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1.1 About This Documentation 1
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1.3 Run-time System 4

1.4 RTCA/DO-178B Certifiability 9

1.1  About This Documentation

This documentation describes the VxWorks 653 real-time operating system (RTOS) 
and how to use its run-time facilities to develop embedded, safety-critical 
applications and systems.

Cross-references to libraries, routines, commands, and utilities refer to reference 
entries in the API reference documentation that is available from the Wind River 
Workbench online help. To access the reference entry, click Help > Search, type the 
name of the entry in the Search Expression box, and click Go.
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Alternatively, click Help > Help Contents. In the left pane of the help system that 
opens, click Wind River Documentation > References. Under Operating System 
and Host Tools are numerous API reference documentation.

1.2  Overview of VxWorks 653

VxWorks 653 fully complies with the Avionics Application Software Standard 
Interface, ARINC 653, Supplement 2, Part 1 Required Services. VxWorks 653 does 
not support any Supplement 2, Part 1 optional features, all of which reduce the 
strength of the specification.

VxWorks 653 also supports standard service access point (SAP) ports, which are 
defined in ARINC 653, Supplement 2, Part 2 Extended Services. 

Subsets of VxWorks 653 are available that can be certified to Level A of the 
RTCA/DO-178B avionics software guidelines. VxWorks 653 is, therefore, suitable 
for safety-critical applications.

A VxWorks 653 module is the system controlled by one RTOS, and that RTOS is the 
core OS of VxWorks 653. Unless it states otherwise, this documentation assumes 
you are working within one module. 

Within a module, VxWorks 653 supports complete separation between 
applications and between applications and the module’s core OS. As a result, 
applications can interact with each other only through explicit mechanisms that 
the core OS controls. Applications cannot affect the operation of the module, 
except in a controlled manner through resources that the core OS explicitly 
allocates to them.

For Information On: See:

Configuring and building 
systems

VxWorks 653 Configuration and Build Guide
VxWorks 653 Configuration and Build Reference

Loading, running, and 
debugging

Wind River Workbench User’s Guide (VxWorks 653 
Version)

Terms used in the 
documentation

C. Glossary
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1Each application runs in a discrete partition. The core OS controls the partitions by 
providing time and space partitioning and memory management services. 
Partitions manage their own resources within the time slot that the core OS 
provides. Performance is optimized by keeping as many routine calls as possible 
within the partition. Partitions run in user mode. The core OS runs in supervisor 
mode.

Each partition contains a partition-level OS (the partition OS) with a set of OS 
services. VxWorks 653 provides the vThreads partition OS and COIL (a partition 
OS independent of vThreads). You can augment COIL to suit specific partition OS 
needs. For vThreads partitions, VxWorks 653 supports the POSIX and APEX 
interfaces.

VxWorks 653 supports warm start and cold start of partitions and of the entire 
module. 

VxWorks 653 includes libraries for developing and debugging applications. 
Included is support for the Wind River System Viewer GUI-based software logic 
analyzer, back-ends for host-target communication, and a loader.

1.2.1  Overview of the vThreads Partition OS

The vThreads partition OS includes its own set of objects (for example threads, 
semaphores, and mutexes), other libraries, and internal scheduling. The core OS 
performs the following for vThreads:

■ timer facility

■ I/O operations

■ some scheduling

■ interpartition communication

vThreads can access only its own memory heap.

vThreads cannot directly access I/O devices or supervisor-level processor 
resources. The core OS provides these services through system calls.

vThreads does not directly receive hardware interrupts or exceptions. The core OS 
sends a pseudo-interrupt to the appropriate partition, and vThreads handles it as 
if it were the real interrupt.

A subset of vThreads is available that is certifiable to Level A of the 
RTCA/DO-178B avionics software guidelines.

For details, see 2. Developing vThreads Applications.
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1.2.2  Overview of COIL

The core OS interface library (COIL) is a library that lets you implement a partition 
OS that is not based on vThreads. COIL includes the minimum services needed for 
an application to communicate with the core OS. These services include the 
following:

■ interrupt and exception management

■ device I/O

■ interpartition messaging

■ injection of health monitor events

COIL supports APPS scheduling.

A subset of COIL is available that can be certified to Level A of the 
RTCA/DO-178B avionics software guidelines.

For details, see 3. Developing COIL Applications.

1.3  Run-time System

Applications are compiled against the appropriate partition OS header files and 
are linked against the libraries available within the partition. At boot time, the core 
OS loads each application to its own partition.

The vThreads partition OS offers the vThreads API for C applications. Also, 
vThreads lets applications use either the Ada, APEX, or POSIX interfaces or use the 
C++ language. You can add application or third-party header files and libraries to 
the compiling and linking mechanisms for both the core OS and partition OSs. 

Applications call routines located in their partition OS. The partition OS completes 
the routine autonomously if it provides the requested service. Otherwise, if the 
application’s privileges permit, the partition OS makes a system call to the core OS. 
For example, a system call occurs when the I/O subsystem calls read( ) or when a 
message is sent to an application in another partition. 
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11.3.1  Run-time Layers

A VxWorks 653 module consists of up to four basic types of layers:

■ core OS—Required. 

■ partition—At least one is required (vThreads or COIL-based), each in a 
partition OS.

■ APEX shared library—Required for ARINC 653 applications. 

■ POSIX shared library—Required for POSIX applications. 

Figure 1-1 shows a VxWorks 653 module with five partitions. In this example, the 
two vThreads partitions share the same partition OS. For shared libraries and 
partition OSs, the figure shows relative virtual addresses within a partition, not 
within the module.

Figure 1-1 A VxWorks 653 Module with Five Partitions
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application
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APEX
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Core OS Layer

The core OS provides services to the partitions.

By default, the core OS schedules partitions by ARINC 653 (time-preemptive) 
scheduling (TPS) and in partition order. However, if a partition is enabled for 
priority-preemptive scheduling (PPS), the core OS considers the partition for APPS 
scheduling. APPS scheduling schedules PPS-enabled partitions during the idle 
time within a TPS schedule. For more information on scheduling partitions, see 
7.13 Partition Scheduling, p.169.

Key Core OS Services for vThreads

The core OS does the following for each vThreads partition OS:

■ Allocates system resources. 

■ Schedules partitions. 

■ Traps exceptions on behalf of the partition OS. 

■ Defines and enforces partition boundaries. 

■ Loads partitions. 

■ Passes messages between partitions using ports and channels

■ Handles I/O. 

■ Performs system calls on behalf of the applications. 

■ Supports debugging of partitions. 

■ Monitors the health of partitions and the system.

Key Core OS Services for COIL

The core OS does the following for each COIL-based partition OS:

■ Manages interrupts and exceptions by pseudo-interrupts.

■ Provides I/O support for devices and ports.

■ Provides interpartition messaging via ports.

■ Monitors health at these levels: VxWorks 653 module, partition, and process.
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1
Core OS Certifiability

You can use a core OS certifiable subset, whose features have been selected for 
predictability, functionality, and certifiability under Level A objectives of the 
RTCA/DO-178B avionics software guidelines.

The subset provides an operating environment that supports the development of 
safety-critical applications. In addition, the subset includes a set of debug libraries 
that supports minimal debugging over a serial connection. The libraries must be 
removed before the application is deployed.

vThreads Layer

The core OS does not schedule vThreads threads. The scheduler in the partition OS 
schedules them during the time that the core OS allocates to the partition.

vThreads does not directly interact with devices, but instead defers those 
operations to the core OS by making system calls. System calls are also made for 
the timer, some scheduling facilities, and interpartition communication.

For more information, see 2. Developing vThreads Applications and 6. Developing C++ 
Applications.

vThreads Certifiability

You can use a vThreads certifiable subset, whose features have been selected for 
certifiability to Level A of the RTCA/DO-178B avionics software guidelines. The 
certifiable subset supports the functionality of the APEX layer, as described in the 
ARINC 653 specification.

The vThreads certifiable subset can be used with the core OS certifiable subset and 
a COIL certifiable subset.

COIL Layer

COIL provides an API for the minimum functionality for an application to 
communicate with the core OS: interrupt and exception management, device I/O, 
interpartition messaging, and the injection of health monitor events.

For more information, see 3. Developing COIL Applications.



VxWorks 653
Programmer's Guide, 2.2 

8

COIL Certifiability

You can use a COIL certifiable subset, whose features have been selected for 
certifiability to Level A of the RTCA/DO-178B avionics software guidelines.

The COIL certifiable subset can be used with the core OS certifiable subset and a 
vThreads certifiable subset.

APEX Layer

The APEX layer is built on top of vThreads and conforms to the ARINC 653 
specification for functionality and API. For details, see 4. Developing APEX 
Applications. 

POSIX Layer

This POSIX layer is built on top of vThreads and conforms to the POSIX standard 
for real-time extensions (1003.1b). For details, see 5. Developing POSIX Applications.

1.3.2  Loading and Booting

When power is applied to the target, the following happens:

■ The initial boot code loads the core OS, partition OSs, shared libraries, and 
applications. 

■ The core OS initializes itself, starting its own subsystems. 

■ The core OS creates the partitions. 

■ The core OS starts the partition scheduler, letting applications initialize 
themselves. 

Because the core OS loads applications as part of the boot sequence, incremental 
loading is not available. However, the core OS can download online-loaded 
applications into partitions after initialization is complete. The application is 
identified as destined for online loading. The application and the rest of the 
VxWorks 653 module are built together. Then the application can be loaded into 
the partition after the partition is running. For more information, see 
7.10.3 Online-Loaded Partitions, p.165. 

Restart requires a mechanism for reloading partitions from flash on restart. This is 
implemented using payload images rather than a boot application or the standard 
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1ROM-resident image. These images provide section information to the restart 
mechanism to load the images from either RAM or flash without the use of a boot 
application. For more information, see the VxWorks 653 Configuration and Build 
Guide. 

1.3.3  Run-time Model

The core OS handles system calls from each partition and validates all arguments 
of each system call before running it. Applications that use the vThreads partition 
OS have the complete set of vThreads intertask communication mechanisms 
available to them for use within a partition. 

In addition, applications that use APEX libraries to provide ARINC 653 support 
have additional capabilities. APEX provides partition management, process 
management, and time management that conform to the ARINC 653 specification. 
APEX provides messages, channels, and ports for interpartition communication, 
as well as buffers, blackboards, semaphores, and events for intra-partition 
communication For more information, see 4.7 Communicating between Partitions, 
p.67 and 4.9 Communicating within APEX Partitions, p.77.

Port mapping allows communicating outside the VxWorks 653 module. For 
details, see 4.8 Communicating with Other Modules, p.74.

1.4  RTCA/DO-178B Certifiability

To support Level A certification to the RTCA/DO-178B avionics software 
guidelines, a certifiable subset of VxWorks 653 is available. The certifiable subset 
is selected to comply with the objectives of RTCA/DO-178B. Selection is based on 
the deterministic nature of the code. The subset excludes operations that can 
compromise the integrity of safety-critical systems (for example, dynamically 
deallocating memory).

After you develop, debug, and fine-tune an application on the full VxWorks 653 
(by using the debug build spec), you can move it to the certifiable subset (by using 
the cert build spec).
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Because VxWorks 653 configuration does not prevent you from including 
debugging components in the certifiable image, it is your responsibility to ensure 
all debugging components are removed before the application is deployed.

The following combinations of debug core OS, debug vThreads (or debug COIL), 
and their certifiable subsets are recommended:

Recommendations to Ensure RTCA/DO-178B Level A Certifiability

The following recommendations are made to ensure VxWorks 653 is used in a 
manner consistent with the Level A objectives defined by RTCA/DO-178B:

■ System objects and resources (for example memory, queues, tasks, and 
semaphores) must be allocated only when an application is initialized.

■ The system must be configured so that allocating memory is not possible after 
an application is initialized.

■ The system must be configured so that system objects and resources cannot be 
deleted or freed.

■ Application tasks must be designed to run forever.

■ Because VxWorks 653 might not detect an invalid pointer that an application 
passes to it, when an application requests that data be stored, it must first 
check that memory pointers are not corrupted. (The core OS validates all 
pointers that a partition OS passes to it.)

■ Applications must not modify a task control block (TCB) directly, but must use 
the provided API only.

■ Applications must use semaphore types and options that protect against 
priority inversion.

■ Applications must use exclusion mechanisms that protect against deadlock 
and race conditions.

■ All interrupt vectors must have handlers assigned to them.

Debug vThreads
Debug COIL

vThreads certifiable subset or
COIL certifiable subset

Debug core OS For development 
work.

For debugging certifiable 
applications.

Core OS certifiable 
subset

N/A For deployed systems.



1  Overview
1.4  RTCA/DO-178B Certifiability

11

1
■ Handlers (interrupt, watchdog, and exception) must not call blocking 

routines.

■ The target hardware must have enough CPU power to handle interrupts and 
to process the computing load.
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2.1  Introduction

The vThreads partition OS (vThreads) is a multithreading technology that is based 
on VxWorks 5.5.

This documentation discusses programming concepts for developing applications 
that run in vThreads partitions.
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vThreads consists of a kernel plus a subset of the libraries supported in 
VxWorks 5.5. It has its own priority-preemptive scheduler and its own set of 
libraries that provide the API. vThreads runs at user level in an application domain 
under the core OS. One instance of vThreads is completely distinct from both the 
core OS and other vThreads instances running in other partitions in the same 
VxWorks 653 module. 

Threads

In its partition, vThreads has its own set of objects, including threads. These 
threads are scheduled by the scheduler associated with each partition. The core OS 
is unaware of the existence of vThreads threads and the scheduling that happens 
inside partitions. vThreads threads communicate with the outside world and with 
other vThreads domains by making system calls to the core OS. For more 
information, see 2.2.2 vThreads Scheduling, p.16. 

Memory

On startup, the core OS provides each vThreads partition with a memory heap. 
vThreads uses this memory heap to manage all allocations required for its objects. 
This is the only memory vThreads can access. Any memory access outside this 
range is trapped by the core OS and is illegal. For more information, see 
2.4 vThreads Memory Management, p.24. 

I/O

Unless the I/O device is mapped to the partition, vThreads cannot directly access 
the device or supervisor-level processor resources. (For more information, see 
vThreads Model of Device Drivers, p.224.) All I/O, interdomain communication, and 
so on, are accomplished by system calls to the core OS. A set of system calls is 
provided for this purpose. For more information, see 2.8 vThreads APIs, p.33. 

Interrupts and Exceptions

The occurrence of hardware interrupts and exceptions is transparent to vThreads. 
External events such as clock ticks and status of I/O operations are communicated 
by the core OS to vThreads by a pseudo-interrupt. The signal handler operates like 
a hardware interrupt handler: it advances time, manages the delay queue, and 
unblocks threads waiting for I/O to complete. For more information, see 
2.3.1 vThreads Pseudo-Interrupt Signals, p.19. 

NOTE:  This documentation describes differences between vThreads and 
VxWorks 5.5, the basics of which are described in A. VxWorks 5.5.
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vThreads can be configured to let I/O system calls run asynchronously. If you 
configure asynchronous I/O, blocking I/O system calls made by vThreads threads 
are deferred to core OS worker tasks. This lets the partition itself continue running 
and schedule other vThreads threads while the worker task blocks on the I/O 
operation. When the I/O completes, the worker task sends a pseudo-interrupt to 
notify the partition, which in turn unblocks the thread that made the blocking call. 
For more information on asynchronous I/O, see 9.2 I/O and vThreads, p.221. 

Pseudo-interrupt and asynchronous I/O facilities give vThreads applications the 
same view and semantics as if they were running in a VxWorks 5.5 system that 
controls the hardware directly. On the other hand, the core OS partition scheduler 
and memory protection facilities ensure the time and space partitioning required 
of a partitioned operating system are satisfied.

Certification

A subset of vThreads is available that is certifiable to Level A of the 
RTCA/DO-178B avionics software guidelines.

2.2  vThreads Time Management

vThreads keeps track of the passage of time, which the core OS announces to 
vThreads by a pseudo-interrupt mechanism similar to a software signal. This is the 
only major difference in time management between VxWorks 5.5 and vThreads.

Time management within a vThreads partition is accomplished with a single timer 
queue. This queue manages watchdog timers and timeouts on various operations. 
It also performs round-robin scheduling of equal priority vThreads threads (if 
round-robin scheduling is enabled).

2.2.1  vThreads Timer Queue

Elements on the queue are advanced when a system clock tick is announced to 
vThreads. Each tick denotes the passage of a single unit of time. Ticks are 
announced to vThreads from the core OS through the pseudo-interrupt 
mechanism. For information about the pseudo-interrupt mechanism, see 
2.3.1 vThreads Pseudo-Interrupt Signals, p.19.
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There are no limits on the clock tick rate that can be accommodated by vThreads, 
other than the available processor cycles that can be utilized by the VxWorks 653 
module in servicing clock hardware interrupts and issuing pseudo-interrupt 
signals.

As a performance optimization, multiple clock ticks are announced to vThreads 
within a single pseudo-interrupt. Rather than announcing every tick into the 
partition, a single event is issued against the partition only after a specified 
number of ticks have expired. 

The batch delivery of clock ticks lets the core OS conserve processor cycles. 
Although the core OS is still required to service the clock hardware interrupts, 
processor cycles are conserved by elimination of the overhead involved in issuing 
pseudo-interrupt signals, and the subsequent processing of the ticks within 
vThreads. This is particularly true for systems that require a timeout specification 
granularity of 0.25 milliseconds (which translates into 4000 ticks per second).

Clock ticks are delivered to a partition only during its window of execution. When 
the core OS schedules in a new partition, the clock ticks are delivered to the newly 
scheduled partition.

The issuance of clock ticks to the scheduled-out partition recommences at the start 
of the partition's next window. At this point, the core OS announces, in batch 
mode, all the clock ticks that have transpired since the last tick announced to the 
partition in its previous window. This means that a timeout (or delay) can expire 
outside the partition's window, but the timeout is acted on only at the beginning of 
the next partition window.

2.2.2  vThreads Scheduling

vThreads is comprised of the core portions of VxWorks 5.5, modified to operate 
solely in a non-privileged processor mode of the CPU (that is, user level). The 
vThreads scheduler has the same characteristics as the VxWorks 5.5 scheduling 
algorithm: a priority-preemptive scheduler that allocates the CPU to the 
highest-priority thread that is ready to run.

NOTE:  The system integrator decides the system clock rate. It is set in the BSP by 
calling sysClkRateSet( ). vThreads can get the clock tick rate by calling 
sysClkRateGet( ), but cannot alter it.
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Priority-Preemptive Scheduling

vThreads threads are scheduled using a priority-preemptive algorithm by default. 
The vThreads scheduler uses the priority assigned to each vThreads thread to 
allocate the CPU to the highest-priority vThreads thread that is ready to run.

Preemption occurs when a thread of higher priority than the running thread 
becomes ready to run. A higher-priority thread becomes ready to run as a result of 
either the expiration of a timeout, or the new availability of a resource the thread 
had been pending on. The preemptive events are delivered from the core OS to the 
partition, through the pseudo-interrupt mechanism described in 2.3.1 vThreads 
Pseudo-Interrupt Signals, p.19. These events include, but are not limited to, the 
system clock tick and the system-call completed signals. 

The scheduling of equal-priority threads complies with the SCHED_FIFO method 
of the POSIX 13.2.1 specification when round-robin scheduling is disabled. 
Round-robin scheduling is disabled by default. 

In a queue of equal-priority threads, the head of the queue is occupied by the first 
thread placed on the queue. Threads are placed on the queue in FIFO order. The 
thread at the head of queue is assigned the CPU when there are no higher-priority 
threads ready to run. 

When the thread is preempted by a higher-priority thread, it remains at the head 
of the queue of equal-priority threads. Therefore, when the higher-priority thread 
relinquishes the CPU, that same thread is reassigned the CPU. 

When a thread becomes unblocked, it is placed at the tail of the queue of 
equal-priority threads. 

Finally, when the priority of a thread is changed, the thread is also placed at the tail 
of the queue of equal-priority threads. 

This scheduling algorithm is the default one used in VxWorks 5.5. For more 
information on that algorithm, see A.2.3 Wind Task Scheduling, p.273. 

When no threads are ready to run, and no events are left to be processed, the 
partition is in an idle state. An idle partition does not spin in a tight loop. Rather, 
it enters the core OS via a system call and blocks there until the core OS sends it 
one or more events to process. Only then does the partition run again. Events are 
processed, and any threads that may have become ready to run are run. 
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Round-Robin Scheduling

The vThreads scheduler provides an optional round-robin scheduling mode. 
Round-robin scheduling lets the processor be shared fairly by all threads of the 
same priority. Without round-robin scheduling, when multiple threads of equal 
priority must share the processor, a single non-blocking thread can usurp the 
processor until preempted by a thread of higher priority, thus never giving the 
other equal-priority threads a chance to run.

Round-robin scheduling is disabled by default. It can be enabled or disabled by 
calling kernelTimeSlice( ), which takes an argument for the time slice (or interval) 
that each thread is allowed to run before relinquishing the processor to another 
equal-priority thread (if the value is zero, round-robin scheduling is turned off). 

If round-robin scheduling is enabled and preemption is enabled for the running 
thread, the system tick handler increments the thread's time-slice count.

When the specified time-slice interval is completed, the system tick handler clears 
the counter, and the thread is placed at the tail of the list of threads for its priority. 

New threads joining a given priority group are placed at the tail of the group, with 
a run-time counter initialized to zero. 

Enabling round-robin scheduling does not affect the performance of thread context 
switches, nor is additional memory allocated.

If a thread blocks or is preempted by a higher-priority thread during its interval, 
its time-slice count is saved, and then restored when the thread is eligible to run. 
In the case of preemption, the thread resumes running once the higher-priority 
thread completes, assuming that no other thread of a higher priority is ready to 
run. If the thread blocks, it is placed at the tail of the list of threads for its priority. 
If preemption is disabled during round-robin scheduling, the time-slice count of 
the running thread is not incremented. 

Time-slice counts are accrued against the thread that is running when a system tick 
occurs, regardless of whether the thread has run for the entire tick interval. Under 
certain circumstances, a thread may run for more or less than its allotted CPU time 
(for example, when preempted by higher-priority threads, or when 
pseudo-interrupt routines steal CPU time from the thread.)
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2.3  Handling External Stimuli

vThreads provides threading capability. It does not provide a mechanism to 
deliver interrupts from hardware devices requesting service. However, 
notification of various hardware interrupts and other significant conditions must 
still be communicated asynchronously from the core OS to the partition. These 
notifications primarily take the form of pseudo-interrupts. In other words, 
notifications are delivered asynchronously by the core OS, instead of a hardware 
interrupt or synchronous exception.

2.3.1  vThreads Pseudo-Interrupt Signals

The occurrence and handling of hardware interrupts is transparent to a partition. 
Software interrupts are the mechanism by which the core OS notifies a partition of 
relevant events. Because signals are delivered asynchronously and often reflect the 
occurrence of hardware conditions, but are not directly raised by a hardware 
device, they are called pseudo-interrupt signals or pseudo-interrupts.

For a list of pseudo-interrupt event types, see Table 2-1. 

A pseudo-interrupt is sent to a partition when the partition needs to process events 
and attempt thread rescheduling. Sending a pseudo-interrupt always involves 
queuing an event in the event queue. If necessary, exactly one signal is sent to the 
partition. No data is sent with this signal. It simply serves to change the control 
flow, thereby assuring that vThreads reads the event queue and takes the necessary 
action. If vThreads is in kernel mode, at pseudo-interrupt level, or in the core OS, 
the control flow naturally processes events and attempts rescheduling, so an 
additional signal is not required. The pseudo-interrupt handler dequeues the 
queued event and processes it. 

Applications are not allowed to install their own pseudo-interrupt handler. Thus, 
intConnect( ) is not supported in vThreads. User handlers can be installed only for 
some event types, using vThreadsEventHandlerRegister( ). Most events received 
by the partition are meant to be processed only by the vThreads OS. An attempt to 
register a user-defined handler for those events returns an error. 

Table 2-1 Pseudo-Interrupt Event Types

User Handler Forbidden User Handler Permitted

VT_EVENT_CLOCK_TICK  VT_EVENT_PORT_INT_RECV

 VT_EVENT_PARTITION_SAFE_TEXT_IO  VT_EVENT_PORT_INT_SEND
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Applications within a vThreads environment communicate with other partitions 
or the outside world through I/O or through the ports facility. They never directly 
field an asynchronous signal or event from outside the partition. 

The intLock( ) and intUnlock( ) routines are provided to lock out 
pseudo-interrupts when entering a critical section of code. Typically, a vThreads 
application calls intLock( ) and intUnlock( ) to prevent interactions with an 
application routine that is run by a vThreads watchdog timer (wdLib).

For performance reasons, the pseudo-interrupt lockout mechanism does not 
require a system call for each lock-unlock pair. However, if the core OS attempts to 
deliver a pseudo-interrupt while vThreads is in a critical section, a system call is 
required to dequeue the event type and associated data when leaving the critical 
section.

The handling of a pseudo-interrupt often causes a vThreads thread other than the 
interrupted one to become the highest-priority ready-to-run thread. In such cases, 
vThreads provides the core OS with an alternative user-level register set to load the 
vThreads core OS task after the pseudo-interrupt handler has completed. If no 
alternative register is provided, the core OS uses the register that was saved before 
delivering the pseudo-interrupt to vThreads.

Various core OS-based tools are provided to interpret vThreads data structures. 
The core OS issues a pseudo-interrupt prior to accessing any vThreads data 
structures. This serves to ensure that vThreads is not in a critical section when the 
core OS tools access the data structures.

If vThreads is running within a critical section, the handling of the 
pseudo-interrupt is deferred until vThreads exits the critical section. Otherwise, 
the pseudo-interrupt is handled immediately. Handling of this pseudo-interrupt 
involves performing a specified core OS system call, thereby indicating that 
vThreads is not running in a critical section. 

VT_EVENT_SC_COMPLETE  VT_EVENT_RELEASE_POINT

VT_EVENT_SYNC VT_EVENT_USER

VT_EVENT_TIME_MONITOR

VT_EVENT_WARM_RESTART

Table 2-1 Pseudo-Interrupt Event Types (cont’d)

User Handler Forbidden User Handler Permitted
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The entire vThreads partition blocks during the system call until the core OS has 
completed accessing the vThreads data structures. 

Pseudo-Interrupt Events Forbidden in User Handlers

VT_EVENT_CLOCK_TICK (System Clock Ticks)

The delivery of a clock tick is used to announce the passage of time to vThreads. 
Each tick denotes the passage of a single unit of time. Multiple ticks may be 
announced to vThreads within a single pseudo-interrupt.

vThreads maintains a timer queue that is used for managing watchdog timers and 
timeouts on various operations, and for performing round-robin scheduling of 
equal-priority vThreads threads (if enabled). Announcing ticks to vThreads is 
necessary to advance elements in the timer queue as time passes.

For more information, see 2.2 vThreads Time Management, p.15.

VT_EVENT_SC_COMPLETE (System Call Complete)

A system call is performed by vThreads to request a service from the core OS. For 
system calls that block, the core OS assigns a core OS task to complete the request, 
and returns control to vThreads. vThreads moves the requesting thread from the 
ready queue to a pend queue, and then schedules the highest-priority thread that 
is ready to run.

When the assigned core OS task completes the system call, a system-call-complete 
pseudo-interrupt is issued to inform vThreads of the completion. At this point, 
vThreads moves the requesting thread back to the ready queue.

For more information, see 2.9 vThreads System Calls, p.34.

VT_EVENT_SYNC

This event is used to synchronize vThreads and the core OS when the debugger is 
active. With this event, vThreads can be stopped in a safe state in which no kernel 
data is being updated. As a result, the debugger and tools can access vThreads data 
without the risk of using invalid data structures.

VT_EVENT_WARM_RESART

When a partition has locked preemption, a warm restart needs to be handled in a 
cooperative way between the core OS and the partition. This event is sent to the 
partition when a warm restart is requested and lets data be changed atomically in 
the partition.
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VT_EVENT_TIME_MONITOR

This event is used to notify a partition that time-monitoring information is 
available.

VT_EVENT_PARTITION_SAFE_TEXT_IO

This event is used to notify a partition that data from application multiplexed I/O 
is available.

Pseudo-interrupt Events Permitted in User Handlers

VT_EVENT_RELEASE_POINT

This event is used by the vThreads scheduler to start periodic processes. Each 
window in the schedule is associated with a flag that indicates whether the 
beginning of the window defines the start of the partition's period. When the flag 
is set, this event is sent, and the vThreads scheduler starts periodic processes.

VT_EVENT_PORT_INT_RECV (APEX Port RECV)

This event is sent to the partition of a source port after a successful receive 
operation on one of the destination ports. It permits the partition to 
asynchronously resume processes that may be blocked on the full source port.

VT_EVENT_PORT_INT_SEND (APEX Port SEND)

This event is sent to the partition of a destination port after a successful send 
operation. It permits the destination port to asynchronously resume processes that 
may be blocked on the empty destination port.

VT_EVENT_USER

This event is reserved for application use and is the only event meant to be used 
with vThreadsEventHandlerRegister( ).

It is also possible to send a user event from the core OS to a partition by calling 
valPseudoInt( ), which can be called only from a kernel protection domain task or 
an ISR. For details, see the reference entry.
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2.3.2  vThreads Synchronous Exception Handling

Synchronous exceptions refer to the class of exceptions that are caused directly by 
running (or attempted running) an instruction. The synchronous exceptions of 
interest to vThreads are the ones caused by a programming fault, for example, 
divide by zero, floating-point exception, data access, or illegal instruction. 
Synchronous exceptions caused by an MMU TLB miss are not significant for 
vThreads because they are handled by the core OS. 

In addition, handling of vThreads application-generated exceptions in the core OS 
can be performed only at a fairly coarse level. For example, if a vThreads thread 
generates a data-access exception, the core OS must suspend the entire partition, 
and, therefore, all vThreads threads in the partition are suspended. Due to this 
limitation, exceptions are reported to vThreads so that vThreads can provide a 
finer-grained handling of the fault.

When an exception is processed, vThreads may choose to reschedule to another 
thread, resume or restart the thread receiving the exception, restart the partition, 
or idle, depending on the nature of the exception. 

Providing exception notification to vThreads enables vThreads thread-level 
handling of the fault. The default behavior is to suspend the running vThreads 
thread, unless the fault occurred during a critical section of the vThreads kernel. In 
that case the entire partition is restarted. That is, an internally initiated restart is 
performed. 

The same logic that is used in VxWorks 5.5 to process exceptions is used in 
vThreads, except that the exception stack frame is provided by the core OS rather 
than by vThreads. As mentioned above, suspending the offending vThreads 
thread is the default behavior. In addition, a summary of the exception is displayed 
on the system console. The displayed information includes the offending vThreads 
thread ID, the exception type, the program counter of the vThreads thread when 
the fault occurred, and additional information depending on the exception type.

In addition to the exception diagnosis performed by VxWorks 5.5, vThreads also 
diagnoses vThreads thread stack-overflow conditions. If enabled, core OS support 
provides a system call to enable and disable memory protection for guard pages at 
the end of each vThreads thread stack.

As with VxWorks 5.5, an application can register a handler to be run whenever any 
vThreads thread in the partition generates a fault. This lets an application perform 
its own fault handling and bypass the default vThreads behavior.
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2.4  vThreads Memory Management

The vThreads memory manager is the same as VxWorks 5.5, in other words, 
memPartLib.c. Applications in a partition call malloc( ) or memPartAlloc( ) to 
allocate memory dynamically from the partition system heap (which is the only 
heap).

In addition, vThreads lets applications disable dynamic allocations when a 
partition has completed booting and reached its normal operating mode. The 
memPartAllocDisable( ) routine serves this purpose. In addition, it is up to the 
application to allow the disabling of dynamic allocations after bootup and 
initialization. Disabling dynamic allocation can be done for each partition at 
configuration and build time by setting the allocDisable parameter to true in the 
XML configuration file. For more information, see the VxWorks 653 Configuration 
and Build Reference. To get the value at run-time, call configRecordFieldGet( ) with 
the PARTITION_ALLOC_DISABLE selector.

If the partition configuration selects this feature, and once 
memPartAllocDisable( ) has been called in the partition, any subsequent call to 
partition-level allocation or free routines results in an error. In addition, errno is set 
to S_memLib_FUNC_NOT_AVAILABLE. If health monitoring is configured into the 
VxWorks 653 module, a health monitor event is logged. Once disabled, allocations 
cannot be enabled except by a partition restart. 

After dynamic allocation has been disabled, the following memLib routines return 
NULL, with errno set as described above: 

■ calloc( ) 
■ cfree( ) 
■ free( ) 
■ malloc( ) 
■ memalign( ) 
■ memPartAlignedAlloc( ) 
■ memPartAlloc( ) 
■ memPartFree( ) 
■ memPartRealloc( ) 
■ realloc( ) 
■ valloc( ) 

APEX applications typically issue the SET_PARTITION_MODE service to alter the 
partition operating mode. When set to NORMAL mode, memPartAllocDisable( ) 
is called automatically to prevent additional memory allocations. 
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C applications can call memPartAllocDisable( ) directly when they have allocated 
all the memory they expect to need. The routine takes no arguments and returns 
nothing. 

As a consequence of disabling dynamic allocation, no vThreads objects, such as 
threads, semaphores, or message queues, can be created. Hence, partitions start 
booting with allocations enabled and call memPartAllocDisable( ) only when they 
are ready to do so. 

Disabling allocation for each partition is independent of other partitions and the 
core OS. The core OS disables allocation when it has booted and created all 
partitions and their associated infrastructure. A partition disables allocation after 
its own initialization is complete.

2.5  vThreads Initialization and Restart

The core OS creates and launches each partition as a native core OS task. The core 
OS is not aware of the threads and scheduling that occur inside partitions after they 
are started. The entry point for the partition is always the boot code for vThreads. 
vThreads runs in user mode as a core OS task. After vThreads initialization is 
complete, vThreads starts additional partition-level components and user 
applications. 

2.5.1  vThreads Boot Sequence

Once started, each partition initializes itself as follows: 

1. The first step in the vThreads boot sequence involves making a system call to 
the core OS to find required initialization parameters. The core OS transfers the 
following initialization parameters as part of the SYSINFO_GET system call:

a. partition heap start address and size 

b. number of worker tasks if any

c. partition operating mode (that is, PARTITION_IDLE, 
PARTITION_COLD_START, or PARTITION_WARM_START)

d. reason or type of the last restart 
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e. maximum number of core OS files the partition can open 

f. system clock rate 

g. MMU page size 

h. memory allocation disable flag 

i. copy of the partition configuration record in the partition space

j. list of shared data regions used by the partition

k. partition symbol table

l. list of initialization routines for the partition’s shared library and 
application components

Most parameters are specific to a partition and can vary from one partition to 
another. Others, including the system clock rate and MMU page size, are 
global to the VxWorks 653 module and do not vary. 

2. The vThreads kernel initializes itself in the given heap of memory and enters 
multi-tasking mode by starting tRootTask. 

3. tRootTask carries on system initialization by initializing other OS facilities 
such as intertask communication mechanisms, the I/O system, exception 
handling, and signal handling. vThreads proper is now functional and ready 
to initialize additional OS layers. 

4. The POSIX libraries are initialized (if selected) or the APEX facilities (if 
selected). Initialization of APEX facilities involves further system calls to get 
the partition configuration record information for APEX object initialization. 

5. Finally, vThreads initializes any application components configured into the 
VxWorks 653 module. 

6. The application code is now running. 

This vThreads boot sequence is a modified version of the VxWorks 5.5 boot 
sequence. All hardware and processor initialization steps have been handled in 
one of the following ways: 

■ Removed entirely, because they are no longer relevant in the context of a 
partitioned operating system. 

■ Removed because the core OS performed them when it booted. 

■ Replaced by a system call to the core OS. 

Additionally, a few vThreads-specific steps and ordering have been added as 
applicable. 
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Individual vThreads threads are not schedulable entities for the core OS. All 
vThreads thread scheduling is done entirely by vThreads in user mode. The 
vThreads scheduler is the same as the VxWorks 5.5 scheduler, which is a 
priority-preemptive scheduler with an option to enable round-robin scheduling 
for all threads at a given priority level. All resource allocations performed by 
vThreads are made from its assigned memory pool. This pool (the partition heap) 
is defined by the system integrator and remains fixed at that size. In other words, 
the partition heap cannot dynamically grow beyond the size set in the 
configuration file. 

2.5.2  vThreads Restart

A partition restart can be initiated either externally (for example, by the core OS) 
or by the partition itself. A partition can choose to restart itself in response to 
exceptional conditions, application errors, and so on. Restarts can be of two types: 
cold or warm. In both cases, vThreads is rebooted, but some subsequent actions are 
not performed for warm restarts. 

Cold Versus Warm Restarts

When a restart is externally initiated (either cold or warm), any outstanding 
system calls in progress are aborted before the partition restarts itself. All restart 
activity is performed within the partition’s schedule window. No dynamic 
memory allocation is performed during a partition restart. 

A cold partition restart assumes that the partition has corrupted itself irretrievably. 
The following actions are performed: 

■ Outstanding system calls are flushed.

■ vThreads task is stopped.

■ Partition memory is cleared.

■ Text and data sections for the partition executable are reloaded. 

■ The uninitialized data area (.bss) is cleared.

■ Per-client data for any attached shared libraries is reloaded.

■ Persistent data sections are reloaded.

■ vThreads boots again from the original entry point. 

■ Devices controlled by the partition (if any) are re-initialized.
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A warm partition restart assumes that only the partition’s application has been 
corrupted. The following actions are performed: 

■ Outstanding system calls are flushed.

■ vThreads thread is stopped.

■ Non-persistent data sections, including those from any attached shared 
libraries, are reloaded.

■ The uninitialized data area (.bss) is cleared.

■ vThreads boots again from the original entry point. 

Applications can choose to bypass certain steps in their initialization sequence on 
warm restarts. In other words, the application developer is the one who specifies 
the initialization sequences for both cold and warm starts, and can design both 
options to best serve the application. 

Cooperative Warm Partition Restart Mechanism

When a warn partition restart is requested, the vThreads abstraction layer (VAL) 
valPartitionRestart( ) routine performs the VAL- and vThreads-related portion of 
a restart operation. This routine issues a VT_EVENT_WARM_RESTART 
pseudo-interrupt event into the partition. 

The core OS task that is performing the restart operation (the partition restart task) 
delays until an acknowledgement is received from the partition. If the delay 
expires without an acknowledgment, a cold partition restart is performed.

For a non-APEX partition (POSIX or vThreads partition), the 
VT_EVENT_WARM_RESTART pseudo-interrupt handler in vThreads uses the 
preemption lock count of the running thread to determine whether the partition is 
in a critical section. Normally, taskIdCurrent indicates the running task, except in 
the case where a process-level health monitor thread has forcefully preempted a 
preemption-locked thread. In this case, taskIdCurrent indicates the thread that the 
health monitor thread preempted. 

For an APEX partition, the VT_EVENT_WARM_RESTART pseudo-interrupt 
handler uses the lock level of the APEX partition to determine whether the 
partition is in a critical section.

If the partition is in critical section, a global variable in the partition is set to 
indicate that a warm partition restart has been requested. This variable is always 
checked by taskUnlock( ). If a warm partition restart has been requested, 
taskUnlock( ) performs a SYSCALL_WARM_RESTART_ACK system call to unblock 
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the core OS partition restart task as soon as the blocking call is complete. At this 
point, the core OS proceeds with the warm restart operation. If the partition is not 
in a critical section, the pseudo-interrupt handler immediately performs the 
SYSCALL_WARM_RESTART_ACK system call to unblock the core OS partition 
restart task.

There is no need for the VT_EVENT_WARM_RESTART pseudo-interrupt handler to 
check whether the thread has locked out pseudo-interrupts. When the application 
eventually unlocks pseudo-interrupts, via intUnlock( ), vThreads services any 
pending events in the queue. When the VT_EVENT_WARM_RESTART event is 
encountered, a SYSCALL_WARM_RESTART_ACK system call is performed 
(assuming that the application did not also lock preemption). 

This mechanism lets applications trust their critical data across warm partition 
restarts. The purpose of a warm restart, as opposed to a cold restart, is to preserve 
certain sections of memory (ELF sections with a specific name, such as 
.persistent.data) over the restart. An application could not trust the integrity of 
critical data over warm restarts if a warm restart could occur while a thread is in 
the midst of updating that data. A cooperative mechanism lets that data be trusted. 

A cooperative warm partition restart does not occur if the partition is running a 
SYSCALL method even though an application thread may have previously locked 
preemption. Thus, applications should not call routines that may result in a 
SYSCALL method call after locking preemption. 

The partition’s watchDogDuration parameter in the XML configuration file (see 
the VxWorks 653 Configuration and Build Reference) determines the length of 
partition time that the core OS waits for an acknowledgement from the 
VT_EVENT_WARM_RESTART event. To get the value at run-time, call 
configRecordFieldGet( ) with the PARTITION_WD_DURATION selector. If 
vThreads fails to acknowledge in the specified time frame, warm partition restart 
is escalated to a cold partition restart. 

Comparison with Non-Cooperative Warm Partition Restart

For situations where a partition itself requests a warm restart, through the 
SYSCALL_PARTITION_MODE_SET system call, the core OS partition restart task 
does not block during the invocation of valPartitionRestart( ). Also, if the partition 
requests a partition restart, for example, due to a fatal error, while the core OS 
partition restart task is waiting for an acknowledgement, valPartitionRestart( ) 
unblocks so that the warm restart can proceed.
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Partition Restart and Device Drivers

When a driver resides completely in the core OS, issues arise between device use 
by partitions and a partition restart. To ensure reliability in terminating system 
calls in progress, core OS device drivers that are used by partitions should follow 
the following rules to make theVxWorks 653 module safe during partition restart: 

■ The driver’s open( ), creat( ), remove( ), and close( ) routines should be 
deterministic in execution and bounded in time. They should not block for an 
arbitrarily long time (in other words, they should not have unbounded 
execution characteristics). 

■ The FIORESET ioctl command code should be supported by the device driver. 
It is called during restart of partition, if the driver was in the midst of a read( ), 
write( ), or ioctl( ) operation on the device. 

■ The FIORESET command should make the thread of control that is running the 
driver’s read( ), write( ), or ioctl( ) operation complete. This could involve 
either:

– Wake up the partition thread if it was blocking on I/O and make it return 
from the I/O operation. 

– If the thread is in the middle of the I/O operation but is not blocking, it 
could do a longjump( ) from the thread so that it returns from the I/O 
operation. 

FIORESET must never terminate a thread that is performing an I/O operation. 

2.6  Stack Overflow Protection

Stack overflow protection is a feature new to vThreads, one not present in 
VxWorks 5.5. It consists of one or more pages of memory at the top of the stack that 
cannot be written to. If a write operation is attempted, a stack overrun error is 
issued.

NOTE:  Partition-based I/O does not have these constraints because it is reset 
during restart. 
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2.6.1  Guard Pages

The number of guard pages can be set for each partition at configuration and build 
time by setting the numStackGuardPages parameter in the XML configuration 
file. For more information, see the VxWorks 653 Configuration and Build Reference. To 
get the value at run-time, call configRecordFieldGet( ) with the 
PARTITION_NUM_STK_GUARD_PAGES selector.

The taskSpawn( ) routine rounds the thread stack size up to the nearest page 
boundary. The amount of memory consumed by the guard pages is added 
automatically to the requested thread stack size. You need not factor the guard 
page size into your stack size calculations. 

The stack guard page is accessible from supervisor level only. Any access to this 
page from a vThreads thread (for example, by a stack overflow) causes a data 
access exception. 

Guard pages are created and their access permissions set when a vThreads thread 
is created.

When a thread that is running in user mode (in other words, not running a system 
call) overflows its stack, a data access exception is generated by the CPU. As with 
all other synchronous exceptions (except debugging-related exceptions), the 
exception information is passed up to vThreads. The exception is delivered to the 
offending thread where a SIGBUS signal is delivered if a signal handler has been 
registered (sigaction) for this signal. If a signal handler has not been registered for 
the offending thread, a HM event injection occurs with the 
HM_STACK_OVERFLOW code. 

User-level read and write privileges are removed from the guard pages; however, 
supervisor read and write privileges remain. This prevents an access exception due 
to stack overflow during a system call. When a system call is issued, the VAL and 
core OS operate on the stack of the calling thread. 

If the VAL or core OS generate an access exception due to a stack overflow, the 
entire module is rebooted. In fact, a cold system restart is performed. In contrast, if 
a thread overflows its stack, vThreads or the application can issue a partition 
restart in the worst case. 

2.6.2  Defaults

The default number of stack guard pages is one for a PowerPC and zero for the 
simulator. Stack guard pages are disabled for the simulator because the MMU page 
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size for a Pentium is 64 KB. Due to this large size, too much memory is consumed 
by guard pages, which thus easily causes memory exhaustion within the partition.

The number of stack guard pages is defined by the NUM_STACK_GUARD_PAGES 
parameter. For information on setting parameters, see the VxWorks 653 
Configuration and Build Guide. For information on a particular parameter, see the 
VxWorks 653 Configuration and Build Reference.

2.6.3  Limitations

The following limitations of the guard-page method of stack overflow protection 
should be kept in mind:

■ If a system call overflows the guard page, the entire VxWorks 653 module is 
rebooted using a cold restart (in the case of the simulator only).

■ Underflow conditions cannot be caught.

■ Overflows of huge stack frames that may cross over the guard page completely 
cannot be caught. 

■ There is no user-callable API. Guard pages are always set. 

■ The initial thread spawn sets as many bytes above the start of the guard page 
as the stack size requested for the thread. Therefore, asking for a small amount, 
such as 100 bytes, gives you one page of memory, but any access above 100 
bytes causes a trap. Calculate your sizes carefully.

■ A stack overflow exception is treated by vThreads as a synchronous exception. 
These exceptions are handled by vThreads in the same way as other 
synchronous exceptions.

■ The guard pages are disabled when the exception handler is running in the 
partition for stack overflow exceptions. Therefore, stack overflow detection is 
disabled while the stack overflow handler runs.

! CAUTION:  If setjmp( ) and longjmp( ) are used to recover from a stack overflow 
exception, you must be sure that there are at least 1170 bytes of stack memory 
remaining between the setjmp( ) call and the end of the stack. This is because 
longjmp( ) uses the context saved by setjmp( ) to re-enable stack overflow 
detection.
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2.7  vThreads Device I/O

For details of vThreads device I/O, see 9.2 I/O and vThreads, p.221.

2.8  vThreads APIs

vThreads provides threading facilities as well as facilities for intertask and 
interpartition communication.

vThreads provides APIs for the following:

■ vThreads (similar to VxWorks 5.5)

Figure 2-1 Stack Guard Pages in Memory
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■ ANSI

■ utility libraries to support buffer management, linked lists, ring buffers, and 
the event logging (for the Wind River System Viewer)

■ debugging library (userlib) for the target shell

■ show routines

■ POSIX (if INCLUDE_POSIX is included in the VxWorks 653 module)

For detailed information about the libraries and their routines, see their reference 
entries in the VxWorks 653 vThreads API Reference.

2.9  vThreads System Calls

Examples of system services provided by vThreads include open( ), read( ), 
write( ), close( ), and ioctl( ), I/O system routines. These are used by the vThreads 
device driver to access non-local devices.

A partition’s access to system calls to the core OS is granted by permission 
bitmasks, which are defined by the partition’s syscallPermissions parameter in 
the XML configuration file. For more information, see the VxWorks 653 
Configuration and Build Reference. The SYSCALL_ALL_PERMISSION bitmask grants 
access to all methods. For more information, see System Call Permission Bitmasks, 
p.138. To get the value at run-time, call configRecordFieldGet( ) with the 
PARTITION_SC_PERMISSION selector.
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3.1  Introduction

The core OS interface library (COIL) is a partition OS that provides the minimum 
necessary functionality to let an application communicate with the core OS. The 
library routines are independent of the vThreads partition OS.

This documentation discusses programming concepts for writing applications that 
run in COIL or COIL-based partitions.
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COIL supports the following:

■ interpartition messaging via ARINC ports

■ management of interrupts and exceptions

■ device I/O

■ injection of health monitoring events

COIL is often augmented, and the result is called the user partition OS. For 
example, if an APEX service for ports is required, the user partition OS must 
provide it. It is also the responsibility of the user partition OS to provide any 
additional management required around the provided COIL API. An application 
in a COIL partition can use either straight-line code or implement its own 
process-scheduling mechanism.

COIL and the Core OS Certifiable Subset

If the application calls a COIL library routine that in turn calls a routine no longer 
in the core OS due to certification, the COIL routine fails gracefully.

3.2  VxWorks 653 Architecture and COIL

Figure 3-1 shows the relationship between applications, partition OSs, and the core 
OS.

Figure 3-1 Relationship between Applications, Partition OSs, and the Core OS
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Linking with Shared Libraries

A COIL partition is configured the same way as a vThreads partition, except the 
linkage path for the COIL partition is set to the COIL partition OS instead of to a 
vThreads partition OS.

COIL supports shared libraries, except in the case where the shared library 
requires code from vThreads. Shared libraries attached to a COIL partition cannot 
have any dependency on a vThreads partition OS. That is, any core OS accesses 
from a COIL-attached shared library must use the COIL API and not the vThreads 
API. Access restrictions and configuration information for COIL-dependent 
shared libraries are identical to vThreads shared libraries. As well, COIL partitions 
can access shared data regions in the same manner as vThreads partitions, with all 
the same access restrictions and configuration information.

For information on linking to shared libraries, see the Workbench User’s Guide, 
VxWorks 653 Version.

For information on programming in vThreads partitions, see 2. Developing vThreads 
Applications.

3.3  Accessing Core OS Services

A COIL application’s ultimate accesses to core OS services is controlled using the 
same mechanism as for vThreads. Specifically, the system call permissions 
specified when the system is configured indicate which core OS calls can be made 
on behalf of the application. For information of configuring system call 
permissions, see the VxWorks 653 Configuration and Build Reference.

3.4  Communicating with Other Partitions

COIL supports interpartition messaging through ARINC 653 ports. As a result, 
COIL partitions can communicate with each other. In addition, they can 
communicate with APEX partitions (and vThreads partitions that have minimal 
APEX support) and vice versa. However, the API to access ports does not comply 
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with the ARINC 653 specification; that is, it is not APEX. If this compliance is 
needed, the user partition OS must provide the appropriate APEX API. For 
information on the APEX API for ports, see 4.7 Communicating between Partitions, 
p.67.

Ports for COIL partitions are configured in the same manner as ports for APEX 
partitions. For details, see the VxWorks 653 Configuration and Build Guide.

Ports in COIL partitions are subject to the same access restrictions as ports in APEX 
partitions. For information, see 4.7 Communicating between Partitions, p.67.

Calls for interpartition messaging are non-blocking. However, pseudo-interrupts 
may be used to avoid constant polling, as described in the following sections.

Avoiding Polling When Destination Buffers Are Full

During a send operation to a port, the destination buffer might be full. If this is the 
case, the send operation returns a failure (the operation is non-blocking). When a 
message is subsequently removed from the destination buffer, the 
COIL_EVENT_PORT_INT_RECV pseudo-interrupt is sent to the source partition. At 
this point, the application can call coilPortIntRecv( ) to determine which port the 
pseudo-interrupt applies to, and it can then resume sending messages.

Avoiding Polling When Incoming Message Queues Are Empty

During a read operation from a port, the incoming queue might be empty. If this is 
the case, the read operations returns a failure (the operation is non-blocking). 
When the source partition subsequently adds a message to the incoming queue, 
the COIL_EVENT_PORT_INT_SEND pseudo-interrupt is sent to the destination 
partition. At this point, the application can call coilPortIntSend( ) to determine 
which port the pseudo-interrupt applies to, and it can then resume reading 
messages.

3.5  Handling Interrupts and Exceptions

Table 3-1 lists the routines that provide pseudo-interrupt and exception handling 
in a COIL partition. For details, see the coilLib reference entry in the VxWorks 653 
vThreads API Reference.
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As for a vThreads partition OS, a COIL partition OS includes a copy of run-time 
data for each attached partition. Therefore, each partition can install, or not install, 
its own pseudo-interrupt handler, exception handler, or both.

3.5.1  Handling Pseudo-Interrupts

COIL always handles some pseudo-interrupts. If the user partition OS has defined 
its own pseudo-interrupt handler (by calling coilIntConnect( )), COIL forwards 
the remaining pseudo-interrupts to this handler. If the handler is not defined, 
COIL discards the events. Table 3-2 lists the only events that user-defined handlers 
need to handle.

Table 3-1 COIL Interrupt and Exception Handling Routines

Routine Description

coilExcConnect( ) Defines a routine to handle exceptions in the partition 
(optional).

For information on the behavior if an exception handler is 
not defined, see 3.5.2 Handling Exceptions, p.40.

coilIntConnect( ) Defines a routine to handle pseudo-interrupts in the 
partition (optional).

For information on the behavior if a pseudo-interrupt 
handler is not defined, see 3.5.1 Handling Pseudo-Interrupts, 
p.39.

coilIntLock( ) Prevents all pseudo-interrupts from occurring in the 
partition.

coilIntTickGet( ) Returns the number of ticks received so far by the partition.

coilIntUnlock( ) Lets pseudo-interrupts occur in the partition.

Table 3-2 Events that User-Defined Pseudo-Interrupt Handlers Need to Handle

Pseudo-Interrupt Event Meaning

COIL_EVENT_CLOCK_TICK Timer ticks have been received.

COIL_EVENT_PORT_INT_RECV Messages have been removed from a full 
port message queue.
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When the handler returns, the context that it preempted is restored.

Pseudo-interrupts can be locked by calling coilIntLock( ). When 
pseudo-interrupts are locked for a partition, the partition is not preempted to 
deliver incoming pseudo-interrupts. Instead, pseudo-interrupts destined for the 
partition are queued until they are subsequently unlocked. When they are 
unlocked, coilIntUnlock( ) calls the pseudo-interrupt handler to process queued 
pseudo-interrupt events.

As for vThreads partitions, the queued pseudo-interrupts for a COIL partition 
cannot be flushed. They must be processed by the partition.

3.5.2  Handling Exceptions

The user partition OS can optionally define its own exception handler by calling 
coilExcConnect( ). If a handler is so defined, COIL calls it when an exception 
occurs and passes the exception information to the handler. If the handler returns 
and the exception is not fatal, the context that it preempted is restored.

If the user partition OS does not define an exception handler, all exceptions are 
considered fatal. That is, when an exception is detected from a partition, the core 
OS suspends the partition.

COIL_EVENT_PORT_INT_SEND Messages have been sent to an empty port 
message queue.

COIL_EVENT_RELEASE_POINT The scheduler major frame has started.

COIL_EVENT_SC_COMPLETE A pending system call has completed.

COIL_EVENT_USER User-defined pseudo-interrupt event that 
can be used by the user partition OS.

COIL_EVENT_WARM_RESTART Warm restart has been requested. The 
application should call 
coilWarmRestartAck( ) when it is ready to 
be restarted.

Table 3-2 Events that User-Defined Pseudo-Interrupt Handlers Need to Handle (cont’d)

Pseudo-Interrupt Event Meaning
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3.6  Restarting COIL Partitions

A COIL partition can be restarted by calling coilPartitionModeSet( ) and 
specifying an operating mode as is done for APEX partitions. For information on 
restarting APEX partitions, see 4.4.5 Setting the Partition Mode, p.49.

For warm restarts, the COIL pseudo-interrupt event, 
COIL_EVENT_WARM_RESTART, is passed to the partition. This pseudo-interrupt 
event gives the partition some time to perform any cleanup activities that might be 
necessary before the partition is restarted. The partition is expected to perform the 
necessary cleanup and then respond by calling coilWarmRestartAck( ).

3.7  Device I/O in COIL Partitions

For information, see 9.4 I/O and COIL, p.264.

3.8  Monitoring Health in COIL Partitions

For information, see 8.7 Health Monitoring for COIL Partitions, p.217.

3.9  COIL API

For details about the COIL API, see the reference entries for coilLib in the 
VxWorks 653 vThreads API Reference.
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4.1  Introduction

APEX is an API between an application program and an operating system that 
supports the ARINC 653 specification. For VxWorks 653, the operating system is 
the vThreads partition OS, and ultimately the core OS. The major enhancement 
APEX brings to a vThreads partition is in time and process management and the 
ability to manage periodic and aperiodic processes and their associated deadlines.
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This chapter discusses programming concepts for writing APEX applications that 
run in vThreads partitions in a VxWorks 653 module. It explains the Wind River 
implementation of APEX. It does not discuss what is included in the ARINC 653 
specification. If you need that level of detail, read the specification before you read 
this chapter.

With the addition of an APEX component, an application in a vThreads partition 
can use the full or partial (called minimal) APEX API. This documentation calls a 
vThreads partition with full APEX support an APEX partition.

In addition to APEX interfaces, an APEX partition has access to the vThreads API. 
However, except where noted, this chapter describes APEX interfaces only. For 
information on the vThreads API, see 2.8 vThreads APIs, p.33.

APEX Services

Full APEX support provides services to do the following:

■ Manage partitions.

■ Manage processes.

■ Manage time.

■ Communicate with other partitions (using messages, ports, and channels).

■ Communicate within partitions (using buffers, blackboards, semaphores, and 
events).

■ Monitor health.

Some of these services (such as communicating within and outside partitions) can 
instead be handled using vThreads or POSIX objects (such as pipes, message 
queues, and semaphores). However, such an implementation does not comply 
with the ARINC 653 specification. 

Minimal APEX support provides services to do the following:

■ Manage partitions.

■ Communicate between partitions (using messages, ports, and channels).
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4.2  Adding APEX Support to vThreads Partitions

A VxWorks 653 module (or part of one) can have either full or minimal APEX 
support, but not both. In this documentation, only a partition with full APEX 
support is called an APEX partition.

To provide a vThreads partition with the full set of APEX services, include the 
INCLUDE_APEX component in one or more of the following domains:

■ vThreads partition

■ one or more shared libraries with which the vThreads partition links

■ the partition OS with which the vThreads partition links

The domain cannot include INCLUDE_POSIX. The resulting VxWorks 653 module 
cannot include INCLUDE_APEX_MINIMAL.

To provide a minimal APEX interface, include the INCLUDE_APEX_MINIMAL 
component in one or more of the above domains. The domain can include 
INCLUDE_POSIX. In other words, a vThreads partition or POSIX partition can 
have minimal APEX support. The resulting VxWorks 653 module cannot include 
INCLUDE_APEX. 

4.3  Terminology and Concepts: APEX Versus vThreads

Some of the terminology in this chapter is specific to the ARINC 653 specification 
and APEX. Table 4-1 lists some ARINC  653 terms and concepts and their vThreads 
equivalents.

Table 4-1 Terminology and Concepts: APEX Versus vThreads

Term or Concept APEX vThreads

Service or routine Service Routine

ALLCAPS mixedCase( )

ACTION_OBJECT

(for example 
CREATE_PROCESS)

objectAction( )

(for example taskDelete( ))
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4.4  Managing APEX Partitions

Managing a partition includes allocating partition memory and initializing the 
partition in accordance with the ARINC 653 specification. 

4.4.1  Allocating Partition Memory

Each partition has predetermined areas of physical memory allocated to it. These 
unique memory spaces vary in size based on the requirements of the individual 
partitions. At most, one partition has write access to any particular area of memory. 
Memory partitioning is ensured by prohibiting write access outside a partition's 
defined memory areas. To ensure complete separation of applications, read access 
is also prohibited outside a partition. 

Services are issued or 
requested

Routines are called

Schedulable unit Process Task
(APEX processes are 
implemented as vThreads tasks)

Scheduling method FIFO Priority-preemptive (FIFO) or 
round-robin

Priority numbering Higher the value, higher 
the priority

Lower the value, higher the 
priority (0 is the highest 
priority)

Buffer Buffer N/A

Event Event vThreads event

Table 4-1 Terminology and Concepts: APEX Versus vThreads (cont’d)

Term or Concept APEX vThreads
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4.4.2  Initializing Partitions: Cold and Warm Starts

Whereas the resource allocation necessary for each partition is specified in the 
XML-based configuration and build process (see the VxWorks 653 Configuration 
and Build Guide), the corresponding objects are defined when the partition is 
initialized. The core OS exclusively controls the allocation of resources to the 
partition by reserving specific memory. The partition uses this reserved memory to 
create the specified objects.

COLD_START
The cold-start partition operating mode is used when a partition is created and 
when the VxWorks 653 module starts from a powered-off state. During a cold 
start, partition objects are allocated and initialized.

WARM_START 
The warm-start partition operating mode causes a partition to be re-initialized 
or restarted because of an error. During a warm start, persistent data is not 
re-initialized, and the partition code is not reloaded.

4.4.3  Partition Attributes

Partition attributes are defined in the XML configuration file at configuration and 
build time. For details, see the VxWorks 653 Configuration and Build Reference.

Fixed Partition Attributes

■ Identifier 

Uniquely defined within a VxWorks 653 module, and used to facilitate 
activating the partition and routing messages.

■ Memory requirements 

The amount of physical memory to be allocated and mapped for the partition.

■ Period 

The activation period of the partition. It is used to determine the partition’s 
run-time placement within the core OS overall time frame.

■ Duration 

The amount of processor time the core OS gives to the partition every period 
of the partition.
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■ Criticality level 

The RTCA/DO-178B criticality level of the partition (from A down to E).

■ Communication requirements 

Those partitions with which the partition communicates by linking it to 
communication channels. 

■ Partition health monitor table (health monitor configurations) 

Instructions to the health monitor on the actions required. For example, the 
health monitor supervisory facility can restart the partition in response to a 
fatal fault.

4.4.4  Getting Partition Status 

The GET_PARTITION_STATUS service gets the partition status of the current 
condition (also called the start condition or the partition mode reason). Table 4-2 
lists the possible values and their meanings.

The apexPartitionModeReasonPtrGet( ) routine gets a pointer to the partition 
mode reason. This routine is not an APEX service.

NOTE:  The partition scheduler in the core OS does not use period and duration 
attributes directly. It only ensures that periods and durations are compatible 
with specified schedules. Up to 16 schedules can be defined, which allows for 
time partitioning where a partition can be activated several times within a 
major time frame. Scheduler validation can be disabled by a system parameter.

Table 4-2 APEX Partition Status Values

Partition Status
(Start Condition,
Partition Mode Reason)

Reason for Current Partition Mode

HM_MODULE_RESTART Recovery action taken at the VxWorks 653 module 
level.

HM_PARTITION_RESTART Recovery action taken at the partition level.

NORMAL_START Power-up.
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4.4.5  Setting the Partition Mode

The SET_PARTITION_MODE service sets the operation mode for the current 
partition. Table 4-3 lists the available modes and their resulting actions.

Figure 4-1 shows the allowable transitions in a partition’s operating mode.

PARTITION_RESTART Request for a COLD_START or WARM_START 
partition mode.

POWER_ERROR_RESTART (A Wind River extension to the ARINC 653 
specification.)

Table 4-2 APEX Partition Status Values (cont’d)

Partition Status
(Start Condition,
Partition Mode Reason)

Reason for Current Partition Mode

Table 4-3 APEX Partition Modes

Partition Mode Resulting Action

COLD_START The partition restarts using the cold start 
initialization sequence.

IDLE The partition shuts down. The partition is not 
initialized (that is, none of the ports associated with 
the partition are initialized), no processes are 
running, but the time windows allocated to the 
partition are unchanged.

NORMAL The activate process is scheduled.

WARM_START The partition restarts using the warm start 
sequence.



VxWorks 653
Programmer's Guide, 2.2 

50

4.4.6  Controlling Preemption in Partitions

A process can issue the LOCK_PREEMPTION service (defined in the apexProcess 
library) to lock preemption in the partition. The service increments the lock level 
of the partition and disables processes from being rescheduled in the partition. 
This ability is important when processes are accessing critical sections or resources 
that are shared by multiple processes in the same partition. These critical sections 
may be specific areas of memory, certain physical devices, or the normal 
calculations and activity of a particular process.

The ability to intervene with normal rescheduling operations does not imply that 
the application is directly controlling vThreads. Since vThreads provides this 
service and knows all resulting actions and effects beforehand, the integrity of 
vThreads is not affected.

In addition, the LOCK_PREEMPTION service does not affect the scheduling of 
other partitions: if a process within a critical section is interrupted when the 
partition window ends, that process is the first to run when the partition runs 
again.

A process can issue the UNLOCK_PREEMPTION service (defined in the 
apexProcess library) to unlock preemption in the partition. The service decrements 
the lock level of the partition. Rescheduling of processes resumes only when the 
lock level is zero.

Figure 4-1 APEX Partition Mode Transitions

COLD_
START

IDLE

WARM_
START

NORMAL

NOTE:
It is not possible to go from 
COLD_START to WARM_START
directly or through a transition to IDLE.
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The partitionCurrentLockLevelPtrGet( ) routine gets a pointer to the partition’s 
current lock level. This routine is not an APEX service.

4.4.7  Setting New Partition Schedules

The SET_SCHEDULE_MODE service selects a new schedule (including an empty 
schedule) and transition time for a partition. Table 4-4 lists the available 
scheduling modes.

:

4.5  Managing APEX Processes

APEX processes are programming units contained within an APEX partition. Each 
process runs concurrently with other processes in the same partition. A process 
consists of the following:

■ the executable program

■ data and stack areas

■ program counter

NOTE:  Preemption locking does not prevent the error handler process from 
running.

Table 4-4 APEX Scheduling Modes

Scheduling Mode The Transition Is Effective at the:

TRANSITION_MAJOR Major frame boundary

TRANSITION_MINOR End of the current window

TRANSITION_TICK Next clock tick

NOTE:  The SET_SCHEDULE_MODE service is not part of the ARINC 653, Part 1 
specification, but is being considered for a subsequent edition.
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■ stack pointer

■ priority deadline

4.5.1  Creating Processes

The CREATE_PROCESS service is used to create a process with certain attributes 
and allocate resources for it. Since the service can be called only during warm or 
cold start of a partition, creation attributes cannot be changed after a partition is 
initialized. Each process is created only once during the life of the partition. Also, 
all the processes in a partition must be defined in such a way that the necessary 
memory resources for each process can be determined at system build time. For 
information of configuring memory, see the VxWorks 653 Configuration and Build 
Guide.

For information on getting creation attributes dynamically, see 4.5.4 Getting the 
Current Status of Processes, p.53.

The following names are field names in a PROCESS_ATTRIBUTE_TYPE structure, 
which is an argument to the CREATE_PROCESS service.

BASE_PRIORITY 
Process initial priority. 

DEADLINE 
Type of deadline (SOFT, HARD, or no deadline. This indicates the correct 
remedial action to the health monitor. 

ENTRY_POINT 
Starting address of the process.

NAME 
String identifier for the process. It must be unique within the partition.

PERIOD 
Delay between two activations (for periodic processes only).

STACK_SIZE 
Size (in bytes) of the stack allocated to the process. 

TIME_CAPACITY 
The elapsed time within which the process should complete running.
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4.5.2  Changing the Current Priority of Processes

Although the initial priority is set when the process is created (BASE_PRIORITY), 
the current priority can by changed dynamically through the SET_PRIORITY 
service.

For information on getting the current priority, see 4.5.4 Getting the Current Status 
of Processes, p.53.

4.5.3  Increasing Deadline Times

Deadline time is the absolute time by which the process should be complete. It 
starts as the return value of the GET_TIME service (current system time) plus the 
TIME_CAPACITY that is specified when the process is created. vThreads 
periodically evaluates deadline time to determine whether the process is 
satisfactorily completing its processing within the allotted time (time capacity). 
Deadline time can be increased by issuing the REPLENISH service (defined in the 
apexTime library).

For information on getting the value of deadline time, see 4.5.4 Getting the Current 
Status of Processes, p.53.

4.5.4  Getting the Current Status of Processes

The GET_PROCESS_STATUS service gets the current status of a process. The return 
value is of PROCESS_STATUS_TYPE type, which contains the fields listed in 
Table 4-5.

Table 4-5 APEX Process Status Information

Field in PROCESS_STATUS_TYPE Description

ATTRIBUTES The creation attributes for the process. See 
4.5.1 Creating Processes, p.52.

CURRENT_PRIORITY Current priority of the process. See 
4.5.2 Changing the Current Priority of Processes, 
p.53.
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4.5.5  Getting Process IDs

The GET_MY_ID service gets the process ID of the calling process.

The GET_PROCESS_ID service gets the process ID of the process with the specified 
name.

4.5.6  Getting and Using vThreads Task Information

Because APEX processes are implemented as vThreads tasks, they have vThreads 
task IDs. The following routines are available:

The taskIdFromProcIdGet( ) routine gets the vThreads task ID for the specified 
APEX process ID.

The procIdFromTaskIdGet( ) routine gets the APEX process ID for the specified 
vThreads task ID.

4.5.7  Types of Processes

There are two types of processes:

■ Periodic processes

A periodic process is a process that is activated at regular times (defined by the 
PERIOD creation attribute). At activation time, the process becomes eligible for 
scheduling. When that happens, the state of the process changes to RUNNING, 
or READY if it is preempted by a higher-priority process (periodic or not).

DEADLINE_TIME Current deadline time for the process. See 
4.5.3 Increasing Deadline Times, p.53.

PROCESS_STATE Current state of the process. See 4.5.9 Process 
State Transitions, p.56.

Table 4-5 APEX Process Status Information (cont’d)

Field in PROCESS_STATUS_TYPE Description
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■ Aperiodic processes

An aperiodic process is the same as a periodic process, but without an 
activation time. That is, an aperiodic process has a PERIOD creation attribute 
equal to INFINITE_TIME_VALUE.

4.5.8  Scheduling Processes

Figure 4-2 illustrates an example of process scheduling. Processes are scheduled 
according to the POSIX SCHED_FIFO method. In the example, P2 does not 
complete during the second time period. It is preempted by P3 most of the time, so 
it misses its deadline.

Figure 4-2 Example of Processes Scheduled with FIFO Scheduling
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4.5.9  Process State Transitions

Figure 4-3 shows the relationships between the various states for APEX processes. 

DORMANT State

The DORMANT state indicates that the process is ineligible to receive resources. A 
process is in the DORMANT state before it is started and after it is terminated (that 
is, after a STOP service has been issued). Processes are created in the DORMANT 
state.

The DORMANT state moves to the following states:

READY 

■ When a process is started by another process while in NORMAL mode. 

WAITING 

■ When a process is started during INIT mode. 

■ When a periodic process is started during NORMAL mode and is waiting for 
its next release point. 

Figure 4-3 APEX Process State Transitions
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■ When an aperiodic process is started with a delay during NORMAL mode. 

DORMANT 

■ When a process is not started before the transition to NORMAL mode. 

WAITING State

The WAITING state indicates that the process is not allowed to receive resources 
until a particular event occurs. The process is waiting for one or both of the 
following reasons:

■ It is waiting on a resource, such as a semaphore or an event.

■ It is suspended.

The WAITING state moves to the following states:

DORMANT 

■ When another process stops the process.

■ When an error occurs and the health monitor stops the process.

READY 

■ When an unavailable resource becomes available and the process is not 
suspended.

■ When the RESUME service is requested for the process and the process is not 
waiting for any resources.

■ When the TIMED_WAIT service was requested, and the delay has expired.

■ For a periodic process, when the time to activate the process (deadline time) is 
reached.

■ For an aperiodic process started during INIT mode (which is started in the 
WAITING state), when the partition enters NORMAL mode.

WAITING 

■ When a process that is waiting to access a resource (delay, semaphore, period, 
event, message, and so on) is suspended.

■ When a process that is both waiting to access a resource and suspended is 
resumed, or the resource becomes available, or the timeout expires.
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■ For a periodic process started during INIT mode (which is started in the 
WAITING state), when the VxWorks 653 module enters NORMAL mode. 

■ For an aperiodic process started using the DELAYED_START service in the INIT 
mode, when the partition enters NORMAL mode. 

RUNNING State

The RUNNING state indicates that the process is running. Only one process can be 
running at a time. The previous state of a running process is always READY.

The RUNNING state moves to the following states:

DORMANT 

■ When the running process stops itself.

■ When the health monitor stops the process because an error occurred.

READY 

■ When the running process requests a service delay with a delay time of zero 
(this is equivalent to round-robin scheduling of processes of the same priority).

■ When another process with a higher priority enters the READY state.

WAITING 

■ When the running process suspends itself.

■ When the running process attempts to access an unavailable resource 
(semaphore, buffer, event, blackboard, queuing port) with a non-zero timeout.

■ When the running process requests a delay service (such as a timed wait or 
periodic wait) with a non-zero delay.

READY State

The READY state indicates that the process is eligible to be scheduled and is 
waiting to run. The process is not running for either or both of these reasons:

■ A higher-priority process is running.

■ Preemption is locked.
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The READY state moves to the following states: 

DORMANT 

■ When another process issues a STOP service on the process.

■ When the health monitor stops the process because an error occurred.

RUNNING 

■ When the scheduler selects the process to run. (This is the only way to enter 
the RUNNING state.) 

WAITING 

■ When another process issues a SUSPEND service on the running process.

4.5.10  Suspending and Resuming Processes

When a process is suspended, the process is not allowed to run, and its state is 
WAITING until another process resumes it. When a process waits on a resource 
such as a semaphore or an event, it can also be suspended. The services to suspend 
or resume processes are:

■ SUSPEND_SELF

If the current process is an aperiodic process, the service suspends it until 
RESUME is issued or the specified timeout expires.

If preemption is disabled and the process being suspended is the one holding 
the preemption lock, SUSPEND_SELF returns INVALID_MODE.

■ SUSPEND

The service lets the current process suspend any aperiodic process, except 
itself, until another process resumes the suspended process. If the process is 
pending in a queue at the time it is suspended, it stays in the queue. When it is 
resumed, it continues pending unless it was removed from the queue before 
the end of its suspension. The process might have been removed if a particular 
condition occurred, a timeout expired, or the queue was reset.

A process may suspend any other process asynchronously. 

If process B suspends an already suspended or self-suspended process A, the 
service has no effect.

If preemption is disabled and the process being suspended is the one holding 
the preemption lock, SUSPEND returns INVALID_MODE.
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■ RESUME

The service lets the current process resume another previously suspended 
process. The resumed process becomes ready if it is not waiting on a resource 
such as a delay, semaphore, period, event, or message. Since a periodic process 
cannot be suspended, it cannot be resumed.

4.5.11  Stopping and Starting Processes

The STOP service makes a process ineligible for processor resources (in other 
words, its state is DORMANT) until another process issues the START service 
(causing the first process to enter the READY state). After it is created, a process is 
also in a DORMANT state. The DELAYED_START service applies only to periodic 
processes and lets process schedules be phased. The services to stop and start 
processes are:

■ STOP_SELF

The service lets the current process stop itself. If the current process is not the 
error handler process, the partition is placed in the unlocked condition. The 
service should not be called when the partition is in WARM_START or 
COLD_START modes. If it is, the behavior is not defined.

■ STOP 

The service makes a process ineligible for processor resources until another 
process issues START. The STOP service lets the current process abort any 
process except itself. When a process aborts another process that is pending in 
a queue, the aborted process is removed from the queue.

■ START 

The service initializes all attributes of a process to their default values and 
resets the process’s run-time stack. If the partition is in NORMAL mode, the 
process’s deadline expiration time and next release point are calculated. The 
service lets the current process start another process.

■ DELAYED_START 

The service initializes all attributes of a process to their default values, resets 
the processes’s run-time stack, and places the process in the WAITING state 
(that is, the specified process goes from DORMANT to WAITING). If the 
partition is in NORMAL mode, the process’s release point is calculated with the 
specified delay time. In addition, the process’s deadline expiration time is 
calculated. The service lets the current process start another process.
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4.5.12  Controlling Preemption

Preemption locking or unlocking disables or enables process rescheduling in a 
partition. For details, see 4.4.6 Controlling Preemption in Partitions, p.50.

4.6  Managing Time in APEX Partitions

Time partitioning is a major characteristic of VxWorks 653 and all ARINC 653 
systems.

4.6.1  Scheduling Partitions

For information on how the core OS schedules partitions, see 7.13 Partition 
Scheduling, p.169.

4.6.2  System Clock Time

The system clock time gives the unique time of the system. Time is unique and 
independent of partition execution within a VxWorks 653 module. All time values 
or capacities are related to this unique time and are not relative to any partition 
execution.The timer provides the time of day, and it is used as a stamp or for 
anything that needs time or date information.

The GET_TIME service gets the system clock time.

For a description of system time, see 7.12 System Time, p.169.

4.6.3  Requesting Resources and Timeouts

When a process requests an APEX resource (such as a semaphore or an event), it 
can specify a timeout of one of the following types:

INFINITE_TIME_VALUE
Never expire. It is equivalent to wait forever.

ZERO_TIME_VALUE
Do not wait for the resource. If the resource is not available, return an error.
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Finite value of timeout
The maximum amount of time to wait for a resource.

The timeout’s units are of SYSTEM_TIME_TYPE type, which defines time in 
nanoseconds. Although expressed in nanoseconds, the time is rounded up to ticks, 
and the actual timeout is a multiple of the system clock period. 

A timeout usually results in an early return from the service and a TIMED_OUT 
return code.

If a timeout expires outside the partition window, it is acted on at the beginning of 
the next partition window (as with deadlines; see 4.6.5 Deadlines, p.62).

4.6.4  Scheduling Processes 

APEX time management services let partitions control their processes.

At the end of each processing cycle, a periodic process requests the 
PERIODIC_WAIT service to get a new deadline. The new deadline is calculated 
from the next periodic release point for that process. For all processes, the 
TIMED_WAIT service lets the process suspend itself for a minimum amount of 
elapsed time. After the wait time has elapsed, the process becomes available to be 
scheduled. 

The REPLENISH service lets a process postpone its current deadline by the amount 
of time that has already passed.

Each process in a partition can specify an amount of elapsed time (called the time 
capacity) it is allowed to consume in order to satisfy its processing requirement. 
This time capacity is used to set a processing deadline time that vThreads 
periodically evaluates to determine whether the process is satisfactorily 
completing its processing within the allotted time.

4.6.5  Deadlines

Each process has associated with it a fixed time capacity, which represents the 
response time allotted to it for satisfying its processing requirements.

The deadline time (a variable process attribute) determines whether the process is 
satisfactorily completing its processing within its time capacity. Deadline time can 
be increased by issuing the REPLENISH service. The PERIODIC_WAIT service 
cancels the current deadline, and a new deadline is created at the next activation. 
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A deadline can expire outside the partition window, but it is acted on at the 
beginning of the next partition window (as with timeouts).

There are three types of deadlines:

■ Hard deadlines

If a process fails to meet a hard deadline within the specified time period, 
vThreads takes remedial action. 

■ Soft deadlines

If a process fails to meet a soft deadline within the specified time period, 
typically, the failure is recorded and processing continues.

■ No deadline

No action is taken if a process fails to complete processing within the specified 
time period.

For a periodic process, the countdown on deadline time starts when the process’s 
active period starts. Countdown is disabled when the process requests the 
PERIODIC_WAIT service. Deadline time is ended when the process is stopped or 
when it calls the REPLENISH or PERIODIC_WAIT services. Countdown is 
deactivated when the partition is in an operating mode other than NORMAL. 

For an aperiodic process, the deadline time countdown starts when the process 
starts and the partition mode is NORMAL. The deadline time is rearmed with 
additional time equal to the time budget specified when the process requests a 
REPLENISH service (see Figure 4-4). The process can specify the additional time. A 
periodic process deadline cannot be postponed beyond its next release point.
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The deadline ends when the process is stopped, or when the partition state is not 
NORMAL. 

Figure 4-4 Process with Replenish (Periodic or Aperiodic Processes)
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NOTE:  To make Figure 4-4 through Figure 4-6 easier to read, the time capacity (the 
time initially allotted to the process to complete its work) and the amount of time 
added by REPLENISH (specified by the BUDGET_TIME parameter) appear to be 
equal and constant. In reality, BUDGET_TIME can be larger or smaller than the time 
capacity. 



4  Developing APEX Applications
4.6  Managing Time in APEX Partitions

65

4

In Figure 4-5, the periodic process is in the following states:

1. DORMANT.

2. RUNNING (or READY if another process has preempted it).

3. WAITING.

4. RUNNING (or READY if another process has preempted it).

5. READY until the health monitor takes an action. The process has not completed 
within the deadline interval.

In Figure 4-6, the periodic process is in the following states:

1. DORMANT.

Figure 4-5 Periodic Process Examples with PERIODIC_WAIT and Deadline
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2. RUNNING (or READY if another process has preempted it).

3. RUNNING (or READY if another process has preempted it).

4. WAITING.

5. RUNNING (or READY if another process has preempted it).

6. READY until the health monitor takes an action. The process has not completed 
within the deadline interval.

4.6.6  Release Points

The first release point for a periodic process is relative to the start of its partition’s 
first window in the major time frame. Using a DELAY in the DELAYED_START 
service enables phasing of the process schedule. Subsequent release points are 
based on the previous release point and the process period. 

Figure 4-6 Periodic Process with REPLENISH and PERIODIC_WAIT
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4.7  Communicating between Partitions

Interpartition communication includes all communication between two or more 
partitions in a VxWorks 653 module. 

APEX partitions within a VxWorks 653 module communicate with each other by 
messages, ports, and channels. The same is true for vThreads partitions that have 
access to the minimal APEX services. In addition, APEX partitions can 
communicate with COIL partitions. For details, see 3.4 Communicating with Other 
Partitions, p.37.

For information on communicating outside the VxWorks 653 module, see 
4.8 Communicating with Other Modules, p.74. The API for communicating between 
partitions and for communicating outside the module is the same. However, under 
some circumstances, there are minor behavioral differences when communicating 
outside the module. For details, see 4.8 Communicating with Other Modules, p.74.

A message can be sent from one source port to one or more destination ports. 
Processes read from these destination ports.

The configuration of this messaging system is defined when the VxWorks 653 
module is configured. For more information, see the VxWorks 653 Configuration and 
Build Guide.

Figure 4-7 Sending Messages between Partitions
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4.7.1  Limitations of APEX for Communicating between Partitions

Although the ARINC 653 standard specifies the following, APEX does not support 
them:

■ multicast and client-server messages

■ acknowledgement of messages

4.7.2  APEX Messages

APEX messages are contiguous blocks of data.

Although the ARINC 653 standard lets messages be decomposed into small 
blocks, communicated individually, and re-assembled before delivery, 
VxWorks 653 transmits full messages only. This avoids checking for message 
completeness and retransmitting segments.

Messages can be of fixed or variable lengths. Fixed length means a fixed size for 
every occurrence of a particular message. A variable-length message can vary in 
size. The sender specifies the length when the message is sent. To accommodate 
various message lengths, the messaging system allocates resources for the 
maximum length, which is defined in the ARINC 653 standard.

A message can be sent periodically or on demand (aperiodically). The messaging 
system operates independently of the content of the messages it transmits. 

Any given message can be sent from a single partition only. In addition, once 
delivered, messages are destroyed. That is, it is not possible to request old versions 
of messages. 

4.7.3  APEX Channels 

A channel defines the following:

■ logical link between one source port and one or more destination ports

■ mode of transfer of the messages from the source to the destination

■ characteristics of the messages to be sent

A message sent to one destination port is called a directed message. A message 
sent to multiple destination ports is called a broadcast message.
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Each channel can be configured to operate in a specific mode. Two modes of 
transfer are defined: sampling mode and queuing mode. The messaging service 
returns an error if the port configuration (mode, direction) is not compatible with 
the request. 

For information on how to configure ports and their associated channels in an 
XML configuration file, see the VxWorks 653 Configuration and Build Guide.

The consistency of the configuration is checked at built time and startup time. For 
a channel, the size of the sending port cannot exceed the size of any of the receiving 
ports.

Sampling Mode

In sampling mode, messages typically carry similar, but updated, data. No 
queuing is performed. A message remains in the source port until it is sent or 
overwritten. Messages arrive at the destination port or ports in the order in which 
they were sent. Each new message overwrites the previous one when it reaches the 
destination port and remains there until it is overwritten itself. Sampling mode 
supports variable-length messages.

Refresh Rate

Refresh rates applies to destination ports in sampling mode. The refresh rate 
indicates the maximum acceptable age of a valid message, from the time it was 
received at the port. It is specified when the port is created. When the message is 
read, a validity output parameter indicates whether the age of the message is 
consistent with the port’s refresh rate.

Queuing Mode

In queuing mode, each new instance of a message may contain uniquely different 
data. Therefore, overwriting previous messages is not allowed during the transfer. 
Messages are queued in the source port until they are sent, and no message is lost 
(except in the case of a full message queue with the RECEIVER_DISCARD 
protocol). Messages are stored in the receiver port until a process reads them. For 
information about the protocols required to manage message queues, see Port 
Protocols, p.72. Queuing mode supports variable-length messages.
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4.7.4  Ports

A port can be one of the following general types:

■ Local Ports

Local ports are APEX ports that let applications communicate with each other 
within a VxWorks 653 module. They are attached to partitions within the 
module.

■ Pseudo-Ports

Pseudo-ports are used to communicate outside the VxWorks 653 module. A 
pseudo-port connects a port to a driver, using a specialized API. For 
information on pseudo-ports, see 4.8 Communicating with Other Modules, p.74. 

■ Direct-Access Ports

Direct-access ports implement APEX queuing ports without software 
buffering. They are also used to communicate outside the VxWorks 653 
module. A channel that has a direct-access port must have a single source and 
destination. Direct-access ports can be in partitions or pseudo-partitions. For 
details on those in partitions, see 4.8.2 Communicating Through Direct-Access 
Ports in a Partition, p.76. For details on those in pseudo-partitions, see 
4.8.1 Communicating Through Pseudo-Ports in a Pseudo-Partition, p.74.

■ Null Ports

Null ports are APEX ports that are used to ease incremental system 
integration, where some part of a system may not be present during the 
integration of other parts. To this end, a channel can initially be configured 
with a null source port, which is equivalent to a port that is always empty. 
Also, a channel can initially be configured with one, some, or all null 
destination ports, which are equivalent to ports that are always ready to accept 
data and always consume it without error. Null ports can be attached to 
partitions, the core OS, or pseudo-partitions. For information on 
pseudo-partitions, see 4.8 Communicating with Other Modules, p.74.

The same APEX messaging services can be used for all types of ports.

Ports are defined by a set of unique attributes that are specified by the ARINC 653 
standard. The attributes are specified in the XML configuration file at 
configuration and build time. For details, see the VxWorks 653 Configuration and 
Build Guide.

To get a value at run-time from the core OS, call configRecordFieldGet( ) with 
PORT_CFG_RECORD and the appropriate field selector, as shown below:
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CFG_PORT_CHANNEL
Parent channel. 

CFG_PORT_DIRECTION
SOURCE or DESTINATION. 

CFG_PORT_DRIVER_NAME
The name of the driver (for pseudo-ports only).

CFG_PORT_MAPPING
Whether the port is one of:

■ direct-access pseudo-port in the core OS (DIRECT_ACCESS_PORT)

■ local port in a partition (LOCAL_PORT)

■ null port in the core OS or a partition (NULL_PORT)

■ pseudo-port in the core OS or a partition (PSEUDO_PORT)

CFG_PORT_MODE
QUEUING or SAMPLING. 

CFG_PORT_MODULE 
Parent VxWorks 653 module.

CFG_PORT_MSG_SIZE
Maximum size (in bytes) of a message that can be sent or received by this port.

CFG_PORT_NAME
Port name, 1 to MAX_NAME_LENGTH (as set in apexType.h) 
NULL-terminated ASCII string.

CFG_PORT_NB_MSGS
Message queue size (for queuing ports only).

CFG_PORT_PARTITION
Parent partition, as defined in the partition definition record 
(PARTITION_CFG_RECORD).

CFG_PORT_PROTOCOL
Port message protocol. One of RECEIVER_DISCARD, SENDER_BLOCK, or 
NOT_APPLICABLE. For more information, see Port Protocols, p.72. 

CFG_PORT_REFRESH
Port refresh rate in SYSTEM_TIME_TYPE increments (for sampling ports only). 
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Port Protocols

The ARINC 653 standard does not specify port protocols, but VxWorks 653 does 
provide the following:

SENDER_BLOCK
A queuing message is sent to all the channel’s destination ports. If any one is 
full, the message is queued in the source port in FIFO order.

When the source port is full and if a timeout was specified, sender processes 
are blocked during the SEND_QUEUING_MESSAGE service.

When a destination port is emptied, retransmission is attempted. Whether it 
succeeds depends on the state of the channel’s other destination ports.

The main advantage of using the SENDER_BLOCK protocol is that no 
messages are lost, as the ARINC 653 specification requires. The main 
drawback is that it introduces coupling between partitions. A nonresponsive 
receiving partition blocks the entire channel, affecting the normal behavior of 
other receiving partitions. 

Because the SENDER_BLOCK attribute that is set on a single destination port 
can block the entire channel, it is considered a channel-wide attribute and is 
attached to the channel’s source port.

RECEIVER_DISCARD
If one of the channel’s destination ports is full, the source port discards the 
message for that port. Therefore, if all the destination ports are full, the 
message might be lost. When a message is so discarded, the port’s overflow 
flag is set to notify the application of the discarded (lost) message.

The RECEIVER_DISCARD protocol avoids the problem caused by a faulty 
application that fails to read or empty its destination ports, thereby preventing 
other partitions from receiving messages.

4.7.5  Working with Queuing Messages

Creating Queuing Ports

The CREATE_QUEUING_PORT service creates an empty port in queuing mode and 
returns a port ID. The QUEUING_DISCIPLINE attribute indicates whether blocked 
processes are queued in FIFO or priority order. 
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Sending Queuing Messages

The SEND_QUEUING_MESSAGE service sends a message to the specified queuing 
port. If there is sufficient space at the queuing port, the message is added to the end 
of the port’s queue. If there is insufficient space, the sending process is blocked and 
added to the sending port’s queue, according to the port’s queuing discipline. The 
process stays on the queue until the specified timeout expires (if it is finite) or until 
space for the message becomes free at the queuing port.

Receiving Queuing Messages

The RECEIVE_QUEUING_MESSAGE service receives a message from the specified 
queuing port. If the queuing port is not empty, the message at the head of the port’s 
queue is removed and returned to the caller. If the queuing port is empty, the 
process is blocked until the specified timeout or until a message arrives.

Getting Queuing Port Information

The GET_QUEUING_PORT_ID service gets the port ID for a specified queuing port 
name.

The GET_QUEUING_PORT_STATUS service gets the following information for a 
queuing port:

■ direction

■ number of messages at the port

■ number of waiting processes

■ size

4.7.6  Working with Sampling Messages

Creating Sampling Queues

The CREATE_SAMPLING_PORT service creates an empty sampling port and 
returns a port ID. 

Writing Sampling Messages

The WRITE_SAMPLING_MESSAGE service writes a message at the specified 
sampling port, overwriting a previous message.
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Reading Sampling Messages

The READ_SAMPLING_MESSAGE service reads a message at the specified 
sampling port and returns a validity parameter that indicates whether the age of 
the message is consistent with the port’s refresh rate. The age is the difference 
between the value of the system clock when the message is written into the port 
and the value of the system clock when the messages is read at the destination port.

Getting Sampling Port Information

The GET_SAMPLING_PORT_ID service gets the port ID for a specified sampling 
port name.

The GET_SAMPLING_PORT_STATUS service gets the following for a sampling 
port:

■ direction

■ refresh rate

■ size

■ validity of the last message read by the specified sampling port

4.8  Communicating with Other Modules

Applications can use the APEX message services to communicate with other 
modules. The services are the same services that applications use to communicate 
with other partitions within the module. For information on the API as it relates to 
communicating within a module, see 4.7 Communicating between Partitions, p.67.

4.8.1  Communicating Through Pseudo-Ports in a Pseudo-Partition

For an application to use APEX queuing-message services to communicate with 
other modules through pseudo-ports in pseudo-partitions, the platform provider 
needs to do the following:

■ Configure the remote port

Configure the remote port in the pseudo-partition of the partition’s 
communication channel as a pseudo-port or a direct-access port. For 
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configuration details, see the port and channel documentation in the 
VxWorks 653 Configuration and Build Guide. An application cannot determine 
which type of ports it is communicating through. If the remote port is a 
direct-access port, the application may see differences compared to using a 
pseudo-port that is not direct access. For details, see Communicating Through 
Direct-Access Ports in a Pseudo-Partition, p.75.

■ Supply a driver

Supply a supervisor-level port driver in the core OS. For information on 
writing such a driver and adding it to the core OS, see 7.15 Setting up 
Communication with Other Modules, p.185.

Communicating Through Direct-Access Ports in a Pseudo-Partition

If the remote port of an application's channel is a direct-access port in a 
pseudo-partition, the application can send and receive queuing messages at any 
time in its partition window.

If an application specifies a non-zero timeout for sending or receiving messages, 
the timeout is ignored and treated as zero. 

Receiving Messages

Table 4-6 shows what happens when an application issues the 
RECEIVE_QUEUING_MESSAGE service on a channel with a direct-access port 
attached to a pseudo-partition.

Table 4-6 Receiving Messages on a Channel with a Direct-Access Port in a Pseudo-Partition

Message?

Time Enough in 
Partition Window 
to Read? Result of Issuing RECEIVE_QUEUING_MESSAGE

No N/A Service immediately returns the 
NOT_AVAILABLE APEX return-code parameter 
to the application. (The return code for a 
pseudo-port that is not direct access would be 
TIMED_OUT.)
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Sending Messages

If an application issues the SEND_QUEUING_MESSAGE service on a channel with 
a direct-access port in a pseudo-partition and there is not time for the core OS to 
complete the write operation, vThreads retries the operation until the end of the 
partition window, rewriting the message at the start of the partition's next window.

4.8.2  Communicating Through Direct-Access Ports in a Partition

For an application to use APEX message services (for queuing, sampling, and SAP 
messages) to communicate with other modules through direct-access ports in its 
partition, the following must be done:

■ Configure ports

The platform provider and system integrator configure the channel’s ports in 
the partition. For details, see the port and channel documentation in the 
VxWorks 653 Configuration and Build Guide.

■ Supply a driver

The platform provider supplies a user-level port driver in the partition. The 
interface is the same as the interface for the supervisor-level port driver in the 
core OS. For information on writing a supervisor-level driver for the core OS, 
see 7.15 Setting up Communication with Other Modules, p.185. Consider the 
following differences as you follow this information:

■ Because the port driver is in a partition, you can use only the vThreads 
API.

■ vThreads passes to the driver the time remaining in the partition window. 
This value is always infinite.

Yes Yes Service immediately returns the message to the 
application.

Yes No vThreads retries the operation until the end of 
the partition window, rereading the message at 
the start of the partition's next window.

Table 4-6 Receiving Messages on a Channel with a Direct-Access Port in a Pseudo-Partition (cont’d)

Message?

Time Enough in 
Partition Window 
to Read? Result of Issuing RECEIVE_QUEUING_MESSAGE
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Sending and Receiving Messages

An application cannot determine which type of port it is communicating through. 
The only difference between the behavior of message services that use APEX ports 
and those that use direct-access ports occurs when an application issues a service 
with a non-zero timeout. In this case, the service returns an INVALID_PARAM 
return-code parameter. 

4.9  Communicating within APEX Partitions

APEX provides the following APEX objects so that processes can communicate 
with each other within a partition:

■ buffers

■ blackboards

■ semaphores

■ events

4.9.1  Communicating Using APEX Buffers

APEX buffers let processes communicate with each other within a partition. 
Buffers support a single message type between multiple source and destination 
processes. Communication is indirect: participating processes address the buffer 
rather than the opposing processes directly, thus providing a level of process 
independence.

Buffers store multiple messages in message queues and no messages are lost. 
Figure 4-8 summarizes how processes use a buffer to communicate.
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Creating APEX Buffers

APEX buffers can be created only when a partition is being initialized, that is, 
when the partition mode is anything but NORMAL. Processes can create as many 
buffers as are supported by the memory that is pre-allocated for the partition’s 
buffers.

The CREATE_BUFFER service creates an empty buffer with the following specified 
information:

■ name, which must be unique within the partition

■ maximum number of messages

■ maximum message size

■ discipline for queuing waiting processes (FIFO or PRIORITY)

The service returns a buffer ID.

Sending Messages to APEX Buffers

The SEND_BUFFER service sends a message to a specified buffer.

Figure 4-8 Processes Using a Buffer to Communicate

process 1

process 2

process 3

process 4

FIFO
message

queue

GET_BUFFER_ID

SEND_BUFFER GET_BUFFER_STATUS

RECEIVE_BUFFER

send
process
queue

receive
process
queue

priority or
FIFO order

priority or
FIFO order

buffer



4  Developing APEX Applications
4.9  Communicating within APEX Partitions

79

4

If the buffer is empty, the message is stored in FIFO order. If processes are waiting 
for messages, the first process is removed from the queue and put in the READY 
state.

If the buffer is full, the sending process is put in the WAITING state and put in the 
buffer’s send queue according to the buffer’s queuing discipline and the specified 
timeout value.

If the service times out, it returns TIMED_OUT.

Receiving Messages from APEX Buffers

The RECEIVE_BUFFER receives a message from a specified buffer.

If the buffer is not empty, the message is removed from the FIFO queue.

If the buffer is full and processes are waiting for messages, the first process is 
removed from the send queue and put in the READY state.

If the buffer is empty, the receiving process is put in the WAITING state and put in 
the receive queue according to the buffer’s queuing discipline and the specified 
timeout value.

If the service times out, it returns TIMED_OUT.

Getting APEX Buffer Information

The GET_BUFFER_ID service gets the buffer ID of a specified buffer.

The GET_BUFFER_STATUS service gets the following information for the specified 
buffer:

■ current number of messages

■ number of waiting processes

■ maximum allowable number of messages

■ maximum allowable message size

4.9.2  Communicating Using APEX Blackboards

APEX blackboards let processes communicate with each other within a partition. 
Blackboards support a single message type between multiple source and 
destination processes. Communication is indirect: participating processes address 
the blackboard rather than the opposing processes directly, thus providing a level 
of process independence.
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Figure 4-9 summarizes how processes use a blackboard to communicate.

Creating Blackboards

Blackboards can be created only when a partition is being initialized, that is, when 
the partition mode is anything but NORMAL. Processes can create as many 
blackboards as are supported by the memory that is pre-allocated for the 
partition’s blackboards.

The CREATE_BLACKBOARD service creates an empty blackboard with the 
following specified information:

■ name, which must be unique within the partition

■ maximum number of messages

The service returns a blackboard ID.

Displaying Blackboard Messages

The DISPLAY_BLACKBOARD service writes a message on a blackboard and 
remove all waiting processes from the process queue, putting them in the READY 
state. The message remains on the blackboard.

Figure 4-9 Processes Using a Blackboard to Communicate
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Reading Blackboard Messages

If the specified blackboard is not empty, the READ_BLACKBOARD service reads 
the displayed message from it.

If the blackboard is empty, the reading process is put in the WAITING state 
according to the specified timeout value.

If the service times out, it returns TIMED_OUT.

Clearing Blackboards

The CLEAR_BLACKBOARD service clears the message from the specified 
blackboard. As a result, the blackboard becomes empty.

Getting Blackboard Information

The GET_BLACKBOARD_ID service gets the blackboard ID for the specified name.

The GET_BLACKBOARD_STATUS service gets the following information for the 
specified blackboard:

■ state (EMPTY or OCCUPIED)

■ number of processes waiting for a message

■ maximum allowable message size

State Transitions for Blackboards

Figure 4-10 shows state transitions for blackboards. 
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4.9.3  Communicating Using APEX Semaphores

APEX semaphores are counting semaphores. A process waits on a semaphore to 
gain access to a resource and then signals the semaphore when it is finished. A 
semaphore's current value indicates the number of times that it is currently 
available to be taken.

For information on vThreads semaphores, see A.3.3 Semaphores, p.296. For 
information on POSIX semaphores, see 5.6 POSIX Semaphores, p.101.

Creating APEX Semaphores

APEX semaphores can be created only when a partition is being initialized, that is, 
when the partition mode is anything but NORMAL. Processes can create as many 
APEX semaphores as are supported by the memory that is pre-allocated for the 
partition’s APEX semaphores.

The CREATE_SEMAPHORE service creates a semaphore with the following 
specified information:

■ name, which must be unique within the partition

■ maximum value

■ current value

Figure 4-10  State Transitions for Blackboards
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■ queuing discipline (FIFO or PRIORITY)

The service returns a semaphore ID.

Waiting for APEX Semaphores

If the specified semaphore’s current value is not zero, the WAIT_SEMAPHORE 
service decrements the value, and the process continues to run.

If the current value is zero, the process is put in the WAITING state and queued 
according to the semaphore’s queuing discipline and the specified timeout.

If the service times out, it returns TIMED_OUT.

Signalling APEX Semaphores

If there are no processes waiting for the specified semaphore, the 
SIGNAL_SEMAPHORE service increments the semaphore’s current value.

If there are processes waiting for the semaphore, the service uses the semaphore’s 
queuing discipline to determine which process will receive the signal and sets that 
process’s state to READY.

Getting APEX Semaphore Information

The GET_SEMAPHORE_ID service gets the semaphore ID for the specified name.

The GET_SEMAPHORE_STATUS service gets the following information for the 
specified semaphore:

■ current count

■ number of processes waiting for the semaphore

■ maximum value

4.9.4  Synchronizing Using APEX Events

APEX events let processes in a partition synchronize. Processes that are waiting for 
a condition are notified when the condition happens. An event can be in one of two 
states: UP or DOWN.

Figure 4-11 summarizes how processes use an APEX event to synchronize.
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Event Queuing

Rescheduling of processes occurs when a process attempts to wait for an event that 
is down. The calling process is queued for a specified amount of time (the time can 
be infinite). If the event is not set (up) in that amount of time, VxWorks 653 
automatically removes the process from the queue, sets the return code to 
TIMED_OUT, and puts the process back into the ready state.

Creating APEX Events

APEX events can be created only when a partition is being initialized, that is, when 
the partition mode is anything but NORMAL. Processes can create as many APEX 
events as are supported by the memory that is pre-allocated for the partition’s 
APEX events.

The CREATE_EVENT service creates an event with a specified name, which must 
be unique within the partition. The service returns an event ID. The event starts in 
the DOWN state.

Figure 4-11 Synchronizing Using an APEX Event

process 1

process 5

process 3

process 4

GET_EVENT_ID

SET_EVENT GET_EVENT_STATUS

WAIT_EVENT

process queue

process 2 RESET_EVENT

event

state

UP

DOWN

! CAUTION:  Processes should not count the occurrences of an event. Multiple 
SET_EVENT conditions that occur in a short period of time, or conditions that occur 
when no processes are waiting for the event, are coalesced into one UP state. 



4  Developing APEX Applications
4.9  Communicating within APEX Partitions

85

4

Setting and Resetting APEX Events

The SET_EVENT service sets the specified event to the UP state. All the processes 
waiting for the event are put into the READY state.

The RESET_EVENT service sets the specified event to the DOWN state.

Waiting for APEX Events

If the specified event is in the DOWN state, the WAIT_EVENT service moves the 
calling process from the RUNNING state to the WAITING state. If the event is in the 
UP state, the calling process continues to run.

Getting APEX Event Information

The GET_EVENT_ID service gets the event ID for the specified event.

The GET_EVENT_STATUS service gets the following status information for the 
specified event:

■ state (UP or DOWN)

■ number of waiting processes

State Transitions for APEX Events

Figure 4-12 shows state transitions for APEX events.

Figure 4-12 State Transitions for APEX Events
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4.10  Monitoring Health in APEX Partitions

APEX error services (in the apexError library) support process-level health 
monitoring as defined in the ARINC 653 standard.

When an APEX process raises an error, the partition’s error handler process runs.

4.10.1  Raising Process-Level Errors

When an APEX partition detects an error, it issues the 
RAISE_APPLICATION_ERROR service with an error code and a fault message. The 
service causes the error handler process to run.

Depending on its nature and scope, an error raised at the process level with the 
RAISE_APPLICATION_ERROR service could propagate to the partition level, 
where it is processed.

4.10.2  APEX Errors

The following are process-level APEX error codes:

■ APPLICATION_ERROR

■ DEADLINE_MISSED

■ HARDWARE_FAULT

■ ILLEGAL_REQUEST (invalid or illegal OS call)

■ MEMORY_VIOLATION

■ NUMERIC_ERROR

■ POWER_FAIL 

■ STACK_OVERFLOW (process stack overflow)

A faulty process can continue to run only in the cases of APPLICATION_ERROR or 
DEADLINE_MISSED.

4.10.3  Creating Error Handler Processes

An APEX application creates an error handler process for a partition by issuing the 
CREATE_ERROR_HANDLER service with the error handler entry point and stack 
size. The application supplies the error handler code.
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The error handler is an aperiodic process that runs in the partition window with 
the highest priority of any process in the partition. It preempts any process 
regardless of its priority, even if preemption is disabled for the partition. It has no 
process ID and cannot be accessed by other processes within the partition. That is, 
other processes cannot suspend it, stop it, or change its priority.

An application developer writes the error handler. It could do a selection of the 
following:

■ Get information about the error (issue GET_ERROR_STATUS):

■ error code (see 4.10.2 APEX Errors, p.86)

■ error address

■ process ID of the faulty process

■ fault message

If more than one process is faulty, the error handler process must issue 
GET_ERROR_STATUS in a loop until there are no more processes in error 
(that is, until the service returns NO_ACTION).

■ Get information about the failed process (issue GET_PROCESS_STATUS). 

■ Stop (issue STOP) or restart (issue START) the failed process.

■ Restart the partition (issue SET_PARTITION_MODE with WARM_START or 
COLD_START).

■ Shut down the partition (issue SET_PARTITION_MODE with IDLE).

■ Escalate the error to the partition level (issue 
REPORT_APPLICATION_ERROR).

■ Log the fault message with the health monitor (issue 
REPORT_APPLICATION_MESSAGE).

■ Stop itself (issue STOP_SELF).

If code running in the context of the error handler calls LOCK_PREEMPTION or 
UNLOCK_PREEMPTION, no action is taken. This is because the error handler is 
already the highest-priority process and cannot be interrupted or blocked. It can 
transmit the error context to health monitoring via the 
REPORT_APPLICATION_MESSAGE service for maintenance purpose.

An error handler process cannot do the following:

■ Correct an error. For example, it cannot limit a value in the case of overflow.

■ Call blocking services.
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Errors that occur while the error handler process runs are partition-level errors.
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5.1  Introduction

The POSIX standard for real-time extensions (1003.1b) specifies a set of interfaces 
to kernel facilities. To improve application portability, for vThreads partitions, 
VxWorks 653 provides POSIX interfaces as well as vThreads (both C and C++) and 
APEX.
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This chapter discusses programming concepts for writing POSIX applications that 
run in vThreads partitions.

This chapter uses the qualifier Wind to identify facilities designed for use with 
layers other than the POSIX API. For example, you can find a discussion of Wind 
semaphores contrasted to POSIX semaphores in 5.6.1 Comparison of POSIX and 
Wind Semaphores, p.102.

POSIX asynchronous I/O (AIO) routines are available in the aioPxLib library. The 
VxWorks 653 AIO implementation meets the specification in the POSIX 1003.1b 
standard.

5.2  POSIX Clocks and Timers

A clock is a software construct (struct timespec, defined in time.h) that keeps time 
in seconds and nanoseconds. The software clock is updated by system-clock ticks. 
VxWorks 653 provides a POSIX 1003.1b standard clock and timer interface. 

The POSIX standard provides a means of identifying multiple virtual clocks, but 
only one clock is required: the VxWorks 653 module-wide real-time clock. No 
virtual clocks are supported in VxWorks 653.

The VxWorks 653 module-wide real-time clock is identified in the clock and timer 
routines as CLOCK_REALTIME, and is defined in time.h. VxWorks 653 provides 
routines to access the module-wide real-time clock. For more information, see the 
reference entry for clockLib. 

The POSIX timer facility provides routines for tasks to signal themselves at some 
time in the future. Routines are provided to create, set, and delete a timer. For more 
information, see the reference entry for timerLib. When a timer goes off, the 
default signal, SIGALRM, is sent to the task. To install a signal handler that runs 
when the timer expires, use sigaction( ) (see A.3.6 Signals, p.315). 

Example 5-1 POSIX Timers 

/* This example creates a new timer and stores it in timerid. */

/* includes */
#include "vxWorks.h"
#include "time.h"

int createTimer (void)
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{
timer_t timerid;

/* create timer */
if (timer_create (CLOCK_REALTIME, NULL, &timerid) == ERROR)

{
printf ("create FAILED\n");
return (ERROR);
}

return (OK);
}

An additional POSIX routine (nanosleep( )) provides specification of sleep or 
delay time in units of seconds and nanoseconds, in contrast to the ticks used by the 
Wind taskDelay( ) routine. Nevertheless, the precision of both is the same and is 
determined by the system clock rate. Only the units differ. 

5.3  POSIX Memory-Locking Interface

To use more virtual memory than there is physical memory, many operating 
systems page and swap memory. This technique causes unpredictable delays in 
running time, so it is not desirable in real-time systems. Since VxWorks 653 is 
designed for real-time systems, it does not page or swap memory. 

However, the POSIX 1003.1b standard for real-time extensions covers operating 
systems that do page and swap. Such systems that want real-time performance can 
use the POSIX page-locking facilities to declare that certain memory blocks must 
not be paged or swapped.

To increase portability between other POSIX-compliant systems and VxWorks 653, 
VxWorks 653 includes POSIX page-locking routines. Since all memory is always 
locked in a VxWorks 653 system, calling the routines has no effect.

The POSIX page-locking routines are in the mmanPxLib. The library name 
indicates the POSIX memory-management library. All routines return OK (0).

POSIX libraries are available when INCLUDE_POSIX is included in a vThreads 
partition. For detailed information about the libraries and their routines, see their 
reference entries in the VxWorks 653 vThreads API Reference.
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5.4  POSIX Threads

POSIX threads (pThreads) are similar to vThreads tasks (called vThreads threads 
in VxWorks 653), but with some additional characteristics, including a thread ID 
that differs from its task ID. 

5.4.1  pThread Attributes

POSIX characteristics are called attributes. Each attribute contains a set of values, 
and a set of access routines to get and set those values. You can specify all pThread 
attributes in an attributes object, pthread_attr_t, at pThread creation. In a few 
cases, you can dynamically modify the attribute values in a running pThread. 

The POSIX attributes and their corresponding access routines are described below.

Stack Size

The stack size attribute specifies the size of the stack to be used. This value can be 
rounded up to a page boundary. 

■ Attribute name: stacksize 

■ Default value: default stack size set for taskLib

■ Access routines:

■ pthread_attr_getstacksize( )
■ pthread_attr_setstacksize( ) 

Stack Address

The stack address attribute specifies the base of a region of user-allocated memory 
to be used as a stack region for the created pThread. Because the default value is 
NULL, the VxWorks 653 module should allocate a stack for the pThread when it is 
created. 

■ Attribute name: stackaddr 

■ Default value: NULL 

■ Access routines:

■ pthread_attr_getstackaddr( )
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■ pthread_attr_setstackaddr( ) 

Detach State

The detach state attribute describes the state of a thread. With pThreads, the creator 
of a thread can block until the thread exits (see the entries for pthread_exit( ) and 
pthread_join( ) in the VxWorks 653 vThreads API Reference). In this case, the 
pThread is a joinable thread. Otherwise, it is a detached thread. A pThread that 
was created as a joinable thread can dynamically make itself a detached thread by 
calling pthread_detach( ).

■ Attribute name: detachstate 

■ Possible values:

■ PTHREAD_CREATE_DETACHED
■ PTHREAD_CREATE_JOINABLE 

■ Default value: PTHREAD_CREATE_JOINABLE 

■ Access routines:

■ pthread_attr_getdetachstate( )
■ pthread_attr_setdetachstate( ) 

■ Dynamic access routine: pthread_detach( ) 

Contention Scope

The contention scope attribute describes how pThreads compete for resources, 
namely the CPU. Under VxWorks 653, all threads compete for the CPU, so the 
competition is VxWorks 653 module-wide. Although POSIX allows two values, 
only PTHREAD_SCOPE_SYSTEM is implemented. 

■ Attribute name: contentionscope 

■ Possible values:

■ PTHREAD_SCOPE_SYSTEM
(PTHREAD_SCOPE_PROCESS is not implemented) 

■ Default value: PTHREAD_SCOPE_SYSTEM 

■ Access routines:

■ pthread_attr_getscope( )
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■ pthread_attr_setscope( ) 

Inherit Scheduling

The inherit scheduling attribute determines whether the pThread is created with 
scheduling parameters inherited from its parent thread, or with parameters that 
are explicitly specified. 

■ Attribute name: inheritsched 

■ Possible values:

■ PTHREAD_EXPLICIT_SCHED
■ PTHREAD_INHERIT_SCHED

■ Default value: PTHREAD_INHERIT_SCHED 

■ Access routines:

■ pthread_attr_getinheritsched( )
■ pthread_attr_setinheritsched( ) 

Scheduling Policy

The scheduling policy attribute describes the scheduling policy for the pThread, 
and is valid only if the value of the inheritsched attribute is 
PTHREAD_EXPLICIT_SCHED. 

■ Attribute name: schedpolicy 

■ Possible values:

■ SCHED_FIFO (priority-preemptive scheduling)
■ SCHED_RR (round-robin scheduling by priority)

■ Default value: SCHED_RR 

■ Access routines:

■ pthread_attr_getschedpolicy( )
■ pthread_attr_setschedpolicy( ) 

Because the default value for the inheritsched attribute is 
PTHREAD_INHERIT_SCHED, the schedpolicy attribute is not used by default. For 
more information, see 5.5.3 Getting and Displaying the Current Scheduling Policy, 
p.100. 
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Scheduling Parameters

The scheduling parameters attribute describes the scheduling parameters for the 
pThread, and is valid only if the value of the inheritsched attribute is 
PTHREAD_EXPLICIT_SCHED. 

■ Attribute name: schedparam 

■ Range of values: 0 – 255 

■ Default value: default task priority set for taskLib

■ Access routines:

■ pthread_attr_getschedparam( )
■ pthread_attr_setschedparam( ) 

■ Dynamic access routines:

■ pthread_getschedparam( ) using thread ID
■ pthread_setschedparam( ) using thread ID
■ sched_getparam( ) using task ID
■ sched_setparam( ) using task ID 

Because the default value the inheritsched attribute is 
PTHREAD_INHERIT_SCHED, the schedparam attribute is not used by default. For 
more information, see 5.5.2 Getting and Setting POSIX Task Priorities, p.98. 

Specifying Attributes when Creating pThreads

Following are examples of creating a pThread using the default attributes and 
using explicit attributes. 

Example 5-2 Creating a pThread Using Explicit Scheduling Attributes

pthread_t tid;
pthread_attr_t attr;
int ret;
pthread_attr_init(&attr);

/* set the inheritsched attribute to explicit */
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);

/* set the schedpolicy attribute to SCHED_FIFO */
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* create the pthread */
ret = pthread_create(&tid, &attr, entryFunction, entryArg);
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Example 5-3 Creating a pThread Using Default Attributes

pthread_t tid;
int ret;

/* create the pthread with NULL attributes to designate default values */
ret = pthread_create(&tid, NULL, entryFunction, entryArg);

Example 5-4 Designating Your Own Stack for a pThread

pthread_attr_init(&attr);

/* allocate memory for a stack region for the thread */
stackbase = malloc(2 * 4096);

if (stackbase == NULL)
{
printf("FAILED: mystack: malloc failed\n");
exit(-1);
}

/* set the stack pointer to the base address */
stackptr = (void *)((int)stackbase);

/* explicitly set the stackaddr attribute */
pthread_attr_setstackaddr(&attr, stackptr);

/* set the stacksize attribute to 4096 */
pthread_attr_setstacksize(&attr, (4096));

/* set the schedpolicy attribute to SCHED_FIFO */
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* create the pthread */
ret = pthread_create(&tid, &attr, mystack_thread, 0);

5.4.2  pThread Private Data

When a pThread needs access to private data, POSIX uses a key to access that data. 
A location is created by calling to pthread_key_create( ) and released by calling 
pthread_key_delete( ). The location is then accessed by calling 
pthread_getspecific( ) and pthread_setspecific( ). The pthread_key_create( ) 
routine has an option for a destructor routine, which is called when the creating 
pThread exits, if the value associated with the key is non-NULL.
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5.4.3  pThread Cancellation

POSIX provides a mechanism, called cancellation, to terminate a thread gracefully. 
There are two types of cancellation:

■ Synchronous: Synchronous cancellation causes the pThread to explicitly check 
to determine if it was cancelled or to call a routine that contains a cancellation 
point.

■ Asynchronous: Asynchronous cancellation causes the running of the pThread 
to be interrupted and a handler to be called, much like a signal. (Asynchronous 
cancellation is actually implemented with a special signal, SIGCANCEL, which 
applications should be careful not to block or ignore.)

Routines that can be used with cancellation are in pthreadLib and are listed in 
Table 5-1. For more information, see reference entries in the VxWorks 653 vThreads 
API Reference.

5.5  POSIX Scheduling Interface

The POSIX 1003.1b scheduling routines are in schedPxLib. The routines let you use 
a portable interface to get the following:

■ task priority (and set it)

■ scheduling policy

Table 5-1 pThreads Cancellation Routines

Routine Meaning

pthread_cleanup_pop( ) Unregisters a routine to be called when a pThread 
is cancelled, and then optionally calls the routine.

pthread_cleanup_push( ) Registers a routine to be called when the pThread 
is cancelled.

pthread_setcancelstate( ) Enables or disables cancellation.

pthread_setcanceltype( ) Selects between synchronous and asynchronous 
cancellation.
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■ maximum and minimum priority for tasks

■ length of a time slice if round-robin scheduling is in effect

For details about the library and its routines, see their reference entries in the 
VxWorks 653 vThreads API Reference.

This section describes how to use these routines, beginning with a list of the minor 
differences between the POSIX and Wind methods of scheduling.

5.5.1  Comparison of POSIX and Wind Scheduling

POSIX and Wind scheduling routines differ in the following ways:

■ POSIX scheduling is based on processes. Wind scheduling is based on tasks.

■ The POSIX standard uses the term FIFO scheduling. VxWorks 653 
documentation uses the term priority-preemptive scheduling. Only the terms 
differ. Both describe the same priority-based policy.

■ POSIX applies scheduling algorithms on a process-by-process basis. Wind 
applies scheduling algorithms on a partition-wide basis, meaning that all tasks 
in a partition use either a round-robin scheme or a priority-preemptive 
scheme.

■ The POSIX priority numbering scheme is the inverse of the Wind scheme. In 
POSIX, the higher the number, the higher the priority. In the Wind scheme, the 
lower the number, the higher the priority, where 0 is the highest priority. 
Accordingly, the priority numbers used with the POSIX scheduling library, 
schedPxLib, do not match those used and reported by all other components of 
VxWorks 653. You can override this default by setting the global variable 
posixPriorityNumbering to FALSE. If you do this, schedPxLib uses the Wind 
numbering scheme (smaller number = higher priority) and its priority 
numbers match those used by the other components of VxWorks 653.

5.5.2  Getting and Setting POSIX Task Priorities

The sched_setparam( ) and sched_getparam( ) routines set and get a task’s 
priority. Both routines take a task ID and a sched_param structure (defined in 
installDir/target/h/sched.h). A task ID of 0 sets or gets the priority for the calling 
task. 
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When sched_setparam( ) is called, the sched_priority member of the 
sched_param structure specifies the new task priority. The sched_getparam( ) 
routine fills in the sched_priority with the specified task’s current priority.

Example 5-5 Getting and Setting POSIX Task Priorities

/* This example sets the calling task’s priority to 150, then verifies
* that priority. To run from the shell, spawn as a task: -> sp priorityTest
*/

/* includes */
#include "vxWorks.h"
#include "sched.h"

/* defines */
#define PX_NEW_PRIORITY 150

STATUS priorityTest (void)
{
struct sched_param myParam;

/* initialize param structure to desired priority */

myParam.sched_priority = PX_NEW_PRIORITY;
if (sched_setparam (0, &myParam) == ERROR)

{
printf ("error setting priority\n");
return (ERROR);
}

/* demonstrate getting a task priority as a sanity check; ensure it
* is the same value that was just set.
*/

if (sched_getparam (0, &myParam) == ERROR)
{
printf ("error getting priority\n");
return (ERROR);
}

if (myParam.sched_priority != PX_NEW_PRIORITY)
{
printf ("error - priorities do not match\n");
return (ERROR);
}

else
printf ("task priority = %d\n", myParam.sched_priority);

return (OK);
}

The sched_setscheduler( ) routine is designed to set both scheduling policy and 
priority for a single POSIX process, which corresponds in most other cases to a 
single Wind task. In the core OS, sched_setscheduler( ) controls only task priority, 
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because the kernel does not let tasks have scheduling policies that differ from one 
another. If its policy specification matches the current VxWorks 653 module-wide 
scheduling policy, sched_setscheduler( ) sets only the priority, thus acting like 
sched_setparam( ). If its policy specification does not match the current one, 
sched_setscheduler( ) returns an error.

The only way to change the scheduling policy is to change it for all tasks. There is 
no POSIX routine for this purpose. To set a VxWorks 653 module-wide scheduling 
policy, use the Wind kernelTimeSlice( ) routine described in Round-Robin 
Scheduling, p.274.

5.5.3  Getting and Displaying the Current Scheduling Policy

The sched_getscheduler( ) POSIX routine returns the current scheduling policy. 
There are two valid scheduling policies in VxWorks 653: priority-preemptive 
scheduling (in POSIX terms, SCHED_FIFO) and round-robin scheduling by 
priority (SCHED_RR). For more information, see Scheduling Policy, p.94.

Example 5-6 Getting POSIX Scheduling Policy 

/* This example gets the scheduling policy and displays it. */

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS schedulerTest (void)
{
int policy;

if ((policy = sched_getscheduler (0)) == ERROR)
{
printf ("getting scheduler failed\n");
return (ERROR);
}

/* sched_getscheduler returns either SCHED_FIFO or SCHED_RR */

if (policy == SCHED_FIFO)
printf ("current scheduling policy is FIFO\n");

else
printf ("current scheduling policy is round robin\n");

return (OK);
}
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5.5.4  Getting Scheduling Parameters: Priority Limits and Time Slice

The sched_get_priority_max( ) and sched_get_priority_min( ) routines return the 
maximum and minimum possible POSIX priority.

If round-robin scheduling is enabled, you can use sched_rr_get_interval( ) to 
determine the length of the current time-slice interval. This routine takes as an 
argument a pointer to a timespec structure (defined in time.h) and writes the 
number of seconds and nanoseconds per time slice to the appropriate elements of 
that structure.

Example 5-7 Getting the POSIX Round-Robin Time Slice

/* The following example checks that round-robin scheduling is enabled,
* gets the length of the time slice, and then displays the time slice.
*/

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS rrgetintervalTest (void)
{
struct timespec slice;

/* turn on round robin */

kernelTimeSlice (30);

if (sched_rr_get_interval (0, &slice) == ERROR)
{
printf ("get-interval test failed\n");
return (ERROR);
}

printf ("time slice is %l seconds and %l nanoseconds\n",
slice.tv_sec, slice.tv_nsec);

return (OK);
} 

5.6  POSIX Semaphores

POSIX defines both named and unnamed semaphores, which have the same 
properties, but use slightly different interfaces. The POSIX semaphore library 
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provides routines for creating, opening, and destroying both named and unnamed 
semaphores. When opening a named semaphore, you assign a symbolic name, 
which the other named-semaphore routines accept as an argument. The POSIX 
semaphore routines are in semPxLib. For details about the library and its routines, 
see their reference entries in the VxWorks 653 vThreads API Reference.

5.6.1  Comparison of POSIX and Wind Semaphores

POSIX semaphores are counting semaphores. That is, they keep track of the 
number of times they are given. The Wind semaphore mechanism is similar to that 
specified by POSIX, except that Wind semaphores offer additional features listed 
below: 

■ priority inheritance 

■ task-deletion safety 

■ the ability for a single task to take a semaphore multiple times 

■ ownership of mutual-exclusion semaphores 

■ semaphore timeouts 

■ the choice of queuing mechanism

The POSIX terms wait (or lock) and post (or unlock) correspond to the VxWorks 653 
terms take and give. The POSIX routines for locking, unlocking, and getting the 
value of semaphores are used for both named and unnamed semaphores.

The sem_init( ) and sem_destroy( ) routines are used for initializing and 
destroying unnamed semaphores only. The sem_destroy( ) call terminates an 
unnamed semaphore and deallocates all associated memory.

The sem_open( ), sem_unlink( ), and sem_close( ) routines are for opening and 
closing (destroying) named semaphores only. The combination of sem_close( ) and 
sem_unlink( ) has the same effect for named semaphores as sem_destroy( ) does 
for unnamed semaphores. That is, it terminates the semaphore and deallocates the 
associated memory.

NOTE:  Some host operating systems, such as UNIX, require symbolic names for 
objects that are to be shared among processes. This is because processes do not 
normally share memory in such operating systems. In VxWorks 653, there is no 
requirement for named semaphores, because all kernel objects have unique 
identifiers. However, using named semaphores of the POSIX variety provides a 
convenient way to determine the object’s ID.



5  Developing POSIX Applications
5.6  POSIX Semaphores

103

5

5.6.2  Using Unnamed Semaphores 

When using unnamed semaphores, typically one task allocates memory for the 
semaphore and initializes it. A semaphore is represented with the data structure 
sem_t, defined in semaphore.h. The semaphore initialization routine (sem_init( )) 
lets you specify the initial value. 

Once the semaphore is initialized, any task can use the semaphore by locking it 
with sem_wait( ) (blocking) or sem_trywait( ) (non-blocking), and unlocking it 
with sem_post( ).

Semaphores can be used for both synchronization and exclusion.

When a semaphore is used for synchronization, it is typically initialized to zero 
(locked). The task waiting to be synchronized blocks on a sem_wait( ). The task 
doing the synchronizing unlocks the semaphore using sem_post( ). If the task that 
is blocked on the semaphore is the only one waiting for that semaphore, the task 
unblocks and becomes ready to run. If other tasks are blocked on the semaphore, 
the task with the highest priority is unblocked.

When a semaphore is used for mutual exclusion, it is typically initialized to a value 
greater than zero, meaning that the resource is available. Therefore, the first task to 
lock the semaphore does so without blocking. Subsequent tasks block if the 
semaphore value was initialized to 1.

Example 5-8 POSIX Unnamed Semaphores

/* This example uses unnamed semaphores to synchronize an action between the
* calling task and a task that it spawns (tSyncTask). To run from the shell,
* spawn as a task:
* -> sp unnameSem
*/

/* includes */

#include "vxWorks.h"
#include "semaphore.h"

/* forward declarations */
void syncTask (sem_t * pSem);

! CAUTION:  When deleting semaphores, particularly mutual-exclusion semaphores, 
avoid deleting a semaphore still required by another task. Do not delete a 
semaphore unless the deleting task first succeeds in locking that semaphore. 
Similarly for named semaphores, close semaphores only from the same task that 
opens them.
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void unnameSem (void)
{
sem_t * pSem;

/* reserve memory for semaphore */
pSem = (sem_t *) malloc (sizeof (sem_t));

/* initialize semaphore to unavailable */
if (sem_init (pSem, 0, 0) == -1)

{
printf ("unnameSem: sem_init failed\n");
free ((char *) pSem);
return;
}

/* create sync task */
printf ("unnameSem: spawning task...\n");
taskSpawn ("tSyncTask", 90, 0, 2000, syncTask, pSem);

/* do something useful to synchronize with syncTask */

/* unlock sem */
printf ("unnameSem: posting semaphore - synchronizing action\n");
if (sem_post (pSem) == -1)

{
printf ("unnameSem: posting semaphore failed\n");
sem_destroy (pSem);
free ((char *) pSem);
return;
}

/* all done - destroy semaphore */
if (sem_destroy (pSem) == -1)
{
printf ("unnameSem: sem_destroy failed\n");
return;
}

free ((char *) pSem);
}

void syncTask
(
sem_t * pSem
)
{
/* wait for synchronization from unnameSem */
if (sem_wait (pSem) == -1)

{
printf ("syncTask: sem_wait failed \n");
return;
}
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else
printf ("syncTask:sem locked; doing sync’ed action...\n");

/* do something useful here */
}

5.6.3  Using Named Semaphores

The sem_open( ) routine either opens a named semaphore that already exists or, as 
an option, creates a new semaphore. You can specify which of these possibilities 
you want by combining the following flag values:

O_CREAT 
Create the semaphore if it does not already exist (if it exists, either fail or open 
the semaphore, depending on whether O_EXCL is specified).

O_EXCL 
Open the semaphore only if newly created. Fail if the semaphore exists.

The results, based on the flags and whether the accessed semaphore already exists, 
are shown in Table 5-2. There is no entry for O_EXCL alone, because using that flag 
alone is not meaningful.

A POSIX named semaphore, once initialized, remains usable until explicitly 
destroyed. Tasks can explicitly mark a semaphore for destruction at any time, but 
the semaphore remains until no task has the semaphore open.

For a group of collaborating tasks to use a named semaphore, one of the tasks first 
creates and initializes the semaphore, by calling sem_open( ) with the O_CREAT 
flag. Any task that needs to use the semaphore thereafter, opens it by calling 
sem_open( ) with the same name (but without setting O_CREAT). Any task that 
has opened the semaphore can use it by locking it with sem_wait( ) (blocking) or 
sem_trywait( ) (non-blocking) and unlocking it with sem_post( ). 

Table 5-2 Possible Outcomes of Calling sem_open( )

Flag Settings If Semaphore Exists If Semaphore Does Not Exist

None Semaphore is opened. Routine fails.

O_CREAT Semaphore is opened. Semaphore is created.

O_CREAT and O_EXCL Routine fails. Semaphore is created.
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To remove a semaphore, all tasks using it must first close it with sem_close( ), and 
one of the tasks must also unlink it. Unlinking a semaphore with sem_unlink( ) 
removes the semaphore name from the name table. After the name is removed 
from the name table, tasks that have the semaphore open can still use it, but no new 
tasks can open this semaphore. The next time a task tries to open the semaphore 
without the O_CREAT flag, the operation fails. The semaphore vanishes when the 
last task closes it.

Example 5-9 POSIX Named Semaphores 

/* 
* In this example, nameSem() creates a task for synchronization. The
* new task, tSyncSemTask, blocks on the semaphore created in nameSem(). 
* Once the synchronization takes place, both tasks close the semaphore,
* and nameSem() unlinks it. To run this task from the shell, spawn
* nameSem as a task:
* -> sp nameSem, "myTest"
*/

/* includes */
#include "vxWorks.h"
#include "semaphore.h"
#include "fcntl.h"

/* forward declaration */
int syncSemTask (char * name);

int nameSem 
(
char * name
)
{
sem_t * semId;

/* create a named semaphore, initialize to 0*/
printf ("nameSem: creating semaphore\n");
if ((semId = sem_open (name, O_CREAT, 0, 0)) == (sem_t *) -1)

{
printf ("nameSem: sem_open failed\n"); 
return;
}

printf ("nameSem: spawning sync task\n");
taskSpawn ("tSyncSemTask", 90, 0, 2000, syncSemTask, name);

/* do something useful to synchronize with syncSemTask */

/* give semaphore */
printf ("nameSem: posting semaphore - synchronizing action\n");
if (sem_post (semId) == -1)

{
printf ("nameSem: sem_post failed\n");
return;
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}

/* all done */
if (sem_close (semId) == -1)

{
printf ("nameSem: sem_close failed\n");
return;
}

if (sem_unlink (name) == -1)
{
printf ("nameSem: sem_unlink failed\n");
return;
}

printf ("nameSem: closed and unlinked semaphore\n");
}

int syncSemTask
(
char * name
)
{
sem_t * semId;

/* open semaphore */
printf ("syncSemTask: opening semaphore\n");
if ((semId = sem_open (name, 0)) == (sem_t *) -1)

{
printf ("syncSemTask: sem_open failed\n");
return;
}

/* block waiting for synchronization from nameSem */
printf ("syncSemTask: attempting to take semaphore...\n");
if (sem_wait (semId) == -1)

{
printf ("syncSemTask: taking sem failed\n");
return;
}

printf ("syncSemTask: has semaphore, doing sync’ed action ...\n");

/* do something useful here */

if (sem_close (semId) == -1)
{
printf ("syncSemTask: sem_close failed\n");
return;
}

}
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5.7  POSIX Mutexes and Condition Variables

Mutexes and condition variables provide compatibility with the POSIX standard 
(1003.1c). They perform essentially the same role as mutual exclusion and binary 
semaphores (and are in fact implemented using them). They are available with 
pthreadLib. Like POSIX threads, mutexes and condition variables have attributes 
associated with them.

Mutex attributes are held in a data type called pthread_mutexattr_t, which 
contains two attributes, protocol and prioceiling.

Protocol

The protocol attribute describes how the mutex deals with the priority-inversion 
problem described in the section for mutual-exclusion semaphores 
(Mutual-Exclusion Semaphores, p.302). 

■ Attribute name: protocol 

■ Possible values:

■ PTHREAD_PRIO_INHERIT
■ PTHREAD_PRIO_PROTECT 

■ Access routines:

■ pthread_mutexattr_getprotocol( )
■ pthread_mutexattr_setprotocol( ) 

To create a mutual-exclusion semaphore with priority inheritance, use the 
SEM_Q_PRIORITY and SEM_PRIO_INHERIT options to semMCreate( ). 
Mutual-exclusion semaphores created with the priority protection value use the 
notion of a priority ceiling, which is the other mutex attribute.

Priority Ceiling

The priority ceiling attribute is the POSIX priority ceiling for a mutex created with 
the protocol attribute set to PTHREAD_PRIO_PROTECT.

■ Attribute name: prioceiling 

■ Possible values: any valid (POSIX) priority value 

■ Access routines:

■ pthread_mutexattr_getprioceiling( )
■ pthread_mutexattr_setprioceiling( ) 
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■ Dynamic access routines:

■ pthread_mutex_getprioceiling( )
■ pthread_mutex_setprioceiling( ) 

A priority ceiling is defined by the following conditions:

■ Any thread attempting to acquire a mutex, whose priority is higher than the 
ceiling, cannot acquire the mutex.

■ Any thread whose priority is lower than the ceiling value has its priority 
elevated to the ceiling value for the duration that the mutex is held. 

■ The thread’s priority is restored to its previous value when the mutex is 
released.

5.8  POSIX Message Queues

The POSIX message queue routines are in mqPxLib. For details on the library and 
its routines, see their reference entries in the VxWorks 653 vThreads API Reference.

5.8.1  Comparison of POSIX and Wind Message Queues

The POSIX message queues are similar to Wind message queues, except that 
POSIX message queues provide messages with a range of priorities. The 
differences between the POSIX and Wind message queues are summarized in 
Table 5-3.

NOTE:  The POSIX priority numbering scheme is the inverse of the Wind scheme. 
See 5.5.1 Comparison of POSIX and Wind Scheduling, p.98.

Table 5-3 Message Queue Feature Comparison

Feature Wind Message Queues POSIX Message Queues

Blocked task queues FIFO or priority-based Priority-based

Close and unlink 
semantics

No Yes
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POSIX message queues are also portable, if you are migrating to VxWorks 653 from 
another 1003.1b-compliant system.

5.8.2  POSIX Message Queue Attributes

A POSIX message queue has the following attributes:

■ an optional O_NONBLOCK flag

■ the maximum number of messages in the message queue

■ the maximum message size

■ the number of messages on the queue

Tasks can set or clear the O_NONBLOCK flag (but not the other attributes) using 
mq_setattr( ), and get the values of all the attributes using mq_getattr( ).

Example 5-10 Setting and Getting Message-Queue Attributes 

/* 
* This example sets the O_NONBLOCK flag and examines message queue
* attributes.
*/

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define MSG_SIZE    16

int attrEx
(
char * name
)
{
mqd_t mqPXId; /* mq descriptor */

Message priority levels 1 32

Receive with timeout Optional Not available

Task notification Not available Optional (one task)

Table 5-3 Message Queue Feature Comparison (cont’d)

Feature Wind Message Queues POSIX Message Queues
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struct mq_attr attr; /* queue attribute structure */
struct mq_attr oldAttr; /* old queue attributes */
char buffer[MSG_SIZE];
int prio;

/* create read write queue that is blocking */
attr.mq_flags = 0;
attr.mq_maxmsg = 1;
attr.mq_msgsize = 16;
if ((mqPXId = mq_open (name, O_CREAT | O_RDWR , 0, &attr)) 

== (mqd_t) -1)
return (ERROR);

else
printf ("mq_open with non-block succeeded\n");

/* change attributes on queue - turn on non-blocking */
attr.mq_flags = O_NONBLOCK; 
if (mq_setattr (mqPXId, &attr, &oldAttr) == -1)

return (ERROR);
else

{
/* paranoia check - oldAttr should not include non-blocking. */
if (oldAttr.mq_flags & O_NONBLOCK) 

return (ERROR);
else

printf ("mq_setattr turning on non-blocking succeeded\n");
}

/* try receiving - there are no messages but this shouldn't block */
if (mq_receive (mqPXId, buffer, MSG_SIZE, &prio) == -1)

{
if (errno != EAGAIN)

return (ERROR);
else

printf ("mq_receive with non-blocking didn’t block on empty queue\n");
}

else
return (ERROR);

/* use mq_getattr to verify success */
if (mq_getattr (mqPXId, &oldAttr) == -1)

return (ERROR);
else

{ /* test that we got the values we think we should */
if (!(oldAttr.mq_flags & O_NONBLOCK) || (oldAttr.mq_curmsgs != 0))

return (ERROR);
else

printf ("queue attributes are:\n\tblocking is %s\n\t
message size is: %d\n\t
max messages in queue: %d\n\t
no. of current msgs in queue: %d\n",
oldAttr.mq_flags & O_NONBLOCK ? "on" : "off",
oldAttr.mq_msgsize, oldAttr.mq_maxmsg, 
oldAttr.mq_curmsgs);

}
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/* clean up - close and unlink mq */
if (mq_unlink (name) == -1)

return (ERROR);
if (mq_close (mqPXId) == -1)

return (ERROR);
return (OK);
}

5.8.3  Displaying Message-Queue Attributes

The VxWorks 653 show( ) command produces a display of the key message-queue 
attributes, for either POSIX or Wind message queues. POSIX libraries are available 
when INCLUDE_POSIX is included in a vThreads partition. For detailed 
information about the libraries and their routines, see their reference entries in the 
VxWorks 653 vThreads API Reference.

For example, if mqPXId is a POSIX message queue:

-> show mqPXId
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message queue name : MyQueue
No. of messages in queue : 1 
Maximum no. of messages : 16
Maximum message size : 16

Compare this to the output when myMsgQId is a Wind message queue:

-> show myMsgQId
Message Queue Id : 0x3adaf0 
Task Queuing : FIFO 
Message Byte Len : 4 
Messages Max : 30 
Messages Queued : 14
Receivers Blocked : 0 
Send timeouts : 0 
Receive timeouts : 0 

5.8.4  Communicating through a Message Queue

Before a set of tasks can communicate through a POSIX message queue, one of the 
tasks must create the message queue by calling mq_open( ) with the O_CREAT flag 

NOTE:  The built-in show( ) routine handles Wind message queues. You can also 
use the Wind River Workbench inspector to get information on Wind message 
queues.
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set. Once a message queue is created, other tasks can open that queue by name to 
send and receive messages on it. Only the first task opens the queue with the 
O_CREAT flag. Subsequent tasks can open the queue for receiving only 
(O_RDONLY), sending only (O_WRONLY), or both sending and receiving 
(O_RDWR).

To put messages on a queue, use mq_send( ). If a task attempts to put a message 
on the queue when the queue is full, the task blocks until some other task reads a 
message from the queue, making space available. To avoid blocking on 
mq_send( ), set O_NONBLOCK when you open the message queue. In that case, 
when the queue is full, mq_send( ) returns -1 and sets errno to EAGAIN instead 
of pending, letting you try again or take other action. 

One of the arguments to mq_send( ) specifies a message priority. Priorities range 
from 0 (lowest priority) to 31 (highest priority). See 5.5.1 Comparison of POSIX and 
Wind Scheduling, p.98.

When a task receives a message using mq_receive( ), the task receives the 
highest-priority message on the queue. Among multiple messages with the same 
priority, the first message placed on the queue is the first received (FIFO order). If 
the queue is empty, the task blocks until a message is placed on the queue. 

To avoid pending on mq_receive( ), open the message queue with O_NONBLOCK. 
in that case, when a task attempts to read from an empty queue, mq_receive( ) 
returns -1 and sets errno to EAGAIN.

To close a message queue, call mq_close( ). Closing the queue does not destroy it, 
but only asserts that your task is no longer using the queue. To request that the 
queue be destroyed, call mq_unlink( ). Unlinking a message queue does not 
destroy the queue immediately, but it does prevent any further tasks from opening 
that queue, by removing the queue name from the name table. Tasks that have the 
queue open can continue to use it. When the last task closes an unlinked queue, the 
queue is destroyed.

Example 5-11 POSIX Message Queues

/* In this example, the mqExInit() routine spawns two tasks that 
* communicate using the message queue.
*/

/* mqEx.h - message example header */

/* defines */
#define MQ_NAME "exampleMessageQueue"

/* forward declarations */
void receiveTask (void);
void sendTask (void);
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/* testMQ.c - example using POSIX message queues */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"
#include "mqEx.h"

/* defines */
#define HI_PRIO 31
#define MSG_SIZE 16

int mqExInit (void)
{
/* create two tasks */
if (taskSpawn ("tRcvTask", 95, 0, 4000, receiveTask, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0) == ERROR)
{
printf ("taskSpawn of tRcvTask failed\n");
return (ERROR);
}

if (taskSpawn ("tSndTask", 100, 0, 4000, sendTask, 0, 0, 0, 0, 
 0, 0, 0, 0, 0, 0) == ERROR)

{
printf ("taskSpawn of tSendTask failed\n");
return (ERROR);
}

}

void receiveTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */
char msg[MSG_SIZE]; /* msg buffer */
int prio; /* priority of message */

/* open message queue using default attributes */
if ((mqPXId = mq_open (MQ_NAME, O_RDWR | O_CREAT, 0, NULL)) 

== (mqd_t) -1)
{
printf ("receiveTask: mq_open failed\n");
return;
}

/* try reading from queue */
if (mq_receive (mqPXId, msg, MSG_SIZE, &prio) == -1)

{
printf ("receiveTask: mq_receive failed\n");
return;
}

else
{
printf ("receiveTask: Msg of priority %d received:\n\t\t%s\n",

prio, msg);



5  Developing POSIX Applications
5.8  POSIX Message Queues

115

5

}
}

/* sendTask.c - mq sending example */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "mqEx.h"

/* defines */
#define MSG "greetings"
#define HI_PRIO 30

void sendTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */

/* open msg queue; should already exist with default attributes */

if ((mqPXId = mq_open (MQ_NAME, O_RDWR, 0, NULL)) == (mqd_t) -1)
{
printf ("sendTask: mq_open failed\n");
return;
}

/* try writing to queue */
if (mq_send (mqPXId, MSG, sizeof (MSG), HI_PRIO) == -1)

{
printf ("sendTask: mq_send failed\n");
return;
}

else
printf ("sendTask: mq_send succeeded\n");

}

5.8.5  Notifying a Task That a Message Is Waiting

A task can use mq_notify( ) to request notification when a message for it arrives at 
an empty queue. The advantage of this is that a task can avoid blocking or polling 
to wait for a message.

The mq_notify( ) routine specifies a signal to be sent to the task when a message is 
placed on an empty queue. This mechanism uses the POSIX data-carrying 
extension to signaling, which lets you, for example, carry a queue identifier with 
the signal (see 5.9 POSIX Queued Signals, p.120).

The mq_notify( ) routine is designed to alert the task only for new messages that 
are actually available. If the message queue already contains messages, no 
notification is sent when more messages arrive. If another task is blocked on the 
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queue with mq_receive( ), that other task unblocks, and no notification is sent to 
the task registered with mq_notify( ). 

Notification is exclusive to a single task: each queue can register only one task for 
notification at a time. Once a queue has a task to notify, no attempts to register with 
mq_notify( ) can succeed until the notification request is satisfied or cancelled.

When a queue sends notification to a task, the notification request is satisfied, and 
the queue has no further special relationship with that particular task. That is, the 
queue sends a notification signal only once per mq_notify( ) request. To arrange 
for one particular task to continue receiving notification signals, the best approach 
is to call mq_notify( ) from the same signal handler that receives the notification 
signals. This reinstalls the notification request as soon as possible.

To cancel a notification request, specify NULL instead of a notification signal. Only 
the currently registered task can cancel its notification request. 

Example 5-12 Notifying a Task That a Message Is Waiting 

/* 
*In this example, a task uses mq_notify() to discover when a message
* is waiting for it on a previously empty queue.
*/

/* includes */
#include "vxWorks.h"
#include "signal.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define QNAM "PxQ1"
#define MSG_SIZE 64 /* limit on message sizes */

/* forward declarations */
static void exNotificationHandle (int, siginfo_t *, void *);
static void exMqRead (mqd_t);

/*
* exMqNotify - example of how to use mq_notify()
*

* This routine illustrates the use of mq_notify() to request notification
* via signal of new messages in a queue. To simplify the example, a
* single task both sends and receives a message.
*/

int exMqNotify
(
char * pMess /* text for message to self */
)
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{
struct mq_attr attr; /* queue attribute structure */
struct sigevent sigNotify; /* to attach notification */
struct sigaction mySigAction; /* to attach signal handler */
mqd_t exMqId /* id of message queue */

/* Minor sanity check; avoid exceeding msg buffer */
if (MSG_SIZE <= strlen (pMess))

{
printf ("exMqNotify: message too long\n");
return (-1);
}

/*
* Install signal handler for the notify signal and fill in 
* a sigaction structure and pass it to sigaction(). Because the handler
* needs the siginfo structure as an argument, the SA_SIGINFO flag is
* set in sa_flags.
*/

mySigAction.sa_sigaction = exNotificationHandle;
mySigAction.sa_flags = SA_SIGINFO;
sigemptyset (&mySigAction.sa_mask);

if (sigaction (SIGUSR1, &mySigAction, NULL) == -1)
{
printf ("sigaction failed\n");
return (-1);
}

/* 
* Create a message queue - fill in a mq_attr structure with the
 * size and no. of messages required, and pass it to mq_open().
 */

attr.mq_flags  = O_NONBLOCK; /* make nonblocking */
attr.mq_maxmsg = 2;
attr.mq_msgsize = MSG_SIZE;

if ( (exMqId = mq_open (QNAM, O_CREAT | O_RDWR, 0, &attr)) == 
 (mqd_t) - 1 )
{
printf ("mq_open failed\n");
return (-1);
}

/* 
* Set up notification: fill in a sigevent structure and pass it 
 * to mq_notify(). The queue ID is passed as an argument to the
 * signal handler.
 */
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sigNotify.sigev_signo = SIGUSR1;
sigNotify.sigev_notify = SIGEV_SIGNAL;
sigNotify.sigev_value.sival_int = (int) exMqId;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return (-1);
}

/* 
* We just created the message queue, but it may not be empty;
 * a higher-priority task may have placed a message there while
 * we were requesting notification. mq_notify() does nothing if
 * messages are already in the queue; therefore we try to 
 * retrieve any messages already in the queue.
 */

exMqRead (exMqId);

/* 
* Now we know the queue is empty, so we will receive a signal
 * the next time a message arrives. 
 *
 * We send a message, which causes the notify handler to be invoked. 
* It is a little silly to have the task that gets the notification 
* be the one that puts the messages on the queue, but we do it here 
* to simplify the example. A real application would do other work
* instead at this point. 
*/

if (mq_send (exMqId, pMess, 1 + strlen (pMess), 0) == -1)
{
printf ("mq_send failed\n");
return (-1);
}

/* Cleanup */
if (mq_close (exMqId) == -1)

{
printf ("mq_close failed\n");
return (-1);
}

/* More cleanup */
if (mq_unlink (QNAM) == -1)

{
printf ("mq_unlink failed\n");
return (-1);
}

return (0);
}
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/*
* exNotificationHandle - handler to read in messages
*
* This routine is a signal handler; it reads in messages from a
* message queue.
*/

static void exNotificationHandle 
(
int sig, /* signal number */
siginfo_t * pInfo, /* signal information */
void * pSigContext /* unused (required by posix) */
)
{
struct sigevent sigNotify;
mqd_t exMqId;

/* Get the ID of the message queue out of the siginfo structure. */
exMqId = (mqd_t) pInfo->si_value.sival_int;

/* 
* Request notification again; it resets each time 
 * a notification signal goes out.
 */

sigNotify.sigev_signo = pInfo->si_signo;
sigNotify.sigev_value = pInfo->si_value;
sigNotify.sigev_notify = SIGEV_SIGNAL;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return;
}

/* Read in the messages */
exMqRead (exMqId);
}

/*
* exMqRead - read in messages
*
* This small utility routine receives and displays all messages
* currently in a POSIX message queue; assumes queue has O_NONBLOCK.
*/

static void exMqRead
(
mqd_t exMqId
)
{
char msg[MSG_SIZE];
int prio;
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/* 
* Read in the messages - uses a loop to read in the messages
 * because a notification is sent ONLY when a message is sent on
 * an EMPTY message queue. There could be multiple msgs if, for
 * example, a higher-priority task was sending them. Because the
 * message queue was opened with the O_NONBLOCK flag, eventually
 * this loop exits with errno set to EAGAIN (meaning we did an
 * mq_receive() on an empty message queue).
 */

while (mq_receive (exMqId, msg, MSG_SIZE, &prio) != -1)
{
printf ("exMqRead: received message: %s\n",msg);
}

if (errno != EAGAIN)
{
printf ("mq_receive: errno = %d\n", errno);
}

}

5.9  POSIX Queued Signals 

The sigqueue( ) routine provides an alternative to kill( ) for sending signals to a 
task. The important differences between the two are:

kill( ) 
The kill( ) routine includes an application-specified value that is sent as part 
of the signal. You can use this value to supply whatever context your signal 
handler finds useful. This value is of type sigval (defined in signal.h). The 
signal handler finds it in the si_value field of one of its arguments, a siginfo_t 
structure. An extension to the POSIX sigaction( ) routine registers signal 
handlers that accept this additional argument.

sigqueue( ) 
The sigqueue( ) routine enables the queuing of multiple signals for any task. 
The kill( ) routine, by contrast, delivers a single signal, even if multiple signals 
arrive before the handler runs.

VxWorks 653 includes seven signals reserved for application use, numbered 
consecutively from SIGRTMIN. The presence of these reserved signals is required 
by POSIX 1003.1b, but the specific signal values are not. For portability, specify 
these signals as offsets from SIGRTMIN (for example, write SIGRTMIN+2 to refer 
to the third reserved signal number). All signals delivered with sigqueue( ) are 
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queued in numeric order, with lower-numbered signals queuing ahead of 
higher-numbered signals.

POSIX 1003.1b also includes an alternative means of receiving signals. The 
sigwaitinfo( ) routine differs from sigsuspend( ) or pause( ) in that it lets your 
application respond to a signal without going through the mechanism of a 
registered signal handler: when a signal is available, sigwaitinfo( ) returns the 
value of that signal as a result, and does not call a signal handler even if one is 
registered. The sigtimedwait( ) routine is similar, except that it can time out.

For detailed information on signals, see the reference entry for sigLib.

To include POSIX queued signals, include the INCLUDE_POSIX component. This 
component automatically initializes POSIX queued signals with sigqueueInit( ). 
The sigqueueInit( ) routine allocates buffers for use by sigqueue( ), which requires 
a buffer for each queued signal. A call to sigqueue( ) fails if no buffer is available.

5.10  POSIX API for vThreads Partitions

POSIX libraries are available when INCLUDE_POSIX is included in a vThreads 
partition. For detailed information about the libraries and their routines, see their 
reference entries in the VxWorks 653 vThreads API Reference.
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6.1  Introduction

You can develop C++ applications that run in full vThreads partitions. You can also 
develop applications with a subset of C++ that lets safety-critical applications be 
certified to Level A of the RTCA/DO-178B avionics software guidelines.

This documentation calls this subset the C++ cert subset and applications based on 
it C++ cert applications. It uses other terms as they are used by the C++ standard.

This documentation describes how to develop C++ applications that run in full 
vThreads partitions and includes additional information when developing C++ 
cert applications differs. 
123
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6.2  Configuring vThreads to Use C++

6.2.1  Specifying Additional Sections for Loading

The GNU C++ compiler generates special ELF sections that are not loaded by 
default. As a result, these sections need to be accounted for in the XML 
configuration file. This is done by specifying an AdditionalSection attribute in 
MemorySize elements. For details, see the configuration information in the 
VxWorks 653 Configuration and Build Guide.

6.2.2  Adding C++ Support to vThreads

By default, a vThreads partition does not support C++. You can add C++ support 
for full C++ or C++ cert applications. For details, see the build information in the 
VxWorks 653 Configuration and Build Guide. 

6.2.3  Demangling C++ Symbol Names in the Target Shell

If you use the C++ demangler, symbol table queries in a vThreads target shell 
return human-readable (demangled) forms of C++ symbol names.

6.3  Writing C++ Applications

This section describes how to write C++ applications in general. For additional 
information specific to writing C++ cert applications, see 6.5 Writing C++ Cert 
Applications, p.128.

For information on the GNU C++ toolchain, see Using the GNU Compiler Collection. 
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6.3.1  Making C Symbols Accessible to C++ Code

To make C symbols accessible to C++ code, use the extern "C" syntax:

#ifdef __cplusplus
extern "C" void myEntryPoint ();
#else
void myEntryPoint ();
#endif

Symbols in VxWorks 653 are automatically available to C++, because the 
VxWorks 653 header files use this mechanism for declarations

Making C++ Symbols Accessible to C code

To reference a (non-overloaded, global) C++ symbol from C code, use the extern 
"C" syntax. 

6.3.2  Adding Floating-Point Support to Tasks

Any vThreads task that uses C++ code must be spawned with the VX_FP_TASK 
option. Failure to use the option can result in hard-to-debug, unpredictable 
run-time corruption of floating-point registers.

6.3.3  Handling Exceptions

Since the C++ cert subset does not support exception handling (catch and throw), 
this section applies to full C++ only.

Turning off Exception Handling

By default, the GNU C++ compiler enables exception handling. To turn the feature 
off, use the -fno-exceptions compiler option.

Using the Pre-Exception Model of C++ Compilation

You can write code according to the pre-exception model of C++ compilation. For 
example, calls to new can check the returned pointer for a failure value of zero. 
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However, if you are concerned that exception-handling enhancements will not 
compile correctly, follow these guidelines:

■ Use new (nothrow).

■ Do not explicitly turn on exceptions in your iostream objects.

GNU iostream does not throw unless IO_THROW is defined when the library 
is built and exceptions are explicitly enabled for the particular iostream object 
in use. The default is no exceptions. Exceptions have to be explicitly turned on 
for each iostate flag that needs to throw.

■ Do not use string objects or, if you must, wrap them in blocks of:

try { } catch (...) { }

The Standard Template Library (STL) does not throw except in some methods 
in the basic_string class (of which “string” is a specialization).

Installing Your Own Termination Handler

As specified by the ANSI C++ standard, unhandled exceptions ultimately call 
terminate( ). This routine suspends the offending task and sends a warning 
message to the console. You can modify this behavior by installing your own 
termination handler. To do so, call set_terminate( ), which is defined in the 
exception header file.

6.3.4  Using Namespaces

You can use namespaces for your own code, according to the C++ standard. If you 
use the std namespace syntax, identifiers in the namespace are global. Therefore, 
they must be globally unique.

6.3.5  Disabling Run Time Type Information (RTTI)

For full C++, the GNU C++ compiler enables RTTI by default. The feature adds a 
small overhead to any C++ program that contains classes with virtual functions. 
To turn off the feature, use the -fno-rtti compiler option.

The C++ cert subset does not support RTTI.
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6.3.6  Constructors and Destructors

Global constructors are called when a partition starts. They are called again when 
the partition is restarted (warm or cold). Destructors are not called, because the 
C++ objects are not retained through the restart process. 

6.4  Using C++ Libraries

Since the C++ cert subset does not support C++ libraries, this section applies to full 
C++ only.

6.4.1  Using the iostream Library

To use the iostream library, include one or more of its header files after the 
vxWorks.h header file in the appropriate modules of your application. The most 
frequently used header file is iostream, but others are available. For information, 
see the C++ reference entries.

Standard iostream Objects

The standard iostream objects (cin, cout, cerr, and clog) are global. That is, they are 
not private to any particular vThreads task. They are correctly initialized 
regardless of the number of tasks or modules that reference them, and they can 
safely be used across multiple tasks that have the same definitions of stdin, stdout, 
and stderr. However, they cannot safely be used when different tasks have 
different standard I/O file descriptors. In such cases, the application is responsible 
for handling mutual exclusion.

! WARNING:  Do not use the -nostdinc compiler option if you are using the iostream 
library or Standard Template Library (STL).

If you do, you will get warnings about missing header files. This is because, 
without the option, the compiler includes the directories containing the header 
files that are needed for the iostream library or STL.
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Simulating Private Standard iostream Objects

To simulate private standard iostream objects, create a new iostream object of the 
same class as the standard iostream object (for example, cin is an 
istream_withassign), and assign to it a new filebuf object tied to the appropriate 
file descriptor. The new filebuf and iostream objects are private to the calling task, 
ensuring that other tasks cannot corrupt them.

ostream my_out (new filebuf (1));         /* 1 == STDOUT */
istream my_in (new filebuf (0), &my_out); /* 0 == STDIN; 

* TIE to my_out */

6.4.2  Using Standard Template Library (STL)

The GNU port of the STL for vThreads is thread-safe at the class level. This means 
that two tasks in the same domain can safely reference the same class-level data at 
the same time. However, the STL is not thread-safe at the object level. That is, if two 
tasks need to reference the same object at the same time, they must use a mutex 
semaphore.

You can use the STL in client code that is compiled with exception handling turned 
off. In vThreads, this means the following:

■ For all checks that the caller can reasonably make (such as bounds checking), 
no action is taken where an exception would be thrown. Optimization being 
on is equivalent to removing these checks.

■ If you are using default allocators and memory exhaustion occurs where 
bad_alloc would be thrown, the following message is logged (if logging is 
included):

"STL Memory allocation failed and exceptions disabled -calling terminate" 

and the task calls terminate( ). However, you can define custom allocators that 
behave differently.

6.5  Writing C++ Cert Applications

In addition to the information on writing C++ applications that is described 
elsewhere in this documentation, this section is specific to writing C++ cert 
applications.
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6.5.1  Features Not Supported

To ensure certifiability, the C++ cert subset does not support the following C++ 
features:

■ C++ standard library

■ exception handling (catch and throw)

■ pure virtual functions (virtual functions are supported)

■ RTTI

■ STL

6.5.2  Persistent Global Constructors

Regular global constructors are called when a partition starts (warm or cold starts). 
For the C++ cert subset, persistent global constructors are called during partition 
cold start, but not during partition warm restart. 

Specifying Persistent Global Constructors in Makefiles

The munch facility puts regular and persistent global constructors in separate data 
sections. For persistent global constructors only, you must specify them with the 
-persistent-def option. The following is an example of a makefile rule for handling 
C++ global persistent constructors:

MUNCHFLAGS_EXTRA = -persistent-def myPersistentContructorsFile

Allocating Persistent Global Constructors

Applications are responsible for allocating persistent global constructors from 
persistent memory. This can be done in any of the following ways:

■ allocating from a pool of persistent objects

■ allocating from persistent heap 

■ using linker scripts

Allocating from a Pool of Persistent Objects

The follow code is an example of how to allocate pools of persistent objects.
129



VxWorks 653
Programmer's Guide, 2.2 
#define MAX_POOL 512
int objectPool[MAX_POOL] __attribute__((__section__(".persistent.bss")));
int objectPoolCount __attribute__((__section__(".persistent.data"))) = 0;

The follow code is an example of a persistent constructor allocating an object from 
the storage:

if (objectPoolCount < MAX_POOL)
myObject = &objectPool[objectPoolCount++];

Allocating from Persistent Heap

To have a persistent heap, an application needs to create a memory pool in the 
persistent BSS section. The following code is an example of how to do this:

#define HEAP_SIZE (64*1024)
char persistentHeap[HEAP_SIZE] 
__attribute__((__section__(".persistent.bss")));
PART_ID persistentHeapId __attribute__((__section__(".persistent.bss"));
BOOL persistentHeapInitialized

__attribute__((__section__(".persistent.data")) = FALSE;

The follow example code excerpt is from an allocation routine for the persistent 
heap:

if (!persistentHeapInitialized)
memPartInit (&persistentHeapId, persistentHeap, HEAP_SIZE);

return memPartAlloc (&persistentHeapId, bytes_wanted)

Using Linker Scripts

A linker script can be used to place variables into .persistent.bss and 
.persistent.data sections.

6.5.3  Calling Pure Virtual Functions

The C++ cert subset catches erroneously called pure virtual functions, such as ones 
called because of an application run-time defect. If a pure virtual function is called 
from a C++ cert application, a health monitor event (code VX_ERROR_KERNEL, 
subcode VX_ERR_NO_SUB_CODE) is injected and the offending task is suspended.

6.5.4  Deallocating Heap

If a C++ cert application tries to deallocate heap by calling free( ) (directly or 
indirectly from other routines that the application calls), a health monitor event 
(code VX_ERROR_KERNEL, subcode VX_ERR_UNHANDLED_EVENT) is injected. 
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The memory is not freed. The offending task is suspended unless the health 
monitor is configured not to suspend offending tasks for this type of event.
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7.1  Introduction

The core OS consists of the kernel, the BSP, and user-supplied code that runs in 
supervisor mode. 

The following elements can be part of a VxWorks 653 module managed by the core 
OS: 

■ partitions

■ shared libraries

■ shared data regions

■ online-loaded partitions

A configuration might resemble Figure 7-1, which shows five partitions, and two 
(vThreads) of them sharing the same partition OS. For shared libraries and 
partition OSs, the figure shows relative virtual addresses within a partition, not 
within the module.

Figure 7-1 Sample Configuration with Five Partitions
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7.2  Partitions

Partitions provide usage isolation of system resources for applications running in 
a VxWorks 653 module. Resources are CPU time, memory, and I/O. Each partition 
is allowed to use as much of these resources as is specified in the system 
configuration. A partition cannot access memory reserved for another partition, 
and it can run tasks only during its allocated time slot. For more information see 
7.12 System Time, p.169. 

Partitions are implemented as application domains. Only partitions can be 
application domains. A partition can run code that is included directly in the 
application domain, or code in attached shared libraries. Only partition OS 
components and application code can be included in partitions. Each such domain 
runs exactly one user-mode core OS task, running an instance of the partition OS. 
The partition OS can be either a vThreads partition OS (or a certifiable subset of it) 
or a partition OS based on COIL. For information on the vThreads partition OS, see 
2. Developing vThreads Applications. For information on COIL, see 3. Developing 
COIL Applications.

7.2.1  Partition Configuration

Partitions are created at system startup according to their configuration in the XML 
configuration file. The configuration for vThreads and COIL partitions is similar. 
For details, see the VxWorks 653 Configuration and Build Guide.

To get the partition configuration information at run-time from the core OS, call 
configRecordFieldGet( ) with PARTITION_CFG_RECORD record and the 
appropriate field selector as shown below. The same routine can be called from a 
vThreads partition, but the record type is not needed. As noted below, some 
information is not available from a vThreads partition.

PARTITION_ALLOC_DISABLE
When set to TRUE, dynamically allocating and freeing partition heap memory 
is disabled when NORMAL operation mode is set with 
PARTITION_MODE_SET( ) or explicitly by calling memPartAllocDisable( ).

PARTITION_CRITICALITY
The RTCA/DO-178B criticality level of the partition.

PARTITION_DURATION
Amount of processor time, in SYSTEM_TIME_TYPE increments, given to a 
partition every period. It is used to validate schedules. If set to 
ZERO_TIME_VALUE, a duration is not specified.
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PARTITION_EVENTQ_STALL_DURATION
Maximum time allowed, in SYSTEM_TIME_TYPE units, for a pseudo-interrupt 
event to remain in the pseudo-interrupt event queue. The value is used to 
detect stalled partitions. The associated timer runs only when the partition is 
active and is, therefore, immune to changes in schedule. If set to 
INFINITE_TIME_VALUE, the feature is disabled. 

PARTITION_FP_EXC_ENABLE
When set to TRUE, support for floating-point exceptions is enabled in the 
vThreads partition.

PARTITION_HM
Pointer to the partition’s health monitor table. For details, see 8.5 Getting Health 
Monitor Information at Run-time, p.215. This information is not available from a 
vThreads partition.

PARTITION_ISR_STACK_SIZE
Size, in bytes, of the partition’s interrupt stack. If set to NONE, the size is the 
value specified for the partition OS component; for a vThreads partition, the 
value is ISR_STACK_SIZE.

PARTITION_MAX_FDS
Maximum number of global file descriptors that can be opened by the 
partition.

PARTITION_NAME
Partition name, from 1 to MAX_NAME_LENGTH (as specified in apexType.h) 
characters in a NULL-terminated ASCII string.

PARTITION_NUM_DRIVERS
Maximum number of I/O device drivers in the partition OS. If set to NONE, 
the maximum number is the value specified for the partition OS component; 
for a vThreads partition, the value is NUM_DRIVERS.

PARTITION_NUM_FILES
Maximum number of open files allowed in the partition, including the number 
of global file descriptors. For example, if the partition opens 130 channels, the 
number of global file descriptors must be at least 130 and 
PARTITION_NUM_FILES must be at least 130. If set to NONE, the maximum 
number is the value specified for the partition OS component. For a vThreads 
partition, the value is NUM_FILES.

PARTITION_NUM_LOG_MSGS
Maximum number of messages allowed in the logging queue. If set to NONE, 
the maximum number is the value specified for the partition OS component. 
For a vThreads partition, the value is MAX_LOG_MSGS.
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PARTITION_NUM_SD_RGNS
Number of shared data regions in the PARTITION_SD_RGN_NAME field. This 
information is not available from a vThreads partition.

PARTITION_NUM_STK_GUARD_PAGES
The number of stack guard pages at the end of each vThreads task’s stack. The 
partition OS uses the value to detect interrupt stack overflow and task stack 
overflow. If set to NONE, the number is the value specified for the partition OS 
component; for a vThreads partition, the value is 
NUM_STACK_GUARD_PAGES.

PARTITION_NUM_WORKER_TASKS
Number of worker tasks that the core OS provides for the partition. The value 
should be zero, except to support some Wind River tools, such as the partition 
shell, which requires two worker tasks for the partition in which it is enabled.

PARTITION_NUMBER
A number from 1 to MAX_NUMBER_OF_PARTITIONS (as specified in 
apexType.h) that uniquely identifies the partition. It is used in the schedule 
and port configuration records. By convention, the first partition is partition 1.

PARTITION_PERIOD
Activation period, in SYSTEM_TIME_TYPE increments, of the partition. It is 
used to validate schedules. If set to ZERO_TIME_VALUE, a period is not 
specified.

PARTITION_PPS_SCHED_CFG
PPS scheduling parameters. For details, see PPS Scheduling Parameters, p.140. 
This information is not available from a vThreads partition.

PARTITION_SC_PERMISSION
Bitmask that determines the set of system calls a partition is allowed to 
perform. For details, see System Call Permission Bitmasks, p.138.

PARTITION_SD_RGN_NAME
NULL or the address of the array of shared data region names to attach (that is, 
give access) to the partition. This information is not available from a vThreads 
partition.

PARTITION_SELECT_SERVER_QSIZE
Maximum number of concurrent vThreads tasks allowed to do a select 
operation on global file descriptors. If set to NONE, the maximum number is 
the value specified for the partition OS component; for a vThreads partition, 
the value is SELECT_SERVER_QSIZE.

PARTITION_USER1
For user-specified extension.
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PARTITION_USER2
For user-specified extension.

PARTITION_WD_DURATION
Maximum partition time, in SYSTEM_TIME_TYPE increments, that an 
application can lock preemption while protecting critical sections. If set to 
ZERO_TIME_VALUE, the watchdog is disabled.

System Call Permission Bitmasks

The system call permission field in a partition configuration record 
(PARTITION_SC_PERMISSION selector) is the logical OR of various permission 
bitmasks. Interpreting the field is described in the following sections.

If default permissions are set (that is, no permission to make any system calls), the 
field is equal to the SYSCALL_DEFAULT_PERMISSION group bitmask.

If all permissions are set, the field is equal to the SYSCALL_ALL_PERMISSION 
group bitmask.

I/O Permission Bitmasks

If all I/O permissions are set, the field is equal to the 
SYSCALL_IORW_PERMISSION group bitmask, which is the logical OR of the 
bitmasks below.

If just read I/O permissions are set, the field is equal to the 
SYSCALL_IOR_PERMISSION group bitmask, which is the logical OR of all the 
following bitmasks except the ones for write, ioctl, and create.

Individual I/O permission bitmasks are (called with SYSCALL_SHIFT( )):

■ SYSCALL_IO_CLOSE

■ SYSCALL_IO_CREAT

■ SYSCALL_IO_DEVICE_FIND

■ SYSCALL_IO_IOCTL

■ SYSCALL_IO_OPEN

■ SYSCALL_IO_READ

NOTE:  If you use an individual bitmask rather than a group bitmask to determine 
the value of the field, do so as follows:

SYSCALL_SHIFT(individualBitmask)
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■ SYSCALL_IO_REMOVE

■ SYSCALL_IO_SELECT

■ SYSCALL_IO_UNSELECT

■ SYSCALL_IO_WRITE

Port Permission Bitmasks

If all port permissions are set, the field is equal to the 
SYSCALL_PORT_PERMISSION group bitmask, which is the logical OR of the 
following individual bitmasks (called with SYSCALL_SHIFT( )):

■ SYSCALL_PORT_ATTACH

■ SYSCALL_PORT_DETACH

■ SYSCALL_PORT_INT_RECV

■ SYSCALL_PORT_INT_SEND

■ SYSCALL_PORT_SEND

■ SYSCALL_PORT_STATUS

Message Queue Permission Bitmasks

If all message queue permissions are set, the field is equal to the 
SYSCALL_MSGQ_PERMISSION group bitmask, which is the logical OR of the 
following individual bitmasks (called with SYSCALL_SHIFT( )):

■ SYSCALL_MSGQ_CLOSE

■ SYSCALL_MSGQ_OPEN

■ SYSCALL_MSGQ_RECV

■ SYSCALL_MSGQ_SEND

Scheduler Permission Bitmask

If all scheduler permissions are set, the field is equal to the 
SYSCALL_SCHEDULER_PERMISSION group bitmask. Since there is only one 
scheduler permission, this group bitmask is equivalent to (called with 
SYSCALL_SHIFT( )):

■ SYSCALL_SCHEDULER_MODE_SET

PPS Scheduling Bitmasks

If all PPS scheduling permissions are set, the field is equal to the 
SYSCALL_PPS_SET_MY_PRIORITY_PERMISSION group bitmask. Since there is 
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only one permission in this group, it is equivalent to (called with 
SYSCALL_SHIFT( )):

■ SYSCALL_PPS_MY_SCHED 

If all PPS scheduling permissions are set for “my” partition, the field is equal to the 
SYSCALL_PPS_SET_PRIORITY_PERMISSION group bitmask. Since there is only 
one permission in this group, it is equivalent to (called with SYSCALL_SHIFT( )):

■ SYSCALL_PPS_SCHED 

Custom Permission Bitmask

If all custom permissions are set, the field is equal to the 
SYSCALL_CUSTOM_PERMISSION group bitmask. Since there is only one custom 
permission, this group bitmask is equivalent to (called with SYSCALL_SHIFT( )):

■ SYSCALL_CUSTOM

PPS Scheduling Parameters

PPS scheduling parameters are defined by the following structure:

typedef struct pps_cfg_record
{
CONFIGURATION_RECORD_TYPE type;
int crSize;
BOOL appsIdleRelinquishEnabled; 
int appsPriority;

} PPS_CFG_RECORD;

type
Type of configuration record; always CFG_TYPE_PPS.

crSize
Number of bytes in the structure.

appsIdleRelishquishEnabled
When set to TRUE, the partition is willing to relinquish its remaining partition 
window when the partition is determined to be idle or when the application 
forces the idle condition.

appsPriority
A value of -1 disables PPS scheduling for the partition. Values of 0 to 255 are 
valid partition priorities and indicate that the partition should be considered 
for PPS scheduling. Zero is the highest priority.
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7.3  VxWorks 653 Stacks

System Call Stacks

VxWorks 653 supports one system call stack per partition. The system call stack 
services a partition’s system call handler, which runs when a partition thread 
makes a system call request of the kernel. As a result, system call handlers run in 
the context of the core OS, thus providing better robustness and security compared 
to running on the partition task stack.

For each partition, the system call stack handles blocking and non-blocking system 
calls.

Statistics (such as high-water marks and margins) for system call stacks are 
persistent over partition restart.

For information on how to specify the size of a system call stack, see the 
VxWorks 653 Configuration and Build Guide.

Task Stacks

A task stack is the stack that is used for all routines that a particular task calls. Its 
size is defined when the core OS spawns the task. The kernel allocates the stack 
from the application domain’s memory resources and adjusts the size as follows:

■ Rounds up the size to a page boundary.

■ If the core OS requested guard pages for stack overflow protection when it 
spawned the task, adds an additional mapped, but inaccessible page. For 
details, see the taskLib entry in the core OS.

Task Exception Stacks

Each task has an exception stack where the kernel saves system-critical 
information when the task encounters an exception. The TASK_EXC_STACK_SIZE 
configuration parameter determines the size of each task exception stack in the 
VxWorks 653 module. The kernel allocates the stack from kernel memory. The only 
user code that runs on this stack is user-supplied exception handlers; that is, 
routines that are connected to exceptions using excConnect( ). During a system 
call, after the kernel saves system-critical data on the task exception stack, the 
kernel switches back to the task stack and the system call runs using that stack.
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The kernel does not provide overflow protection on task exception stacks. The 
platform provider must either increase the size or ensure that handlers use only the 
minimal amounts.

Interrupt Stack

A VxWorks 653 module has one interrupt stack. It is similar to a task exception 
stack, except there is only one.

7.4  Shared Libraries

Shared libraries are used to share code among partitions. In a VxWorks 653 system, 
shared libraries can include only partition OS components and application code. 
Each VxWorks 653 module must contain at least one partition OS, and may contain 
one or more additional shared libraries. All shared libraries are created at system 
startup as shared library domains. 

Any number of shared libraries may exist in a VxWorks 653 module. Shared library 
code can reference symbols declared as entry points in other shared libraries and 
in the partition’s partition OS, but cannot reference entry points of the core OS. 

VxWorks 653 shared libraries can attach to other shared libraries. They can also 
make calls to the partition’s partition OS. However, circular dependencies are not 
permitted: no shared library should call another library that depends on it. 

Partitions can attach to any number of shared libraries, as long as the exclusion 
restrictions specified by the included components are respected. Attachments are 
specified in the XML file for the partition and cannot be changed after system 
startup. A partition is attached only to the shared libraries specified directly in its 
PartitionDescription element. The attachment is not recursive. There is no limit 
for the length of the attachment chain, but it cannot be cyclical. For more 
information, see the VxWorks 653 Configuration and Build Reference.

! WARNING:  Increasing the size TASK_EXC_STACK_SIZE affects the entire 
VxWorks 653 module and can greatly increase memory usage.
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Partitions attached to a shared library share their read-only sections (.text, .rodata), 
but have private copies of the writable data sections (.data, .bss, .persistent.data, 
and .persistent.bss).

7.4.1  Adding User-supplied Code to a Partition OS

You can add your own code to a partition OS. There are two ways to get its 
initialization routine (myInit( ) in the following example) to run:

■ Add the following line to your code:

void * myInitFuncPtr _VTH_COM_INIT = myInit;

To avoid namespace conflicts, the myInitFuncPtr name must be either unique 
or defined as static.

The _VTH_COM_INIT macro (defined in vxWorks.h) causes myInit( ) to be 
called from sslMain.c, which is included with VxWorks 653.

If multiple initialization routines are defined this way, the routines are called 
in the order they are listed in the partition OS’s dependency list.

or

■ In the makefile, override sslMain.c and call myInit( ) there. For information, 
see the VxWorks 653 Configuration and Build Guide.

7.5  Shared Data Regions

A shared data region is a memory region or I/O region that can be accessed by one 
or more partitions. Shared data regions are implemented as shared data domains. 
They are created during system initialization according to the XML configuration 
file. For more information, see the VxWorks 653 Configuration and Build Guide. 

A shared data region must have exactly one memory pool or one I/O pool 
associated with it. The pool is specified in the XML file for the shared data region. 
The physical and virtual address, when specified in the XML file, must be MMU 
page size aligned and must be valid addresses in the associated pool. When either 
the physical or virtual address is not specified (its value is NULL), they are 
allocated at run-time from the associated pool. The size of the shared data region 
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specified in the XML file must be a multiple of the MMU page size. For more 
information, see the VxWorks 653 Configuration and Build Guide. 

In the core OS, shared data regions can be accessed using the sdLib API. You can 
get information about data regions with pdShow( ). In the partition OS, the 
sdRgnLib library provides access to shared data regions attached by the partition. 

Shared memory regions are always persistent: the kernel does not clear or store 
data when attached partitions are restarted. If the memory pool used to create the 
region is part of the system memory, the region is cleared during system startup. If 
necessary, it is the application’s responsibility to preload any required data before 
the partitions are started.

Shared Data Region Configuration

The shared data region is defined in the XML file at configuration and build time. 
For details, see the VxWorks 653 Configuration and Build Guide.

To get the information at run-time from the core OS, call configRecordFieldGet( ) 
with the SD_RGN_CFG_RECORD record and the appropriate selector as described 
below:

SD_RGN_MMU_ATTR
MMU attributes for the shared data region.

SD_RGN_NAME
Name of the shared data region.

SD_RGN_PHYS_ADRS
NULL or the physical map address. If the address is allocated at run-time from 
the associated pool, the field is NULL.

SD_RGN_POOL_NAME
Name of the shared data region’s memory pool.

SD_RGN_SIZE
Number of bytes in the shared data region.

SD_RGN_VIRT_ADRS
NULL or the VxWorks 653 virtual address. If the address is allocated at 
run-time from the associated pool, the field is NULL.
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Example 7-1 Accessing a Memory Region from a Partition

This example assumes that the VxWorks 653 module has a shared data region 
defined (in the XML file at configuration and build time) as follows: 

<SharedDataDescription
SystemAccess="READ_WRITE"
UserAccess="READ_WRITE"
DataType="DATABASE"
CachePolicy="DEFAULT"
Size="0">
<Description
Name="sdRgn1"
Version="0.1.1">

This region has MMU settings that allow both reading and writing in the region. 
The virtual address is allocated at run-time from the associated memory pool, 
sdRgn1Pool. The partition running the following code must list this shared data 
region in its configuration in the XML file. For more information about configuring 
shared data regions, see the VxWorks 653 Configuration and Build Guide.

/****************************************************************
* sdRgnDemo.c - example showing usage shared data regions 
* 
* This example shows usage of a writable shared data region.
* In this example, for simplicity, the same partition writes,
* then reads data in the region.
*/

#include "vxWorks.h"
#include "sdRgnLib.h"
#include "stdio.h"

#define SD_RGN_NAME "sdRgn1"

typedef struct test_data
{
int  data1;
int  data2;
} TEST_DATA;

STATUS sdRgnDataSet 
(
char *      sdName,
int         data1,
int         data2
)
{
void *      sdRgnAddr;
TEST_DATA * pTest;

/* get the base address of the shared data region */
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if ((sdRgnAddr = sdRgnAddrGet (sdName)) == (void *) NONE)
{
printf ("sdRgnAddrGet() failed for %s", sdName);
return (ERROR);
}

/* set data in shared data region */

pTest = (TEST_DATA *) sdRgnAddr;

pTest->data1 = data1;
pTest->data2 = data2;
return (OK);
}

STATUS sdRgnDataShow
(
char *      sdName
)
{
void *      sdRgnAddr;
TEST_DATA * pTest;

/* get the base address of the data region */

if ((sdRgnAddr = sdRgnAddrGet (sdName)) == (void *) NONE)
{
printf ("sdRgnAddrGet() failed for %s", sdName);
return (ERROR);
}

/* print data stored in the region */

pTest = (TEST_DATA *) sdRgnAddr;

printf ("data in %s: %d %d", sdName, pTest->data1, pTest->data2);
return (OK);
}

void sdRgnDemo ()
{
if (sdRgnDataSet (SD_RGN_NAME, 123, 234) == ERROR)

return;

sdRgnDataShow (SD_RGN_NAME);
}
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7.6  User Configuration Records

If memory for one or more user configuration record regions is configured in the 
core OS XML configuration file at configuration and build time, you can use that 
(read-only) memory. To access a particular user configuration record region, use 
the value of the Base_Address attribute of the appropriate 
userConfigRecordRegion element in the XML configuration file. For details, see 
the VxWorks 653 Configuration and Build Reference.

7.7  Multitasking

Multitasking in the core OS is similar to multitasking in a vThreads partition. For 
details, see A.2 VxWorks Tasks, p.270 and A.3 Intertask Communications, p.294.

7.8  Managing Memory

In a VxWorks 653 module, the core OS domain, shared libraries, partition OSs, and 
shared data regions each occupy a discrete space in virtual memory. However, 
application domains all occupy the same space in virtual memory. As a result, they 
are provided complete protection from errant code.

Each application domain has its own virtual memory context, consisting of a 
translation table (used to map virtual and physical memory) and other information 
about each page of memory. The task context of each task that holds a partition OS 
effectively includes the virtual memory context of the domain to which it belongs.

The core OS domain is mapped into the virtual memory context of each application 
domain, shared library, partition OS, and shared data region. However, a shared 
library, partition OS, or shared data region is mapped into the virtual context of an 
application domain only if the application attaches to it.

Applications can access kernel memory only by system calls to the kernel’s API.

The kernel provides stack overflow detection: each task has a task exception stack, 
and the kernel maintains an interrupt stack for the entire VxWorks 653 module. 
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The kernel also reclaims resources to ensure that memory is freed whenever the 
owner of an object is deleted, thus helping to prevent memory leaks. (See 
7.3 VxWorks 653 Stacks, p.141.)

In the core OS, the following types of memory management are available:

■ Managing Memory Partitions and Heaps

Routines are available to manage memory partitions (including typed 
memory partitions) and the current heap. For details, see 7.8.1 Managing 
Memory Partitions and Heaps, p.148.

■ Managing Virtual Memory

Routines are available to provide the following:

■ caching on a per-page basis

■ write-protection of text sections, read-only data sections, the exception 
vector table, and MMU translation tables

For details, see 7.8.2 Managing Virtual Memory, p.150.

■ Managing Page-oriented Memory

With the routines that are available to manage page-oriented memory, the core 
OS can isolate and discretely manage each domain’s memory. Routines are 
available to directly access each domain’s virtual and physical pages. For 
details see, 7.8.3 Managing Page-oriented Memory, p.153.

7.8.1  Managing Memory Partitions and Heaps

Managing Memory Partitions

Memory partitions are contiguous areas of memory that the kernel uses to 
dynamically allocate memory. The memPartLib library lets the core OS do the 
following with memory partitions:

■ Create and delete memory partitions by calling memPartCreate( ) and 
memPartDestroy( ).

■ Add memory to memory partitions by calling memPartAddToPool( ).

■ Allocate and free memory blocks from memory partitions by calling 
memPartAlloc( ), memPartAlignedAlloc( ) and memPartFree( ).
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■ Reallocate blocks of memory in memory partitions by calling 
memPartRealloc( ).

■ Set and get the options of memory partitions by calling memPartOptionsSet( ) 
and memPartOptionsGet( ).

■ Locate the largest free block in a memory partition by calling 
memPartFindMax( ).

■ Handle errors in memory partitions.

Managing Typed Memory Partitions

Kernel routines are available to create and access memory partitions that have 
specific memory-access permissions. Access permissions correspond to any valid 
combination of MMU attributes, including cache states (see Table 7-1). For 
example, the core OS can create a memory partition in which all allocated and free 
buffers are write-protected in supervisor and user modes. The memAttrLib library 
lets the core OS do the following with typed memory partitions:

■ Create memory partitions with access permission attributes by calling 
memAttrCreate( ).

■ Allocate and free memory blocks from typed memory partitions by calling 
memAttrAlloc( ) and memAttrFree( ).

■ Copy data buffers to blocks allocated from typed memory partitions by calling 
memAttrWrite( ).

Managing the Current Heap

The heap is the default memory partition from which the kernel dynamically 
allocates and frees blocks of memory. The kernel creates one heap for each 
application domain. The current heap is the heap of the current task’s home 
domain. The memLib library lets the core OS do the following with the current 
heap:

■ Allocate and deallocate memory blocks from the current heap by calling the 
ANSI-compatible malloc( ) and free( ).

■ Add memory to the current heap by calling memAddToPool( ).

■ Allocate memory aligned to a specific boundary by calling memalign( ) and 
aligned to a page by calling valloc( ).
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■ Call the ANSI-compatible realloc( ), calloc( ), and cfree( ).

■ Locate of the largest free block in the current heap by calling memFindMax( ).

■ Set and get options for the current heap by calling memOptionsSet( ) and 
memOptionsGet( ).

7.8.2  Managing Virtual Memory

Virtual memory contexts (also called virtual contexts) define the memory views 
that the core OS can access. The kernel creates a virtual context for each domain in 
the VxWorks 653 module. A virtual context includes virtual-to-physical page 
mappings, page access permissions, and page caching modes. The system virtual 
context is the virtual context of the current task’s home domain.

The kernel provides an architecture-independent API of virtual-memory routines 
and the ability to do the following:

■ Set the cache mode on a per-page basis.

■ Write-protect text segments.

■ Write-protect the VxWorks 653 exception vector table.

■ Write-protect the virtual context translation table.

The kernel uses the MMU to create virtual-to-physical memory mappings. It also 
uses the MMU to enforce page-level attributes for access permissions and cache 
modes. Access permissions protect data and text from accidental corruption and 
prevent unauthorized (user mode) tasks from accessing supervisor text and 
supervisor data.

Table 7-1 lists the MMU access and cache attributes that can be set on a page basis 
for page mappings on the PowerPC architecture. 

The kernel sets the MMU’s default caching policy based on the cache mode that the 
core OS specifies with cacheLibInit( ). For example, if the core OS calls 
cacheLibInit( ) with CACHE_COPYBACK, the kernel sets 
MMU_ATTR_CACHE_DEFAULT to MMU_ATTR_CACHE_COPYBACK.
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Accessing the MMU

The virtual memory library (vmLib) provides the core OS with an 
architecture-independent interface to the MMU. For details, see the reference 
entries for the core OS.

Ensuring Cache Coherency

Kernel facilities let the core OS perform DMA and interprocessor communication 
more efficiently by rendering associated buffers not cacheable. This is necessary to 
ensure that data is not buffered locally when other processors or DMA devices 
access the same memory location. Without the ability to make portions of memory 

Table 7-1 MMU Page-Level Attributes  

Description Attribute

User mode read MMU_ATTR_PROT_USR_READ

User mode write MMU_ATTR_PROT_USR_WRITE

User mode execute MMU_ATTR_PROT_USR_EXE

Supervisor mode read MMU_ATTR_PROT_SUP_READ

Supervisor mode write MMU_ATTR_PROT_SUP_WRITE

Supervisor mode execute MMU_ATTR_PROT_SUP_EXE

Caching disabled MMU_ATTR_CACHE_OFF

Copyback cache mode MMU_ATTR_CACHE_COPYBACK

Write-through cache mode MMU_ATTR_CACHE_WRITETHRU

Architecture-specific cache mode 
for I/O memory

MMU_ATTR_CACHE_IO

Default cache mode MMU_ATTR_CACHE_DEFAULT

Architecture-specific MMU 
modes

MMU_ATTR_SPL_[0-7]
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not cacheable, the core OS would need to turn off caching globally (resulting in 
performance degradation) or flush and invalidate buffers manually.

By calling vmPgAttrSet( ), the core OS can change the MMU attributes of a block 
of virtual memory (a page). For example, pages can be defined as read-only or 
writable. Memory accesses to pages marked as not cacheable always result in a 
memory cycle, bypassing the cache. This is useful for multiprocessing, multiple 
bus masters, hardware control registers, and systems without a bus-snooping 
mechanism.

Write-Protecting Text Segments

When a VxWorks 653 system is loaded, the kernel uses the MMU to prevent 
portions of memory from being overwritten. As a result, all text and read-only data 
are write-protected. Writing to write-protected memory causes a bus error.

For online-loaded partitions, the kernel marks text and read-only data sections as 
write-protected, so the core OS does not need to take additional steps to 
write-protect them.

The core OS can allocate and free memory blocks for the module sections using the 
routines in the memAttrLib library.

Write-Protecting the Exception Vector Table

During system initialization, the kernel write-protects the exception vector table. 
However, the core OS can change write-protection by calling intConnect( ), which 
write-enables the table for the duration of the call.

Virtual Memory Contexts and Domains

The core OS domain is mapped into the virtual context of all applications, shared 
libraries, and shared data domains. The kernel pages are accessible only in 
supervisor mode.

Shared library domains to which an application is attached are also mapped into 
the virtual context of the application, but the pages corresponding to a shared 
library’s writable data have a different mapping in each virtual context of the 
attached applications. These different mappings let all attached applications share 
a shared library’s text and read-only data, but the writable data is private to each 
attached application.
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The MMU mappings of the virtual pages that are available to each domain are 
maintained in the domain’s virtual memory context. When the kernel schedules a 
task in another domain, the system’s context is switched to the virtual memory 
context of the new task’s domain.

7.8.3  Managing Page-oriented Memory

Managing Physical Memory

The kernel manages the physical memory that a domain can use as a set of pages 
in a physical page pool. The kernel uses the pool to allocate physical pages used 
for a mapping to virtual memory. When the core OS unmaps the pages, the kernel 
returns them to the pool. To ensure only one mapping for a given physical page, 
the kernel manages the allocation of all physical pages and allocates them only 
when the core OS requests a mapping. When multiple domains need to share the 
same physical page, a shared data region must be used.

The core OS manages page-oriented memory with routines in the pgMgrLib, 
pgPoolLib, and pgPoolLstLib libraries. The libraries use MMU hardware to map 
virtual and physical pages and to set access and cache modes for mappings made 
with routines in the vmLib library. 

Configuring Physical Memory

For details on configuring physical memory (for example RAM, ROM, and I/O 
regions), see the VxWorks 653 Configuration and Build Guide.

Managing Virtual Pages

The kernel uses a virtual page pool to manage the virtual memory that it allocates 
to a domain. A domain has one virtual page pool associated with it. A domain also 
contains a physical page pool list that specifies the physical page pools that the 
domain can use. 

When the core OS creates a domain, the kernel associates a page manager with the 
domain (the primary page manager). This page manager has access to all the 
physical page pools that are available to the domain. Therefore, the core OS can use 
the primary page manager’s API to control any page that belongs to the domain.

In addition, the core OS can create additional, specialized page managers for a 
domain.
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When the core OS allocates or maps a page, it can override the page manager’s 
default MMU attributes and page-allocation policy.

The page manger libraries are pgMgrLib and pgMgrShow.

Creating Page Managers

The core OS can create a specialized page manager by calling pgMgrCreate( ). This 
manger is in addition to the primary page manager that the kernel creates when a 
domain is created. The specialized page manager can be created to do the 
following:

■ Allocate physical memory from a subset of the domain’s physical page pools 
by specifying a physical page pool list parameter.

■ Allocate mapped or unmapped virtual pages by setting the option to either of 
the following:

■ PAGE_MGR_ATTR_ALLOC_MAPPED

■ PAGE_MGR_ATTR_ALLOC_UNMAPPED

■ Allocate contiguous or noncontiguous physical pages by default by setting the 
following options:

■ PAGE_MGR_ATTR_ALLOC_CONTIG

■ PAGE_MGR_ATTR_ALLOC_NONCONTIG

■ Specify with options the default MMU attributes, protection and cache modes 
for mapped pages. (For information about page attributes, see 7.8.2 Managing 
Virtual Memory, p.150.)

Getting a Page Manager’s Current Options

The core OS can get a page manager’s current options by calling 
pgMgrOptsGet( ). In addition, the shell command pgMgrShow( ) displays 
information about a page manager.

Allocating Pages

The core OS allocates mapped or unmapped pages by calling pgMgrPageAlloc( ) 
or pgMgrPageAllocAt( ). Both routines let you specify the following:

■ Type of allocation; one of the following:

■ unmapped

■ mapped to contiguous physical memory 
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■ mapped to noncontiguous physical memory

■ MMU attributes (optional). If not specified, the page manager values are used.

In addition, pgMgrPageAllocAt( ) gives extra control over allocation by letting the 
caller optionally specify the virtual address, physical address, or both. If you call 
the routine with a specific physical address, the allocation type is mapped to 
contiguous physical memory, regardless of the options specified.

Mapping Pages

At any time, the core OS can map pages by calling pgMgrPageMap( ) and 
optionally specifying the MMU attributes and the type of mapping (to either 
contiguous physical memory or noncontiguous physical memory). If the MMU 
attributes or mapping are not specified, the page manager values are used.

Setting a Page’s MMU Attributes

The core OS can set a page’s MMU attributes by calling pgMgrPageAttrSet( ). The 
result depends on the MMU architecture.

Getting a Page’s MMU Attributes

The core OS can get a page’s current MMU attributes by calling 
pgMgrPageAttrGet( ). However, the returned attributes might not correspond to 
the attributes set with pgMgrPageAttrSet( ) or set when the page was allocated or 
mapped, because the page manager or MMU libraries might have changed the 
attributes to a set more appropriate for the architecture. For more information, see 
the pgMgrLib entry for the core OS and the appropriate MMU library reference.

Translating between Virtual and Physical Addresses

The core OS can translate between the virtual and physical addresses of mapped 
pages by calling pgMgrVirtToPhys( ) and pgMgrPhysToVirt( ).

Unmapping Pages

The core OS can unmap pages by calling pgMgrPageUnmap( ). The routine 
returns the page’s associated physical pages to the appropriate physical page 
pools.

Freeing Pages

The core OS can free mapped or unmapped pages by calling pgMgrPageFree( ). 
The routine returns the pages to the domain’s virtual page pool, and they can then 
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be reallocated. The routine also unmaps all mapped virtual pages and returns the 
corresponding physical pages to the appropriate physical page pools.

Deleting Page Managers

The core OS cannot directly delete a domain’s primary page manager. The core OS 
deletes a non-primary page manager by calling pgMgrDelete( ). The routine 
removes only the control functionality. The status of all the pages that it allocated 
or mapped does not change. The core OS can later free or unmap the pages using 
the domain’s primary page manager. The kernel reclaims all pages in the domain 
only when the core OS deletes the domain. At that time, the kernel unmaps the 
pages and releases the corresponding physical pages to the appropriate physical 
page pools.

7.8.4  POSIX Memory-Locking Interface

For details, see 5.3 POSIX Memory-Locking Interface, p.91.

7.9  Restart Functionality

VxWorks 653 supports the following four types of restart:

■ System cold start or restart 

This corresponds to the initialization or re-initialization of the whole 
VxWorks 653 module from power-on.

■ System warm restart 

This corresponds to the re-initialization of the VxWorks 653 module, following 
a power loss that lasts less than the time that causes RAM content to be lost.

■ Partition cold start or restart 

Initialization or re-initialization of a single partition. The RAM used by the 
partition is assumed to be corrupted. 

■ Partition warm restart 

Re-initialization of a single partition. 
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7.9.1  System Cold Start or Restart

System cold start or restart has two versions, depending on which image is used. 

■ The ROM payload image loads from flash. This version is the one that is 
certified. It is described first. 

■ The RAM payload image is used during the development phase. It is 
described second, and is described by how it differs from the ROM payload 
version.

Deployed Configuration: ROM Payload Image

A system cold start of the ROM payload image consists of the following steps:

1. The boot loader code runs, initializing the CPU and RAM, then loading the 
core OS and the configuration record table from ROM to RAM and jumping to 
the core OS entry point. 

2. The kernel initializes the hardware and runs any BSP initialization routines. It 
creates the kernel and initializes the partition scheduler. 

3. The kernel parses the configuration records and creates partition OSs, shared 
libraries, and shared data domains according to their contents. 

4. For each partition, including online-loaded partitions, the core OS performs 
the following operations according to the partition configuration information:

a. Creates the partition application domain.

b. Attaches the partition domain to all required shared libraries.

c. Attaches the partition domain to all required shared data domains.

d. Creates and initializes the partition health monitor context.

e. Creates the partition OS task. This is a user-level task that runs the 
partition OS as well as the partition application during the partition’s 
schedule windows. This task is not activated at this point.

f. Maps the remaining RAM from the partition memory pool.

g. Initializes the VAL for this partition.

h. Creates the partition restart task. This is a core OS task that runs in 
supervisor mode and only during the partition’s schedule window. The 
purpose of this task is to run the partition restart and shutdown 
operations. This task is activated, but runs only when partitioning is 
turned on.
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5. The kernel notifies all partitions, except online-loaded partitions, to be cold 
restarted. This is achieved by requesting each partition restart task to run a 
cold restart on its dedicated partition. These partition cold restarts start only 
when partitioning is turned on.

6. Dynamic allocation in the kernel heap is disabled as well as dynamic mapping. 
This is done only if requested in the core OS configuration record (the 
allocDisable element in the XML configuration file). For more information, 
see the VxWorks 653 Configuration and Build Reference. 

7. Enables partitioning and sets the first schedule-defined configuration record 
table. At this point, all the partitions start their cold restart during their own 
schedule windows, providing that a schedule window is defined in the initial 
schedule for the partition in question. Online-loaded partitions are not cold 
restarted. For the steps of a partition cold restart, see 7.9.3 Partition Cold Start 
or Restart, p.160.

For the steps of a system warm restart, see 7.9.2 System Warm Restart, p.159. 

Development Configuration: RAM Payload Image

In the development configuration, flash or ROM is replaced by RAM in order to 
accelerate the debugging cycle. The boot loader programmed in ROM or flash is 
used to download the single file of the RAM payload image into holding RAM. A 
specific region of RAM must be defined for this purpose in the XML configuration 
file. For details, see the configuration information in the VxWorks 653 Configuration 
and Build Guide.

The payload part of a RAM payload image consists of the core OS, shared libraries, 
partition OSs, configuration records, and applications. The remainder of the RAM 
payload image is the boot loader code linked with the payload map, resulting in 
the file sms_ramPayload. For more information, see the reference entry for 
payloadLib and the VxWorks 653 Configuration and Build Guide.

Once the boot loader loads the RAM payload image and jumps to the entry point 
of the image, the initialization steps are identical to the deployed configuration, 

NOTE:  The payload map is linked with the boot loader code at the end of the 
system build, resulting in file sms_romPayload. This file is programmed into the 
board flash or ROM. This lets the boot loader load both the core OS and the 
configuration record sections into RAM. Later, the kernel queries this payload map 
to load shared library and partition code. The payload map remains in flash or 
ROM. 
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starting with the boot loader running. (In this configuration, the boot loader makes 
sure that only the operational RAM is initialized.)

7.9.2  System Warm Restart

In many VxWorks 653 modules, restarting the entire module can be desirable. The 
need to restart can have any number of reasons, but in almost all cases, 
user-supplied software is needed to accomplish the restart operation. This 
software needs to save the system state on a cold start, then restore it when a warm 
restart is required. It also needs to manage hardware-specific reset requirements 
before initiating the warm restart.

A large part of the time for a cold restart is spent loading RAM from the payload 
(typically, flash). The coreOsWarmRestart( ) routine is available to reduce this time 
and to do the following:

■ Reset the processor state to the state that it was when the module was 
initialized.

■ Reload any writable memory sections (such as .data and .bss). Persistent data 
and .bss data are untouched.

■ Restart the core OS.

Including Warm Restart in a BSP

To include warm restart in a BSP, a BSP developer must ensure the following:

■ The BSP initializes the L1, L2, and L3 caches in _sysInit( ) (not in 
sysHwInit( )).

■ Level 3 cache routines initialize the following function pointers:

■ _pSysL3CacheDisable

■ _pSysL3CacheEnable

■ _pSysL3CacheFlush

NOTE:  The following pieces of code are assumed to be provided by the system 
integrator:

■ power-down interrupt- and exception-handler code

■ changes to romInit.s to reload the CPU context



VxWorks 653
Programmer's Guide, 2.2 

160

■ _pSysL3CacheInvFunc

■ A initialization-stage function pointer (_pSysHwRequiringMmuInit) is 
initialized so that the BSP can initialize devices that require the MMU. If the 
function pointer is not NULL, its routine is called after the MMU is initialized.

■ The BSP provides a routine (sysHwCacheFunctsInit( )) to initialize the L2 
cache function pointers and the above L3 cache function pointers.

■ To use ROM payloads, the loader requires that the BSP map the ROM payload 
image (which may be in flash) to a BAT register. This mapping lets the shared 
library and partition sections be accessed properly from the shared library and 
partition contexts.

7.9.3  Partition Cold Start or Restart

For partition cold start or restart, the development system (the RAM payload 
image) behaves the same as the deployed system (the ROM payload image). The 
partition restart task is requested to run the cold restart operation of the specified 
partition. This request can be initiated by calling partitionModeSet( ) from code 
within the core OS. The health monitor may also call partitionModeSet( ). Finally, 
the partition application can cold restart itself by calling 
SET_PARTITION_MODE( ). 

While initialization is in progress, preemption is disabled with lock level 0. As a 
result, process scheduling is disabled.

Once the partition restart task acknowledges the cold-start request, it performs the 
following main steps:

1. Flushes outstanding system calls.

2. Stops the partition OS task.

3. Zeroes the RAM assigned to the partition. For more details, see the reference 
entry for partitionMemClearHookAdd( ).

4. Copies the partition text sections to RAM from ROM, flash, or RAM. In the 
case of a ROM payload image, the sections are copied from ROM or flash. A 
RAM payload image is copied from RAM.

5. Copies the partition rodata sections from ROM or RAM to RAM.

6. Copies the partition persistent and non-persistent data sections from ROM or 
RAM to RAM.
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7. Zeroes the partition persistent and non-persistent .bss sections (this is skipped 
if step 3 was successful).

8. Copies the non-persistent and persistent data sections of shared libraries from 
ROM or RAM to RAM, for each shared library attached to the partition.

9. Zeroes the non-persistent and persistent .bss sections of shared libraries, for 
each shared library attached to the partition. This step is skipped if Step 3 was 
successful.

10. Resets the partition OS task so that it resumes running at the entry point of the 
partition OS. The application code starts running once the partition OS 
completes its initialization steps and all the shared libraries attached to the 
partition are initialized.

7.9.4  Partition Warm Restart

For partition warm restart, the development system (the RAM payload image) 
behaves the same as the deployed system (the ROM payload image). The partition 
restart task is requested to run the warm restart operation of the specified 
partition. This request can be initiated by calling partitionModeSet( ) from code 
within the core OS. The health monitor may also call partitionModeSet( ). Finally, 
the partition application can warm restart itself by calling 
SET_PARTITION_MODE( ). 

While initialization is in progress, preemption is disabled with lock level 0. As a 
result, process scheduling is disabled.

Once the partition restart task acknowledges the warm restart request, it performs 
the following main steps: 

1. Flushes outstanding system calls.

2. Stops the partition OS task.

3. Copies the partition non-persistent data section from ROM or RAM to RAM.

4. Zeroes the partition non-persistent .bss sections.

5. Copies the non-persistent data section of shared libraries from ROM or RAM 
to RAM, for each shared library attached to the partition.

6. Zeroes the non-persistent .bss section of shared libraries, for each shared 
library attached to the partition.

7. Resets the partition OS task so that it resumes running at the entry point of the 
partition OS. The application code starts running once the partition OS 
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completes its initialization steps and all the shared libraries attached to the 
partition are initialized. 

The main difference between a partition cold and warm restart is that on a warm 
restart, the partition memory is assumed not to be corrupted. This is why only the 
data and .bss sections are re-initialized on a warm restart, while a partition cold 
restart clears the whole partition memory and reloads all the partition code. The 
other important difference is that persistent data variables are not re-initialized on 
a warm restart. 

The application code can detect whether the partition re-initializes via a cold or 
warm restart by calling GET_PARTITION_STATUS( ) to retrieve the start condition 
information. For instance, an application may skip the re-initialization code of 
persistent data structures in the case of a warm partition restart. For more 
information refer to the reference entry for GET_PARTITION_STATUS( ).

It is also possible to stop the execution of a single partition: the partition OS task is 
suspended after the pending system calls for that partition are flushed. The only 
way to have a partition run again after being shut down is to request a cold or 
warm restart on the partition. Again, partitionModeSet( ) or 
SET_PARTITION_MODE( ) can be used to request the shutdown of a single 
partition.

7.9.5  Restart Implications for Drivers

Core OS device drivers that are used by partitions should follow the following 
rules to make the VxWorks 653 module safe during partition restart.

1. The driver’s open( ), creat( ), remove( ), and close( ) should be deterministic in 
execution and bounded in time.

2. The FIORESET ioctl command code should be supported by the device driver. 
It is called during restart of a partition if it was in the midst of a read( ), write( ), 
or ioctl( ) operation on the device.

3. FIORESET should cause the thread of control, which is in the device driver 
doing a read( ), write( ), or ioctl( ) operation, to complete. FIORESET should 
never terminate the thread. Instead, the driver might do the following: 

■ If the thread is blocking on I/O, wake the thread and cause it to return 
from the I/O operation. 

■ If the thread is performing an I/O operation but not blocking, perform a 
longjump( ) of the thread so that it returns from the I/O operation.
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7.9.6  Restart Implications for I/O 

System warm restart and partition restarts (both cold and warm) are supported 
only if all the devices that include initialization routines and their corresponding 
I/O layers (for instance ttyLib for SIO device drivers) are moved into the space 
that the partition can call directly. The one exception is timer drivers, which are left 
in the core OS.

A given device can be in either the core OS or a partition, but not both. When a 
device is moved into a partition, only that partition can control the device. In 
addition, the device can be configured in polling mode only. Interrupt mode is not 
supported when the device is moved into partition space. 

A device configured to generate interrupts can reside in the core OS only.

For more information on vThreads I/O, see 9.2 I/O and vThreads, p.221. For more 
information COIL I/O see 9.4 I/O and COIL, p.264.

7.9.7  Persistent Data Support for Restart

Persistent data support is provided to let certain data in the partition OS preserve 
its value during partition warm restart. Such data is placed in several sections of 
the partition itself, or in a shared library that the partition attaches to. In the case 
of shared libraries, each partition has access to a private copy of the data, resident 
in the partition domain. It is this private copy of the data that can be modified by 
the partition.

When a partition runs a warm restart, all normal data sections except the 
.persistent.data sections are reloaded and all normal .bss sections are zeroed 
except the .persistent.bss sections. Persistent data sections (.persistent.data) are 
loaded only during a partition initial start or cold restart. Persistent .bss sections 
(.persistent.bss) are zeroed only during a partition initial start or cold restart. 

Specifying Persistent Data

All persistent data is marked in the source code for placement into specifically 
named ELF sections. Initialized persistent variables are placed in a section named 
.persistent.data, while uninitialized persistent variables are placed into a section 
named .persistent.bss. In C code, this is achieved using the __attribute__ GNU 
directive. 

For instance, an initialized persistent variable is defined as:

int initializedPersist __attribute__((__section__(".persistent.data"))) = 123;
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An uninitialized persistent variable is defined as:

int uninitializedPersist __attribute__((__section__(".persistent.bss")));

Unlike the normal uninitialized data in the .bss sections, the GNU compiler creates 
content for uninitialized persistent data in the .persistent.bss section. However, 
the .persistent.bss sections are excluded from the RAM and ROM payload images. 
Only their size and location are described in the payload map entries, as is the case 
for .bss sections.

How Persistent Data Is Handled

These elements always take up space in the .sm ELF module, unlike normal 
uninitialized data, which is placed into a .bss section. However, the .persistent.bss 
sections do not become part of a RAM or ROM payload image. Only their size and 
location are described in the payload map entries, as is the case for .bss sections. 

When a partition runs a warm restart, all normal data sections (except the 
.persistent.data sections) are reloaded, and all normal .bss sections are zeroed 
(except the .persistent.bss sections). Persistent data sections (.persistent.data) are 
also reloaded during a partition cold start or restart. Persistent .bss sections, 
.persistent.bss, are zeroed only during a partition cold start or restart.

Important Limitation 

! CAUTION:  It is important that the correct persistent section (.persistent.data or 
.persistent.bss) is selected in the source code. Neither the toolchain nor the kernel 
validates the selection.

For example, if a persistent initialized variable has the section attribute set to 
.persistent.bss in the source code, the kernel always initializes it to zero on cold 
restarts, even if its initial value in the ELF section was not zero. No check is 
performed to verify that only non-initialized persistent variables end up in 
.persistent.bss sections.
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7.10  Partition Support

The API provided in the core OS can be used primarily to get configuration 
information and to control the operation of partitions. There are no direct API 
routines for creating or deleting partitions. Instead, partitions are created and 
initialized automatically by the kernel during its boot sequence according to the 
configuration information described in the configuration record data.

7.10.1  Core OS Partition-Related Components

INCLUDE_KERNEL_SHOW 
This optional component enables partitionShow( ). 

INCLUDE_PARTITION_TOOL
This optional component provides support in the core OS for partition tools.

INCLUDE_WDB
This optional component allows collected activity data on sampling and 
queuing ports to be displayed.

7.10.2  Core OS Partition-Related Routines

The following core OS libraries relate to partitions: 

■ configRecordLib
■ partitionLib
■ partitionShow
■ payloadLib

For details, see the reference entries in the VxWorks 653 Core OS API Reference.

7.10.3  Online-Loaded Partitions

This section provides example code for a loader that loads an online-loaded 
partition. It then changes the partition mode from the initial idle mode to cold-start 
mode so that the partition is scheduled to run. The code needs to be included in a 
kernel component. Additional code to call the loader needs to be added to a kernel 
component.

For information on configuring a system to use online-loaded partitions, see the 
VxWorks 653 Configuration and Build Guide.
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Example 7-2 Online-Partition Loader: Example Code

/* Simple online-partition loader */

#include "vxWorks.h"
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "taskLib.h"
#include "partitionLib.h"
#include "pdLib.h"
#include "pgMgrLib.h"
#include "private/pdLibP.h"
#include "vmLib.h"

#define BUF_SIZE        0x1000  /* 4 KB buffer */

STATUS onlinePartitionLoad
(
char *fileName,
int   partNum
)
{
FILE *      file;
UINT32      numBytes;
PD_ID       kernelPdId = NULL;
MMU_ATTR    mmuAttr;
char *      payloadAddr = NULL;
char *      pCurr;
void *      address;
REGION_NODE *pRgnNode;
STATUS      status;

if ((fileName == NULL) || (address == NULL))
return (ERROR);

kernelPdId = pdIdKernelGet();

pRgnNode = rgnLookupByPoolName("onlinePayloadPool", 0);

if (pRgnNode == NULL)
{
printf ("\nERROR - online partition payload region address lookup\n");
return (ERROR);
}

address = (void *)pRgnNode->physAdrs;

/* Find the virtual address of the online-partition payload */

if (pgMgrPhysToVirt (kernelPdId->memInfo->primPgMgrId, 
 (PHYS_ADDR) address,
 (VIRT_ADDR *) &payloadAddr) == ERROR)

{
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printf ("\nERROR - online partition payload address translation 0x%x (errno=0x%x)\n", 
(int)address, errno);

return (ERROR);
}

/* Write-enable the online-partition payload */

if ((pgMgrPageAttrGet (kernelPdId->memInfo->primPgMgrId, 
   (VIRT_ADDR) payloadAddr, &mmuAttr) == ERROR) ||

(pgMgrPageAttrSet (kernelPdId->memInfo->primPgMgrId, 
  (VIRT_ADDR) payloadAddr,
  pRgnNode->size / vmPageSizeGet(), 
  MMU_ATTR_SUP_DATA) == ERROR))

{
printf ("\nERROR-couldn’t write enable online partition payload source addr 0x%x \n", 

(int) payloadAddr);

return (ERROR);
}

/* Load the online-partition payload */

pCurr = payloadAddr;

/* Open the file */

if((file = fopen(fileName, "r" )) == NULL)
{
printf ("\nonlinePartitionLoad: failed to open file %s.\n", fileName);
return (ERROR);
}

while (((numBytes = fread (buf, sizeof(char), BUF_SIZE, file)) != EOF)
&&(numBytes != 0))
{
/* Copy to the destination */

bcopy (buf, pCurr, numBytes);
pCurr += numBytes;
}

printf ("\nonlinePartitionLoad: load of %s at adress 0x%x successful.\n",
fileName, (UINT) payloadAddr);

/* Reset the online-partition payload MMU attributes */

if (pgMgrPageAttrSet (kernelPdId->memInfo->primPgMgrId,
(VIRT_ADDR) payloadAddr,  (pRgnNode->size / vmPageSizeGet()), mmuAttr) == ERROR)
{
printf ("\nERROR - couldn’t reset MMU attributes for online partition payload source 

addr 0x%x \n", (int) payloadAddr);
return (ERROR);
}
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/* Change the partition mode from idle to cold start */

status = partitionModeSet (partNum, PARTITION_COLD_START,
PARTITION_RESTART, "Cold Start of Online Loaded Partition", PART_ANY_PENDED);             

if (status == ERROR)
{

printf ("\nERROR - partitionModeSet failed, partition number %d errno 0x%x\n",
partNum, errno);

return(ERROR); 
}
else

return (OK);
}

7.11  Worker Tasks

Each partition can have worker tasks associated with it. They run in the context of 
the core OS to perform blocking operations (typically blocking I/O) on behalf of 
their partition. The core OS asynchronously passes back results to the partition. 
Worker tasks run within their partition’s window (vThreads and COIL). 

The number of worker tasks for a partition is specified by the numWorkerTasks 
element in the partition’s XML configuration file. For details, see the VxWorks 653 
Configuration and Build Reference. 

To get the number of worker tasks at run-time, call configRecordFieldGet( ) with 
the partition configuration record and the PARTITION_NUM_WORKER_TASKS 
field selector.

If a partition is configured with no worker tasks, the core OS performs all system 
calls for the partition in the context of the partition OS. As a result, the entire 
partition is blocked until the call completes.

If an application makes so many system calls that it runs out of worker tasks, the 
partition blocks until a worker task is available.

If you include the vThreads target shell in a vThreads partition, two worker tasks 
need to be assigned to the partition shell task. The worker tasks are needed because 
the shell task pends on a read operation from the standard input file descriptor.
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If no worker tasks are available to process a partition’s blocking system call, the 
health monitor logs an event. This is an indication that more worker tasks might 
be needed.

The application developer or system integrator needs to understand the activity of 
the threads in the partition in order to determine whether they perform blocking 
operations in the core OS. The level of concurrency that the application requires 
also governs the number of worker tasks required. 

The valShow( ) routine displays the value of the partition’s highWaterMark field, 
which represents the maximum number of worker tasks that were dispatched at 
any time for the partition. You can use this value to determine whether the number 
of worker tasks needs to be adjusted.

7.12  System Time

All time values and capacities are unique and independent of partition execution.

System time is used for timestamping (GET_TIME) and is expressed in 
nanoseconds. Because kernel ticks do not provide nanosecond accuracy, an 
additional service provides a high-resolution time based on the current tick count 
and a hardware-based high-precision clock (decrementer, real-time clock, and so 
forth).

The kernel transmits clock ticks to each partition during its time window. Outside 
its own time window, a partition is not active and does not receive any clock ticks. 
At the next time window, the time of this partition is updated to reflect the absolute 
time of the VxWorks 653 module. The time update is done in a manner to ensure 
that no time event is lost in a delay queue.

7.13  Partition Scheduling

This section explains how the kernel schedules partitions. It also explains how to 
change schedules and scheduling.
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By default, the kernel uses ARINC 653 scheduling to schedule partitions. 
ARINC 653 scheduling is time-preemptive scheduling (TPS). However, if there is 
idle time within a TPS schedule, the kernel uses priority-preemptive scheduling 
(PPS) for those partitions that have been enabled for it. The combination of the two 
scheduling methods is called APPS scheduling (ARINC plus PPS scheduling).

This section describes TPS scheduling first, then APPS.

7.13.1  TPS Scheduling

Scheduling Rules

TPS is strictly deterministic over time. The main characteristics are as follows:

■ From the point of view of the core OS, the scheduling unit is a partition.

■ Partitions have no priority.

■ The scheduling algorithm is predetermined by the configuration file, is 
repetitive, and has a fixed periodicity.

At least one time period should be allocated to each partition during each cycle. 
There can be more than one assigned to a partition, and the partition windows 
need not be contiguous. It is acceptable to have some idle time within a time frame. 
During idle time, no partition is activated, and only kernel tasks can run. A 
partition is activated by allocating time to it within the major time frame. Each 
partition time period (or quantum) is defined by its offset from the start of the 
major time frame and its expected duration.

Core OS tasks associated with a partition are considered to be part of the partition 
itself and scheduled accordingly. For instance, the kernel tasks that process system 
calls on behalf of a partition are treated as part of the partition. How long a 
partition can run is defined in increments. The increment is configurable, but its 
minimum cannot be less than 0.25 milliseconds.

Partition Activation

The major frame is defined by its constituent quanta. These quanta consist of 
minor frames defined sequentially and specified by their duration and the 
partition to be scheduled. The activation time of a quantum is the sum of the 
preceding minor frame durations.
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In Figure 7-2, both the partition attributes and the partition time frame table define 
the major time frame. The health monitor validates the content of the major time 
frame at startup time. 

Partition attributes: 

Spare-Time Monitoring

The kernel monitors spare time per partition and makes the information available 
for debugging. The information can be viewed using the host shell or target shell. 

Mode-Based Scheduling

Mode-based scheduling is an enhancement to APEX that allows for a set of 
partition schedules to be defined and to be selectively enabled at the appropriate 
time by the kernel. It can support up to 16 partition schedules and a routine to 
allow transition between the schedules. 

The routine supporting transitions between partition schedules is 
arincSchedSet( ) for the core OS and SET_SCHEDULE_MODE( ) for the partition. 
The routines let you select a transition at any of the following points:

Figure 7-2 TPS Scheduling of Three Partitions

partition 1 partition 2 partition 3 partition 1 partition 2 partition 1 partition 2

Major time frame

activation 2

activation 1

duration 1 duration 2

timet0 t1 t2 t3 t4 t5 t6

Partition idle

Quantum 1: Activation = t1 
Duration = (t2 - t1) 
Partition = 2 

Quantum 2: Activation = t5 
Duration = (t6 - t5) 
Partition = 2 
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■ next major frame boundary 

■ next partition window boundary 

■ next timer tick 

The transition jumps to the start of the new major frame.

The routines supporting transitions between partition schedules lets the caller be 
in either user mode or supervisor mode. (This lets schedules be changed by 
health-monitor fault-recovery routines, or by a privileged partition that acts as the 
mode manager for the VxWorks 653 module.) The routines supporting transitions 
between partition schedules are independent of other application APIs, so that 
access to them can be granted to specific partitions. 

Multiple schedules can be configured for each partition by defining additional 
schedules in the XML configuration file at configuration and build time. For 
details, see the VxWorks 653 Configuration and Build Guide.

7.13.2  APPS Scheduling

APPS scheduling allows for the VxWorks 653 module-wide scheduling of 
partitions in a global priority-preemptive scheme during a TPS schedule’s idle 
time.

The kernel switches to PPS scheduling under either of these circumstances:

■ There is idle time within a TPS schedule (that is, there is unused time left at the 
end of a running TPS partition window or the idle partition is scheduled next) 

■ The application forces idle time.

During PPS scheduling, all PPS-enabled partitions (and those configured with PPS 
priorities) are available for scheduling, and the non-idle partition with the highest 
PPS priority is scheduled to run. The partition configuration defines whether a 
partition is enabled for PPS scheduling. For details, see 7.2.1 Partition Configuration, 
p.135.

When a partition is scheduled to run during PPS scheduling, all threads within 
that partition run as they would normally.

TPS scheduling is not affected by PPS scheduling, which is strictly an alternate 
scheduling mechanism for partitions during idle time. If at any time during PPS 
scheduling, the TPS-scheduled partition that was idle must run due to an incoming 
non-tick pseudo-interrupt, PPS scheduling ceases, and the TPS-scheduled 
partition runs.
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Pseudo-interrupts are the basic asynchronous communications mechanism from 
the kernel to the partition OS. They are used to deliver timer ticks, port message 
events, I/O subsystem events, and restart events.

While the scheduler is in PPS mode, if the TPS partition (which is idle) is delivered 
a pseudo-interrupt, PPS mode terminates, and the TPS partition starts to run 
immediately. This pseudo-interrupt is not a tick pseudo-interrupt (tick 
pseudo-interrupts are delivered to the current partition only), but rather a 
pseudo-interrupt generated by port message delivery, I/O subsystem responses, 
or warm restart. 

Similarly, while the scheduler is in PPS mode, if a port message delivery, I/O 
subsystem response, or a warm restart is sent to an idle PPS partition, that partition 
becomes available for PPS scheduling, and may preempt the current (PPS) 
partition. 

In addition, PPS scheduling is activated only if the amount of time remaining in a 
TPS partition window exceeds the value of an VxWorks 653 module-wide 
parameter (PPS_ACTIVATION_WINDOW, defined in 00comp_kernel_basic.cdf).

When partitions are switched in either PPS or TPS scheduling, all partition switch 
hooks are run normally. 

When PPS mode is switched back to TPS at the end of a TPS-scheduled window, if 
the same partition is to be scheduled to run (that is, the next TPS partition is 
identical to the current PPS partition), a partition switch is not performed. 

NOTE:  When designing partition schedules, only TPS time allocations should be 
taken into account, because PPS scheduling cannot provide any guarantee of CPU 
time.
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Figure 7-3 shows TPS scheduling.

Figure 7-4 shows a PPS-enabled partition that runs without going idle. It is the 
same as for TPS-only scheduling.

Figure 7-3 TPS-Only Partition Scheduling

time

partition switch
partition OS

core OS

TPS scheduling

Figure 7-4 PPS-Enabled Partition Scheduling without Going Idle

time

partition switch
partition OS

core OS

TPS scheduling
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Figure 7-5 shows a PPS-enabled partition becoming idle and allowing PPS 
scheduling. Other partitions run during the PPS scheduling.

How the Kernel Identifies Idle Time

Since ARINC scheduling is time-preemptive, platform providers often allocate 
generous amounts of time to partitions to ensure all their work can be performed. 
In pure TPS scheduling, after the work is completed, the partition remains the 
current partition, and simply waits until the next partition switch. In PPS 
scheduling, the partition OS (vThreads) determines this idle time by the following 
combination of factors, both of which must be true:

■ There is a transition into the kernel idle state, and the amount of time 
remaining in the TPS partition exceeds the value of 
PPS_ACTIVATION_WINDOW.

■ There is no delay operation in the partition (delayed task, deadline, or 
watchdog) whose delay could expire before the end of the current partition 
window.

When the partition OS in an ARINC partition determines that it is idle, there will 
be no threads ready to run.

Forcing Idle

Any partition can force the idle state by calling appsIdleNotify( ). The routine 
indicates to the kernel that the partition has no ready-to-run threads and no 

Figure 7-5 PPS-Enabled Partition Scheduling with Going Idle

time

partition switch partition OS

core OS

TPS scheduling

partition switch

PPS scheduling

time less than 
PPS_ACTIVATION_
WINDOW
(no PPS scheduling)

idle detected



VxWorks 653
Programmer's Guide, 2.2 

176

timeouts within its remaining partition window. (If timeouts do remain, they are 
ignored.) As a result, the only way for the partition to be rescheduled before its 
next TPS window is to receive a pseudo-interrupt.

vThreads and APPS Scheduling

When a vThreads partition is scheduled to run, vThreads schedules the 
highest-priority ready-to-run thread. vThreads continues to run and schedule 
threads until any one of the following occurs:

■ vThreads goes idle.

■ The application forces idle.

■ A non-tick pseudo-interrupt is sent as a result of any API (port message, I/O 
subsystem, or warm restart). This could make another partition ready to run, 
and that partition could potentially be of a higher priority.

■ The ARINC partition window expires.

If either one of the first two occurs, the partition is no longer available for PPS 
scheduling until such time as the following happens:

■ Its next partition window.

■ A non-tick pseudo-interrupt is sent to it.

Ticks and Timeouts

Ticks are delivered in PPS scheduling the same way as they are in TPS mode. This 
is true at the start of a partition window, whenever a PPS partition is scheduled, 
and if the TPS-scheduled partition again becomes ready to run due to a 
pseudo-interrupt (except a tick pseudo-interrupt.) For more information, see 
Pseudo-Interrupts, p.177.



7  Programming in the Core OS
7.13  Partition Scheduling

177

7

Figure 7-6 shows how timer ticks are delivered.

Pseudo-Interrupts

In PPS scheduling, a non-timer pseudo-interrupt to a PPS-enabled partition causes 
the partition to be ready to run if it was previously not ready to run because of 
indicating an idle condition. This could cause a reschedule of which partition is the 
current highest priority.

If a pseudo-interrupt is sent to the TPS-scheduled partition, the scheduling 
immediately switches from PPS back to TPS and lets the partition run until its 
window expires or the partition indicates another idle condition.

(Tick pseudo-interrupts are not delivered in PPS scheduling.)

Figure 7-6 Delivery of Timer Ticks
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Examples of APPS Scheduling

Figure 7-7 shows what happens when the TPS partition has no threads to run or 
calls appsIdleNotify( ).

In Figure 7-8, Partition A (the TPS partition) runs and then notifies the kernel that 
it is idle. Partition B (the partition with the highest PPS priority) is subsequently 
allowed to run during PPS mode. At the start of the next TPS-scheduling cycle, 
Partition C is then run in TPS mode.

Figure 7-7 TPS Partition with No Treads to Run or Calls appsIdleNotify( )
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Figure 7-8 TPS Partition Notifies Idle, PPS Partition Runs 
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In Figure 7-9, Partition B (running in PPS mode) also goes idle. Partition D (the 
partition with the next-highest PPS priority) is then allowed to run.

In Figure 7-10, while Partition B is running in PPS mode, a non-timer 
pseudo-interrupt (such as happens when a port call is made) is sent to Partition A 
(an ARINC partition). As a result, TPS scheduling is resumed and Partition A runs 
again.

Figure 7-9 TPS Partition Notifies Idle, PPS Partition Runs and Goes Idle, PPS Partition Runs
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Figure 7-10 PPS Partition Runs, Pseudo-Interrupt Occurs
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In Figure 7-11, Partition A declares itself idle, but the idle declaration occurs within 
the PPS_ACTIVATION_WINDOW time at the end of the partition’s time budget, 
and, therefore, PPS scheduling is not entered because there is not enough time.

In Figure 7-12, Partition D is running in PPS mode, and a pseudo-interrupt is sent 
to Partition B. Partition B has a higher PPS priority and is thus scheduled to run, 
preempting Partition D.

Figure 7-11 APPS Scheduling and PPS_ACTIVATION_WINDOW
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Figure 7-12 PPS Partition Runs, Pseudo-Interrupt Preempts
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7.13.3  Partition-Scheduling Routines

The following partition-scheduling routines are available from the core OS:

■ To register a callout routine that runs on partition context switches: 
partitionSwitchHookAdd( ). 

■ To register a callout routine that runs on start of major frames: 
partitionMajorFrameHookAdd( ). 

7.14  Design Models for Ports

This section discusses the design models to support queuing and sampling ports 
in partitions.

7.14.1  Design Model for Queuing Ports

The memory for queuing ports is in the kernel. The sending and receiving 
partitions access it through system calls, which validate all parameters. Messaging 
code resides in the kernel.

Memory Use

To reduce memory use, the kernel copies a message only once. Receiving partitions 
get the message from the same location. After the last destination port reads the 
message, the kernel makes the space available for new messages.
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The source port is part of the message area. During transfers, the kernel does not 
move messages from source-port memory to destination-port memory. Instead, it 
moves only pointers to the messages. The maximum size of a message is the 
maximum size of the source port messages. 

Messages and lists of pointers are in the kernel. They survive partition restart.

Blocking Processes

Since vThreads uses a many-to-many thread model (a worker-task mechanism) for 
system calls, sender processes that are blocked on full ports and receiver processes 
that are blocked on empty ports are queued in vThreads (user) space, not in kernel 
space. 

Figure 7-13 Memory Model for Queuing Ports (Common Memory Used for All Queuing Ports)
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System Calls and Events for Port Operations

Figure 7-14 shows the system calls and events that occur when a message is sent 
from a source port to a destination port.

Effect of Restarting Partitions

When a partition is restarted, messages are lost only in the ports of the restarted 
partition. Therefore, when a source port's partition is restarted, its destination-port 
messages are preserved. Also, when a destination port's partition is restarted, its 
source-port messages are preserved.

7.14.2  Design Model for Sampling Ports

In sampling ports, messages carry similar, but updated, data. Messages and 
processes are not queued. A message remains in the source port until it is sent or 

Figure 7-14 System Calls and Events for a Port Operation
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overwritten. Messages arrive in the order in which they are sent. When a new 
message reaches the destination port, it overwrites the previous message and 
remains there until it is overwritten itself. Sampling ports support variable-length 
messages.

The attributes of sampling ports are similar to those of queuing ports, but the 
behavior is different. The main difference is that a queuing port has a unique 
instance per message. As a result, there is no need to handle exclusion or 
synchronization. With sampling ports, there is only one message, and it can be 
overwritten at any time. The receiver could be reading data and get scheduled out. 
When it starts reading again at the next time window, it does not know whether a 
new message has replaced the original one. 

Using a single data buffer to control access is not sufficient, because the sender or 
receiver would need to lock access during the write or read operation. If the sender 
or receiver got scheduled out, the data would remain locked, and no other 
partition could use it. Therefore, ports use a double buffer, as shown in Figure 7-15. 
The sender uses a temporary buffer, and the receivers use a valid buffer. When the 
sender completes the write operation, it indicates changes in buffer status: valid 
becomes temporary, and temporary becomes valid. 

Figure 7-15 Design of Sampling Ports
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7.15  Setting up Communication with Other Modules

VxWorks 653 supports pseudo-ports and pseudo-partitions as defined by 
ARINC 653. As such, ports can be used to route messages to external modules or 
specialized devices, for example, to avionic busses.

In addition, partitions can communicate with other modules using partition 
direct-access ports. For details, see 4.8.2 Communicating Through Direct-Access Ports 
in a Partition, p.76.

Communication with external modules is made through pseudo-ports. A 
pseudo-port is a port attached to a pseudo-partition. It can be equated to routing 
(mapping) information required to direct messages between the source port and 
the destination port or ports over the intermodule communications channel.

When a channel’s source port is configured with the SENDER_BLOCK message 
policy, only one of the channel’s destination ports can be a pseudo-port.

Pseudo-ports are mapped to a particular supervisor-level driver, such as an AFDX 
device driver. For information on configuring pseudo-ports, see the VxWorks 653 
Configuration and Build Guide.

A pseudo-port is identified by the following:

■ a module-wide unique name

■ whether it is direct access or not

■ parameters (for example, size)

■ its pseudo-partition

■ the name of a supervisor-level driver

A direct-access pseudo-port is an APEX queuing port with no queuing. If queuing 
is needed, the driver must supply it. For information on how direct-access 
pseudo-ports might affect applications, see 4.8 Communicating with Other Modules, 
p.74.

The driver can service multiple pseudo-ports. It is identified by the following:

■ a module-wide unique name

The APEX port library in the core OS uses the name of the driver to identify 
the set of routines to use when it deals with a pseudo-port. The name of the 
driver has no relationship to the name of the port driver.

■ a set of routines
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7.15.1  Configuring a Supervisor-Level Driver

The supervisor-level driver needs to be configured and added to the module, and 
this needs to be done before the APEX port library is initialized in the core OS. This 
configuration is achieved by adding the following to the core OS makefile. (In this 
example, pseudoPortCreate( ) is user-supplied code.)

PseudoPortComponent:
prjCreate -type kernelComponent -build $(CPU)$(TOOL).debug -prjdir \

$(PORT_DRIVER) \
-srcfiles "$(SRC)/pseudoPortDrv.c"

prj compAttributeSet -p $(PORT_DRIVER) CONFIGLETTES \
"$(SRC)/pseudoPortCreate.c"

prj compAttributeSet -p $(PORT_DRIVER) PROTOTYPE \
"extern STATUS pseudoPortCreate (void);"

prj compAttributeSet -p $(PORT_DRIVER) INIT_RTN "pseudoPortCreate();"
prj compAttributeSet -p $(PORT_DRIVER) INIT_BEFORE "INCLUDE_APEX_PORT"
prj compAttributeSet -p $(PORT_DRIVER) _INIT_ORDER "usrIosCoreInit"
prj domComponentAdd -p $(BIN)/coreOS $(PORT_DRIVER) "INCLUDE_PORTDRIVER"

7.15.2  Adding a Driver

Based on the makefile in 7.15.1 Configuring a Supervisor-Level Driver, p.186, the 
configlette that initializes the driver calls the user-supplied pseudoPortCreate( ). 
This routine needs to add the driver by calling portPseudoDrvAdd( ).

The portDrvName argument is either the DriverName attribute in the XML port 
configuration or an appended value of it. For example, if the DriverName attribute 
is /myPseudoDrvPort_net, the portDrvName argument could be, for example, 
/myPseudoDrvPort_net or /myPseudoDrvPort_net/1.

If a device with the specified name already exists, the routine returns an error.

STATUS portPseudoDrvAdd 
(
PORT_DRV_FCT * pPortDrvFct, /* pointer to driver routines*/
char * portDrvName, /* name of the driver */
PORT_MODE_TYPE mode /* QUEUING or SAMPLING */
)

7.15.3  Driver Routines

The prototypes for the driver's routines are defined in:

installDir/target/h/apex/apexPortLib.h
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The routines must follow the PORT_DRV_FCT definition, also defined in 
apexPortLib.h. (See Function Pointer Structure for Drivers, p.189.)

Attaching the Name of a Driver to a Pseudo-Port ID

After the APEX port library initializes all ports and creates all channels, it calls the 
following routine to attach the name of a previously added (see 7.15.2 Adding a 
Driver, p.186) driver (name) to a pseudo-port ID (pPseudoPortId), which the routine 
creates and returns. The pseudo-port ID becomes an argument to the driver 
routines that get statuses, read, and write.

typedef STATUS (*PORT_Q_FUNCPTR_ATTACH)(
char  * name, /* name of the driver */
PORT_ID portId, /* identifier created by the core OS */
PORT_CFG_RECORD * pCfg, /* XML configuration of the port */
int * pPseudoPortId, /* pseudo-port ID */
PORT_MODE_TYPE mode /* QUEUING or SAMPLING */
);

Reading Messages from a Pseudo-Port

The APEX port library calls the following routine to read messages from a 
pseudo-port.

typedef int (*PORT_Q_FUNCPTR_READ)(
int pPseudoPortId, /* pseudo-port ID */
PORT_CFG_RECORD  * pCfg, /* XML configuration of the port */
PORT_MODE_TYPE mode, /* QUEUING or SAMPLING */
PORT_MSG * pOsMsg, /* complete message structure */
char * pUserBuffer, /* partition payload pointer */
SAP_ADDRESS_TYPE * pSrcUserHeader, /* SAP source header */
SAP_ADDRESS_TYPE * pDstUserHeader, /* SAP destination header */
UINT64 remainingTime, /* time left before switch out */
BOOL * canAcceptMore, /* another msg for next read? */
int * copyStatus /* status of the read */
BOOL * overflow /* TRUE returned if overflow occurs */
);

Service access point (SAP) ports are defined by the ARINC 664 specification, 
Part 7, which defines the Avionics Full Duplex Switched Ethernet (AFDX) 
protocol. SAP ports are used to communicate between AFDX systems and 
non-AFDX systems.
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Writing Messages to a Pseudo-Port

The APEX port library calls the following routine to send a message to a 
pseudo-port.

typedef int (*PORT_Q_FUNCPTR_WRITE)(
int pPseudoPortId, /* pseudo-port ID */
PORT_CFG_RECORD * pCfg, /* XML configuration of the port */
PORT_MODE_TYPE mode, /* QUEUING or SAMPLING */
PORT_MSG * pOsMsg, /* complete message structure */
UINT64 remainingTime, /* time left before switch out  */
BOOL * canAcceptMore, /* space available for next write? */
char * channelBuf, /* if not NULL, driver should use DMA to

copy pOsMsg->payload data to channelBuf
if possible */

int * copyStatus /* status of the write, return
PORT_S_DMA_OPTIMIZED if channelBuf copy
has happened*/

);

Determining the Availability of a Pseudo-Port

The APEX port library calls the following routine to determine whether a 
pseudo-port is available to read from or write to:

typedef BOOL (*PORT_Q_FUNCPTR_AVAILABLE)(
int pPseudoPortId, /* pseudo-port ID */
PORT_DIRECTION_TYPE direction /* SOURCE or DESTINATION */
);

For a pseudo-port to send or receive messages, the port must be available. The 
partition switch hook routine determines the availability by calling the driver's 
availability routine (PORT_Q_FUNCPTR_AVAILABLE). If the routine returns TRUE, 
the APEX port library can continue the read or write operation.

For a source pseudo-port, the APEX port library calls the driver's availability 
routine under the following conditions:

■ The source pseudo-port was previously not available.

■ The switched-in partition has a destination port connected to the same channel 
that contains this source pseudo-port.

For a destination pseudo-port, the APEX port library calls the driver's availability 
routine under the following conditions:

■ The destination pseudo-port was previously not available.

■ The switched-in partition has a source port or other destination ports 
connected to the same channel that contains this destination pseudo-port.
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Getting the Status of a Pseudo-Port

The APEX port library calls the following routine to get the status of a pseudo-port. 
Status for a queuing pseudo-port is the number of messages stored at the port and 
the number of free messages.

typedef STATUS (*PORT_Q_FUNCPTR_STATUS)(
int pPseudoPortId, /* pseudo-port ID */
PORT_INFO * pPortInfo 
);

Determining Whether a Pseudo-Port Is Direct Access

The driver can determine whether a pseudo-port is direct access or not from the 
configuration record of the pseudo-partition to which the pseudo-port is attached. 
It can also determine the queue length from this configuration record. The driver 
can use the queue-length information to do its own queuing for direct-access 
pseudo-ports. Also, if the pseudo-port is direct access, the driver’s read and write 
routines must act differently. For details, see Sending Messages, p.189 and Receiving 
Messages, p.190.

Function Pointer Structure for Drivers

typedef struct port_drv_fct /* function pointers for the driver */
{
PORT_Q_FUNCPTR_ATTACH attachRtn; /* called at port attach time */
PORT_Q_FUNCPTR_READ readRtn; /* read data from port */
PORT_Q_FUNCPTR_WRITE writeRtn; /* write data to port */
PORT_Q_FUNCPTR_AVAILABLE availableRtn; /* get port availability */
PORT_Q_FUNCPTR_STATUS statusRtn; /* get port status */
} PORT_DRV_FCT;

7.15.4  Sending and Receiving Messages

Sending Messages

The APEX port library in the core OS uses the user-supplied write routine 
(writeRtn( )) to write a message to a source queuing port. The routine has the same 
arguments as the PORT_Q_FUNCPTR_WRITE routine (see Writing Messages to a 
Pseudo-Port, p.188) and returns the number of bytes written.
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For direct-access pseudo-ports, if writeRtn( ) does not have time to write the 
message during the partition window, it must return RETRY to the kernel. The 
kernel propagates the status to vThreads, which in turn immediately retries the 
write operation.

The APEX port library creates a port-driver task and schedules it in the same 
window as the partition that owns the source port of the channel that contains the 
destination pseudo-port. The APEX port library activates the task each time a 
message cannot be distributed as a result of the APEX port library having called 
writeRtn( ). 

Receiving Messages

The APEX port library in the core OS uses the user-supplied read routine 
(readRtn( )) to read a message from a destination queuing port. The routine has the 
same arguments as the PORT_Q_FUNCPTR_READ routine (see Reading Messages 
from a Pseudo-Port, p.187) and returns the number of bytes read.

If the pseudo-port is direct access, readRtn( ) must ignore any specified timeouts 
and treat them as zero. Also, for direct-access pseudo-ports, if readRtn( ) does not 
have time to read the message during the partition window, it must return RETRY 
to the kernel. The kernel propagates the status to vThreads, which in turn 
immediately retries the read operation.

Time Partitioning

To avoid disturbing time partitioning with interrupts, the partition switch hook 
routine polls pseudo-ports to determine whether they are available to send or 
receive messages.

The writeRtn( ) and readRtn( ) routines have a remainingTime argument, which 
indicates to the driver the amount of time (in nanoseconds) until the current 
partition will be switched out. If the driver determines that it does not have enough 
time to copy the data, it should return PORT_Q_RETRY instead of OK, and the 
APEX port library retries the next time the partition is switched in.
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7.15.5  Example: Communicating between Modules

In this example, a message is sent from one module to another. The pseudo-ports 
are not direct access. Figure 7-16 shows the configuration. 

The source port on Module A (Src A_1) needs to connect with the destination port 
on Module B (Dst B_2).

The mechanism in this example allows for the one-to-many distribution of 
messages in both modules. 

Configuration of Module A

The XML configuration for each module contains the channel definition. The 
configuration of Module A is as follows:

<PseudoPartition Name="pseudoPartitionA" Id="4" Type="IO_PARTITION">
<PseudoPartitionDescription>

<Ports>
<QueuingPort

Attribute="PSEUDO_PORT"
Name="Dst A_2"
Direction="DESTINATION"
MessageSize="500"
QueueLength="100"
DriverName="pseudoQPort"
Protocol="NOT_APPLICABLE"/>

</Ports>
</PseudoPartitionDescription>

Figure 7-16 Example: Communication between Modules
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</PseudoPartition>

<Applications>
<Application Name="Partition 1">

. . .
<Ports>

<QueuingPort
MessageSize="500"
Name="Src A_1"
Direction="SOURCE"
Protocol="SENDER_BLOCK"
QueueLength="100"/>

</Ports>
</ApplicationDescription>

</Application>
</Applications>
. . .
<Connections>

<Channel Id="1">
<Source PartitionNameRef="Partition 1" 

PortNameRef="Src A_1"/>
<Destination PartitionNameRef="pseudoPartitionA"

PortNameRef="Dst A_2"/>
</Channel>

</Connections>

Configuration of Module B

The XML configuration for each module contains the channel definition. The 
configuration of Module B is as follows:

<PseudoPartition Name="pseudoPartitionB" Id="4" Type="IO_PARTITION">
<PseudoPartitionDescription>

<Ports>
<QueuingPort

Attribute="PSEUDO_PORT"
Name="Src B_1"
Direction="SOURCE"
MessageSize="500"
QueueLength="100"
DriverName="pseudoQPort"
Protocol="SENDER_BLOCK"/>

</Ports>
</PseudoPartitionDescription>

</PseudoPartition>

<Applications>
   <Application Name="Partition 2">
. . .

<Ports>
<QueuingPort

MessageSize="500"
Name="Dst B_2"
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Direction="DESTINATION"
Protocol="NOT_APPLICABLE"
QueueLength="100"/>

</Ports>
</ApplicationDescription>

</Application>
</Applications>
. . .
<Connections>

<Channel Id="1">
<Source PartitionNameRef="pseudoPartitionB" 

PortNameRef="Src B_1"/>
<Destination PartitionNameRef="Partition 2"

PortNameRef="Dst B_2"/>
</Channel>

</Connections>

User-Supplied Code for Module A's Send Operation

The user-supplied code in the core OS of Module A does the following for the send 
operation in this example:

■ The user-supplied code registers the driver pseudoQPort by calling 
portPseudoDrvAdd( ).

■ (When the core OS APEX port library is initialized, it initializes all ports and 
also calls attachRtn( ) for Dst A_2.)

■ The user-supplied code creates a port-driver task and associates it with the 
Partition 1 window. The task handles the distribution of Dst A_2 messages if 
needed.

■ When the application in Partition 1 issues the SEND_QUEUING_MESSAGE 
service, the message is sent to Src A_1, and the user-supplied code marks this 
port as available.

■ If Dst A_2 is available, the user-supplied code sends the message directly by 
calling the driver's writeRtn( ).

If Dst A_2 is not available, the user-supplied code does not send the message.

■ At each partition switch into Partition 1, the partition switch hook routine 
examines the state of Dst A_2 by calling the driver's availableRtn( ). If the 
pseudo-port becomes available, the port-driver task is awakened to 
handle the distribution.

■ After the port-driver task distributes the message, the user-supplied code 
removes the message from Src A_1 and calls the driver's writeRtn( ) to send 
the message to the external module.
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User-Supplied Code for Module B's Receive Operation

The user-supplied code in the core OS of Module B does the following for the 
receive operation in this example:

■ The user-supplied code registers the driver pseudoQPort by calling 
portPseudoDrvAdd( ).

■ (When the core OS creates the APEX port library, it initializes all ports and also 
calls attachRtn( ) for Src B_1.)

■ The user-supplied code does not create a port-driver task, because the task is 
not needed for source pseudo-ports.

■ When Partition 2 is scheduled and if Src B_1 is not available, the APEX port 
library calls the driver's availableRtn( ). If Src B_1 becomes available, the state 
of Dst B_2 becomes available too.

■ When the application in Partition 2 issues the RECEIVE_QUEUING_MESSAGE 
service, the APEX port library calls the driver's readRtn( ) for Src B_1 and 
distributes the message.



195

   8
Health Monitoring

8.1 Introduction 195

8.2 Basic Health Monitor Concepts 196

8.3 Health Monitor Actions 210

8.4 Initializing the Health Monitor 215

8.5 Getting Health Monitor Information at Run-time 215

8.6 Defining the Health Monitor Handler Table 216

8.7 Health Monitoring for COIL Partitions 217

8.8 Other Facilities That Inject Alarms 218

8.9 Public Information 218

8.1  Introduction 

Health monitoring provides a framework to raise and handle events, which can be 
alarms or messages, in a system. Alarms are injected to represent faults in the 
system, and handlers perform health recovery actions. 

The bulk of this chapter describes health monitoring for vThreads partitions, and 
most of it also applies to partitions based on COIL. Differences are described in 
8.7 Health Monitoring for COIL Partitions, p.217.
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8.2  Basic Health Monitor Concepts

This section describes the following basic health monitor concepts:

■ events (alarms and messages)

■ health monitor hierarchy

■ alarm injection

■ thresholds

8.2.1  Health Monitor Events

An event is the base unit of injection within the health monitor. An event can be an 
alarm or a message.

Health Monitor Alarms

An alarm is an event that is the software representation of a fault that needs 
attention. It could have a positive or negative effect. Examples include 
hardware-generated exceptions, error paths in the code, and crossed thresholds. 

Alarms have information associated with them. For details, see Table 8-1.

Health Monitor Messages

A message is an event that has a code of HM_MSG. If the message is sent from 
within a partition, the partition health monitor handles it. If it is sent from outside 
the partition, the module health monitor handles it. A default handler is provided 
that logs the message. However, a system integrator can replace the handler with 
another by means of the XML configuration file. For more information, see the 
VxWorks 653 Configuration and Build Reference. 

Messages, like alarms, have information associated with them. For details, see 
Table 8-1.
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8.2.2  Health Monitor Hierarchy

There are three levels of health monitoring:

■ module health monitor

■ partition health monitor

■ process health monitor

The partition health monitor and the module health monitor are driven by static 
tables that relate event codes to their appropriate handlers. There is one module 
health monitor table for the VxWorks 653 module. There is a partition health 
monitor table for each partition. The tables are loaded as part of the configuration 
loading for the VxWorks 653 module and partitions. 

Messages have a hard-coded dispatch level. That is, the system health monitor 
table cannot be used to configure their dispatch level. At initialization, the 
hard-coded dispatch rules override anything in the XML configuration file that 
pertains to health monitor messages.

There is the potential for a process health monitor (also called the error handler 
process) for each partition. The application must create the process health monitor 
by calling hmErrorHandlerCreate( ) or, for ARINC 653 applications, by issuing 
CREATE_ERROR_HANDLER. The routines create a highest-priority task in the 
partition OS with which to run the process health monitor handler. 

The relationship among the process health monitor, partition health monitor, and 
module health monitor, plus the general architecture of the health monitor from a 
scheduling perspective (not a memory containment perspective) is shown in 
Figure 8-1. 
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After an event is injected, the system health monitor table determines how to 
dispatch the event. Because dispatching is hard-coded, events are automatically 
dispatched to the process, partition, or module level, depending on where they 
were injected. 

The system health monitor table relates the event code and system status at 
injection time to a dispatch level, which can be one of the following:

■ no level

■ process level

■ partition level

■ module level

Figure 8-1 Health Monitor Architecture (Showing vThreads Partitions)
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The system integrator creates the system health monitor table in the XML 
configuration file for the VxWorks 653 module. For information on specifying the 
table, see the VxWorks 653 Configuration and Build Guide. The table is read as part of 
the configuration tables of the core OS. 

In terms of memory, the process health monitor (error handler process) is within 
the partition OS.

The partition health monitor runs as a core OS task (its stack is in the core OS kernel 
domain) with a higher priority than the core OS task that is running the associated 
partition OS (also higher than any worker tasks). But, it is scheduled during its 
associated partition’s window.

The module health monitor runs as a highest-priority task in the core OS and is the 
only task at this priority. Its priority is higher than the partition health monitor 
tasks. 

8.2.3  Event Structure (HM_EVENT)

Table 8-1 describes the fields of the structure (HM_EVENT) that defines a health 
monitor event.

Table 8-1 HM_EVENT Structure

Field Description

code The code associated with the event. If the code is HM_MSG, the 
event is a message.

subCode The subcode associated with the event. If a subcode is not 
needed, the field is 0. For injecting events, applications must 
use HM_SUB_CODE_USER (defined in hmTypes.h) + offset.

If the event has been reformatted, the field has the previous 
value of code. See Reformatting Events, p.208.

historicalCode If the event has not been reformatted, the field is 0. If the event 
has been reformatted, the field has the previous value of 
subCode. See Reformatting Events, p.208.

level The level at which the event was initially dispatched. 

timeStamp The time when the event was injected.
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System Status and Modes

When an event is injected, the health monitor facility determines and sets the value 
of the systemStatus field in the HM_EVENT structure and passes it to the system 
health monitor, which uses it to determine the level to which to dispatch the event.

The systemStatus is a bitmap that can have one of the following values:

■ HM_MODULE_MODE

■ HM_PARTITION_MODE

sysStatus The status of the system when the event was injected. For 
details, see System Status and Modes, p.200.

addInfo Additional information specified by the injector. 

addr The address where the injection was made. 

partNumber The partition number, indicating from which partition the 
event was injected. If the event was not injected from a 
partition, the field is 0.

taskName A NULL-terminated string representing the name of the task 
that injected the event. If the event was injected from an 
interrupt context, the string is INTERRUPT. 

taskId The task ID of the task that injected the event. If the event was 
injected from an interrupt context, the field is 0.

msgLen The length (in bytes) of the message body (msg). In the case of 
an exception, this is the sum of the sizes of “EXC_INFO\0” and 
the EXC_INFO structure.

msg The message body, also known as the event payload and 
message payload. If the event is the result of an exception, msg 
contains text and data: the string “EXC_INFO\0” followed by 
the EXC_INFO data structure. 

If the event is the result of a second reformatting, see 
Reformatting Events, p.208. 

Table 8-1 HM_EVENT Structure (cont’d)

Field Description
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■ HM_PROCESS_MODE

Each injection of a health monitor event results in partitions or processes being 
preempted. The mechanism is not explicit. It results from the fact that the event is 
dispatched to a higher-priority task for handling, so that the partition OS scheduler 
preempts the current injecting task.

System Status for Core OS Context

For code running in the core OS context, system status can be the logical OR of the 
following:

■ HM_MODULE_HM_STATUS

■ HM_MODULE_INIT_STATUS

■ HM_PARTITION_HM_STATUS

■ HM_PARTITION_SWITCH_STATUS

■ HM_SYS_FUNC_STATUS

■ HM_SYSCALL_STATUS

System Status for Partition OS Context

For code running in the partition OS context, system status can be the logical OR 
of the following:

■ HM_PARTITION_INIT_STATUS
(Even though this status corresponds to code running in the partition OS, the 
mode of the system is still partition mode, because the partition OS is not yet 
prepared to handle events.)

■ HM_PROCESS_EXEC_STATUS 

■ HM_PROCESS_MGMT_STATUS

Module Mode (HM_MODULE_MODE)

Injections made from HM_MODULE_MODE are dispatched to the module level 
only. All partitions are preempted until the module-level handler handles the 
alarm. The handler can control the duration of preemption. But, since the situation 
that caused the alarm probably needs to be corrected before it is safe for partitions 
to continue running, the duration would not be an issue. If this is not the case, the 
alarm probably could and should have been handled by the partition health 
monitor.
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HM_MODULE_MODE is equal to the logical OR of the following status values:

■ HM_MODULE_HM_STATUS—module health monitor task

■ HM_MODULE_INIT_STATUS—module initialization

■ HM_PARTITION_SWITCH_STATUS—rescheduling as a result of a partition 
switch

■ HM_SYS_FUNC_STATUS—not a health monitor task or a partition-related task; 
that is, an ISR

■ HM_UNKNOWN_STATUS—unable to determine the system status.

Partition Mode (HM_PARTITION_MODE)

Injections made from HM_PARTITION_MODE are dispatched to the partition or 
module levels. The current partition is preempted, and the handler runs.

HM_PARTITION_MODE is equal to the logical OR of the following status values:

■ HM_PARTITION_HM_STATUS—partition health monitor task

■ HM_PARTITION_INIT_STATUS—partition OS initialization

■ HM_SYSCALL_STATUS—in a core OS task that is related to a partition, but not 
the partition health monitor task

Process Mode (HM_PROCESS_MODE)

Injections made from HM_PROCESS_MODE are dispatched to the process, 
partition, or module levels. The current task in the partition is preempted until the 
alarm is handled.

HM_PROCESS_MODE is equal to the logical OR of the following status values:

■ HM_PROCESS_EXEC_STATUS—running a partition OS task

■ HM_PROCESS_MGMT_STATUS—in the partition OS kernel or partition OS 
interrupt state

8.2.4  Injecting Alarms

The core OS or an application injects an alarm by calling hmEventInject( ) or 
HM_EVENT_INJECT( ) with a code other than HM_MSG. ARINC 653 applications 
must issue the RAISE_APPLICATION_ERROR service with the 
APPLICATION_ERROR code.
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Information about the alarm injection is collected from the viewpoint of where the 
injecting routine is called, which is not necessarily where the fault occurred. For 
instance, when HM_EVENT_INJECT( ) is called, the address is that of the program 
counter when HM_EVENT_INJECT( ) was called.

HM_EVENT_INJECT( ) is a macro to hmEventInject( ) that fills in the addr and 
taskId parameters to the program counter and the current task ID at the time that 
HM_EVENT_INJECT( ) is called.

The following routines can be used when calling hmEventInject( ):

■ taskPcGet( )—Specifies the program counter of a non-running task.

■ vxCurrentPcGet( )—Specifies the current program counter.

The alarm goes first to the system health monitor table, which decides at what level 
to dispatch. Figure 8-2 shows the logic of the alarm injection. Figure 8-3 shows the 
subsequent dispatching to the appropriate level for handling. 
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Figure 8-2 Alarm Injection (vThreads)
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Dispatching Rules

This section outline the rules for dispatching events. In the descriptions, interrupt 
context includes ISRs, watchdog routines, and kernel hooks (for example, partition 
switch hooks).

No Process Health Monitor Installed

Events dispatched to the process health monitor when the process health monitor 
is not installed are dispatched unchanged to the partition health monitor.

Alarms Injected in Exception or Interrupt Context

Alarms injected from exception or interrupt context are treated like alarms injected 
from task level. This means that the handling of events when injected from an ISR 
is deferred to task context. Except in the case of an exception panic, events injected 
due to an unhandled exception have their information (such as task information 
and system status) set according to what was happening at injection time.

Figure 8-3 Alarm Dispatch (vThreads)
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In the case of an exception panic, the module-level handler is called directly. An 
exception panic can be any of the following:

■ an exception in kernel state

■ an exception from interrupt level

■ a nested exception

■ an exception in the root task

Events Injected from Tasks in the Partition OS

Events injected from a task in the partition OS that has a priority equal to the 
process health monitor (error handler) task, which ordinarily are dispatched to the 
process level, are dispatched unchanged to the partition level. This includes 
injection from the process health monitor task. The exception is for the 
APPLICATION_ERROR event code, which can be injected from the error handler 
process and handled by it.

Events Injected from Tasks outside the Partition OS

■ Priority Greater than or Equal to the Partition Health Monitor Task

Events injected from a task outside the partition OS that has a priority equal to 
or greater than the partition health monitor task, which ordinarily are 
dispatched to the partition level, are dispatched unchanged to the module 
level. This includes injection from the partition health monitor task.

■ Priority Equal to the Module Health Monitor Task

Events injected from a task outside the partition OS that has a priority equal to 
the module health monitor task, have their handlers called directly and 
synchronously. This applies to injection from within a module health monitor 
handler only. 

Full Health Monitor Queues

If dispatch is not possible because the partition health monitor queue is full, the 
event is reformatted with the HME_HM_ERROR code and dispatched to the 
partition according to the rules for injecting from the partition health monitor task.

If dispatch is not possible because the process health monitor queue is full, the 
event is reformatted with the HME_HM_ERROR code and dispatched to the 
partition according to the rules for injecting from the process health monitor task.
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If dispatch is not possible because the module health monitor queue is full, the 
module-level HME_HM_ERROR handler is called directly and synchronously 
according to the rules for injecting from the module health monitor task.

Task-Lock Condition Exists

If an event is injected while a task-lock condition exists, the following rules are 
followed:

■ Injected from the Task Context

If an event is injected from the task context while a task-lock condition exists, 
the lock is broken and the error handler process runs. However, before 
breaking the lock, the partition OS raises the task’s priority to one less than the 
error handler’s priority. This strategy is an attempt to have the task regain its 
task lock. The preempted task then runs immediately after the error handler, 
at which point the partition OS restores the task-lock count and original 
priority. However, if an application uses task priorities 0 or 1 (contrary to the 
ARINC 653 specification), there is no guarantee that the preempted task is the 
first to run after the error handler. 

■ Injected from the Interrupt Context

If an event is injected from the interrupt context while a task-lock condition 
exists and watchDogDuration (as specified in the partition XML 
configuration file) is 0, locks (preemption and task locks) are broken 
immediately and the error handler process runs. The error handler process 
restores the locks and instructs the partition OS to run the preempted task first 
(unless the task has stopped).

If watchDogDuration is INFINITE_TIME, the error handler process runs when 
the task unlocks itself.

If watchDogDuration is between 0 and INFINITE_TIME, any APEX locks (the 
result of the application issuing the LOCK_PREEMPTION service) are broken 
immediately. If there are any other task locks remaining (the result of the 
kernel calling taskLock( )), the watchdog is started. When the watchdog 
expires, task locks are broken, and the error handler process runs. The error 
handler process restores the locks and instructs the partition OS to run the 
preempted task first (unless the task has stopped).

Handlers Cannot Handle the Alarm

Handlers that cannot handle an alarm must inject an alarm of their own or return 
ERROR so that the health monitor can reformat the event with the 
HME_HM_ERROR code.
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However, returning ERROR does not apply at the process health monitor level. At 
this level, the application must inject another event from the process health 
monitor, which the health monitor reformats with the HME_HM_ERROR code. For 
rules pertaining to injecting from the process health monitor task, see Events 
Injected from Tasks outside the Partition OS, p.206.

All system health monitor tables should include a handler for HME_HM_ERROR.

The return code from calling an HM_DIRECT-level handler is not checked, because 
no further escalation is possible. If an HME_HM_ERROR module-level handler is 
not declared (or any handler for that matter), the HME_DEFAULT handler is called.

Reformatting Events

When the health monitor facility reformats an event, the event gets a new code. 
The old code moves to the subCode, and the old subCode moves to the 
historicalCode. If this is a second reformatting, historicalCode information would 
be lost. In this case, an event is injected with the following information:

■ code of HME_DATA_LOSS (subCode of 0, historicalCode of 0) 

■ msg containing the old code, subCode, and historicalCode (retrievable by 
casting msg as an HM_DATA_LOSS data structure) 

Dismissing Alarms

An alarm is dismissed under any of the following circumstances:

■ In the partition health monitor table or module health monitor table, for a 
given code, a NULL handler (CFG_NO_HANDLER) is set.

■ In the system health monitor table, for a given code and systemStatus 
combination, the dispatch level is set to HM_NO_LVL.

Dispatching and Logging Messages

A message event differs from an alarm event as follows:

■ Alarms are dispatched according to the system health monitor table. Messages 
are not dispatched by this mechanism. If a message is injected within the 
partition, it is dispatched to the partition health monitor. If it is injected outside 
the partition, it is dispatched to the module health monitor. Each level has a 
default handler that logs the message to the partition or module log. The 
system integrator can replace the default handler through the XML 
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configuration file. For more information, see the VxWorks 653 Configuration and 
Build Reference.

■ Alarms are logged only if automatic logging is enabled or if a handler 
explicitly logs the alarm by calling hmEventLog( ). The system integrator must 
specify the handler in the XML configuration file. For information, see the 
VxWorks 653 Configuration and Build Guide.

8.2.5  Health Monitor Thresholds

Thresholds apply to the following:

■ notification queues

■ logs

■ event queues

Notification Queue Threshold

The notification queue threshold equals the depth of the notification queue. An 
event is injected when the notification queue overflows. For information on 
enabling and disabling overflow notification, see the VxWorks 653 Configuration 
and Build Reference. If overflow notification is disabled and if an event is injected 
because of overflow, the event is dispatched to the partition health monitor or 
module health monitor with which the notification queue is associated. 

Log Threshold

The log threshold defines if and when an event should be injected when the log has 
a certain number of entries. For information on specifying, enabling, and disabling 
the log threshold, see the VxWorks 653 Configuration and Build Reference. 

Event Queue Threshold

The event queue threshold defines if and when an event should be injected when 
the event queue has a certain number of entries. For information on specifying, 
enabling, and disabling the event queue threshold, see the VxWorks 653 
Configuration and Build Reference.
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Error Handler Queue Threshold

The error handler queue threshold defines the event threshold of the error handler. 
It is analogous to the event queue threshold that applies to the partition health 
monitor or module health monitor.

8.3  Health Monitor Actions

The health monitor facility does the following when an application runs: 

■ escalates alarms 

■ logs events 

■ notifies other partitions 

■ issues a callback 

In addition to detecting and reporting its own faults, an application needs to 
respond to the above actions.

8.3.1  Escalating Alarms

Alarms are not automatically escalated, because it is the system integrator who 
knows the level and handler that best services each alarm. The system integrator 
configures the system health monitor table in the XML configuration file. For 
details, see the VxWorks 653 Configuration and Build Guide.

If the specified handler from the partition health monitor table or module health 
monitor table cannot handle the alarm, it should return ERROR or inject an alarm 
of its own.

If a handler returns ERROR, this indicates that the alarm was not handled correctly. 
In this situation, the health monitor facility reformats the alarm, using the first 
alarm information, but with code equal to HME_HM_ERROR (see Reformatting 
Events, p.208). 

As a result of the above, the system integrator can choose whether to handle alarms 
that result from alarms not being handled and, if so, which ones.
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8.3.2  Logging Events

For information on configuring, enabling, and disabling the logging of alarms and 
messages, see the VxWorks 653 Configuration and Build Reference.

When logging is enabled, if an event is injected from within a partition (sysStatus 
is HM_PROCESS_MODE or HM_PARTITION_MODE), the event is logged to the 
partition health monitor log.

When logging is enabled, if an event is injected from outside the partition 
(sysStatus is HM_MODULE_MODE), the event is logged to the module health 
monitor log.

When logging is not enabled, a handler must call hmEventLog( ), which might 
generate an additional system call to log the alarm, depending on where the 
current event processing is occurring.

Application code can log messages to the health monitor log by calling 
hmEventInject( ) with the HM_MSG code (assuming the default handler 
behavior).

There is one log for each partition and one log for the VxWorks 653 module. By 
default, the logs are stored in volatile memory. If logs need to survive module or 
system restart, handlers need to be provided that write the logs to non-volatile 
memory.

Each log is a circular buffer of configurable size. As a result, for log sizes greater 
than zero, the request to log an event is never denied. For a log size of n, only the 
n most-recent entries are in the log. Old information could be overwritten.

Logs can be accessed by calling hmLogEntriesGet( ) with the partition ID and the 
number of entries to retrieve. Partition ID 0 accesses the module log. The log can 
be read in FIFO or LIFO order. Entries that have been read can be preserved in the 
log or purged. An offset can be specified to retrieve the log in segments. 
Read-purge with LIFO-order reading is not permitted, because it would result in a 
discontinuous log. Table 8-1 lists the information in each entry of each log.

NOTE:  Only the health monitor facility can inject alarms with the 
HME_HM_ERROR code. This is enforced so that a rogue task cannot directly inject 
these types of alarms, possibly forcing escalation and affecting the protection 
guarantees between partitions.
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8.3.3  Notifying Other Partitions

When an alarm is injected and fault-recovery action is taken, other partitions might 
want to be notified. For example, partitions might want to know when another 
partition shuts down. All calls to notify and to notification handlers reside in the 
core OS. As such, notification does not apply to the error handler process. 

A partition must register in order to be notified of events. The system integrator 
defines this in the XML configuration file by specifying, for the VxWorks 653 
module and each partition, to which event code it wants to be notified and from 
which partitions it will accept notification (known as trusted partitions). This 
combination of event codes and trusted partitions is called an allowable 
notification. For configuration details, see the VxWorks 653 Configuration and Build 
Reference.

The notification facility creates a queue for each partition that wants notification. 
The health monitor task (either the partition health monitor task or module health 
monitor task) services its notification queue and services it after servicing its event 
queue.

A module or partition health monitor handler notifies partitions of an event by 
calling hmNotificationSend( ). The partition sending the notification is 
determined by where the call to hmNotificationSend( ) is made and not by where 
the event was injected. If the call to hmNotificationSend( ) is made from outside 
the context of a partition health monitor, the notification is considered to be from 
the VxWorks 653 module and, hence, trusted by all.

Each partition has a registered notification handler that is called in response to an 
allowable notification. The associated queue holds messages of HM_EVENT type. 
If the queue fills, the notification agent does not block. Instead, it injects an event 
to the associated partition health monitor or module health monitor and flags the 
queue as invalid. This action excludes that partition from future notifications. The 
code of this event is HME_HMQ_OVERFLOW and the subCode is 
HME_HMQ_OVERFLOW_NOTIF. The event handler must fix the problem and then 
re-register the partition with the notification agent by calling 
hmNotificationReReg( ). The queue is not flushed until the partition re-registers 
for notification. This gives the handler for HME_HMQ_OVERFLOW a chance to 
flush the queue and preserve data before the queue is forcefully flushed.

8.3.4  Issuing Callbacks

The health monitor callback facility can be used for such things as error reporting 
to an external entity or NVM file system. It is enabled by specifying a non-NULL 
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name for the health monitor callback routine in the XML configuration file. This 
routine can be mapped in the handler table in usrHm.c to a function pointer. There 
can be one callback routine per partition and one for the VxWorks 653 module. For 
details, see the VxWorks 653 Configuration and Build Reference.

If the function pointer is available, the callback routine is called whenever a 
partition event (or module event) arrives for the partition health monitor task (or 
module health monitor task). The callback routine is called before the handler.

8.3.5  Detecting and Reporting Application Errors

Applications are responsible for detecting their own errors and reporting 
(injecting) associated alarms.

An application can fail in such a way that it cannot correctly report the failure or 
cannot report a failure at all. System integrators may need to account for this 
possibility when they design the overall system.

Reporting for ARINC 653 Applications

For an application to conform to the ARINC 653 specification, it must use the 
APEX API. That is, to inject an alarm, it must issue the 
RAISE_APPLICATION_ERROR service and must report only the 
APPLICATION_ERROR ARINC 653-defined error. Other errors must be identified 
by potentially non-portable use of the service’s message parameter.

The message that the RAISE_APPLICATION_ERROR service passes is read with the 
GET_ERROR_STATUS service. If the partition’s error handler is created, it is then 
started to take the recovery action for the process that raises the error code. If the 
error handler is not created, the error is considered a partition-level error.

Table 8-2 shows all the ARINC 653-defined errors, their numeric values, and 
equivalent health monitor alarm codes. If the application uses this service to inject 
any of the health monitor alarm codes or health monitor extended codes, the 
events are lost. The system integrator is responsible for preventing this.

ARINC 653 applications that want to handle a health monitor event code can first 
determine its equivalent ARINC 653 error by issuing the GET_ERROR_STATUS 
service. 

If an ARINC 653 application wants to inject and handle health monitor alarm 
codes within the partition OS context, it would need to call HM_EVENT_INJECT( ), 
hmEventInject( ), or hmErrorHandlerEventGet( ). Since this does not comply 
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with the ARINC 653 specification, the partition or module health monitor must 
handle them.

ARINC 653 Errors and Health Monitor Equivalents

Table 8-2 ARINC 653 Errors and Their Health Monitor Alarm Code Equivalents

ARINC 653 Error Value
Health Monitor Alarm 
Code

Examples

APPLICATION_ERROR 1 HME_APPLICATION_
ERROR

Errors raised by 
application processes.

DEADLINE_MISSED 0 HME_DEADLINE_
MISSED

Process deadline 
violations.

HARDWARE_FAULT 6 HME_HARDWARE_
FAULT

Memory-parity errors, 
I/O-access errors.

ILLEGAL_REQUEST 3 HME_ILLEGAL_
REQUEST

Illegal OS request by a 
process.

MEMORY_VIOLATION 5 HME_MEMORY_
VIOLATION

Memory-protection 
errors, supervisor 
privilege violations.

NUMERIC_ERROR 2 HME_NUMERIC_
ERROR

Overflow errors, divide 
by zero, floating-point 
errors.

POWER_FAIL 7 HME_POWER_
FAIL

Notification of power 
interruption so that, for 
example, 
application-specific state 
data can be saved.

STACK_OVERFLOW 4 HME_STACK_
OVERFLOW

Process stack overflow.
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Reporting for Non-ARINC 653 Applications

Applications that do not need to conform to the ARINC 653 specification can inject 
alarms by calling HM_EVENT_INJECT( ) or hmEventInject( ). For more 
information about these routines, see 8.2.4 Injecting Alarms, p.202.

A partition that uses the APEX layer and wants to inject alarms within the partition 
OS context can inject an alarm by issuing RAISE_APPLICATION_ERROR with 
APPLICATION_ERROR or any of the other ARINC 653-defined codes in Table 8-2. 

8.4  Initializing the Health Monitor

The health monitor facility is initialized in the following stages:

1. The core OS initializes the module health monitor after it enables support for 
protection domains and before it initializes the ARINC 653 schedule.

2. As the core OS creates each partition, it initializes the associated partition 
health monitor after it assigns the partition to the proper window, but before 
it activates the partition.

3. If the application requested it, the core OS creates the error handler for the 
application.

8.5  Getting Health Monitor Information at Run-time

Configuration information is specified for the partition and module health 
monitors in the XML configuration file. For details, see the VxWorks 653 
Configuration and Build Guide. User-supplied code in the core OS can get this 
information by calling configRecordFieldGet( ) with the appropriate 
HM_TABLE_CFG_RECORD configuration record (partition or module) and the 
appropriate field selector (defined in configRecordLib.h). The selectors are as 
follows:

■ HM_ATTRIBUTE_MASK

■ HM_CALLBACK
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■ HM_ENTRY_COUNT

■ HM_ERROR_HANDLER_QUEUE_THRESHOLD

■ HM_EVENT_CODE

■ HM_EVENT_FILTER_MASK

■ HM_HANDLER

■ HM_LOG_ENTRIES_THRESHOLD

■ HM_MAX_ERROR_HANDLER_QUEUE_DEPTH

■ HM_MAX_LOG_ENTRIES

■ HM_MAX_QUEUE_DEPTH

■ HM_NOTIF_MAX_QUEUE_DEPTH

■ HM_NOTIFICATION_HANDLER

■ HM_QUEUE_THRESHOLD

■ HM_STACK_SIZE

■ HM_TRUSTED_PARTITION_MASK

8.6  Defining the Health Monitor Handler Table

The health monitor handler table, which is defined in the usrHm.c configlette, 
must define all handlers that are specified in the health monitor configuration. At 
initialization time, handler names in the table are resolved to function pointers.

8.6.1  Guidelines for Writing Handlers

Handlers should not make blocking calls without first making sure the alarm’s 
injector cannot run until the health concern is fully handled. The health monitor 
facility assumes the handler is called synchronously within the context of the task 
or interrupt that injects the alarm. The facility dispatches the alarm to the 
appropriate level. In addition, it assumes the health monitor task at that level 
preempts the current context (the one that injected the alarm) or, if the alarm is 
injected from interrupt context, the handler is intentionally deferred. Thus, if the 
handler is pended due to a blocking call, the injecting context (if the injector is a 
task and not an interrupt handler) might be scheduled to run without having fully 
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handled the health concern that occurred in that task. In such a situation, it might 
be desirable to suspend the offending task before issuing a blocking call in the 
context of the handler.

Handlers must be located in the proper location for their level, as follows:

8.7  Health Monitoring for COIL Partitions

(For information about COIL partitions, see 3. Developing COIL Applications.)

COIL provides an event API similar to what vThreads provides. Events injected by 
COIL-based applications are dispatched at the module level, partition level, or 
process level, in the same manner as for vThreads.

However, COIL-based applications get the configured dispatch level for an event 
by calling coilHmEventInject( ). If the level is partition level 
(HM_PARTITION_LVL) or module level (HM_MODULE_LVL), the application need 
do nothing further. If the level is HM_PROCESS_LVL, the application must handle 
the event.

Example 8-1 Injecting a Health Monitor Event from a COIL-based Application

The following code fragment shows how to inject a health monitor event from a 
COIL-based application and detect its level. Constants are defined in the following 
file:

installDir/target/vThreads/h/hmTypes.h

int i;
int level = 0;
COIL_HM_EVENT event;
event.level = -1;
event.sysStatus = HM_PROCESS_EXEC_STATUS;
event.historicalCode = 0;

Type of Health Monitor 
Handler

Required Location

Process Same partition OS that created the handler’s context to 
run.

Partition Kernel domain

Module Kernel domain



VxWorks 653
Programmer's Guide, 2.2 

218

event.code = HM_MSG;
event.subCode = HM_SUB_CODE_STRING;
event.addInfo = 0;
event.addr = 0;
event.taskId = 1;
strcpy (event.taskName, "taskA");
strcpy (event.msg, "Message");
event.msgLen = strlen (event.msg);

coilHmEventInject(&event, 1, 1, &level);
if (level == HM_PROCESS_LVL )

{
/* Handle event locally */
}

8.8  Other Facilities That Inject Alarms

The core OS injects alarms when conditions cause the system to restart.

The partition OS injects alarms under various conditions, such as when conditions 
cause the partition to restart.

The APEX layer injects alarms according to the ARINC 653 specification; for 
example, when a process misses its deadline.

Where possible and where appropriate, faults are mapped to a health monitor 
equivalent of an ARINC 653-defined code. This is especially true when handling 
the fault is possible or appropriate at the process level, such as in the case when 
applications generate exceptions.

8.9  Public Information

Table 8-3 shows public health monitor information and where it is located. For 
information about a library and its routines, see their reference entries.
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Table 8-3 Health Monitor Public Information

Type of Information Location Details

Header files
(bring in the shared 
public header file 
installDir/target/share/
h/hmTypes.h

installDir/target/h/hmLib.h Header file for the core 
OS.

installDir/target/vThreads/
h/hmLib.h

Header file for vThreads 
applications.

installDir/target/val/h/
coilLib.h

Header file for 
COIL-based applications.

Constants and data 
structures

hmTypes.h ■ System status fields 
and modes

■ Dispatch levels

■ ARINC 653-defined 
event codes

■ Wind River-defined 
event codes

■ Dispatch levels

■ Event subcodes

Core OS API hmLib
hmNotificationLib
hmShow

vThreads API hmErrorHandlerLib
hmLib
hmShow

COIL API coilLib

Default handlers hmDefaultHandlers Example health monitor 
handlers, available to 
module and partition 
health monitors.
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hmDbgDefaultHandlers Example debug health 
monitor handlers, 
available to module and 
partition health monitors. 
Handlers try to suspend a 
task to allow debugging. 
When the task cannot be 
identified, the handlers 
suspend all tasks except 
the shell task, effectively 
shutting down the system 
to allow debugging.

Table 8-3 Health Monitor Public Information (cont’d)

Type of Information Location Details
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9.1  Introduction

This chapter describes I/O support for vThreads partition OSs and a partition OSs 
based on COIL.

9.2  I/O and vThreads

An application performs synchronous I/O operations in a vThreads partition 
using the standard interface of open( ), close( ), read( ), write( ), and ioctl( ). The 
POSIX AIO interface is available for asynchronous I/O operations. The POSIX AIO 
driver (aioSysDrv) issues read and write operations in the context of vThreads 
high-priority threads. 
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Applications can access devices created and managed by the core OS and devices 
created and managed within the vThreads partition (intrapartition devices).

A pipe device created by a thread in a partition is an example of an intrapartition 
device. Other threads in the partition can access the pipe device also. Intrapartition 
devices use the standard driver in the vThreads I/O system. In addition, a 
vThreads-based device driver manages a device namespace inherited from the 
core OS device namespace. The device driver handles all I/O requests from 
application threads to devices outside the partition.

The device driver uses the system-call mechanism (see 2.9 vThreads System Calls, 
p.34) to call core OS services to perform the I/O request. The mechanism allocates 
to the thread one of the core OS tasks (vThreads worker tasks, see 9.2.1 vThreads I/O 
and Worker Tasks, p.222) that is assigned to the partition. The thread (and only the 
thread) pends until the worker task completes the system call. Other threads in the 
partition continue to run. They can also perform I/O operations on an 
interpartition device. If that occurs, each thread is allocated a worker task to 
perform the I/O request when the interpartition device driver performs a system 
call.

The ANSI stdio facility (fopen( ), fclose( ), fread( ), and fwrite( )) uses the 
standard read and write routines to perform I/O. Therefore, no additional 
considerations are required to ensure that a blocking I/O operation does not stall 
the entire partition. 

9.2.1  vThreads I/O and Worker Tasks

Each vThreads partition has a configurable number of worker tasks that are used 
to perform blocking operations. Worker tasks are core OS task that are associated 
with a given partition. They perform work on behalf of only their partition, in the 
time slot assigned to their partition. If worker tasks are not configured for a 
partition, all system calls run in the context of the partition, causing the partition 
to block until the call completes. Worker tasks are configurable when the 
INCLUDE_DEBUG_UTIL component is added to the core OS.

I/O operations might block even when all of the following are true:

NOTE:  Although other threads in the partition do not block, the worker task 
performing the I/O call usually takes a global mutex. If the partition time slice 
completes before the I/O operation does, other partitions attempting to take the 
same mutex block until the first task completes, which will not be until the next 
partition time slice. An example of an I/O operation that may block is printf( ).
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■ The INCLUDE_DEBUG_UTIL component is added to the core OS.

■ The number of worker tasks is configured to non-zero.

■ The O_NONBLOCK I/O flag is set when core OS-managed devices are opened. 
(For information on O_NONBLOCK, see 5.8.2 POSIX Message Queue Attributes, 
p.110.)

If the number of worker tasks in the partition is not enough to allocate a worker 
task to the I/O operation in every case, blocking might occur.

When the last worker task is used, a health monitor alarm is injected. When a 
system call cannot be dispatched because no worker tasks are available, a second 
alarm is injected.

Where I/O operations might block (as described above), do the following to ensure 
no I/O operations block:

■ Add INCLUDE_DEBUG_UTIL to the core OS and configure a large enough 
number of worker tasks so that blocking of the I/O operation by a shortage of 
worker tasks does not occur.

Where I/O operations might block (as described above), do either of the following 
to ensure all I/O operations block:

■ Exclude the INCLUDE_DEBUG_UTIL component from the core OS and do not 
create worker tasks for blocking system services. 

or

■ Configure the number of worker tasks to zero and do not create worker tasks 
for blocking system services. 

9.2.2  Device Driver Models

Device drivers for vThreads partitions can follow one of the following models:

■ located entirely in a vThreads partition (user mode)

■ located entirely in the core OS (supervisor mode)

■ split between the core OS and a vThreads partition (user mode and supervisor 
mode)
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vThreads Model of Device Drivers

The vThreads model of device driver accesses the memory-mapped I/O registers 
directly from the I/O partition. The driver does not generate system calls to the 
core OS. In order for the I/O partition to read from and write to the 
memory-mapped I/O device, the I/O pool region must allow user-level access. 
This is best done by specifying the I/O space in a shared region that is accessible 
from the I/O partition only. The region map is specified at configuration and build 
time. For details, see the VxWorks 653 Configuration and Build Guide. Only the I/O 
partition can access the device directly. Other partitions communicate with the 
device through the I/O partition using an interpartition communication method. 

Usually, non-I/O partitions rely on a local I/O device driver that uses ARINC 653 
ports to communicate with the I/O partition. When the I/O partition is restarted, 
this device and its I/O layers are automatically reinitialized. For more information, 
see 7.9 Restart Functionality, p.156.

Because the vThreads model allows reading and writing of the I/O pool region 
from a partition, it is important that the region not cause bus errors or other critical 
errors that generate exceptions, which the core OS must handle.

In the vThreads model, the device is controlled entirely by the partition, right 
down to accessing the physical hardware. As a result, the device driver, its data 

Figure 9-1 vThreads Model of Device Driver
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structures, and the I/O system reside in the partition. The device hardware must 
be mapped and accessible from user mode for the model to work. No system calls 
are used to access the device. 

Because partitions do not receive hardware interrupts, vThreads-based device 
drivers operate in polled mode only. They operate only during the partition 
schedule window.

Due to the intrinsic limitations of polling, it is possible to lose data input to the 
device. This is an issue only when data is received. Whether data is lost depends 
on the following:

■ size of the read buffer of the device’s FIFO buffer

■ frequency of the I/O partition window

■ configuration in the I/O partition

■ speed of the device connection

While either the I/O partition or the task that is waiting for the data-receive in the 
I/O partition is blocked, device access is pended. During this time, the data might 
be over-written when the device’s FIFO buffer becomes full. To improve the 
stability of polling drivers, do any of the following:

■ Use a larger FIFO buffer.

■ Schedule the partition to run more often.

■ Use a slower connection.

The platform provider must configure the VxWorks 653 module and schedule the 
I/O partition properly to reduce the risk of data loss.

Communication between the device-owning partition and other partitions is done 
through ARINC 653 ports. For information on ports, see 4.7.4 Ports, p.70. 

Core OS Model of Device Drivers

For the core OS model of device driver, the device driver is entirely in the core OS. 
The I/O pool region attribute must be set to allow supervisor-level access only. All 
partitions can access the device using the global open( ), close( ), read( ), 
write( ),and ioctl( ) routines. Interrupt and polling modes are supported. 
However, to respect ARINC scheduling, polling access to the device is strongly 
recommended.
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When a partition restarts, the core OS issues the ioctl( ) FIORESET code to the file 
descriptor being accessed in order to force pending I/O system calls for the 
partition to complete. All the core OS file descriptors owned by the partition are 
closed. The HME_POWER_FAIL handler must initialize the core OS device drivers 
(except the system clock). The system integrator must ensure that the state of the 
core OS I/O layers is resynchronized with the new state of these device drivers. 

The core OS model supports system warm restart, but not system cold restart. 

Split Model of Device Drivers

In the split model of device drivers, part of the driver is in the core OS and part is 
in a vThreads partition (usually an I/O partition). Only the I/O partition can 
access the device. Other partitions access the device by sending messages to the 
I/O partition using an ARINC 653 port.

The core OS part of the driver accesses the device by generating a system call. 
Although interrupt-driven operation is possible in the core OS, to respect the time 
partitioning between the I/O partition and other partitions, polling access to the 
device is strongly recommended.

Figure 9-2 Core OS Model of Device Driver
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For a split-model driver, the I/O system (ioLib) and driver state information are in 
the partition. As a result, open( ), close( ), read( ), write( ), and so on, run in the 
partition. Since the device hardware is not mapped into the partition space, a 
system call is necessary to access the physical device. The core OS part of the driver 
need only implement rudimentary routines to access the device itself, along with 
routines to validate parameters. Because issues can arise when an I/O partition is 
restarted, the core OS part must be a stateless entity that does little more than 
access the physical device.

The split model accesses the I/O registers from an I/O partition through system 
calls to the core OS. Only the I/O partition can control the driver directly. Access 
to the device generates system calls that access routines in the core OS part. The 
I/O pool region attribute must be set to supervisor level. Other partitions access 
the device through the I/O partition using an interpartition communication 
method. Typically, non-I/O partitions rely on a local I/O device driver that uses 
ARINC 653 ports to communicate with the I/O partition.

When the I/O partition is restarted, the device and its I/O layers are also restarted. 
For more information, see 7.9 Restart Functionality, p.156.

Figure 9-3 Split Model of Device Driver
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Validating the Read/Write Address Space

It is strongly recommended that the core OS portion of the driver validate the 
following for the read/write address space:

■ page attributes

■ strings

■ partition buffers

■ kernel buffer

For more information, see the reference entry for valValidateLib.

ioctl( ) code FIORESET Support

The split-model driver must support the ioctl( ) FIORESET code, which is called 
during partition restart if the read( ), write( ), or ioctl( ) operations on the device 
are not finished. (For more information, see 7.9.5 Restart Implications for Drivers, 
p.162.) Because the driver assumes that no events cause a blocking I/O operation, 
the only requirement is that ioctl( ) return OK.

9.2.3  Select Capability

A task can perform a select operation on file descriptors opened on vThreads 
(local) devices or core OS (global) devices.

Local select operations are those where a select( ) operation is done on a local file 
descriptor. Global select operations are performed on global file descriptors. The 
fd_set passed to select( ) can have a mixture of local and global file descriptors.

As part of the selectLib initialization, a select-server vThreads task 
(tSelGblFdTask) is spawned. The select server accepts global select( ) requests 
from vThreads tasks and performs global select operations serially on their behalf.

The select server uses a vThreads-wide global queue to serialize global select( ) 
operations done by multiple vThreads tasks. The vThreads 
SELECT_SERVER_QSIZE configuration parameter establishes the queue size and 
implies the concurrency level of global select operations in vThreads. Increasing 
the queue size correspondingly increases the number of tasks that can perform 
concurrent select operations on core OS file descriptors. The cost of increasing the 
parameter is 4 bytes per unit of increase. That is, each queue element is 4 bytes.
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The select server uses a blocking system call to perform the global select operation. 
A single worker task for that partition is used to do the actual select( ) in the core 
OS.

Sample Drivers for Communicating Using ARINC 653 Ports

These code examples demonstrate how to communicate between the I/O partition 
and other partitions. The code is not included with the VxWorks 653 installation.

The communication mechanism requires the sets of ports listed in the following 
tables. You must add the ports to the XML configuration file at configuration and 
build time. For details, see the VxWorks 653 Configuration and Build Guide.

One of the above is required for each VxWorks 653 module.

One set of the above is required for each partition that communicates with the I/O 
partition.

NOTE:  The concurrency level for the global select operation in vThreads space is 
equal to SELECT_SERVER_QSIZE. In the core OS space, it is always 1 because there 
is a single select( ) server task that accomplishes the select operation in the core OS.

Table 9-1 Sampling Port Created in the I/O Partition

Name Type Source/Destination Role

sMSync Sampling,
source

To all partitions The I/O partition uses the port to send 
its status to other partitions.

Table 9-2 Queuing Ports Created in the I/O Partition

Name Type Source/Destination Role

qPDrvInPx Queuing,
source

To partition x The I/O partition uses the port to 
send data read from the device 
that the I/O partition manages.

qPDrvOutPx Queuing,
destination

From partition x The I/O partition uses the port to 
receive the type of request and 
output data.
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One set of the above is required for each partition that communicates with the I/O 
partition.

If the I/O partition is Partition 1 and the partition communicating with it is 
Partition 2, only Partition 2 sends read and write requests to the I/O partition 
through the ports.

Example 9-1 portRecords Structure

LOCAL PORT_CFG_RECORD portRecords[] =
 {

 /* The S port P1 to all partition SRC */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSync", 1, 1, 1,
 SOURCE, SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},

 /* The S port P1 to P2 DST */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSyncP2", 2, 1,
 1, DESTINATION, SAMPLING, NOT_APPLICABLE, 1, 0,
 100000000, 0,0},

 /* The Q port P2 to P1 SRC */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutP2", 2, 1,
 2, SOURCE, QUEUING, SENDER_BLOCK, 256, 10, ZERO_TIME_VALUE ,0,0 },

 /* The Q port P2 to P1 DST */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutP2", 1, 1,
 2, DESTINATION, QUEUING, NOT_APPLICABLE, 256, 10,
 ZERO_TIME_VALUE ,0,0 },

 /* The Q port P1 to P2 SRC */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInP2", 1, 1, 3,
 SOURCE, QUEUING, SENDER_BLOCK, 256, 10, ZERO_TIME_VALUE ,0,0 },

Table 9-3 Sampling and Queuing Ports Created in Other Partitions

Name Type Source/Destination Role

qPDrvInPx Queuing,
destination

From I/O partition The data read from the device 
managed by the I/O partition 
is sent through the port.

qPDrvOutPx Queuing,
source

To I/O partition The type of the request and the 
output data are sent through 
the port.

sMSyncPx Sampling,
destination

From I/O partition I/O partition status is sent 
through the port.
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 /* The Q port P1 to P2 DST */
 { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInP2", 2, 1,
 3, DESTINATION, QUEUING, NOT_APPLICABLE, 256, 10,
 ZERO_TIME_VALUE ,0,0 },

 };

Example 9-2 Partition I/O Handler Driver

This code example shows how to do the following:

■ Establish communications between partitions and an I/O partition.

■ Handle the read and write requests sent from non-I/O partitions through 
ARINC 653 ports.

■ Call the TTY driver’s read( ) and write( ) routines.

■ Return the results using ARINC 653 ports.

Place the code in the following location:

installDir/target/vThreads/config/comps/src/usrPartHandleIO.c

/* usrPartHandleIO.c - stub partition I/O handler routine */

/* Copyright 2005      Wind River Systems, Inc. */

/*
DESCRIPTION
This is the source configlette for the INCLUDE_PART_IO_HANDLER component. It
creates two tasks that receive/send messages through queuing ports and
write/read consoleFd.

The partition I/O handler requires sMSync source sampling port, and
qPDrvOutPx destination and qPDrvInPx source queuing ports for each partition
domain that partition I/O device is installed.

for the I/O handler partition:
   /* The S port Py to all partition SRC */
   { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSync", y, 1, 1, SOURCE,
   SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},

for each partition domain:
   /* The Q port Px to Py DST */
   { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutPx", y, 1, 2, 

DESTINATION, QUEUING, NOT_APPLICABLE, PART_DRV_QUEU_MAX_MSG_SIZE,
   PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0},

   /* The Q port Py to Px SRC */
   { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInPx", y, 1, 3,
   SOURCE, QUEUING, SENDER_BLOCK, PART_DRV_QUEU_MAX_MSG_SIZE,
   PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE, ,0,0},

   x = partition number I/O device is installed
   y = partition number I/O handler is installed



VxWorks 653
Programmer's Guide, 2.2 

232

the channel numbers (1, 2, and 3) may need to be adapted to your
specific configuration

CONFIG PARAMETERS
The following parameters can be set and adjusted to alter the behaviour of
this component.

PART_IO_DEV_FIRST_PARTITION
The first partition domain number that requires the I/O handler.

PART_IO_DEV_LAST_PARTITION
The last partition domain number that requires the I/O handler.

PART_DRV_TASK_PRI
The I/O handler task priority. The range is between 100 and 254.

PART_DRV_TASK_OPT
The I/O handler task option.

PART_DRV_TASK_STACK
The I/O handler task stack size.

PART_DRV_QUEU_MAX_MSG_SIZE
The queuing port max message size. This must match the XML configuration 
file.

PART_DRV_QUEU_MAX_NB_MSG
The queuing port max message number. This must match the XML configuration 
file.

PART_DRV_RCV_BUFF_SIZE
The receive buffer size.
*/

#include "taskLib.h"
#include "ioLib.h"
#include "string.h"
#include "stdio.h"
#include "apex/apexLib.h"

/* defines */

#define PART_SYNC_PORT_NAME             ("sMSync")
#define PART_OUT_PORT_BASE_NAME         ("qPDrvOutP")
#define PART_IN_PORT_BASE_NAME          ("qPDrvInP")
#define DRV_OUT_TASK_BASE_NAME          ("drvOutTaskP")
#define DRV_IN_TASK_BASE_NAME           ("drvInTaskP")
#define PART_DRV_MAX_MSG_SIZE           (PART_DRV_QUEU_MAX_MSG_SIZE - 1)
#define READ_REQ_BYTES                  readReqBytes [partNum - 1]

typedef enum PART_IO_REQUEST_CODE_TYPE          /* request code type */
 {
 PART_IO_READ,
 PART_IO_WRITE,
 PART_IO_SYNC,
 PART_IO_CANCEL
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 } PART_IO_REQUEST_TYPE;

typedef enum PART_IO_STATUS_CODE_TYPE           /* status code type */
 {
 PART_IO_SETUP,
 PART_IO_READY
 } PART_IO_STATUS_TYPE;

/* externs */

IMPORT int consoleFd;

/* local */

LOCAL STATUS partIOHandlerInit (int);
LOCAL void partDrvOutputRtn (QUEUING_PORT_ID_TYPE, QUEUING_PORT_ID_TYPE, \

 SEM_ID, int, char *);
LOCAL void partDrvInputRtn (QUEUING_PORT_ID_TYPE, SEM_ID, int, char *);

/* global */

/* partition create status. The value remains after partition warm restart and
  * is re-initialized to FALSE at partition cold restart.
  */

LOCAL BOOL partCreate __attribute__((__section__(".persistent.data"))) = FALSE;

/* read request max size from PDx. The value remains after partition warm
* restart and is cleared at partition cold restart.
*/

LOCAL int readReqBytes [PART_IO_DEV_LAST_PARTITION] \
__attribute__((__section__(".persistent.bss")));

/****************************************************************************
*
* usrPartIOHandlerInit--call the partition I/O handler initialization routine
*
* Calls the I/O handler initialization routine for each partition
* domain that partition I/O device is installed.  It is called automatically
* by the root task, vThreadsCompInit(), in
* prjConfig.c when the configuration macro INCLUDE_PART_IO_HANDLER is
* defined.
*
* This routine requires sMSync source sampling port.
*
* /* The S port Py to all partition SRC */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSync", y, 1, "", 0, 1, SOURCE,
* SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},
*
* y = partition number I/O handler is installed
* the channel number (1) may need to be adapted to your configuration
*
* RETURNS: N/A.
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*/

void usrPartIOHandlerInit (void)
 {
 SAMPLING_PORT_ID_TYPE      sMSyncId;       /* sMSync sampling port ID */
 RETURN_CODE_TYPE           retCode;
 int partNum;        /* partition number */
 char                       status;

 /* create a sampling port */

 CREATE_SAMPLING_PORT (PART_SYNC_PORT_NAME,
  1,
  SOURCE,
  (SYSTEM_TIME_TYPE) 100000000,
  &sMSyncId,
  &retCode);

 if (retCode == NO_ACTION)
{
/* get sampling port ID if already attached */

GET_SAMPLING_PORT_ID (PART_SYNC_PORT_NAME, &sMSyncId, &retCode);
}

 if (retCode != NO_ERROR)
return;

 /* write the status to sMSync and notice the partition I/O device
  * the handler is in setup
  */

 status = PART_IO_SETUP;

 WRITE_SAMPLING_MESSAGE (sMSyncId, &status, 1, &retCode);

 if (retCode != NO_ERROR)
return;

 if (partCreate != TRUE)
{
/* if cold start, clean the read request */

for (partNum = PART_IO_DEV_FIRST_PARTITION; \
 partNum <= PART_IO_DEV_LAST_PARTITION; partNum++)
READ_REQ_BYTES = 0;

partCreate = TRUE;
}

 for (partNum = PART_IO_DEV_FIRST_PARTITION; \
partNum <= PART_IO_DEV_LAST_PARTITION; partNum++)
{
/* Initialize I/O handler for each partition I/O device */

partIOHandlerInit (partNum);
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}

 /* write the status to sMSync and notice the partition I/O device
  * the handler is ready
  */

 status = PART_IO_READY;

 WRITE_SAMPLING_MESSAGE (sMSyncId, &status, 1, &retCode);

 if (retCode != NO_ERROR)
return;

 }

/****************************************************************************
*
* partIOHandlerInit - initialize the partition I/O handler
*
* This routine initializes the handler.
*
* This routine requires qPDrvOutPx and qPDrvInPx queuing ports.
*
* /* The Q port Px to Py DST */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutPx", y, 1, 
* 2, DESTINATION, QUEUING, NOT_APPLICABLE, PART_DRV_QUEU_MAX_MSG_SIZE,
* PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0},
*
* /* The Q port Py to Px SRC */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInPx", y, 1, "", 0, 1,
* SOURCE, QUEUING, SENDER_BLOCK, PART_DRV_QUEU_MAX_MSG_SIZE,
* PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE, 0,0},
*
* x = partition number I/O device is installed
* y = partition number I/O handler is installed
*  the channel number (2) may need to be adapted to your configuration

* RETURNS: OK, or ERROR if fails.
*/

LOCAL STATUS partIOHandlerInit
 (
 int partNum /* partition number */
 )
 {
 QUEUING_PORT_ID_TYPE       qPSendId; /* qPDrvOutPx queuing port ID */
 QUEUING_PORT_ID_TYPE       qPRecvId; /* qPDrvInPx queuing port ID */
 RETURN_CODE_TYPE           retCode;
 SEM_ID                     semId; /* binary semaphore ID */
 int tid;
 char *                     sendBuff; /* transmit buffer pointer */
 char *                     rcvBuff; /* receive buffer pointer */
 char                       objName [20];

 /* set name of qPDrvOutPx */

 sprintf (objName, "%s%d", PART_OUT_PORT_BASE_NAME, partNum);
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 /* create a queuing port */

 CREATE_QUEUING_PORT (objName,
PART_DRV_QUEU_MAX_MSG_SIZE,
PART_DRV_QUEU_MAX_NB_MSG,
DESTINATION,
FIFO,
&qPSendId,
&retCode);

 if (retCode == NO_ACTION)
{
/* get queuing port ID */

GET_QUEUING_PORT_ID (objName, &qPSendId, &retCode);
}

 if (retCode != NO_ERROR)
return (ERROR);

 /* set name of qPDrvInPx */

 sprintf (objName, "%s%d", PART_IN_PORT_BASE_NAME, partNum);

 /* create a queuing port */

 CREATE_QUEUING_PORT (objName,
PART_DRV_QUEU_MAX_MSG_SIZE,
PART_DRV_QUEU_MAX_NB_MSG,
SOURCE,
FIFO,
&qPRecvId,
&retCode);

 if (retCode == NO_ACTION)
{
/* get queuing port ID */

GET_QUEUING_PORT_ID (objName, &qPRecvId, &retCode);
}

 if (retCode != NO_ERROR)
return (ERROR);

 /* create counting semaphore */

 semId = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

 if ((sendBuff = malloc (PART_DRV_QUEU_MAX_MSG_SIZE)) == NULL)
return (ERROR);

 if ((rcvBuff = malloc (PART_DRV_RCV_BUFF_SIZE + 1)) == NULL)
{
free (rcvBuff);
return (ERROR);
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}

 /* set name of drvOutTaskPx */

 sprintf (objName, "%s%d", DRV_OUT_TASK_BASE_NAME, partNum);

 /* cerate output task drvOutTaskPx */

 tid = taskSpawn (objName,
 PART_DRV_TASK_PRI,
 PART_DRV_TASK_OPT,
 PART_DRV_TASK_STACK,
 (FUNCPTR) partDrvOutputRtn,
 qPSendId,
 qPRecvId,
 (int) semId,
 partNum,
 (int) sendBuff,
 6, 7, 8, 9, 10);

 if (tid == ERROR)
{
free (sendBuff);
free (rcvBuff);
return (ERROR);
}

 /* set name of drvInTaskPx */

 sprintf (objName, "%s%d", DRV_IN_TASK_BASE_NAME, partNum);

 /* cerate input task drvInTaskPx */

 tid = taskSpawn (objName,
 PART_DRV_TASK_PRI + 1,
 PART_DRV_TASK_OPT,
 PART_DRV_TASK_STACK,
 (FUNCPTR) partDrvInputRtn,
 qPRecvId,
 (int) semId,
 partNum,
 (int) rcvBuff,
 5, 6, 7, 8, 9, 10);

 if (tid == ERROR)
{
free (rcvBuff);
return (ERROR);
}

 /* release semaphore if read request is in progress*/

 if (READ_REQ_BYTES != 0)
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semGive (semId);

 return (OK);
 }

/****************************************************************************
*
* partDrvOutputRtn - partition Output handler task for the x partition
*
* This task waits the I/O handling requests. If READ request is received,
* release semaphore to unblock the partition Input handler task. If WRITE
* request, write data to the I/O. If CANCEL request, call ioctl and cancel
* the read request.
*
* RETURNS: N/A.
*/

LOCAL void partDrvOutputRtn
 (
 QUEUING_PORT_ID_TYPE qPSendId, /* qPDrvOutPx queuing port ID */
 QUEUING_PORT_ID_TYPE qPRecvId, /* qPDrvInPx queuing port ID */
 SEM_ID semId, /* binary semaphore ID */
 int partNum, /* partition number */
 char * sendBuff /* transmit buffer pointer */
 )
 {
 RETURN_CODE_TYPE retCode;
 MESSAGE_SIZE_TYPE msgLength;

 /* infinit loop */

 FOREVER
{
/* wait request messages from x partition */

RECEIVE_QUEUING_MESSAGE (qPSendId,
    INFINITE_TIME_VALUE,    /* wait forever */
    sendBuff,
    &msgLength,
    &retCode);

if (retCode == NO_ERROR)
{
/* check the request */

switch (sendBuff [0])
{
case PART_IO_READ: /* READ request */

{
/* set read request bytes */
READ_REQ_BYTES = sendBuff [1] << 24 |

         sendBuff [2] << 16 |
         sendBuff [3] <<  8 |
         sendBuff [4];

semGive (semId); /* release semaphore */
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break;
}

case PART_IO_WRITE:                     /* WRITE request */
{
/* write the data to consoleFd */

write (consoleFd, &sendBuff [1], msgLength - 1);

break;
}

case PART_IO_SYNC:                      /* SYNC request */
{
/* send it back to x partition */

SEND_QUEUING_MESSAGE (qPRecvId,
              sendBuff,
              1,
              INFINITE_TIME_VALUE,
              &retCode);

/* go through CANCEL request */
}

case PART_IO_CANCEL:                    /* CANCEL request */
{
if (READ_REQ_BYTES != 0)

{
/* if read is in progress, cancel it */

READ_REQ_BYTES = 0;
ioctl (consoleFd, FIORFLUSH, 0);
}

break;
}

default:                                /* unexpected */
break;

}
}

}
 }

/****************************************************************************
*
* partDrvInputRtn - partition Input handler task for the x partition
*
* This task waits on the semaphore from Output handler task that is released
* when READ request is received by the Output handler task and reads the I/O.
*
* RETURNS: N/A.
*/
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LOCAL void partDrvInputRtn
 (
 QUEUING_PORT_ID_TYPE qPRecvId,       /* qPDrvInPx queuing port ID */
 SEM_ID semId,          /* binary semaphore ID */
 int partNum,        /* partition number */
 char * rcvBuff         /* message buffer */
 )
 {
 RETURN_CODE_TYPE retCode;
 int maxbytes;       /* read max bytes */
 int msgLength;      /* message read bytes */
 int bytesPut;       /* message send bytes */
 char * buffer;

 /* infinite loop */

 FOREVER
{
/* wait for receive request from x partition */
semTake (semId, WAIT_FOREVER);

maxbytes = READ_REQ_BYTES;

if (maxbytes > PART_DRV_RCV_BUFF_SIZE)
maxbytes = PART_DRV_RCV_BUFF_SIZE;

    /* don not exceed PART_DRV_RCV_BUFF_SIZE */

/* read consoleFd if any input arrives */
msgLength = read (consoleFd, &rcvBuff [1], maxbytes);

buffer = rcvBuff;

if (msgLength == 0)             /* read canceled */
retCode = NO_ERROR;

while (msgLength > 0)
{
if (msgLength > PART_DRV_MAX_MSG_SIZE)

{
buffer [0] = TRUE;                      /* continued */
bytesPut = PART_DRV_MAX_MSG_SIZE;
}

else
{
buffer [0] = FALSE;             /* end */
bytesPut = msgLength;
}

/* send it to x partition */
SEND_QUEUING_MESSAGE (qPRecvId,

      buffer,
      bytesPut + 1,
      INFINITE_TIME_VALUE,
      &retCode);

if (retCode == NO_ERROR)
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{
msgLength -= bytesPut;
READ_REQ_BYTES = msgLength;

buffer += bytesPut;
}

}

/* unexpected */

if (retCode != NO_ERROR)
semGive (semId);            /* release semaphore, read and send

            * the message again.
            */

}
 }

Example 9-3 Component Configuration File for the Partition I/O Handler

The following component configuration code specifies the configuration for the 
partition I/O handler driver in Example 9-2. Place the code in the following 
location:

installDir/target/vThreads/config/comps/vxWorks/00comp_part_io_handler.cdf.

For information on how to install the partition I/O handler component, see the 
VxWorks 653 Configuration and Build Guide.

/* 00comp_part_io_handler.cdf - Component configuration file */

/* Copyright 2005      Wind River Systems, Inc. */

Component INCLUDE_PART_IO_HANDLER {
 NAME            Partition I/O Handler
 SYNOPSIS        Partition I/O Handler component
 REQUIRES        INCLUDE_APEX \

 INCLUDE_SIO
 CONFIGLETTES    usrPartHandleIO.c
 _INIT_ORDER     vThreadsCompInit
 INIT_RTN        usrPartIOHandlerInit ();
 CFG_PARAMS      PART_IO_DEV_FIRST_PARTITION \

 PART_IO_DEV_LAST_PARTITION \
 PART_DRV_TASK_PRI \
 PART_DRV_TASK_OPT \
 PART_DRV_TASK_STACK \
 PART_DRV_QUEU_MAX_MSG_SIZE \
 PART_DRV_QUEU_MAX_NB_MSG \
 PART_DRV_RCV_BUFF_SIZE

 PREF_DOMAIN     APPLICATION
}

Parameter PART_IO_DEV_FIRST_PARTITION {
 NAME            first partition number requires partition I/O
 DEFAULT         2
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 TYPE            int
}

Parameter PART_IO_DEV_LAST_PARTITION {
 NAME            last partition number requires part I/O
 DEFAULT         2
 TYPE            int

}

Parameter PART_DRV_TASK_PRI {
 NAME            IO handler task priority
 DEFAULT         100
 TYPE            int

}

Parameter PART_DRV_TASK_OPT {
 NAME            IO handler task option.
 DEFAULT         0
 TYPE            uint

}

Parameter PART_DRV_TASK_STACK {
 NAME            IO handler task stack size
 DEFAULT         0x1000
 TYPE            uint

}

Parameter PART_DRV_QUEU_MAX_MSG_SIZE {
 NAME            partition queuing port max message size
 DEFAULT         256
 TYPE            int

}

Parameter PART_DRV_QUEU_MAX_NB_MSG {
 NAME            partition queuing port max message number
 DEFAULT         10
 TYPE            int

}

Parameter PART_DRV_RCV_BUFF_SIZE {
 NAME            receive buffer size
 DEFAULT         255
 TYPE            int

}

Example 9-4 Driver to Communicate between I/O Partitions

The following code sample shows how to do the following:

■ Establish communication between partitions and an I/O partition.

■ Send the read and write requests to the I/O partition.

■ Receive the results through ARINC 653 ports.
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Place the code in the following location:

installDir/target/vThreads/config/comps/src/usrPartIODev.c

/* usrPartIODev.c - stub partition I/O driver file */

/* Copyright 2005      Wind River Systems, Inc. */

/*
DESCRIPTION

This is the source configlette for the INCLUDE_PART_IO_DEV component.

The partition I/O device requires sMSyncPx sampling destination port and
qPDrvOutPx source and qPDrvInPx destination queuing ports to synchronize and
communicate to the partition I/O handler.

   /* The S port P1 to Px DST */
   { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSyncPx", x, 1, 1,
   DESTINATION, SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},

   /* The Q port Px to P1 SRC */
   { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutPx", x, 1, 2,
   SOURCE, QUEUING, SENDER_BLOCK, PART_DRV_QUEU_MAX_MSG_SIZE,
   PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE, 0,0},

   /* The Q port P1 to Px DST */
   { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInPx", x, 1, 3, 

DESTINATION, QUEUING, NOT_APPLICABLE, PART_DRV_QUEU_MAX_MSG_SIZE,
   PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0},

x = PART_IO_PARTITION_NUMBER, y = partition number I/O handler is installed

CONFIG PARAMETERS
The following parameters can be set and adjusted to alter the behaviour of
this component.

PART_IO_PARTITION_NUMBER
This partition’s domain number.

PART_IO_SYNC_TIME_OUT_SEC
Synchronize time out period in seconds.

PART_DRV_QUEU_MAX_MSG_SIZE
The queuing port max message size. This must match the XML configuration 
file.

PART_DRV_QUEU_MAX_NB_MSG
The queuing port max message number. This must match the XML configuration 
file.
*/

#include "taskLib.h"
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
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#include "errnoLib.h"
#include "iosLib.h"
#include "vThreads.h"
#include "apex/apexLib.h"

/* defines */

#define PART_IO_NAME                    ("/partIOP")
#define PART_SYNC_PORT_BASE_NAME        ("sMSyncP")
#define PART_OUT_PORT_BASE_NAME         ("qPDrvOutP")
#define PART_IN_PORT_BASE_NAME          ("qPDrvInP")
#define PART_DRV_MAX_MSG_SIZE           (PART_DRV_QUEU_MAX_MSG_SIZE - 1)
#define REQUEST_BUFF_SIZE               5

typedef enum PART_IO_REQUEST_CODE_TYPE          /* request code type */
 {
 PART_IO_READ,
 PART_IO_WRITE,
 PART_IO_SYNC,
 PART_IO_CANCEL
 } PART_IO_REQUEST_TYPE;

typedef enum PART_IO_STATUS_CODE_TYPE           /* status code type */
 {
 PART_IO_SETUP,
 PART_IO_READY
 } PART_IO_STATUS_TYPE;

typedef struct          /* PART_IO_DEV - partition I/O device descriptor */
 {
 DEV_HDR                    devHdr;         /* I/O device header */

                    /* buffer for read */
 char                       rcvBuffer[PART_DRV_MAX_MSG_SIZE+1];
 SEM_ID                     mutSemId;       /* reader mutex semaphore */
 SAMPLING_PORT_ID_TYPE      sMSyncId;       /* synchronization port */
 QUEUING_PORT_ID_TYPE       qPSendId;       /* transmit port */
 QUEUING_PORT_ID_TYPE       qPRecvId;       /* reception port */
 } PART_IO_DEV;

/* externs */

IMPORT int consoleFd;

/* forward declarations */

STATUS usrPartIODrv (void);
STATUS usrPartIODevCreate (char *);

/* locals */

LOCAL int usrPartIOOpen (PART_IO_DEV *, char *, int, int);
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LOCAL int usrPartIOClose (PART_IO_DEV *);
LOCAL int usrPartIORead (PART_IO_DEV *, char *, int);
LOCAL int usrPartIOWrite (PART_IO_DEV *, char *, int);

LOCAL int partIODrvNum = ERROR;

/****************************************************************************
*
* usrPartIOInit - initialize the partition I/O
*
* This routine calls the the driver install and initialization routines. It is
* called automatically by the root task, vThreadsCompInit(), in prjConfig.c
* when the configuration macro INCLUDE_PART_IO_DEV is defined.
*
* RETURNS: N/A.
*/

void usrPartIOInit (void)
 {
 /* install the driver */

 if (usrPartIODrv () != OK)
return;

 /* create the device */

 if (usrPartIODevCreate (PART_IO_NAME) != OK)
return;

 /* open the device */

 consoleFd = open (PART_IO_NAME, O_RDWR, 0);

 ioGlobalStdSet (STD_IN,  consoleFd);
 ioGlobalStdSet (STD_OUT, consoleFd);
 ioGlobalStdSet (STD_ERR, consoleFd);
 }

/****************************************************************************
*
* usrPartIODrv - initialize the part I/O driver
*
* This routine initializes and installs the driver.
*
* RETURNS: OK, or ERROR if the driver installation fails.
*/

STATUS usrPartIODrv (void)
 {
 /* check if driver already installed */

 if (partIODrvNum != ERROR)
return (OK);
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 partIODrvNum = iosDrvInstall ((FUNCPTR) NULL, (FUNCPTR) NULL,
usrPartIOOpen, usrPartIOClose, usrPartIORead,
usrPartIOWrite, (FUNCPTR) NULL);

 return (partIODrvNum == ERROR ? ERROR : OK);
 }

/****************************************************************************
*
* usrPartIODevCreate - create a part I/O device
*
* This routine creates a part I/O device.
*
* This routine requires sMSyncPx sampling port, qPDrvOutPx and qPDrvInPx
* queuing ports.
*
* /* The S port P1 to Px DST */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "sMSyncPx", x, 1, 1,
* DESTINATION, SAMPLING, NOT_APPLICABLE, 1, 0, 100000000, 0,0},
*
* /* The Q port Px to P1 SRC */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvOutPx", x, 1, 2,
* SOURCE, QUEUING, SENDER_BLOCK, PART_DRV_QUEU_MAX_MSG_SIZE,
* PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0 },
*
* /* The Q port P1 to Px DST */
* { CFG_TYPE_PORT, sizeof (PORT_CFG_RECORD), "qPDrvInPx", x, 1, 3,
* DESTINATION, QUEUING, NOT_APPLICABLE, PART_DRV_QUEU_MAX_MSG_SIZE,
* PART_DRV_QUEU_MAX_NB_MSG, ZERO_TIME_VALUE ,0,0},
*
* x = PART_IO_PARTITION_NUMBER, y = partition number I/O handler is installed
*
* RETURNS: OK, or ERROR if the call fails.
*
* ERRNO
* S_ioLib_NO_DRIVER - driver not initialized
*/

STATUS usrPartIODevCreate
 (
 char *name         /* name of part I/O driver device to be created */
 )
 {
 PART_IO_DEV                *pPartIODrvDev;
 RETURN_CODE_TYPE   retCode;
 char               objName [20];

 if (partIODrvNum == ERROR)
{
errnoSet (S_ioLib_NO_DRIVER);
return (ERROR);
}

 pPartIODrvDev = (PART_IO_DEV *) malloc (sizeof (PART_IO_DEV));
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 if (pPartIODrvDev == NULL)
return (ERROR);

 /* I/O device to system */

 if (iosDevAdd (&pPartIODrvDev->devHdr, name, partIODrvNum) != OK)
{
free ((char *) pPartIODrvDev);
return (ERROR);
}

 /* set name of sMSyncPx */

 sprintf (objName, "%s%d", PART_SYNC_PORT_BASE_NAME, \
 PART_IO_PARTITION_NUMBER);

 /* create a sampling port */

 CREATE_SAMPLING_PORT (objName,
  1,
  DESTINATION,
  (SYSTEM_TIME_TYPE) 100000000,
  &pPartIODrvDev->sMSyncId,
  &retCode);

 if (retCode == NO_ACTION)
{
/* get sampling port ID */

GET_SAMPLING_PORT_ID (objName,
  &pPartIODrvDev->sMSyncId,
  &retCode);

}

 if (retCode != NO_ERROR)
{
free ((char *) pPartIODrvDev);
return (ERROR);
}

 /* set name of qPDrvOutPx */

 sprintf (objName, "%s%d", PART_OUT_PORT_BASE_NAME, \
 PART_IO_PARTITION_NUMBER);

 /* create a queuing port */

 CREATE_QUEUING_PORT (objName,
PART_DRV_QUEU_MAX_MSG_SIZE,
PART_DRV_QUEU_MAX_NB_MSG,
SOURCE,
FIFO,
&pPartIODrvDev->qPSendId,
&retCode);

 if (retCode == NO_ACTION)
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{
/* get queuing port ID */
GET_QUEUING_PORT_ID (objName,

 &pPartIODrvDev->qPSendId,
 &retCode);

}

 if (retCode != NO_ERROR)
{
free ((char *) pPartIODrvDev);
return (ERROR);
}

 /* set name of qPDrvInPx */

 sprintf (objName, "%s%d", PART_IN_PORT_BASE_NAME, PART_IO_PARTITION_NUMBER);

 /* create a queuing port */

 CREATE_QUEUING_PORT (objName,
PART_DRV_QUEU_MAX_MSG_SIZE,
PART_DRV_QUEU_MAX_NB_MSG,
DESTINATION,
FIFO,
&pPartIODrvDev->qPRecvId,
&retCode);

 if (retCode == NO_ACTION)
{
/* get queuing port ID */

GET_QUEUING_PORT_ID (objName,
 &pPartIODrvDev->qPRecvId,
 &retCode);

}

 if (retCode != NO_ERROR)
{
free ((char *) pPartIODrvDev);
return (ERROR);
}

 /* create a mutex semaphore */

 pPartIODrvDev->mutSemId = semMCreate (SEM_DELETE_SAFE);

 return (OK);
 }

/****************************************************************************
*
* usrPartIODevDelete - delete a part I/O device
*
* Deletes a part I/O device of a given name.  The name must match
* that passed to usrPartIODevCreate() else ERROR will be returned.  This
* routine frees memory for the necessary structures and deletes the device.
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*
* RETURNS: OK, or ERROR if the call fails.
*
* ERRNO
* S_ioLib_NO_DRIVER         - driver not initialized
*/

STATUS usrPartIODevDelete
 (
 char *name         /* name of part I/O driver device to be deleted */
 )
 {
 PART_IO_DEV        *pPartIODrvDev;
 char       *pTail = NULL;

 if (partIODrvNum == ERROR)
{
errnoSet (S_ioLib_NO_DRIVER);
return (ERROR);
}

 if ((pPartIODrvDev = (PART_IO_DEV *) iosDevFind (name, &pTail))
== NULL)
{
return (ERROR);
}

 /* I/O device no longer in system */

 iosDevDelete (&pPartIODrvDev->devHdr);

 /* delete the semaphore */

 semDelete (pPartIODrvDev->mutSemId);

 /* free part I/O memory */

 free ((char *)pPartIODrvDev);

 return (OK);
 }

/****************************************************************************
*
* usrPartIOOpen - open a part I/O file
*
* This routine is called to open a part I/O file. It returns a pointer to the
* device.
*
* RETURNS: pPartIODrvDev or ERROR if time out synchronize the partition I/O
* handler.
*/

LOCAL int usrPartIOOpen
 (
 PART_IO_DEV * pPartIODrvDev, /* device to control */
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 char * name,                     /* device name */
 int flags,                    /* flags */
 int      mode                      /* mode selected */
 )
 {
 MESSAGE_SIZE_TYPE  msgLength;              /* length received */
 VALIDITY_TYPE      validity;               /* validity for sync port */
 RETURN_CODE_TYPE   retCode;
 int n100mSec;               /* x 100m sec */
 char               message;                /* message */

 n100mSec = 0; /* set time 0 */

 FOREVER
{
/* synchronize the partition I/O handler */

READ_SAMPLING_MESSAGE (pPartIODrvDev->sMSyncId,
   &message,
   &msgLength,
   &validity,
   &retCode);

if ((retCode == NO_ERROR) && (msgLength > 0) && \
(message == PART_IO_READY))
break;

if (n100mSec < PART_IO_SYNC_TIME_OUT_SEC * 10) /* time out 5 sec */
taskDelay (sysClkRateGet()/10);

else
return (ERROR);

n100mSec++;
}

 FOREVER
{
message = PART_IO_SYNC;                 /* SYNC request */

/* send a SYNC request. It will cancel the previous READ request */

SEND_QUEUING_MESSAGE (pPartIODrvDev->qPSendId,
  &message,
  1,
  INFINITE_TIME_VALUE,
  &retCode);

if (retCode != NO_ERROR)
return (ERROR);

/* receive SYNC message from partition I/O */

RECEIVE_QUEUING_MESSAGE (pPartIODrvDev->qPRecvId,
      (SYSTEM_TIME_TYPE) 1000000000, /* 1 sec */
      pPartIODrvDev->rcvBuffer,
      &msgLength,
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      &retCode);

if (retCode == NO_ERROR)
{
if ((msgLength == 1) && \

(pPartIODrvDev->rcvBuffer [0] == PART_IO_SYNC))
break;

else
return (ERROR);

}
else if (retCode == TIMED_OUT)

{
if (n100mSec < PART_IO_SYNC_TIME_OUT_SEC * 10) /* time out 5 sec */

n100mSec += 10;
else

return (ERROR);
}

else
return (ERROR);

}

 return ((int) pPartIODrvDev);
 }

/****************************************************************************
*
* usrPartIOClose - close a part I/O file
*
* This routine is called to close a part I/O file.
*
* RETURNS: pPartIODrvDev or ERROR if NULL part I/O device pointer.
*/

LOCAL int usrPartIOClose
 (
 PART_IO_DEV *pPartIODrvDev         /* device to control */
 )
 {
 RETURN_CODE_TYPE   retCode;
 char message; /* message for cancel request */

 if (pPartIODrvDev != NULL)
{
message = PART_IO_CANCEL; /* CANCEL request */

/* send a CANCEL request */

SEND_QUEUING_MESSAGE (pPartIODrvDev->qPSendId,
  &message,
  1,
  INFINITE_TIME_VALUE,
  &retCode);

if (retCode != NO_ERROR)
return (ERROR);
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return ((int) pPartIODrvDev);
}

 else
return (ERROR);

 }

/****************************************************************************
*
* usrPartIORead - read a partition I/O file
*
* This routine is called to read a part I/O file.
* It reads into the buffer up to <maxbytes> available bytes.
*
* RETURNS: The number of bytes actually read into the buffer.
*/

LOCAL int usrPartIORead
 (
 PART_IO_DEV * pPartIODrvDev,         /* device to control */
 char * buffer,                /* buffer to read into    */
 int maxbytes /* maximum length of read */
 )
 {
 RETURN_CODE_TYPE   retCode;
 MESSAGE_SIZE_TYPE  msgLength;
 int bytesRcvd; /* total received bytes */
char               reqBuff [REQUEST_BUFF_SIZE];

 bytesRcvd = 0; /* clear the bytesRcvd */

 if (maxbytes > 0)
{
/* block receive process from other tasks */

semTake (pPartIODrvDev->mutSemId, WAIT_FOREVER);

reqBuff [0] = PART_IO_READ;             /* READ request */

/* set max receive bytes */

reqBuff [1] = (maxbytes & 0xff000000) >> 24;
reqBuff [2] = (maxbytes & 0x00ff0000) >> 16;
reqBuff [3] = (maxbytes & 0x0000ff00) >>  8;
reqBuff [4] = (maxbytes & 0x000000ff);

/* send a READ request */

SEND_QUEUING_MESSAGE (pPartIODrvDev->qPSendId,
  reqBuff,
  REQUEST_BUFF_SIZE,
  INFINITE_TIME_VALUE,
  &retCode);

if (retCode == NO_ERROR)
{
pPartIODrvDev->rcvBuffer [0] = TRUE;
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/* loop if continued status */

while (pPartIODrvDev->rcvBuffer [0] == TRUE)
{
/* receive a message */

RECEIVE_QUEUING_MESSAGE (pPartIODrvDev->qPRecvId,
            INFINITE_TIME_VALUE, /* wait forever */
            pPartIODrvDev->rcvBuffer,
            &msgLength,
            &retCode);

if ((retCode != NO_ERROR) || !(msgLength > 0))
{
/* release semaphore */

semGive (pPartIODrvDev->mutSemId);
return (bytesRcvd);
}

msgLength -= 1;                 /* adjust received length */

/* copy the received message to buffer */

bcopy (&pPartIODrvDev->rcvBuffer [1], buffer, msgLength);

maxbytes -= msgLength;
bytesRcvd += msgLength;
buffer += msgLength;
}

}

/* release semaphore */

semGive (pPartIODrvDev->mutSemId);
}

 return (bytesRcvd);
 }

/****************************************************************************
*
* usrPartIOWrite - write a partition I/O file
*
* This routine is called to write a partition I/O file.
*
* RETURNS: The number of bytes actually written to the device.
*/

LOCAL int usrPartIOWrite
 (
 PART_IO_DEV * pPartIODrvDev,         /* device to control */
 char * buffer,                /* buffer of data to write  */
 int nbytes /* number of bytes in buffer */
 )
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 {
 RETURN_CODE_TYPE retCode;
 int bytesSend;      /* total bytes sent */
 int bytesPut;       /* bytes message sent through port */
 char sendBuffer [PART_DRV_MAX_MSG_SIZE + 1];

 bytesSend = 0;                             /* clear the bytesSend */

 /* loop till all messages sent through the port */

 while (nbytes > 0)
{
sendBuffer [0] = PART_IO_WRITE;         /* WRITE request */

if (nbytes > PART_DRV_MAX_MSG_SIZE)
bytesPut = PART_DRV_MAX_MSG_SIZE;

else
bytesPut = nbytes;

/* copy the message to transmit buffer */

bcopy (buffer, &sendBuffer [1], bytesPut);

/* send a message with WRITE request */

SEND_QUEUING_MESSAGE (pPartIODrvDev->qPSendId,
  sendBuffer,
  bytesPut + 1,
  INFINITE_TIME_VALUE,
  &retCode);

if (retCode == NO_ERROR)
{
nbytes -= bytesPut;
bytesSend += bytesPut;
buffer += bytesPut;
}

else
break;

}

 return (bytesSend);
 }

Example 9-5 Component Configuration File for the Driver to Communicate between I/O Partition and Non-I/O 

Partitions

The following component configuration code explains how to configure the driver 
to communicate between I/O partition and non-I/O partitions in Example 9-4.

Place the code in the following location:

installDir/target/vThreads/config/comps/vxWorks/00comp_part_io_dev.cdf
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For information on how to include a partition I/O device component, see the 
VxWorks 653 Configuration and Build Guide.

/* 00comp_part_io_dev.cdf - Component configuration file */

/* Copyright 2005      Wind River Systems, Inc. */

Component INCLUDE_PART_IO_DEV {
 NAME            Partition I/O Device
 SYNOPSIS        Partition I/O Device component
 REQUIRES        INCLUDE_APEX
 CONFIGLETTES    usrPartIODev.c
 _INIT_ORDER     vThreadsCompInit
 INIT_RTN        usrPartIOInit ();
 CFG_PARAMS      PART_IO_PARTITION_NUMBER \

 PART_IO_SYNC_TIME_OUT_SEC \
 PART_DRV_QUEU_MAX_MSG_SIZE \
 PART_DRV_QUEU_MAX_NB_MSG

 PREF_DOMAIN     APPLICATION
 ENTRY_POINTS    usrPartIODrv \

 usrPartIODevCreate
}

EntryPoint usrPartIODrv {
 TYPE            TEXT

}

EntryPoint usrPartIODevCreate {
 TYPE            TEXT

}

Parameter PART_IO_PARTITION_NUMBER {
 NAME            partition number to be installed
 DEFAULT         2
 TYPE            int

}

Parameter PART_IO_SYNC_TIME_OUT_SEC {
 NAME            IO port synchronous time out sec
 DEFAULT         5
 TYPE            int

}

Parameter PART_DRV_QUEU_MAX_MSG_SIZE {
 NAME            partition queuing port max message size
 DEFAULT         256
 TYPE            int

}

Parameter PART_DRV_QUEU_MAX_NB_MSG {
 NAME            partition queuing port max message number
 DEFAULT         10
 TYPE            int

}
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Table 9-4 shows where the drivers can be placed.

Supervisor-Level Device Driver Model

For information on available routines and ioctl commands, see the reference entry 
for the core OS ioLib.

9.3  Application Multiplexed I/O

Application multiplexed I/O provides application developers with a 
communications channel to output text to and receive responses from a dedicated 
maintenance or test terminal. The feature could be used for running automated test 
scripts or for debugging.

Application multiplexed I/O runs over a single, dedicated serial communications 
channel operating in polled mode. All partitions in the VxWorks 653 module share 
the same serial line for sending and receiving text. All data is sent in ASCII format 
with a header that indicates to which partition the data is assigned.

Application multiplexed I/O consists of two drivers: one in the partition and one 
in the core OS. The driver in the partition provides blocking read and write 
operations that do not block the entire partition. The driver in the core OS provides 
multiple partitions access to the shared serial I/O device.

Data received from or sent to the host is written into circular FIFO buffers. There is 
one input buffer and one output buffer per partition, plus a pair for the core OS. 
For read operations, data is overwritten when the input buffer is full. After data is 
overwritten, a read operation is still FIFO and reads the ‘new’ oldest data. That is, 
it reads the data available just after the overwritten data.

Table 9-4 Components and Associated Domains

Component Where Can it Go?

INCLUDE_PART_IO_HANDLER I/O partition

INCLUDE_PART_IO_DEV Other partitions, but not the partition in 
which INCLUDE_PART_IO_HANDLER is 
installed
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For application multiplexed I/O, the core OS allocates each partition a dynamic 
bandwidth that is based on the duration of the partition’s time window and the 
bandwidth of the serialized I/O driver. Thus, for any time window, a partition that 
uses application multiplexed I/O can send and receive only a limited number of 
bytes. As a result, the partition’s application multiplexed I/O does not affect other 
partitions. Throughput is proportional to the CPU time that the core OS allocates 
to the partition.

9.3.1  Serialized I/O Protocol

Application multiplexed I/O can use any serialized I/O driver, such as a terminal 
driver, pseudo-terminal, or pipe driver. The supported serialized I/O has the 
following protocol in both directions:

■ The flow supports eight-bit data only.

■ Each channel in the VxWorks 653 module has a unique channel ID.

■ The channel ID is coded by two hexadecimal ASCII characters: 256 values from 
0 to FF.

■ Channel 0 identifies the core OS.

■ Channels 1 through 255 identify partitions 1 through 255.

■ Only the transition from one channel to another is identified, which is 
identified by this character sequence:

STX + channelID1 + channelID2 + data

■ The link partner is made aware of system restart by this character sequence:

STX + NULL + NULL

■ The ownership for each direction of the channel is independent. For example, 
the host can write to one partition while another partition is writing to the host.

■ Data associated with an invalid channel ID is discarded.

■ The target requests a new baud setting by sending:

STX + 0x01 + BRI
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where BRI is encoded as follows:

9.3.2  Architecture

Figure 9-4 illustrates the general architecture of application multiplexed I/O.

BRI Baud (in bps)

0x00 default
0x01 9600
0x02 9200
0x03 38400
0x04 57600
0x05 76800
0x06 115200
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Figure 9-4 Application Multiplex I/O Architecture
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9.3.3  Setting up and Using Application Multiplexed I/O in Partitions

Making the Driver Available

If the optional INCLUDE_AMIO component is included in the application’s 
partition, application multiplexed I/O is available to the application. 

Redirecting Standard I/O to the pamio Driver

In order for standard open( ), read( ), write( ), and ioctl( ) to use the pamio driver, 
standard I/O must be redirected to the driver.

If the INCLUDE_AMIO_REDIRECT component is included in the partition or one 
of its shared libraries, standard I/O is automatically redirected.

Alternatively, and for increased granularity, the application can redirect I/O by 
calling ioGlobalStdSet( ), which overrides the standard file descriptor and causes 
the pamio file descriptor to be used instead. Example code follows: 

int pamioFd = open ("/pamio", O_RDWR, 0);
ioGlobalStdSet (0, pamioFd); /* STD IN  */
ioGlobalStdSet (1, pamioFd); /* STD OUT */
ioGlobalStdSet (2, pamioFd); /* STD ERROR */

Using Application Multiplexed I/O

The API for the pamio driver uses the standard VxWorks 653 system calls:

■ SYSCALL_IO_OPEN

■ SYSCALL_IO_READ

■ SYSCALL_IO_WRITE

■ SYSCALL_IO_IOCTL

The read( ) and write( ) routines are blocking. For example, if a channel’s input 
buffer is empty, read( ) waits until an ASCII character is available. Each read or 
write operation is normally equivalent to a system call and subsequent read or 
write operation in the core OS. To avoid this potential inefficiency when there are 
no characters to read or no space to write to, the pamio driver blocks the requesting 
task. When characters are available for reading or space for writing, the mamio 
driver in the core OS sends a pseudo-interrupt to the partition, and the pamio 
driver unblocks the requesting task.



9  I/O Support
9.3  Application Multiplexed I/O

261

9

The ioctl( ) routine takes the following command codes:

FIOGETOPTIONS
Gets the current device-option word.

FIORELINQUISH
Frees all resources (the blocking semaphore) for the stopped task.

FIOSETOPTIONS
Sets the device-option word to the specified value.

9.3.4  Using Application Multiplexed I/O in the Core OS

The core OS driver that supports application multiplexed I/O in partitions (the 
mamio driver) is installed automatically when the kernel calls the mamioLibInit( ) 
routine. (The term mamio stands for module application multiplexed I/O.) The 
routine returns a mamio device file descriptor. The mamio driver follows the 
standard open, read, write, ioctl I/O model.

For information on how the core OS can use application multiplexed I/O for all 
I/O in the core OS, see Using the mamio Driver for All I/O in the Core OS, p.263.

Setting the Mux/Demux Algorithm

When the VxWorks 653 module is cold started, mamioLIbInit( ) calls 
muxDemuxIOLibInit( ), which must be called after the mamio driver is 
initialized, but before any other mamio driver calls are made. The routine sets the 
polling period. In addition, it initializes the mux/demux algorithm according to 
these options:

MUX_BLOCKING_DEVICE
If this option is used, the mux write routine uses a FIONWRITE control 
operation on the serialized output device before writing a character. The mux 
read routine uses a FIONREAD control operation on the serialized output 
device before reading a character.

MUX_KERNEL_ALL_WINDOW
If this option is used, the core OS sends data during the time available from 
any partition, including ones that do not include the application multiplexed 
I/O component.

Since the core OS by default sends data only during spare partition windows, 
the platform provider must take care when configuring the system. That is, if 
the default mux/demux option is not changed, the platform provider must 
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include at least one spare time window in the schedule if the core OS uses the 
mamio driver.

MUX_KERNEL_SPARE_AND_AMIO_WINDOW
If this option is used, the core OS sends data during the time available from 
any partition that includes the application multiplexed I/O component. Core 
OS operations preempt the partition.

Using the ioctl( ) Routine

The ioctl( ) routine takes the following command codes:

FIOBAUDRATE
Sets the baud of the associated serialized device (same as SIO_BAUD_SET).

FIOGETOPTIONS
Gets the current device option word. For more information, see Setting Line 
Modes, p.263.

FIONREAD
Returns the number of characters that are available to be read from the 
specified partition’s input buffer. However, if the MAMIO_OPTIONS_CRMOD 
option is enabled, ioctl( ) returns the number of characters copied plus the 
number of lines in the buffer. For example, if five lines of NEWLINES are in the 
input buffer, the routine returns 10. For more information, see Setting Line 
Modes, p.263.

FIONWRITE
Returns the number of characters queued to the specified partition’s output 
buffer.

FIOSETOPTIONS
Sets the device option word to the specified value. For more information, see 
Setting Line Modes, p.263.

MAMIO_IOCTL_BUFF_INPUT_PUT
Puts the specified number of characters from the specified buffer into the 
specified partition’s input buffer. If the MAMIO_OPTIONS_CRMOD option is 
enabled, the number of characters that are put might be different from that 
specified. For more information, see Setting Line Modes, p.263.

MAMIO_IOCTL_BUFF_OUTPUT_GET
Gets characters from the specified partition’s output buffer and puts them in 
the specified buffer. The number of characters that are gotten is returned.
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MAMIO_IOCTL_NOTICE_REGISTER
Registers the notification routine that is to be called when characters are 
available in the channel’s output buffer or when the channel requests data to 
read.

SIO_BAUD_GET
Gets the baud of the associated serialized device.

SIO_BAUD_SET
Sets the baud of the associated serialized device (same as FIOBAUDRATE).

Setting Line Modes

If the MAMIO_OPTIONS_CRMOD option is enabled for the mamio driver’s option 
word, the following occurs:

If the MAMIO_OPTIONS_CRMOD option is not enabled, no replacement is made.

If the MAMIO_OPTIONS_LINE option is enabled for the mamio driver’s option 
word, the input character stream is not available for reading until a NEWLINE 
character or 255 characters are received. In addition, the input may be modified by 
the special characters of backspace (0x8), line-delete (0x15), and end-of-file (0x4). If 
the option is not enabled, these special characters are not removed.

Using the mamio Driver for All I/O in the Core OS

To have all I/O in the core OS be redirected to the mamio driver, calls must be 
made to ioGlobalStdSet( ), which override the standard file descriptors and 
causes the mamio file descriptors to be used instead. Example code follows:

int mamioFd = open ("/mamio", O_RDWR, 0);
ioGlobalStdSet (0, mamioFd); /* STD IN  */
ioGlobalStdSet (1, mamioFd); /* STD OUT */
ioGlobalStdSet (2, mamioFd); /* STD ERROR */

The above is not required for partitions to use application multiplexed I/O.

This character: Is replaced with:

Received CR
(‘\r’ or 0xD)

NEWLINE
(‘\n’ or 0xA)

Sent NEWLINE CR + NEWLINE
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9.4  I/O and COIL

(For information about the core OS interface library, see 3. Developing COIL 
Applications.)

An application that runs in a partition with a partition OS based on COIL has 
available an API for device I/O system calls. The application has access to kernel 
device drivers, including user-supplied kernel device drivers. 

COIL supplies a COIL API for I/O. These routines use the same device name 
strings as the vThreads device I/O routines and use them in the same manner.

Blocking Versus Non-blocking I/O (Compared to vThreads)

Both vThreads and COIL support blocking and non-blocking I/O system calls. 
However, vThreads abstracts the details so that the caller is not aware of whether 
the call blocks or whether the I/O work is handed off to a worker task. This 
non-blocking I/O infrastructure is not provided in COIL, and so the user partition 
OS must provide non-blocking I/O if it is needed.

The blocking I/O case is simple, since the system call simply does not return until 
the device I/O activity has been completed and the results are returned. This 
occurs identically in both a vThreads partition and a partition based on COIL

Consider the case where worker tasks are present and an application in a 
COIL-based partition makes a device I/O call. The call returns immediately to the 
caller with a return value of COIL_SYSCALL_PENDING. It is then up to the 
application to determine what to do until the device I/O work is complete. (If a 
vThreads partition makes the call, the calling thread is blocked on a semaphore 
and, therefore, does not return to the calling application.)

When the device I/O operation completes, a COIL_EVENT_SYSCALL_COMPLETE 
pseudo-interrupt is delivered to the partition. (In a vThreads partition, this 
pseudo-interrupt releases the calling thread from its semaphore and lets it return 
to the caller.) In the case of a partition OS based on COIL, it is up to the 
user-provided pseudo-interrupt handler routine to determine how to proceed.
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Figure 9-5 shows the flow of control for a vThreads application running I/O with 
worker tasks. Note that the application is unaware that worker tasks are used.

Figure 9-5 Non-blocking vThreads I/O (Worker Tasks Present)
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In contrast, Figure 9-6 shows the flow of control for a COIL-based application 
running I/O without worker tasks.

It is the responsibility of the application to check whether 
COIL_SYSCALL_PENDING was returned from the system call and to decide what 
to do until the COIL_EVENT_SYSCALL_COMPLETE pseudo-interrupt arrives.

Non-blocking COIL I/O (Worker Tasks Present)

When worker tasks are present, the core OS might defer device I/O calls. In this 
case, the I/O system call returns immediately with the COIL_SYSCALL_PENDING 
return code. Once the device I/O operation completes, the core OS delivers a 
COIL_EVENT_SYSCALL_COMPLETE pseudo-interrupt to the COIL-based partition 
OS, which in turn passes it to the application’s pseudo-interrupt handler.

To correlate the original device I/O call with the subsequent 
COIL_EVENT_SYSCALL_COMPLETE pseudo-interrupt, the application passes two 
user-provided, unique IDs to each device I/O API routine; the IDs are returned in 
the corresponding pseudo-interrupt structure. It is the responsibility of the user 
partition OS to manage the unique IDs and to perform the correlation. The 
pseudo-interrupt structure is defined as follows, where the first two data fields 

Figure 9-6 Blocking COIL I/O (No Worker Tasks)
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(data1 and data2) correspond to the IDs if evtType is 
COIL_EVENT_SYSCALL_COMPLETE:

typedef struct COIL_EVENT
{
COIL_EVENT_TYPE evtType; /* event type */
int data1; /* event data word 1 */
int data2; /* event data word 2 */
int data3; /* event data word 3 */
int data4; /* event data word 4 */
} coil_event;

Figure 9-7 shows an overall flow of a COIL I/O call when worker tasks are present 
(non-blocking I/O).

Blocking I/O (No Worker Tasks)

In the case where worker tasks are not used, the device I/O routines may block in 
the core OS. In this case, the COIL I/O system call does not return to the 
application until the operation has been completed.

When worker tasks are absent, the unique IDs provided in the device I/O APIs are 
ignored.

Figure 9-7 Non-blocking COIL I/O (Worker Tasks Present)
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Figure 9-8 shows an overall flow of a COIL I/O call when worker tasks are not 
present.

Figure 9-8 Blocking COIL I/O (No Worker Tasks)

time

caller blocks

application is blocked partition processes
I/O result

runs I/O call

core OS

call returns

I/O call

COIL-based
partition OS



269

   A
VxWorks 5.5

A.1 Introduction 269

A.2 VxWorks Tasks 270

A.3 Intertask Communications 294

A.4 VxWorks Events 317

A.5 Watchdog Timers 322

A.6 Interrupt Service Routines 323

A.1  Introduction

Real-time systems are based on the complementary concepts of multitasking and 
intertask communications. A multitasking environment lets a real-time 

NOTE:  The vThreads partition OS is based on the VxWorks 5.5 RTOS. The basics 
of VxWorks 5.5 are described in this appendix, which is taken almost verbatim 
from the VxWorks Programmer’s Guide, 5.5. In this appendix, VxWorks refers to 
VxWorks 5.5. In addition, what this appendix calls tasks are called threads in a 
vThreads partition. The scheduler that is mentioned is equivalent to the one that 
schedules threads in a partition.

For information on how vThreads differs from VxWorks 5.5, see 2. Developing 
vThreads Applications.
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application be constructed as a set of independent tasks, each with its own thread 
of execution and set of system resources. The intertask communication facilities let 
these tasks synchronize and communicate in order to coordinate their activity. In 
VxWorks, the intertask communication facilities range from fast semaphores to 
message queues and from pipes to network-transparent sockets.

Another key run-time facility is hardware interrupt handling, because interrupts 
are the usual mechanism to inform a system of external events.

This appendix uses the qualifier Wind to identify certain VxWorks kernel objects.

A.2  VxWorks Tasks

It is often essential to organize applications into independent, though cooperating, 
programs. Each of these programs, while running, is called a task. In VxWorks, 
tasks have immediate, shared access to most system resources, while also 
maintaining enough separate context to maintain individual threads of control.

The POSIX standard includes the concept of a thread, which is similar to a task, but 
with some additional features. For details, see 5.4 POSIX Threads, p.92.

A.2.1  Multitasking

Multitasking provides the fundamental mechanism for an application to control 
and react to multiple, discrete real-world events. The VxWorks real-time kernel 
provides the basic multitasking environment. Multitasking creates the appearance 
of many threads of execution running concurrently when, in fact, the kernel 
interleaves their running on the basis of a scheduling algorithm. Each task has its 
own context, which is the CPU environment and system resources that the task 
sees each time it is scheduled to run by the kernel. On a context switch, a task’s 
context is saved in the task control block (TCB). 

A task’s context includes:

■ a thread of execution (that is, the task’s program counter)

■ the CPU registers and (optionally) floating-point registers

■ a stack for dynamic variables and routine calls
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■ I/O assignments for standard input, output, and error

■ a delay timer

■ a time-slice timer

■ kernel control structures

■ signal handlers

■ debugging and performance monitoring values

A.2.2  Task State Transition

The kernel maintains the current state of each task in the system. A task changes 
from one state to another as a result of kernel routine calls made by the application. 
When created, tasks enter the suspended state. Activation is necessary for a created 
task to enter the ready state. The activation phase is extremely fast, enabling 
applications to pre-create tasks and activate them in a timely manner. An 
alternative is the spawning primitive, which lets a task be created and activated 
with a single routine. Tasks can be deleted from any state. 

Table A-1 Task State Symbols

State Symbol Description

READY The state of a task that is not waiting for any resource other than 
the CPU.

PEND The state of a task that is blocked due to the unavailability of some 
resource.

DELAY The state of a task that is asleep for some duration.

SUSPEND The state of a task that is unavailable to run. This state is used 
primarily for debugging. Suspension does not inhibit state 
transition, only the task’s running. Thus, pended-suspended tasks 
can still unblock and delayed-suspended tasks can still awaken. 

DELAY + S The state of a task that is both delayed and suspended.

PEND + S The state of a task that is both pended and suspended.

PEND + T The state of a task that is pended with a timeout value.
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Table A-1 describes the state symbols that you see when working with the 
development tools. Figure A-1 shows the corresponding state diagram of the Wind 
kernel states.

PEND + S + T The state of a task that is both pended with a timeout value and 
suspended.

state + I The state of task specified by state, plus an inherited priority.

Table A-1 Task State Symbols (cont’d)

State Symbol Description

Figure A-1 Task State Transitions
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A.2.3  Wind Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks. 
The default algorithm in VxWorks is priority-preemptive scheduling. You can also 
select round-robin scheduling for your applications. Both algorithms rely on the 
task’s priority. The Wind kernel has 256 priority levels, numbered 0 through 255. 
Priority 0 is the highest and priority 255 is the lowest. Tasks are assigned a priority 
when created. You can also change a task’s priority level while it is running by 
calling taskPrioritySet( ). The ability to change task priorities dynamically lets 
applications track precedence changes in the real world. 

The routines that control task scheduling are listed in Table A-2. 

POSIX also provides a scheduling interface. For more information, see 5.5 POSIX 
Scheduling Interface, p.97.

Priority-Preemptive Scheduling 

A priority-preemptive scheduler preempts the CPU when a task has a higher 
priority than the running task. Thus, the kernel ensures that the CPU is always 
allocated to the highest-priority task that is ready to run. This means that if a task—
with a higher priority than that of the current task—becomes ready to run, the 
kernel immediately saves the current task’s context, and switches to the context of 
the higher-priority task. For example, in Figure A-2, task t1 is preempted by 
higher-priority task t2, which in turn is preempted by t3. When t3 completes, t2 
continues running. When t2 completes running, t1 continues running. 

Table A-2 Task Scheduler Control Routines

Call Description

kernelTimeSlice( ) Controls round-robin scheduling.

taskPrioritySet( ) Changes the priority of a task.

taskLock( ) Disables task rescheduling.

taskUnlock( ) Enables task rescheduling.
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The disadvantage of this scheduling algorithm is that, when multiple tasks of 
equal priority must share the processor, if a single task is never blocked, it can 
usurp the processor. Thus, other equal-priority tasks are never given a chance to 
run. Round-robin scheduling solves this problem.

Round-Robin Scheduling

A round-robin scheduling algorithm attempts to share the CPU fairly among all 
ready tasks of the same priority. Round-robin scheduling uses time slicing to 
achieve fair allocation of the CPU to all tasks with the same priority. Each task, in 
a group of tasks with the same priority, runs for a defined interval or time slice. 

Round-robin scheduling is enabled by calling kernelTimeSlice( ), which takes a 
parameter for a time slice, or interval. This interval is the amount of time each task 
is allowed to run before relinquishing the processor to another equal-priority task. 
Thus, the tasks rotate, each running for an equal interval of time. No task gets a 
second slice of time before all other tasks in the priority group have been allowed 
to run.

In most systems, it is not necessary to enable round-robin scheduling, the 
exception being when multiple copies of the same code are to be run, such as in a 
user interface task.

If round-robin scheduling is enabled, and preemption is enabled for the running 
task, the system tick handler increments the task’s time-slice count. When the 
specified time-slice interval is completed, the system tick handler clears the 

Figure A-2 Priority Preemption
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counter and the task is placed at the tail of the list of tasks at its priority level. New 
tasks joining a given priority group are placed at the tail of the group with their 
run-time counter initialized to zero.

Enabling round-robin scheduling does not affect the performance of task context 
switches, nor is additional memory allocated.

If a task blocks or is preempted by a higher-priority task during its interval, its 
time-slice count is saved and then restored when the task becomes eligible to run. 
In the case of preemption, the task resumes running once the higher-priority task 
completes, assuming that no other task of a higher priority is ready to run. In the 
case where the task blocks, it is placed at the tail of the list of tasks at its priority 
level. If preemption is disabled during round-robin scheduling, the time-slice 
count of the running task is not incremented.

Time-slice counts are accrued by the task that is running when a system tick occurs, 
regardless of whether the task has run for the entire tick interval. Due to 
preemption by higher-priority tasks or ISRs stealing CPU time from the task, it is 
possible for a task to effectively run for either more or less total CPU time than its 
allotted time slice.

Figure A-3 shows round-robin scheduling for three tasks of the same priority: t1, 
t2, and t3. Task t2 is preempted by a higher-priority task t4 but resumes at the count 
where it left off when t4 is finished. 

Preemption Locks

Figure A-3 Round-Robin Scheduling
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The Wind scheduler can be explicitly disabled and enabled on a per-task basis with 
taskLock( ) and taskUnlock( ). When a task disables the scheduler by calling 
taskLock( ), no priority-based preemption can take place while that task is 
running.

However, if the task explicitly blocks or suspends, the scheduler selects the next 
highest-priority eligible task to run. When the preemption-locked task unblocks 
and begins running again, preemption is again disabled.

Note that preemption locks prevent task context switching, but do not lock out 
interrupt handling.

Preemption locks can be used to achieve mutual exclusion; however, keep the 
duration of preemption locking to a minimum. For more information, see 
A.3.2 Mutual Exclusion, p.295.

For information on possible interaction with health monitoring, see Dispatching 
Rules, p.205.

A Comparison of taskLock( ) and intLock( ) 

When using taskLock( ), consider that it does not achieve mutual exclusion. 
Generally, if interrupted by hardware, the system eventually returns to your task. 
However, if you block, you lose task lockout. Thus, before you return from the 
routine, taskUnlock( ) should be called.

When a task is accessing a variable or data structure that is also accessed by an ISR, 
you can use intLock( ) to achieve mutual exclusion. Using intLock( ) makes the 
operation atomic in a single processor environment. It is best if the operation is 
kept minimal, meaning a few lines of code and no routine calls. If the call is too 
long, it can directly impact interrupt latency and cause the system to become far 
less deterministic.

Driver Support Task Priority

All application tasks should be priority 100 - 250. However, driver support tasks 
(tasks associated with an ISR) can be in the range of 51-99. These tasks are crucial. 
For example, if a support task fails while copying data from a chip, the device loses 
that data (for example, a network interface, an HDLC, and so on). The system 
netTask( ) is at priority 50, so user tasks should not be assigned priorities below 
that task. If they are, the network connection could die and prevent debugging 
capabilities with Workbench.
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A.2.4  Task Control

The following sections give an overview of the basic VxWorks task routines, which 
are found in the VxWorks library taskLib. These routines provide the means for 
task creation and control, as well as for retrieving information about tasks. See the 
VxWorks 653 vThreads API Reference entry for taskLib for further information. 

For interactive use, you can control VxWorks tasks from the host or target shell. See 
the Workbench User’s Guide, VxWorks 653 Version.

Task Creation and Activation

The routines listed in Table A-3 are used to create tasks.

The arguments to taskSpawn( ) are the new task’s name (an ASCII string), the 
task’s priority, an options word, the stack size, the main routine address, and ten 
arguments to be passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, arg1, …arg10 );

The taskSpawn( ) routine creates the new task context, which includes allocating 
the stack and setting up the task environment to call the main routine (an ordinary 
routine) with the specified arguments. The new task begins running at the entry to 
the specified routine.

The taskSpawn( ) routine embodies the lower-level steps of allocation, 
initialization, and activation. The initialization and activation routines are 
provided by taskInit( ) and taskActivate( ); however, Wind River recommends 
you use these routines only when you need greater control over allocation or 
activation. 

Table A-3 Task Creation Routines

Call Description

taskSpawn( ) Spawns (creates and activates) a new task.

taskInit( ) Initializes a new task.

taskActivate( ) Activates an initialized task.
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Task Stack

It is hard to know exactly how much stack space to allocate without 
reverse-engineering the system configuration. To help avoid a stack overflow, and 
task stack corruption, you can take the following approach. When initially 
allocating the stack, make it much larger than anticipated (for example, from 20 KB 
to up to 100 KB, depending upon the type of application). Then, periodically 
monitor the stack with checkStack( ), and if it is safe to make them smaller, modify 
the size. 

Task Names and IDs

When a task is spawned, you can specify an ASCII string of any length to be the 
task name. VxWorks returns a task ID, which is a four-byte handle to the task’s 
data structures. Most VxWorks task routines take a task ID as the argument 
specifying a task. VxWorks uses a convention that a task ID of 0 (zero) always 
implies the calling task.

VxWorks does not require that task names be unique, but it is recommended that 
unique names be used in order to avoid confusing the user. Furthermore, to use the 
development tools to their best advantage, task names should not conflict with 
globally visible routine or variable names. To avoid name conflicts, VxWorks uses 
a convention of prefixing all task names started from the target with the character 
t and task names started from the host with the character u.

You may not want to name some or all your application’s tasks. If a NULL pointer 
is supplied for the name argument of taskSpawn( ), VxWorks assigns a unique 
name. The name is of the form tN, where N is a decimal integer that is incremented 
by one for each unnamed task that is spawned.

The taskLib routines listed in Table A-4 manage task IDs and names.

Table A-4 Task Name and ID Routines

Call Description

taskName( ) Gets the task name associated with a task ID.

taskNameToId( ) Looks up the task ID associated with a task name.

taskIdSelf( ) Gets the calling task’s ID.

taskIdVerify( ) Verifies the existence of a specified task.
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Task Options

When a task is spawned, you can pass in one or more option parameters, which are 
listed in Table A-5. The result is determined by performing a logical OR operation 
on the specified options.

You must include the VX_FP_TASK option when creating a task that:

■ Performs floating-point operations.

■ Calls any routine that returns a floating-point value.

■ Calls any routine that takes a floating-point value as an argument.

For example:

tid = taskSpawn ("tMyTask", 90, VX_FP_TASK, 20000, myFunc, 2387, 0, 0,
0, 0, 0, 0, 0, 0, 0);

Some routines perform floating-point operations internally. The VxWorks 
documentation for each of these routines clearly states the need to use the 
VX_FP_TASK option. 

After a task is spawned, you can examine or alter task options by using the 
routines listed in Table A-6. Only the VX_UNBREAKABLE option can be altered.

Table A-5 Task Options

Name Hex Value Description

VX_FP_TASK 0x0008 Runs with the floating-point coprocessor.

VX_NO_STACK_FILL 0x0100 Does not fill the stack with 0xee.

VX_PRIVATE_ENV 0x0080 Runs a task with a private environment.

VX_UNBREAKABLE 0x0002 Disables breakpoints for the task.

VX_DSP_TASK 0x0200 1 = DSP coprocessor support.

VX_ALTIVEC_TASK 0x0400 1 = ALTIVEC coprocessor support.
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Task Information

The routines listed in Table A-7 get information about a task by taking a snapshot 
of a task’s context when the routine is called. Because the task state is dynamic, the 
information may not be current unless the task is known to be dormant (that is, 
suspended).

Task Deletion and Deletion Safety

Tasks can be dynamically deleted from the system. VxWorks includes the routines 
listed in Table A-8 to delete tasks and to protect tasks from unexpected deletion.

Table A-6 Task Option Routines

Call Description

taskOptionsGet( ) Examines task options.

taskOptionsSet( ) Sets task options.

Table A-7 Task Information Routines

Call Description

taskIdListGet( ) Fills an array with the IDs of all active tasks.

taskInfoGet( ) Gets information about a task.

taskPriorityGet( ) Examines the priority of a task.

taskRegsGet( ) Examines a task’s registers (cannot be used with the current 
task).

taskRegsSet( ) Sets a task’s registers (cannot be used with the current task).

taskIsSuspended( ) Checks whether a task is suspended.

taskIsReady( ) Checks whether a task is ready to run.

taskTcb( ) Gets a pointer to a task’s control block.
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Tasks implicitly call exit( ) if the entry routine specified during task creation 
returns. A task can kill another task or itself by calling taskDelete( ).

When a task is deleted, no other task is notified of this deletion. The routines 
taskSafe( ) and taskUnsafe( ) address problems that stem from unexpected 
deletion of tasks. The taskSafe( ) routine protects a task from deletion by other 
tasks. This protection is often needed when a task runs in a critical region or 
engages a critical resource.

For example, a task might take a semaphore for exclusive access to some data 
structure. While running inside the critical region, the task might be deleted by 
another task. Because the task is unable to complete the critical region, the data 
structure might be left in a corrupt or inconsistent state. Furthermore, because the 
semaphore can never be released by the task, the critical resource is now 
unavailable for use by any other task and is essentially frozen.

Using taskSafe( ) to protect the task that took the semaphore prevents such an 
outcome. Any task that tries to delete a task protected with taskSafe( ) is blocked. 
When finished with its critical resource, the protected task can make itself available 
for deletion by calling taskUnsafe( ), which readies any deleting task. To support 

Table A-8 Task-Deletion Routines

Call Description

exit( ) Terminates the calling task and frees memory 
(task stacks and task control blocks only)

Memory that a task allocates while it runs is not freed when 
the task is terminated.

taskDelete( ) Terminates a specified task and frees memory 
(task stacks and task control blocks only).*

taskSafe( ) Protects the calling task from deletion.

taskUnsafe( ) Undoes a taskSafe( ) (makes the calling task available for 
deletion).

! WARNING:  Make sure that tasks are not deleted at inappropriate times. Before an 
application deletes a task, the task should release all shared resources that it holds.

NOTE:  You can use VxWorks events to send an event when a task finishes running. 
For more information, see A.4 VxWorks Events, p.317.
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nested deletion-safe regions, a count is kept of the number of times taskSafe( ) and 
taskUnsafe( ) are called. Deletion is allowed only when the count is zero, that is, 
there are as many “unsafes” as “safes.” Only the calling task is protected. A task 
cannot make another task safe or unsafe from deletion.

The following code fragment shows how to use taskSafe( ) and taskUnsafe( ) to 
protect a critical region of code:

taskSafe ();
semTake (semId, WAIT_FOREVER); /* Block until semaphore available */
.
. /* critical region code */
.
semGive (semId); /* Release semaphore */
taskUnsafe ();

Deletion safety is often coupled closely with mutual exclusion, as in this example. 
For convenience and efficiency, a special kind of semaphore, the mutual-exclusion 
semaphore, offers an option for deletion safety. For more information, see 
Mutual-Exclusion Semaphores, p.302.

Task Control

The routines listed in Table A-9 provide direct control over a task’s running.

VxWorks debugging facilities require routines for suspending and resuming a 
task. They are used to freeze a task’s state for examination.

While they run, tasks may need to be restarted in response to some catastrophic 
error. The restart mechanism, taskRestart( ), recreates a task with the original 
creation arguments.

Table A-9 Task Control Routines

Call Description

taskSuspend( ) Suspends a task.

taskResume( ) Resumes a task.

taskRestart( ) Restarts a task.

taskDelay( ) Delays a task. Delay units are ticks, resolution in ticks.

nanosleep( ) Delays a task. Delay units are nanoseconds, resolution in ticks.



A  VxWorks 5.5
A.2  VxWorks Tasks

283

A

Delay operations provide a simple mechanism for a task to sleep for a fixed 
duration. Task delays are often used for polling applications. For example, to delay 
a task for half a second without making assumptions about the clock rate, call:

taskDelay (sysClkRateGet ( ) / 2);

The sysClkRateGet( ) routine returns the speed of the system clock in ticks per 
second. Instead of taskDelay( ), you can use the POSIX nanosleep( ) routine to 
specify a delay directly in time units. Only the units are different. The resolution of 
both delay routines is the same, and depends on the system clock. For details, see 
5.2 POSIX Clocks and Timers, p.90.

As a side effect, taskDelay( ) moves the calling task to the end of the ready queue 
for tasks of the same priority. In particular, you can yield the CPU to any other 
tasks of the same priority by “delaying” for zero clock ticks:

taskDelay (NO_WAIT); /* allow other tasks of same priority to run */

A delay of zero duration is possible only with taskDelay( ). The nanosleep( ) 
routine considers it an error.

System clock resolution is typically 60 Hz (60 times per second). This is a relatively 
long time for one clock tick, and would be long even at 100 Hz or 120 Hz. Thus, 
since periodic delaying is effectively polling, you may want to consider using 
event-driven techniques as an alternative. 

A.2.5  Tasking Extensions

To let additional task-related facilities be added to the system, VxWorks provides 
hook routines that let additional routines be called when a task is created, a task 
context switch occurs, or a task is deleted. There are spare fields in the task control 
block (TCB) available for application extension of a task’s context. 

These hook routines are listed in Table A-10. For more information, see the 
reference entry for taskHookLib. 

Table A-10 Task Create, Switch, and Delete Hooks

Call Description

taskCreateHookAdd( ) Adds a routine to be called at every task create.

taskCreateHookDelete( ) Deletes a previously added task create routine.

taskSwitchHookAdd( ) Adds a routine to be called at every task switch.
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When using hook routines, be aware of the following restrictions:

■ Task switch hook routines must not assume any VM context is current other 
than the kernel context (as with ISRs).

■ Task switch and swap hooks must not rely on knowledge of the current task or 
call any routine that relies on this information (for example, taskIdSelf( )).

■ A switch or swap hook must not rely on the taskIdVerify(pOldTcb) 
mechanism to determine if the delete hook, if any, has already run for the 
self-destructing task case. Instead, some other state information needs to be 
changed. For example, using a NULL pointer in the delete hook to be detected 
by the switch hook.

The taskCreateAction hook routines run in the context of the creator task, and any 
new objects are owned by the creator task’s home protection domain, or the creator 
task itself. It may, therefore, be necessary to assign the ownership of new objects to 
the task that is created in order to prevent undesirable object reclamation in the 
event that the creator task terminates.

User-installed switch hooks are called within the kernel context and therefore do 
not have access to all VxWorks facilities. Table A-11 summarizes the routines that 
can be called from a task switch hook. In general, any routine that does not involve 
the kernel can be called.

taskSwitchHookDelete( ) Deletes a previously added task switch routine.

taskDeleteHookAdd( ) Adds a routine to be called at every task delete.

taskDeleteHookDelete( ) Deletes a previously added task delete routine.

Table A-10 Task Create, Switch, and Delete Hooks (cont’d)

Call Description
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For information about POSIX extensions, see 5. Developing POSIX Applications.

A.2.6  Task Error Status: errno 

By convention, C library routines set a single global integer variable errno to an 
appropriate error number whenever the routine encounters an error. This 
convention is specified as part of the ANSI C standard.

Layered Definitions of errno 

In VxWorks, errno is simultaneously defined in two different ways. There is, as in 
ANSI C, an underlying global variable called errno, which you can display by 

Table A-11 Routines that Can Be Called by Task Switch Hooks

Library Routines

bLib All routines

fppArchLib fppRestore( )
fppSave( )

intLib intContext( )
intCount( )
intLock( )
intVecSet( )
intVecGet( )
intUnlock( )

lstLib All routines except lstFree( )

mathALib All are callable if fppRestore( ) or fppSave( ) is used

rngLib All routines except rngCreate( ) and roundlet( )

taskLib taskIdDefault( )
taskIdVerify( )
taskIsReady( )
taskIsSuspended( )
taskTcb( )

vxLib vxTas( )
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name using the development tools. (See the Workbench User’s Guide, VxWorks 653 
Version.) However, errno is also defined as a macro in errno.h. This is the definition 
visible to all VxWorks, except one routine. The macro is defined as a call to an 
__errno( ) routine that returns the address of the global errno variable. The 
__errno( ) routine is the one routine that does not itself use the macro definition for 
errno). This yields a useful feature: because __errno( ) is a routine, you can place 
breakpoints on it to determine where a particular error occurs. 

Nevertheless, because the result of the errno macro is the address of the global 
errno variable, C programs can set the value of errno in the standard way:

errno = someErrorNumber;

As with any other errno implementation, do not have a local variable of the same 
name.

A Separate errno Value for Each Task

In VxWorks, the underlying global errno is a single predefined global variable that 
can be referenced directly by application code that is linked with VxWorks (either 
statically on the host or dynamically at load time). However, for errno to be useful 
in the multitasking environment of VxWorks, each task must see its own version 
of errno. Therefore errno is saved and restored by the kernel as part of each task’s 
context every time a context switch occurs. Similarly, ISRs see their own versions 
of errno.

This is accomplished by saving and restoring errno on the interrupt stack as part 
of the interrupt enter and exit code. Thus, regardless of the VxWorks context, an 
error code can be stored or consulted with direct manipulation of the global 
variable errno.

Error Return Convention

Almost all VxWorks routines follow a convention that indicates simple success or 
failure of their operation by the actual return value of the routine. Many routines 
return only the status values OK (0) or ERROR (-1). Some routines that normally 
return a nonnegative number (for example, open( ) returns a file descriptor) also 
return ERROR to indicate an error. Routines that return a pointer usually return 
NULL (0) to indicate an error. In most cases, a routine returning such an error 
indication also sets errno to the specific error code.
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The global variable errno is never cleared by VxWorks routines. Thus, its value 
always indicates the last error status set. When a VxWorks routine gets an error 
indication from a call to another routine, it usually returns its own error indication 
without modifying errno. Thus, the value of errno that is set in the lower-level 
routine remains available as the indication of error type.

For example, if malloc( ) fails because insufficient memory remains in the pool, it 
sets errno to a code indicating an insufficient-memory error was encountered in 
the memory allocation library, memLib. The malloc( ) routine then returns NULL 
to indicate the failure. The calling routine, receiving the NULL from malloc( ), then 
returns its own error indication of ERROR. However, it does not alter errno leaving 
it at the “insufficient memory” code set by malloc( ). For example:

if ((pNew = malloc (CHUNK_SIZE)) == NULL)
return (ERROR);

It is recommended that you use this mechanism in your own routines, setting and 
examining errno as a debugging technique. A string constant associated with 
errno can be displayed using printErrno( ) if the errno value has a corresponding 
string entered in the error-status symbol table, statSymTbl. See the reference entry 
errnoLib for details on error-status values and building statSymTbl.

Assignment of Error Status Values

A VxWorks errno value encodes the module (library) that issues the error in the 
most significant two bytes. It uses the least significant two bytes for individual 
error numbers. Module numbers are in the range 1–500; errno values with a 
“module” number of zero are used for source compatibility.

All other errno values (that is, positive values greater than or equal to 501 
left-shifted 16, and all negative values) are available for application use. 

See the reference entry on errnoLib for more information about defining and 
decoding errno values with this convention.

A.2.7  Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as 
illegal instructions, bus or address errors, divide by zero, and so forth. The 
VxWorks exception handling package takes care of all such exceptions. The default 
exception handler suspends the task that caused the exception, and saves the state 
of the task at the point of the exception. The kernel and other tasks continue 
uninterrupted. A description of the exception is transmitted to the development 
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tools, which can be used to examine the suspended task. For details, see the 
Workbench User’s Guide, VxWorks 653 Version.

Tasks can also attach their own handlers for certain hardware exceptions through 
the signal facility. If a task has supplied a signal handler for an exception, the 
default exception handling described above is not performed. A user-defined 
signal handler is useful for recovering from catastrophic events. Typically, 
setjmp( ) is called to define the point in the program where control is restored, and 
longjmp( ) is called in the signal handler to restore that context. The longjmp( ) 
routine restores the state of the task’s signal mask.

Signals are also used for signaling software exceptions as well as hardware 
exceptions. They are described in more detail in A.3.6 Signals, p.315 and in the 
reference entry for sigLib.

A.2.8  Shared Code and Reentrancy

In VxWorks, it is common for a single copy of a routine or routine library to be 
called by many different tasks. For example, many tasks may call printf( ), but 
there is only a single copy of the routine in the system. A single copy of code that 
is run by multiple tasks is called shared code. VxWorks dynamic linking facilities 
make this especially easy. Shared code makes a system more efficient and easier to 
maintain. See Figure A-4. 

Figure A-4 Shared Code
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...
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myFunc (void)
{
...
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Shared code must be reentrant. A routine is reentrant if a single copy of the routine 
can be called from several task contexts simultaneously without conflict. Such 
conflict typically occurs when a routine modifies global or static variables, because 
there is only a single copy of the data and code. A routine’s references to such 
variables can overlap and interfere in invocations from different task contexts.

Most routines in VxWorks are reentrant. However, you should assume that any 
routine someName( ) is not reentrant if there is a corresponding routine named 
someName_r( ) — the latter is provided as a reentrant version of the routine. For 
example, because ldiv( ) has a corresponding ldiv_r( ) routine, you can assume 
that ldiv( ) is not reentrant.

VxWorks I/O and driver routines are reentrant, but require careful application 
design. For buffered I/O, Wind River recommends using file-pointer buffers on a 
per-task basis. At the driver level, it is possible to load buffers with streams from 
different tasks, due to the global file descriptor table in VxWorks.

This may or may not be desirable, depending on the nature of the application. For 
example, a packet driver can mix streams from different tasks because the packet 
header identifies the destination of each packet.

The majority of VxWorks routines use the following reentrancy techniques:

■ dynamic stack variables

■ global and static variables guarded by semaphores

■ task variables

Wind River recommends applying these same techniques when writing 
application code that can be called from several task contexts simultaneously.

In some cases, reentrant code is not preferable. A critical section should use a 
binary semaphore to guard it, or use intLock( ) or intUnlock( ) if called from by an 
ISR.

Dynamic Stack Variables

Many routines are pure code, having no data of their own except dynamic stack 
variables. They work exclusively on data provided by the caller as parameters. The 

NOTE:  Init( ) routines should be callable multiple times, even if logically they 
should be called only once. As a rule, routines should avoid static variables that 
keep state information. Init( ) routines are one exception, where using a static 
variable that returns the success or failure of the original Init( ) is appropriate.
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linked-list library, lstLib, is a good example of this. Its routines operate on lists and 
nodes provided by the caller in each routine call.

Routines of this kind are inherently reentrant. Multiple tasks can use such routines 
simultaneously, without interfering with each other, because each task does indeed 
have its own stack. See Figure A-5. 

Guarded Global and Static Variables

Some libraries encapsulate access to common data. This kind of library requires 
some caution because the routines are not inherently reentrant. Multiple tasks 
simultaneously calling the routines in the library might interfere with access to 
common variables. Such libraries must be made explicitly reentrant by providing 
a mutual-exclusion mechanism to prohibit tasks from simultaneously running 
critical sections of code. The usual mutual-exclusion mechanism is the mutex 
semaphore facility provided by semMLib and described in Mutual-Exclusion 
Semaphores, p.302.

Task Variables

Some routines that can be called by multiple tasks simultaneously may require 
global or static variables with a distinct value for each calling task. For example, 

Figure A-5 Stack Variables and Shared Code
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several tasks may reference a private buffer of memory and yet refer to it with the 
same global variable.

To accommodate this, VxWorks provides a facility called task variables that lets 
four-byte variables be added to a task’s context, so that the value of such a variable 
is switched every time a task switch occurs to or from its owner task. Typically, 
several tasks declare the same variable (four-byte memory location) as a task 
variable. Each of those tasks can then treat that single memory location as its own 
private variable. See Figure A-6. This facility is provided by taskVarAdd( ), 
taskVarDelete( ), taskVarSet( ), and taskVarGet( ), which are described in the 
reference entry for taskVarLib. 

Use this mechanism sparingly. Each task variable adds a few microseconds to the 
context switching time for its task, because the value of the variable must be saved 
and restored as part of the task’s context. Consider collecting all a module’s 
(library’s) task variables into a single dynamically allocated structure, and then 
making all accesses to that structure indirectly through a single pointer. This 
pointer can then be the task variable for all tasks using that module (library).

Figure A-6 Task Variables and Context Switches
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Multiple Tasks with the Same Main Routine

With VxWorks, it is possible to spawn several tasks with the same main routine. 
Each spawn creates a new task with its own stack and context. Each spawn can also 
pass the main routine different parameters to the new task. In this case, the same 
rules of reentrancy described in Task Variables, p.290 apply to the entire task.

This is useful when the same routine needs to be performed concurrently with 
different sets of parameters. For example, a routine that monitors a particular kind 
of equipment might be spawned several times to monitor several different pieces 
of that equipment. The arguments to the main routine could indicate the piece of 
equipment the task is to monitor.

In Figure A-7, multiple joints of the mechanical arm use the same code. The tasks 
manipulating the joints call joint( ). The joint number (jointNum) is used to 
indicate which joint on the arm to manipulate.

A.2.9  VxWorks System Tasks

Depending on its configuration, VxWorks may include a variety of system tasks. 
These are described below.

Figure A-7 Multiple Tasks Using the Same Code
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Root Task: tUsrRoot 

The root task is the first task that the kernel runs. The entry point of the root task 
is usrRoot( ) in:

installDir/target/config/all/usrConfig.c

and initializes most VxWorks facilities. It spawns such tasks as the logging task, the 
exception task, the network task, and the tRlogind daemon. Normally, the root 
task terminates and is deleted after all initialization has occurred. 

Logging Task: tLogTask 

The log task, tLogTask, is used by VxWorks modules (libraries) to log system 
messages without having to perform I/O in the current task context. For more 
information, see the reference entry for logLib.

Exception Task: tExcTask 

The exception task, tExcTask, supports the VxWorks exception handling package 
by performing functions that cannot occur at interrupt level. It is also used for 
actions that cannot be performed in the current task’s context, such as task suicide. 
It must have the highest priority in the system. Do not suspend, delete, or change 
the priority of this task. For more information, see the reference entry for excLib.

Tasks for Optional Components

The following VxWorks system tasks are created if their associated configuration 
constants are defined.

tShell 
If you have included the target shell in the VxWorks configuration, it is 
spawned as this task. Any routine or task that is called from the target shell, 
rather than spawned, runs in the tShell context. Configure VxWorks with the 
INCLUDE_SHELL component to include the target shell.

tTelnetd 
If you have included the target shell and the telnet facility in the VxWorks 
configuration, this daemon lets remote users log in to VxWorks with telnet. It 
accepts a remote login request from another VxWorks or host system and 
spawns the input task tTelnetInTask and output task tTelnetOutTask. These 
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tasks exist as long as the remote user is logged on. During the remote session, 
the shell’s (and any other task’s) input and output are redirected to the remote 
user. A tty-like interface is provided to the remote user through the use of the 
VxWorks pseudo-terminal driver, ptyDrv. See the reference entry for ptyDrv 
for further explanation. Configure VxWorks with the INCLUDE_TELNET 
component to include the telnet facility.

A.3  Intertask Communications

The complement to the multitasking routines described in A.2 VxWorks Tasks, 
p.270 is the intertask communication facilities. These facilities permit independent 
tasks to coordinate their actions.

VxWorks supplies a rich set of intertask communication mechanisms, including:

■ Shared memory for simple sharing of data.

■ Semaphores for basic mutual exclusion and synchronization.

■ Mutexes and condition variables for mutual exclusion and synchronization 
using POSIX interfaces.

■ Message queues and pipes for intertask message passing within a CPU.

■ Sockets and remote procedure calls for network-transparent intertask 
communication.

■ Signals for exception handling.

A.3.1  Shared Data Structures

The most obvious way for tasks to communicate is by accessing shared data 
structures. Because all tasks in VxWorks exist in a single linear address space, 
sharing data structures between tasks is trivial. See Figure A-8. Global variables, 
linear buffers, ring buffers, linked lists, and pointers can be referenced directly by 
code running in different contexts.
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A.3.2  Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to 
memory is crucial to avoid contention. Many methods exist for getting exclusive 
access to resources, and vary only in the scope of the exclusion. Such methods 
include disabling interrupts, disabling preemption, and resource locking with 
semaphores.

For information about POSIX mutexes, see 5.7 POSIX Mutexes and Condition 
Variables, p.108.

Interrupt Locks and Latency

The most powerful method available for mutual exclusion is the disabling of 
interrupts. Such a lock guarantees exclusive access to the CPU:

funcA ()
{
int lock = intLock();
.
. /* critical region of code that cannot be interrupted */
.
intUnlock (lock);
}

While this solves problems involving mutual exclusion with ISRs, it is 
inappropriate as a general-purpose mutual-exclusion method for most real-time 
systems, because it prevents the system from responding to external events for the 
duration of these locks. Interrupt latency is unacceptable whenever an immediate 

Figure A-8 Shared Data Structures
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response to an external event is required. However, interrupt locking can 
sometimes be necessary where mutual exclusion involves ISRs. In any situation, 
keep the duration of interrupt lockouts short.

Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion. 
While no other task is allowed to preempt the running task, ISRs are able to run the 
following:

funcA ()
{
taskLock ();
.
. /* critical region of code that cannot be interrupted */
.
taskUnlock ();
}

However, this method can lead to unacceptable real-time response. Tasks of higher 
priority are unable to run until the locking task leaves the critical region, even 
though the higher-priority task is not itself involved with the critical region. While 
this kind of mutual exclusion is simple, if you use it, make sure to keep the 
duration short. A better mechanism is provided by semaphores, discussed in 
A.3.3 Semaphores, p.296.

A.3.3  Semaphores

VxWorks semaphores are highly optimized and provide the fastest intertask 
communication mechanism in VxWorks. Semaphores are the primary means for 
addressing the requirements of both mutual exclusion and task synchronization, 
as described below:

■ For mutual exclusion semaphores interlock access to shared resources. They 
provide mutual exclusion with finer granularity than either interrupt 
disabling or preemptive locks, discussed in A.3.2 Mutual Exclusion, p.295.

! WARNING:  Do not call VxWorks system routines with interrupts locked. Violating 
this rule may re-enable interrupts unpredictably.

! WARNING:  The critical region code should not block. If it does, preemption could 
be re-enabled. 
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■ For synchronization semaphores coordinate a task’s running with external 
events.

There are three types of Wind semaphores, optimized to address different classes 
of problems:

■ Binary 

The fastest, most general-purpose semaphore. Optimized for synchronization 
or mutual exclusion.

■ Mutual exclusion 

A special binary semaphore optimized for problems inherent in mutual 
exclusion: priority inheritance, deletion safety, and recursion.

■ Counting 

Like the binary semaphore, but keeps track of the number of times a 
semaphore is given. Optimized for guarding multiple instances of a resource.

VxWorks provides not only the Wind semaphores, designed expressly for 
VxWorks, but also POSIX semaphores, designed for portability. An alternate 
semaphore library provides the POSIX-compatible semaphore interface. See 
5.6 POSIX Semaphores, p.101.

The semaphores described here are for use on a single CPU.

Semaphore Control

Instead of defining a full set of semaphore control routines for each type of 
semaphore, the Wind semaphores provide a single uniform interface for 
semaphore control. Only the creation routines are specific to the semaphore type. 
Table A-12 lists the semaphore control routines.

Table A-12 Semaphore Control Routines

Call Description 

semBCreate( ) Allocates and initializes a binary semaphore.

semCCreate( ) Allocates and initializes a counting semaphore.

semDelete( ) Terminates and frees a semaphore.

semFlush( ) Unblocks all tasks that are waiting for a semaphore.
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The semBCreate( ), semMCreate( ), and semCCreate( ) routines return a 
semaphore ID that serves as a handle on the semaphore during subsequent use by 
the other semaphore-control routines. When a semaphore is created, the queue 
type is specified. Tasks pending on a semaphore can be queued in priority order 
(SEM_Q_PRIORITY) or in first-in first-out order (SEM_Q_FIFO).

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements 
of both forms of task coordination: mutual exclusion and synchronization. The 
binary semaphore has the least overhead associated with it, making it particularly 
applicable to high-performance requirements. The mutual-exclusion semaphore 
described in Mutual-Exclusion Semaphores, p.302 is also a binary semaphore, but it 
has been optimized to address problems inherent to mutual exclusion. 
Alternatively, the binary semaphore can be used for mutual exclusion if the 
advanced features of the mutual-exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a flag that is available (full) or unavailable 
(empty). When a task takes a binary semaphore, with semTake( ), the outcome 
depends on whether the semaphore is available (full) or unavailable (empty) at the 
time of the call. See Figure A-9. If the semaphore is available (full), the semaphore 
becomes unavailable (empty) and the task continues running immediately. If the 
semaphore is unavailable (empty), the task is put on a queue of blocked tasks and 
enters a state of pending on the availability of the semaphore.

semGive( ) Gives a semaphore.

semMCreate( ) Allocates and initializes a mutual-exclusion semaphore.

semTake( ) Takes a semaphore.

Table A-12 Semaphore Control Routines (cont’d)

Call Description 

! WARNING:  The semDelete( ) routine terminates a semaphore and deallocates all 
associated memory. Take care when deleting semaphores, particularly those used 
for mutual exclusion, to avoid deleting a semaphore that another task still requires. 
Do not delete a semaphore unless the same task first succeeds in taking it.
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When a task gives a binary semaphore, using semGive( ), the outcome also 
depends on whether the semaphore is available (full) or unavailable (empty) at the 
time of the call. See Figure A-10. If the semaphore is already available (full), giving 
the semaphore has no effect at all. If the semaphore is unavailable (empty) and no 
task is waiting to take it, the semaphore becomes available (full). If the semaphore 
is unavailable (empty) and one or more tasks are pending on its availability, the 
first task in the queue of blocked tasks is unblocked, and the semaphore is left 
unavailable (empty).

Figure A-9 Taking a Semaphore
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Mutual Exclusion

Binary semaphores interlock access to a shared resource efficiently. Unlike 
disabling interrupts or preemptive locks, binary semaphores limit the scope of the 
mutual exclusion to only the associated resource. In this technique, a semaphore is 
created to guard the resource. Initially the semaphore is available (full).

/* includes */
#include "vxWorks.h"
#include "semLib.h"

SEM_ID semMutex;

/* Create a binary semaphore that is initially full. Tasks *
* blocked on semaphore wait in priority order. */

semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. As long 
as the task keeps the semaphore, all other tasks seeking access to the resource are 
blocked from running. When the task is finished with the resource, it gives back 
the semaphore, allowing another task to use the resource.

Thus, all accesses to a resource requiring mutual exclusion are bracketed with 
semTake( ) and semGive( ) pairs:

semTake (semMutex, WAIT_FOREVER);
.
. /* critical region, only accessible by a single task at a time */
.
semGive (semMutex);

Synchronization

When used for task synchronization, a semaphore can represent a condition or 
event that a task is waiting for. Initially, the semaphore is unavailable (empty). A 
task or ISR signals the occurrence of the event by giving the semaphore (see 
A.6 Interrupt Service Routines, p.323 for a complete discussion of ISRs). Another 
task waits for the semaphore by calling semTake( ). The waiting task blocks until 
the event occurs and the semaphore is given.

Note the difference in sequence between semaphores used for mutual exclusion 
and those used for synchronization. For mutual exclusion, the semaphore is 
initially full, and each task first takes, then gives back the semaphore. For 
synchronization, the semaphore is initially empty, and one task waits to take the 
semaphore given by another task.

In Example A-1, init( ) creates the binary semaphore, attaches an ISR to an event, 
and spawns a task to process the event. The task1( ) routine runs until it calls 
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semTake( ). It remains blocked until an event causes the ISR to call semGive( ). 
When the ISR completes, task1( ) runs to process the event. There is an advantage 
of handling event processing within the context of a dedicated task: less processing 
takes place at interrupt level, thereby reducing interrupt latency. This model of 
event processing is recommended for real-time applications.

Example A-1 Using Semaphores for Task Synchronization 

/* This example shows the use of semaphores for task synchronization. */

/* includes */
#include "vxWorks.h"
#include "semLib.h"
#include "arch/arch/ivarch.h" /* replace arch with architecture type */

SEM_ID syncSem; /* ID of sync semaphore */

init (
int someIntNum
)
{

/* create semaphore */
syncSem = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

/* spawn task used for synchronization. */
taskSpawn ("sample", 100, 0, 20000, task1, 0,0,0,0,0,0,0,0,0,0);
}

task1 (void)
{
... 
semTake (syncSem, WAIT_FOREVER); /* wait for event to occur */
printf ("task 1 got the semaphore\n");
... /* process event */
}

eventInterruptSvcRout (void)
{
... 
semGive (syncSem); /* let task 1 process event */
... 
}

Broadcast synchronization lets all processes that are blocked on the same 
semaphore to be unblocked atomically. Correct application behavior often requires 
a set of tasks to process an event before any task of the set has the opportunity to 
process further events. The semFlush( ) routine addresses this class of 
synchronization problem by unblocking all tasks pended on a semaphore.
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Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to 
address issues inherent in mutual exclusion, including priority inversion, deletion 
safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the 
binary semaphore, with the following exceptions:

■ It can be used only for mutual exclusion.

■ It can be given only by the task that took it.

■ It cannot be given from an ISR.

■ The semFlush( ) operation is illegal.

Priority Inversion

Figure A-11 illustrates a situation called priority inversion.

Priority inversion arises when a higher-priority task is forced to wait an indefinite 
period of time for a lower-priority task to complete. Consider the scenario in 
Figure A-11: t1, t2, and t3 are tasks of high, medium, and low priority, respectively. 
t3 has acquired some resource by taking its associated binary guard semaphore. 

Figure A-11 Priority Inversion
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When t1 preempts t3 and contends for the resource by taking the same semaphore, 
it becomes blocked. If you can be assured that t1 will block no longer than the time 
it normally takes t3 to finish with the resource, there is no problem, because the 
resource cannot be preempted. However, the low-priority task is vulnerable to 
preemption by medium-priority tasks (like t2), which could inhibit t3 from 
relinquishing the resource. This condition could persist, blocking t1 for an 
indefinite period of time. 

The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which 
enables a priority-inheritance algorithm. The priority-inheritance protocol assures 
that a task that holds a resource runs at the priority of the highest-priority task 
blocked on that resource. Once the task priority has been elevated, it remains at the 
higher level until all mutual-exclusion semaphores that the task holds are released. 
Then, the task returns to its normal, or standard, priority. Hence, the “inheriting” 
task is protected from preemption by any intermediate-priority tasks. This option 
must be used in conjunction with a priority queue (SEM_Q_PRIORITY).

In Figure A-12, priority inheritance solves the problem of priority inversion by 
elevating the priority of t3 to the priority of t1 during the time t1 is blocked on the 
semaphore. This protects t3, and indirectly t1, from preemption by t2.

Figure A-12 Priority Inheritance
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The following example creates a mutual-exclusion semaphore that uses the 
priority inheritance algorithm:

semId = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE);

Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical 
region guarded by semaphores, it is often desirable to protect the running task 
from being unexpectedly deleted. Deleting a task that is running in a critical region 
can be catastrophic. The resource might be left in a corrupted state and the 
semaphore guarding the resource left unavailable, effectively preventing all access 
to the resource.

The primitives taskSafe( ) and taskUnsafe( ) provide one solution to task deletion. 
However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE, 
which enables an implicit taskSafe( ) with each semTake( ), and a taskUnsafe( ) 
with each semGive( ). In this way, a task can be protected from deletion while it 
has the semaphore. This option is more efficient than the primitives taskSafe( ) 
and taskUnsafe( ), as the resulting code requires fewer entrances to the kernel.

semId = semMCreate (SEM_Q_FIFO | SEM_DELETE_SAFE);

Recursive Resource Access

Mutual-exclusion semaphores can be taken recursively. This means that the 
semaphore can be taken more than once by the task that holds it before finally 
being released. Recursion is useful for a set of routines that must call each other but 
that also require mutually exclusive access to a resource. This is possible because 
the system keeps track of which task is holding the mutual-exclusion semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be 
given the same number of times it is taken. This is tracked by a count that 
increments with each semTake( ) and decrements with each semGive( ).

Example A-2 Recursive Use of a Mutual-Exclusion Semaphore 

/* Function A requires access to a resource which it acquires by taking
* mySem; 
* Function A may also need to call function B, which also requires mySem:
*/

/* includes */
#include "vxWorks.h"
#include "semLib.h"
SEM_ID mySem;

/* Create a mutual-exclusion semaphore. */
init ()
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{
mySem = semMCreate (SEM_Q_PRIORITY);
}

funcA ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcA: Got mutual-exclusion semaphore\n");
... 
funcB ();
... 

semGive (mySem);
printf ("funcA: Released mutual-exclusion semaphore\n");
}

funcB ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcB: Got mutual-exclusion semaphore\n");
... 
semGive (mySem);
printf ("funcB: Releases mutual-exclusion semaphore\n");
}

Counting Semaphores

Counting semaphores are another means to implement task synchronization and 
mutual exclusion. The counting semaphore works like the binary semaphore 
except that it keeps track of the number of times a semaphore is given. Every time 
a semaphore is given, the count is incremented. Every time a semaphore is taken, 
the count is decremented. When the count reaches zero, a task that tries to take the 
semaphore is blocked. As with the binary semaphore, if a semaphore is given and 
a task is blocked, it becomes unblocked. However, unlike the binary semaphore, if 
a semaphore is given and no tasks are blocked, the count is incremented. This 
means that a semaphore that is given twice can be taken twice without blocking. 
Table A-13 shows an example time sequence of tasks taking and giving a counting 
semaphore that was initialized to a count of three (3).

Table A-13 Counting Semaphore Example

Semaphore Call Count after Call Resulting Behavior

semCCreate( ) 3 Semaphore initialized with an initial count of 3.

semTake( ) 2 Semaphore taken.

semTake( ) 1 Semaphore taken.

semTake( ) 0 Semaphore taken.
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Counting semaphores are useful for guarding multiple copies of resources. For 
example, the use of five tape drives might be coordinated using a counting 
semaphore with an initial count of five, or a ring buffer with 256 entries might be 
implemented using a counting semaphore with an initial count of 256. The initial 
count is specified as an argument to semCCreate( ).

Special Semaphore Options

The uniform Wind semaphore interface includes two special options. These 
options are not available for the POSIX-compatible semaphores described in 
5.6 POSIX Semaphores, p.101.

Timeouts

As an alternative to blocking until a semaphore becomes available, semaphore take 
operations can be restricted to a specified period of time. If the semaphore is not 
taken within that period, the take operation fails.

This behavior is controlled by a parameter to semTake( ) that specifies the amount 
of time in ticks that the task is willing to wait in the pended state. If the task 
succeeds in taking the semaphore within the allotted time, semTake( ) returns OK. 
The errno set when a semTake( ) returns ERROR due to timing out before 
successfully taking the semaphore depends upon the timeout value passed. 

A semTake( ) with NO_WAIT (0), which means do not wait at all, sets errno to 
S_objLib_OBJ_UNAVAILABLE. A semTake( ) with a positive timeout value returns 
S_objLib_OBJ_TIMEOUT. A timeout value of WAIT_FOREVER (-1) means wait 
indefinitely.

semTake( ) 0 Task blocks waiting for semaphore to be 
available.

semGive( ) 0 Task waiting is given semaphore.

semGive( ) 1 No task waiting for semaphore. Count 
incremented.

Table A-13 Counting Semaphore Example (cont’d)

Semaphore Call Count after Call Resulting Behavior
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Queues

Wind semaphores include the ability to select the queuing mechanism employed 
for tasks blocked on a semaphore. They can be queued based on either of two 
criteria: first-in first-out (FIFO) order, or priority order. See Figure A-13. 

Priority ordering better preserves the intended priority structure of the system at 
the expense of some overhead in semTake( ) in sorting the tasks by priority. A FIFO 
queue requires no priority sorting overhead and leads to constant-time 
performance. The selection of queue type is specified during semaphore creation 
with semBCreate( ), semMCreate( ), or semCCreate( ). Semaphores using the 
priority inheritance option (SEM_INVERSION_SAFE) must select priority-order 
queuing.

Semaphores and VxWorks Events

This section describes using VxWorks events with semaphores. You can also use 
VxWorks events with other VxWorks objects. For more information, see 
A.4 VxWorks Events, p.317. 

Figure A-13 Task Queue Types
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Using Events

A semaphore can send events to a task, if it is requested to do so by the task. To 
request that a semaphore send events, a task must register with the semaphore 
using semEvStart( ). From that point on, every time the semaphore is released with 
semGive( ), and as long as no other tasks are pending on it, the semaphore sends 
events to the registered task. To request that the semaphore stop sending events, 
the registered task calls semEvStop( ). 

Only one task can be registered with a semaphore at any given time. The events a 
semaphore sends to a task can be retrieved by the task using routines in eventLib. 
Details on when semaphores send events are documented in the reference entry for 
semEvStart( ). 

In some applications, the creator of a semaphore may want to know when a 
semaphore failed to send events. Such a scenario can occur if a task registers with 
a semaphore, and is subsequently deleted before having time to unregister. In this 
situation, a given operation could cause the semaphore to attempt to send events 
to the deleted task. Such an attempt would obviously fail. If the semaphore is 
created with the SEM_EVENTSEND_ERROR_NOTIFY option, the given operation 
returns an error. Otherwise, VxWorks handles the error quietly.

Using eventReceive( ), a task may pend on events meant to be sent by a 
semaphore. If the semaphore is deleted, the task pending on events is returned to 
the ready state, just like the tasks that may be pending on the semaphore itself.

Existing VxWorks API

The VxWorks event implementation does not propose to keep track of all the 
resources a task is currently registered with. Therefore, a resource can attempt to 
send events to a task that no longer exists. For example, a task may be deleted or 
may self-destruct while still registered with a resource to receive events. This error 
is detected only when the resource becomes free, and is reported by having 
semGive( ) return ERROR. However, in this case, the error does not mean the 
semaphore was not given or that the message was not properly delivered. It simply 
means the resource could not send events to the registered task. 

Performance Impact 

When a task is pending for the semaphore, there is no performance impact on 
semGive( ). However, if this is not the case (for example, if the semaphore is free), 
the call to semGive( ) takes longer to complete since events may have to be sent to 
a task. Furthermore, the call may unpend a task waiting for events, which means 
the caller may be preempted, even if no task is waiting for the semaphore.
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The semDestroy( ) routine performance is impacted in cases where a task is 
waiting for events from the semaphore, since the task has to be awakened. Also 
note that, in this case, events need not be sent. 

A.3.4  Message Queues

Modern real-time applications are constructed as a set of independent but 
cooperating tasks. While semaphores provide a high-speed mechanism for the 
synchronization and interlocking of tasks, often a higher-level mechanism is 
necessary to let cooperating tasks communicate with each other. In VxWorks, the 
primary intertask communication mechanism within a single CPU is message 
queues. (The VxWorks distributed message queue component provides for 
sharing message queues between processors across any transport media).

Message queues let a variable number of messages, each of variable length, be 
queued. Tasks and ISRs can send messages to a message queue, and tasks can 
receive messages from a message queue. 

Multiple tasks can send to and receive from the same message queue. Full-duplex 
communication between two tasks generally requires two message queues, one for 
each direction. See Figure A-14. 

There are two message-queue libraries in VxWorks. The first of these, msgQLib, 
provides Wind message queues, designed expressly for VxWorks. The second, 
mqPxLib, is compatible with the POSIX standard (1003.1b) for real-time 

Figure A-14 Full Duplex Communication Using Message Queues
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extensions. See 5.5.1 Comparison of POSIX and Wind Scheduling, p.98 for a 
discussion of the differences between the two message-queue designs.

Wind Message Queues

Wind message queues are created, used, and deleted with the routines shown in 
Table A-14. This library provides messages that are queued in FIFO order, with a 
single exception: there are two priority levels, and messages marked as high 
priority are attached to the head of the queue.

A message queue is created with msgQCreate( ). Its parameters specify the 
maximum number of messages that can be queued in the message queue and the 
maximum length in bytes of each message. Enough buffer space is allocated for the 
specified number and length of messages.

A task or ISR sends a message to a message queue with msgQSend( ). If no tasks 
are waiting for messages on that queue, the message is added to the queue’s buffer 
of messages. If any tasks are already waiting for a message from that message 
queue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive( ). If 
messages are already available in the message queue’s buffer, the first message is 
immediately dequeued and returned to the caller. If no messages are available, the 
calling task blocks and is added to a queue of tasks waiting for messages. This 
queue of waiting tasks can be ordered either by task priority or FIFO, as specified 
in an option parameter when the queue is created.

Timeouts

Both msgQSend( ) and msgQReceive( ) take timeout parameters. When sending a 
message, the timeout specifies how many ticks to wait for buffer space to become 
available, if no space is available to queue the message. When receiving a message, 

Table A-14 Wind Message Queue Control

Call Description 

msgQCreate( ) Allocates and initializes a message queue.

msgQDelete( ) Terminates and frees a message queue.

msgQReceive( ) Receives a message from a message queue.

msgQSend( ) Sends a message to a message queue.
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the timeout specifies how many ticks to wait for a message to become available, if 
no message is immediately available. As with semaphores, the value of the timeout 
parameter can have the special values of NO_WAIT (0), meaning always return 
immediately, or WAIT_FOREVER (-1), meaning never time out the routine.

Urgent Messages

The msgQSend( ) routine lets specification of the priority of the message as either 
normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal priority 
messages are added to the tail of the list of queued messages, while urgent priority 
messages are added to the head of the list.

Example A-3 Wind Message Queues 

/* In this example, task t1 creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply
* displays the message.
*/

/* includes */
#include "vxWorks.h"
#include "msgQLib.h"

/* defines */
#define MAX_MSGS (10)
#define MAX_MSG_LEN (100)

MSG_Q_ID myMsgQId;

task2 (void)
{
char msgBuf[MAX_MSG_LEN];

/* get message from queue; if necessary wait until msg is available */
if (msgQReceive(myMsgQId, msgBuf, MAX_MSG_LEN, WAIT_FOREVER) == ERROR)

return (ERROR);

/* display message */
printf ("Message from task 1:\n%s\n", msgBuf);
}

#define MESSAGE "Greetings from Task 1"
task1 (void)

{
/* create message queue */
if ((myMsgQId = msgQCreate (MAX_MSGS, MAX_MSG_LEN, MSG_Q_PRIORITY)) 

== NULL)
return (ERROR);
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/* send a normal priority message, blocking if queue is full */
if (msgQSend (myMsgQId, MESSAGE, sizeof (MESSAGE), WAIT_FOREVER,

MSG_PRI_NORMAL) == ERROR)
return (ERROR);

}

Displaying Message Queue Attributes

The VxWorks show( ) command produces a display of the key message queue 
attributes, for either kind of message queue. For example, if myMsgQId is a Wind 
message queue, the output is sent to the standard output device, and looks like the 
following:

-> show myMsgQId
Message Queue Id : 0x3adaf0 
Task Queuing : FIFO 
Message Byte Len : 4 
Messages Max : 30 
Messages Queued : 14
Receivers Blocked : 0 
Send timeouts : 0 
Receive timeouts : 0 

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this 
model, server tasks accept requests from client tasks to perform some service, and 
usually return a reply. The requests and replies are usually made in the form of 
intertask messages. In VxWorks, message queues or pipes (see A.3.5 Pipes, p.315) 
are a natural way to implement this.

For example, client-server communications might be implemented as shown in 
Figure A-15. Each server task creates a message queue to receive request messages 
from clients. Each client task creates a message queue to receive reply messages 
from servers. Each request message includes a field containing the msgQId of the 
client’s reply message queue. A server task’s “main loop” consists of reading 
request messages from its request message queue, performing the request, and 
sending a reply to the client’s reply message queue.

The same architecture can be achieved with pipes instead of message queues, or by 
other means that are tailored to the needs of the particular application. 
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Message Queues and VxWorks Events

This section describes using VxWorks events with message queues. You can also 
use VxWorks events with other VxWorks objects. For more information, see 
A.4 VxWorks Events, p.317.

Using Events

A message queue can send events to a task, if it is requested to do so by the task. 
To request that a message queue send events, a task must register with the message 
queue using msgQEvStart( ). From that point on, every time the message queue 
receives a message and there are no tasks pending on it, the message queue sends 
events to the registered task. To request that the message queue stop sending 
events, the registered task calls msgQEvStop( ). 

Only one task can be registered with a message queue at any given time. The 
events a message queue sends to a task can be retrieved by the task using routines 

Figure A-15 Client-Server Communications Using Message Queues
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in eventLib. Details on when message queues send events are documented in the 
reference entry for msgQEvStart( ). 

In some applications, the creator of a message queue may want to know when a 
message queue failed to send events. Such a scenario can occur if a task registers 
with a message queue, and is subsequently deleted before having time to 
unregister. In this situation, a send operation could cause the message queue to 
attempt to send events to the deleted task. Such an attempt would obviously fail. 
If the message queue is created with the SG_Q_EVENTSEND_ERROR_NOTIFY 
option, the send operation returns an error. Otherwise, VxWorks handles the error 
quietly.

Using eventReceive( ), a task may pend on events meant to be sent by a message 
queue. If the message queue is deleted, the task pending on events is returned to 
the ready state, just like the tasks that may be pending on the message queue itself.

Existing VxWorks API

The VxWorks events implementation does not propose to keep track of all the 
resources a task is currently registered with. Therefore, a resource can attempt to 
send events to a task that no longer exists. For example, a task may be deleted or 
may self-destruct while still registered with a resource to receive events. This error 
is detected only when the resource becomes free, and is reported by having 
msgQSend( ) return ERROR. However, in this case the error does not mean the 
semaphore was not given or that the message was not properly delivered. It simply 
means the resource could not send events to the registered task. This is a different 
behavior than the one presently in place under VxWorks. 

Performance Impact

There is no performance impact on msgQSend( ) when a task is pending for the 
message queue. However, when this is not the case, the call to msgQSend( ) takes 
longer to complete, since events may have to be sent to a task. Furthermore, the call 
may unpend a task waiting for events, which means the caller may be preempted, 
even if no task is waiting for the message.

The msgQDestroy( ) routine performance is impacted in cases where a task is 
waiting for events from the message queue, since the task has to be awakened. 
Also note that, in this case, events need not be sent.
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A.3.5  Pipes

Pipes provide an alternative interface to the message queue facility that goes 
through the VxWorks I/O system. Pipes are virtual I/O devices managed by the 
driver pipeDrv. The pipeDevCreate( ) routine creates a pipe device and the 
underlying message queue associated with that pipe. The call specifies the name 
of the created pipe, the maximum number of messages that can be queued to it, 
and the maximum length of each message:

status = pipeDevCreate ("/pipe/name", max_msgs, max_length);

The created pipe is a normally named I/O device. Tasks can use the standard I/O 
routines to open, read, and write pipes, and call ioctl routines. As they do with 
other I/O devices, tasks block when they read from an empty pipe until data is 
available, and block when they write to a full pipe until there is space available. 
Like message queues, ISRs can write to a pipe, but cannot read from a pipe.

As I/O devices, pipes provide one important feature that message queues 
cannot—the ability to be used with select( ). This routine lets a task wait for data 
to be available on any of a set of I/O devices. The select( ) routine also works with 
other asynchronous I/O devices including network sockets and serial devices. 
Thus, by using select( ), a task can wait for data on a combination of several pipes, 
sockets, and serial devices.

Pipes let you implement a client-server model of intertask communications. See 
Servers and Clients with Message Queues, p.312.

A.3.6  Signals

VxWorks supports a software signal facility. Signals asynchronously alter the 
control flow of a task. Any task or ISR can raise a signal for a particular task. The 
task being signaled immediately suspends its current thread of execution and runs 
the task-specified signal handler routine the next time it is scheduled to run. The 
signal handler runs in the receiving task’s context and makes use of that task’s 
stack. The signal handler is called even if the task is blocked. 

Signals are more appropriate for error and exception handling than as a 
general-purpose intertask communication mechanism. In general, signal handlers 
should be treated like ISRs. No routine should be called from a signal handler that 
might cause the handler to block. Because signals are asynchronous, it is difficult 
to predict which resources might be unavailable when a particular signal is raised. 
To be perfectly safe, call only those routines that can safely be called from an ISR 
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(see Table A-19). Deviate from this practice only when you are sure your signal 
handler cannot create a deadlock situation.

The Wind kernel supports two types of signal interface: UNIX BSD-style signals 
and POSIX-compatible signals. The POSIX-compatible signal interface, in turn, 
includes both the fundamental signaling interface specified in the POSIX standard 
1003.1, and the queued-signals extension from POSIX 1003.1b. For more 
information, see 5.9 POSIX Queued Signals, p.120. For the sake of simplicity, Wind 
River recommends that you use only one interface type in a given application, 
rather than mixing routines from different interfaces.

For more information about signals, see the reference entry for sigLib.

Basic Signal Routines

By default, VxWorks uses the basic signal facility component INCLUDE_SIGNALS. 
This component automatically initializes signals with sigInit( ). Table A-15 shows 
the basic signal routines.

The name kill( )harks back to the origin of these interfaces in UNIX BSD. Although 
the interfaces vary, the functionality of BSD-style signals and basic POSIX signals 
is similar.

In many ways, signals are analogous to hardware interrupts. The basic signal 
facility provides a set of 31 distinct signals. A signal handler binds to a particular 
signal with sigvec( ) or sigaction( ). A signal can be asserted by calling kill( ). This 
is analogous to the occurrence of an interrupt. The sigsetmask( ) and sigblock( ) or 
sigprocmask( ) routines let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors, 
illegal instructions, and floating-point exceptions raise specific signals.

Signal Configuration

The basic signal facility is included in VxWorks by default with the 
INCLUDE_SIGNALS component. 

NOTE:  The VxWorks implementation of sigLib does not impose any special 
restrictions on operations on SIGKILL, SIGCONT, and SIGSTOP signals such as 
those imposed by UNIX. For example, the UNIX implementation of signal( ) 
cannot be called on SIGKILL and SIGSTOP.
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A.4  VxWorks Events

VxWorks events are included in the standard VxWorks facilities. This section 
provides a brief summary of VxWorks events. Then, it describes VxWorks events 
in detail, including their API. 

VxWorks events are a means of communication between tasks and interrupt 
routines (ISRs), between tasks and other tasks, or between tasks and VxWorks 
objects. In the context of VxWorks events, these objects are referred to as resources, 

Table A-15 Basic Signal Calls (BSD and POSIX 1003.1b)

POSIX 1003.1b
Compatible
Call

UNIX BSD
Compatible
Call

Description

kill( ) kill( ) Sends a signal to a task.

raise( ) N/A Sends a signal to yourself.

sigaction( ) sigvec( ) Examines or sets the signal handler for a signal.

sigemptyset( )
sigfillset( ) 
sigaddset( ) 
sigdelset( )
sigismember( )

sigsetmask( ) Manipulates a signal mask.

signal( ) signal( ) Specifies the handler associated with a signal.

sigpending( ) N/A Retrieves a set of pending signals blocked from 
delivery.

sigprocmask( ) sigsetmask( ) Sets the mask of blocked signals.

sigprocmask( ) sigblock( ) Adds to a set of blocked signals.

sigsuspend( ) pause( ) Suspends a task until a signal is delivered.

NOTE:  This section uses the term events to describe VxWorks events. Do not 
confuse these references with WindView events.
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and they include semaphores and message queues. Only tasks can receive events; 
whereas tasks, ISRs, or resources can send them. 

In order for a task to receive events from a resource, the task must register with the 
resource. In order for the resource to send events, the resource must be free. The 
communication between tasks and resources is peer-to-peer, meaning that only the 
registered task can receive events from the resource. In this respect, events are like 
signals, in that they are directed at one task. A task, however, can wait on events 
from multiple resources. Thus, it can be waiting for a semaphore to become free 
and for a message to arrive in a message queue.

Events are synchronous in nature (unlike signals), meaning that a receiving task 
must block or pend while it waits for the events to occur. When the desired events 
are received, the pending task continues to run, as it would after a call to 
msgQReceive( ) or semTake( ), for example. Thus, unlike signals, events do not 
require a handler.

Tasks can also wait on events that are not linked to resources. These are events that 
are sent from another task or from an ISR. A task does not register to receive these 
events. The sending task or ISR simply has to know of the task’s interest in 
receiving the events. As an example, this scenario is similar to having an ISR give 
a binary semaphore, knowing there is a task interested in getting that semaphore.

The meaning of each event differs for each task. For example, when an event, 
eventX, is received, it can be interpreted differently by each task that receives it. 
Also, once an event is received by a task, the event is ignored if it is sent again to 
the same task. Consequently, it is not possible to track the number of times each 
event has been sent to a task.

A.4.1  Free Resource Definition

A key concept in understanding events sent by resources, is that resources send 
events when they become free. Thus, it is crucial to define what it means for a 
resource to be free for VxWorks events. 

! WARNING:  Because events cannot be reserved, two independent applications can 
attempt to use the same events on the same task. As a precaution, middleware 
applications using VxWorks events should always publish a list of the events they 
are using.
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■ Mutex Semaphore

A mutex semaphore is considered free when it no longer has an owner and no 
one is pending on it. For example, following a call to semGive( ), the 
semaphore does not send events if another task is pending on a semTake( ) for 
the same semaphore. 

■ Binary Semaphore

A binary semaphore is considered free when no task owns it and no one is 
waiting for it.

■ Counting Semaphore

A counting semaphore is considered free when its count is nonzero and no one 
is pending on it. Thus, events cannot be used as a mechanism to compute the 
number of times a semaphore is released or given.

■ Message Queue

A message queue is considered free when a message is present in the queue 
and no one is pending for the arrival of a message in that queue. Thus, events 
cannot be used as a mechanism to compute the number of messages sent to a 
message queue.

A.4.2  Single-Task Resource Registration

When a task registers with a resource to send events, it could inadvertently 
deregister another task that had previously registered with the resource. This 
prevents the first task from receiving events from the resource with which it 
registered. Consequently, the task that first registered with the resource could 
stay in a pend state indefinitely. 

VxWorks events provide an option whereby the second task is not allowed to 
register with the resource if another task is already registered with it. If a 
second task tries to register with the resource, an error is returned.

A.4.3  Option for Immediate Send

When a task registers with a resource, the default behavior is that the resource 
does not send VxWorks events to the task immediately, even if it is free at the 
time of registration. VxWorks events provide an option that lets a task, at the 
time of registration, request that the resource send the events immediately, if 
the resource is free at the time of registration. 
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A.4.4  Option for Automatic Unregister

There are situations in which a task may want to receive events from a resource 
only once, and then unregister. VxWorks provides an option whereby a 
registering task can tell the resource to send events only once, and 
automatically unregister the task when this occurs. 

A.4.5  Automatic Unpend upon Resource Deletion

When a resource (a semaphore or message queue) is deleted, semDelete( ) and 
msgQDelete( ) unpends any task. This prevents the task from pending 
indefinitely, while waiting for events from the resource being deleted. The 
pending task then resumes running, and receives an ERROR return value from 
the eventReceive( ) call that caused the task to pend. See also, Existing 
VxWorks API, p.308 and Existing VxWorks API, p.314.

A.4.6  Task Events Register

Each task has its own events field or container, referred to as the task events 
register. The task events register is a per task 32-bit field used to store the events 
that a task receives from resources, ISRs, and other tasks. 

You do not access the task events register directly. Tasks, ISRs, and resources fill the 
events register of a particular task by sending events to that task. A task can also 
send itself events, thereby filling its own events register. Events 25 to 32 (VXEV25 
or 0x01000000 to VXEV32 or 0x80000000) are reserved for system use only, and are 
not available to VxWorks users. Table A-16 describes the routines that affect the 
contents of the events register. 

Table A-16 Event Register Routines

Routine Effects

eventReceive( ) Clears or leaves the contents of the event register intact, 
depending on the options selected.

eventClear( ) Clears the contents of the event register.

eventSend( ) Copies events into the event register. 
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A.4.7  VxWorks Events API

For details on the API for VxWorks events, see the reference entries for eventLib, 
semEvLib, and msgQEvLib.

A.4.8  Show Routines

For the purpose of debugging systems that make use of events, the taskShow, 
semShow, and msgQShow libraries display event information. 

The taskShow library displays the following information:

■ the contents of the event register

■ the desired events

■ the options specified when eventReceive( ) was called

The semShow( ) and msgQShow( ) libraries display the following information:

■ the task registered to receive events 

■ the events the resource is meant to send to that task 

■ the options passed to semEvStart( ) or msgQEvStart( ) 

semGive( ) Copies events into the event register, if a task is registered with 
the semaphore.

msgQSend( ) Copies events into the event register, if a task is registered with 
the message queue.

Table A-16 Event Register Routines (cont’d)

Routine Effects
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A.5  Watchdog Timers

VxWorks includes a watchdog-timer mechanism that lets any C routine be 
connected to a specified time delay. Watchdog timers are maintained as part of the 
system clock ISR. For information about POSIX timers, see 5.2 POSIX Clocks and 
Timers, p.90.

Routines called by watchdog timers run as interrupt service code at the interrupt 
level of the system clock. However, if the kernel is unable to run the routine 
immediately for any reason (such as a previous interrupt or kernel state), the 
routine is placed on the tExcTask work queue. Routines on the tExcTask work 
queue run at the priority level of the tExcTask (usually 0). 

Restrictions on ISRs apply to routines connected to watchdog timers. The routines 
in Table A-17 are provided by the wdLib library.

A watchdog timer is first created by calling wdCreate( ). Then the timer can be 
started by calling wdStart( ), which takes as arguments the number of ticks to 
delay, the C routine to call, and an argument to be passed to that routine. After the 
specified number of ticks have elapsed, the routine is called with the specified 
argument. The watchdog timer can be canceled any time before the delay has 
elapsed by calling wdCancel( ).

Example A-4 Watchdog Timers 

/* Creates a watchdog timer and sets it to go off in 3 seconds.*/

/* includes */
#include "vxWorks.h"
#include "logLib.h"
#include "wdLib.h"

/* defines */
#define SECONDS (3)

Table A-17 Watchdog Timer Calls

Call Description

wdCancel( ) Cancels a counting watchdog timer.

wdCreate( ) Allocates and initializes a watchdog timer.

wdDelete( ) Terminates and deallocates a watchdog timer.

wdStart( ) Starts a watchdog timer.
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WDOG_ID myWatchDogId;
task (void)

{
/* Create watchdog */
if ((myWatchDogId = wdCreate( )) == NULL)

return (ERROR);

/* Set timer to go off in SECONDS - printing a message to stdout */
if (wdStart (myWatchDogId, sysClkRateGet( ) * SECONDS, logMsg, 

"Watchdog timer just expired\n") == ERROR)
return (ERROR);

/* ... */
}

A.6  Interrupt Service Routines

Hardware interrupt handling is of key significance in real-time systems, because it 
is usually through interrupts that the system is informed of external events. For the 
fastest possible response to interrupts, VxWorks runs interrupt service routines 
(ISRs) in a special context outside of any task’s context. Thus, interrupt handling 
involves no task context switch. Table A-18 lists the interrupt routines provided in 
intLib and intArchLib.

Table A-18 Interrupt Routines

Call Description

intContext( ) Returns TRUE if called from interrupt level.

intCount( ) Gets the current interrupt nesting depth.

intLevelSet( ) Sets the processor interrupt mask level.

intLock( ) Disables interrupts.

intUnlock( ) Re-enables interrupts.

intVecBaseGet( ) Gets the vector base address.

intVecBaseSet( ) Sets the vector base address.

intVecGet( ) Gets an exception vector.

intVecSet( ) Sets an exception vector.



VxWorks 653
Programmer's Guide, 2.2 

324

A.6.1  Interrupt Stack

All ISRs use the same interrupt stack. This stack is allocated and initialized by the 
system at start-up according to specified configuration parameters. It must be 
large enough to handle the worst possible combination of nested interrupts.

Some architectures, however, do not permit using a separate interrupt stack. On 
such architectures, ISRs use the stack of the interrupted task. If you have such an 
architecture, you must create tasks with enough stack space to handle the worst 
possible combination of nested interrupts and the worst possible combination of 
ordinary nested calls. See the reference entry for your BSP to determine whether 
your architecture supports a separate interrupt stack.

Use the checkStack( ) facility during development to see how close your tasks and 
ISRs have come to exhausting the available stack space.

A.6.2  Writing and Debugging ISRs

There are some restrictions on the routines you can call from an ISR. For example, 
you cannot use routines like printf( ), malloc( ), and semTake( ) in your ISR. You 
can, however, use semGive( ), logMsg( ), msgQSend( ), and bcopy( ). 

A.6.3  Special Limitations of ISRs

Many VxWorks facilities are available to ISRs, but there are some important 
limitations. These limitations stem from the fact that an ISR does not run in a 
regular task context and has no task control block, so all ISRs share a single stack.

Table A-19 Routines that Can Be Called by Interrupt Service Routines

Library Routines

bLib All routines

errnoLib errnoGet( )
errnoSet( )

fppArchLib fppRestore( )
fppSave( )
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intLib intContext( )
intCount( )
intVecGet( )
intVecSet( )

intArchLib intLock( )
intUnlock( )

logLib logMsg( )

lstLib All routines except lstFree( )

mathALib All routines, if fppRestore( ) or fppSave( ) is used

msgQLib msgQSend( )

pipeDrv write( )

rngLib All routines except rngCreate( ) and rngDelete( )

selectLib selWakeup( )
selWakeupAll( )

semLib semGive( ) except mutual-exclusion semaphores
semFlush( )

sigLib kill( )

taskLib taskIdDefault( )
taskIdVerify( )
taskIsReady( )
taskIsSuspended( )
taskPriorityGet( )
taskPrioritySet( )
taskResume( )
taskSuspend( )
taskTcb( )

tickLib tickAnnounce( )
tickGet( )
tickSet( )

Table A-19 Routines that Can Be Called by Interrupt Service Routines (cont’d)

Library Routines



VxWorks 653
Programmer's Guide, 2.2 

326

For this reason, the basic restriction on ISRs is that they must not call routines that 
might cause the caller to block. For example, they must not try to take a semaphore, 
because if the semaphore is unavailable, the kernel tries to switch the caller to the 
pended state. However, ISRs can give semaphores, releasing any tasks waiting on 
them.

Because the memory facilities malloc( ) and free( ) take a semaphore, they cannot 
be called by ISRs, and neither can routines that make calls to malloc( ) and free( ). 
For example, ISRs cannot call any creation or deletion routines.

ISRs also must not perform I/O through VxWorks drivers. Although there are no 
inherent restrictions in the I/O system, most device drivers require a task context 
because they might block the caller to wait for the device. An important exception 
is the VxWorks pipe driver, which is designed to permit writes by ISRs.

VxWorks supplies a logging facility, in which a logging task prints text messages 
to the system console. This mechanism was specifically designed for ISR use, and 
is the most common way to print messages from ISRs. For more information, see 
the reference entry for logLib.

An ISR also must not call routines that use a floating-point coprocessor. In 
VxWorks, the interrupt driver code does not save and restore floating-point 
registers. Thus, ISRs must not include floating-point instructions. If an ISR requires 
floating-point instructions, it must explicitly save and restore the registers of the 
floating-point coprocessor using routines in fppArchLib.

All VxWorks utility libraries, such as the linked-list and ring-buffer libraries, can 
be used by ISRs. As discussed earlier (A.2.6 Task Error Status: errno, p.285), the 
global variable errno is saved and restored as a part of the interrupt enter and exit 
code. Thus, errno can be referenced and modified by ISRs as in any other code. 
Table A-19 lists routines that can be called from ISRs.

tyLib tyIRd( )
tyITx( )

vxLib vxMemProbe( )
vxTas( )

wdLib wdCancel( )
wdStart( )

Table A-19 Routines that Can Be Called by Interrupt Service Routines (cont’d)

Library Routines
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A.6.4  Exceptions at Interrupt Level

When a task causes a hardware exception such as an illegal instruction or bus error, 
the task is suspended and the rest of the system continues uninterrupted. 
However, when an ISR causes such an exception, there is no safe recourse for the 
system to handle the exception. The ISR has no context that can be suspended. 
Instead, VxWorks stores the description of the exception in a special location in low 
memory and runs a system restart.

The VxWorks boot programs test for the presence of the exception description in 
low memory and if it is detected, display it on the system console. The e command 
in the boot ROMs re-displays the exception description. 

One example of such an exception is the following message:

workQPanic: Kernel work queue overflow.

This exception usually occurs when kernel calls are made from interrupt level at a 
high rate. It generally indicates a problem with clearing the interrupt signal or a 
similar driver problem.

A.6.5  Reserving High Interrupt Levels

The VxWorks interrupt support described earlier in this section is acceptable for 
most applications. However, on occasion, low-level control is required for events 
such as critical motion control or system failure response. In such cases it is 
desirable to reserve the highest interrupt levels to ensure zero-latency response to 
these events. To achieve zero-latency response, VxWorks provides 
intLockLevelSet( ), which sets the system-wide interrupt-lockout level to the 
specified level. If you do not specify a level, the default is the highest level 
supported by the processor architecture. For information about 
architecture-specific implementations of intLockLevelSet( ), see the appropriate 
VxWorks architecture supplement. 

A.6.6  Additional Restrictions for ISRs at High Interrupt Levels

ISRs connected to interrupt levels that are not locked out (either an interrupt level 
higher than that set by intLockLevelSet( ), or an interrupt level defined in 
hardware as non-maskable) have special restrictions:

! CAUTION:  Some hardware prevents masking certain interrupt levels. Check the 
hardware manufacturer’s documentation. 
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■ The ISR can be connected only by calling intVecSet( ).

■ The ISR cannot use any VxWorks operating system facilities that depend on 
interrupt locks for correct operation. The effective result is that the ISR cannot 
safely make any call to any VxWorks routine, except reboot.

A.6.7  Interrupt-to-Task Communication

While it is important that VxWorks supports direct connection of ISRs that run at 
interrupt level, interrupt events usually propagate to task-level code. Many 
VxWorks facilities are not available to interrupt-level code, including I/O to any 
device other than pipes. The following techniques can be used to communicate 
from ISRs to task-level code:

■ Shared Memory and Ring Buffers

ISRs can share variables, buffers, and ring buffers with task-level code.

■ Semaphores

ISRs can give semaphores (except for mutual-exclusion semaphores) that tasks 
can take and wait for.

■ Message Queues

ISRs can send messages to message queues for tasks to receive. If the queue is 
full, the message is discarded.

■ Pipes

ISRs can write messages to pipes that tasks can read. Tasks and ISRs can write 
to the same pipes. However, if the pipe is full, the message written is discarded 
because the ISR cannot block. ISRs must not call any I/O routine on pipes 
other than write( ).

■ Signals

IISRs can “signal” tasks, causing asynchronous scheduling of their signal 
handlers.

! WARNING:  The use of NMI with any VxWorks functionality, other than reboot, is 
not recommended. Routines marked as “interrupt safe” do not imply they are NMI 
safe and, in fact, are usually the very ones that NMI routines must not call (because 
they typically use intLock( ) to achieve the interrupt safe condition).



329

   B
PowerPC Considerations

B.1 Introduction 329

B.2 Building Applications 330

B.3 Memory Management Unit 332

B.4 Protection Domains (PowerPC 60x) 337

B.5 Architecture Considerations 337

B.1  Introduction

This documentation includes information specific to VxWorks 653 for PowerPC 
targets. 

For information on BSP-specific issues and device drivers, see the relevant BSP 
documentation.

For information on configuring and building VxWorks 653 systems, see the 
VxWorks 653 Configuration and Build User’s Guide.
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B.2  Building Applications

If you customize your BSP or need to change how it is built, you may need the 
information in this section.

Defining the CPU-Type Configuration Variable (CPU)

Setting the CPU-type configuration variable (CPU) ensures that VxWorks 653 and 
applications are compiled with features enabled that are specific to the PowerPC. 
Table B-1 shows the values for the CPU variable for supported processors.

As an example, to specify CPU for a PowerPC 750 in a header or source file, include 
the following line in the file:

#define CPU PPC604

NOTE:  The GNU compiler for PowerPC conforms to the Embedded Application 
Binary Interface (EABI). Therefore, type-checking is more rigorous than for some 
other architectures.

Table B-1 CPU-Type Configuration Variable: Values for Supported Processors

CPU Value Processor

PPC603 PowerPC 82xx

PowerPC 8349E

PPC604 PowerPC 750

PowerPC 74xx

Only the mpc74xx microprocessor core is supported. The Altivec 
technology implemented in the PowerPC 74xx Vector Unit is not 
supported.

PowerPC 8641D

Only single core is supported.

PPC85XX PowerPC 8560



B  PowerPC Considerations
B.2  Building Applications

331

B

Setting Compiler Options

The following is an example of a command line that compiles an application 
(applic.language_id) that is to run on a PowerPC 750:

% ccppc -O2 -mcpu=604 -IinstallDir/target/h -fno-builtin \
-fno-for-scope -DCPU=PPC604 -c applic.language_id -g

The options have the following meaning:

-O2
Optional. Performs level-2 optimization.

-mcpu=604
Required. Produces code for the specified PowerPC architecture.

Other values are 603 and 8540.

-IinstallDir/target/h
Required. Gives access to VxWorks 653 include files. Include additional -I 
options to specify additional header files.

-fno-builtin
Required. Uses library calls even for common library routines.

-fno-for-scope
Required. Lets the scope of variables declared in a for loop be outside the for 
loop.

-DCPU=PPC604
Required. Instructs VxWorks 653 to include code for the specified architecture. 
For other values, see Table B-1.

-c
Required. Causes the application to be compiled, but not linked.

applic.language_id
Required. Specifies the file or files to compile. For C files, specify a .c 
language_id. For C++ files, specify .cpp. The output is an unlinked object 
module in ELF format with the .o extension.

-g
Optional. Generates debug information for the application.
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B.3  Memory Management Unit

The following sections supplement MMU information in 7.8.3 Managing 
Page-oriented Memory, p.153. 

B.3.1  Enabling or Disabling Instruction MMUs and Data MMUs

The PowerPC distinguishes between an instruction MMU and a data MMU. You 
can enable or disable each separately.

B.3.2  Mapping Memory (PowerPC 60x)

The MMU for PowerPC 603 and 604 supports two models for mapping memory: 
the BAT model and the segment model. VxWorks 653 supports both.

BAT Model for Mapping Memory

The BAT model for memory mapping maps into a BAT register a memory block 
ranging in size from 128 KB to 256 MB.

A BAT register is two 32-bit words. The PowerPC 603 and 604 have eight BAT 
registers: four for the instruction MMU and four for the data MMU. The 
sysBatDesc[ ] data structure (defined in sysLib.c) handles configuring BAT 
registers. The initialization routines in the MMU library set the registers. By 
default, they are set to zero.

Segment Model for Mapping Memory

The segment model for memory mapping specifies the configuration for each 
memory page. For the PowerPC, memory pages are 4 KB.

The configuration and build facility generates a data structure (sysMemCfgTbl[ ]) 
from the region information in the XML configuration file and puts it in 
configRecord.reloc. The data structure describes the entire physical memory and 
consists of configuration constants for each page or group of pages.
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B.3.3  Setting MMU Access Rights

MMU access rights for a shared data region depend on the following XML 
attributes:

■ /Module/SharedDataRegions/SharedData/SharedDataDescription/@SystemAc
cess

■ /Module/Partitions/Partition/PartitionDescription/SharedDataRegion/@UserA
ccess

MMU access rights for a shared I/O region depend on the following XML 
attributes:

■ /Module/SharedDataRegions/SharedData/SharedIODescription/@SystemAcce
ss

■ /Module/Partitions/Partition/PartitionDescription/SharedDataRegion/@UserA
ccess (this is the same Xpath as for the shared data region)

For details, see the VxWorks 653 Configuration and Build Reference.

Table B-2 shows the following PowerPC MMU access information for shared data 
regions and shared I/O regions:

■ Allowable combinations of values for their associated SystemAccess and 
UserAccess attributes.

■ Resulting values of the page protection (PP) field in the page table entry (PTE).

■ Actual meanings of the PP field. (Because VxWorks 653 programs the 
no-execute (N) field of the segment register (SR) to allow execute access, the 
actual meaning of the PP field is different.)

Table B-2 PowerPC MMU Access Information for Shared Data Regions and Shared I/O Regions

SystemAccess UserAccess PP Value PP Meaning

READ_WRITE NONE 0 Supervisor read-write-execute
User none

READ_WRITE READ_ONLY 1 Supervisor read-write-execute
User read-execute
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For details on memory page attributes, see the 7.8.3 Managing Page-oriented 
Memory, p.153.

B.3.4  Setting MMU Cache Attributes

Table B-3 lists valid combinations of MMU cache attributes for the PowerPC. You 
can specify any of the attributes based on 4-KB pages. For more information on 
cache attributes, see the information on programming environments in the 
PowerPC Microprocessor Family.

MMUs in the Guarded State

If the MMU is in the guarded state, instructions and data cannot be accessed out of 
order. If the MMU is not in the guarded state, instructions and data can be accessed 
out of order. With the PowerPC, when the MMU is enabled, the guarded state is 
readable, but not executable. 

MMUs in the Coherent State

If the MMU is in the coherent state, store operations by all processors to the same 
memory location are ordered, and no processor is able to observe any subset of 
those store operations as occurring in a conflicting order. If the MMU is not in the 
coherent state, the order in which store operations from different processors occur 
is undefined.

READ_WRITE READ_WRITE 2 Supervisor read-write-execute
User read-write-execute

READ_ONLY READ_ONLY 3 Supervisor read-execute
User read-execute

Table B-2 PowerPC MMU Access Information for Shared Data Regions and Shared I/O Regions (cont’d)

SystemAccess UserAccess PP Value PP Meaning

Table B-3 PowerPC MMU Cache Attributes

OFF COPY-BACK WRITE-THRU GUARDED COHERENCY

x

x x

x x
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Determining the Size of Hash Tables (PowerPC 604)

PowerPC processors use a two-level translation table to store MMU translation 
information. Processors based on the PowerPC 604 use a hash table as a cache, 
where entries are copies of entries in the translation table. These processors handle 
TLB reload operations faster if the MMU translation information is fetched from 
the hash table rather than from the translation table. As a consequence, for 
maximum performance, the size of the hash table must be large enough to hold all 
the translation entries in the translation table. The size of the hash table depends 
on the total memory to be mapped. The larger the memory to be mapped, the 
larger the hash table needs to be. The VxWorks 653 implementation of the segment 
model follows the recommendations given in the PowerPC Microprocessor Family. 
The total size of the memory to be mapped is calculated when the MMU library is 
initialized, allowing the size of the hash table to be dynamically determined. 
Table B-4 shows the correspondence between the total memory to map and the size 
of the hash table.

x x x

x

x x

x x

x x x

x

x x

x x

x x x

Table B-3 PowerPC MMU Cache Attributes  (cont’d)

OFF COPY-BACK WRITE-THRU GUARDED COHERENCY

Table B-4 PowerPC 604 MMU Hash Table Size

Total Memory to Map MMU Hash Table Size

8 MB or less 64 KB

16 MB 128 KB



VxWorks 653
Programmer's Guide, 2.2 

336

Resizing and Moving Hash Tables (PowerPC 604)

To change the size of the MMU hash table, set the value of the 
USER_HASH_TABLE_SIZE configuration parameter with the following command:

prj domParameterValueSet -p coreOsDirectory USER_HASH_TABLE_SIZE newSize

where newSize is 2^n, 16 <= n <= 25.

You can change the size of the hash table without moving it. 

To change the location, change the value of the USER_HASH_TABLE_ADDRESS 
configuration parameter with the following command:

prj domParameterValueSet -p coreOsDirectory USER_HASH_TABLE_ADDRESS newAddress

By default, the hash table is allocated from the kernel heap. The hash table must 
align on an address (newAddress) that is an integral multiple of the hash table’s size.

If you move the hash table, you must reserve memory for the table by creating a 
kernelRegion element in the XML configuration file. For details, see the 
VxWorks 653 Configuration and Build Reference.

B.3.5  ELF-Specific Tools

The GNU compiler provides the PowerPC-specific objcopyppc command. For 
details, see the reference entry for objcopy in the GNU Binary Utilities.

32 MB 256 KB

64 MB 512 KB

128 MB 1 MB

256 MB 2 MB

512 MB 4 MB

1 GB 8 MB

2 GB 16 MB

4 GB 32 MB

Table B-4 PowerPC 604 MMU Hash Table Size (cont’d)

Total Memory to Map MMU Hash Table Size
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B.3.6  Detecting NULL Pointer Dereferences

The implementation for detecting NULL pointer dereferences in the PowerPC 
means that accesses to the first 16 KB of memory generate an exception. Accesses 
include read, write, or execute operations in supervisor or user mode.

B.4  Protection Domains (PowerPC 60x)

The implementation of virtual-memory support for the PowerPC 603 and 604 
means that VxWorks 653 modules for the PowerPC 60x family cannot consist of 
more that a specific number of protection domains.

To reach the maximum number of protection domains that can be present in a 
VxWorks 653 module, change the configuration parameter 
(PD_MAX_NUMBER_OF_PDS) from its default value of 64 to the maximum as 
shown in Table B-5.

B.5  Architecture Considerations

This section describes characteristics of PowerPC processors that affect 
VxWorks 653 modules.

For comprehensive documentation of PowerPC architectures, see the appropriate 
Motorola microprocessor user’s manual or the IBM user’s manual.

Table B-5 Maximum Number of Protection Domains

Processor Family Maximum Number of Protection Domains

PowerPC 603 4096

PowerPC 604 2016

PowerPC 85xx Limited only by available memory
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Processor Mode

The PowerPC supports supervisor mode and user mode.

24-bit Addressing

To conform to the Embedded Application Binary Interface (EABI) standard, the 
PowerPC limits its relative addressing to 24-bit offsets.

Byte Order

VxWorks 653 for the PowerPC uses big-endian byte order.

PowerPC Registers

The Application Binary Interface (ABI) and the EABI protocols define PowerPC 
conventions on register usage, stack-frame formats, parameter passing between 
routines, and other factors involving code interoperability. VxWorks 653 for the 
PowerPC follows these protocols.

Table B-6 shows PowerPC register usage in VxWorks 653.

Table B-6 PowerPC Registers

Register Description Volatile or Non-Volatile

fpr0 Floating-point register. Volatile

fpr1 Floating-point register for passing 
parameters and returning values.

Volatile

fpr2 - fpr8 Floating-point registers for passing 
parameters.

Volatile

fpr9 - fpr13 Floating-point registers. Volatile

fpr14 - fpr31 Floating-point registers for local 
variables.

Non-volatile

gpr0 Register for routine linkage. Volatile

gpr1 Stack-frame pointer. It is always valid. Non-volatile
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HI and HIADJ Macros

The HI and HIADJ macros are used in PowerPC assembly code. HI(x) is the 
high-order 16 bits of the value x. HIADJ(x) is the high-order 16 bits adjusted by 
bit 15. If bit 15 is set, the value is adjusted by adding 1.

You must use HIADJ(x) if the low-order 16 bits are to be used with an instruction 
that interprets them as a signed quantity (for instance addi and lwz). If the 
low-order bits are used in an instruction that interprets them as an unsigned 
quantity (for instance ori), use HI.

For example, addi uses a signed quantity, so HIADJ is the correct macro:

lis rx, HIADJ(VALUE)
addi  rx, rx, LO(VALUE)

And, ori uses an unsigned quantity, so HI is the correct macro:

lis   rx, HI(VALUE)
ori   rx, rx, LO(VALUE)

gpr2 Register for the pointer to the second 
small data area (_SDA2_BASE_)

Volatile

gpr3, gpr4 Registers for passing parameters and 
returning values.

Volatile

gpr5 - gpr10 Registers for passing parameters. Volatile

gpr11 - gpr12 Registers for routine linkage. Volatile

gpr13 Register for the pointer to the small 
data area (_SDA_BASE_).

Non-volatile

gpr14 - gpr30 Registers for local variables. Non-volatile

gpr31 Register for local variables or 
environment pointers.

Non-volatile

Table B-6 PowerPC Registers (cont’d)

Register Description Volatile or Non-Volatile
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Cache and Kernel Heap

To ensure cache coherency, the kernel heap must be created in cacheable mode: 
copy-back or write-through.

With protection-domain support, the location and size of the kernel heap is defined 
by the KERNEL_MEM_POOL_START and KERNEL_MEM_POOL_SIZE parameters. 
The initial cache mode is defined in the XML configuration file.

If protection-domain support is not included, the kernel heap extends up to user 
reserved memory, which is the value returned by sysMemTop( ).

You can allocate non-cacheable buffers from the kernel heap. Routines that can 
mark buffers non-cacheable (such as cacheDmaMalloc( ) and cacheDmaFree( )) 
work properly. It is recommended that you use these sorts of routines. However, if 
you need to manually alter cache mode for a buffer through the virtual-memory 
interface, you must restore the previous state before you release the buffer.

If you need to disable caching for all memory—for example, when debugging— 
undefine the USER_D_CACHE_ENABLE and USER_I_CACHE_ENABLE macros, 
rather than use the MMU to mark each individual page non-cacheable.

Floating-Point Routines

Table B-7 lists the floating-point routines that are available for PowerPC 
processors. A subset is optimized using Motorola libraries.

Table B-7 Floating-Point Routines

Routine Optimized Using Motorola Libraries

acos( ) Yes

asin( ) Yes

atan( ) Yes

atan2( ) Yes

ciel( )

cos( ) Yes

cosh( )
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Routines Not Available

The following floating-point routines are not available on PowerPC processors:

■ cbrt( )
■ infinity( )
■ irint( )
■ iround( )
■ log2( )
■ round( )
■ sincos( )
■ trunc( )

No single-precision routines are available for PowerPC processors.

exp( ) Yes

fabs( )

floor( )

fmod( )

log( ) Yes

log10( ) Yes

pow( ) Yes

sin( ) Yes

sinh( )

sqrt( ) Yes

tan( )

tanh( )

Table B-7 Floating-Point Routines (cont’d)

Routine Optimized Using Motorola Libraries



VxWorks 653
Programmer's Guide, 2.2 

342

Support for Floating-Point Exceptions in Partitions

Floating-point exceptions are supported for PowerPC processors and support is 
enabled by default. Only partitions support floating-point exceptions. Core OS 
tasks do not.

To disable support for floating-point exceptions for a particular partition, set the 
partition’s fpExcEnable parameter to false in the XML configuration file at 
configuration and build time. For details, see the VxWorks 653 Configuration and 
Build Reference.

Machine State Register

When support for floating-point exceptions is enabled, the machine state register 
(MSR) is saved and restored on each process context switch. 

Only a supervisor-level task can change the MSR. An application cannot alter it. 

When support for floating-point exceptions is enabled, the MSR for the partition is 
set to floating-point precise mode; that is, MSR[FE0] and MSR[FE1] are set to 1. 

If support for floating-point exceptions is disabled, the MSR for the partition is set 
to floating-point exceptions-disabled mode; that is, MSR[FE0] and MSR[FE1] are 
set to 0. In this mode, floating-point exceptions return a predefined value instead 
of causing an exception. 

Floating-Point Status and Control Register

An application can modify settings for the floating-point status and control 
register (FPSCR) for its partition. For example, an application might enable or 
disable types of floating-point exceptions, such as underflow and overflow 
exceptions. 

If changes are made to the register for an application task, the changes affect only 
that thread of execution. Changes are saved for that task's context when a context 
switch occurs. Context switches include a task context switch within a partition or 
a partition context switch.

By default, the value of the FPSCR is 0x000000D0. This enables the following bits 
and their associated exceptions:

■ VE (invalid)

■ ZE (divide by zero)

■ OE (overflow)
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Shared Library Support (PowerPC 604)

The MMU implementation for the PowerPC 604 forces limitations in 
shared-library support in VxWorks 653. The shared-library size requirements are 
the same as in other architectures, and theoretically the maximum number of 
shared libraries is the same. But for the PowerPC 604, the following applies:

■ The time to attach and detach shared libraries is longer. 

■ The use of hash-table entries is increased, not only because of more shared 
libraries, but because of attachments made to them. 

If your VxWorks 653 module has many attachments to shared libraries, you may 
need to increase the default size of the PowerPC 604 MMU hash table. Increasing 
the size ensures that translation information is fetched from the hash table instead 
of from the two-level translation tables, thereby guaranteeing the best 
performance. You can monitor hash-table usage by calling 
mmuPpcHashTblShow( ) from the shell. To use this routine, you must include the 
INCLUDE_KERNEL_SHOW component in the kernel domain. For more 
information, see Resizing and Moving Hash Tables (PowerPC 604), p.336 and the 
reference entry for mmuPpcHashTblShow( ).

Debugging

Caches

If you need to disable caching for all memory—for example, when debugging—
undefine the USER_D_CACHE_ENABLE and USER_I_CACHE_ENABLE macros, 
rather than use the MMU to mark each individual page as non-cacheable.

Memory Layout

The VxWorks 653 virtual memory layout is the same for all PowerPC processors. 
Figure B-1 shows the memory layout, labeled as follows:
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Addresses shown in Figure B-1 are relative to the start of memory for a particular 
board. The start of memory (corresponding to 0x0 in the memory-layout diagram) 
is defined by the LOCAL_MEM_LOCAL_ADRS parameter. For information on 
setting parameters, see the VxWorks 653 Configuration and Build Guide. For 
information on a particular parameter, see the VxWorks 653 Configuration and Build 
Reference.

Interrupt vector table Table of exception and interrupt vectors.

SM anchor Anchor for the shared memory network objects (if there is 
shared memory on the board).

Boot line ASCII string of boot parameters.

Exception message ASCII string specifying the fatal-exception message.

Initial stack Initial stack for usrInit( ) until usrRoot( ) is allocated a 
stack.

System image VxWorks 653 itself (three sections: text, data, bss). The 
entry point for VxWorks 653 is at the start of this region, 
whose address depends on the BSP. The entry point for 
most supported BSPs is 0x100,000. For a list of supported 
BSPs, see the Platform release notes.

Interrupt stack The size (in bytes) of the interrupt stack is defined by the 
ISR_STACK_SIZE parameter. For information on setting 
parameters, see the VxWorks 653 Configuration and Build 
Guide. For information on a particular parameter, see the 
VxWorks 653 Configuration and Build Reference.

System memory pool Size depends on the size of the module image. The 
sysMemTop( ) routine returns the address of the end of 
the free memory pool.
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Figure B-1 VxWorks 653 System Memory Layout for the Core OS (PowerPC)
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acceptance

Acceptance is the acknowledgement by a certification authority that the ARINC 
653 module, application, or system meets its defined requirements.

ACE

ACE: Agent for the Certified Environment.

AFDX

AFDX: Avionics Full Duplex Switched Ethernet. It is defined by the ARINC 664 
specification, Part 7.

alarm

In the context of health monitoring, an alarm is an event. See also message.

AMIO

Application multiplexed I/O (AMIO) allows you to provide input to and view 
output from multiple partitions over a single serial connection.

APEX

APEX: Application/Executive. The general-purpose interface between an OS and 
application software, specified by the ARINC 653 specification. The specification 
includes the list of services that lets the application control scheduling, 
communication, and status information of its internal processing elements.
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APEX port

APEX port: see port.

API

API: application programming interface.

application

An application is a collection of software components that together perform a 
specific function in an embedded system. See also application partition.

application developer

An application developer develops one or more applications that will reside in a 
partition. This person or group may also be responsible for developing data 
binaries, which contain any databases used by the application. See also platform 
provider and system integrator.

application partition

An application partition is a partition that includes an application.

APPS

APPS: ARINC PPS. It is the module-wide scheduling scheme for partitions. This is 
a combination of ARINC 653 scheduling (TPS) and PPS scheduling in which the 
PPS scheme is used during idle time within the TPS scheme. The scheduling 
scheme applies to all PPS-enabled partitions in the module.

ARINC 653

ARINC 653 refers to ARINC Specification 653: “Avionics Application Software 
Standard Interface.”

ARINC 653 scheduling

ARINC 653 scheduling is the scheduling that is specified by the ARINC 653 
specification. It is time-preemptive scheduling (TPS). See also APPS scheduling 
and PPS scheduling.

ARINC PPS

ARINC PPS: see APPS scheduling.
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black box

A black box is a set of configuration parameters that represent the memory 
requirements of an application, a shared library, or the core OS. The use of black 
boxes allows a VxWorks 653 module to be configured before all the applications 
and libraries are available. Applications, libraries, and the core OS must fit within 
the memory limits set by their black boxes.

board support package

BSP: board support package. It provides the libraries required to support a 
platform on a particular board. The BSP, along with the kernel and user-supplied 
extensions, make up the core OS.

BSP

BSP: see board support package.

BSP developer

A BSP developer is a person or organization responsible for the development of a 
board support package.

BSS

BSS: block started by symbol. It is a data section in an ELF file that contains 
uninitialized global and static variables that are zeroed.

build spec

A build spec specifies compiler and linker options to produce particular output, 
such as cert, debug, or release.

callback routine

In the context of health monitoring, a callback routine is called when an event 
arrives at a partition health monitor task or module health monitor task. It is called 
before the handler for the given event is called.

CDF

CDF: component description file. It has the .cdf extension. It uses the component 
description language (CDL) to name and give values to the parameters of VxWorks 
653 components.
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cert

cert is the build spec that produces a certifiable image.

certifiable

An image that is certifiable can be certified to a specific level of the DO-178B 
avionics software standard.

certifiable subset

A certifiable subset is a subset of the core OS or a partition OS that can be certifiable 
to Level A of the DO-178B avionics software standard.

certification

Certification refers to certification to a specific level of the DO-178B avionics 
software standard.

channel

A channel defines a logical link between one source port and one or more 
destination ports. It also defines the message transfer mode and the characteristics 
of the messages. Channels are used for interpartition communication, which can 
be between local partitions, pseudo-partitions, or both. Channels conform to the 
ARINC 653 specification.

COIL

COIL: core OS interface library. A partition OS that provides a library of routines 
independent of the vThreads partition OS. The library supports the management 
of interrupts and exceptions, device I/O, interpartition messaging, and injection of 
health monitoring events.

COIL partition

A COIL partition is a partition whose partition OS is based on COIL. See also 
vThreads partition. 

cold restart

A cold restart occurs when a module or partition is restarted and all data is 
reloaded. A cold restart takes longer than a warm restart.
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configlette

A configlette is a component or part of a component that is distributed in source 
form, allowing compile-time parameters to be set when the component is included 
in a build.

configuration parameter

A configuration parameter is used to change the configuration of a VxWorks 653 
component.

configuration record

A configuration record is a record of the information that makes up the 
configuration of a VxWorks 653 module or a part of it. Configuration records 
include both the system configuration record and user configuration records.

core OS

The core OS is the core operating system for a VxWorks 653 module. It provides 
fundamental operating system services and schedules partitions.

core OS interface library

Core OS interface library: see COIL.

CPU page size

The CPU page size is the smallest addressable unit of memory for the MMU. It is 
also called MMU page size. The page size depends on the CPU and is generally not 
configurable.

cross-development tools

Cross-development tools are programs that run on a host computer (running, for 
example, Windows or UNIX) and that are used to develop, debug, or control 
software running on an embedded processor that is running a real-time operating 
system (for example, VxWorks 653). For VxWorks 653, the cross-development tools 
are based on Workbench. See also run-time software.

current partition

The current partition is the partition that is running. In an APPS scheduling 
environment, the current partition and the TPS partition may not be the same.
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default schedule

The schedule that will be run when the module is started.

destination port

A destination port is one of possibly many ports at the receiving end of a channel. 
See also source port.

direct-access port

A direct-access port is a type of pseudo-port that does not use software buffering. 
Buffering support is assumed to be provided by the communications hardware.

DO-178B

DO-178B: “Software Considerations in Airborne Systems and Equipment 
Certification.” The avionics software standard developed by RTCA.

domain

A domain is a software container. Each element of a VxWorks 653 module—the 
core OS (kernel), partitions (applications), shared libraries, and shared data 
regions—exists in a domain.

dynamic memory allocation

Dynamic memory allocation refers to allocating memory from the heap at 
run-time.

EABI

EABI: Embedded Application Binary Interface.

ELF

ELF: Executable and Linking Format. It is an object module format used to 
encapsulate compiled software.

error handler process

See process health monitor.
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event

In the context of health monitoring, an event is the base unit that is injected into the 
event handling framework. It represents an alarm or a message, depending on the 
event code.

event code number

In the context of health monitoring, an event code number is the value of the event 
code, as defined in the HM_CODE enumeration type in hmTypes.h.

event queue

The module health monitor table and partition health monitor table each have an 
event queue. The module and partition health monitor event queues are 
sometimes called, simply, the module and partition health monitor queues. An 
event queue holds the events that have been dispatched to its associated health 
monitor for handling. Event queues are serviced before health monitor notification 
queues are serviced.

FAA

FAA: U.S. Federal Aviation Administration.

FIFO

FIFO: first-in, first-out queuing.

FPSCR

Floating-point status and control register.

global file descriptor

Global file descriptors (standard in, standard out, and standard error) are available 
to all tasks in a partition. Their global assignment is controlled by the 
ioGlobalStdSet( ) and ioGlobalStdGet( ) routines, but may be overridden by the 
ioTaskStdSet( ) and ioTaskStdGet( ) routines.

GUI

GUI: graphical user interface.
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health monitor

Health monitoring provides a framework to raise and handle events (which can be 
alarms or messages) in a VxWorks 653 module. Alarms are injected to represent 
faults, and handlers provide the opportunity to perform recovery actions. See 
module health monitor, partition health monitor, process health monitor, and 
system health monitor.

hosted function supplier

Hosted function supplier: see application developer.

IDE

IDE: integrated development environment.

injection

Injection is the act of creating a health monitor alarm event or message event.

interface subset

An interface subset defines part of the interface of a shared library. The use of 
interface subsets allows you to reuse parts of the interface definition among 
libraries that share some parts of their interface. For example, two different 
vThreads libraries containing different components would share the core 
vThreads interface.

interrupt level

Saying an event is injected at an interrupt level means the event is injected from an 
interrupt execution context.

ISR

ISR: interrupt service routine.

jitter

Jitter is a variation or deviation in the frequency of an expected occurrence. See also 
partition switch jitter.

kernel

Kernel is another term for the core OS.
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kernel I/O region

A kernel I/O region is a region of target memory that corresponds to the address 
of an I/O device on the target and can be accessed only by the core OS.

Level A

Level A is the highest certification level for the DO-178B software standard.

loadable shared data region

A loadable shared data region is a data source, such as a database, that can be 
loaded into a shared data region as part of the module payload.

local partition

A local partition is a partition that is local to a VxWorks 653 module. Unless it 
might be confused with a pseudo-partition, it is called, simply, a partition.

local port

A local port is a port that is attached to a local partition. Unless it might be 
confused with a pseudo-port, it is called, simply, a port. See also null port.

log queue

The module health monitor and partition health monitor each have a log queue 
(sometimes called simply a log). Health monitor messages are always logged, 
whereas alarms are logged only if health monitor logging is enabled. If an event is 
injected from within a partition (HM_PROCESS_MODE or 
HM_PARTITION_MODE), the event is logged to the partition health monitor log. 
If the event is injected from outside the partition (HM_MODULE_MODE), the 
event is logged to the module health monitor log.

major frame

Each schedule consists of a major frame, which is divided into a series of 
variable-length minor frames.

message

In the context of health monitoring, a message is an event. See also alarm.
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minor frame

Each schedule consists of a major frame, which is divided into a series of 
variable-length minor frames. Each minor frame defines the partition to run, its 
allowed duration, and whether or not the minor frame is a release point.

MMU

MMU: memory management unit.

module

A module is the “system” controlled by one RTOS, and in VxWorks 653, that RTOS 
is the core OS.

module health monitor

The module health monitor is present in parallel with all partitions in a VxWorks 
653 module, and hence all partition health monitors in the module. The module 
health monitor is not part of any partition window and has priority over all 
partitions. The module health monitor resides in the core OS. It is associated with 
the module health monitor table, which among other things, defines notification 
queues, a log queue, and an event queue. See also system health monitor, partition 
health monitor, and process health monitor.

MSR

Machine state register.

namespace

An XML namespace provides a unique identifier which can be associated with an 
XML element by means of a prefix. The namespace uniquely identifies the XML 
schema in which the element is defined.

NMI

NMI: non-maskable interrupt.

normal mode

Normal mode is the partition mode during which processes or threads are 
scheduled. (Other partition modes include idle, cold start, and warm start.)
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notification

In the health monitoring context, notification is the act of informing another 
partition health monitor or the module health monitor of an event that has 
occurred in a given partition.

notification queue

The module health monitor table and partition health monitor table each have 
notification queues, one for each partition that wants to accept notification of 
events. Notification queues are serviced after health monitor event queues are 
serviced.

null port

A null port is a port that is created at system initialization time, but is not used. It 
is always considered to be empty when read from and have space when written to. 
A null port can be attached to a partition, the core OS, or a pseudo-partition. See 
also local port and pseudo-port.

NVM

NVM: non-volatile memory.

online-loaded partition

With online-loaded partitions, the core OS does not install the partition code from 
flash or RAM into its final domain location in RAM as it does during the system 
initialization phase for regular partitions. Instead, an empty application domain is 
created for an online-loaded partition during the core OS initialization phase. The 
code of the online-loaded partition is made available to the core OS only at a later 
stage. In some cases this may not be until after all the regular partitions are already 
running.

OS

OS: operating system.

partition

A partition is a container for an application. An application running in a partition 
cannot interfere with applications in other partitions or with the core OS.
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partition direct-access port

A partition direct-access port is a type of direct-access port residing in a partition. 
A partition direct-access port can communicate only with a local port in the 
application resident in the partition.

partition health monitor

The partition health monitor is the health monitor that is present in parallel with 
vThreads to handle vThreads partition errors and events that may affect the 
operation of vThreads within the partition. The partition health monitor is 
scheduled as part of the partition window. It is associated with the partition health 
monitor table, which among other things, defines notification queues, a log queue, 
and an event queue. See also system health monitor, module health monitor, and 
process health monitor.

partition OS

A partition OS is a user-level software library running within a partition that 
provides operating system services to the partition. See also vThreads and COIL.

partition OS scheduler

The partition OS scheduler is the scheduler in a partition OS that allocates CPU 
time to threads in the partition. It is a priority-preemptive scheduler and is not 
related to the ARINC schedule.

partition port

Partition port: see local port.

partition scheduler

The partition scheduler is the scheduler in the core OS that allocates CPU time to 
partitions, allowing CPU time to become available to threads in those partitions. 
By default, the partition scheduler uses ARINC 653 (TPS) scheduling, but can 
optionally schedule designated partitions with APPS scheduling. See also 
partition OS scheduler.

partition switch jitter

Partition switch jitter is a variation or deviation in the configured partition 
switching schedule. For example, partition switch jitter might be caused by 
hardware latencies or by the core OS locking interrupts.
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partition window

A partition window is the time in which a partition is allowed to run before being 
scheduled out.

payload

A payload is an image file (or files) that contains the code for a VxWorks 653 
module in a form that is suitable for running on a target.

payload region

A payload region is the region of RAM or ROM where a payload is loaded.

periodic process

A periodic process is a process within a partition that is run on a schedule based 
on the passage of wall clock time. That is, the countdown to the next invocation of 
a periodic process runs even when the partition itself is not scheduled.

PersistentBSS

A BSS section that is persistent across a warm restart.

platform

A platform is software on which applications can be built and from which a 
VxWorks 653 module can be developed.

platform provider

A platform provider is responsible for configuring the base system on which 
application developers will build their applications.

port

A port is one end of a channel, which is used for interpartition communication. 
Ports have attributes, for example, direction (source or destination), mode 
(queuing or sampling), protocol (receiver discard, sender block, or none), and 
refresh rate. Ports conform to the ARINC 653 specification and its APEX interface 
and are also called APEX ports. See also pseudo-port.

POS

POS: See partition operating system.
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POSIX

POSIX: Portable Operating Systems Interface. In this documentation, POSIX refers 
to the standard for real-time extensions (1003.1b), which specifies a set of interfaces 
to OS facilities. The POSIX API can be included in a vThreads partition if the APEX 
API is not included.

PPS

PPS: priority-preemptive scheduling. It allows for scheduling of partitions in a 
module-wide priority-preemptive scheme during the idle time within an ARINC 
653 (TPS) schedule. See also APPS scheduling.

PPS-enabled

A PPS-enabled partition is a partition that is configured to indicate that it should 
be considered during APPS scheduling.

preemption locking

Preemption locking disables the scheduling of processes, threads, or tasks, and 
only the current process, thread, or task can be run until it decrements the lock 
level back to zero.

priority-preemptive scheduling

Priority-preemptive scheduling: see PPS.

process

Process is the APEX term for a thread. In the vThreads context, the term thread is 
preferred. See also task.

process health monitor

The process health monitor is the health monitor that is present within vThreads 
to handle process-related errors and events. It is also known as the error handler 
process. See also system health monitor, module health monitor, and partition 
health monitor.

pseudo-partition

A pseudo-partition is a communications object that is outside a VxWorks 653 
module. See also local partition and pseudo-port.
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pseudo-port

The term pseudo-port applies generally to any port that represents a data source 
or destination outside the current module. The term pseudo-port is also used in a 
more restrictive sense for a type of pseudo-port that uses software buffering. In this 
sense it is contrasted with direct-access port which is a type of pseudo-port that 
does not use software buffering. See also local port and null port.

queuing port

A queuing port is a port in queuing mode. In queuing ports, messages are queued. 
A protocol manages the queues. See also sampling port.

RAM

RAM: random access memory.

RAM payload

A RAM payload is a payload that is designed to be downloaded into RAM on the 
target.

real-world time

Real-world time: see wall clock time.

receiver discard protocol

Receiver discard protocol is a port message protocol. If one of the channel’s 
destination ports is full, the source port discards the message for that port. 
Therefore, if all the destination ports are full, the message might be lost. When a 
message is so discarded, the port’s overflow flag is set to notify the application of 
the discarded (lost) message. See also sender block protocol.

refresh rate

The refresh rate (in seconds) indicates the maximum acceptable age of a valid 
message, from the time it was received by the port. It applies to destination 
sampling ports only.

release point

A release point is a way to synchronize a periodic process with the partition 
window of a partition. A periodic process spawned in a partition starts only at the 
next release point.
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ROM

ROM: read-only memory.

ROM payload

A ROM payload is a payload that is designed to be installed in ROM on the target.

root element

The root element is the element of an XML document that contains all the other 
elements in the document.

RTCA

RTCA: Radio Technical Commission for Aeronautics. The private, not-for-profit 
corporation that develops recommendations on communications, navigation, 
surveillance, and air-traffic management issues. RTCA developed the DO-178B 
avionics software standard.

RTOS

RTOS: real-time operating system.

run-time software

Run-time software is the operating system and application software that together 
run on a target. See also cross-development tools.

sampling port

A sampling port is a port in sampling mode. In sampling ports, messages are not 
queued. A message remains in the source port until it is sent or overwritten. Each 
new message overwrites the previous one when it reaches the destination port and 
remains there until it is overwritten itself. Sampling ports have refresh rates. See 
also queuing port.

SAP port

A service access point (SAP) is a special kind of queuing port. It is different from a 
normal queuing port because it allows access to addressing information when 
sending and receiving messages. The SAP services are similar to the ARINC 653 
queuing port services but has additional parameters to support address 
information. ARINC 653 Part 2, Supplement 2, defines two types of SAP services. 
Standard SAP services provide limited addressing capability to ensure that the 
source cannot alter its identity and that the destination is unambiguous. Extended 
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SAP services provide complete accessibility to addressing. VxWorks 653 supports 
standard SAP ports, but not extended SAP ports.

schedule

Schedules define how the core OS schedules partitions. Each schedule consists of 
a major frame.

scheduler

See partition scheduler and partition OS scheduler.

select operation

The select operation refers to calling select( ) to pend on a set of file descriptors.

sender block protocol

Sender block protocol is a port message protocol. A queuing message is sent to all 
the channel’s destination ports. If any one is full, the message is queued in the 
source port in FIFO order. When the source port is full and if a timeout was 
specified, sender processes are blocked during the SEND_QUEUING_MESSAGE 
service. When a destination port is emptied, retransmission is attempted. Whether 
it succeeds depends on the state of the channel’s other destination ports. See also 
receiver discard protocol.

service access point

Service access point: see SAP port.

shared data region

A shared data region (sometimes called a shared data domain) is a data region that 
can be used by applications within partitions to share data. Outside a shared data 
region, applications have no access to the data of other applications. See also 
loadable shared data region.

shared I/O region

A shared I/O region is a region of target memory that corresponds to the address 
of an I/O device on the target and can be shared by partitions and the core OS.

shared library

A shared library is a library that contains code that can be shared by multiple 
applications. See also system shared library.
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shared library region

A shared library region is the area of RAM that holds a shared library.

source port

A source port is the one port at the sending end of a channel. See also destination 
port.

standard port

Standard port: see local port.

static module

A static module file is a fully located object file that has been compiled and linked 
for use in a VxWorks 653 module. A static module file has a .sm file extension.

straight-line code

Straight-line code is code that does not use threads.

system call

A system call is a call from a partition to the core OS.

system clock

System clock refers to the system clock for a VxWorks 653 module.

system configuration record

The system configuration record is the record of all the configuration parameters 
in a VxWorks 653 module. During the configuration process, configuration 
information is expressed in the Module configuration document. The build 
process produces a binary version of this information in configRecord.reloc or 
configRecord.bin.

system health monitor

The system health monitor is the dispatcher for the health monitoring system. See 
also module health monitor, partition health monitor, and process health monitor.

system heap

System heap refers to the heap for the core OS.



C  Glossary
 

365

C

system initialization

System initialization refers to the initialization of a VxWorks 653 module.

system integrator

A system integrator is responsible for integrating the applications created by the 
application developers with the platform created by the platform provider to 
create the final module.

system memory

System memory refers to memory controlled by the core OS.

system object

A system object is an object created by the core OS (or vThreads) for use by the core 
OS (or vThreads). An example is a semaphore.

system resource

A system resource is a resource allocated by the core OS for use by the core OS.

system restart

System restart refers to restarting a VxWorks 653 module.

system shared library

A system shared library is a special shared library that contains the code for a 
partition OS.

system start

System start refers to starting a VxWorks 653 module.

target

The target is the board for which you are developing an embedded system.

task

A task is an execution context. In VxWorks 653, it refers to a core OS object. See also 
thread.
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TCB

TCB: task control block. The structure that contains critical run-time information 
for a single task.

thread

A thread is an execution context. It is the preferred term for what is sometimes 
called a process. A thread is a programming unit contained within a vThreads 
partition. It runs concurrently with other threads of the same partition. See also 
task and process.

time-preemptive scheduling

Time-preemptive scheduling: see TPS.

TLB

TLB: translation look-aside buffer. It is a specialized cache that holds a table of 
physical addresses as generated from the virtual addresses that program code 
uses.

TPS

TPS: time-preemptive scheduling. It is also called ARINC 653 scheduling. See also 
APPS scheduling and PPS scheduling.

TPS partition

A TPS partition is the partition that has been scheduled to be run by the ARINC 
653 (TPS) scheduler. In an APPS scheduling environment, the current partition and 
the TPS partition may not be the same.

trusted partition

From the point of view of a given partition, a trusted partition is a partition from 
which it will allow the health monitor to accept health monitor notifications on its 
behalf. Since health monitor notifications are processed in the time slice of the 
partition on whose behalf they are received, limiting the number of partitions that 
a partition trusts limits the effect of health monitor notifications on the partition's 
time allotment.

user configuration record

A user configuration record is a collection of data that can be used for configuring 
user extensions to the core OS.
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user memory region

The user memory region is that area of RAM that is needed for memory other than 
health monitor logs, core OS configuration records, core OS memory, core OS page 
pools, core OS pools, ports, and RAM payload.

user partition OS

A user partition OS is a partition OS that is based on COIL, augmented to perform 
other functions that are required by the application.

VAL

VAL: vThreads abstraction layer. It is a layer of the core OS. When a vThreads 
partition makes a system call, it communicates with this layer. It is a concept 
internal to VxWorks 653.

validation

In XML terms, validation is a process that ensures that an XML file is well formed 
according to the rules of XML and adheres to the structure specified in the 
appropriate XML schema. Validation is performed by an XML validator.

VME

VME: Versa Module Europa. VME is an open-ended bus system that makes use of 
the Eurocard standard. The VME bus was intended to be a flexible environment, 
supporting a variety of computing-intensive tasks, and has become a popular 
protocol in the computer industry. It is defined by the IEEE 1014-1987 standard.

vThreads

vThreads is the priority-preemptive OS that serves as a partition OS.

vThreads partition

A vThreads partition is a partition whose partition OS is based on vThreads. See 
also COIL partition.

vThreads scheduler

vThreads scheduler: see partition OS scheduler.
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VxWorks 5.5

VxWorks 5.5 is the Wind River operating system on which the vThreads partition 
OS of VxWorks 653 is based.

VxWorks 653

VxWorks 653 is the Wind River operating system that supports the ARINC 653 
specification.

W3C

W3C refers to the World Wide Web consortium at www.w3.org.

wall clock time

Wall clock time is time as measured in the real world by the clock on the wall. (As 
opposed, for instance, to the time elapsed in a particular application’s partition 
window.)

warm restart

A warm restart occurs when a module or partition is restarted but persistent data 
is retained, shortening the time required for the restart.

WDB

WDB refers to the Wind River debug agent.

Wind

Wind is the adjective applied to certain OS objects to distinguishes them from 
POSIX objects. For example, Wind semaphores distinguishes from POSIX 
semaphores.

WindSh

WindSh is a host shell.

Workbench

Workbench is the Wind River Workbench development environment.
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worker task

A worker task is a core OS task that is associated with a specific partition. Worker 
tasks perform blocking operations (typically blocking I/O) on behalf of the 
partition they are associated with.

write-protect

To write-protect is to guard an entity by a mechanism that prevents it from being 
changed or erased. For example, memory can be write-protected by using an 
MMU.

XInclude

XInclude is a W3C standard for including one XML file in another.

XML

XML: Extensible Markup Language. It is a standard for defining markup 
languages.

XML attribute

An XML attribute is an additional piece of information added to an XML element 
in the form of a key-value pair.

XML declaration

The XML declaration identifies a file as an XML document and contains 
information such as the version of XML used and the character encoding used in 
the file.

XML document

A document written using XML syntax.

XML document type

An XML document type is the grammar of a particular XML file as defined by the 
applicable XML schema.

XML editor

An XML editor is a program that provides support for editing XML files. This 
usually includes support for inserting tags and for validating the file against an 
XML schema.
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XML element

An XML document consists of XML elements, each of which may contain data 
content, other elements, or both. The elements allowed in a particular document 
type are determined by the applicable XML schema.

XML file

An XML file is an instantiation of an XML schema.

XML schema

An XML schema is a document that defines the structure of an XML document. In 
defines what elements are permitted in an XML document, the order and nesting 
of elements, and the types of data each element can contain.

XML schema file

An XML schema file is a file that contains all or part of the definition of an XML 
schema. An XML schema file can include other schema files by reference to 
construct a complete schema definition.

XPath

XPath is a W3C standard for expressing the location of an element or attribute in 
an XML file.
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_VTH_COM_INIT macro 143
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24-bit addressing 338

A
access routines (POSIX) 92
actions

health monitoring 210
addressing

24-bit 338
AFDX 187
aioPxLib 90
alarm escalation

health monitoring 210
alarm injection

health monitoring 204
alarms

health monitoring 196
allowable notifications 212

APEX
blackboards

queuing 80
services 79
state transition 81

buffers 77
channels 68
deadline time 62
events 83

handling 84
queuing 84
state transitions 85

inter-partition
communication 67

APEX port RECV 22
APEX port SEND 22
application multiplexed I/O 256
APPS scheduling 172

examples 178
forcing idle 175
idle time 175
partition-scheduling routines 181
pseudo-interrupts 177
ticks and timeouts 176
vThreads and 176

ARINC 664 187
askRegsGet( ) 280
asynchronous I/O (POSIX)

aioPxLib 90



VxWorks 653 
Programmer's Guide, 2.2 

372

attribute (POSIX)
prioceiling attribute 108
protocol attribute 108

attributes (POSIX) 92
contentionscope attribute 93
detachstate attribute 93
inheritsched attribute 94
schedparam attribute 95
schedpolicy attribute 94
specifying 95
stackaddr attribute 92
stacksize attribute 92

B
BAT

model (PPC 60x) 332
binary semaphores 298, 301
boot sequence, vThreads 25
booting 8
broadcast messages 68
byte order 338

C
C++ development

C and C++, referencing symbols between 125
exception handling 125
iostreams 127
Run-Time Type Information (RTTI) 126
Standard Template library (STL) 128

C++ support
see also iostreams (C++)
configuring 124

cache
mode, selecting 150

caches 340
heap 340

callback
health monitoring 212

cancelling threads (POSIX) 97

certifiability
COIL 8
core OS 7
vThreads 7

certification
vThreads 15

channel mapping 74
checkStack( ) 324
client-server communications 312, 314
CLOCK_REALTIME 90
clockLib(1)
clocks

see alsosystem clock
POSIX 90, 91
system 283

code
interrupt service, see interrupt service routines
pure 289
shared 288

code examples
message queues

attributes, examining (POSIX) 110
checking for waiting message 

(POSIX) 116, 120
POSIX 113
Wind 311

mutual exclusion 300
semaphores

binary 300
named 106
recursive 304
unnamed (POSIX) 103

tasks
deleting safely 282
round-robin time slice (POSIX) 101
scheduling (POSIX) 100
setting priorities (POSIX) 99
synchronization 300, 301

threads
creating, with attributes 95

watchdog timers
creating and setting 322
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COIL
certifiability 8
key features 4
overview 7

COIL I/O 264
blocking (no worker tasks) 267
blocking versus non-blocking (comparison with 

vThreads) 264
non-blocking (with worker tasks) 266

cold start/restart
partitions 160
system 157

COLD versus WARM restarts (vThreads) 27
configRecordLib 165
configuration

C++ support 124
signals 316

configuration tables
health monitoring 215

contexts
task 270

creating 277
conventions

task names 278
core OS

APPS scheduling 172
certifiability 7
key functions for COIL 6
key functions for vThreads 6
overview 6, 134
partition configuration record 135
partition support 165
partition-related components 165
partition-related routines 165
partitions 135

cold start/restart 160
warm restart 161

PPS scheduling 140, 172
scheduling partitions 169
shared data regions 143
shared libraries 142
system call permission bitmasks 138
system call stacks 141
system cold start/restart 157
system warm restart 159

TPS scheduling 170
core OS interface library see COIL
counting semaphores 102, 305
CPU type, defining 330
custom permission bitmask 140

D
daemons

telnet tTelnetd 293
data MMU 332
data structures, shared 294
debugging

error status values 285, 287
defining CPU type 330
delayed tasks 271
delayed-suspended tasks 271
deployed configurations

ROM payload image 157
development configurations

RAM payload image 158
device driver models

vThreads I/O 223
device I/O

vThreads 33
directed messages 68
dispatching

health monitoring 205
DO-178B certifiability

recommendations to ensure 10
VxWorks 653 9

DO-178B certification
vThreads 15

drivers
interrupt service routine limitations 326
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E
__errno( ) 286
errno 285, 287, 326

and task contexts 286
example 287
return values 286

error status values 285, 287
event payload 200
event reformatting

health monitoring 208
eventClear( ) 320
eventReceive( ) 320
events

health monitoring 196
VxWorks events 321

API 321
freeing resources 318
show routines 321
task events register 320

eventSend( ) 320
examples

mutual exclusion 300
exception handling 287

C++ 125
and interrupts 327
signal handlers 288
task tExcTask 293

exception handling, synchronous 23
exceptions

vThreads 14
execution model 9
exit( ) 281
external stimuli, handling in vThreads 18

F
fault detection

health monitoring 213
FIFO

message queues, Wind 310
POSIX 98

floating-point
(PowerPC) 340

routines unavailable 341
floating-point exceptions, support for in 

partitions 342
floating-point support

interrupt service routine limitations 326
task options 279

-fno-exceptions compiler option (C++) 125
-fno-rtti compiler option (C++) 126
fpExcEnable parameter 342
fppArchLib 326
FPSCR 342
free( ) 326

G
global variables 290
GNU compiler

configuring 331
CPU type, defining 330

guard pages (vThreads) 31
defaults 31
limitations 32

H
hardware

interrupts, see interrupt service routines
hash table, resizing and relocating 336
health monitoring

actions 210
alarm escalation 210
alarm injection 204
alarms 196
basic concepts 196
callback 212
configuration tables 215
dispatching 205
event reformatting 208
events 196
fault detection 213
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for COIL partitions
health monitoring 217

hierarchy 197
injection 202
introduction 195
logging 211
messages 196
module mode (HM_MODULE_MODE) 201
notification 212
partition mode 

(HM_PARTITION_MODE) 202
process mode (HM_PROCESS_MODE) 202
public information 218
thresholds 209

heaps
cache 340
kernel 340

HI macro 339
HIADJ macro 339
HM_MODULE_MODE 201
HM_PARTITION_MODE 202
HM_PROCESS_MODE 202
hooks, task

routines callable by 285

I
I/O

application multiplexed I/O 256
vThreads 14

I/O permission bitmasks 138
I/O system

asynchronous I/O
aioPxLib 90

INCLUDE_POSIX_SIGNALS 121
INCLUDE_SIGNALS 316
initialization

user-supplied code in system shared 
libraries 143

vThreads 25
injection

health monitoring 202
instruction MMU 332

intConnect( )
write protection, changing 152

intCount( ) 323
inter-module communication 74
interrupt handling

application code, connecting to
callable routines 323

and exceptions 327
hardware, see interrupt service routines
stacks 324

interrupt latency 295
interrupt levels 327
interrupt masking 327
interrupt service routines (ISR) 323

see also interrupt handling; interrupts; 
intArchLib(1); 323

limitations 324
logging 326

see also logLib(1)
and message queues 328
and pipes 328
routines callable from 324
and semaphores 328
and signals 316, 328

interrupt stacks 324
interrupts

locking 295
task-level code, communicating to 328
vThreads 14

intertask communications 294, 316
intLevelSet( ) 323
intLock( ) 323
intLockLevelSet( ) 327
intUnlock( ) 323
intVecBaseGet( ) 323
intVecBaseSet( ) 323
intVecGet( ) 323
intVecSet( ) 323
iostreams (C++) 127
ISR, see  interrupt service routines
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K
kernel

see also Wind facilities
and multitasking 270
POSIX and Wind features, comparison of 89

message queues 109, 110
scheduling 98
semaphores 102

priority levels 273
kernel heap 340
kernelTimeSlice( ) 273, 274
kill( ) 120, 316, 317
killing

tasks 281

L
latency

interrupt locks 295
preemptive locks 296

loading 8
loading and booting 8
local ports 70
locking

interrupts 295
semaphores 101
task preemptive locks 276, 296

logging
health monitoring 211

logging facilities
and interrupt service routines 326
task tLogTask 293

longjmp( ) 288

M
malloc( )

interrupt service routine limitations 326
memAttrAlloc( ) 149
memAttrFree( ) 149
memAttrWrite( ) 149

memory
locking (POSIX) 91
pool 290
vThreads 14

memory layout (PowerPC) 343
memory management

vThreads 24
memory partitions 148

see online memAttrLib; memPartBaseLib; 
memPartLib

access permissions, working with 149
message payload 200
message queue permission bitmasks 139
message queues 309

see also msgQLib(1)
and VxWorks events 313
client-server example 312
displaying attributes 112, 312
and interrupt service routines 328
POSIX 109

see also mqPxLib(1)
attributes 110, 112
code examples

attributes, examining 110, 112
checking for waiting message 116, 

120
communicating by message 

queue 113, 115
notifying tasks 115
unlinking 113
Wind facilities, differences from 109, 110

priority setting 311
Wind 310, 312

code example 311
creating 310
deleting 310
queueing order 310
receiving messages 310
sending messages 310
timing out 310
waiting tasks 310

messages
broadcast 68
directed 68
health monitoring 196
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MMU 332
attributes, access 150
data 332
instruction 332

MMU_ATTR_CACHE_COPYBACK 151
MMU_ATTR_CACHE_DEFAULT 151
MMU_ATTR_CACHE_IO 151
MMU_ATTR_CACHE_OFF 151
MMU_ATTR_CACHE_WRITETHRU 151
MMU_ATTR_PROT_SUP_EXE 151
MMU_ATTR_PROT_SUP_READ 151
MMU_ATTR_PROT_SUP_WRITE 151
MMU_ATTR_PROT_USR_EXE 151
MMU_ATTR_PROT_USR_READ 151
MMU_ATTR_PROT_USR_WRITE 151
MMU_ATTR_SPL_[0-7] 151
module mode (HM_MODULE_MODE)

health monitoring 201
mq_close( ) 113
mq_getattr( ) 110
mq_notify( ) 115, 120
mq_open( ) 112
mq_receive( ) 113
mq_send( ) 113
mq_setattr( ) 110
mq_unlink( ) 113
mqPxLib 109
msgQCreate( ) 310
msgQDelete( ) 310
msgQReceive( ) 310
msgQSend( ) 310, 321
MSR 342
multitasking 270, 288

example 292
mutexes (POSIX) 108
mutual exclusion 295

see also semLib(1)
code example 300
counting semaphores 305
interrupt locks 295
preemptive locks 296
and reentrancy 290

Wind semaphores 302, 305
binary 300
deletion safety 304
priority inheritance 303
priority inversion 302
recursive use 304

N
named semaphores (POSIX) 101

using 105
nanosleep( ) 282, 283

using 91
notification

health monitoring 212
NULL pointer dereference detection 337
null ports 70

O
O_NONBLOCK 110
O_CREAT 105
O_EXCL 105
O_NONBLOCK 113
OE exception 342
online-loaded partitions 165

P
PAGE_MGR_ATTR_ALLOC_CONTIG 154
PAGE_MGR_ATTR_ALLOC_MAPPED 154
PAGE_MGR_ATTR_ALLOC_NONCONTIG 154
PAGE_MGR_ATTR_ALLOC_UNMAPPED 154
page-oriented memory 153

see online mmanPxLib; pgMgrLib; pgPoolLib; 
pgPoolLstLib; rgnLib

partition activation
TPS scheduling 170

partition configuration record 135
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partition I/O
COIL,  see COIL I/O 264
vThreads,  see vThreads I/O 221

partition mode (HM_PARTITION_MODE)
health monitoring 202

partition restart and device drivers (vThreads) 30
partitionLib 165
partition-related components

core OS 165
partition-related routines

core OS 165
partitions 135

cold start/restart 160
floating-point exceptions, support for 342
partition-related components in core OS 165
partition-related routines in core OS 165
scheduling by core OS 169
support in core OS 165
TPS scheduling 170
warm restart 161

partition-safe text I/O
see application multiplexed I/O

partitionShow 165
pause( ) 317
payload images

RAM 158
ROM 157

payloadLib 165
pended tasks 271
pended-suspended tasks 271
persistent data

how handled 164
limitation 164
specifying 163
support for restart 163

pgMgrPageAlloc( ) 154, 155
pgMgrPageAllocAt( ) 154, 155
pipeDevCreate( ) 315
pipes 315

interrupt service routines 328
select( ), using with 315

port mapping 74
port permission bitmasks 139

ports
local ports 70
null ports 70
pseudo-ports 70
queuing ports 69
refresh rate 69
sampling ports 69
SAP ports 187

POSIX
clocks 90, 91

see also clockLib(1)
and kernel 89, 90
memory-locking interface 91
message queues 109

see also message queues; mqPxLib(1)
mutex attributes 108

prioceiling attribute 108
protocol attribute 108

priority limits, getting task 101
priority numbering 98
scheduling 97

see also scheduling; 97
semaphores 101, 107

see also semaphores; semPxLib(1)
signal functions 120

see also signals; sigLib(1)
routines 317

task priority, setting 98, 100
code example 99

thread attributes 92
contentionscope attribute 93
detachstate attribute 93
inheritsched attribute 94
schedparam attribute 95
schedpolicy attribute 94
specifying 95
stackaddr attribute 92
stacksize attribute 92

threads 92
timers 90

see also timerLib(1)
Wind features, differences from 90

message queues 109
scheduling 98
semaphores 102
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posixPriorityNumbering global variable 98
PowerPC 604 core 343
PowerPC considerations 329
PPC 60x

BAT model 332
memory mapping 332
segment model 332

PPS
scheduling bitmasks 139
scheduling parameters 140

PPS scheduling 17, 172
PPS scheduling bitmasks 139
preemptive locks 276, 296
preemptive priority scheduling 100, 274
printErrno( ) 287
prioceiling attribute 108
priority

inheritance 303
inversion 302
message queues 311
numbering 98
preemptive, scheduling 100, 274
task, setting

POSIX 98
Wind 273

priority-preemptive scheduling 17
process mode (HM_PROCESS_MODE)

health monitoring 202
processes (POSIX) 98
processor mode 338
protection domains

page-oriented memory 153
virtual contexts 152

protocol attribute 108
pseudo-interrupts

events
forbidden in user handlers 21
permitted in user handlers 22

signals 19
pseudo-ports 70, 185
pthread_attr_getdetachstate( ) 93
pthread_attr_getinheritsched( ) 94
pthread_attr_getschedparam( ) 95
pthread_attr_getscope( ) 93
pthread_attr_getstackaddr( ) 92

pthread_attr_getstacksize( ) 92
pthread_attr_setdetachstate( ) 93
pthread_attr_setinheritsched( ) 94
pthread_attr_setschedparam( ) 95
pthread_attr_setscope( ) 93
pthread_attr_setstackaddr( ) 92
pthread_attr_setstacksize( ) 92
pthread_attr_t 92
pthread_cleanup_pop( ) 97
pthread_cleanup_push( ) 97
PTHREAD_CREATE_DETACHED 93
PTHREAD_CREATE_JOINABLE 93
PTHREAD_EXPLICIT_SCHED 94
pthread_getschedparam( ) 95
pthread_getspecific( ) 96
PTHREAD_INHERIT_SCHED 94
pthread_key_create( ) 96
pthread_key_delete( ) 96
pthread_mutex_getprioceiling( ) 109
pthread_mutex_setprioceiling( ) 109
pthread_mutexattr_getprioceiling( ) 108
pthread_mutexattr_getprotocol( ) 108
pthread_mutexattr_setprioceiling( ) 108
pthread_mutexattr_setprotocol( ) 108
pthread_mutexattr_t 108
PTHREAD_PRIO_INHERIT 108
PTHREAD_PRIO_PROTECT 108
PTHREAD_SCOPE_PROCESS 93
PTHREAD_SCOPE_SYSTEM 93
pthread_setcancelstate( ) 97
pthread_setcanceltype( ) 97
pthread_setschedparam( ) 95
pthread_setspecific( ) 96
pure code 289

Q
queued signals 120
queues

see also message queues
ordering (FIFO vs. priority) 307
semaphore wait 307

queuing ports 69
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R
raise( ) 317
RAM payload images 158
ready tasks 271
reentrancy 289
refresh rate 69
register usage 338
restart

cold
system 157, 160

implications for drivers 162
implications for I/O 163
vThreads 25
warm

partitions 161
system 159

restart, vThreads 27
ring buffers 326, 328
ROM payload images 157
root task tUsrRoot 293
round-robin scheduling 18

defined 274
using 100, 101

routines
scheduling, for 97

rtasks
spawning 292

run-time
execution model 9
layers 5
system 4

Run-Time Type Information (RTTI) 126

S
sampling ports 69
SAP ports 187
SCHED_FIFO 100
sched_get_priority_max( ) 101
sched_get_priority_min( ) 101
sched_getparam( )

scheduling parameters, describing 95
sched_getscheduler( ) 100

SCHED_RR 100
sched_rr_get_interval( ) 101
sched_setparam( ) 100

scheduling parameters, describing 95
sched_setscheduler( ) 99
schedPxLib 97, 98
scheduler permission bitmask 139
scheduling 273, 276

POSIX 97, 101
see also schedPxLib(1) 97
algorithms 98
code example 100
FIFO 98, 100
policy, displaying current 100
preemptive priority 100
priority limits 101
priority numbering 98
round-robin 100, 101
routines for 97
time slicing 101
Wind facilities, differences from 98

Wind
preemptive locks 276, 296
preemptive priority 274
round-robin 274, 275

scheduling (vThreads) 16
scheduling rules

TPS scheduling 170
segment model (PPC 60x) 332
select( )

and pipes 315
sem_close( ) 106
SEM_DELETE_SAFE 304
sem_init( ) 103
SEM_INVERSION_SAFE 303
sem_open( ) 105
sem_unlink( ) 106
semaphores 107, 296

and VxWorks events 307
see also semLib(1)
counting 102

example 305
deleting 102, 298
giving and taking 101, 298
and interrupt service routines 328, 326
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locking 101
POSIX 101, 107

see also semPxLib(1)
named 101, 105, 107

code example 106
unnamed 101, 102, 103, 105

code example 103
Wind facilities, differences from 102

posting 101
recursive 304

code example 304
synchronization 297, 305

code example 300, 301
unlocking 101
waiting 101
Wind 297, 309

binary 298
code example 300

control 297
counting 305
mutual exclusion 300, 302
queuing 307
synchronization 300, 301
timing out 306

semBCreate( ) 297
semCCreate( ) 297
semDelete( ) 297
semFlush( ) 297, 302
semGive( ) 298, 321
semMCreate( ) 298
semPxLib 102
semTake( ) 298
service access point ports 187
set_terminate( ) (C++) 126
setjmp( ) 288
shared code 288
shared data regions 143

configuration structure 144
shared data structures 294, 295
shared libraries 142

support 343
show( ) 312
show( ) 112
sigaction( ) 120, 316, 317
sigaddset( ) 317

sigblock( ) 316, 317
sigdelset( ) 317
sigemptyset( ) 317
sigfillset( ) 317
sigInit( ) 316
sigismember( ) 317
sigmask( ) 317
signal handlers 316
signal( ) 317
signals 316

see also sigLib(1)
configuring 316
and interrupt service routines 316, 328
POSIX 120, 121

queued 120
routines 317

signal handlers 316
UNIX BSD 316

routines 317
sigpending( ) 317
sigprocmask( ) 316, 317
sigqueue( ) 120

buffers to, allocating 121
sigqueueInit( ) 121
sigsetmask( ) 316, 317
sigsuspend( ) 317
sigtimedwait( ) 121
sigvec( ) 316, 317
sigwaitinfo( ) 121
spare-time monitoring

TPS scheduling 171
spawning tasks 277, 292
sslMain.c 143
stack overflow protection (vThreads) 30
stacks

interrupt 324
no fill 279
task exception 141

Standard Template library (STL) 128
start/restart

cold
system 157, 160

suspended tasks 271
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synchronization (task) 297
code example 300, 301
counting semaphores, using 305
semaphores 300, 301

system call permission bitmasks 138
custom permissions 140
I/O permissions 138
message queue permissions 139
port permissions 139
PPS scheduling 139
scheduler permissions 139

system call stacks 141
system calls, for vThreads 34
system clock 283
system cold start/restart 157
system shared library, init routines for user-supplied 

code 143
system tasks 292
system time 169
system warm restart 159

T
target shell

task tShell 293
task control blocks (TCB) 270, 283, 291, 324
task exception stacks 141
TASK_EXC_STACK_SIZE 141
taskActivate( ) 277
taskCreateHookAdd( ) 283
taskCreateHookDelete( ) 283
taskDelay( ) 282
taskDelete( ) 281
taskDeleteHookAdd( ) 284
taskDeleteHookDelete( ) 284
taskIdListGet( ) 280
taskIdSelf( ) 278
taskIdVerify( ) 278
taskInfoGet( ) 280
taskInit( ) 277
taskIsReady( ) 280
taskIsSuspended( ) 280
taskLock( ) 273
taskName( ) 278

taskNameToId( ) 278
taskOptionsGet( ) 280
taskOptionsSet( ) 280
taskPriorityGet( ) 280
taskPrioritySet( ) 273
taskRegsSet( ) 280
taskRestart( ) 282
taskResume( ) 282
tasks

blocked 276
contexts 270

creating 277
control blocks 270, 283, 291, 324
creating 277
delayed 271
delayed-suspended 271
delaying 271, 282, 322, 323
deleting safely 280

code example 282
semaphores, using 304

displaying information about 280
error status values 285

see also errnoLib(1)
exception handling 287, 288

see also signals; sigLib(1); excLib(1)
tExcTask 293

executing 282
hooks

see also taskHookLib(1)
extending with 283
troubleshooting 284

IDs 278
interrupt level, communicating at 328
logging (tLogTask) 293
names 278

automatic 278
option parameters 279
pended 271
pended-suspended 271
priority, setting

driver support tasks 276
POSIX 98, 100

code example 99
Wind 273

ready 271



 Index

383

Index

root (tUsrRoot) 293
scheduling

POSIX 97, 101
preemptive locks 276, 296
preemptive priority 100, 274
priority limits, getting 101
round-robin 274

see also round-robin scheduling
time slicing 101
Wind 273

shared code 288
and signals 288, 316
spawning 277, 292
stack allocation 278
states 271
suspended 271
suspending and resuming 282
synchronization 297

code example 300, 301
counting semaphores, using 305

system 292
target shell (tShell) 293
task events register 320

API 320
telnet (tTelnetd, tTelnetInTask, 

tTelnetOutTask) 293
variables 291

see also taskVarLib(1)
context switching 291

taskSafe( ) 281
taskSpawn( ) 277
taskStatusString( ) 280
taskSuspend( ) 282
taskSwitchHookAdd( ) 283
taskSwitchHookDelete( ) 284
taskTcb( ) 280
taskUnlock( ) 273
taskUnsafe( ) 281
taskVarAdd( ) 291
taskVarDelete( ) 291
taskVarGet( ) 291
taskVarSet( ) 291
telnet

daemon tTelnetd 293
terminate( ) (C++) 126

threads 14
threads (POSIX) 92

attributes 92, 96
specifying 95

keys 96
private data, accessing 96
terminating 97

thresholds
health monitoring 209

time management
vThreads 15

time slicing 274
determining interval length 101

timeout
message queues 310
semaphores 306

timeouts
semaphores 306

timer queue (vThreads) 15
timers

see also timerLib(1)
message queues, for (Wind) 310
POSIX 90, 91
semaphores, for (Wind) 306
watchdog 322, 323

code examples 322
TPS scheduling 170

mode-based scheduling 171
partition activation 170
scheduling rules 170
spare-time monitoring 171

trusted partitions 212

U
unnamed semaphores (POSIX) 101, 102, 103
user configuration record regions 147
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V
variables

global 290
static data 290
task 291

VE exception 342
virtual memory

see also vmLib
attributes, MMU access 150

virtual memory contexts
protection domains, and 152

vmPgAttrSet( ) 152
VT_EVENT_CLOCK_TICK 21
VT_EVENT_PORT_INT_RECV 22
VT_EVENT_PORT_INT_SEND 22
VT_EVENT_RELEASE_POINT 22
VT_EVENT_SC_COMPLETE 21
VT_EVENT_SYNC 21
VT_EVENT_USER 22
VT_EVENT_WARM_RESART 21
vThreads

APIs 33
APPS scheduling and 176
boot sequence 25
certifiability 7
certification 15
COLD versus WARM restarts 27
cooperative WARM partition restart 

mechanism 28
device I/O 33
exception handling, synchronous 23
exceptions 14
external stimuli, handling 18
guard pages 31

defaults 31
limitations 32

I/O 14
initialization 25
iterrupts 14
key features 3
memory 14
memory management 24
overview 13
partition restart and device drivers 30

priority-preemptive scheduling 17
pseudo-interrupts

events
forbidden in user handlers 21
permitted in user handlers 22

signals 19
restart 25, 27
round-robin scheduling 18
scheduling 16
stack overflow protection 30
system call complete 21
system calls 34
system clock ticks 21
threads 14
time management 15
timer queue 15

vThreads I/O 221
device driver models 223

core OS level 225
split level 226
vThreads level 224

sample drivers, communicating using ARINC 
ports 229

select( ) 228
worker tasks 222

vThreads Layer 7
VX_ALTIVEC_TASK 279
VX_DSP_TASK 279
VX_FP_TASK 279
VX_FP_TASK 125
VX_FP_TASK option 279
VX_NO_STACK_FILL 279
VX_PRIVATE_ENV 279
VX_UNBREAKABLE 279
VxWorks 653

DO-178B certifiability 9
VxWorks 653

overview 2
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Index

W
WAIT_FOREVER 306
warm restart

partitions 161
system 159

watchdog timers 322
code examples

creating a timer 322
wdCancel( ) 322
wdCreate( ) 322
wdDelete( ) 322
wdStart( ) 322
Wind facilities 90

message queues 310
POSIX, differences from 90

message queues 109, 110
scheduling 98
semaphores 102

scheduling 273, 276
semaphores 297

wind kernel, see kernel
worker tasks 168

vThreads I/O 222
workQPanic 327
write protection

exception vector tables, of 152

Z
ZE exception 342
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