
Configuration and Build Guide, 2.2

= partition OS build
» application build
* integration build

This example illustrates an important feature of VxWorks 653. Once the core OS is
built, its binary file can be integrated with the other components without change.
The same is true for each of the other components. With only a minimum of
constraints, each can be built independently of the others and integrated without
change to create a complete module. This means that once a component is built and
certified, it does not have to be rebuilt or recertified when another component
changes.

Module OS Build

In a VxWorks 653 module, the module OS is provided by the VxWorks 653 core OS.
For detailed information on the building of the core OS and the various files
needed to build a core OS, see 6. Core OS.

The module OS for the Hello World example consists of the default core OS
configuration provided by VxWorks 653 and the default set of core OS components
with no added user code. This means that there is no need to create a
CoreOSDescription document for this example. You can use the default
CoreOSDescription document from the appropriate BSP.

The module OS example therefore requires only a makefile. That makefile looks
like this:

include $(WIND_BASE)/target/config/make/Makefile.vars
all:

Create the core 0OS project
prjCreate -domtype kernel -prj demo/ -bsp $(BSP) -name coreOS

Build the core 0S
cp $(WIND_BASE) /target/config/$ (BSP)/$ (BSP) .xml demo/bsp.xml
xmlgen --1dScript --arch $(TOOLARCH) -o demo/core0S.lds demo/bsp.xml
make -C demo ADD_NEEDED
make -C demo

clean:
rm -rf demo

There are a number of things to note in this makefile:
include $(WIND_BASE) /target/config/make/Makefile.vars

Makefile.vars is a makefile provided with VxWorks 653 that contains a number of
variable definitions that are used to build various components of a VxWorks 653

160

22 Reference Process
22.3 Hello World

module. You must include the appropriate version of Makefile.vars in your
makefile. The variable $(WIND_BASE) is defined in the environment of the
VxWorks 653 Development shell and refers to the directory where VxWorks 653 is
installed on your system.

all:

Create the core 0OS project

prjCreate -domtype kernel -prj demo/ -bsp $(BSP) -name coreOS
The VxWorks 653 core OS is built using the VxWorks 653 project facility, which
creates and populates a project structure for the core OS and produces a makefile
to build the core OS.

The prjCreate utility creates a core OS project. The -domtype options specifies that
we are creating a kernel project. The -prj option specifies the location in which the
core OS project is created. The -bsp options specify the BSP to build for. You must
supply the value of the $(BSP) variable on the command line. The -name option
specifies the name of the coreOS.

cp $(WIND_BASE) /target/config/$ (BSP)/$ (BSP) .xml demo/bsp.xml

The cp command copies the correct CoreOSDecription document for your target

into the project directory. (If you needed to change the configuration of the core OS,
you would need to create your own version of the CoreOSDescription document
rather than copying the one supplied with the BSP for your target.)

xmlgen --1dScript --arch $(TOOLARCH) -o demo/core0S.lds demo/bsp.xml

The xmlgen --1dScript command generates a linker script for the core OS project.
This is required to support the black box feature that is used to configure memory
in VxWorks 653. For more information on black box memory configuration, see
5. Memory.

make -C demo ADD_NEEDED

Calling the ADD_NEEDED target in the generated makefile makes sure that all
component dependencies in the core OS configuration are accounted for, and adds
any components that are needed.

make -C demo

Finally, calling the generated makefile causes the core OS to be built. The built files
will be placed in a directory named for the build spec used. This directory will be
located under the project directory. For instance, if you specified the PPC604 CPU
as the value of the $(CPU) variable on the command line, the built files will be

found in the directory demo\coreos\PPC604gnu.debug. The file that contains the
core OS system image is coreOS.sm (unless you changed the name of the project

161

VxWorks 653
Configuration and Build Guide, 2.2

in the prjCreate command, in which case the file name will match the value you
gave there).

clean:
rm -rf demo

The clean target will remove the demo directory and its contents.

Building the Module OS

To build the module OS, use the following procedure:

1. Open the VxWorks 653 Development Shell.

2. Change your current directory to introduction/hello-full/mos.

3. Run make, specifying the values of the variables $(CPU) and $(BSP). For
example:

make BSP=wrSbc750gx CPU=PPC604

The makefile will create a core OS project and then run the makefile that
project contains, creating a system module file and supporting files for the core
0s.

Partition OS Build

The partition OS for the Hello World program is provided by the vThreads
partition OS that is part of VxWorks 653. The partition OS is contained in a system
shared library. The Hello World example uses the default vThreads partition OS
without any additional components.

The Partition OS build involves the following files:

SharedLibraryDescription Document

The SharedLibraryDescription document (hello-pos.xml) contains configuration
information for the library that will form part of the system configuration record.
It looks like this:

<SharedLibraryDescription
xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/ConfigRecord
Application.xsd"

SystemSharedLibrary="true"

VirtualAddress="$ (SSLADDR) ">

<MemorySize

MemorySizeBss="0x10000"

MemorySizeText="0x40000"

MemorySizeData="0x10000"

162

22 Reference Process
22.3 Hello World

MemorySizeRoData="0x10000"
/>
</SharedLibraryDescription>
For detailed information on the content of this file, see the VxWorks 653
Configuration and Build Reference entry for the SharedLibraryDescription document

type.
The are three things to notice about this file:
SystemSharedLibrary="true"

This specifies that the library is a system shared library rather than a regular shared
library. A partition OS resides in a system shared library.

VirtualAddress="$ (SSLADDR) ">

This line specifies the virtual address of the system shared library within the
module. To build the example, you will need to substitute an appropriate value for
your module in place of “$(SSLADDR)”. An appropriate value can be found in the
default BSP Module configuration file (BSP_defualt.xml) located in the BSP
directory for your BSP.

<MemorySize
MemorySizeBss="0x10000"
MemorySizeText="0x40000"
MemorySizeData="0x10000"
MemorySizeRoData="0x10000"
/>

These lines define the black box for the system shared library. The values shown
are correct for the simpc BSP and the default vThreads partition OS object file,
vThreadsComponent.o.

Shared_Library_API Document

The Shared_Library_API document (pos-api.xml) contains information that is
used to build entry-point tables to enable applications to link to the routines in the
shared library. It looks like this:

<Shared_Library_ API
xmlns="http://www.windriver.com/vxWorks653/SharedLibraryAPI"
xmlns:xi="http://www.w3.0rg/2001/XInclude"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/SharedLibraryAPI"
Name="vThreads">

<Interface>

<Version Name="hello"/>

<Interface_Subset>

<Routine Name="printf"/>

</Interface_Subset>

</Interface>
</Shared_Library_ API>

163

VxWorks 653
Configuration and Build Guide, 2.2

There are three things to notice about this file:
Name="vThreads"

This is the name of the shared library API, which is not the same thing as the name
of the library. The name of the API is used at runtime to identify the correct shared
library entry-point table for a routine.

<Version Name="hello"/>

This is the name of the version of the APL. It is possible to define more than one
version of an API, each with a different interface. When more than one interface is
defined, the version name is used to identify the interface to select when building
the entry-point table.
<Interface_Subset>

<Routine Name="printf"/>
</Interface_Subset>
These lines define an interface subset. An interface is made up of one or more
interface subsets. An interface subset is made up of one or more routines. In this
case, only one routine is needed to support the Hello World applications, the
printf() routine. While the vThreads partition OS contains many other routines,
only those defined in the selected Interface in the Shared_Library_API document
are available to the application.

Partition OS Makefile

The partition OS makefile (makefile.pos) contains the commands required to
build the partition OS. It looks like this:

all: pos.sm pos-stubs.o
include $(WIND_BASE) /target/vThreads/config/make/Makefile.vars

vpath %.c S (WIND_BASE) /target/vThreads/config/comps/src
vpath %.o $ (WIND_BASE) /target/vThreads/1lib/obj$ (CPU) gnuvx

pos.sm: sslMain.o vThreadsComponent.o pos-ept.o pos.lds
$(LD) $(LDFLAGS) -T pos.lds -o s@ S$(filter %.0,$")

e

%.0: .C
$(CC) S$S(CFLAGS) -c -o $@ $<

pos-ept.c: pos-api.xml
xmlgen --linkage --output-entrypoints $@ S$<

pos-stubs.c: pos-api.xml
xmlgen --linkage --arch $(TOOLARCH) --output-stubs $@ $<

pos.lds: hello-pos.xml
xmlgen --1dScript --arch $(TOOLARCH) -o $@ $<

164

22 Reference Process
22.3 Hello World

There are several things to note about this file:
all: pos.sm pos-stubs.o

The partition OS build process produces two outputs, the partition OS system
module file (.sm extension) and the stubs file for the shared library (-stubs.o
extension). The system module file is a fully linked object file in ELF format that is
ready to be used in a VxWorks 653 module. The stubs file must be linked into any
application that uses the partition OS.

include $(WIND_BASE) /target/vThreads/config/make/Makefile.vars

Makefile.vars is provided with VxWorks 653. It includes a number of variables
used in building parts of a VxWorks 653 module.

vpath %.c S (WIND_BASE) /target/vThreads/config/comps/src
vpath %.o $ (WIND_BASE) /target/vThreads/1lib/obj$ (CPU) gnuvx

These lines establish the path to the object files supplied with VxWorks 653 that
will be built into the system shared library

pos.sm: sslMain.o vThreadsComponent.o pos-ept.o pos.lds

The shared library object file depends on the following;:

» sslMain.o, a file supplied as part of VxWorks 653, which provides
initialization for system shared libraries.

» vThreadsComponent.o, the vThreads component file, which is supplied with
VxWorks 653

» pos-ept.o, the entry-point table, which is generated from the information in
the Shared_Library_API document

» pos.lds, the linker script, which is generated from information in the
SharedLibraryDescription document, and which ensures that the sections of
the shared library binary file are aligned on the proper boundaries specified in
the black box

$(LD) $(LDFLAGS) -T pos.lds -o s@ S$(filter %.0,$")

This line calls the linker.

pos-ept.c: pos-api.xml
xmlgen --linkage --output-entrypoints $@ S$<

These lines generate the entry-point table from information in the
Shared_Library_API document.

pos-stubs.c: pos-api.xml
xmlgen --linkage --arch $(TOOLARCH) --output-stubs $@ $<

165

VxWorks 653
Configuration and Build Guide, 2.2

These lines generate the stubs file from information in the Shared_Library_API
document.

pos.lds: hello-pos.xml
xmlgen --1dScript --arch $(TOOLARCH) -o $@ $<

These lines generate the linker script from information in the
SharedLibraryDescription document.

For general information on the shared library configuration and build process, see
9. Shared Libraries.
Project makefile

The project makefile (makefile) contains rules to establish a project to build the
partition OS. It looks like this:
all:
Create the partition OS project
mkdir -p demo
cp Makefile.pos demo/Makefile
cp hello-pos.xml demo

cp pos-api.xml demo

Build the partition OS
make -C demo

clean:
rm -rf demo

The “all” rule copies all the required file to the demo directory and calls make in
that directory.

Building the Partition OS

To build the partition OS, use the following procedure:

1. Edit the SharedLibraryDescription document to insert the appropriate value
for the VirtualAddress attribute.

2. Open the VxWorks 653 Development Shell.
3. Change your current directory to introduction/hello-full/pos.

4. Run make, specifying the values of the variables $(CPU) and $(BSP). For
example:

make BSP=wrSbc750gx CPU=PPC604

The pos.sm and pos-stubs.o files will be created in the project directory.

166

22 Reference Process
22.3 Hello World

Application Build

The application part of the introduction example is found in the directory
hello-full/app. It includes the following files:

Application Source File

The Hello World application is a simple C language file:
#include <stdio.h>

void usrApplInit (void)

{

printf ("Hello, world!\n");

}
The main thing to note about this file is the name of the routine. It is called
usrApplnit. This is the default name for the initialization routine in VxWorks 653.
VxWorks 653 will call the usrApplInit routine of each application when it is started.
You can change the name of this routine if you want, but if you do so, you will need
to tell VxWorks 653 about the new routine name. For an example of this, see
14. Applications.

ApplicationDescription Document

The ApplicationDescription document (hello-app.xml) contains configuration
information for the library that will form part of the system configuration record.
It looks like this:

<ApplicationDescription
xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/ConfigRecord
Application.xsd">
<MemorySize
MemorySizeBss="0x10000"
MemorySizeText="0x10000"
MemorySizeData="0x10000"
MemorySizeRoData="0x10000"/>
</ApplicationDescription>

The ApplicationDescription document contains the memory black box definition
for the Hello World application.
Application Makefile

The application makefile (makefile.app), contains the commands needed to build
the application. It looks like this:

all: hello.sm

167

VxWorks 653
Configuration and Build Guide, 2.2

include $(WIND_BASE)/target/vThreads/config/make/Makefile.vars
POS_DIR = ../../pos/demo

vpath %.c $ (WIND_BASE) /target/vThreads/config/comps/src
vpath %.o $ (POS_DIR)

hello.sm: vxMain.o hello.o pos-stubs.o hello.lds
$(LD) S$(LDFLAGS) -T hello.lds -o s$@ $(filter %.0,$")

%.0: %.C
$(CC) S(CFLAGS) -c -o $@ $<

hello.lds: hello-app.xml
xmlgen --1dScript --arch $(TOOLARCH) --address $(PARTADDR) -o $@ $<

There are several things to note about this makefile:
POS_DIR = ../../pos/demo

The application makefile needs to access files from the partition OS build. The
$(POS_DIR) variable identifies the location of the partition OS build files. Note that
since the application makefile will be copied into the application project directory
and executed there, this path must be relative to the application project directory,
in this case, app/demo.

vpath %.c $ (WIND_BASE) /target/vThreads/config/comps/src

This line establishes the path to the vThreads code. This is needed to locate the file
vxMain.c, which contains initialization code for applications. This file must be
compiled into all VxWorks 653 applications.

vpath %.o0 $(POS_DIR)

This line provides the path to the directory where the partition OS files reside so
that the build can locate the pos-stubs.o file.

hello.sm: vxMain.o hello.o pos-stubs.o hello.lds

The application system module file (hello.sm) is created by linking vxMain.o, the
VxWorks 653 application initialization code; hello.o, the application object file;
pos-stubs.o, the partition OS stubs file, using hello.lds, the application linker
script.

$(LD) S$(LDFLAGS) -T hello.lds -o $@ $(filter %.0,$")
This line calls the linker to create the application system module file.

hello.lds: hello-app.xml
xmlgen --1dScript --arch $(TOOLARCH) --address $(PARTADDR) -o $@ $<

These lines create the application linker script (hello.lds) from information in the
ApplicationDescription document. The partition virtual address of the core OS is
also required to link the application. The partition virtual address is defined in the

168

22 Reference Process
22.3 Hello World

core OS configuration in the CoreOSDescription document in
CoreOSDescription/KernelConfiguration/@partition Virtual Address. You
should refer to the CoreOSDescription document for your core OS (which, in this
case, is bsp.xml in the mos/demo directory) to determine the correct partition
virtual address. You supply the value of the $(PARTADDR) variable on the
command line.

Building the Application
To build the application, use the following procedure:

1. Open the CoreOSDescription document for your platform
(hello-full/mos/bsp.xml). Locate the value for the partition virtual address. It
is located in the attribute:

CoreOSDescription/KernelConfiguration/@partition Virtual Address
2. Open the VxWorks 653 Development Shell.
3. Change your current directory to introduction/hello-full/app.

4. Run make, specifying the values of the variables CPU, BSP, and PARTADDR.
For example:

make BSP=wrSbc750gx CPU=PPC604 PARTADDR=0x40000000

The application system module file (hello.sm), is created.

Integration Build

The final step in creating a VxWorks 653 module is the integration build. The
integration build creates the system configuration record and the system image
which you load onto your target and execute.

The integration build files are located in the directory hello-full/int. They include:

Module Configuration Document

The Module configuration document (hello-module.xml) contains configuration
information for the module that will form part of the system configuration record.
It looks like this:

<Module
xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
xmlns:xi="http://www.w3.0rg/2001/XInclude"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/ConfigRecord
Module.xsd">

<CoreOS>

<xi:include href="bsp.xml"/>

169

VxWorks 653
Configuration and Build Guide, 2.2

</Core0S>
<Applications>
<Application Name="hello">
<xi:include href="hello-app.xml"/>
</Application>
</Applications>
<SharedDataRegions/>
<SharedLibraryRegions>
<SharedLibrary Name="pos">
<xi:include href="hello-pos.xml"/>
</SharedLibrary>
</SharedLibraryRegions>
<Partitions>
<Partition Name="hello" Id="1">
<xi:include href="hello-part.xml"/>
</Partition>
</Partitions>
<Schedules>
<Schedule Id="0">

<PartitionWindow PartitionNameRef="hello" Duration="0.10"/>

</Schedule>
</Schedules>
<HealthMonitor>
<SystemHMTable Name="systemHm">
<SystemState SystemState="HM_ PARTITION_MODE">
<ErrorIDLevel
ErrorIdentifier="HME_DEFAULT"
ErrorLevel="HM PARTITION_LVL"/>
</SystemState>
<SystemState SystemState="HM MODULE_MODE">
<ErrorIDLevel
ErrorIdentifier="HME_DEFAULT"
ErrorLevel="HM_ MODULE_LVL" />
</SystemState>
<SystemState SystemState="HM_ PROCESS_MODE">
<ErrorIDLevel
ErrorIdentifier="HME_DEFAULT"
ErrorLevel="HM_PROCESS_LVL"/>
</SystemState>
</SystemHMTable>
<ModuleHMTable Name="moduleHm">
<SystemState>
<ErrorIDAction ErrorIdentifier="HME_DEFAULT"
</SystemState>
<Settings
stackSize="0x0400"
maxQueueDepth="2"
/>
</ModuleHMTable>
<PartitionHMTable Name="helloHm">
<SystemState>
<ErrorIDAction ErrorIdentifier="HME_DEFAULT"
</SystemState>
<Settings
stackSize="0x0400"
maxQueueDepth="2"

170

ErrorAction=""/>

ErrorAction=""/>

22 Reference Process
22.3 Hello World

/>

</PartitionHMTable>
</HealthMonitor>
<Payloads>

<CoreOSPayload/>

<SharedLibraryPayload NameRef="pos"/>
<ConfigRecordPayload NameRef="configRecord"/>
<PartitionPayload NameRef="hello"/>
</Payloads>

</Module>

There are several things to note in this file:

<CoreOS>
<xi:include href="bsp.xml"/>
</Core0s>
These lines import the CoreOSDescription document for the core OS into the
module configuration. The project makefile will copy this document into the
project directory.
<Applications>
<Application Name="hello">
<xi:include href="hello-app.xml"/>
</Application>
</Applications>
These lines name the application and import the ApplicationDescription
document. Note that applications and shared libraries are not named in their
SharedLibraryDescription and ApplicationDescription files respectively. They are
given names in the Module configuration document for a particular module. Both
shared libraries and applications may be used in more than one module and they
are named in the module that use them in a way that is appropriate for that
particular module. This avoids the possibility of name collisions when shared
libraries and applications are reused.

<SharedDataRegions/>

The VxWorks 653 Configuration Schema requires that the SharedDataRegions
element be present in the Module configuration. Since there is no shared data
region in this module, the SharedDataRegions element is empty.
<SharedLibraryRegions>

<SharedLibrary Name="pos">

<xi:include href="hello-pos.xml"/>

</SharedLibrary>
</SharedLibraryRegions>
These lines import the SharedLibraryDescription document for the system shared
library.

<Partitions>
<Partition Name="hello" Id="1">

171

VxWorks 653
Configuration and Build Guide, 2.2

<xi:include href="hello-part.xml"/>
</Partition>
</Partitions>
These lines name the partition and import the PartitionDescription document. For
more information on partitions, see 15. Partitions.
<Schedules>
<Schedule Id="0">
<PartitionWindow PartitionNameRef="hello" Duration="0.10"/>
</Schedule>
</Schedules>
These lines establish the schedule for the module. Since there is only one
application in this module, there is only one entry in the schedule. Since the Hello
World application does not do anything other than print “Hello World” when it is
initialized, the duration of its schedule has no impact on its operation. However,
the application must be scheduled if it is to run at all. The only way that an
application can run in a VxWorks 653 module is if it is scheduled in the current
schedule.

It is possible to define more than one schedule, and the core OS can change
schedules at run time. For the Hello World module, however, only one schedule is
required. For more information on schedules, see 17. Schedules.

<HealthMonitor>
<SystemHMTable Name="systemHm">

</SystemHMTable>
<ModuleHMTable Name="moduleHm">

</ModuleHMTable>
<PartitionHMTable Name="helloHM">

<}éértitionHMTable>
</HealthMonitor>
These lines set up a health monitor for the module. Note that the PartitionHHMTable
is named “helloHm". This is the health monitor table name that was used in the
PartitionDescription document to identify the partition health monitor table to be
used for the partition. For more information on health monitoring, see 18. Health
Monitor.
<Payloads>

<CoreOSPayload/>

<SharedLibraryPayload NameRef="pos"/>

<ConfigRecordPayload NameRef="configRecord"/>

<PartitionPayload NameRef="hello"/>
</Payloads>
These lines configure the payload regions for the module. In this example, no
payload settings are specified, which leaves the location and size of payloads up to

172

22 Reference Process
22.3 Hello World

the build tools. The shared library, config record and partition payloads have a
NameRef attribute to identify the component that will reside in the payload. There
is no application payload, since the application resides in the partition. There is no
NameRef attribute on the CoreOSPayload element, since there is only one core OS
in a module. There is a NameRef on the ConfigurationRecordPayload element
because while there is only one system configuration record, and its name is
always “configRecord”, VxWorks 653 also supports user configuration records,
which also have to be mapped to configuration record payloads, if they exist. For
more information on payloads, see 21. System Images.

PartitionDescription Document

The PartitionDescription document (hello-part.xml) describes the configuration of
the partition in which the application will reside. It looks like this:

<PartitionDescription
xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/ConfigRecord
Partition.xsd">
<Application NameRef="hello"/>
<SharedLibraryRegion NameRef="pos"/>
<Settings
RequiredMemorySize="0x100000"
PartitionHMTable="helloHm"
numFiles="0Oxffffffff"
numDrivers="0xffffffff"
isrStackSize="Oxffffffff"
maxEventQStallDuration="INFINITE_TIME"/>
</PartitionDescription>

There are several things to note in this file:
<Application NameRef="hello"/>

The Application element identifies the application that will reside in the partition.
In this case the value is “hello”, which is the name given to the application in the
Module configuration document.

<SharedLibraryRegion NameRef="pos"/>

The SharedLibraryRegion element identifies the system shared library that
contains the partition OS for the partition. In this case the value is “pos”, which is
the name given to the system shared library in Module configuration document.

RequiredMemorySize="0x100000"

The RequiredMemorySize attribute defines the total memory requirement for the
partition. This includes the total size of the application, as defined by its memory
black box, as well as the stack and heap space required to run the application and
any library code that the application uses.

173

VxWorks 653
Configuration and Build Guide, 2.2

PartitionHMTable="helloHm"

The PartitionHMTable attribute identifies the partition health monitor table that
will be use to route health monitor events that are dispatched to the partition level.
The value in this case is “helloHm”, which must match the value of a partition
health monitor table name in the Module configuration document.
numFiles="0xffffffff"

numDrivers="0xffffffff"

isrStackSize="Oxffffffff"

The value “Oxffffffff” sets these values to the system defaults. For information on
these settings, see the VxWorks 653 Configuration and Build Reference.

maxEventQStallDuration="INFINITE TIME"/>

For information on this setting, see the VxWorks 653 Configuration and Build
Reference.

Project makefile

The project makefile (makefile) creates the project directory, copies files from the
various sources to the project directory, and runs the integration makefile. It looks
like this:

Create the integration project
mkdir -p demo
cp Makefile.int demo/Makefile
cp hello-module.xml demo
cp hello-part.xml demo
cp ../mos/demo/bsp.xml demo
cp ../pos/demo/hello-pos.xml demo
cp ../app/demo/hello-app.xml demo

#Integrate
make -C demo

clean:
rm -rf demo

Integration makefile

The integration makefile (makefile.int) contains the commands required to
combine the various elements of the module together to form a payload that can
be transferred to a target and executed. It also builds the system configuration
record. It looks like this:

all: net checkSize
include $(WIND_BASE) /target/config/make/Makefile.vars

XML_FILE = hello-module.xml

174

22 Reference Process
22.3 Hello World

SM_FILES = $(shell $(XMLGEN_FILES) $(XML_FILE))
SYM_FILES = $(shell $(XMLGEN_FILES) --sym $(XML_FILE))
MOS_DIR = ../../mos/demo

POS_DIR = ../../pos/demo

APP_DIR = ../../app/demo

include $(WIND_BASE)/target/config/make/Makefile.rules
coreOS.sm: $(MOS_LOCATION) /S (CPU)gnu.debug/core0S.sm ; cp $< $@
poOs.sm: $ (POS_LOCATION) /pos.sm ; cp $< s@
hello.sm: $(APP_LOCATION) /hello.sm ; Ccp $< se
Downloadable symbol tables

net: $(SYM_FILES)
checkSize: $(SM_FILES)
xmlgen --bbCheck $(addprefix -j ,$(basename $”)) configRecord.xml
There are several things to note in this file:
all: net checkSize

The integration makefile creates a network loadable payload and runs a check to
make sure that the elements of the payload fit into their assigned black boxes.

XML_FILE = hello-module.xml
SM_FILES = $(shell $(XMLGEN_FILES) $(XML_FILE))
SYM_FILES = $(shell $(XMLGEN_FILES) --sym $(XML_FILE))

These commands call XMLGen to create a list of system module files and a list of
symbol files. The list of system module files is used to assemble all the components
of the module in the system image. The list of symbol files is used by the target
shell and by the debugger (running on the host) to locate symbols in the runtime
(running on the target).

MOS_DIR = ../../mos/demo
POS_DIR = ../../pos/demo
APP_DIR = ../../app/demo

These variables point to the location of the module OS, partition OS, and
application build files. The integration makefile will be copied to the project
directory before it is executed, therefore these paths are expressed relative to the
project directory (demo), which is one level down the directory tree.

include $(WIND_BASE)/target/config/make/Makefile.rules

This line includes Makefile.rules. Makefile.rules is provided with VxWorks 653
and defines rules for building portions of the module.

coreOS.sm: $(MOS_LOCATION) /S (CPU)gnu.debug/core0S.sm ; cp S$S< $S@
pos.sm: $ (POS_LOCATION) /pos.sm ; cp $< s@

175

VxWorks 653
Configuration and Build Guide, 2.2

hello.sm: $(APP_LOCATION) /hello.sm ; cp $S< se

These lines copy the system module files for the core OS, system shared library,
and application to the current directory.

net: $(SYM_FILES)
This line specifies the creation of symbol files.

checkSize: $(SM_FILES)
xmlgen --bbCheck $(addprefix -j ,$(basename $")) configRecord.xml

This rule is used to check that the sizes of the ELF sections of the system module
files fit into the black boxes specified in the configuration documents. The sizes are
checked against the generated configuration file configRecord.xml, which is
created as part of the build.
Building the System Image
To build the system image, use the following procedure:
1. Open the VxWorks 653 Development Shell.
2. Change your current directory to introduction/hello-full/int.
3. Run make, specifying the values of the variable CPU. For example:
make CPU=PPC604

A network loadable system image for the Hello World module is created.

For instructions on running this system image on your target, see the Wind River
Workbench User’s Guide 2.6.1, VxWorks 653 Version.

22.3.1 Hello World cert

The introduction example also contains a cert version of Hello World. The cert
version of a module differs from a debug version in the following ways:

= Different compiler flags are used to compile source components.
» Different object files are used to include binary components.
* Some binary components may not be available in cert.

The differences between the debug and cert version of Hello World are as follows:

176

22 Reference Process
22.3 Hello World

Module OS cert Differences

To build a cert version of the VxWorks 653 core OS, the following lines are added
or changed in the core OS makefile:

prjCreate -domtype kernel -ddf certKernel -prj demo/coreos -bsp $(BSP) \
-name coreOS
prj projBuildSet -p demo/coreos $(CPU)gnu.cert

The prjCreate command gains an added option: -ddf certKernel. This option tells
the prjCreate command to create a cert version of the core OS. This means that a
different set of default components will be included, and that a different set of
binaries will be used for those components.

The prj projBuildSet command sets the build spec to be used for building the core
OS. This line was not needed in the debug example (hello-full) because the
appropriate debug build spec would be selected automatically based on the CPU
used. To build a cert version of the core OS, however, you must specify the use of
the appropriate cert build spec for the CPU.

Building the cert Module OS

To build the cert module OS, use the following procedure:

1. Open the VxWorks 653 Development Shell.

2. Change your current directory to introduction/hello-cert/mos.

3. Run make, specifying the values of the variables $(CPU) and $(BSP). For
example:

make BSP=wrSbc750gx CPU=PPC604

The makefile will run the create a core OS project and then run the makefile
that project contains, creating a system module file and supporting files for the
core OS.

Partition OS cert Differences

The cert version of the partition OS makefile contains two changes. First, it
redefines the $(CERT) variable, which is used in Makefile.vars to set the
appropriate compiler flags for a cert build:

CERT=1

Second, it changes the vpath statement used to locate the object files for partition
OS binaries:

vpath %.o $ (WIND_BASE) /target/vThreads/lib/obj$ (CPU) gnucert

177

VxWorks 653
Configuration and Build Guide, 2.2

This change will cause the build to include the cert version of the partition OS
binaries that are listed as dependencies of the partition OS system module file. In
the Hello World example, all the components used have both debug and cert
versions. In your own project, if you have debug components for which no cert
versions exist, they will have to be removed from the dependency list in order to
build a cert version.

Building the cert Partition OS

To build the cert partition OS, use the following procedure:

1. Edit the SharedLibraryDescription document to insert the appropriate value
for the VirtualAddress attribute.

2. Open the VxWorks 653 Development Shell.
3. Change your current directory to introduction/hello-cert/pos.

4. Run make, specifying the values of the variables $(CPU) and $(BSP). For
example:

make BSP=wrSbc750gx CPU=PPC604

The pos.sm and pos-stubs.o files will be created in the project directory.

Application cert Differences

The makefile for the cert version of the application redefines the $(CERT) variable,
which is used in Makefile.vars to set the appropriate compiler flags for a cert
build:

CERT=1

Building the cert Application
To build the cert application, use the following procedure:

1. Open the CoreOSDescription document for your core OS
(hello-cert/pos/bsp.xml). Locate the value for the partition virtual address. It
is located in the attribute:

CoreOSDescription/KernelConfiguration/@partition Virtual Address
2. Open the VxWorks 653 Development Shell.
3. Change your current directory to introduction/hello-cert/app.

4. Run make, specifying the values of the variables $(CPU), $(BSP), and
$(PARTADDR). For example:

178

22 Reference Process
22.4 Module OS

make BSP=wrSbc750gx CPU=PPC604 PARTADDR=0x40000000

The application system module file, hello.sm, is created.

Building the cert System Image
To build the cert system image, use the following procedure:
1. Open the VxWorks 653 Development Shell.
2. Change your current directory to introduction/hello-cert/int.
3. Run make, specifying the values of the variable CPU. For example:

make CPU=PPC604

A network loadable system image for the Hello World module is created.

For instructions on running this system image on your target, see the Wind River
Workbench User’s Guide 2.6.1, VxWorks 653 Version.

22.4 Module OS

The module OS examples are located in:
installDir/vxworks653-2.2/target/reference/helloWorld/moduleOS
The illustrate the common variants of a VxWorks 653 core OS build:

hello-cert
The hello-cert example illustrates how to build a certified core OS.

hello-ace
The hello-ace example illustrates how to build a core OS that includes the
agent for certified environment (ACE).

hello-bincomp
The hello-bincomp example illustrates how to build a core OS the includes
additional binary components (beyond those that are included by default).

hello-srccomp
The hello-srccomp example illustrates how to build a core OS that includes
source components.

179

VxWorks 653
Configuration and Build Guide, 2.2

hello-ref
The hello-ref example is a reference example that is identical to the core OS
build in the introduction example. You can use this example as a reference
point to diff the files in the other examples to see what changes have been
made to support the new features they include.

hello-full
The hello-full example contains all the files for a complete module build. It is
configured to export all the components of a module so that they can be used
with all of the different Module OS examples to build and run a complete
Hello World module.

22.4.1 Building and Exporting a Basic Module

The first step in exploring the module OS examples is to build a basic Hello World
module and export its components so that they can be used to build complete
modules on top of the different varieties of module OS.

To build and export the basic module:

1. Build the project following the directions for building a complete module in
22.2 Quick Start, p.158, substituting references to the directory
helloWorld/introduction/hello-full with helloWorld/ModuleOS/hello-full.

2. Export the module components by running:

make export

22.4.2 Module OS Cert Build

The cert module OS build is the same as that provided in the introduction
(helloWorld/introduction/hello-cert/mos). It is provided here to allow you to
explore the differences between a cert and debug build by comparing it to the
module OS build in the reference project (helloWorld/moduleOS/hello-ref/mos).

To build the cert module OS, follow the directions under 22.3.1 Hello World cert,
p-176, substituting path names as appropriate.

22.4.3 Module OS with ACE

The hello-ace example shows how to build a module OS with ACE. Actually, the
ACE part of the project is separate from the core OS, as this is the way ACE works.

180

22 Reference Process
22.4 Module OS

It provides debug support in a system with a certified core OS by providing a
debug agent that exists outside of the operating system.

NOTE: ACE is not supported on the simulator. Therefore, you cannot run this part
of the reference process on the simulator. You must run it on a real target.

The example therefore consists of a makefile that combines two separate projects,
a cert core OS project and an ACE project. You can see the differences between a
regular cert core OS project and this project by comparing the files in this project
with the files in the moduleOS\hello-cert example.

ACE Differences

The ace directory of the ACE example contains the following files:

Project Makefile

The project makefile (Makefile) contains lines to create and build an ACE project.
The lines that create the ACE project are as follows:

prjCreate -domtype ace -prj demo/ace -build $(CPU)gnu.cert -name ace

prj projBuildTagValueSet -p demo/ace COREOS_DIR \

../../../mos/demo/$ (CPU)gnu.cert

prj projBuildTagValueSet -p demo/ace COREOS_NAME coreOS.sm

The prjCreate command creates the project. In this case, the project type, specified
by the -domtype option, is “ace”. The -build option sets the build spec to cert. The
projBuildTagValueSet commands are then use to specify the name and location of
the core OS build files for the core OS that ACE is to work with.

The lines that build the ACE project are as follows:

prj domComponentAdd -p demo/ INCLUDE_WDB_COMM_SERIAL

prj domParameterValueSet -p demo/ WDB_TTY_ CHANNEL O

xmlgen --1dScript --arch $(TOOLARCH) -o demo/ace.lds hello-ace.xml \
/mos/demo/bsp . xml
make -C demo ADD_NEEDED
make -C demo

prj commands are used to include the serial interface component
(INCLUDE_WDB_COMM_SERIAL) and set the TTY channel for serial
communications to 0.

The XMLGen command creates the linker script for ACE. To do this, it needs to
access the CoreOSDescription document for the core OS that ACE will work with.
In this case, that document is bsp.xml.

181

VxWorks 653
Configuration and Build Guide, 2.2

ACE Configuration Document

The ACE example contains an Ace configuration document that contains the
memory black box for ACE:
<Ace
xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/ConfigRecord
CoreOS.xsd"
name="ace">
<MemorySize
MemorySizeBss="0x10000"
MemorySizeText="0x30000"
MemorySizeData="0x1000"
MemorySizeRoData="0x1000"/>
</Ace>

Running the ACE Build

You can perform each of the build steps for ACE separately, or you can build the
entire ACE module at once.

To build the ACE project in one step:

1. Make sure that you have built and exported the moduleOS/hello-full project
according to the directions at 22.4.1 Building and Exporting a Basic Module,
p-180.

2. Open the VxWorks 653 Development Shell.
3. Change your current directory to moduleOS/hello-ace.

4. Run make, specifying the values of the $(BSP) and $(CPU) variables. For
example:

make BSP=wrSbc750gx CPU=PPC604

A network loadable system image for the Hello World module is created in the
directory moduleOS/hello-ace/int/demo.

For instructions on running this system image on your target, see the Wind River
Workbench User’s Guide 2.6.1, VxWorks 653 Version.

To build the ACE project as separate steps:

1. Make sure that you have built and exported the moduleOS/hello-full project
according to the directions at 22.4.1 Building and Exporting a Basic Module,
p-180.

2. Open the VxWorks 653 Development Shell.

182

22 Reference Process
22.4 Module OS

3. Change your current directory to moduleOS/hello-ace/mos.

4. Run make, specifying the values of the $(BSP) and $(CPU) variables. For
example:

make BSP=wrSbc750gx CPU=PPC604

5. Change your current directory to moduleOS/hello-ace/ace.

6. Run make, specifying the value of the $(BSP) variable. For example:
make BSP=wrSbc750gx

7. Change your current directory to moduleOS/hello-ace/int.

8. Run make, specifying the value of the $(BSP) variables. For example:
make BSP=wrSbc750gx

A network loadable system image for the Hello World module is created in the
directory moduleOS/hello-ace/int/demo.

For instructions on running this system image on your target, see the Wind River
Workbench User’s Guide 2.6.1, VxWorks 653 Version.

22.4.4 Module OS with Binary Components

A default core OS includes a number of binary components. In addition to the
default set, there are a number of components that you can include to add
additional functionality to your core OS. The moduleOS/hello-bincomp example
illustrates how to add binary components to the core OS. For a complete listing of
available components, see the VxWorks 653 Configuration and Build Reference.

To see the changes that the use of binary components introduces into a core OS
build, you can compare the files in this example to the files in the files in the
moduleOS/hello-ref example.

Module Binary Component Differences

The changes are as follows:

Makefile Differences

The example adds the following lines to the makefile:

prj domComponentBundleAdd -prj demo/
$ (WIND_BASE) /target/config/comps/vxWorks/sysTemplates/vxKernel/targetTools.dd
£

prj domComponentRemove -prj demo/ INCLUDE_SHELIL_VI_MODE

prj domComponentAdd -prj demo/ INCLUDE_SHELL_EMACS_MODE

183

VxWorks 653
Configuration and Build Guide, 2.2

prj domParameterValueSet -prj demo/ SHELL_STACK_SIZE 0x8000
These lines perform the following operations:

prj domComponentBundleAdd -prj demo/

$ (WIND_BASE) /target/config/comps/vxWorks/sysTemplates/vxKernel/targetTools.dd
£

This line adds a bundle of components to the core OS. The contents of the bundle
are described in the file targetTools.ddf. They include target-side debugging tools.
As with other modifications to a core OS project, this command specifies the
location of the core OS project to which the components will be added using the
-prj option. For information on the content of the targetTools bundle, see the
VxWorks 653 Configuration and Build Reference.

prj domComponentRemove -prj demo/ INCLUDE_SHELIL_VI_MODE
prj domComponentAdd -prj demo/ INCLUDE_SHELL_EMACS_MODE

These lines remove the component that provides for vi-mode editing in the target
shell and replace it with a component that provides emacs-mode editing.

prj domParameterValueSet -prj demo/ SHELL_STACK_SIZE 0x8000

This line changes the value of the parameter SHELL_STACK_SIZE, which controls
the size of the stack for the shell component.

Running the Binary Component Build

Aswith the ACE build (22.4.3 Module OS with ACE, p.180), you can build the entire
module at once by running make in the hello-bincomp directory, or you can
perform each of the build steps for binary component build separately by running
make in the mos and int directories. In each case you must specify the appropriate
value for the BSP variable on the make command line.

22.4.5 Module OS with Source Components

The hello-srccomp example shows how to add your own source components to the
core OS. In this case, the code that prints the hello message is included in the core
OS component. The following is the code for that component:

#include <stdio.h>

void kernelHello (void)

{
printf ("Hello from the core 0S!\n");

}

To build this code as a core OS component, the following lines are added to the core
OS project makefile:

184

22 Reference Process
22.5 Partition OS

prjCreate -type kernelComponent -prj hello/ -build $ (CPU)gnu.debug

cp khello.c hello

prj compFileAdd -prj hello/ hello/khello.c

prj compAttributeSet -prj hello/ INIT RTN "kernelHello();"

prj domComponentAdd -prj demo/ hello/ INCLUDE_HELLO

The prjCreate command creates a project for the new component. In this case, the
-type option is set to “kernelComponent”. The cp command copies the source file
to the project directory and the prj compFileAdd is used to add the source file to
the component project. Then the prj compAttributeSet command is used to set the
INIT_RTN parameter for the component to the name of the main routine in the
source code, “kernelHello();”. Finally, the prj domComponentAdd command is
used to add the new component to the core OS project. No additional commands
are required to compile the .c file. The makefile created by the prj commands will
take care of all the details.

In this example, the hello message is not printed by the application but by the core
OS itself. The code will be run when the core OS initializes the component. If you
integrate this core OS with the Hello World application and run it, you will see one
hello message from the core OS and a second from the application.

22.5 Partition OS

The partition OS examples are located in:
installDir/[vxworks653-2.2/target/reference/helloWorld/partitionOS

They illustrate the common variants of a vThreads partition OS build:

hello-cert
The hello-cert example illustrates how to build a certified partition OS.
hello-bincomp

The hello-bincomp example illustrates how to build a partition OS that
includes additional binary components (beyond those that are included by
default).

hello-srccomp
The hello-srccomp example illustrates how to build a partition OS that
includes source components.

185

VxWorks 653
Configuration and Build Guide, 2.2

hello-sd
The hello-sd example illustrates how to build a partition OS that includes a
shared data region containing the text of a hello world message.

hello-ref
The hello-ref example is a reference example that is identical to the partition
OS build in the introduction example. You can use this example as a reference
point to diff the files in the other examples to see what changes have been
made to support the new features they include.

hello-full
The hello full example contains all the files for a complete module build. It is
configured to export all the components of a module so that they can be used
with all of the different Module OS examples to build and run a complete
Hello World module.

22.5.1 Building and Exporting a Basic Module

The first step in exploring the Partition OS examples is to build a basic Hello World
module and export its components so that they can be used to build complete
modules on top of the different varieties of partition OS.

To build and export the basic module:

1. Build the project following the directions for building a complete module in
22.2 Quick Start, p.158, substituting references to the directory
helloWorld/introduction/hello-full with helloWorld/partitionOS/hello-full.

2. Export the module components by running:

make export

22.5.2 Partition OS with Binary Components

The binary component example (hello-bincomp) adds the POSIX component to
the partition OS. The POSIX component adds support for the POSIX API. For
information on POSIX, see the VxWorks 653 Programmer’s Guide. For information
on the binary components supplied with VxWorks 653, see the VxWorks 653
Configuration and Build Reference.

Adding this component to the partition OS means that the example has to change
the “pos.sm” rule in the partition OS makefile to add the component object files to
the dependencies list:

186

22 Reference Process
22.5 Partition OS

pos.sm: sslMain.o vThreadsComponent.o vThreadsPosixComponent.o \
vThreadsPosixInit.o \

pos-ept.o pos.lds

The example also adds the following lines, which cause the value of the
AIO_TASK_STACK_SIZE parameter to be passed to the compiler when the
vThreadsPosixInit configlette is compiled:

CFLAGS_EXTRA = $ (CFLAGS_$@)

CFLAGS_vThreadsPosixInit.o = -DAIO_TASK_STACK_SIZE=0x10000

Another important thing to notice about this example is what does not change. The
SharedLibraryDescription file (hello-pos.xml) contains the memory black box
information for the partition OS:

<MemorySize

MemorySizeBss="0x10000"

MemorySizeText="0x40000"

MemorySizeData="0x10000"

MemorySizeRoData="0x10000"
/>
This is the same black box used in the basic Hello World module (compare this
black box to the one in the partitionOS/hello-ref project). Why does the size of the
black box not change when the POSIX component is added? The reason is that the
black box was originally sized to allow for growth. This means that a configuration
record based on this black box would not have to be revised or re-certified to
accommodate the addition of a component to the partition OS. By allowing you to
reserve memory for future growth, black boxes allow you to reduce the cost of
change and certification for your module.

Building the Partition OS with Binary Components

You can perform each of the build steps for the partition OS separately, or you can
build the entire Hello World module at once.

To build the entire module in one step:

1. Make sure that you have built and exported the partitionOS/hello-full project
according to the directions at 22.4.1 Building and Exporting a Basic Module,
p-180.

2. Edit the SharedLibraryDescription document
(partitionOS/hello-bincomp/pos/hello-pos.xml) to replace the string
“$(SSLADDR)” with the shared library virtual address. You can use the same
address that you used for the partitionOS/hello-full project.

3. Open the VxWorks 653 Development Shell.
4. Change your current directory to partitionOS/hello-bincomp.

187

VxWorks 653
Configuration and Build Guide, 2.2

5. Run make, specifying the values of the variable CPU. For example:
make CPU=PPC604

A network loadable system image for the Hello World module is created in the
directory partitionOS/hello-bincomp/int/demo.

For instructions on running this system image on your target, see the Wind River
Workbench User’s Guide 2.6.1, VxWorks 653 Version.

To build the module as separate steps:

1. Make sure that you have built and exported the partitionOS/hello-full project
according to the directions at 22.4.1 Building and Exporting a Basic Module,
p-180.

2. Edit the SharedLibraryDescription document
(partitionOS/hello-bincomp/pos/hello-pos.xml) to replace the string
“$(SSLADDR)” with the shared library virtual address. You can use the same
address that you used for the partitionOS/hello-full project.

3. Open the VxWorks 653 Development Shell.

4. Change your current directory to partitionOS/hello-bincomp/pos.

5. Run make, specifying the values of the variable CPU. For example:
make CPU=PPC604

6. Change your current directory to partitionOS/hello-bincomp/int.

7. Run make, specifying the values of the variable CPU. For example:
make CPU=PPC604

A network loadable system image for the Hello World module is created in the
directory partitionOS/hello-bincomp/int/demo.

For instructions on running this system image on your target, see the Wind River
Workbench User’s Guide 2.6.1, VxWorks 653 Version.

22.5.3 Partition OS with Source Components

As with the source component example in the core OS, the source component
example for the partition OS moves the hello message code into a source
component for the partition OS. Here is the code:

#include <vxWorks.h>
#include <stdio.h>

188

22 Reference Process
22.5 Partition OS

void sslHello (void) ;
void *helloInit _VTH_COM_INIT = sslHello;

void sslHello (void)

{

printf ("Hello from the partition 0S!\n");

}
For information on writing partition OS components, see the VxWorks 653
Programmer’s Guide.

The only change to the rest of the configuration files is the addition of the object file
for the component to the pos.sm rule in the partition OS makefile and the addition
of a generic rule to compile .o files from .c files:

pos.sm: sslMain.o vThreadsComponent.o poshello.o pos-ept.o pos.lds

%.0: %.C
$(CC) S$(CFLAGS) -c -o $@ $<

Running the Source Component Build

As with the binary component build (22.5.2 Partition OS with Binary Components,
p-186), you can build the entire module at once by running make in the
hello-srccomp directory, or you can perform each of the build steps for binary
component build separately by running make in the pos and int directories. In
each case you must edit the SharedLibraryDescription document to insert the
shared library virtual address and you must specify the appropriate value for the
BSP variable on the make command line.

22.5.4 Partition OS with Shared Data Region

A shared data region is a region of memory set aside for data shared between
applications. The shared data region may be empty, allowing the applications to
use it to exchange data, or it may contain a database that contains information that
the applications can share. In this example, the hello world message will be read
from a shared data region. (Empty shared data regions do not need to be built.
They are simply configured in the SharedDataDescriptions document.)

A shared data region is a separate project that requires its own source,
configuration, and makefiles.

Shared Data Source

The shared data source file looks like this:

char sd[] = "Hello inside the Shared Data region";

189

VxWorks 653
Configuration and Build Guide, 2.2

This line simply defines a character string. VxWorks 653 does not define a
particular access mechanism for shared data regions, but leaves their structure and
access methods up to the individual developer.

Partition OS Source Component

The application from the shared data region example has been changed to access
the text of the hello message from the shared data region.

#include <vxWorks.h>
#include <stdio.h>
#include <sdRgnLib.h>

void sslHello (void) ;
void *helloInit _VTH_COM_INIT = posHello;

void posHello (void)

{
char *sdPtr = sdRgnAddrGet ("sd");
printf ("%$s accessed within the partition O0S!\n", sdPtr);

}

For more information on programming partition OS components and shared data
regions, see the VxWorks 653 Programmer’s Guide.

SharedDataDescription Document

The configuration information for the shared data region is contained in the
SharedDataDescription document:

<SharedDataDescription
xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/ConfigRecord
Application.xsd"
Size="0x00001000"
DataType="DATABASE"
VirtualAddress="0"
CachePolicy="DEFAULT"
SystemAccess="READ_WRITE"
/>

For information on the individual fields in the SharedDataDescription document,
see the VxWorks 653 Configuration and Build Reference.

Shared Data Makefile
The shared data makefile looks like this:

all: sd.sm

include $(WIND_BASE) /target/vThreads/config/make/Makefile.vars

190

22 Reference Process
22.6 Application

sd.sm: sd.o sd.lds
$(LD) S$(LDFLAGS) -T sd.lds -o $@ sS(filter %.0,$")

%.0: %.C
$(CC) S(CFLAGS) -c -o $@ $<

sd.lds: hello-sd.xml

xmlgen --1dScript --arch ppc --api-version sd -o $@ $<
The structure of the makefile is the same as for a shared library. The shared data
region is compiled by the default rules, a linker script is generated from the black
box information in the SharedDataDescription document, and the shared data
region is built into a system module file (sd.sm).

The other files are the same as in the source component example. When you build
this example, the hello message from the shared data region will be shown when
the partition is initialized.

Running the Shared Data Build

As with the binary component build (22.5.2 Partition OS with Binary Components,
p-186), you can build the entire module at once by running make in the hello-sd
directory, or you can perform each of the build steps for binary component build
separately by running make in the sd, pos and int directories. In each case you
must edit the SharedLibraryDescription document to insert the shared library
virtual address and you must specify the appropriate value for the BSP variable on
the make command line.

22.6 Application

The application examples are located in:
installDir/[vxworks653-2.2/target/reference/helloWorld/application
They illustrate the common variants of an application build:

hello-cert
The hello-cert example illustrates how to build an application for a certified
environment. Note that building an application for a cert environment does
not in itself imply that the application is certified. The application must be
certified separately according to the applicable certification procedures.

191

VxWorks 653
Configuration and Build Guide, 2.2

hello-cpp
The hello-cpp example illustrates how to build an application written in C++.

hello-two
The hello-two example illustrates the case in which a module includes more
than one application.

hello-ref
The hello-ref example is a reference example that is identical to the application
build in the introduction example. You can use this example as a reference
point to diff the files in the other examples to see what changes have been
made to support the new features they include.

hello-full
The hello full example contains all the files for a complete module build. It is
configured to export all the components of a module so that they can be used
with all of the different Application examples to build and run a complete
Hello World module.

22.6.1 Building and Exporting a Basic Module

The first step in exploring the Application examples is to build a basic Hello World
module and export its components so that they can be used to build complete
modules using the different varieties of application.

To build and export the basic module:

1. Build the project following the directions for building a complete module in
22.2 Quick Start, p.158, substituting references to the directory
helloWorld/introduction/hello-full with helloWorld/Application/hello-full.

2. Export the module components by running:

make export

22.6.2 Application in C++

The C++ application (hello.cpp) adds a time statement to the Hello World
program. For information on programming in C++ for VxWorks 653, see the
VxWorks 653 Programmers Guide.

Adding the C++ application involves a number of changes to the application
makefile. Here are the changed lines:

hello.sm: vxMain.o hello.pm hello-ctors.o hello.lds

192

22 Reference Process
22.6 Application

$(LD) S$(LDFLAGS) -T hello.lds -o $@ $(filter %$.0 %.pm,S$")

hello.pm: hello.o pos-stubs.o
$(LD) $(LDFLAGS_PARTIAL) -o $@ $”

$-ctors.c: %.pm
$(NM) $< | $(MUNCH) $(MUNCHFLAGS) > S$@

These lines break the build into two separate stages. C++ applications with global
objects require the OS to call the object constructors before starting the application.
This is accomplished with a three-step linking process:

1. The C++ application is linked into a .pm file (pm stands for partially-linked
module)

2. The $(MUNCH) tool generates the list of global constructors from the .pm file

3. The list of constructors and the .pm file are linked into the system module
(.sm) file.

%.0: $.Ccpp
$(CC) $(C++FLAGS) -c -o $@ $<

This rule provides a generic rule for building C++ files.

$-ctors.c: %.pm
$(NM) $< | $(MUNCH) $(MUNCHFLAGS) > S$@

This rule provides a generic rule for building global constructors files from .pm
files.
Building the C++ Application

You can build the entire Hello World module at once, or you can perform each of
the build steps for the C++ application separately.

To build the entire module in one step:

1. Make sure that you have built and exported the application/hello-full project
according to the directions at 22.6.1 Building and Exporting a Basic Module,

p.192.

2. Open the VxWorks 653 Development Shell.
3. Change your current directory to application/hello-cpp.
4. Run make, specifying values for the BSP. For example:

make CPU=PPC604 TOOL=gnu BSP=wrSbc750gx PARTADDR=0x40000000

To determine PARTADDR for other BSPs, see 22.2 Quick Start, p.158.

193

VxWorks 653
Configuration and Build Guide, 2.2

A network loadable system image for the Hello World module is created in the
directory application/hello-cpp/int/demo.

For instructions on running this system image on your target, see the Wind River
Workbench User’s Guide 2.6.1, VxWorks 653 Version.

To build the module as separate steps:

1. Make sure that you have built and exported the application/hello-full project
according to the directions at 22.6.1 Building and Exporting a Basic Module,
p-192.

2. Open the VxWorks 653 Development Shell.
3. Change your current directory to application/hello-cpp/app.

4. Run make, specifying values for the BSP. For example:

make CPU=PPC604 TOOL=gnu BSP=wrSbc750gx PARTADDR=0x40000000

To determine PARTADDR for other BSPs, see 22.2 Quick Start, p.158.
5. Change your current directory to application/hello-cpp/int.
6. Run make, specifying values for the BSP. For example:

make CPU=PPC604 TOOL=gnu BSP=wrSbc750gx PARTADDR=0x40000000

To determine PARTADDR for other BSPs, see 22.2 Quick Start, p.158.

A network loadable system image for the Hello World module is created in the
directory application/hello-cpp/int/demo.

For instructions on running this system image on your target, see the Wind River
Workbench User’s Guide 2.6.1, VxWorks 653 Version.

22.6.3 Two Applications

The hello-two example illustrates how to create a module with two applications.

There are several new or changed files in this example:

Second application file

The second application is a simple Hello World program:
#include <stdio.h>

void usrAppInit (void)

{

printf ("Hello from the second application!\n");

194

22 Reference Process
22.6 Application

}

Second ApplicationDescription Document

The ApplicationDescription document for the second application (hello2.c) is new,
but it is identical to the ApplicationDescription document for the first application
(hello.c). (Not surprisingly, the black box size is the same for both applications.)

Second Application Makefile

Other than the names of the files, the makefile for the second application

(makefile.app) is identical to the makefile for the first application (makefile.app2).

Project Makefile

The project makefile (Makefile) has changed to create the project for the second
application:

all:

Create the application project
mkdir -p demo
cp Makefile.app2 demo/Makefile
cp hello-secondapp.xml demo
cp hello2.c demo

Build the application
make -C demo

PartitionDescription Document

The PartitionDescription document (hello-secondpart.xml) for the second
application’s partition is identical to the PartitionDescription of the first
application (hello-part.xml), except that it names a different application and a
different health monitor table.

Module Configuration Document
There are several changes to the Module configuration document
(hello-module.xml):

<Application Name="hello2">
<xi:include href="hello-secondapp.xml"/>
</Application>

These lines include the ApplicationDescription document for the second
application.

<Partition Name="hello2" Id="2">
<xi:include href="hello-secondpart.xml"/>

195

VxWorks 653
Configuration and Build Guide, 2.2

</Partition>

These lines include the PartitionDescription document for the second application’s
partition.

<Schedule Id="0">

<PartitionWindow PartitionNameRef="hellol" Duration="0.10"/>

<PartitionWindow PartitionNameRef="hello2" Duration="0.10"/>
</Schedule>

These lines add the second application to the default schedule.

<Payloads>

<CoreOSPayload/>

<SharedLibraryPayload NameRef="pos"/>
<ConfigRecordPayload NameRef="configRecord"/>
<PartitionPayload NameRef="hellol"/>
<PartitionPayload NameRef="hello2"/>
</Payloads>

These lines define a payload for the second application.

Integration Makefile

The only change in the integration makefile (makefile.int) is the line to copy the
system module file for the second application:

hello2.sm: $(APP2_DIR)/hello2.sm ; cp $< se

Running the Two Applications Build

As with the C++ application build (22.6.2 Application in C++, p.192), you can build
the entire module at once by running make in the hello-two directory, or you can
perform each of the build steps for binary component build separately by running
make in the app1, app2 and int directories. In each case you must specify the
appropriate value for the BSP variable on the make command line.

22.7 Shared Library

The shared library examples are located in:
installDirlvxworks653-2.2/target/reference/helloWorld/sharedLibrary

They illustrate the common variants of a shared library build. Earlier versions of
the Hello World module have not used a shared library, so all the shared library
variants are new. The shared library example includes the following examples:

196

22 Reference Process
22.7 Shared Library

hello-ref
In the shared library example, the ref example does not include a shared
library. Instead it reproduces the hello-two example from the application
example as a starting point for creating a solution that uses a shared library to
support the two applications. You can use it as a reference point to compare
with the shared library examples.

hello-sl
The hello-sl example shows how common functionality can be placed in a
shared library and accessed by more than one application.

hello-version
The hello-version example shows how to create a shared library with more
than one version of its interface.

hello-full
The hello full example contains all the files for a complete module build. It is
configured to export all the components of a module so that they can be used
with all of the different shared library examples to build and run a complete
Hello World module.

22.7.1 Building and Exporting a Basic Module

The first step in exploring the shared library examples is to build a basic Hello
World module and export its components so that they can be used to build
complete modules using the different varieties of shared library.

To build and export the basic module:

1. Build the project following the directions for building a complete module in
22.2 Quick Start, p.158, substituting references to the directory
helloWorld/introduction/hello-full with
helloWorld/sharedLibrary/hello-full.

2. Export the module components by running:

make export

22.7.2 Hello from the Shared Library

The shared library example (hello-sl) places the routine that displays the hello
world message into a shared library and accesses it from two different
applications. It includes a number of new or changed files:

197

VxWorks 653
Configuration and Build Guide, 2.2

Shared Library Source File
The shared library source file (hellolib.c) looks like this:

#include <stdio.h>

void hello (void)
{
printf ("Hello, world!\n");
}

void usrAppInit (void)

{

}
What is important to note about this program is that it is not designed to run when
the library is initialized (as was the case in the partition OS example described in
22.5.3 Partition OS with Source Components, p.188) but when it is called from an
application. Thus the initialization routine, userApplInit() is an empty routine and
the Hello World functionality is contained in a separate routine, hello().

SharedLibraryDescription Document

The SharedLibraryDescription document for the shared library looks like this:

<SharedLibraryDescription
xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/ConfigRecord
Application.xsd"
SystemSharedLibrary="false"
VirtualAddress="$ (SLADDR) ">
<MemorySize
MemorySizeBss="0x10000"
MemorySizeText="0x10000"
MemorySizeData="0x10000"
MemorySizeRoData="0x10000"
/>
</SharedLibraryDescription>

Just as you did with the system shared library that holds the partition OS in the
introduction example, you must calculate the correct value for the VirtualAddress
parameter and update the SharedLibraryDescription file accordingly. For a
production system, you will need to calculate the virtual memory map of the
module to choose appropriate addresses for all shared libraries. For building this
example, however, you can safely choose an address that is one megabyte greater
than the shared library virtual address of the partition OS.

For information on the meaning of each of the settings on the
SharedLibraryDescription document, see the VxWorks 653 Configuration and Build
Guide.

198

22 Reference Process
22.7 Shared Library

Shared_Library_API Document
The Shared_Library_API document describes the interface of the shared library.

<Shared_Library API
xmlns="http://www.windriver.com/vxWorks653/SharedLibraryAPT"
xmlns:xi="http://www.w3.0rg/2001/XInclude"
Name="Hello Library"

>

<Interface>
<Version Name="versionl"/>
<Interface_Subset>

<Routine Name="hello"/>

</Interface_Subset>

</Interface>

</Shared_Library_ API>

For more information on the meaning of the fields in the Shared_Library_API
document, see the VxWorks 653 Configuration and Build Reference. For more
information on shared library interfaces, see 9Shared Libraries, p.57.

Shared Library Makefile

The shared library makefile is used to build the shared library. Structurally it is
identical to the partition OS makefile.

all: sl.sm sl-stubs.o
include $(WIND_BASE)/target/vThreads/config/make/Makefile.vars

vpath %.c $ (WIND_BASE) /target/vThreads/config/comps/src
vpath %.o ../../../exports

sl.sm: vxMain.o hellolib.o pos-stubs.o sl-ept.o sl.lds
$(LD) S$(LDFLAGS) -T sl.lds -o $@ s(filter %.0,$")

o0

%.0: .C
$(CC) S(CFLAGS) -c -o $@ $<

sl-ept.c: sl-api.xml
xmlgen --linkage --output-entrypoints $@ $<

sl-stubs.c: sl-api.xml
xmlgen --linkage --arch ppc --output-stubs $@ $<

sl.lds: hello-sl.xml
xmlgen --1dScript --arch ppc --api-version sl -o $@ $<

Application Source Files

The source code for the first application (hello.c) changes to call the library routine:

#include <stdio.h>

199

VxWorks 653
Configuration and Build Guide, 2.2

void usrApplInit (void)

{
printf ("Starting the first application\n") ;

hello ();
}

Similarly for the second application (hello2.c):
#include <stdio.h>

void usrAppInit (void)
{

printf ("Starting the second application\n");
hello ();
}

For information on writing applications that access shared library code, see the
VxWorks 653 Programmer’s Guide.

PartitionDescription Files

The partition description files for both applications change to include a reference
to the shared library. The following example shows the partition description for the
first application:

<PartitionDescription
xmlns="http://www.windriver.com/vxWorks653/ConfigRecord"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.windriver.com/vxWorks653/ConfigRecord
Partition.xsd">
<SharedLibraryRegion NameRef="pos"/>
<SharedLibraryRegion NameRef="sl"/>
<Application NameRef="hello"/>
<Settings
RequiredMemorySize="0x100000"
PartitionHMTable="helloHm"
numFiles="0Oxffffffff"
numDrivers="0xffffffff"
isrStackSize="0xffffffff"
maxEventQStallDuration="INFINITE TIME"
/>
</PartitionDescription>

An application can only access those shared libraries that are referenced by its
partition. Since a partition must provide stack and heap space for the execution of
each shared library that it references, a partition should only reference those
libraries that are used by its application.

Application Makefiles

The application makefiles change to include the shared library stubs in the
application build and to add a vpath statement to locate the stubs files:

200

22 Reference Process
22.7 Shared Library

[

vpath %.o ../../sl/demo

hellol.sm: vxMain.o hello.o pos-stubs.o sl-stubs.o partl.lds

Building the Hello World Shared Library Example

You can build the entire module at once by running make in the hello-sl directory,
or you can perform each of the build steps for binary component build separately
by running make in the sl, app1, app2 and int directories. In each case, you must
specify the appropriate value for the BSP variable on the make command line.

22.7.3 Shared Library Versioning

VxWorks 653 allows you to define more than one version of the interface of a
library. This can be used for backwards compatibility or to limit access to library
routines for applications using different interfaces.

The reference point for the shared library version example (hello-version) is the
shared library example (hello-sl). The following files have changes from the
hello-sl example:

Shared Library Source File
The shared library source file (hellolib.c) adds a second Hello World routine:

void hello2 (void)
{
printf ("Hello too!\n");
}

Shared_Library_API Document

The Shared_Library_API document defines two separate interfaces:

<Interface>
<Version Name="versionl"/>
<Interface_Subset>
<Routine Name="hello"/>
</Interface_Subset>
</Interface>

<Interface>
<Version Name="version2"/>
<Interface_Subset>
<Routine Name="hello" InternalName="hello2"/>
</Interface_Subset>
</Interface>

201

VxWorks 653
Configuration and Build Guide, 2.2

The first interface, named “versionl” is the same as the interface in the hello-sl
example.

The second interface, named “version2”, defines an interface that looks the same
to the application but accesses a different routine in the library. That is, it associates
the routine name “hello” with the internal routine “hello2”. This means that
whether an application uses versionl or version2 of the interface, they will use the
same routine name, “hello”, but depending on which version they use, a different
routine will be called in the library.

The value of the Name attribute cannot contain spaces.

Shared Library Makefile

Since we now have two different interfaces to the shared library, we need to
generate two different version of the shared library stubs files, one expressing each
of the interfaces. To do this, the shared library makefile is changed to generate the
two different stubs files.

The first change is to add both stubs files to the “all” rule:
all: sl.sm slvl-stubs.o slv2-stubs.o
The second change is to define rules to build each of the stubs files:

slvl-stubs.c: sl-api.xml
xmlgen --linkage --arch ppc --api-version "versionl" --output-stubs $@ $<

slv2-stubs.c: sl-api.xml
xmlgen --linkage --arch ppc --api-version "version2" --output-stubs $@ S$<

Notice that the --api-version option is used to select the interface version to build
in each case. The name given here must match one of the interface names given in
the Shared_Library_API document.

Application Makefiles

The application makefiles also change to add the version specific stubs files to the
application dependencies. Thus the build rule for the first application becomes:

hellol.sm: vxMain.o hello.o pos-stubs.o slvl-stubs.o hellol.lds

Since the name of the Hello World routine remains the same in both interfaces, the
application source files do not change. However, each will print a different
message, depending on which version of the library they link to.

202

22 Reference Process
22.8 Integration

Running the Shared Library Version Build

As with the Hello World shared library build (22.7.2 Hello from the Shared Library,
p-197), you can build the entire module at once by running make in the
hello-version directory, or you can perform each of the build steps for binary
component build separately by running make in the sl, app1, app2 and int
directories. In each case you must specify the appropriate value for the BSP
variable on the make command line.

22.8 Integration

The integration examples are located in:
installDir/vxworks653-2.2/target/reference/helloWorld/integration

They illustrate the build of the three system image types supported by
VxWorks 653. The examples are:

hello-net
The hello-net example illustrates how to build a network loadable system
image.

hello-ram
The hello-ram example illustrates how to build a RAM payload system image.

hello-rom
The hello-rom example illustrates how to build a ROM payload system image.

hello-full
The hello full example contains all the files for a complete module build. It is
configured to export all the components of a module so that they can be used
with all of the different integration examples to build and run a complete Hello
World module.

For more information on system images, see 21. System Images.

203

VxWorks 653
Configuration and Build Guide, 2.2

22.8.1 Building and Exporting a Basic Module

The first step in exploring the integration examples is to build a basic Hello World
module and export its components so that they can be used to build complete
modules using the different varieties of integration.

To build and export the basic module:

1. Build the project following the directions for building a complete module in
22.2 Quick Start, p.158, substituting references to the directory
helloWorld/introduction/hello-full with helloWorld/integration/hello-full.

2. Export the module components by running:

make export

22.8.2 Network-Loadable System Image

The network-loadable system image is the one that has been built for all the other
examples in the reference process. It is identical to the introduction/int example.
You can use it as a reference source to compare with the other integration examples
to see where the changes are in building each type of system image.

Building the Network-Loadable System Image

To build the network-loadable system image:

1. Make sure that you have built and exported the integration/hello-full project
according to the directions at 22.8.1 Building and Exporting a Basic Module,
p.204.

2. Open the VxWorks 653 Development Shell.

3. Change your current directory to integration/hello-net.

4. Run make, specifying the values of the variable $(BSP). For example:
make BSP=wrSbc750gx

A network-loadable system image for the Hello World module is created in the
directory integration/hello-net/int/demo.

For instructions on running this system image on your target, see the Wind River
Workbench User’s Guide 2.6.1, VxWorks 653 Version.

204

22 Reference Process
22.8 Integration

22.8.3 RAM Payload System Image

The RAM payload system image example is identical to the network loadable
image example, except for the integration makefile (Makefile.int):

all: ram checkSize

include $(WIND_BASE)/target/config/make/Makefile.vars

XML_FILE = hello.xml

SM_FILES = $(shell $(XMLGEN_FILES) $(XML_FILE))
BIN_FILES = $(shell $(XMLGEN_FILES) --bin $(XML_FILE))
SYM_FILES = $(shell $(XMLGEN_FILES) --sym $(XML_FILE))
MOS_DIR = ../../../exports

POS_DIR = ../../../exports

APP_DIR = ../../../exports

include $(WIND_BASE)/target/config/make/Makefile.rules

payloadObjs_ram.o: ../../../exports/payloadObjs_ram.o ; cp S$< $@
coreOS.sm: $(MOS_DIR)/coreOS.sm ; cp $< s@
pPOS.sm: S (POS_DIR) /pos.sm ; cp S$< s@

hello.sm: $(APP_DIR)/hello.sm ; cp $< $S@
use XML black boxes to pad the .bin files

BINFLAGS_EXTRA = $(shell $(XMLGEN_BINFLAGS) -j $* configRecord.xml)
S (BIN_FILES) : configRecord.xml

checkSize: $(SM_FILES)
xmlgen --bbCheck $(addprefix -j ,$(basename $7)) configRecord.xml

The changes in this file are as follows:
all: ram checkSize

The all target specifies the “ram” target rather than the “net” target. Like the “net”
target, the “ram” target is specified in Makefile.rules.

BIN_FILES = $(shell $(XMLGEN_FILES) --bin $(XML_FILE))
This line creates a list of binary files that will be created by the “net” target.
payloadObjs_ram.o: ../../../exports/payloadObjs_ram.o ; cp S$< $@

This rule copies the payload loader for the RAM payload system image from the
exports directory. The payload loader is created as part of the core OS build. The
loader is part of the payload that is downloaded to the target. On the target, it is
used to load the payload into normal RAM.

use XML black boxes to pad the .bin files

BINFLAGS_EXTRA = $(shell $(XMLGEN_BINFLAGS) -j $* configRecord.xml)
S (BIN_FILES) : configRecord.xml

205

VxWorks 653

Configuration and Build Guide, 2.2

These lines pad out the binary files that constitute the RAM payload so that they
align on the boundaries specified in their respective black boxes.

Building the

RAM Payload System Image

To build the RAM payload system image:

1.

For

Make sure that you have built and exported the integration/hello-full project
according to the directions at 22.8.1 Building and Exporting a Basic Module,
p-204.

Open the VxWorks 653 Development Shell.
Change your current directory to integration/hello-ram.

In the exports directory, edit bsp.xml to specify appropriate values for the Size
and Base_Address attributes of the ramPayloadRegion element (example
values are shown):

ramPayloadRegion Size="0x00600000" Base_Address="0xfa00000"
Run make, specifying the values of the variable $(BSP). For example:
make BSP=wrSbc750gx

A network loadable system image for the Hello World module is created in the
directory integration/hello-ram/int/demo.

instructions on running this system image on your target, see the Wind River

Workbench User’s Guide 2.6.1, VxWorks 653 Version.

22.8.4 ROM Payload System Image

The

ROM payload system image example is identical to the RAM payload system

image example except for the following changes in the integration makefile:

The all target specifies the rom target rather than the ram target:

all:

rom checkSize

The name of the payload loader changes to “payloadObjs_rom.o”:

payloadObjs_rom.o: ../../../exports/payloadObjs_rom.o ; cp S$< $@

Building the

ROM Payload System Image

To build the ROM payload system image:

206

22 Reference Process
22.8 Integration

Make sure that you have built and exported the integration/hello-full project
according to the directions at 22.8.1 Building and Exporting a Basic Module,
p-204.

Open the VxWorks 653 Development Shell.
Change your current directory to integration/hello-rom.

Run make, specifying the values of the variable $(BSP). For example:
make BSP=wrSbc750gx

A network loadable system image for the Hello World module is created in the
directory integration/hello-rom/int/demo.

207

VxWorks 653
Configuration and Build Guide, 2.2

208

Glossary

acceptance

ACE

AFDX

alarm

AMIO

APEX

Acceptance is the acknowledgement by a certification authority that the ARINC
653 module, application, or system meets its defined requirements.

ACE: Agent for the Certified Environment.

AFDX: Avionics Full Duplex Switched Ethernet. It is defined by the ARINC 664
specification, Part 7.

In the context of health monitoring, an alarm is an event. See also message.

Applications multiplexed I/O (AMIO) allows you to provide input to and view
output from multiple partitions over a single serial connection.

APEX: Application/Executive. The general-purpose interface between an OS and
application software, specified by the ARINC 653 specification. The specification
includes the list of services that lets the application control scheduling,
communication, and status information of its internal processing elements.

209

VxWorks 653
Configuration and Build Guide, 2.2

APEX port
APEX port: see port.

API

API: application programming interface.

application

An application is a collection of software components that together perform a
specific function in an embedded system. See also application partition.

application developer

An application developer develops one or more applications that will reside in a
partition. This person or group may also be responsible for developing data
binaries, which contain any databases used by the application. See also platform
provider and system integrator.

application partition

An application partition is a partition that includes an application.

APPS
APPS: ARINC PPS. It is the module-wide scheduling scheme for partitions. This is
a combination of ARINC 653 scheduling (TPS) and PPS scheduling in which the
PPS scheme is used during idle time within the TPS scheme. The scheduling
scheme applies to all PPS-enabled partitions in the module.

ARINC 653

ARINC 653 refers to ARINC Specification 653: the “Avionics Application Software
Standard Interface.”

ARINC 653 scheduling

ARINC 653 scheduling is the scheduling that is specified by the ARINC 653
specification. It is time-preemptive scheduling (TPS). See also APPS scheduling
and PPS scheduling.

ARINC PPS
ARINC PPS: see APPS scheduling.

210

A Glossary

black box

A black box is a set of configuration parameters that represent the memory
requirements of an application, a shared library, or the core OS. The use of black
boxes allows a VxWorks 653 module to be configured before all the applications
and libraries are available. Applications, libraries, and the core OS must fit within
the memory limits set by their black boxes.

board support package

BSP: board support package. It provides the libraries required to support a
platform on a particular board. The BSP, along with the kernel and user-supplied
extensions, makes up the core OS.

BSP
BSP: see board support package.

BSP developer
A BSP developer is a person or organization responsible for the development of a
board support package.

BSS
BSS: block started by symbol. It is a data section in an ELF file that contains
uninitialized global and static variables that are zeroed.

build spec

A build spec specifies compiler and linker options to produce particular output,
such as cert, debug, and release.

callback routine

In the context of health monitoring, a callback routine is called when an event
arrives at a partition health monitor task or module health monitor task. It is called
before the handler for the given event is called.

CDF

CDF: component description file. It has the .cdf extension. It uses the component
description language (CDL) to name and give values to the parameters of
VxWorks 653 components.

211

VxWorks 653
Configuration and Build Guide, 2.2

cert

cert is the build spec that produces a certifiable image.

certifiable

An image that is certifiable can be certified to a specific level of the DO-178B
avionics software standard.

certifiable subset

A certifiable subset is a subset of the core OS or a partition OS that can be certifiable
to Level A of the DO-178B avionics software standard.

certification
Certification refers to certification to a specific level of the DO-178B avionics
software standard.

channel

A channel defines a logical link between one source port and one or more
destination ports. It also defines the message transfer mode and the characteristics
of the messages. Channels are used for inter-partition communication, which can
be between local partitions and/or pseudo-partitions. Channels conform to the
ARINC 653 specification.

COIL

COIL: core OS interface library. A partition OS that provides a library of routines
independent of the vThreads partition OS. The library supports the management
of interrupts and exceptions, device I/O, interpartition messaging, and injection of
health monitoring events.

COIL partition

A COIL partition is a partition whose partition OS is based on COIL. See also
vThreads partition.

cold restart

A cold restart occurs when a module or partition is restarted and all data is
reloaded. A cold restart takes longer than a warm restart.

212

A Glossary

configlette

A configlette is a component or part of a component that is distributed in source
form, allowing compile time parameters to be set when the component is included
in a build.

configuration parameter

A configuration parameter is used to change the configuration of VxWorks 653
component.

configuration record

A configuration record is a record of the information that makes up the
configuration of a VxWorks 653 module or a part of it. Configuration records
include both the system configuration record and user configuration records.

core OS

The core OS is the core operating system for a VxWorks 653 module. It provides
fundamental operating system services and schedules partitions.

core OS interface library

Core OS interface library: see COIL.

CPU page size

The CPU page size is the smallest addressable unit of memory for the MMU. It is
also called MMU page size. The page size depends on the CPU and is generally not
configurable.

cross-development tools

Cross-development tools are programs that run on a host computer (running, for
example, Windows or UNIX) and that are used to develop, debug, or control
software running on an embedded processor, which is running a real-time
operating system (for example, VxWorks 653). For VxWorks 653, the
cross-development tools are based on Workbench. See also run-time software.

current partition

The current partition is the partition that is running. In an APPS scheduling
environment, the current partition and the TPS partition may not be the same.

213

VxWorks 653
Configuration and Build Guide, 2.2

default schedule

The schedule that will be run when the module is booted.

destination port

A destination port is one of possibly many ports at the receiving end of a channel.
See also source port.

direct-access port

A direct-access port is a type of pseudo-port which does not use software
buffering. Buffering support is assumed to be provided by the communications
hardware.

DO-178B

DO-178B: “Software Considerations in Airborne Systems and Equipment
Certification.” The avionics software standard developed by RTCA.

domain

A domain is a software container. Each element of a VxWorks 653 module—the
core OS (kernel), partitions (applications), shared libraries, system shared libraries,
and shared data regions—exists in a domain.

dynamic memory allocation

Dynamic memory allocation refers to allocating memory from the heap at runtime.

EABI
EABI: Embedded Application Binary Interface.

ELF

ELF: Executable and Linking Format. It is an object module format used to
encapsulate compiled software.

error handler process

See process health monitor.

214

A Glossary

event

In the context of health monitoring, an event is the base unit that is injected into the
event handling framework. It could represent an alarm or a message, depending
on the event code.

event code number

In the context of health monitoring, an event code number is the value of the event
code, as defined in the HM_CODE enumeration type in hmTypes.h.

event queue

The module health monitor table and partition health monitor table each have an
event queue. The module and partition health monitor event queues are
sometimes called, simply, the module and partition health monitor queues. An
event queue holds the events that have been dispatched to its associated health
monitor for handling. Event queues are serviced before health monitor notification
queues are serviced.

FAA
FAA: U.S. Federal Aviation Administration.

FIFO

FIFQ: first-in, first-out queuing.

global file descriptor

Global file descriptors (standard in, standard out, and standard error) are available
to all tasks in a partition. Their global assignment is controlled by the
ioGlobalStdSet() and ioGlobalStdGet() routines, but may be overridden by the
ioTaskStdSet() and ioTaskStdGet() routines.

GUI

GUI: graphical user interface.

health monitor

Health monitoring provides a framework to raise and handle events (which can be
alarms or messages) in a VxWorks 653 module. Alarms are injected to represent
faults, and handlers provide the opportunity to perform recovery actions. See
module health monitor, partition health monitor, process health monitor, and
system health monitor.

215

VxWorks 653
Configuration and Build Guide, 2.2

hosted function supplier

Hosted function supplier: see application developer.

IDE
IDE: integrated development environment.
injection
Injection is the act of creating a health monitor alarm event or message event.

interface subset

An interface subset defines part of the interface of a shared library. The use of
interface subsets allows you to reuse parts of the interface definition among
libraries that share some parts of their interface. For example, two different
vThreads libraries containing different components would share the core
vThreads interface.

interrupt level

Saying an event is injected at an interrupt level means the event is injected from an
interrupt execution context.

ISR
ISR: interrupt service routine.

jitter
Jitter is a variation or deviation in the frequency of an expected occurrence. See also
partition switch jitter.

kernel

Kernel is another term for the core OS.

kernel I/O region

A kernel I/0 region is a region of target memory that corresponds to the address
of an I/0O device on the target and can be accessed only by the core OS.

Level A

Level A is the highest certification level for the DO-178B software standard.

216

A Glossary

loadable shared data region

A loadable shared data region is a data source, such as a database, that can be
loaded into a shared data region as part of the module payload.

local partition

A local partition is a partition that is local to a VxWorks 653 module. Unless it
might be confused with a pseudo-partition, it is called, simply, a partition.

local port

A local port is a port that is attached to a local partition. Unless it might be
confused with a pseudo-port, it is called, simply, a port. See also null port.

log queue

The module health monitor and partition health monitor each have a log queue
(sometimes called simply a log). Health monitor messages are always logged,
whereas alarms are logged only if health monitor logging is enabled. If an event is
injected from within a partition (HM_PROCESS_MODE or
HM_PARTITION_MODE), the eventis logged to the partition health monitor log.
If the event is injected from outside the partition (HM_MODULE_MODE), the
event is logged to the module health monitor log.

major frame

Each schedule consists of a major frame, which is divided into a series of
variable-length minor frames.

message

In the context of health monitoring, a message is an event. See also alarm.

minor frame

Each schedule consists of a major frame, which is divided into a series of
variable-length minor frames. Each minor frame defines the partition to run, its
allowed duration, and whether or not the minor frame is a release point.

MMU

MMU: memory management unit.

217

VxWorks 653
Configuration and Build Guide, 2.2

module

A module is the “system” controlled by one RTOS, and in VxWorks 653, that RTOS
is the core OS.

module health monitor

The module health monitor is present in parallel with all partitions in a VxWorks
653 module, and hence all partition health monitors in the module. The module
health monitor is not part of any partition window and has priority over all
partitions. The module health monitor resides in the core OS. It is associated with
the module health monitor table, which among other things, defines notification
queues, a log queue, and an event queue. See also system health monitor, partition
health monitor, and process health monitor.

namespace

An XML namespace provides a unique identifier which can be associated with an
XML element by means of a prefix. The namespace uniquely identifies the XML
schema in which the element is defined.

NMI

NMI: non-maskable interrupt.

normal mode

Normal mode is the partition mode during which processes/threads are
scheduled. (Other partition modes include idle, cold start, and warm start.)

notification

In the health monitoring context, notification is the act of informing another
partition health monitor or the module health monitor of an event that has
occurred in a given partition.

notification queue

The module health monitor table and partition health monitor table each have
notification queues, one for each partition that wants to accept notification of
events. Notification queues are serviced after health monitor event queues are
serviced.

218

A Glossary

null port

NVM

A null port is a port that is created at system initialization time, but is not used. It
is always considered to be empty when read from and have space when written to.
A null port can be attached to a partition or the core OS of a VxWorks 653 module
or to a pseudo-partition. See also local port and pseudo-port.

NVM: non-volatile memory.

online-loaded partition

os

With online-loaded partitions, the core OS does not install the partition code from
flash or RAM into its final domain location in RAM as it does during the system
initialization phase for regular partitions. Instead, an empty application domain is
created for an online-loaded partition during the core OS initialization phase. The
code of the online-loaded partition is made available to the core OS only at a later
stage. In some cases this may not be until after all the regular partitions are already
running.

OS: operating system.

partition

A partition is a container for an application. An application running in a partition
cannot interfere with applications in other partitions or with the core OS.

partition direct-access port

A partition direct-access port is a type of direct-access port residing in a partition.
A partition direct-access port can communicate only with a local port in the
application resident in the partition.

partition health monitor

The partition health monitor is the health monitor that is present in parallel with
vThreads to handle vThreads partition errors and events that may affect the
operation of vThreads within the partition. The partition health monitor is
scheduled as part of the partition window. It is associated with the partition health
monitor table, which among other things, defines notification queues, a log queue,
and an event queue. See also system health monitor, module health monitor, and
process health monitor.

219

VxWorks 653
Configuration and Build Guide, 2.2

partition OS

A partition OS is a user-level software library running within a partition that
provides operating system services to the partition. See also vIhreads and COIL.

partition OS scheduler

The partition OS scheduler is the scheduler in a partition OS that allocates CPU
time to threads in the partition. The partition OS scheduler in a vThreads partition
is a priority-preemptive scheduler and is not related to the ARINC schedule.

partition port

Partition port: see local port.

partition scheduler

The partition scheduler is the scheduler in the core OS that allocates CPU time to
partitions, allowing CPU time to become available to threads in those partitions.
By default, the partition scheduler uses ARINC 653 (TPS) scheduling, but can
optionally schedule designated partitions with APPS scheduling. See also
partition OS scheduler.

partition switch jitter

Partition switch jitter is a variation or deviation in the configured partition
switching schedule. For example, partition switch jitter might be caused by
hardware latencies or when the core OS locks interrupts.

partition window

A partition window is the time in which a partition is allowed to run before being
scheduled out.

payload

A payload is an image file (or files) that contains the code for a VxWorks 653
module in a form that is suitable for running on a target.

payload region

A payload region is the region of RAM or ROM where a payload is loaded.

220

A Glossary

periodic process

A periodic process is a process within a partition that is run on a schedule based
on the passage of wall clock time (that is, the countdown to the next invocation of
periodic process runs even when the partition itself is not scheduled).

PersistentBSS

platform

A BSS section that is persistent across a warm restart.

A platform is software on which applications can be built and from which a
VxWorks 653 module can be developed.

platform provider

port

POS

POSIX

PPS

A platform provider is responsible for configuring the base system on which
application developers will build their applications.

A port is one end of a channel, which is used for inter-partition communication.
Ports have attributes, for example, direction (source or destination), mode
(queuing or sampling), protocol (receiver discard, sender block, or none), and
refresh rate. Ports conform to the ARINC 653 specification and its APEX interface
and are also called APEX ports. See also pseudo-port.

POS: See Partition Operating System.

POSIX: Portable Operating Systems Interface. In this documentation, POSIX refers
to the standard for real-time extensions (1003.1b), which specifies a set of interfaces
to OS facilities. The POSIX API can be included in a vThreads partition if the APEX
APl is not included.

PPS: priority-preemptive scheduling. It allows for scheduling of partitions in a
module-wide priority-preemptive scheme during the idle time within an ARINC
653 (TPS) schedule. See also APPS scheduling.

221

VxWorks 653
Configuration and Build Guide, 2.2

PPS-enabled

A PPS-enabled partition is a partition that is configured to indicate that it should
be considered during APPS scheduling.

preemption locking

Preemption locking disables the scheduling of processes/threads/tasks, and only
the current process/thread/task can be run until it decrements the lock level back
to zero.

priority-preemptive scheduling

Priority-preemptive scheduling: see PPS.

process

Process is the APEX term for a thread. In the vThreads context, the term thread is
preferred. See also task.

process health monitor

The process health monitor is the health monitor that is present within vThreads
to handle process-related errors and events. It is also known as the error handler
process. See also system health monitor, module health monitor, and partition
health monitor.

pseudo-partition

A pseudo-partition is a communications object that is outside a VxWorks 653
module. See also local partition and pseudo-port.

pseudo-port

The term pseudo-port applies generally to any port that represents a data source
or destination outside the current module. The term pseudo-port is also used in a
more restrictive sense for a type of pseudo-port that uses software buffering. In this
sense it is contrasted with direct-access port which is a type of pseudo-port that
does not use software buffering. See also local port and null port.

queuing port

A queuing port is a port in queuing mode. In queuing ports, messages are queued.
A protocol is required to manage the queues. See also sampling port.

222

A Glossary

RAM

RAM: random access memory.

RAM payload

A RAM payload is a payload that is designed to be downloaded into RAM on the
target.

real-world time

Real-world time: see wall clock time.

receiver discard protocol

Receiver discard protocol is a port message protocol. If one of the channel’s
destination ports is full, the source port discards the message for that port.
Therefore, if all the destination ports are full, the message might be lost. When a
message is so discarded, the port’s overflow flag is set to notify the application of
the discarded (lost) message. See also sender block protocol.

refresh rate

The refresh rate (in seconds) indicates the maximum acceptable age of a valid
message, from the time it was received by the port. It applies to destination
sampling ports only.

release point

A release point is a way to synchronize a periodic process with the partition
window of a partition. A periodic process spawned in a partition will be started
only at the next release point.

ROM

ROM: read-only memory.

ROM payload
A ROM payload is a payload that is designed to be installed in ROM on the target.

root element

The root element is the element of an XML document that contains all the other
elements in the document.

223

VxWorks 653
Configuration and Build Guide, 2.2

RTCA
RTCA: Radio Technical Commission for Aeronautics. The private, not-for-profit
corporation that develops recommendations on communications, navigation,
surveillance, and air-traffic management issues. RTCA developed the DO-178B
avionics software standard.

RTOS

RTOS: real-time operating system.

run-time software

Run-time software is the operating system and application software that together
run on a target. See also cross-development tools.

sampling port

A sampling port is a port in sampling mode. In sampling ports, messages are not
queued. A message remains in the source port until it is sent or overwritten. Each
new message overwrites the previous one when it reaches the destination port and
remains there until it is overwritten itself. Sampling ports have refresh rates. See
also queuing port.

SAP port

A service access point (SAP) is a special kind of queuing port. It is different from a
normal queuing port because it allows access to addressing information when
sending and receiving messages. The SAP services are similar to the ARINC 653
queuing port services but will have additional parameters to support address
information.

schedule

Schedules define how the core OS schedules partitions. Each schedule consists of
a major frame.

scheduler

See partition scheduler and partition OS scheduler.

select operation

The select operation refers to calling select() to pend on a set of file descriptors.

224

A Glossary

sender block protocol

Sender block protocol is a port message protocol. A queuing message is sent to all
the channel’s destination ports. If any one is full, the message is queued in the
source port in FIFO order. When the source port is full and if a timeout was
specified, sender processes are blocked during the SEND_QUEUING_MESSAGE
service. When a destination port is emptied, retransmission is attempted. Whether
it succeeds depends on the state of the channel’s other destination ports. See also
receiver discard protocol.

service access point

Service access point: see SAP port.

shared data region

A shared data region (sometimes called a shared data domain) is a data region that
can be used by applications within partitions to share data. Outside a shared data
region, applications have no access to the data of other applications. See also
loadable shared data region.

shared /O region

A shared I/O region is a region of target memory that corresponds to the address
of an I/O device on the target and can be shared by partitions and the core OS.

shared library

A shared library is a library that contains code that can be shared by multiple
applications. See also system shared library.

shared library region

A shared library region is the area of RAM that holds a shared library.

source port

A source port is the one port at the sending end of a channel. See also destination
port.

standard port

Standard port: see local port.

225

VxWorks 653
Configuration and Build Guide, 2.2

static module

A static module file is a fully located object file that has been compiled and linked
for use in a VxWorks 653 module. A static module file has a .sm file extension.

straight-line code

Straight-line code is code that does not use threads.

system call

A system call is a call from a partition to the core OS.

system clock

System clock refers to the system clock for a VxWorks 653 module.

system configuration record

The system configuration record is the record of all the configuration parameters
in a VxWorks 653 module. During the configuration process, configuration
information is expressed in the Module configuration document. The build
process produces a binary version of this information in configRecord.reloc or
configRecord.bin.

system health monitor

The system health monitor is the dispatcher for the health monitoring system. See
also module health monitor, partition health monitor, and process health monitor.

system heap

System heap refers to the heap for the core OS.

system initialization

System initialization refers to the initialization of a VxWorks 653 module.

system integrator

A system integrator is responsible for integrating the applications created by the
application developers with the platform created by the platform provider to
create the final module.

system memory

System memory refers to memory controlled by the core OS.

226

A Glossary

system object

A system object is an object created by the core OS (or vThreads) for use by the core
OS (or vThreads). An example is a semaphore.

system resource

A system resource is a resource allocated by the core OS for use by the core OS.

system restart

System restart refers to restarting a VxWorks 653 module.

system shared library

A system shared library is a special shared library that contains the code for a
partition OS.

system start

System start refers to starting a VxWorks 653 module.

target
The target is the board for which you are developing an embedded system.

task
A task is an execution context. In VxWorks 653, it refers to a core OS object. See also
thread.

TCB
TCB: task control block. The structure that contains critical runtime information for
a single task.

thread

A thread is an execution context. It is the preferred term for what is sometimes
called a process. A thread is a programming unit contained within a vThreads
partition. It runs concurrently with other threads of the same partition. See also
task and process.

time-preemptive scheduling

Time-preemptive scheduling: see TPS.

227

VxWorks 653
Configuration and Build Guide, 2.2

TLB
TLB: translation look-aside buffer. It is a specialized cache that holds a table of
physical addresses as generated from the virtual addresses that program code
uses.

TPS

TPS: time-preemptive scheduling. It is also called ARINC 653 scheduling. See also
APPS scheduling and PPS scheduling.

TPS partition

A TPS partition is the partition that has been scheduled to be run by the ARINC
653 (TPS) scheduler. In an APPS scheduling environment, the current partition and
the TPS partition may not be the same.

trusted partition

From the point of view of a given partition, a trusted partition is a partition from
which it will allow the health monitor to accept health monitor notifications on its
behalf. Since health monitor notifications are processed in the time slice of the
partition on whose behalf they are received, limiting the number of partitions that
a partition trusts limits the effect of health monitor notifications on the partition's
time allotment.

user configuration record
A user configuration record is a collection of data that can be used for configuring
user extensions to the core OS.

user memory region

The user memory region is that area of RAM that is needed for memory other than
health monitor logs, core OS configuration records, core OS memory, core OS page
pools, core pools, ports, and RAM payload.

user partition OS

A user partition OS is a partition OS that is based on COIL, augmented to perform
other functions that are required by the application.

228

A Glossary

VAL

VAL: vThreads abstraction layer. It is a layer of the core OS. When a vThreads
partition makes a system call, it communicates with this layer. It is a concept
internal to VxWorks 653.

validation

In XML terms, validation is a process that ensures that an XML file is well formed
according to the rules of XML and adheres to the structure specified in the
appropriate XML schema. Validation is performed by an XML validator.

VME

VME: Versa Module Europa. VME is an open-ended bus system that makes use of
the Eurocard standard. The VME bus was intended to be a flexible environment,
supporting a variety of computing-intensive tasks, and has become a popular
protocol in the computer industry. It is defined by the IEEE 1014-1987 standard.

vThreads

vThreads is the priority-preemptive OS that serves as a partition OS.

vThreads partition

A vThreads partition is a partition whose partition OS is based on vThreads. See
also COIL partition.

vThreads scheduler

vThreads scheduler: see partition OS scheduler.

VxWorks 5.5

VxWorks 5.5 is the Wind River operating system on which the vThreads partition
OS of VxWorks 653 is based.

VxWorks 653

VxWorks 653 is the Wind River operating system that supports the ARINC 653
specification.

w3cC

W3C refers to the World Wide Web consortium at www.w3.org.

229

VxWorks 653
Configuration and Build Guide, 2.2

wall clock time

Wall clock time is time as measured in the real world by the clock on the wall. (As
opposed, for instance, to the time elapsed in a particular application’s partition
window.)

warm restart

A warm restart occurs when a module or partition is restarted but persistent data
is retained, shortening the time required for the restart.

wDB
WDB refers to the Wind River debug agent.
Wind
Wind is the adjective applied to certain OS objects to distinguishes them from
POSIX objects. For example, Wind semaphores to distinguishes from POSIX
semaphores.
WindSh
WindSh is a host shell.
Workbench
Workbench is the Wind River Workbench development environment.
worker task

A worker task is a core OS task that is associated with a specific partition. Worker
tasks perform blocking operations (typically blocking I/O) on behalf of the
partition they are associated with.

write-protect

To write-protect is to guard an entity by a mechanism that prevents it from being
changed or erased. For example, memory can be write-protected by using an
MMU.

Xinclude

XInclude is a W3C standard for including one XML file in another.

230

A Glossary

XML

XML: Extensible Markup Language. It is a standard for defining markup
languages.

XML attribute

An XML attribute is an additional piece of information added to an XML element
in the form of a key/value pair.

XML declaration

The XML declaration identifies a file as an XML document and contains
information such as the version of XML used and the character encoding used in
the file.

XML document

A document written using XML syntax.

XML document type

An XML document type is the grammar of a particular XML file as defined by the
applicable XML schema.

XML editor

An XML editor is a program that provides support for editing XML files. This
usually includes support for inserting tags and for validating the file against an
XML schema.

XML element

An XML document consists of XML elements, each of which may contain data
content and/or other elements. The elements allowed in a particular document
type is determined by the applicable XML schema.

XML file

An XML file is an instantiation of an XML schema.

XML schema

An XML schema is a document that defines the structure of an XML document. In
defines what elements are permitted in an XML document, the order and nesting
of elements, and the types of data each element can contain.

231

VxWorks 653
Configuration and Build Guide, 2.2

XML schema file

An XML schema file is a file that contains all or part of the definition of an XML
schema. An XML schema file can include other schema files by reference to
construct a complete schema definition.

XPath

XPath is a W3C standard for expressing the location of an element or attribute in
an XML file.

232

	VxWorks 653 Configuration and Build Guide, 2.2
	Contents
	1 Overview
	1.1 Introduction
	1.2 Quick Start
	1.3 Organization of This Documentation
	1.4 Conventions Used in This Documentation

	2 Understanding VxWorks 653
	2.1 VxWorks 653
	2.2 Certification

	3 Configuration System
	3.1 Understanding VxWorks 653 Configuration
	3.2 XML Configuration Files

	4 Build System
	4.1 Understanding the Build Process
	4.2 Planning a Build
	4.3 Building for VxWorks 653

	5 Memory
	5.1 Understanding Memory
	5.2 Planning Memory
	5.3 Configuring Memory

	6 Core OS
	6.1 Understanding the Core OS
	6.2 Planning the Core OS
	6.3 Configuring the Core OS
	6.4 Building the Core OS

	7 User Configuration Records
	7.1 Understanding User Configuration Records
	7.2 Planning User Configuration Records
	7.3 Configuring User Configuration Records
	7.4 Building a User Configuration Record

	8 Partition OSs
	8.1 Understanding Partition OSs
	8.2 Planning Partition OSs
	8.3 Configuring a Partition OS
	8.4 Building a Partition OS

	9 Shared Libraries
	9.1 Understanding Shared Libraries
	9.2 Planning Shared Libraries
	9.3 Configuring Shared Libraries
	9.4 Building a Shared Library

	10 Shared Data Regions
	10.1 Understanding Shared Data Regions
	10.2 Planning a Shared Data Region
	10.3 Configuring a Shared Data Region
	10.4 Building a Shared Data Region

	11 Shared I/O Regions
	11.1 Understanding Shared I/O Regions
	11.2 Planning Shared I/O Regions
	11.3 Configuring Shared I/O Regions
	11.4 Building a Shared I/O Region

	12 ACE
	12.1 Understanding ACE
	12.2 Planning ACE
	12.3 Configuring ACE
	12.4 Building ACE

	13 Platforms
	13.1 Understanding Platforms
	13.2 Planning a Platform
	13.3 Building a Platform
	13.4 Packaging a Platform

	14 Applications
	14.1 Understanding Applications
	14.2 Planning Applications
	14.3 Configuring Applications
	14.4 Building an Application
	14.5 Packaging an Application

	15 Partitions
	15.1 Understanding Partitions
	15.2 Planning Partitions
	15.3 Configuring Partitions
	15.4 Building Partitions
	15.5 Configuring a Module for Online-Loaded Partitions
	15.6 Building an Online-Loaded Partition

	16 Ports and Channels
	16.1 Understanding Ports and Channels
	16.2 Planning Ports and Channels
	16.3 Configuring Ports and Channels
	16.4 Building Ports and Channels

	17 Schedules
	17.1 Understanding Schedules
	17.2 Planning Schedules
	17.3 Configuring Schedules
	17.4 Building Schedules

	18 Health Monitor
	18.1 Understanding the Health Monitor
	18.2 Planning Health Monitoring
	18.3 Configuring the Health Monitor

	19 Modules
	19.1 Understanding Modules
	19.2 Planning Modules
	19.3 Configuring a Module
	19.4 Building a Module

	20 Configuration Record
	20.1 Understanding the Configuration Record
	20.2 Planning the Configuration Record
	20.3 Configuring the Configuration Record
	20.4 Building the Configuration Record

	21 System Images
	21.1 Understanding System Images
	21.2 Planning a System Image
	21.3 Configuring a Network-Loadable System Image
	21.4 Configuring a RAM Payload System Image
	21.5 Configuring a ROM Payload System Image
	21.6 Building a System Image

	22 Reference Process
	22.1 Introduction
	22.2 Quick Start
	22.3 Hello World
	22.3.1 Hello World cert

	22.4 Module OS
	22.4.1 Building and Exporting a Basic Module
	22.4.2 Module OS Cert Build
	22.4.3 Module OS with ACE
	22.4.4 Module OS with Binary Components
	22.4.5 Module OS with Source Components

	22.5 Partition OS
	22.5.1 Building and Exporting a Basic Module
	22.5.2 Partition OS with Binary Components
	22.5.3 Partition OS with Source Components
	22.5.4 Partition OS with Shared Data Region

	22.6 Application
	22.6.1 Building and Exporting a Basic Module
	22.6.2 Application in C++
	22.6.3 Two Applications

	22.7 Shared Library
	22.7.1 Building and Exporting a Basic Module
	22.7.2 Hello from the Shared Library
	22.7.3 Shared Library Versioning

	22.8 Integration
	22.8.1 Building and Exporting a Basic Module
	22.8.2 Network-Loadable System Image
	22.8.3 RAM Payload System Image
	22.8.4 ROM Payload System Image

	A Glossary

