
VxWorks

DEVICE DRIVER DEVELOPER'S GUIDE
Volume 1: Fundamentals of Writing Device Drivers

®

6.6

VxWorks Device Driver Developer's Guide, 6.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Device Driver Developer's Guide, Volume 1: Fundamentals of Writing Device Drivers, 6.6

9 Nov 07
Part #: DOC-16098-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Getting Started with Device Driver Development 1

1.1 About Device Drivers .. 1

1.2 About this Documentation Set ... 2

1.2.1 Intended Audience .. 2

1.2.2 Navigating this Documentation Set ... 3

Experienced VxWorks Device Driver Developers 3
Novice VxWorks Device Driver Developers .. 4

1.2.3 Documentation Conventions ... 4

1.3 Additional Documentation Resources .. 5

2 VxBus and VxBus Device Drivers .. 7

2.1 Introduction ... 7

2.2 About VxBus .. 8

2.3 VxBus Device Drivers .. 9

2.4 Design Goals .. 13

2.4.1 Performance .. 13

2.4.2 Maintenance and Readability ... 14

VxWorks
Device Driver Developer's Guide, 6.6

iv

2.4.3 Ease of Configuration .. 14

2.4.4 Performance Testing ... 14

2.4.5 Code Size ... 14

3 Device Driver Fundamentals ... 15

3.1 Introduction ... 15

3.2 Driver Classes .. 16

3.2.1 General Classes ... 16

Serial Drivers .. 17
Storage Drivers .. 17
Network Interface Drivers ... 17
Non-Volatile RAM Drivers .. 18
Timer Drivers ... 18
DMA Controller Drivers .. 19
Bus Controller Drivers .. 19
USB Drivers .. 20
Interrupt Controller Drivers .. 20
Multifunction Drivers ... 20
Remote Processing Element Drivers .. 21
Console Drivers ... 21
Resource Drivers ... 22

3.2.2 Other Classes .. 22

3.3 Driver Organization .. 23

3.3.1 File Location ... 23

Third-Party Drivers ... 24

3.3.2 Required Files .. 24

Driver Source File .. 25
Component Description File .. 27
Driver Configuration Stub Files .. 34
README File ... 36
Driver Makefile .. 36

3.4 VxBus Driver Methods ... 38

3.4.1 Representing Driver Methods in the Documentation 38

 Contents

v

3.4.2 Parts of a Driver Method .. 39

3.4.3 Calling Driver Methods .. 39

3.4.4 Advertising Driver Methods ... 40

3.4.5 Driver Method Limitations .. 42

3.5 Driver Run-time Life Cycle ... 42

3.5.1 Driver Initialization Sequence ... 42

Making Assumptions about Initialization Order 43
Early in the Boot Process .. 44
sysHwInit(), PLB, and Hardware Discovery 44
Driver Registration .. 45
Driver Initialization Phase 1 .. 45
Kernel Startup .. 46
Driver Initialization Phase 2 .. 46
Driver Initialization Phase 3 .. 46

3.5.2 Invoking a Driver Method ... 46

3.5.3 Run-time Operation .. 47

Unloading a Driver ... 47
Removing a Device from the System ... 47
Dissociating a Device from a Driver ... 48

3.5.4 Handling a System Shutdown Notification .. 48

3.5.5 Handling Late Driver Registration ... 48

3.5.6 Driver Registration Order Considerations .. 49

3.5.7 Driver-to-Device Matching and Hardware Availability 50

PLB .. 51
Other Bus Types .. 51

3.6 Services Available to Drivers .. 52

3.6.1 Configuration ... 53

Determining Driver Configuration Information 53
Responding to Changes in Device Parameters 56

3.6.2 Memory Allocation ... 57

Allocating Memory During System Startup 57
Allocating Memory During Normal System Operation 58
Intermixing Memory Allocation Methods within a Single Driver .. 58

VxWorks
Device Driver Developer's Guide, 6.6

vi

3.6.3 Non-Volatile RAM Support .. 59

3.6.4 Hardware Access ... 59

Finding the Address of the Hardware Registers 59
Reading and Writing to the Hardware Registers 62
Special Requirements for Hardware Register Access 63

3.6.5 Interrupt Handling .. 63

Overview of Interrupt Handling .. 64
Interrupt Indexes ... 64
Minimizing Work Performed within an ISR 65

3.6.6 Synchronization ... 66

Task-Level Synchronization ... 67
Interrupt-Level Synchronization ... 68

3.6.7 Direct Memory Access (DMA) .. 70

vxbDmaBufLib .. 70
DMA Considerations ... 71
Allocating External DMA Engines ... 75

3.6.8 Atomic Operators .. 77

3.7 BSP Configuration .. 79

3.7.1 Requirements for PLB Devices .. 79

3.7.2 Configuring Device Parameters in the BSP ... 82

3.8 SMP Considerations ... 82

3.8.1 Lack of Implicit Locking ... 83

3.8.2 True Task-to-Task Contention .. 84

3.8.3 Interrupt Routing .. 84

3.8.4 Deferring Interrupt Processing .. 84

4 Development Strategies .. 89

4.1 Introduction ... 89

4.2 Writing New VxBus Drivers .. 90

 Contents

vii

4.2.1 Creating the VxBus Infrastructure .. 90

Writing Driver Source Files .. 90
Writing Header Files (Optional) .. 90
Writing the Component Description File (CDF) 91
Writing the Configuration Stub Files ... 91
Verifying the Infrastructure ... 92

4.2.2 Modifying the BSP (Optional) ... 93

4.2.3 Adding Debug Code ... 94

4.2.4 Adding the VxBus Driver Methods .. 95

4.2.5 Removing Global Variables ... 95

4.3 VxBus Show Routines .. 96

4.3.1 Available Show Routines ... 96

vxBusShow() .. 96
vxbDevStructShow() ... 99
vxbDevPathShow() ... 100

4.3.2 PCI Show Routines ... 100

pciDevShow() .. 101
vxbPciDeviceShow() ... 101
vxbPciHeaderShow() .. 102
vxbPciFindDeviceShow() ... 103
vxbPciFindClassShow() .. 104
vxbPciConfigTopoShow() .. 104

4.3.3 Using Show Routines from Software ... 106

4.3.4 Configuring Show Routines into VxWorks ... 108

4.4 Debugging .. 110

4.4.1 Configuring Show Routines .. 110

4.4.2 Deferring Driver Registration ... 111

4.4.3 Including Debug Code ... 112

4.4.4 Confirming Register Access ... 112

4.4.5 Increasing the Size of HWMEM_POOL ... 112

4.4.6 Confirming Device and Driver Name Matches 113

VxWorks
Device Driver Developer's Guide, 6.6

viii

5 Driver Release Procedure ... 115

5.1 Introduction .. 115

5.2 Driver Source Location ... 116

5.3 Driver-Specific Directories ... 117

5.4 Driver Installation and the README File ... 118

5.5 Driver Packaging ... 119

5.6 Driver Release Procedure ... 120

A Glossary .. 121

B Checklist for Device Drivers .. 125

Index .. 129

1

 1
Getting Started with

Device Driver Development

1.1 About Device Drivers 1

1.2 About this Documentation Set 2

1.3 Additional Documentation Resources 5

1.1 About Device Drivers

In the simplest terms, VxWorks device drivers are a means of communication
between a hardware device and the VxWorks operating system. However, Wind
River currently supports two device driver models for accomplishing this task.

In later VxWorks 6.x releases, device drivers can be implemented in one of two
ways: as VxBus-enabled device drivers or as legacy (pre-VxBus) device drivers.
Each method is described briefly below:

■ VxBus-Enabled Device Drivers

The preferred method for new development uses the VxBus device driver
infrastructure. This infrastructure supports device drivers by defining
standard interfaces for the driver to interact with the operating system and
device hardware.

VxWorks
Device Driver Developer's Guide, 6.6

2

■ Legacy (Pre-VxBus) Device Drivers

The term legacy device drivers is used to describe pre-VxBus device drivers as
implemented in early VxWorks 6.x and in VxWorks 5.x releases. Legacy
drivers do not share a common interface to the operating system or hardware.

Wind River strongly recommends that you develop new VxWorks device drivers
according to the VxBus model whenever possible. The VxWorks Device Driver
Developer’s Guide (Vol. 3): Migrating to VxBus includes information on migrating an
existing legacy-model driver to the VxBus model.

1.2 About this Documentation Set

This section provides information on the intended audience for this
documentation, including the level of expertise expected from the developer. It
also provides a map of this documentation to help you get the information you
need regarding device driver development quickly and efficiently.

1.2.1 Intended Audience

This documentation is primarily designed for the experienced device driver
developer. In general, the documentation does not assume specific experience with
VxWorks device drivers or with the VxBus or legacy VxWorks device driver
model. However, it does assume general experience writing device drivers for
embedded hardware systems (for example, a basic understanding of reading and
writing device registers).

NOTE: If you are developing for a symmetric multiprocessing (SMP) system,
the device drivers used in the system must be VxBus-enabled. You cannot use
legacy device drivers in SMP systems. (For information on SMP support, see
the VxWorks Kernel Programmer’s Guide: VxWorks SMP).

NOTE: In VxWorks 6.6, the legacy device driver implementation is valid only
for uniprocessor (UP) systems. (For information on SMP and UP systems, see
the VxWorks Kernel Programmer’s Guide).

1 Getting Started with Device Driver Development
1.2 About this Documentation Set

3

1For specific information on navigating this documentation set based on your
experience level, see 1.2.2 Navigating this Documentation Set, p.3.

1.2.2 Navigating this Documentation Set

The VxWorks Device Driver Developer’s Guide includes three volumes:

Volume 1: Fundamentals of Writing Device Drivers (this document)
This volume provides information and concepts that are fundamental to the
development of most VxBus model device drivers. It serves as a foundation for
the class-specific information presented in Volume 2.

Volume 2: Writing Class-Specific Device Drivers
Volume 2 provides specific information and requirements for class-specific
device drivers for all driver classes supported by VxWorks (for example,
network drivers, bus controller drivers, USB drivers, and so forth). It also
includes some guidelines for developing drivers for classes that are not
currently supported.

Volume 3: Legacy Drivers and Migration
Although Volumes 1 and 2 may provide information that is generic to all
VxWorks device drivers, they should not generally be used as a reference for
legacy model device drivers. Volume 3 provides legacy model driver
information for the purpose of maintaining existing legacy device drivers.
Wind River strongly recommends that all new device driver development be
done according to the VxBus device driver model. Volume 3 also provides
guidelines for migrating legacy model device drivers to the VxBus model,
including specific migration information for certain driver classes.

Experienced VxWorks Device Driver Developers

Your level of experience with VxWorks device driver development will influence
how you approach Volume 1 (this document). If your experience is limited to
legacy model VxWorks device driver development, the majority of the concepts
described in this document will be new to you. Understanding these concepts is
critical before beginning any VxBus model driver development. If you are an
experienced VxBus device driver developer, some of the information in Volume 1
is likely to be familiar to you. However, you may still need to carefully review the
requirements for your driver class in Volume 2 and may even need to review
certain concepts in Volume 1.

VxWorks
Device Driver Developer's Guide, 6.6

4

If you are an experienced legacy model device driver developer, the early chapters
of Volume 3 are likely to be familiar to you. However, if you plan to migrate any
existing drivers to the VxBus model, or you have plans to use the optional
VxWorks symmetric multiprocessing model (SMP) product, you should carefully
review the migration information in Volume 3. It is also critical that you carefully
examine Volume 1 (this document) and relevant chapters of VxWorks Device Driver
Developer’s Guide, Volume 2: Writing Class-Specific Drivers before beginning any
VxBus model driver development.

Novice VxWorks Device Driver Developers

If you are fairly new to VxWorks device driver development and you are not
interested in migrating an existing device driver, you should focus your attention
on Volume 1 (this document) and Volume 2 of this documentation set. The
fundamentals presented in Volume 1 are critical for most VxBus model device
drivers. Once you have a basic understanding of these fundamentals, you can
move on to the class-specific information in Volume 2 that is appropriate for your
device class.

If you are new to device driver development in general (not specific to VxWorks),
you may need to consult some third-party information in order to better
understand the basic concepts associated with all device driver development.
However, if you are fairly experienced with embedded development and have
some hardware experience, you should find that the information in Volume 1 is
sufficient to get you started.

1.2.3 Documentation Conventions

The following conventions are used in this document:

installDir
Within this document, file paths are typically expressed as a full path; this
practice maintains consistency between this and other Wind River
documentation. For example:

installDir/vxworks-6.x/target/src/hwif/sio/Makefile

bspname
In several places within this document, there are references to filenames that
are based on the BSP. These filenames have the string bspname substituted. For
example, if you are working on a BSP called acmeBSP, change any reference
bspname to acmeBSP. For example, bspname.h would become acmeBSP.h.

1 Getting Started with Device Driver Development
1.3 Additional Documentation Resources

5

1class
Drivers for specific devices are grouped by device class. For example, serial
drivers are located at installDir/vxworks-6.x/target/src/hwif/sio. For the
general case, class represents the device type:
installDir/vxworks-6.x/target/src/hwif/class.

dev
Where this document refers to devices in general, these devices are generically
referred to as dev. In such cases, substitute the name of each device or device
type for dev. For example, if your driver supports ncr810, the general file
devInit.c becomes ncr810Init.c.

1.3 Additional Documentation Resources

Before beginning any device-driver development, you should have a good
understanding of the overall VxWorks I/O system. For more information, see the
VxWorks Kernel Programmer's Guide: I/O System.

In addition, you may want to refer to the VxWorks BSP Developer’s Guide. This
document discusses VxWorks BSP development. In particular, it provides
guidelines for writing a custom BSP based on an existing reference BSP.

VxWorks
Device Driver Developer's Guide, 6.6

6

7

 2
VxBus and

VxBus Device Drivers

2.1 Introduction 7

2.2 About VxBus 8

2.3 VxBus Device Drivers 9

2.4 Design Goals 13

2.1 Introduction

This chapter explains some of the key concepts and terms associated with VxBus
and VxBus device drivers including the term VxBus itself, instances, and driver
method advertisement. This chapter is intended as a system overview only. The
concepts and terms introduced here are explained further in 3. Device Driver
Fundamentals.

Class-specific driver information for all supported VxBus classes is provided in
VxWorks Device Driver Developer’s Guide, Volume 2: Writing Class-Specific Device
Drivers.

VxWorks
Device Driver Developer's Guide, 6.6

8

2.2 About VxBus

The term VxBus generally refers to one of two things. In general, it refers to a
specific infrastructure for support of device drivers in VxWorks, with minimal BSP
support. This includes functionality to allow device drivers to be matched up with
devices, mechanisms for drivers to gain access to device hardware, a mechanism
for other parts of the software environment to gain access to device functionality,
and other functionality required in order for device drivers to be functional in a
VxWorks system.

In addition, the term VxBus sometimes refers to a set of components of the
VxWorks operating system for use with Workbench, the vxprj command-line
utility, and VxWorks image projects. The core VxBus functionality is one
component, each VxWorks VxBus driver is a component, and the VxBus support
modules are components. Each of these components can be selected individually
from within Workbench.

Before the first release of VxBus with VxWorks 6.2, device drivers were not
integrated with VxWorks project configuration, and to add and remove support
for specific devices required significant knowledge of the BSP and of the driver, as
well as requiring extra effort to manage VxWorks projects when drivers needed to
be added or removed. As a set of components, VxBus eliminates most of that by
allowing various drivers and support modules to be selected from within
Workbench, without requiring knowledge of the BSP and driver, and without
requiring extra effort for management of VxWorks projects when drivers are
added or removed.

Many BSPs are released in a format in which VxBus is required. If you remove the
VxBus component from projects based on these BSPs, your project does not build.

2 VxBus and VxBus Device Drivers
2.3 VxBus Device Drivers

9

2

2.3 VxBus Device Drivers

There are three terms that are important for understanding VxBus device drivers:
device, driver, and instance. The term device refers to a bit of hardware. The term
driver refers to the executable code plus the configuration information required to
make the hardware device accessible to the OS. Each driver can be associated with
zero or more devices. The term instance refers to one such association. Figure 2-1
illustrates this pairing.

Driver methods make up the mechanism for other parts of the software
environment to gain access to device functionality.

Figure 2-1 VxBus Instance

USB
Port

Serial
Port

Serial
Port

Network
Port

ns16550.c

register()

{

}

.

.

.

Driver

Devices

A driver and a

device are paired

together to form

an instance.

VxWorks
Device Driver Developer's Guide, 6.6

10

When using a driver method, the module making the request can query a single
instance or all instances. And the query can either ask for information on how to
accomplish an action or it can be a request for the driver to perform some action.
At the top level, then, the query can consist of a question of whether a specific
instance can support an action, a question of what instances can support an action,
or a request to perform an action.

Figure 2-2 illustrates device/driver/operating system communication in a subset
of a VxWorks system. The system shown includes two middleware modules or
VxWorks subsystems (in this case, the network stack and the auxiliary timer)
which are attempting to communicate with a hardware device on the system. Note
that an actual system is likely to have several instances and many middleware
modules, Figure 2-2 is a subset only.

An instance makes itself available to the overall VxWorks system by advertising
the driver methods it supports. In Figure 2-2, the network stack uses the
vxbDevMethodGet() routine to query each instance (device/driver pairing)
known to the system. In the example, the network stack module is searching for an
instance that supports the {muxDevConnect}() driver method. If the instance
supports the method, it returns a pointer to the driver’s routine implementing that
method. If an instance does not support the requested method, it returns NULL. In
the example shown, the stack finds a Yukon II network interface advertising
support for the required method.

The system also shows an auxiliary timer making a similar query. In this case, the
timer looks for the {vxbTimerFuncGet}() method and gets a positive response
from the OpenPic timer instance in the system.

Note that although this example shows only a single instance making a positive
response in each case, any number of instances (or none at all) can include the
necessary support.

2 VxBus and VxBus Device Drivers
2.3 VxBus Device Drivers

11

2

Figure 2-2 Method Advertising

ns16550 Serial Port

OpenPic Timer

{sioChanGet}()

{sioChanConnect}()

{vxbTimerFuncGet}()

Yukon II Network Interface

{muxDevConnect}()

{vxbDevShow}()

...

{vxbIntCtlrConnect}()

{vxbIntCtlrEnable}()

...

Interrupt Controller

Support for

{vxbTimerFuncGet}()

Support for

{muxDevConnect}()

Network Stack Auxiliary Clock

vxbDevMethodGet()vxbDevMethodGet()

Yes

Device Driver Pairings (instances) Middleware ModuleMiddleware Module

other instances ... other modules...other modules...

??

Yes

VxWorks
Device Driver Developer's Guide, 6.6

12

Figure 2-3 shows the OpenPic timer instance (as seen in Figure 2-2) querying the
interrupt controller instance directly. The interrupt controller includes support for
{vxbIntCtlrEnable}() and therefore responds to the timer request.

Figure 2-3 Known Instance Method Discovery

ns16550 Serial Port

OpenPic Timer

{sioChanGet}()

{sioChanConnect}()

{vxbTimerFuncGet}()

Yukon II Network Interface

{muxDevConnect}()

{vxbDevShow}()

...

{vxbIntCtlrConnect}()

{vxbIntCtlrEnable}()

...

Interrupt Controller

other instances ...

Support for

{vxbIntCtlrEnable}()

vxbDevMethodGet()

Yes

?

2 VxBus and VxBus Device Drivers
2.4 Design Goals

13

2

2.4 Design Goals

VxWorks is an operating system for real-time and embedded applications. This
places some constraints on the design of device drivers.

The primary goal for most VxWorks drivers is real-time performance of the target
system as a whole. In general, if a driver does not allow real-time execution of
applications running on the target, the driver is a poor choice for use with
VxWorks and another driver should be selected. Depending on the application,
this may be an absolute requirement, or it may be an important consideration.

Memory footprint is another constraint for VxWorks drivers. Many embedded
applications have limited memory and because demand paging to disk is not
compatible with real-time operation, memory constraints are extremely important.

Standard software requirements are also important in the VxWorks environment.
This includes requirements such as driver flexibility, code maintainability, code
readability, and driver configurability.

2.4.1 Performance

Drivers must perform well enough to match the real-time kernel's abilities.
Designing for performance implies many things. First, it requires using direct
memory access (DMA) and interrupts in an efficient manner. This requires you to
keep your routine nesting at an optimum level. For example, too many routine
calls and restore operations can increase process dispatch latency and reduce
performance. However, performance requirements must be balanced against
proper use of routines for keeping code size small and making your driver design
easy to follow and understand.

Designing for performance also means keeping interrupt latency to a minimum.
Interrupt handlers must receive the greatest care in any design. Overall system
performance is just as important as the specific driver's performance.

For specific applications, you may consider it acceptable to write a VxWorks driver
that sacrifices one or more of these goals. For example, when writing a driver for a
system that is expected to be used only for a specific non-real-time application, you
may be tempted to sacrifice real-time system performance in your driver design.
However, because of issues such as code re-use, Wind River strongly discourages
this approach. Real-time performance and memory footprint are an important
concern for all VxWorks drivers.

VxWorks
Device Driver Developer's Guide, 6.6

14

2.4.2 Maintenance and Readability

Most of the effort involved in software engineering is maintenance. Therefore, any
effort that reduces the maintenance burden is valuable. By adhering to coding
standards and producing quality documentation, you make your code easy to
read, easy to understand, and easy to maintain. Poor quality documentation is just
as detrimental to the maintenance process as insufficient documentation. Any new
device driver documentation should be reviewed by at least one objective person
(not the author of the code).

2.4.3 Ease of Configuration

Your driver should not limit the end user’s options or requirements. Do not
impose limits on the number of devices that can be supported or on other features.
You may not be able to support all device features or operating modes in your
original driver, but your design should not preclude expanded device support at
a later time.

2.4.4 Performance Testing

All drivers must be tested for expected behavior, and all drivers should be tested
for performance. In addition to writing the driver functionality, you must also
consider writing test routines. This involves inserting debug information into your
code as well as supporting benchmark tests. If a standard benchmark test is not
available, you must consider writing one. You should consider testing for both
performance and expected behavior regardless of your driver type (Ethernet,
serial, timers, interrupt controllers, and so forth).

In general, high-level debug code such as that used during performance testing
should be well-written, surrounded by #ifdef/#endif statements, and left in the
source code in order to ease future debugging efforts.

2.4.5 Code Size

In the embedded real-time operating system (RTOS) market, code size (footprint)
is important. Code size should be minimized through structured design. However,
reducing code size can hurt performance. As a developer, you must balance your
design such that you provide adequate performance without excessive code size.

15

 3
Device Driver Fundamentals

3.1 Introduction 15

3.2 Driver Classes 16

3.3 Driver Organization 23

3.4 VxBus Driver Methods 38

3.5 Driver Run-time Life Cycle 42

3.6 Services Available to Drivers 52

3.7 BSP Configuration 79

3.8 SMP Considerations 82

3.1 Introduction

This chapter discusses the key concepts related to VxWorks device drivers that use
the VxBus driver model. In particular, it provides detailed information about the
anatomy of the VxBus device driver ecosystem including information on
driver-related file locations and directory structure, an explanation of VxBus
methods, a description of the services available to VxBus device drivers, and the
general life cycle of a VxBus device driver. In addition, this chapter provides
guidelines for developing device drivers for use with the optional VxWorks
symmetric multiprocessing (SMP) product.

VxWorks
Device Driver Developer's Guide, 6.6

16

In general the concepts explained in this chapter apply to many (or all) types of
device-specific drivers. Volume 2 of the VxWorks Device Driver Developer’s Guide
provides information about specific driver classes and is intended to supplement
the information provided in this volume.

3.2 Driver Classes

One of the most basic pieces of information about a device, and about the driver
that manages it, is what function the device performs. Different devices perform
different tasks. There are devices that read and write data on magnetic disk or
other long-term data storage, devices that print text and graphics to paper or to a
video display, and still other devices that control the location of robotic arms, pens,
and so forth.

For each type of functionality, there may be many different devices that perform
similar tasks. For example, when displaying graphical information on a video
device, the display controller may be a simple VGA controller (like those found on
older PCs), or it may be a modern display controller running on PCI Express, with
several megabytes of graphics RAM buffers. However, in each case, the underlying
purpose of the device is the same.

Because of this similarity of function, device drivers can be divided into several
different classes based on the tasks that the associated device performs.

3.2.1 General Classes

This section gives an overview of the different driver classes as defined by
Wind River, along with a brief description of the functionality provided by each
class. For more information about an individual driver class, refer to the
appropriate chapter of VxWorks Device Driver Development Guide, Volume 2: Writing
Class-Specific Drivers.

3 Device Driver Fundamentals
3.2 Driver Classes

17

3

Serial Drivers

Serial drivers manage interfaces to terminals and other devices with serial
interface such as RS-232 or RS-422. These devices are connected to the I/O system,
and may be configured as the VxWorks system console. Software can gain access
to these devices by making a call to open(), read(), write(), ioctl(), and so forth.

Within the VxBus framework, serial driver source files are located in
installDir/vxworks-6.x/target/src/hwif/sio. The primary operations they support
are connection to the I/O system and fetching channel-specific data.

Storage Drivers

Storage drivers manage interfaces to magnetic disks, tape drives, flash disks (also
known as flash keys), and on-board flash devices. Some general characteristics of
these devices are:

■ The storage contents are maintained when power is turned off.

■ Access to the data is slow compared to RAM.

■ Typically, the per-byte cost of these devices is low compared to RAM.

These devices include ATA disks, Serial ATA disks, SCSI disks, USB flash disks,
floppy disks, and so forth.

Within the VxBus framework, storage driver source files are located in
installDir/vxworks-6.x/target/src/hwif/storage. The primary operation they
support is connecting to an extended block device (XBD), which occurs during the
instConnect() phase of VxBus initialization. (For information on device driver
initialization phases, see 3.5 Driver Run-time Life Cycle, p.42.)

For more information on XBD, see VxWorks Device Driver Developer’s Guide (Vol. 2):
Storage Drivers.

Network Interface Drivers

Network interface drivers manage interfaces to network hardware. Ethernet is the
most common type of network hardware supported by network drivers, though
drivers for other types of network hardware are also included in this class.

Ethernet network devices typically are separated into two main parts: the media
access controller (MAC), and physical layer support (PHY). PHY devices reside on
a bus type called the media independent interface (MII).

VxWorks
Device Driver Developer's Guide, 6.6

18

Within the VxBus framework, MAC drivers are typically located in
installDir/vxworks-6.x/target/src/hwif/end, and PHY drivers are located in
installDir/vxworks-6.x/target/src/hwif/mii. The primary operation that MAC
drivers support is connection to the MUX. (For information on the MUX, see the
Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 3: Interfaces and
Drivers.) Both PHY and MAC drivers provide mechanisms to coordinate between
the MAC and the PHY.

Non-Volatile RAM Drivers

Non-Volatile RAM (NVRAM) devices provide data storage that is not erased when
power is turned off. There is some overlap between NVRAM devices and storage
devices (see Storage Drivers, p.17). The primary distinction is that NVRAM devices
generally allow random byte-sized access to the data, while storage devices
typically do not allow random byte-sized access to the data. However, this is not
always the case and exceptions occur in both directions. Functionally, NVRAM
devices store small amounts of data for use during system configuration, and
storage devices store application data.

Within the VxBus framework, NVRAM driver source files are located in
installDir/vxworks-6.x/target/src/hwif/nvram. The primary operations supported
by these drivers are reading and writing to and from the media according to
specified allocation.

Timer Drivers

Timer devices can provide two services. They provide a counter that increments or
decrements periodically that an application can read to determine elapsed time.
They can also provide a mechanism to notify the CPU that a given time period has
elapsed. This is done using an interrupt.

Within the VxBus framework, timer driver source files are located in
installDir/vxworks-6.x/target/src/hwif/timer. The primary operations supported
are allocation of a timer to a specific purpose, attaching an interrupt service routine
(ISR) to the timer interrupt, reading the current value of the timer, and enabling or
disabling counting and interrupt generation.

3 Device Driver Fundamentals
3.2 Driver Classes

19

3

DMA Controller Drivers

DMA engines allow data to be copied from one location in RAM to another
without the overhead of using the CPU to perform the data copy. They are
typically used to copy data between a device buffer and system RAM.

Many devices have built-in DMA engines to help increase performance. This is
typical in devices such as network interfaces (MACs) and storage devices.
However, many systems include DMA engines available for general purpose use.
With respect to VxWorks device drivers, devices with built-in DMA engines are
not considered to be DMA controller drivers. Rather, they are part of another class
such as network or storage. Only drivers for the general-purpose DMA engines are
considered to be in the DMA controller driver class.

Within the VxBus framework, DMA controller driver source files are located in
installDir/vxworks-6.x/target/src/hwif/dma. The primary operations supported
are allocation of a DMA engine to a specific purpose, and copying data.

Bus Controller Drivers

Bus controller devices provide an interface between different types of computer
buses. Every CPU design includes the interface from the CPU to the outside world.
In the VxBus context, this bus—regardless of CPU type—is called the processor
local bus (PLB). Many devices are connected directly to the PLB. However, other
devices are connected to other bus types, which are then connected to the PLB
through a bus controller. In some cases, additional bus controller devices provide
a bridge from one device bus type to another, such as from PCI to VME.

Within the VxBus framework, bus controller driver source code is kept in
installDir/vxworks-6.x/target/src/hwif/busCtlr or its subdirectories, regardless of
the type of bus the device manages. Bus controller drivers manage the devices
present on the bus in several ways. First, the bus controller driver is responsible for
determining what devices are present on the subordinate bus. Second, bus
controller drivers are responsible for configuring downstream devices so that their
drivers can access device registers properly. Third, bus controller drivers are
responsible for managing any address mapping that might be required.

VxWorks
Device Driver Developer's Guide, 6.6

20

USB Drivers

USB functionality is split into two different types. USB host adaptors are a kind of
bus controller device, usually providing a bridge between the PLB or a PCI bus and
a USB bus. USB class drivers provide the functionality of storage drivers, network
drivers, and so on.

Within the VxBus framework, USB host adaptor drivers are located in
subdirectories under installDir/vxworks-6.x/target/src/hwif/busCtlr/usb/hcd.

As of VxWorks 6.6, USB class drivers are not integrated with the VxBus
framework, so their source files are located in
installDir/vxworks-6.x/target/src/drv/usb. For more information on USB class
drivers, see Wind River USB Programmer’s Guide: USB Class Drivers.

Interrupt Controller Drivers

Interrupt controller devices allow management of interrupt input sources, usually
fine-grained control. When devices assert interrupts, the interrupt controller
hardware passes the interrupt to the processor at an appropriate time, preventing
some interrupts from occurring while allowing other interrupt sources to be
delivered to the CPU.

Within the VxBus framework, interrupt controller driver source code is kept in
installDir/vxworks-6.x/target/src/hwif/intCtlr. Interrupt controller drivers are
responsible for determining what devices are connected to each of the interrupt
controller's inputs, and enabling or disabling each input according to whether any
device connected to that input should be enabled. They are also responsible for
configuring interrupt characteristics such as trigger type (edge versus level),
activation (high versus low), and other interrupt characteristics.

Multifunction Drivers

Many physical devices contain multiple logical devices. That is, a single chip can
include several timers, several DMA engines, one or more network interfaces, a
USB host adaptor, a PCI bus controller device, and various other devices.

Because many of the devices on a chip are identical copies of devices available
elsewhere, it is not practical to create a single driver that supports all the functions
of a chip. A single driver targeted at a specific device can be used to control a
device on a given multifunction chip or a device that is not on the chip. This
eliminates duplication of code.

3 Device Driver Fundamentals
3.2 Driver Classes

21

3

Having a single driver to manage the entire chip also reduces your ability to
configure the final system. For example, if you do not require USB for your
application, using a single driver to manage an entire multifunction chip
containing a USB host adaptor results in the entire USB stack being included in
your application. This can cost several hundred kilobytes of unnecessary memory
overhead.

Because of this, the recommended device driver development strategy for
multifunction devices is to have multiple drivers to support a single chip, one
driver for each functional component. In addition, you should create a
multifunction driver that manages the functional blocks on the chip. The
multifunction driver leaves management of the functional blocks to the individual
drivers for each functional block. The multifunction driver’s job to announce to
VxBus that each functional component part is available, what the register base
address of each functional component is, and manages other high level
information about the chip as a whole and about how it is divided into the
individual functional components.

Remote Processing Element Drivers

Many modern computers provide general purpose processors other than the
primary CPU. These processors can be similar to the primary CPU, or a different
processor type. They can also be custom processing elements such as digital signal
processors (DSPs). These remote processing elements can be dedicated to specific
tasks, depending on the application, and controlled by the primary CPU, or they
can be autonomous or semi-autonomous systems running their own operating
system.

Within the VxBus framework, processing element driver source code is kept in
installDir/vxworks-6.x/target/src/hwif/cpu. Processing element drivers are
responsible for establishing communication with the remote processing element.
Each VxBus processing element instance (see 2.3 VxBus Device Drivers, p.9) is
responsible for establishing and maintaining communication with one remote
processor.

Console Drivers

Console devices are those devices that can be used as a graphical system console
when the console is not a terminal connected to a serial port. This includes
keyboards, mouse devices, and display devices.

VxWorks
Device Driver Developer's Guide, 6.6

22

Within the VxBus framework, console driver source code is kept in
installDir/vxworks-6.x/target/src/hwif/console. Each type of console driver
provides management features specific to the device.

Resource Drivers

Many modern processor designs include hardware resources that are used by, and
shared among, several peripheral devices. The types of services provided by these
resources include things such as data routing and address translation. Sometimes,
each peripheral device has enough dedicated resources, that those resources can be
considered part of the device. However, when the available resources must be
shared among several peripheral devices, there may not be enough of these
resources available in the running system to enable full functionality of all the
peripheral devices available. In this case, you must create a resource management
driver to allocate the resources to other peripheral devices.

Within the VxBus framework, resource driver source code is kept in
installDir/vxworks-6.x/target/src/hwif/resource. The primary function of resource
drivers is allocation of the available resources to other peripheral devices. It can
also be used for configuring the resources.

3.2.2 Other Classes

There are classes of common devices for which Wind River does not define a driver
class. These classes include devices such as digital-to-analog converters and
analog-to-digital converters (D/A and A/D), robot control systems, and so forth.
In the future, Wind River may define driver classes for these device types.

Highly-specialized hardware is not likely to be supported by any of the
pre-defined Wind River device classes.

For more information on developing drivers for non-standard classes, see VxWorks
Device Driver Developer’s Guide (Vol. 2): Other Driver Classes.

3 Device Driver Fundamentals
3.3 Driver Organization

23

3

3.3 Driver Organization

A key part of your driver implementation is the driver source code file. This file
conveys the basic information that allows your device to communicate with the
VxBus infrastructure and the VxWorks operating system. However, VxWorks
device drivers require a number of other files in addition to the driver source file.
These additional files enable you to fully integrate your driver into the VxWorks
build environment, a key step in preparing your device driver for distribution.

This chapter discusses how to find (and place) device driver files in the VxWorks
source tree. It also provides specific details regarding each of the required files that
make up a VxWorks (VxBus-enabled) device driver.

Ultimately, the goal of this section is to show how the various pieces of a driver fit
together in a VxWorks system.

3.3.1 File Location

Before beginning your development, it is important to understand the placement
of device driver files in the VxWorks source tree. There are three distinct places in
the source tree where device driver files are located. These are:

installDir/vxworks-6.x/target/3rdparty
VxBus model device drivers written by third party developers that are
installed as add-ons to an existing VxWorks installation.

installDir/vxworks-6.x/target/src/hwif
Drivers written in compliance with the VxBus device model, distributed and
supported by Wind River, and provided as part of a standard product
installation or patch.

installDir/vxworks-6.x/target/src/drv
Wind River legacy drivers (not in VxBus compliance).

Drivers underneath installDir/vxworks-6.x/target/src/hwif are organized into
different subdirectories based on their driver class. For example, the source code
for timer drivers is found in installDir/vxworks-6.x/target/src/hwif/timer. Similar
subdirectories exist for each driver class that is supported by Wind River. For more
information on class-specific driver files, see Volume 2 of the VxWorks Device Driver
Developer’s Guide.

VxWorks
Device Driver Developer's Guide, 6.6

24

Third-Party Drivers

Third-party drivers are organized in a way that allows individual driver vendors
and developers to create third-party drivers without worrying about namespace
collisions between files created by different vendors. Each vendor wishing to write
a device driver for VxWorks should first create a vendor-specific subdirectory in
installDir/vxworks-6.x/target/3rdparty. For example, if a developer for the Acme
Corporation plans to create a third-party driver for VxWorks, the first step for the
driver developer is to create a new subdirectory,
installDir/vxworks-6.x/target/3rdparty/acme, to store the new driver files. Within
this subdirectory, each individual driver is created within its own subdirectory. For
example, use the subdirectory
installDir/vxworks-6.x/target/3rdparty/acme/acmeFoo to store the foo driver
provided by the Acme Corporation.

3.3.2 Required Files

Although a driver can include many files (including multiple source files and a
header file), there is a minimum set of files that make up a standard VxWorks
driver. For most VxWorks device drivers, a minimum of six separate files are
required. These include:

■ a driver source file—implements the runtime logic of the driver
■ a component description file (CDF)—allows you to integrate the driver with

the VxWorks development tools
■ a driverName.dc file—provides the prototype for the driver registration routine
■ a driverName.dr file—provides a fragment of C code to call the driver

registration routine
■ a README file—provides versioning information
■ a makefile (Makefile)—provides the make rules used to build the driver

The following sections describe each of these file types in greater detail.

NOTE: Collectively, the CDF file (40driverName.cdf), driverName.dc, and
driverName.dr are referred to as driver configuration files.

3 Device Driver Fundamentals
3.3 Driver Organization

25

3

Driver Source File

The driver source file contains the logic that implements the functionality of the
device driver. As stated previously, VxWorks device drivers are found under
installDir/vxworks-6.x/target/src/hwif, while third-party drivers are found under
installDir/vxworks-6.x/target/3rdparty. The example in this section discusses the
file locations for a Wind River driver.

While many VxWorks device drivers consist of a single source file, this is not a
requirement. A driver can include one or more optional header files in order to
allow for a cleaner presentation of the driver source code. A driver can also include
multiple source files, with makefile rules to build a single driver object module for
installation in the VxWorks library.

In the following example, fragments from the Wind River device driver file
vxbCn3xxxTimer.c are used to illustrate the structure of a VxWorks device driver.

Example 3-1 Device Driver Structure

The first part of a device driver (following the driver header lines) is a data
structure describing the routines that VxWorks must call during the VxBus
initialization phases. (For more information on VxBus initialization phases, see
3.5.1 Driver Initialization Sequence, p.42.)

/* data structures used by the driver to register itself
* with Vxworks
*/

/* drvBusFuncs provides a set of entry points into the
* driver that are called during various phases of the
* boot process. Drivers can choose to implement 1 or
* more of these entry point, according to the needs of
* the driver during its initialization phases.
*/

LOCAL struct drvBusFuncs cn3xxxTimerDrvFuncs =
{
cn3xxxTimerInstInit, /* devInstanceInit */
cn3xxxTimerInstInit2, /* devInstanceInit2 */
cn3xxxTimerInstConnect /* devConnect */
};

NOTE: The bold items in this example code are intended to emphasize certain
content. The bold highlighting does not represent any actual syntax in the source
code.

VxWorks
Device Driver Developer's Guide, 6.6

26

Following this registration data structure, there is a data structure describing the
driver methods that the driver supports. (Drivers that belong to a specific class
always implement the driver methods that are required for that class.)

/* cn3xxxTimerDrv_methods provides the list of driver
* methods that this driver supports. For each driver
* class supported by Wind River, one or more methods
* are expected to be defined for the driver. For
* timer driver class, the 'vxbTimerFuncGet' method
* is required to be supported.
*/

LOCAL struct vxbDeviceMethod cn3xxxTimerDrv_methods[] =
{
DEVMETHOD(vxbTimerFuncGet, cn3xxxTimerFuncGet),
{0,NULL}
};

Following the list of driver methods, the driver includes a data structure to
describe the driver registration information.

/* The cnxxxTimerDrvRegistration structure provides a
* description of the driver to VxWorks, so that VxWorks
* can connect this driver to appropriate hardware during
* the boot process.
*/

LOCAL struct vxbDevRegInfo cn3xxxTimerDrvRegistration =
{
NULL, /* reserved for VxBus use */
VXB_DEVID_DEVICE, /* devID */
VXB_BUSID_PLB, /* busID = PLB */
VXBUS_VERSION_3, /* vxbVersion */
"cn3xxxTimerDev", /* drvName */
&cn3xxxTimerDrvFuncs, /* pDrvBusFuncs */
NULL /* pMethods */
NULL /* devProbe */
};

After the registration information, the driver provides a routine to register with
VxBus.

/* The vxbCn3xxxTimerDrvRegister function contains the
* first instructions of the device driver that are
* ever executed within a VxWorks system. This function
* registers the driver with VxBus by providing pointers
* to the data structures listed previously. Once this
* step is complete, VxWorks is able to associate this
* driver with appropriate hardware within the system
* to form an instance.
*/

3 Device Driver Fundamentals
3.3 Driver Organization

27

3

void vxbCn3xxxTimerDrvRegister (void)
{
vxbDevRegister (&cn3xxxTimerDrvRegistration);
}

Because the driver registration routine is used as the first entry point into the
driver, VxWorks needs to be configured so that it knows to call this entry point
when it is registering the driver with VxBus. To do this, VxWorks uses information
that is found in the driver configuration files: driverName.cdf, driverName.dc, and
driverName.dr. For information on these driver configuration files, see Component
Description File, p.27 and Driver Configuration Stub Files, p.34.

Component Description File

VxBus model VxWorks device drivers are easily integrated into a BSP. VxWorks
device drivers that are developed according to the VxBus standard are compiled
as stand-alone object files that can be included in a BSP using the VxWorks
configuration tools. To do this, you must create a VxWorks component for your
device driver.

A component is a basic unit of functionality that can be configured into a VxWorks
image. In order for VxWorks to include or exclude individual device drivers, the
drivers must be written so that they appear to the VxWorks configuration tools as
individual components.

In order for a device driver to be configurable in Workbench or vxprj, you must
create a component description file (CDF) that describes the driver to these
configuration tools. This done by creating a configuration file named
40driverName.cdf.

For device drivers distributed by Wind River, the 40driverName.cdf file is located in
installDir/vxworks-6.x/target/config/comps/vxWorks. For these Wind River
drivers, there may be a single configuration file that contains component

NOTE: VxBus model VxWorks device drivers require the registration routine to be
a global symbol. Most drivers do not require any other global symbols therefore
other routines and data variables should be declared LOCAL.

NOTE: Component description files are briefly described in this chapter for the
benefit of the device driver developer. However, this is not an exhaustive
discussion. For more detailed information on CDFs, see the VxWorks Kernel
Programmer's Guide: Kernel.

VxWorks
Device Driver Developer's Guide, 6.6

28

descriptions for multiple drivers. This is because Wind River drivers are shipped
as a collection.

For third-party drivers, the 40driverName.cdf files are located in the same directory
as the driver itself (for example, installDir/vxworks-6.x/3rdparty/vendor/
driver/40driverName.cdf). For these drivers, each third-party CDF should contain
only a single component description.

Writing a CDF File

To create a CDF file for a new driver, copy an existing CDF (extension for this file
type is .cdf) from the standard VxWorks installation tree to the directory where you
are creating your driver and then modify the CDF to suit the needs of your driver.
The CDFs for device drivers shipped with VxWorks are located in installDir/
vxworks-6.x/target/config/comps/vxWorks.

Example 3-2 shows the contents of a CDF for a PCI bus controller. This file is
located in installDir/vxworks-6.x/target/config/comps/VxWorks/40m85xxPci.cdf.

Example 3-2 Device Driver Component Description File

/* 40m85xxPci.cdf - Component configuration file */

Component DRV_PCIBUS_M85XX {
NAME M85xx PCI bus
SYNOPSIS M85xx PCI bus controller Driver
MODULES m85xxPci.o
SOURCE $(WIND_BASE)/target/src/hwif/busCtlr
_CHILDREN FOLDER_DRIVERS
_INIT_ORDER hardWareInterFaceBusInit
INIT_RTN m85xxPciRegister();
PROTOTYPE void m85xxPciRegister (void);
REQUIRES DRV_RESOURCE_M85XXCCSR \

INCLUDE_PARAM_SYS \
INCLUDE_PCI_BUS \
INCLUDE_PLB_BUS \
INCLUDE_VXBUS

INIT_AFTER INCLUDE_PCI_BUS
}

The individual lines of this example can be broken down as follows:

Component DRV_PCIBUS_M85XX {

Each component in VxWorks is described using a component identifier,
designated using the keyword Component. Device driver component
identifiers always begin with DRV_ and include information to describe the
named device driver. Each class of driver uses a similar naming convention for
component identifiers. In this example, DRV_PCIBUS_M85XX informs the
reader that this is a component for a PCI bus controller driver.

3 Device Driver Fundamentals
3.3 Driver Organization

29

3

The standard naming convention for a device driver component is
DRV_CLASS_NAME. The name of the driver component must be unique
therefore it is important that the NAME portion of the identifier be specified
uniquely. When you are writing a third-party driver, include both the vendor
and driver name in the NAME portion of the component identifier (for
example, DRV_CLASS_VENDORANDDRIVERNAME). This avoids name
conflicts with other drivers in the system.

Component identifiers are displayed in the Workbench kernel configuration
editor under the Name column in Component Configuration. Figure 3-1
shows the display in Workbench.

NAME M85xx PCI bus

The NAME field is used to provide a human-readable description of the
component. In Workbench, this appears as the description in the kernel
configuration editor (see Figure 3-1).

SYNOPSIS M85xx PCI bus controller Driver

The SYNOPSIS field is used to provide a short human-readable description of
the component. In Workbench, this appears in the Synopsis field in the kernel
configuration editor (see Figure 3-1).

MODULES m85xxPci.o

The MODULES field lists the names of the object files that are created when the
driver is built. In this example, only a single module is included. When a driver
is included in a project, the VxWorks configuration services parse the contents
of the object files that are listed on the MODULES line in order to determine
what other components are needed in order to build this driver into the
VxWorks image.

For example, if a driver makes use of the routine strlen(), the symbol name
strlen appears as an unresolved external in the driver's object file. Using this
information, the VxWorks project configuration services automatically create
a dependency on the component that provides strlen(). This simplifies the
REQUIRES field, because many of the dependencies that a driver has on other
components are inferred from the direct dependencies parsed from the object
modules.

NOTE: Driver component identifiers for some older drivers continue to follow
the standard VxWorks component naming convention and begin with
INCLUDE_ (for example, INCLUDE_FEI8255X_VXB_END). For new
development, use the DRV_ convention for your driver components.

VxWorks
Device Driver Developer's Guide, 6.6

30

The MODULES field and the files listed in MODULES, in conjunction with the
REQUIRES field, provide all of the information necessary for VxWorks to
determine which components need to be included in order to support a given
driver.

_CHILDREN FOLDER_DRIVERS

The _CHILDREN field is used to group a component with other similar
components for display in Workbench. Workbench displays all of the
components that are contained within the same folder together in the kernel
configuration tool dialog, allowing easy selection of individual components
within the folder. All device drivers should be added to the FOLDER_DRIVERS
folder. Therefore, this line can be copied to your driver without modification.

Figure 3-1 Workbench CDF Field Display

SYNOPSIS field

NAME field COMPONENT field

3 Device Driver Fundamentals
3.3 Driver Organization

31

3

_INIT_ORDER hardWareInterFaceBusInit

The _INIT_ORDER field is used to describe when in the VxWorks boot process
this driver needs to be initialized. All VxBus device drivers must be initialized
in the hardWareInterFaceBusInit initialization group. Therefore, copy this
line into your driver without change.

INIT_RTN m85xxPciRegister();

The INIT_RTN field is used to perform the preliminary initialization of the
device driver. Device drivers must provide the name of their driver
registration routine in this field. Subsequent initialization of the driver occurs
when VxWorks finds appropriate hardware and then binds the hardware and
device driver together to form an instance.

PROTOTYPE void m85xxPciRegister (void);

The PROTOTYPE field is used to provide a forward declaration of the routine
specified by INIT_RTN, if no forward declaration of that routine is provided in
the header files listed in HDR_FILES.

REQUIRES …

The REQUIRES field lists the components that must also be used in order for
this driver to work correctly within VxWorks.

This field is necessary because not all device driver dependencies can be
determined by examining the unresolved externals that are present in a driver.
The REQUIRES field, in conjunction with the MODULES field, is used to
determine the set of components that must be included to support the driver.

For example, the PowerPC 85XX PCI bus controller driver requires services
from the CCSR resource driver. (For more information on resource drivers, see
Resource Drivers, p.22.) In this case, none of the public symbols of the CCSR
driver appear as unresolved references in the network driver. Therefore, the
MODULES method of determining component dependencies does not work.
Instead, you must use explicit entries in the REQUIRES field of your CDF to
describe the indirect dependencies.

NOTE: Be sure to include the leading underscore on the keywords of the CDF
file (where shown in the example above). The underscore reverses the
meaning. For example, a _CHILDREN entry indicates that this component (in
this case, your driver) is a child of the specified folder. If the underscore is not
present, the folder (FOLDER_DRIVERS) is configured as a child of your driver,
which is not correct.

VxWorks
Device Driver Developer's Guide, 6.6

32

Another more common example of this, is the use of PHY driver services from
some network drivers. Some network drivers can use one of several PHY
drivers, but others require a specific PHY driver. The network driver uses
driver lookup services to locate the PHY instance to which it is attached.
Again, no public symbols of the PHY driver are used by the network driver.
Therefore, if a specific PHY driver is required, that PHY driver must be
explicitly listed in REQUIRES field.

INIT_AFTER INCLUDE_PCI_BUS

The INIT_AFTER and INIT_BEFORE (not shown in the example) fields are used
to indicate any initialization dependencies within the initialization group
specified by _INIT_ORDER. The component listed here must belong to the
same initialization group as specified by _INIT_ORDER. In this example, this
line indicates that this driver should not be initialized until after the PCI bus
driver is initialized.

HDR_FILES $(WIND_BASE)/target/src/hwif/h/end/fei8255xVxbEnd.h

The above line is not shown in the example. However, your driver may require
a HDR_FILES field. This field is used to list the driver header file that provides
the routine prototype for the driver registration routine. This field works in
conjunction with the INIT_RTN field. When VxWorks is configured, the header
file provided by HDR_FILES is added to the generated C code for the VxWorks
image. This allows the C code provided by INIT_RTN to compile without
errors such as undefined references. By default, the project facility searches for
HDR_FILES in the directory installDir/vxworks-6.x/target/h. To access files that
are located in directories outside of installDir/vxworks-6.x/target/h, the
complete path to the desired header file should be used, starting with the
installation directory (installDir).

For a complete description of the component description language (CDL) used to
create CDFs, see the VxWorks Kernel Programmer’s Guide: Kernel.

CFG_PARAMS

Drivers sometimes need configuration information during initialization. If the
required information is specific to the driver, but not specific to each instance, then
it is suitable to provide this information at compile time as a parameter. This can
be represented with the CDF keywords CFG_PARAMS and Parameter.
CFG_PARAMS is used to indicate that the specified parameters are used by a
component. The Parameter keyword is used to define a parameter.

The component should specify each parameter in the CFG_PARAMS section.

3 Device Driver Fundamentals
3.3 Driver Organization

33

3

For example, a driver for a network device that supports jumbo frames might use
a parameter to specify the maximum size of the jumbo frames that the driver can
accept. An example of the relevant fields of the Component and Parameter blocks
is:

Component DRV_NET_SAMPLE {
NAME network device supporting jumbo frames
...
CFG_PARAMS SAMPLE_JUMBO_MTU_VALUE

}

Parameter SAMPLE_JUMBO_MTU_VALUE {
NAME Jumbo frame MTU size
SYNOPSIS max num of bytes in a jumbo MTU
TYPE int
DEFAULT 9000

}

Each parameter consists of four keywords: NAME, SYNOPSIS, TYPE, and
DEFAULT.

NAME Jumbo frame MTU size
SYNOPSIS max num of bytes in a jumbo MTU

The NAME and SYNOPSIS fields in a parameter are similar to the same fields
in a component.

TYPE int

The TYPE keyword describes the type of data in the parameter. The valid types
include any valid C language type, as well as the string, bool, and exists types.

The string type is a NULL terminated ASCII string.

The bool type indicates a logical true/false variable. This can be either all
uppercase or all lowercase, bool or BOOL.

The exists type is used when the parameter name, as a C macro, is either
defined or not defined. When used, the default value can be TRUE or FALSE.

DEFAULT 9000

The DEFAULT keyword indicates the default value if the user does not change
it.

For more information about driver parameters, see Configuring Resources, p.54 and
Configuring Parameters, p.54.

VxWorks
Device Driver Developer's Guide, 6.6

34

Driver Configuration Stub Files

For some BSPs, VxWorks supports two distinct ways of building run-time images:

■ Using Workbench or the vxprj command-line facility to create an image (as
described in Component Description File, p.27).

■ Invoking the make command directly in the BSP directory.

The first method (using Workbench or vxprj) is supported for all BSPs.

The second method allows you to create a VxWorks image by invoking the make
command from within a BSP directory.

When a BSP is built directly from its makefile, the information that is contained in
the driver component (.cdf file) is not used to configure the BSP. Instead, the BSP
author includes or excludes components directly within the source files of the BSP,
by creating lines in the BSP config.h file that specify which components to include
or exclude.

For example, if you want to include the Cn3xxx timer driver in the run-time image
created using your BSP, you can add the following line to your BSP config.h file:

#define DRV_TIMER_CN3XXX

After adding the appropriate define to the BSP config.h file, you can invoke make
in the BSP directory to rebuild the BSP. Once the BSP is rebuilt, the component (in
this case, the timer driver) is included in the VxWorks run-time image generated
using this BSP.

NOTE: Although the facility for building your BSP using the make command is
available for most BSPs, it is not supported for all VxWorks development scenarios
or for the optional VxWorks SMP product. For more information, see the VxWorks
Command-Line Tools User’s Guide.

NOTE: For simplicity, this example ignores the fact that the Cn3xxx timer driver
has dependencies on other components, and that these other components must
also be added to the BSP config.h file in order to satisfy the device driver
dependencies.

NOTE: BSP builds are not supported for VxWorks SMP BSPs. For more information
on working with the optional VxWorks SMP product, see the VxWorks Kernel
Programmer’s Guide: VxWorks SMP.

3 Device Driver Fundamentals
3.3 Driver Organization

35

3

To support direct BSP builds for your driver, you must create two additional
configuration stub files, the driverName.dc and driverName.dr file. These files
connect the device driver to the BSP command-line build.

The driverName.dc file is created using the same base name as the driver source file,
but with a .dc extension instead of a .c extension. Again, using the Cn3xxx timer
driver as an example, here is the vxbCn3xxxTimer.dc file:

IMPORT void vxbCn3xxxTimerDrvRegister();

The purpose of the driverName.dc file is to provide a function prototype for the
device driver registration routine. The prototype may be surrounded in an
#ifdef/#endif construct using the driver component identifier
(DRV_CLASS_NAME) but this is not required.

The vxbCn3xxTimer.dr file is similarly brief:

#ifdef DRV_TIMER_CN3XXX
vxbCn3xxxTimerDrvRegister ();

#endif /* DRV_TIMER_CN3XXX */

The purpose of the driverName.dr file is to call the driver registration routine that
announces the driver to the VxWorks operating system. This code must be
surrounded in an #ifdef/#endif construct in order to ensure that the registration
routine for the driver is run only when the component is included using the BSP
config.h file.

For Wind River drivers, both the driverName.dc and driverName.dr files are located
in installDir/vxworks-6.x/target/config/comps/src/hwif. For third-party drivers,
these files are located in the same directory as the driver source file.

For these files to be useful, they must be merged into an initialization file that is
linked into a VxWorks run-time image. The VxWorks makefile environment
contains all of the necessary commands to create this initialization file. If a new
driver is added to the VxWorks source tree, the initialization file must be recreated
as follows:

% cd installDir/vxworks-6.x/target/config/comps/src/hwif
% make vxbUsrCmdLine.c

When these commands are run, the VxWorks makefile environment searches all of
the locations where driver configuration stub files are found, and merges the files
into the initialization file vxbUsrCmdLine.c.

NOTE: The macro used on the #ifdef line must match the component name used
in the CDF file (see Component Description File, p.27).

VxWorks
Device Driver Developer's Guide, 6.6

36

README File

While not required by the makefile environment, each device driver should
include a README file that describes the driver to a user. Third-party vendors may
wish to include driver version information, a list of all files that make up the driver
(source files, configuration files, and so forth), any known bugs, driver version
information, and perhaps even a URL where an end user might go to find an
updated copy of the driver.

The driver README includes three sections of data as well as separation lines as
follows:

■ a one-line statement that this is the README file for a VxWorks driver and
stating the device for which the driver is intended. For example:

README: VxWorks/VxBus driver for device device

■ a line of dashes separating the first and second sections

■ one or more paragraphs showing what devices the driver is suitable for, as
well as the specific devices that have been tested with the driver. This section
also lists which version of VxWorks and VxBus the driver has been developed
for. This section may also list the files that make up the driver, provide a list of
known bugs, or provide other information to the user.

Optionally, you can include instructions for the installation procedure in this
section. (For more information, see 5.6 Driver Release Procedure, p.120.)

■ a line of dashes separating the second and third sections

■ a list of version numbers, along with a description of the changes between each
version.

An example README file is available as part of the wrsample driver (see
installDir/vxworks-6.x/target/3rdparty/windriver/wrsample).

Driver Makefile

In order for a device driver to build correctly under VxWorks, you must provide
the appropriate makefiles so that your device driver can be incorporated into an

NOTE: Driver version numbers consist of two parts (for example, 7.4). Do not
use three-part version numbers, and do not use slashes to separate version
fields.

3 Device Driver Fundamentals
3.3 Driver Organization

37

3

object file that can be linked into a VxWorks image. There are two makefiles that
are used to address this issue. These files are:

■ the vendor makefile located in installDir/vxworks-6.x/target/
3rdparty/vendor/Makefile

■ the driver makefile located in installDir/vxworks-6.x/target/
3rdparty/vendor/driver/Makefile

The contents of these makefiles can be complex because the makefiles need to be
correctly integrated into the overall makefile hierarchy used by VxWorks. To create
these makefiles properly, copy the appropriate sample makefiles from
installDir/vxworks-6.x/target/3rdparty/windriver and installDir/vxworks-6.x/
target/3rdparty/windriver/wrsample. Modify the sample files to match your
vendor and driver names as needed.

Vendor Makefile

The vendor makefile is created in installDir/vxworks-6.x/target/3rdparty/
vendor/Makefile and is shared for all drivers provided as a subdirectory to a given
vendor directory. The makefile uses wildcards to determine what drivers are
installed underneath the vendor directory (vendor), and to launch appropriate
make commands for each driver.

To create a vendor makefile, copy the example Makefile from installDir/
vxworks-6.x/target/3rdparty/windriver to installDir/vxworks-6.x/target/
3rdparty/vendor where vendor is the designated name for your company. The
sample makefile provides guidelines for making the necessary updates for your
driver.

Driver Makefile

The driver makefile is created in installDir/vxworks-6.x/target/3rdparty/
vendor/driver. This makefile is used exclusively to compile the driver located within
the driver subdirectory (driver). Like the vendor makefile, this file should be copied
from the example Makefile located in installDir/vxworks-6.x/target/3rdparty/
windriver/wrsample.

Unlike the vendor makefile, the driver makefile does not use wildcards to find the
driver source files. Instead, this makefile includes a specific list of object files that
are built from the source files in the driver subdirectory (driver).

Use the makefile included with the wrsample driver as a reference for creating
your driver makefile. The comments in the wrsample makefile provide specific
guidance for updating the makefile to suit your driver. However, in general, the

VxWorks
Device Driver Developer's Guide, 6.6

38

primary modifications include changing the LIB_BASE_NAME (which should be
your company name) and listing the driver object file in OBJS_COMMON.

If you want your driver to be available on a single CPU type only, specify the driver
object file in the macro specific to that CPU type (for example OBJS_PPC32 for
PowerPC). In this case, the driver should not be listed in OBJS_COMMON.

3.4 VxBus Driver Methods

This section discusses VxBus driver methods. In order for a device and driver to be
useful to a VxWorks system, there must be a way for the application, middleware,
or VxWorks kernel module to gain access to the device and cause the device to
perform some function. The most basic way of doing this within the VxWorks
framework is by using a VxBus driver method. In simple terms, a driver method
is a published entry point into a driver made available to an API in VxBus.

3.4.1 Representing Driver Methods in the Documentation

This section discusses the representation used to discuss driver methods in this
documentation (and elsewhere in the VxWorks documentation set).

The basic convention is that a driver method is represented as a name surrounded
by braces and followed by parenthesis. For example, as in {thisDriverMethod}().
This syntax refers to the driver method and all its parts as a single callable item.

Driver methods resolve to a callable routine published by a device driver. When
referring to this called routine, the standard driver method syntax is prepended
with the string func to get func{thisDriverMethod}().

To explicitly indicate specification of the arguments and return value of
func{thisDriverMethod}(), the callable routine is treated as a pseudo-C function and
includes prototype information. For example:

STATUS func{thisDriverMethod}
(
VXB_DEVICE_ID devID,
void * pArg
)

3 Device Driver Fundamentals
3.4 VxBus Driver Methods

39

3

3.4.2 Parts of a Driver Method

This section describes the basic concepts associated with a driver method. Specific
definitions of the functionality provided by each supported driver method are
provided in the class-specific chapters of Volume 2 of the VxWorks Device Driver
Developer’s Guide.

In the most basic sense, a driver method defines a set of actions to be performed by
a hardware device, and provides an API that allows the software to gain access to
the hardware that performs those actions. Within the VxWorks VxBus framework,
a driver method is represented as a pair of data:

■ a method ID which is a data value the size of a pointer1
■ a pointer to a routine that can be called to perform the actions defined by the

method

The routine associated with a driver method must be a valid executable routine.
Every routine for a given driver method must use the same prototype.

Most driver methods use a standard prototype because there are mechanisms to
call driver methods in VxWorks that assume that the driver method routine being
called conforms to this standard.

The standard driver method prototype is as follows:

STATUS func{driverMethod}
(
VXB_DEVICE_ID devID,
void * pArg
)

For more information on these calling mechanisms, see 3.4.3 Calling Driver
Methods, p.39.

3.4.3 Calling Driver Methods

As a driver developer, you do not normally call driver methods. However, you
must be aware of what is involved in calling a driver method so that you can avoid
performance and functionality problems in your driver.

There are certain macros required when referring to driver methods These macros
are defined in installDir/vxworks-6.x/target/h/hwif/vxBus.h. The macros available
to applications that need to call driver methods are:

1. For performance reasons, VxBus methods are searched using pointer comparisons. The data
pointed to by the pointer is never dereferenced.

VxWorks
Device Driver Developer's Guide, 6.6

40

METHOD_DECL()
Provides a forward reference to the driver method.

DEVMETHOD_CALL()
Provides the method ID in a form suitable to pass to a routine.

The vxbDevMethodRun() routine can be used to call a specific driver method
within each driver in the system that has published the method. This routine
iterates through all instances on the system and checks each one to see whether it
publishes the specified method. If a given instance publishes the specified method,
vxbDevMethodRun() invokes the method routine, func{driverMethod}(). For
example:

vxbDevMethodRun(DEVMETHOD_CALL(driverMethod), pArg);

To avoid iterating through all instances on the system, you must know the device
ID for every instance containing the desired driver method. However, given the
device ID of an instance, vxbDevMethodGet() can be used to discover the driver
routine associated with the desired driver method, so that it can then be invoked.

The routine vxbDevMethodGet() returns either a pointer to the function within
the driver, func{driverMethod}(), or NULL if the driver does not publish the
specified method.

When the func{driverMethod}() is known, it can be called directly. For example:

STATUS (*methodFunc)(VXB_DEVICE_ID devID, void * pArg);

methodFunc = vxbDevMethodGet(devID, DEVMETHOD_CALL(driverMethod));
if (methodFunc != NULL)

(*methodFunc)(devID, pArg);

There is a performance impact for each of these mechanisms. Whenever
vxbDevMethodGet() is called, it performs a linear search through the published
driver methods for the instance specified, stopping when it finds a match or when
it reaches the end of the table of advertised driver methods. It performs this search
first on the table advertised in the instance's device structure, then through the
table advertised in the driver's registration structure.

Whenever vxbDevMethodRun() is called, it iterates through all of the devices on
the system, regardless of bus topology. For each device, it performs the same linear
search that vxbDevMethodGet() uses.

3.4.4 Advertising Driver Methods

Each driver maintains one or more tables of driver methods that are supported by
the driver or the instance. The table contains the method ID and the function

3 Device Driver Fundamentals
3.4 VxBus Driver Methods

41

3

pointer to call when invoking the driver method. You can choose to have a separate
method table for each instance on the system, a single method table for all
instances involving your driver, or a combination of both.

Drivers can choose to replace the table dynamically to change what methods are
advertised.

Most often, a driver includes only a single method table, which is allocated
statically by the compiler. There is a macro available in installDir/vxworks-6.x/
target/h/hwif/vxBus.h that you must use when creating the method table at
compile time. The macro is DEVMETHOD(). This macro accepts two arguments:
the method ID of the method, and the routine associated with the method in the
driver. In addition, your driver must use DEVMETHOD_END to terminate the
table.

The following is an example of a statically defined method table. (This is a
modified version of a table from the NS16550 SIO driver.)

LOCAL device_method_t ns16550vxb_methods[] =
{
DEVMETHOD(sioChanGet, ns16550vxbSioChanGet),
DEVMETHOD(sioChanConnect, ns16550vxbSioChanConnect),

#ifdef NS16550_DEBUG_ON
DEVMETHOD(busDevShow, ns16550vxbSioShow),

#endif /* NS16550_DEBUG_ON */

DEVMETHOD_END
};

To make the driver methods available to the rest of the system, there are two places
that the driver can put a pointer to its method table. Each device in a VxWorks
system, in the device structure, provides a field called pMethods that contains a
pointer to a table of methods relevant to the instance. This is the preferred location
to advertise driver methods. As mentioned previously, the driver can have a single
table pointed to by each instance, or it can allocate a separate table for each
instance, or it can set up groups of instances sharing a table each.

Although Wind River does not recommend this option, you can also advertise
methods in the driver's registration structure. This method table is intended to be
used for methods that do not require the driver to be paired with a device. Putting
a pointer to the same table in both places does not cause the system to fail, but it
doubles the time to perform method calls.

VxWorks
Device Driver Developer's Guide, 6.6

42

3.4.5 Driver Method Limitations

Driver methods are the most primitive form of communication between drivers
and other parts of the system. Methods are not designed to be efficient in the
run-time sense nor are they designed to be deterministic. The design goal of driver
methods is to provide a mechanism that can be used during system startup to
provide information needed for high-performance communication in the later
running system.

Limit the number of times that methods are looked up. Storing the function pointer
for a method is a useful optimization. The user saves the pointer or other returned
information, and then calls the appropriate routines through the table of function
pointers.

3.5 Driver Run-time Life Cycle

This section describes the run-time life cycle for a VxWorks (VxBus) device driver,
starting from the point at which the VxWorks target boots and ending when the
driver is no longer relevant to the system.

3.5.1 Driver Initialization Sequence

A high level overview of the VxWorks boot process is described in VxWorks BSP
Developer's Guide: Porting a BSP to Custom Hardware. This section provides a more
detailed discussion of the driver initialization sequence than that provided in the
BSP documentation.

NOTE: This section does not document the device driver development life cycle or
how to configure the driver into a VxWorks bootable image. For more information
on the device driver development cycle, see 4. Development Strategies. For more
information on configuring a driver into a bootable image, see Component
Description File, p.27.

3 Device Driver Fundamentals
3.5 Driver Run-time Life Cycle

43

3

At the most basic level, there are five initialization phases.

The following sections provide more information about each of these phases, along
with context of what the overall system is doing during each phase. The overall
initialization process includes the following states:

■ early boot process (see Early in the Boot Process, p.44)
■ hardware discovery (sysHwInit(), PLB, and Hardware Discovery, p.44)
■ driver registration with the OS (Driver Registration, p.45)
■ phase 1, pre-kernel initialization (Driver Initialization Phase 1, p.45)
■ kernel startup (Kernel Startup, p.46)
■ phase 2, post-kernel initialization (Driver Initialization Phase 2, p.46)
■ phase 3, asynchronous initialization (Driver Initialization Phase 3, p.46)

Making Assumptions about Initialization Order

At each phase of initialization, VxBus executes this initialization phase level for all
instances before moving to the next phase. The order in which instances are
initialized within a phase is not specified. The only assumption your driver can
make is that its parent bus controller instance has initialized to the point where the
driver can get access to the hardware.

NOTE: This version of VxWorks continues to support legacy device drivers as well
as BSPs that are not enabled to support VxBus. Note that the initialization sequence
described in this section does not represent the initialization sequence for legacy
drivers or BSPs that do not support VxBus.

Table 3-1 Device Driver

Phase Description Comments

Registration

Match/Probe Device and driver pairing
routine.

Optional.

Phase 1 devInstanceInit() Pre-kernel initialization.

Phase 2 devInstanceInit2() Post-kernel initialization.

 Phase 3 devInstanceConnect() Asynchronous initialization.

VxWorks
Device Driver Developer's Guide, 6.6

44

Early in the Boot Process

Device drivers do not play any role in the early boot process. Depending on which
processor architecture you are working with, the CPU typically jumps to a
specified address at power-on and starts executing instructions. Those instructions
typically come from ROM or flash.

These early instructions initialize the memory controller and CPU, then start the
procedure for initializing VxWorks.

sysHwInit(), PLB, and Hardware Discovery

Early in the VxWorks initialization process the BSP routine sysHwInit() is
executed. It is during this step that device drivers first become active.

The sysHwInit() routine, provided by the BSP, performs some early initialization
(typically restricted to CPU initialization) and then makes a call to
hardWareInterFaceInit(). The first task performed by hardWareInterFaceInit() is
to initialize the hardware memory allocation mechanism,
INCLUDE_HWMEM_ALLOC. This step allows limited memory allocation for
device drivers before the system memory pool is initialized. The
hardWareInterFaceInit() routine then calls hardWareInterFaceBusInit(). At this
point, individual drivers become active by registering with VxBus.

One of the first drivers to become active is the driver for the processor local bus
(PLB). The PLB2 is a special driver in the sense that some of the first parts of
initialization occur in this driver.

Bus controller drivers, including the PLB driver, are responsible for determining
what hardware is present on the system. The PLB hardware does not include
support for device discovery, but the PLB driver is able to read a BSP-provided
table containing information about devices connected directly to the bus. For each
table entry, the PLB driver notifies VxWorks of the device.

In this way, VxWorks discovers what devices are connected directly to the PLB.
However, at this time, devices on other buses are not yet known. These devices are
discovered later in the initialization sequence.

2. Silicon vendors do not use the acronym PLB consistently. While some silicon
vendors use the acronym PLB to describe the peripheral bus connected directly to
the processor, others use a different definition. In this document, the term
processor local bus (and the acronym PLB) describe the peripheral bus described
above regardless of the terms used by the processor vendor.

3 Device Driver Fundamentals
3.5 Driver Run-time Life Cycle

45

3

Driver Registration

The next step—and main function of hardWareInterFaceBusInit()—is driver and
utility module registration. During this phase, each driver calls a registration
routine, vxbDevRegister(), which notifies VxWorks that the driver is available
and provides the required information about the driver.

Recall that when the PLB driver is initialized, it discovers the devices connected
directly to the processor local bus. VxWorks knows how to match a given driver to
a device (see 3.5.7 Driver-to-Device Matching and Hardware Availability, p.50)
therefore, registering the PLB driver is enough to set up the condition where a
driver can be attached to hardware.

Driver Initialization Phase 1

Immediately after the driver and device are associated to form an instance,
VxWorks examines the registration structure that is provided when the driver calls
vxbDevRegister() (see Driver Registration, p.45).

This structure contains several initialization entry points into the driver. The first
of these is the devInstanceInit() routine.

The devInstanceInit() routine that is called during phase 1 of VxBus initialization,
is the first chance the driver has to initialize the hardware in any meaningful way.
However, there are severe restrictions on what can be performed because no
operating system services of any kind are available at this point.

Some driver classes, such as interrupt controller drivers and serial drivers, have
special requirements for what must be ready after the devInstanceInit() routine is
complete. However, for most drivers, the devInstanceInit() routine is relatively
simple. At a minimum, your driver devInstanceInit() routine should ensure that
the device interrupts are disabled.

NOTE: Bus controller hardware is managed by the VxWorks device drivers for the
bus controller class. For more information on bus controller device drivers, see
VxWorks Device Driver Developer's Guide (Vol. 2): Bus Controller Drivers.

VxWorks
Device Driver Developer's Guide, 6.6

46

Kernel Startup

After all drivers have registered with VxWorks, the hardWareInterFaceBusInit()
and hardWareInterFaceInit() routines return, sysHwInit() completes any
non-VxBus driver initialization and returns. After sysHwInit() is complete, the
VxWorks kernel is initialized. The next phase of VxBus initialization occurs in
sysHwInit2().

Driver Initialization Phase 2

In sysHwInit2(), the BSP calls vxbDevInit(). From the point of view of a driver,
this is the next available window for additional initialization. At this second phase
of VxBus initialization, the devInstanceInit2() routine for each instance is called.

By this point, kernel services are initialized and are accessible to your driver.
However, middleware services (such as network MUX) may not be available.

Driver Initialization Phase 3

At the end of sysHwInit2(), a task is created that runs the third and final phase of
VxBus driver initialization. During phase 3, the devInstanceConnect() routine for
each instance is called.

This phase is available for drivers that take a long time to perform their
initialization, and where it is not appropriate to slow the system boot time in order
to wait for a driver to initialize.

Execution of devInstanceConnect() can occur simultaneously with additional
system and application configuration and startup.

3.5.2 Invoking a Driver Method

Middleware modules can invoke driver methods at any time, either during
initialization or afterward. Drivers must advertise their methods before any
middleware module or application attempts to invoke the driver method.
Otherwise, the middleware, application, or VxWorks kernel module may not
realize that the device exists. Volume 2 of the VxWorks Device Driver Developer’s
Guide provides information on which driver methods the relevant middleware
modules use and about what part of the initialization phase the method must be
advertised in.

3 Device Driver Fundamentals
3.5 Driver Run-time Life Cycle

47

3

3.5.3 Run-time Operation

During normal system operation, there are a number of state transitions that can
occur that relate to drivers and to instances. These are related to one of two
situations: removal of a device from the system, or unloading a driver from the
system. In each case, the instance must be broken down into a driver and device.
That is, the driver must be dissociated from the device as described in Dissociating
a Device from a Driver, p.48.

Unloading a Driver

To unload a driver, some entity on the system makes a call to
vxbDriverUnregister(). This routine requires the driver registration structure
pointer as a parameter, therefore drivers supporting this operation must provide
some mechanism for an application to discover the registration structure pointer.
However, if the driver is unloaded manually from the command line, the output
of vxBusShow() can be used to find the necessary information.

The flow of execution is as follows:

1. Call vxbDriverUnregister().

2. Iterate through relevant devices.

3. Call func{vxbDrvUnlink}() for the driver.

For information on the {vxbDrvUnlink}() method, see Dissociating a Device from a
Driver, p.48.

Removing a Device from the System

Normally, bus controller drivers are responsible for managing device discovery
and device removal. Wind River does not currently support a bus-independent
high-level interface for device removal while the system is running. This
functionality is one aspect of the feature known as hot swap.

When an application handles removal of a device, it must know the exact VxBus
device ID of the device being removed. The application makes a call to
vxbDevRemovalAnnounce(). This routine requires a VxBus device ID as a
parameter. The application can find the VxBus device ID by using
vxbDevIterate(). The helper routine passed to vxbDevIterate() can look at any
parameter of each device or instance, and choose the one (or more) that should be
removed, based on criteria defined by the application.

VxWorks
Device Driver Developer's Guide, 6.6

48

Dissociating a Device from a Driver

Unlinking a device from a device driver is handled by the VxBus driver method,
{vxbDrvUnlink}().

The func{vxbDrvUnlink}() routine shuts down a device instance in response to an
unlink event from VxBus. This event occurs when a VxBus instance is terminated,
or when an associated device driver is unloaded. When an unlink event occurs,
your driver must shut down and unload any connection to the operating system,
middleware, or an application that is associated with the affected device instance.
You must also release all of the resources that were allocated during the instance
creation.

3.5.4 Handling a System Shutdown Notification

Some BSPs provide a mechanism to notify specific drivers that the system is about
to shut down. This is currently done on an as needed basis in individual BSPs.

3.5.5 Handling Late Driver Registration

The initialization sequence (described in 3.5.1 Driver Initialization Sequence, p.42),
is the standard boot procedure. However, it is possible to download and register a
driver at any time during normal system operation. Provided that the deployed
system is configured with a symbol table included, this feature is useful for
debugging drivers and for adding new devices and drivers into a deployed
system.

Wind River recommends that all drivers be located in a single object module. If the
complete driver is in a single object module, you can use the ld() shell command
to load the object module into the running VxWorks system. Alternatively,
applications can use loadModule() or loadModuleAt() to load the module.

NOTE: Drivers supporting device removal must not make use of the
u.pDevPrivate field of the device structure.

NOTE: VxWorks does not currently support a uniform mechanism to notify drivers
during system shutdown. For the latest information on this feature, see the online
support Web site.

3 Device Driver Fundamentals
3.5 Driver Run-time Life Cycle

49

3

In addition, you can use deferred registration in the debug version of your driver.
This allows the driver to be included in the VxWorks image, but not started
automatically. One way to enable deferred registration is to split the driver's
registration routine. When debugging is enabled in the early version of the driver,
the second level of the registration routine—which actually calls
vxbDevRegister()—is not called. The following is a sample from the early phases
of development for the NS16550 SIO driver.

void ns16550sioRegister2(void)
{
vxbDevRegister((struct vxbDevRegInfo *)&ns16550vxbDevRegistration);
}

void ns16550sioRegister(void)
{

#ifdef NS16550_DEBUG_ON
ns16550sioRegister2();

#endif /* NS16550_DEBUG_ON */
}

3.5.6 Driver Registration Order Considerations

In general, the order in which drivers are registered is not important. Drivers
generally do not depend on services from other drivers, unless the other class of
driver is defined as providing those services in an earlier initialization phase.

An example of this dependency can be seen with interrupt management. Drivers
may call vxbIntConnect() starting with phase 2 of device initialization, when
devInstanceInit2() is called. In systems configured to use an interrupt controller
driver to manage interrupts, rather than managing interrupts in BSP code, the
interrupt controller must be able to receive the vxbIntConnect() call from the time
the first devInstanceInit2() routine is called, which may be before its own
devInstanceInit2() routine is called. Therefore, interrupt controllers must be able
to provide their services when they exit from their devInstanceInit() routines in
phase 1.

NOTE: This split level of function call should be removed before releasing the
driver.

NOTE: Depending on the system, there is a chance that the vxbIntConnect()
routine will work when called from the driver devInstanceInit() routine.
However, this is inherently non-portable. Do not call vxbIntConnect() until
devInstanceInit2().

VxWorks
Device Driver Developer's Guide, 6.6

50

However, despite the general lack of requirements, the order of device discovery
can sometimes affect driver behavior for devices downstream from the bus
controller.

During hardware discovery and driver match (see sysHwInit(), PLB, and Hardware
Discovery, p.44), the bus controller driver is responsible for discovery of devices
located on its bus. One implication of this is that devices located downstream from
the bus controller do not show up in the system until after the bus controller driver
is associated with the device, and the instance is given a chance to initialize the
device and discover the devices located on the bus.

For this reason, while PLB devices may be associated with the driver during the
devInstanceInit() phase of initialization (immediately after the driver registers),
devices on any other bus may not be available this early in the boot process.

When developing a new driver, this behavior can result in insufficient testing. For
example, if the bus controller driver used on the board initializes the bus during
the devInstanceInit2() initialization phase, the downstream driver's initialization
code is not called until after the operating system is running. However, other bus
controller drivers for the same bus type may initialize the device and discover
devices during the devInstanceInit() phase (when operating system services are
not yet available). Therefore, moving a driver that has been tested only on a
late-configuration system can crash the system. The solution to this issue is to
avoid using services that are not always available in an initialization phase (see
3.5.1 Driver Initialization Sequence, p.42).

3.5.7 Driver-to-Device Matching and Hardware Availability

This section describes the mechanisms used to match devices to the drivers that
control them. This process is, in some ways, specific to the type of bus on which the
device resides, but there are many similarities among the various types.

The basic flow is a three stage process:

1. First, VxBus verifies that the driver's registered bus type is the same as the bus
on which the device actually resides.

2. Second, VxBus runs a match routine provided by the code specific to the bus
type.

3. Third, if a driver has provided a probe routine, this routine is called to give the
driver a chance to verify that it will work correctly with the discovered
hardware.

3 Device Driver Fundamentals
3.5 Driver Run-time Life Cycle

51

3

The first and third stages are always followed with no variation. However, what
happens during the second phase of driver-to-device matching varies depending
on the bus type. This is based on the fact that the driver registration information
includes a component that is specific to the bus type for which the driver registers.

PLB

The most basic mechanism used to match a driver and a device is used when the
bus type does not support dynamic discovery of devices present on the bus. In this
case, a BSP-provided table is used to determine what devices are present. The table
contains an identifier for each device, and the driver provides an identifier for
those devices it can manage. When a bus type match is identified, the bus-specific
match code compares the two identifiers and succeeds or fails depending on
whether or not they match.

Other Bus Types

For other bus types, the device provides a mechanism to identify hardware. The
driver must provide bus-specific information in its registration structure that can
be compared against the information provided by the device (for example, PCI
vendor and device registers).

PCI

The information used to match a driver and device consists of the 16-bit device ID
and the 16-bit vendor ID. The device driver registration structure contains a
pointer to a table containing these value-pairs.

Note that PCI provides additional configuration space fields that can be helpful to
the driver when deciding whether to accept or reject a device. These fields include
the class field and subclass field, the sub vendor ID and sub system ID, as well as
other fields.

The driver can include valid information in its registration structure and also
provide a match or probe routine that checks these additional fields. Alternatively,
the driver can specify values of all-ones (0xFFFF) for both the device ID and the
vendor ID fields of the registration structure and provide a match or probe routine
that checks all of the configuration space fields.

VxWorks
Device Driver Developer's Guide, 6.6

52

RapidIO

RapidIO provides device ID and vendor ID fields. VxWorks uses a mechanism
similar to the PCI case for matching drivers with their devices. Namely, the driver
of a RapidIO device specifies a table containing the device ID and vendor ID in its
registration structure. However, with RapidIO, there is currently no wildcard
mechanism to force the driver's probe routine to be called regardless of the device
ID and vendor ID that are made available by the hardware.

3.6 Services Available to Drivers

VxBus and VxWorks provide a rich set of services that make it easier to develop
device drivers. Examples of these services include:

■ Retrieval of various types of configuration information for the driver,
including the hardware environment that the driver is running in, the set of
installed devices that are present in the system, individual device or instance
properties, and other types of configuration information that are relevant in
driver context.

■ Handling the exchange of data between a driver and its device, including
routines to read and write data to device registers, routines to probe memory
within the address space of a device, routines to transfer blocks of data to and
from drivers through DMA channels, and so forth.

■ Allocating and freeing memory buffers, both during system startup and
during normal system operation.

■ Synchronizing access to driver shared resources, including semaphores,
spinlocks, and a full set of atomic operators.

■ Managing interrupts, including interrupt connection and disconnection,
masking and unmasking interrupts, and deferral of interrupt processing to the
task level.

■ Handling data management within the driver, such as singly linked lists,
doubly linked lists, and lock-free ring buffers.

■ Handling device timeout conditions through the use of watchdog timers.

■ Displaying useful diagnostic information about the drivers, hardware devices,
and device instances that are present in a running system.

3 Device Driver Fundamentals
3.6 Services Available to Drivers

53

3

This section provides an overview of these services in order to give you a feel for
the type of services that are available to you as a device driver developer. Because
this information is designed as an overview, it is necessarily brief, and favors
simplicity and brevity over detail. For detailed information about any of the
services described in this section, see the related reference documentation.

3.6.1 Configuration

When a driver is initialized in VxWorks, the driver sometimes needs to learn about
the properties of the hardware and software run-time environment. For example,
a serial driver for the NS16550 serial port can to be written to support densely
packed device registers, or to support registers that have 2, 4, 8, or more bytes of
offset between them. Because this type of information cannot always be
determined by inspecting the hardware itself, the driver must determine the
information for itself during initialization. This allows the driver to conform to the
exact hardware and software requirements of the system.

Determining Driver Configuration Information

Drivers within VxWorks are configured using two broad types of driver
configuration information, resources and parameters. Resources provide the
information that the driver needs about its hardware run-time environment, such
as hardware register spacing, availability of optional hardware services within a
device, and so forth. Parameters provide the information that the driver needs to
know about its software run-time environment, such as the size of memory buffers
to allocate for transmit and receive, whether or not to support Ethernet jumbo
frames, and so forth.

VxWorks provides routines that are used to determine both the hardware and
software configuration information required by the driver at runtime. The routines
that are used to query (and in some cases modify) the configuration information
are described later in this section.

VxWorks driver resources and driver parameters are easily confused because both
deal with querying configuration information from outside the driver. In general,
a driver uses resources when the property being configured determines whether
or not the driver functions correctly in a given run-time system, and uses
parameters when the property being configured has more to do with driver
performance, memory usage, or other software properties.

VxWorks
Device Driver Developer's Guide, 6.6

54

Working with the BSP Configuration File

Both resources and parameters can be set in a file in the BSP directory called
hwconf.c. This file lists all devices that reside on the PLB bus, resource information
about each such device, and, potentially, parameter information about all devices
on any bus type. For more information, see 3.7 BSP Configuration, p.79 and the
VxWorks BSP Developer's Guide.

Configuring Resources

To retrieve run-time initialization information from its environment, a device
driver can use the devResourceGet() routine. This routine is used to query the
run-time environment information provided by a BSP in order to determine the
desired configuration for the driver.

Resources are restricted to three types: integer, string, and address. These types are
denoted by HCF_RES_INT, HCF_RES_STRING, and HCF_RES_ADDR, respectively.
The value associated with an integer resource is simply a 32-bit numeric value. The
value associated with a string resource is a null-terminated ASCII string. The value
associated with an address resource is the address of a memory location. This can
be a function pointer, a pointer to a table, or any other pointer value.

For example, the following is taken from the ns83902VxbEnd.c device driver:

devResourceGet (pHcf, "regWidth", HCF_RES_INT, (void *) ®isterWidth);

In this call, the device driver queries the BSP to determine what value to use for
register width. Elsewhere in the driver, the driver uses the queried value for the
register width when performing register I/O operations, rather than using a
hard-coded assumed value for the register width.

Well written drivers make judicious use of devResourceGet() to maximize the
portability of the driver. However, if a driver requires an excessive number of
resources from the BSP, the driver becomes less portable because the work required
by the BSP developer to incorporate the driver into the BSP increases significantly.

For information on creating BSP resource entries, see the VxWorks BSP Developer’s
Guide. For further information on using devResourceGet(), refer to the reference
entry for the routine.

Configuring Parameters

To retrieve parameter information from its environment, the driver uses the
vxbInstParamByNameGet() routine. Use of this routine is similar to
devResourceGet(), as shown in the following example:

vxbInstParamByNameGet (pInst, "jumboEnable", VXB_PARAM_INT32, &val);

3 Device Driver Fundamentals
3.6 Services Available to Drivers

55

3

In this example, a driver queries the run-time environment to determine what
value to use for the parameter jumboEnable. Depending on the return value, the
driver can change its behavior to enable or disable support for (in this case) jumbo
Ethernet frames.

While vxbInstParamByNameGet() behaves similarly to devResourceGet(), the
parameter configuration services in VxWorks are more flexible than those offered
for resource configuration. Unlike the situation with resources, a parameter can be
given an initial value by the device driver. When a device driver registers with
VxWorks, it can optionally provide a set of parameters, along with their default
values, to VxWorks.

The following table is extracted from rtl8169VxbEnd.c:

LOCAL VXB_PARAMETERS rtgParamDefaults[] =
{

{"rxQueue00", VXB_PARAM_POINTER, {(void *)&rtgRxQueueDefault}},
{"txQueue00", VXB_PARAM_POINTER, {(void *)&rtgTxQueueDefault}},
{"jumboEnable", VXB_PARAM_INT32, {(void *)0}},
{NULL, VXB_PARAM_END_OF_LIST, {NULL}}

};

In this table, the rtl8169VxbEnd driver declares that it supports three parameters,
named rxQueue00, txQueue00, and jumboEnable. When the driver registers with
VxWorks, it provides a pointer to these parameters as part of its driver registration
data structure. For example:

LOCAL struct vxbPciRegister rtgDevPciRegistration =
{

{
/* . */
rtgParamDefaults /* pParamDefaults */
/* . */
}

};

Using this information, VxWorks stores the driver's default values for each of its
parameters. Unless the parameters are changed by the BSP or application, the
default driver values are the values that are returned when the driver calls
vxbInstParamByNameGet().

There are two methods that can be used to override the default value of a
parameter for a driver:

■ The BSP can provide a different default value in its hwconf.c file.

or

■ A call can be made to vxbInstParamSet(), to change the value of the
parameter at runtime.

VxWorks
Device Driver Developer's Guide, 6.6

56

When the BSP provides a different default value for a parameter, the BSP default
value replaces the driver-provided value for the parameter. This replacement
occurs as soon as the driver registers with VxWorks, therefore there is no period of
time where the driver default can be returned using vxbInstParamByNameGet().

In addition to the BSP override method, the default value of a parameter can also
be changed at runtime through a call to vxbInstParamSet(). vxbInstParamSet()
can be used to modify the default values for a driver parameter.

For complete information on vxbInstParamByNameGet() and
vxbInstParamSet(), see the reference entries for these routines.

Responding to Changes in Device Parameters

When a call is made to vxbInstParamSet(), the parameter value for a driver is
altered. However, unless special steps are taken by the device driver, the updated
value may not be noticed by the driver. For example, consider the following steps:

1. The driver registers with VxWorks, its default parameter values are stored by
VxWorks.

2. The driver is bound to a device, creating a hardware instance. The driver uses
the stored values for its parameters to configure the instance.

3. An application calls vxbInstParamSet() to change the parameters used by the
driver. However, because the driver is already initialized when
vxbInstParamSet() occurs, the call to vxbInstParamSet() has no effect within
the driver.

To address this scenario, device drivers are given the option to be informed of any
changes to their parameter list that occur through a call to vxbInstParamSet().
VxWorks provides a special driver method that can be implemented for any device
driver that needs to monitor changes to its parameter list. To implement this
method in your driver, the driver must publish the {instParamModify}() driver
method. If the driver publishes this method, the method's callback function is
invoked whenever a change occurs to the driver parameters.

Support for the {instParamModify}() method is optional, and is not required for
most drivers. In practice, driver parameters are generally expected to be
overridden by the BSP hwconf.c file, rather than at runtime.

3 Device Driver Fundamentals
3.6 Services Available to Drivers

57

3

3.6.2 Memory Allocation

When a VxBus model device driver is connected to a device to form an instance,
the driver typically stores information about this instance in a memory-resident
data structure. This data structure can be declared statically within the driver
source file, or the driver can allocate the structure dynamically at runtime using
one of the available memory allocation libraries offered by VxWorks. For example,
a simple driver might declare the following data structure to allocate memory for
its data structures:

LOCAL simpleDriver_t simpleDriverInstanceStore[MAX_INSTANCES];

While a driver can use this method to reserve the memory for its instance data, this
method is not recommended for two reasons:

■ The number of simultaneous instances that the driver can support is artificially
restricted.

■ When the driver is used fewer less than the maximum number of instances, the
memory for the unused instances is wasted.

Well-written drivers should utilize one of the two memory allocation strategies
that are available to dynamically allocate instance data structures, to avoid the
problems listed above.

Allocating Memory During System Startup

When the VxWorks operating system is booting, some device drivers must
initialize themselves early in the boot process. For example, a serial driver is
initialized early in the VxWorks bootstrap process so that it can be used for console
messages during the remainder of system startup. This early initialization also
allows the serial driver to be used with WDB before the kernel is initialized. When
a driver instance is initialized early in system startup, the standard
application-level memory allocation strategies—such as malloc(), calloc(),
memPartAlloc(), and so forth—cannot be used because these routines use
semaphores, which are not available for use until the operating system is booted,
to protect the memory allocation data area.

To allow device drivers to allocate memory during system boot, a special set of
memory allocation services are provided to device drivers. This includes:

hwMemAlloc()
Allocate n bytes of storage from a static pool.

VxWorks
Device Driver Developer's Guide, 6.6

58

hwMemFree()
Return allocated storage to the static pool.

As their names imply, hwMemAlloc() and hwMemFree() perform memory
allocation services. These routines are useful to driver writers because they can be
called at any time during system startup, even when the multitasking services of
VxWorks are not available.

hwMemAlloc() allocates its memory from a pool of memory that is reserved for
hwMemAlloc(). The size of this pool of memory defaults to 50,000 bytes for most
BSPs, and is configurable by adjusting the HWMEM_POOL_SIZE parameter
associated with the INCLUDE_HWMEM_ALLOC component.

Because this pool size is adjustable, the size can be configured downward on
systems that want to minimize wasted memory. For this reason, device drivers
must always check the return value of hwMemAlloc() to ensure that any
requested memory allocation is successful. Even on systems with large amounts of
available memory, the pool of memory that is reserved for hwMemAlloc() may
not be sufficient to support all of the requirements for all of the device drivers that
are configured in a VxWorks image.

For complete descriptions of hwMemAlloc() and hwMemFree(), see the
reference entries for these routines.

Allocating Memory During Normal System Operation

Once VxWorks completes its initialization, the standard memory allocation
routines (malloc(), calloc(), memPartAlloc(), and so forth) can be used by device
drivers. For more information, see the reference entries for these routines.

Intermixing Memory Allocation Methods within a Single Driver

Drivers that utilize both hwMemAlloc() and the standard memory allocation
routines must be sure to use the corresponding memory free routine. For example,
do not use hwMemFree() to free memory that has been allocated using the
standard memory allocation routines, and do not use the standard memory free
routine to free memory that has been allocated using hwMemAlloc().

To eliminate potential mismatching of memory allocation and memory free
routines in your driver, you may wish to use the same type of memory allocation

NOTE: hwMemAlloc() can only allocate blocks of 2012 bytes or smaller.

3 Device Driver Fundamentals
3.6 Services Available to Drivers

59

3

routine for each example of a particular data type. For example, if your driver
allocates some objects of type FOO before the standard memory allocation routines
are available, and other objects of type FOO after the system is up and those
routines are available, continue using hwMemAlloc() for all objects of type FOO,
regardless of when they are allocated.

However, if the driver also allocates objects of type BAR, but not until the standard
memory allocation routines are available, then all objects of type BAR should be
allocated using the standard memory allocation routines, and not hwMemAlloc().

3.6.3 Non-Volatile RAM Support

When non-volatile storage is required, VxBus drivers can make use of the
non-volatile RAM library. This occurs when some part of device initialization
requires information that is board-specific, such as the Ethernet addresses of
network interfaces.

There are two routines available in this library:

vxbNonVolGet()
This routine retrieves data from non volatile memory, which is dedicated to the
caller, and copies it into a buffer provided by the caller.

vxbNonVolSet()
This routine takes a data buffer provided by the caller, finds the data buffer
allocated to the caller, and copies the data from the caller's buffer into the non
volatile memory.

3.6.4 Hardware Access

At the lowest level, a driver communicates with its associated hardware by
reading to, and writing from, the specific registers that are available within the
hardware. When a VxWorks device driver is connected to a specific piece of
hardware to form an instance, VxWorks provides the necessary information to the
driver so that it can locate the hardware registers within the address space of the
system. This section discusses the how a driver accesses its hardware registers.

Finding the Address of the Hardware Registers

Whenever a call is made to a VxWorks device driver, a pointer to the driver
instance state is provided as the first parameter. For example, the following code is

VxWorks
Device Driver Developer's Guide, 6.6

60

excerpted from the fei8255xVxbEnd.c device driver, located in installDir/
vxworks-6.x/target/src/hwif/end:

LOCAL void feiInstInit2
(
VXB_DEVICE_ID pInst
)
{
…
}

The VXB_DEVICE data structure contains information that is useful for a specific
instance of the driver (that is, a specific device and driver pairing). In order for the
driver to learn where its hardware registers are located within the system address
space, the driver refers to the regBase[] array of pointers that is located within the
pInst structure, and uses the corresponding regBaseFlags[] array to determine
what type of address space is present at each location. Figure 3-2 illustrates the
regBase[] and regBaseFlags[] data structures.

Figure 3-2 regBase[] and regBaseFlags[] Data Structures

pInst

.

.

.

.

.

.

.

.

.

regBaseFlags[]

regBase[]

VXB_REG_IO

VXB_REG_MEM

0

entry 0

entry 1

NULL

Device I/O Registers
(VXB_REG_IO)

Device Memory-Mapped
Registers

(VXB_REG_MEM)

3 Device Driver Fundamentals
3.6 Services Available to Drivers

61

3

In Figure 3-2, VxWorks provides the driver with two windows into the hardware
address space. The first window is defined by the base address contained within
pInst->regBase[0], and is used for I/O mapped transactions, as shown in
Figure 3-2 by the value of VXB_REG_IO found in pInst->regBaseFlags[0]. In
addition, a second window is defined by the base address contained within
pInst->regBase[1]. This second address range is used for memory-mapped
register access, as shown in Figure 3-2 by the value of VXB_REG_MEM in
pInst->regBaseFlags[1].

When a device driver initializes itself, it must inspect the various register windows
that are provided by the device and then determine which windows must be used
and which windows can be safely ignored. For example, if a hardware device
provides two windows into its hardware registers, one that is mapped into the I/O
space of the system and another symmetric window that is mapped into the
memory space of the system, the device driver can choose to utilize only the I/O
space for its interaction with the hardware.

Once the driver decides which of the available windows to use for its interaction
with the hardware, the instance must create a mapping between the driver and the
hardware so that transactions in this memory window are performed correctly in
the system. This mapping is created by a call to vxbRegMap(). The following
example is from the fei8255xVxbEnd.c driver:

/* find the memory mapped window for the device registers */

for (i = 0; i < VXB_MAXBARS; i++)
{
if (pInst->regBaseFlags[i] == VXB_REG_MEM)

break;
}

pDrvCtrl->feiBar = pInst->pRegBase[i]; /* store the base address */
vxbRegMap (pInst, i, &pDrvCtrl->feiHandle); /* map the window */

In this example, the device driver searches the available register windows until it
finds a register window of type VXB_REG_MEM. Once the window is located, the
driver stores the base address of the window in its driver control structure
(pDrvCtrl), and then maps in the address space using vxbRegMap().
vxbRegMap() performs the necessary operations to ensure that subsequent writes
to, or reads from, this window of the address space are performed correctly. It also
returns a handle for the address space that the driver can use for subsequent reads
and writes to the device.

VxWorks
Device Driver Developer's Guide, 6.6

62

Reading and Writing to the Hardware Registers

Once the hardware registers are located and mapped by the driver, the driver can
perform read and write transactions to the register space using any of the
following routines:

■ vxbRead8()
■ vxbRead16()
■ vxbRead32()
■ vxbRead64()
■ vxbWrite8()
■ vxbWrite16()
■ vxbWrite32()
■ vxbWrite64()

All of the read routines have essentially identical semantics, differing only in the
size of the data element read during the transaction. Likewise, all of the write
routines have equivalently identical semantics.

In later sections, the interfaces to these routines are described collectively because
the concepts are the same for all of the read routines, and for all of the write
routines.

Reading from the Hardware Registers

A device driver can read either 8, 16, 32, or 64 bit quantities from a hardware
register using a single function call. The interface to each of the vxbReadxx()
routines is essentially the same. For example:

UINT8 value = vxbRead8 (handle, UINT8 *);
UINT16 value = vxbRead16 (handle, UINT16 *);
UINT32 value = vxbRead32 (handle, UINT32 *);
UINT64 value = vxbRead64 (handle, UINT64 *);

In this example, handle is used to hold a handle to a portion of the device address
space. This handle is generated when the driver calls vxbRegMap(). The address
represents the absolute address of the hardware register to be read. For example, if
a device provides three 32-bit registers in one of its mapped areas, a device driver
can read the middle 32-bit value by performing pointer arithmetic to generate the
address for the register as follows:

value = vxbRead32 (handle, (UINT32 *) (pDrvCtrl->feiBar + sizeof(UINT32)));

When making calls into any of the vxbReadxx() routines, use a base address value
for the appropriate register window, and then add the appropriate offset into the
register window to access the desired hardware register. The handle value does not

3 Device Driver Fundamentals
3.6 Services Available to Drivers

63

3

encode any type of pointer offset for the window therefore the pointer arithmetic
must always be performed explicitly by the driver.

Writing to the Hardware Registers

A device driver can write either 8, 16, 32, or 64 bit quantities to a hardware register
using a single function call. The interface to each of the vxbWritexx() routines is
essentially the same. The only significant difference is the data types for the
parameter values. For example:

void vxbWrite8 (handle, UINT8 *, UINT8);
void vxbWrite16 (handle, UINT16 *, UINT16);
void vxbWrite32 (handle, UINT32 *, UINT32);
void vxbWrite64 (handle, UINT64 *, UINT64);

As with read routines, you are responsible for any pointer arithmetic required to
access registers located in the mapped register window.

Special Requirements for Hardware Register Access

When a device driver writes to or reads from a hardware register, the vxbReadxx()
and vxbWritexx() routines perform whatever memory or I/O transactions are
required in order to deliver the data to (or read the data from) the underlying
hardware. On some processor architectures, this task involves the execution of
special instructions (such as eieio on PowerPC processors), or a read-after-write
transaction to flush any write buffers that exist between the CPU and the target
hardware. The special operations that are required for each memory region are
encoded as part of the state that is contained in the handle for each of the memory
regions that are mapped by vxbDevMap(). Because of this, you do not need to
perform any additional operations in your driver in order to ensure that data that
is read or written is transferred correctly.

3.6.5 Interrupt Handling

This section describes how VxWorks device drivers work with hardware
interrupts. The following topics are covered:

■ overview of interrupt handling
■ interrupt indexes
■ services available to drivers to manage interrupts.
■ minimizing work performed within an interrupt service routine
■ additional interrupt requirements for VxWorks SMP

VxWorks
Device Driver Developer's Guide, 6.6

64

Overview of Interrupt Handling

In previous versions of VxWorks, device drivers connected driver interrupt service
routines (ISRs) by calling intConnect() and providing the necessary interrupt
vector information, this is referred to as the interrupt vector model. This interrupt
vector model worked well for hardware architectures that provided a
straightforward mapping of device interrupts onto interrupt vectors. However,
with the growth of hardware complexity and interrupt routing through multiple
interrupt controllers, this simple interrupt vector model has become unwieldy and
difficult to maintain.

To address this issue, device drivers now use a different set of operating system
services to connect interrupt service routines to the operating system. Device
drivers now only need to be aware of how many individual interrupt sources are
generated by the supported device hardware, so that the driver can connect
appropriate ISRs to each hardware interrupt source. The individual interrupt
sources that are generated by a device are assigned individual interrupt index
values.

These interrupt index values are used to describe the interrupt to the operating
system. Interrupt index values are described in greater detail in the following
section.

Interrupt Indexes

VxWorks provides a set of services that you can use to manage interrupts from
devices. These services allow you to:

■ Connect a driver-specific handler routine to any device interrupt.

■ Enable and disable delivery of the device interrupt.

■ Disconnect from the device interrupt.

Each of the separate interrupt signals a device generates is identified by its
interrupt index. Most hardware devices only generate a single interrupt, which in
VxWorks is identified as interrupt index 0. For more complex devices, additional
interrupt signals are generated. These are assigned increasing interrupt indexes,
starting at index 0.

When a device can generate more than one interrupt signal, the interrupt signal is
assigned an interrupt index that describes the type of information that is delivered
implicitly with the arrival of the interrupt. For example, high performance
network devices often have three interrupt sources; a transmit interrupt, a receive

3 Device Driver Fundamentals
3.6 Services Available to Drivers

65

3

interrupt, and an error interrupt. Each interrupt represents a different type of
hardware event. For a given driver class, each type of interrupt index is assigned
to a specific event and the same interrupt index is used for all device drivers in that
driver class. For example, for all network device drivers, interrupt index 0 is
assigned to the hardware device's transmit interrupt, interrupt index 1 is assigned
to the hardware device's receive interrupt, and interrupt index 2 is assigned to the
hardware device's error interrupt.

For information on the interrupt index conventions for any particular driver class,
see the appropriate class-specific documentation in VxWorks Device Driver
Developer’s Guide, Volume 2.

Device drivers need to be able to connect device interrupts to ISRs, enable and
disable delivery of these interrupts, and (for removable device drivers) disconnect
an ISR from its device interrupt. VxWorks provides the following routines to
support these services:

vxbIntConnect()
This routine connects an ISR to a device interrupt. Once an ISR has been
connected using vxbIntConnect(), vxbIntEnable() must also be called to
enable delivery of the device interrupt to the CPU.

vxbIntDisconnect()
This routine disconnects an ISR from a device interrupt

vxbIntEnable()
This routine enables delivery of a device interrupt by programming the
appropriate hardware devices between the interrupting device and the CPU.

vxbIntDisable()
This routine disables delivery of a device interrupt by programming the
appropriate hardware devices between the interrupting device and the CPU.

For more information on these routines, see the corresponding reference entries.

Minimizing Work Performed within an ISR

When an ISR is started by VxWorks as a result of interrupt handling, all task
processing is suspended while the ISR is executing3. Because task processing is
suspended for the duration of the ISR, ISRs should be structured to be as fast as
possible, to minimize overall system interrupt latency.

3. For VxWorks SMP, all task processing is suspended on the core that is executing
the ISR; other cores continue to execute tasks.

VxWorks
Device Driver Developer's Guide, 6.6

66

One method for minimizing the time spent in an ISR is to defer any processing so
that it is performed within a task context instead of within an interrupt context
using the functionality provided by isrDeferLib. When an ISR is structured to
support ISR deferral, the ISR does the following:

1. Disables interrupts from the device by programming device-specific registers
so that interrupts are disabled. (Note that calling vxbIntDisable() may not
disable interrupts if the interrupt line is shared by some other device.)

2. Prepares a data structure to describe the work that needs to be deferred. This
data structure is then provided as an input parameter to the routine that
performs the deferred work at task level.

3. Unblocks a task that is waiting on a semaphore. This task handles the deferred
work once the ISR completes execution.

4. Returns from the ISR. This signals the operating system to schedule the task to
handle the deferred work.

VxWorks provides a support library to make the process of deferring interrupts to
the task level easier for you. The following routines are available to support ISR
deferral:

isrDeferQueueGet()
Returns a handle to an ISR deferral queue. This handle is used defer work from
an ISR to task level. The deferral queue returned by this function can be a
shared queue (used by more than one device driver), or it can be an exclusive
queue.

isrDeferJobAdd()
Adds a data structure describing the deferred work to be performed onto an
ISR deferral queue. This work is performed once the ISR enqueuing the work
terminates and task processing resumes.

For more information on these routines, see the corresponding reference entries.

3.6.6 Synchronization

VxWorks device drivers have unique synchronization requirements when
compared with VxWorks application code. A typical device driver receives
requests from user tasks to perform various forms of I/O. In addition, the driver

NOTE: If this step is not performed, VxWorks immediately resumes interrupt
processing after the ISR exits because the original interrupt is still pending.

3 Device Driver Fundamentals
3.6 Services Available to Drivers

67

3

must service device interrupts from the hardware that the driver is controlling.
These requests create a fairly chaotic environment within the driver because it
must ensure that all of the individual threads and interrupts that are competing for
the driver's resources do not corrupt the driver's data structures. Simultaneous
access to shared data structures can lead to data corruption, incorrect driver
behavior, and possibly system crashes. As a driver developer, you must take active
steps to ensure that the data structures maintained by your driver are protected
from corruption by these competing threads of execution.

Task-Level Synchronization

When a driver is running in task context, it can use the full suite of available
operating system services to perform synchronization operations. These services
include:

■ taking and releasing mutexes
■ sending data to, or receiving data from, a message queue
■ adding and removing items from ring buffers
■ taking and giving spinlocks
■ locking and unlocking interrupts (uniprocessor VxWorks only)

You can choose any of these synchronization methods, depending on the data flow
needs of your device and the I/O interface between your device driver and its
calling tasks. However, your overall goal is to ensure that the data structures that
are maintained by the driver remain consistent.

For example, a common task-level synchronization scenario would be to have a
single driver instance allocate and initialize a semaphore then store that
semaphore as part of the per-instance data structure maintained by the driver. The
semaphore can then be used to protect all access to the shared data structures that
the driver maintains.

However, while semaphores provide a useful method to protect driver data
structures from corruption by competing tasks, they have a significant drawback
that prevents them from being a good general-purpose solution—they cannot be
used from the interrupt context. If your device driver maintains data structures
that must be accessed from both task context and interrupt context, you must
employ a different synchronization method.

VxWorks
Device Driver Developer's Guide, 6.6

68

Interrupt-Level Synchronization

When a VxWorks device driver is servicing an interrupt from a hardware device,
the driver can no longer use any synchronization primitives that could cause the
interrupt service routine to block. For example, an interrupt service routine cannot:

■ Take a mutex.

■ Add an item to a message queue.

Because these operations are not allowed in interrupt context, another method to
provide mutual exclusion is required to resolve the shared data contention issues
between task context and interrupt context.

In interrupt context, there are two methods you can employ to gain exclusive
access to a shared resource:

■ interrupt locking using intCpuLock() and intCpuUnlock()
■ spinlocks using isrSpinLockTake() and isrSpinLockGive()

These two methods are each discussed in the following sections

Interrupt-Level Synchronization Using Interrupt Locking

Interrupt locking is the traditional method used to protect device driver data
structures from being modified simultaneously in both task and interrupt context,
and this method works well in uniprocessor VxWorks environments, provided the
code executed while interrupts are locked is short. Using interrupt locking, any
piece of code running in task context that wants to gain access to a shared data
structure must surround the code in an intCpuLock() and intCpuUnlock() pair
of function calls. For example:

key = intCpuLock ();
/* access shared data structures. */
intCpuUnlock (key);

By locking out interrupts for the duration of the access to any shared data
structures, you can guarantee that no interrupts occur while the driver shared data
structures are accessed in task context.

Within the interrupt service routine of your driver, the driver shared data
structures can be accessed without explicitly locking interrupts in a UP
environment. Because an ISR cannot be preempted in order to run any task-level

NOTE: This is not true in all cases. You can add an item to a message queue
from an ISR. However, when calling msgQSend() from an ISR, the timeout
option must be zero.

3 Device Driver Fundamentals
3.6 Services Available to Drivers

69

3

code, explicit locking is not required within the ISR. An ISR can infer from the very
fact that it is running that no tasks are executing in any regions bracketed by
intCpuLock() and intCpuUnlock().

Despite the simplicity and efficiency offered by interrupt locking, Wind River
discourages the use of interrupt locking in modern device drivers. There are two
reasons for this:

■ Interrupt locking increases system latency because no interrupts for any
device in the system can be serviced while interrupts are locked.

■ Interrupt locking does not work if more than one processor is present in the
system, as is the case for the optional VxWorks SMP product.

In place of interrupt locking, you can use spinlocks in modern device drivers that
need to provide protection between task and interrupt context. This service is
available in both uniprocessor VxWorks and VxWorks SMP systems (see
Interrupt-Level Synchronization Using Spinlocks, p.69).

Interrupt-Level Synchronization Using Spinlocks

When you use interrupt locking to protect a shared data structure, each task that
wants to access the shared data structure must first lock interrupts, and then access
the shared data. In a uniprocessor VxWorks system, your driver can safely access
shared data in this context because it knows that it will not be preempted, whether
by another task of higher priority, or by any type of ISR. This is guaranteed in
uniprocessor systems because only one processing unit is available to execute
instructions.

However, in a symmetric multiprocessing (SMP) system, more than one
processing unit is available, and instructions that access shared data can be
executed on any (or even all) cores in the system. As a result, a core in a VxWorks
SMP system that executes intCpuLock() cannot make any assumptions about
code that is running on any other core in the system. A second core could be
executing code that is accessing the shared driver resources, while a third core
could be executing an ISR for the driver. Unless you take positive steps in your
driver to ensure that only one of these entities can gain access to the driver shared
data structures, data corruption of the shared data structures is inevitable.

NOTE: A complete discussion of spinlocks is beyond the scope of this document.
For more information on spinlocks, see the VxWorks Kernel Programmer’s Guide:
VxWorks SMP.

VxWorks
Device Driver Developer's Guide, 6.6

70

To address this need, VxWorks SMP provides spinlocks that can be used to provide
exclusive access to a shared resource, even when the resource is being contended
for by multiple cores in a multiprocessor system.

Spinlocks can be taken and given. After spinlock is taken, the driver that holds the
spinlock can access any data structures that are protected by the spinlock. For
example:

isrSpinLockTake (pSpinlock);
/* access shared data structures */
isrSpinLockGive (pSpinLock);

Unlike interrupt locking, spinlocks must be used in both task context and in
interrupt context to ensure exclusive access to a driver shared resource. An ISR
must use a spinlock because it cannot know whether or not a task on another core
in the system will try to access the driver shared resources while the ISR is running.
That is, an ISR cannot depend upon the implicit locking that is available in a
uniprocessor system. You must use an explicit lock to ensure data integrity.

3.6.7 Direct Memory Access (DMA)

This section describes the facilities provided by VxBus for management of devices
which read and write system memory directly.

When data transfer is involved, reading and writing system memory is referred to
as direct memory access (DMA). However, the same operations used for DMA are
also used for other operations, such as management of tables that describe what
operations are to be performed. These tables are known as descriptors.

Address translation and cache present some issues related to DMA. These are
discussed in DMA Considerations, p.71.

vxbDmaBufLib

VxBus provides the vxbDmaBufLib library as a solution to both address
translation and cache operations, as required by device drivers that control devices
that use DMA. This library uses a construct known as a DMA tag to identify
restrictions on DMA, including address translation. After a DMA tag is created, a
DMA map is created to perform address translation. The caller creates a tag with
the vxbDmaBufTagCreate() call. For buffers, the driver creates a DMA map, using
the tag created earlier and other information.

3 Device Driver Fundamentals
3.6 Services Available to Drivers

71

3

When setting up for a write operation (where the CPU writes to RAM and the
device reads the data), the driver calls vxbDmaBufMapLoad() or a variant of it4.
At the appropriate time, the driver calls vxbDmaBufSync() with appropriate
arguments to cause cache flush or invalidate. For more information on these
routines, see the corresponding reference entries and the reference entry for
vxbDmaBufLib.

When processing incoming data, the driver first finds what buffers contain data,
the DMA tag, and the DMA map associated with each buffer. For each buffer, the
driver calls vxbDmaBufSync() to invalidate any cache entries, followed by
vxbDmaBufMapLoad(), followed by another call to vxbDmaBufSync() with a
different operation flag. At this point, it is safe to read the data from the buffer.

When processing outgoing data already in a buffer, the driver calls
vxbDmaBufMapLoad() followed by vxbDmaBufSync(). Once this occurs, it is
safe to initiate the write operation.

For more information on vxbDmaBufLib, see the library reference entry as well as
the reference entries for vxbDmaBufTagCreate() and other routines provided by
vxbDmaBufLib.

DMA Considerations

There are several issues related to these operations. Both data operations and
operations on descriptors have similar issues, and the same mechanism is used to
manage both types. The mechanisms used to manage these operations are address
translation and cache.

NOTE: When writing data to a disk, the disk controller device reads the data from
RAM as the first step. Similarly, when reading data from a disk, the last step for
the disk controller device is to write the data into RAM. Thus, the terms read and
write are ambiguous, depending on whether the application or the device is
performing the operation. In this documentation, unless otherwise noted, these
terms should be considered relative to the application.

4. Variants of vxbDmaBufMapLoad() are available for mBlk and uio structures so
that multiple buffers can be mapped with the same call. The basic version maps a
single buffer. Unless otherwise noted, references to vxbDmaBufMapLoad()
indicate all variants.

VxWorks
Device Driver Developer's Guide, 6.6

72

Address Translation

First, the memory address used by the device may not be the same as the memory
address used by the CPU. That is, if the bus controller performs address
translation, the same memory addresses are known by one address from the CPU
and a different address from the device. Figure 3-3 illustrates this situation. In this
example, the driver allocates a buffer from RAM at 0xC0001000. The CPU uses this
address to read and write the buffer. However, because the bus controller
translates the address, the device must read and write at 0x00001000 in order to
manipulate the same RAM locations.

Bus Controller Address Conversion

There are two types of address conversion that are relevant to device drivers. These
are the conversion of device register addresses and the conversion of buffer
addresses.

In most cases, drivers do not need to handle address conversion directly because
utility routines perform the mapping on behalf of the driver. However, as a driver
writer, you must be aware of the mappings that are performed. The following
sections discuss mappings of device register addresses and mappings of data
buffer addresses.

Device Registers

Device registers reside on the device itself, and are therefore subject to the rules
and restrictions of the bus type on which the device resides. Often, device registers
are not seen at the same address on the CPU as on the bus that the device resides

Figure 3-3 Bus Address Translation

CPU

RAM

bus controller

device

0xc0001000

0xc0001000

translate: CPU 0xc0000000 <-> device 0x00000000

0x00001000

3 Device Driver Fundamentals
3.6 Services Available to Drivers

73

3

on. Because of this, most drivers need to use the device register management
routines to manipulate register contents. For more information on the register
management routines, see 3.6.4 Hardware Access, p.59.

Data Buffers

Data buffers typically reside in system RAM. In most systems, there is a bus
controller device of some sort between the device and RAM. The bus controller
device performs address conversion between the CPU and the downstream
devices, as shown in Figure 3-3. The driver, which is running on the CPU, needs to
use one address to access a particular location in RAM. However, the device on the
downstream bus needs to use a different address to access the same location in
RAM.

In most cases, drivers for devices that use system memory rely on the routines in
vxbDmaBufLib to manage buffers, and these routines allow the driver to handle
the address translation.

The RAM addresses are passed to the appropriate vxbDmaBufLib routines, and
the converted addresses—as seen by the device—are available from the returned
structures.

Cache

Detailed cache considerations are beyond the scope of this document. Therefore,
the cache discussion in this section is presented as a simplified description of cache
operations and how they affect device drivers. Many cache configurations are
possible, and this discussion does not reflect the full range of available
configurations. For more detailed cache information, see the VxWorks Architecture
Supplement and the reference entry for cacheLib.

In Figure 3-4, the CPU has an associated cache. This introduces another layer of
complexity for address translation. For every memory access by the CPU, the cache
checks the memory address of the access. If the address is already in cache, the
cache responds with the data stored in cache. Depending on the cache
configuration, the cache may respond to the CPU request by reading data from, or
writing data to, its cache memory, completely avoiding any transactions with
system RAM.

For example, assume a copy of RAM from a certain address is held in cache. If the
device writes to that address, the data are written to RAM. If the processor tries to
read that address, the cache responds to the CPU with the cached data and
prevents it from accessing the data in RAM. The result is that the data received by
the CPU does not contain the updated data written by the device.

VxWorks
Device Driver Developer's Guide, 6.6

74

Similarly, if the CPU writes to an address, the cache will intercept the write request
and store the data in cache, but it will not necessarily store the data in RAM. If the
device then attempts to read data from the address, the device reads old data from
RAM rather than the current data from cache.

To resolve these cache issues, the processor must perform operations known as
cache invalidate and cache flush. When reading from cached RAM addresses, the
CPU configures the device to write to RAM. However, before doing so, the CPU
invalidates the cache addresses being written to. When the CPU next tries to read
the address, the cache does not respond directly. Instead, it reads the data from
RAM, stores the data in cache, and sends the data to the CPU.

Provided the CPU does not read from the address until after the device writes to
it, the operation is performed as expected.

In the second situation, the CPU writes into an address and then notifies the device
that the device should read the data there. Before notifying the device to perform
the read, the CPU flushes the cache. This instructs the cache to write any pending
data from cache into RAM. After this has happened, the device can read the latest
information directly from RAM.

Recall that before configuring the device to write into the buffer, the cache
invalidate operation is performed, which causes the entire contents of the cache

Figure 3-4 Bus Address Translation and CPU Cache

CPU

RAM

bus controller

device

0xC0001000

0xC0001000

no translation

0xC0001000

cache

0xC0001000

3 Device Driver Fundamentals
3.6 Services Available to Drivers

75

3

line to be discarded. However, in some cases, it is possible that valid data have
been written into the cache line but not written to RAM. In this case, the valid data
are discarded along with the invalid cached buffer contents.

To prevent this, driver writers must ensure that all data buffers used for DMA are
cache aligned.

Allocating External DMA Engines

Most devices that manipulate large amounts of data have DMA engines included
in the device. This allows data to be copied without requiring the CPU to perform
the copies, resulting in better overall system performance. However, some devices
that manage large amounts of data do not include built-in DMA hardware.
VxWorks provides a way for device drivers for such devices to allocate an external
DMA engine, also known as a slave DMA engine, if one is available. This allows
drivers to eliminate the CPU data copy operations.

This functionality is achieved with vxbDmaLib. The driver calls
vxbDmaChanAlloc() to allocate a DMA channel, and then calls one of the data
copy routines made available when you allocate the channel. There are two
variants of the copy. One variant copies the data and waits for the copy operation
to complete before returning to the caller, the other variant initiates the copy
operation and returns immediately. When the copy is complete, the caller is
notified. Both variants are called through function pointers made available when
a DMA channel is allocated.

By default, when vxbDmaChanAlloc() is called and no DMA engine is available,
the routine allocates a software entity that performs the operations using CPU
cycles. This allows a driver to request a DMA channel, but use the same interface
whether one is available or not. The driver can specify not to use software copy by
specifying the DMA_COPY_MODE_NO_SOFT flag.

vxbDmaChanAlloc()

This routine allocates and initializes a DMA channel for use by a device instance.
It searches the system for DMA controller drivers that have dedicated channels,
and if found, calls the {vxbDmaResDedicatedGet}() method to allocate the
dedicated channel. If no dedicated channels are available, this routine searches
through the system for any DMA controller drivers that can allocate a channel
satisfying the parameters passed to the routine. If a channel is allocated, the routine
returns an ID for the channel.

VxWorks
Device Driver Developer's Guide, 6.6

76

VXB_DMA_RESOURCE_ID vxbDmaChanAlloc
(
VXB_DEVICE_ID pInst,
UINT32 minQueueDepth,
UINT32 flags,
void * pDedicatedChanInfo
)

pInst refers to the VXB_DEVICE_ID associated with the device requesting the
DMA channel. DMA device drivers normally select a DMA channel based upon
minQueueDepth and flags. Device drivers can optionally pass a pointer to DMA
device-specific information in pDedicatedChanInfo, which signals the DMA
library to call the {vxbDmaResDedicatedGet}() method.

minQueueDepth refers the minimum queue depth required by the device, in
transaction units. The DMA model expects a chained DMA command mode,
where multiple DMA transactions can be initiated and a single interrupt occurs
when the DMA command chain is completed and no further transactions are
available to be performed. If the device uses a direct mode, where one transaction
is performed at a time, then the DMA driver should reject requests containing a
minQueueDepth of any value other than 1.

flags allows drivers to specify any options in configuring the DMA channel. The
acceptable values for flags are defined in vxbDmaLib.h and are described as
follows:

■ DMA_COPY_MODE_DEVBUF (0x00000000) - this flag indicates that the device
provides a data buffer which is fully accessible as memory.

■ DMA_COPY_MODE_FIFO (0x00000100) - this flag indicates that the
mechanism used by the device for presenting its data buffers is a register.
Successive reads or writes to this register are required to complete a transfer to
or from CPU memory.

■ DMA_COPY_MODE_NO_SOFT (0x00000200) - be default,
vxbDmaChanAlloc() will assign a software copy routine if no hardware
DMA channel is available. If this flag is set, vxbDmaChanAlloc() will instead
return ERROR.

■ DMA_COPY_MODE_NO_HW (0x00000300) - in cases where the driver
developer wishes to use the API, but knows that there will not be adequate
DMA hardware to provide appropriate performance, this flag can be specified.
It indicates that the library should return a software copy routine to the driver.

■ DMA_TRANSFER_TYPE_RD (0x00001000) - this flag indicates to the DMA
driver that the DMA channel is requested for read operations, that is, data is
read from the device into memory.

3 Device Driver Fundamentals
3.6 Services Available to Drivers

77

3

■ DMA_TRANSFER_TYPE_WR (0x00002000) - this flag indicates to the DMA
driver that the DMA channel is requested for write operations, that is, data is
written to the device from memory.

vxbDmaChanFree()

This routine frees the DMA channel identified by dmaChan, by calling the DMA
device driver through the {vxbDmaResourceRelease}() method.

void vxbDmaChanFree
(
VXB_DMA_RESOURCE_ID dmaChan
)

3.6.8 Atomic Operators

Device driver writers often need to update internal data structures to reflect
changes in driver state. If they are simultaneously updated by more than one
thread of execution, driver data structures can become corrupt. Therefore, you
must take specific steps to ensure that corruption does not occur due to contention
for the driver data structures.

Traditionally, some type of synchronization primitive is used to ensure that a data
structure is updated atomically. Common synchronization primitives include:

■ semaphores
■ spinlocks
■ interrupt locking

In this release, atomic operators have been added to this set of synchronization
primitives. As their name implies, atomic operators can be used to atomically
modify a data structure. Atomic operators guarantee that their update to a data
structure is atomic, even when more than one thread of execution is contending for
the shared data structure. In VxWorks, atomic operators are divided into four
logical groups:

■ arithmetic
■ logical
■ read/write
■ compare/swap

All of the atomic operators act upon a variable of type atomic_t. The atomic_t type
is an architecture-dependent integral type, guaranteed to be at least 32 bits in size.

VxWorks
Device Driver Developer's Guide, 6.6

78

The atomic arithmetic operators are:

atomicVal_t vxAtomicAdd (atomic_t * pTarget, atomicVal_t value);
atomicVal_t vxAtomicDec (atomic_t * pTarget);
atomicVal_t vxAtomicInc (atomic_t * pTarget);
atomicVal_t vxAtomicSub (atomic_t * pTarget, atomicVal_t value);

Each of the arithmetic operators take as input a pointer to a variable of type
atomic_t, which is atomically updated by the operator. In all cases, the atomic
arithmetic operators return the original value of *pTarget.

The atomic logical operators are:

atomicVal_t vxAtomicAnd (atomic_t * target, atomicVal_t value);
atomicVal_t vxAtomicNand (atomic_t * target, atomicVal_t value);
atomicVal_t vxAtomicOr (atomic_t * target, atomicVal_t value);
atomicVal_t vxAtomicXor (atomic_t * target, atomicVal_t value);

Each of the logical operators take as input a pointer to a variable of type atomic_t,
which is atomically updated by the operator. In all cases, the atomic logical
operators return the original value of *pTarget.

The atomic read/write operators are:

atomicVal_t vxAtomicClear (atomic_t * target);
atomicVal_t vxAtomicGet (atomic_t * target);
atomicVal_t vxAtomicSet (atomic_t * target, atomicVal_t value);

Each of the read/write operators take as input a pointer to a variable of type
atomic_t, which is atomically updated by the operator. In all cases, the atomic
logical operators return the original value of *pTarget.

The atomic compare/swap operator is:

BOOL vxCas (atomic_t * target, atomicVal_t oldValue, atomicVal_t newValue);

The vxCas operator is the most complex of the atomic operators. It is designed to
be used to update a data structure by:

■ Reading a value from a data structure.

■ Updating the value, according to the needs of the algorithm.

■ Writing the value back, but only if the data structure has been left unchanged
singe the original read from the data structure occurred.

vxCas can be useful in cases where a data structure is accessed intermittently, so
that it is highly likely that a single thread of execution can read a value from the
data structure, modify it, and then write it back, without another thread of
execution making a simultaneous attempt to update the structure. This is useful for
data structures that have low contention.

3 Device Driver Fundamentals
3.7 BSP Configuration

79

3

If atomic operators are used within a device driver, they must be used consistently.
Data elements of type atomic_t should never be directly accessed using simple
pointer indirection. The atomic operators perform other operations aside from
simple memory operations to ensure that the atomic operations occur as designed.
If the atomic operators are not used consistently, correct behavior is not assured.

For further information about the atomic operators, see reference entry for
vxAtomicLib.

3.7 BSP Configuration

One of the goals of the VxBus model is to minimize the need to modify a BSP in
order to support new devices. Where BSP support is required, the Vxbus model
reduces the effort required to integrate a driver with a new BSP. However, the
amount of BSP work required in order for a new driver to work on an existing BSP
depends on the type of bus on which the device resides.

If the device resides on a bus such as PCI, which allows the system to probe the
device in order to find out what devices are present and what kind of devices they
are, then typically, no BSP modifications are required. In this case, the bus
controller finds the devices on the bus and ensures that VxBus knows about them.

For PLB devices, and for other bus types that do not allow the system to discover
what devices are present, the system needs some way to determine what devices
are present, and to determine the characteristics of those devices. This is normally
accomplished by reading an array of devices provided by the BSP.

3.7.1 Requirements for PLB Devices

For PLB-type devices, the BSP typically provides the required array of devices in a
table called hcfDeviceList[]. This table is usually provided in a hwconf.c file in the
BSP. Each entry in hcfDeviceList[] contains the name and unit number of a device,
the bus type and unit number on which the device resides (which is usually
VXB_BUSID_PLB unit 0), and a reference to an array of resources associated with
the device. For example, the following data structures are typically present in the

VxWorks
Device Driver Developer's Guide, 6.6

80

BSP hwconf.c file in order to incorporate a D1643 timer driver into the BSP, and to
configure the timer driver so that it is accessible through the PLB:

const struct hcfResource d16430Resources[] = {
/* entries describing resources tailored to the D1643 timer on PLB */

};

const struct hcfDevice hcfDeviceList[] = {
{"d1643", 0, VXB_BUSID_PLB, 0, d16430Num, d16430Resources},

};
const int hcfDeviceNum = NELEMENTS(hcfDeviceList);

The hcfDevice structure and hcfResource structure are defined in
installDir/vxworks-6.x/target/h/hwif/vxbus/hwConf.h.

There are already many resource names defined in a standardized way as well as
a naming convention for resources. When an existing resource name is available
for a resource that your driver needs, use the existing resource name. The standard
names are as follows:

Device drivers may also require resources that have not been previously named by
another driver. In this case, you can assign a name to the resource.

The one required resource is regBase, which is of type HCF_RES_INT. This resource
represents the base address of the device registers, or the base address of the first
bank of device registers. It must be present and non-zero in order for a device to be
associated with a driver. Other regBase entries can optionally exist as well. These
entries are identified as regBaseN, where N is a value between 1 and 9. Drivers do
not need to read the regBase and regBaseN entries. The system reads those entries
and stores the results in the pRegBase[] entries in the VXB_DEVICE structure.

When your system is configured with interrupt controller support provided by a
VxBus model device driver, interrupt routing information is provided with the
interrupt controller driver resources. However, when the BSP provides the code to
manage the interrupt controller devices, interrupt information is listed as a
resource for each device. In this case, there are two required interrupt resources for
each interrupt the device can generate.

regBase intrNLevel rxIntLevel
regBaseN txInt errIntLevel
irq rxInt regInterval
irqLevel errInt regWidth
intrN txIntLevel regDelay
clkFreq

3 Device Driver Fundamentals
3.7 BSP Configuration

81

3

Each interrupt requires two resources, an interrupt number and an interrupt level.
To ease BSP development, the resources have several aliases. These aliases are:

irq and irqLevel
These aliases can be used to represent the first interrupt that a device
generates.

intrN and intrNLevel
These aliases can be used to represent multiple interrupts. The character N is
replaced either by a decimal number, or it is deleted. For example, valid values
can include intr, intr0, intr1, intr27, and so on, along with the corresponding
intrLevel, intr0Level, and so on.

txInt, rxInt, and errInt
txIntLevel, rxIntLevel, and errIntLevel

These resource names can be used for a device that generates three interrupts
for transmit events, receive events, and error events. Note that txInt always
refers to interrupt 0, rxInt always refers to interrupt 1, and errInt always refers
to interrupt 2.

There are two additional generic resources that are required in some cases and may
be used by your driver:

regInterval
Describes the amount of space between registers. For example, sometimes a
device uses four 8-bit registers, and the board maps the register addresses so
that they appear to be located at 32-bit boundaries. In this case, the value of
regInterval must be specified as 4.

regWidth
Describes the size that must be used to access a register. For example,
sometimes a device uses four 8-bit registers, and the board maps the register
addresses so that they appear to be located at 32-bit boundaries, and in
addition, the device is located on a bus that allows only 32-bit transactions. In
this case, the driver needs to access each register with 32-bit transactions or a
bus error results. Therefore, the value of regWidth must be specified as 4.

regDelay
Describes the delay required between accesses to registers, in milliseconds.

clkFreq
Describes the frequency of an oscillator in Hz.

Wind River provides a general naming convention as part of the coding
convention described in Wind River Coding Conventions. Resource names should
follow the conventions for variable names. For example, if you need to represent a

VxWorks
Device Driver Developer's Guide, 6.6

82

minimum clock rate as a resource, the resource name should be clkRateMin.
Where another driver uses a given resource name for a specific kind of
information, you should use the same name.

3.7.2 Configuring Device Parameters in the BSP

In addition to resources, each instance can have parameters associated with it.
Each parameter has a default value that is provided by the driver, but the BSP can
override the value on a per-instance basis. This is done in the parameter table in
hwconf.c. The parameter table is terminated by an entry with
VXB_PARAM_END_OF_LIST specified as follows:

VXB_INST_PARAM_OVERRIDE sysInstParamTable[] =
{
...
{ NULL, 0, NULL, VXB_PARAM_END_OF_LIST, {(void *)0} }
};

Parameters are driver specific. There may be conventions for a given driver class,
but many parameters are specific to an individual device. Unlike resources, which
have required generic entries for all device classes, there are no generic parameters.

Wind River provides a general naming convention as part of the coding
convention described in Wind River Coding Conventions. Parameter names should
follow the conventions for variable names.

3.8 SMP Considerations

When writing a device driver, you must decide whether or not the device driver is
written to handle the unique challenges presented by symmetric multiprocessing
(SMP), or is written to support only a uniprocessor VxWorks system.

If your driver is only planned to run on a uniprocessor system for initial
development, you may be tempted to take advantage of the simpler environment
that uniprocessor VxWorks presents, and defer any consideration of
multiprocessing until the driver is actually required on an SMP platform.

Because the silicon industry is moving inexorably to multicore processors,
regardless of vendor, it is difficult to predict what the future requirements will be
for any driver. And while it is simpler to write a device driver for a uniprocessor

3 Device Driver Fundamentals
3.8 SMP Considerations

83

3

system, you can save yourself a great deal of time in the future by writing a driver
to be “SMP-ready” when compared with the cost of retrofitting SMP support into
a previously uniprocessor-only driver.

This section describes some of the unique device driver challenges posed by an
SMP system, and provides you with some possible solutions to the challenges.

For more information on VxWorks SMP, see the VxWorks Kernel Programmer’s
Guide: VxWorks SMP.

3.8.1 Lack of Implicit Locking

As described in Interrupt-Level Synchronization, p.68, the most significant difference
between a VxWorks SMP system and a uniprocessor system occurs in the area of
mutual exclusion. In a uniprocessor VxWorks system, only one core can execute
instructions at any one time, so it is relatively simple for you to keep track of all of
the possible sources of contention. For example:

■ If a driver for a uniprocessor system is executing an ISR, no other task can
possibly be competing for the shared resource.

■ If a driver for a uniprocessor system is executing in task context, the driver can
lock interrupts in order to prevent any other thread of execution or ISR from
gaining control of the CPU, and thus guarantee itself exclusive access to device
driver resources.

Given this knowledge, you can construct small areas in the driver where interrupts
must be locked, and can guarantee that within these locked regions any driver
shared resources cannot be accessed simultaneously by more than one thread of
execution.

In a VxWorks SMP system, the simple mutual exclusion model used for a
uniprocessor system does not work because multiple cores within the system can
execute instructions simultaneously on more than one core. Because of this “true
multiprocessing”, your driver must use explicit locking to ensure that the driver's
shared data structures are protected from corruption by competing threads of
execution.

For details about methods than can be used to protect data structures against
simultaneous access on VxWorks SMP systems, see 3.6.6 Synchronization, p.66.

VxWorks
Device Driver Developer's Guide, 6.6

84

3.8.2 True Task-to-Task Contention

When you write a driver for a uniprocessor VxWorks system, you can ensure that
only one task is competing for a shared driver resource by judicious use of the
taskLock() routine. When taskLock() is called, the VxWorks scheduler only
schedules the task that invoked taskLock(), regardless of its relative priority when
compared with other ready-to-run tasks. The only way in which a task that has
called taskLock() can be preempted is using an interrupt.

However, in VxWorks SMP, the taskLock() routine is not supported. If your device
driver uses the taskLock() routine, it will not compile correctly for VxWorks SMP.
Therefore, instead of using task locking to avoid task-to-task contention, you must
again use synchronization methods that are appropriate for VxWorks SMP.

For more information on using synchronization methods to avoid task-to-task
contention, see VxWorks Kernel Programmer’s Guide: VxWorks SMP.

3.8.3 Interrupt Routing

In VxWorks SMP, interrupts from hardware devices can be routed to specific CPUs
within the system. At any given time, each hardware interrupt can be routed to at
most one CPU in the system. When an interrupt is delivered in an SMP system, the
ISR that is attached to the interrupt is executed on the core that the device interrupt
is routed to. While this ISR is executing, all task processing is suspended on the
core that is handling the interrupt. However, tasks can continue to run on all of the
other enabled cores within a the system.

Because tasks can run in parallel with ISRs in VxWorks SMP, device drivers that
are structured to work correctly in an SMP system must be designed to explicitly
protect any data structures that are shared between the ISR and those portions of
the driver that run from task context. There are two methods that you can employ
to explicitly protect these shared data structures. The methods are:

■ ISR-callable spinlocks
■ ISR deferral of work to a task context

3.8.4 Deferring Interrupt Processing

There are two methods that a device driver can use to protect driver shared
resources while a driver is executing in interrupt context. These are:

3 Device Driver Fundamentals
3.8 SMP Considerations

85

3

■ use a spinlock to protect the shared resource
■ defer processing of the interrupt to a specialized deferral task

In a VxWorks SMP system, you cannot always use a spinlock within an ISR to
protect a driver shared resource. For example, this can be because the driver's data
structures are part of a protocol stack, and access to the protocol stack is protected
using a semaphore. Because your driver cannot take a semaphore within an ISR,
the ISR must find another way to manipulate the shared data structures.

ISRs commonly use a deferral task to modify data that is protected by a semaphore.
A deferral task is a dedicated task within VxWorks that pends on a binary
semaphore, waiting to be unblocked by an ISR. Within an interrupt service routine,
if your driver needs to defer work, you can perform a set of steps to defer the
necessary work to task context:

1. Block further interrupt delivery from the hardware. This is necessary because
the driver may not be able to clear the interrupt condition from the
interrupting device. If your device driver's interrupt service routine returns
while the device interrupt is still pending, the pending interrupt is serviced
immediately following the ISR return which causes an infinite loop of
interrupt processing.

2. Prepare a data buffer that describes the work to be performed. This data buffer
needs to be private to the ISR so that it can modify its contents without
worrying about contention with other threads of execution.

3. Deliver the data buffer to a waiting deferral task so that the task knows what
required work to perform.

4. Unblock the deferral task so that it can then perform the deferred work.

VxWorks provides a utility library to simplify the deferral of interrupt processing.
This library, isrDeferLib, is introduced in s3.6.5 Interrupt Handling, p.63. In
addition to the services outlined in that section, isrDeferLib provides additional
services to support deferred interrupt processing in an SMP environment.

isrDeferLib supports two distinct models of interrupt deferral:

■ individual deferral tasks, dedicated to a specific driver instance
■ shared deferral tasks, which are (potentially) used by more than one driver

instance

The choice of deferral model is made when VxWorks is configured. The ISR
deferral library (INCLUDE_ISR_DEFER) is typically included in a VxWorks system
when a driver that uses the library is included. This is because the driver's use of
the deferral library creates a dependency on the deferral library that causes the
component to be pulled into the VxWorks system. The deferral library uses its

VxWorks
Device Driver Developer's Guide, 6.6

86

ISR_DEFER_MODE parameter to configure its run-time queue sharing behavior as
follows:

■ ISR_DEFER_MODE_PER_CPU—One deferral task is created per CPU that
receives deferred interrupts. This deferral task processes all deferred
interrupts for a specific CPU within the system.

■ ISR_DEFER_MODE_PER_SOURCE—One deferral task is created for each
driver instance that requires a deferral queue.

When device drivers defer interrupts, it is much more efficient to defer interrupts
to a task that is running on the same CPU as the CPU where the interrupt is first
received. When VxWorks first boots, all interrupts are delivered to CPU 0, but this
can be changed at run time by reconfiguring the routing of interrupts through the
various interrupt controllers. If an interrupt is migrated from CPU 0 to another
CPU in the SMP system, the deferral library must be informed of the change, so
that it can adapt to the new interrupt routing. The library uses two methods to
adapt to the change in routing:

■ For shared deferral tasks, the ISR deferral library locates a preexisting deferral
task (or creates one, if necessary) running on the CPU receiving the rerouted
interrupt. The deferral library returns a handle to this new queue. The driver
that receives the new handle should use this handle for all subsequent deferral
operations.

■ For individual deferral tasks, the ISR deferral library changes the CPU affinity
of the deferral task to correspond to the CPU where the interrupt has been
routed. A handle to the deferral task is still returned, but in this situation the
handle is unchanged, because no new deferral task is used for interrupt
processing.

When an interrupt is rerouted in a running VxWorks system, those device drivers
with interrupts that are affected by the reroute, and who publish the
{isrRerouteNotify}() method, are informed of interrupt reroute events. If your
driver uses ISR deferral, publish this driver method so that the driver can be
notified of any changes to its interrupt state, and propagate this information to the
deferral library. The prototype for {isrRerouteNotify}() is:

LOCAL void func{isrRerouteNotify}
(
VXB_DEVICE_ID pInst, /* instance data for driver */
int intIndex, /* index for rerouted interrupt */
int destCpu /* destination CPU for rerouted interrupt */
)

3 Device Driver Fundamentals
3.8 SMP Considerations

87

3

The body of a driver func{isrRerouteNotify}() routine should contain a call to
isrDeferIsrReroute():

newHandle = isrDeferIsrReroute(pInst->pInstData->dHandle, destCpu);
pInst->pInstData->dHandle = newHandle;

For more information, see the reference entry for isrDeferLib.

VxWorks
Device Driver Developer's Guide, 6.6

88

89

 4
Development Strategies

4.1 Introduction 89

4.2 Writing New VxBus Drivers 90

4.3 VxBus Show Routines 96

4.4 Debugging 110

4.1 Introduction

This chapter outlines development strategies for creating a VxBus model device
driver. The chapter presents an overall methodology for creating a new device
driver (where no previous VxWorks driver exists). It also presents several
suggestions for debugging those aspects of a device driver that are relevant to the
interface between the device driver and other modules such as the VxBus core
features and middleware.

VxWorks
Device Driver Developer's Guide, 6.6

90

4.2 Writing New VxBus Drivers

The steps to create a new VxBus driver generally include the following:

1. Create the VxBus infrastructure needed for your driver.

2. Modify your BSP, if necessary.

3. Add debug code based on conditional compilation.

4. Add the VxBus driver methods required by your driver class.

5. Remove all global variables.

4.2.1 Creating the VxBus Infrastructure

There are several elements required in every VxBus device driver. Start by adding
the empty driver framework that interacts with VxBus. The required parts of this
framework include the driver source file itself, one or more optional header files, a
CDF file (to allow the driver to be visible in Workbench and the vxprj
command-line utility), and configuration stub files so that the driver can be
included in BSP command-line builds (executed using the make command). (For
more information on CDF and configuration stub files, see 3.3.2 Required Files,
p.24).

Once all of the elements of the driver are present in the correct places, configure the
BSP for the development effort.

Writing Driver Source Files

To create the driver source file, start with a template file or an existing driver from
the same driver class. Templates, if available, are kept in the same directory as
other drivers of the same class.

Writing Header Files (Optional)

Many VxBus device drivers have all source code located in a single source file, with
no external header file. However, if your driver includes a number of
device-specific macros or other driver-specific information, you can put this
information in an optional header file.

4 Development Strategies
4.2 Writing New VxBus Drivers

91

4

Writing the Component Description File (CDF)

The component description file (CDF) for your driver allows the driver to be
configured and included in a project using standard Wind River tools (Workbench
and the vxprj command-line utility).

Wind River driver CDF files are located in installDir/vxworks-6.x/target/config/
comps/vxWorks and in the architecture specific directories under this directory.
Third-party driver CDF files are located in installDir/vxworks-6.x/target/3rdparty/
vendor/driver. By convention, driver files use the prefix 40, for example
40g64120a.cdf.

In most cases, the CDF file for a driver is simple. You must supply a value for
Component.

For example:

Component DRV_CLASS_NAME {
NAME DriverName
SYNOPSIS Description Of Driver
_CHILDREN FOLDER_DRIVERS
REQUIRES INCLUDE_VXBUS \

INCLUDE_PLB_BUS \
other requirements

INIT_RTN sampleDriverRegister();
INIT_AFTER INCLUDE_PLB_BUS
_INIT_ORDER hardWareInterFaceBusInit
_CHILDREN FOLDER_DRIVERS

}

Many drivers have configuration options. For more information on how the driver
manages configuration options internally, see VxWorks Kernel Programmer’s Guide:
Kernel. Configuration options that are specified as parameters should be
configurable from within Workbench and in vxprj. To do this, provide Parameter
entries for each parameter and link the parameters to your Component with the
CFG_PARAMS keyword. For more information, see CFG_PARAMS, p.32.

Writing the Configuration Stub Files

Configuration stub files provide similar functionality to the CDF file, but are used
when building the VxWorks image from the BSP directory using the make
command (this is known as the bspDir/config.h build method).

NOTE: This section provides an overview of the component description file
requirements for adding a driver. For detailed information, see Component
Description File, p.27 and VxWorks Kernel Programmer’s Guide: Kernel.

VxWorks
Device Driver Developer's Guide, 6.6

92

In most cases, each driver requires two stub files. The stub files are named
according to the convention for your driver, with the extensions .dc and .dr.

The driverName.dc file usually contains a forward reference to the driver
registration routine, and nothing else. Use the Wind River macro IMPORT to
declare this routine. (Note that all registration routines return a void value.)

The following is a sample driver .dc file:

IMPORT void sampleDriverRegister(void);

The .dr file contains a call to the driver registration routine. This call must be
surrounded by #ifdef and #endif.

The last line must be terminated with a newline (be sure that your editor does not
strip it off).

The following is a sample driver .dr file:

#ifdef DRV_CLASS_NAME
sampleDriverRegister();

#endif /* DRV_CLASS_NAME */

Wind River driver .dc and .dr files are located in installDir/vxworks-6.x/
target/config/comps/src/hwif. Third-party driver .dc and .dr files are located in
installDir/vxworks-6.x/target/3rdparty/vendor/driver.

Verifying the Infrastructure

Once you have created your driver, compiled it, added it to a library, and
configured your BSP, verify that what you have done so far is correct.

To do this, first build the VxWorks image from the BSP directory. Verify that the
driver file is included by using the nmarch command and searching for the
registration routine.

Next, verify that the CDF file is correct by starting Workbench and configuring the
VxWorks image. If everything is correct, your driver should be available in the
drivers folder (not greyed out).

NOTE: In general, you should build your project files using Workbench or the
vxprj command-line utility. However, the BSP build method described in this
section may be useful in certain development scenarios including early BSP and
driver development. For more information on this build method, see the VxWorks
Command-Line Tools User’s Guide.

4 Development Strategies
4.2 Writing New VxBus Drivers

93

4

Finally, boot the image and run vxBusShow(). Your driver should show up in the
list of drivers and the target device should show up in the list of devices.

One common problem—frequently encountered when creating drivers for PLB
devices—is that the name of the driver does not match the name you provided in
the hcfDeviceList[] table. When this happens, the output of vxBusShow()
displays the entry as an orphan rather than a device. If this happens, you must get
the driver and device to match up before proceeding.

VxBus matches a driver to its hardware by using strcmp() to compare the driver
name with the hcfDeviceList[] entries. The comparison is case sensitive, and the
match must be exact. Check that the driver name and the name listed in the
hcfDeviceList[] table in hwconf.c are identical and correct as necessary.

The second most common problem at this stage is related to the device's register
base address. For PLB devices, the first register base address must be non-null. You
can verify this by running vxBusShow() with a verbose level argument greater
than 1. This displays the full set of pRegBase[] entries for each device (instance
and orphan) known by VxBus. If the pRegBase[0] entry for your device is zero,
correct the problem by supplying the correct base address.

Before moving on to the next step, be sure that your device and driver are
connected to each other.

4.2.2 Modifying the BSP (Optional)

Depending on the bus type, VxBus may be able to discover your device
automatically. For example, when the device is on a PCI bus or variant of PCI,
information about the device is available from PCI configuration space. VxBus
reads this information and compares it against PCI configuration information
provided by a driver for a PCI device. If the information matches, the driver is
paired with the device.

NOTE: In some cases, you may not want to supply the register base address in
hwconf.c. In this is the case for your driver, use ERROR or TRUE, both of which are
non-null. If you choose this option, your driver must not attempt to read or write
registers using the VxBus register access mechanism.

NOTE: Before you start working on your VxBus-enabled driver, you must make
sure that your BSP is also VxBus compliant. If your BSP is not enabled for use with
VxBus, see the VxWorks BSP Developer’s Guide.

VxWorks
Device Driver Developer's Guide, 6.6

94

However, with the PLB bus type, devices are not discovered automatically. In this
case, you must add an entry for your device in the hcfDeviceList[] array in the
BSP hwconf.c file.

For easier debugging, configure your VxWorks Image Project so that the show
routines are included. Be sure to include the VxBus show routines in addition to
the standard show routines. For example, add the following components:

■ INCLUDE_SHOW_ROUTINES
■ INCLUDE_VXBUS_SHOW

Also include your own driver component:

■ DRV_CLASS_NAME

4.2.3 Adding Debug Code

After the old driver source code is consolidated into a VxBus driver file, you can
add additional debug code.

For example, adding debug code is often useful when the driver provides a way to
show contents of the driver-specific data area, often referred to as pDrvCtrl.

Most drivers benefit by having debug and other diagnostic information available
based on a compile-time macro. If the macro is defined, and a flag is set to the
desired debug level, debug code is available at run time.

For most new driver development, you should defer registration of your driver
with VxBus. You can manually run your driver registration routine after the
system has booted and you are ready to debug your driver. This allows the system
to come up without your driver, and you can use the debug facilities from a
fully-functional VxWorks image for debugging.

The type of debug information that can be added to a driver is discussed in
4.4 Debugging, p.110.

NOTE: When releasing a driver, much of the debug information used during
development continues to be valuable. Therefore, leaving the code in the source
file can be beneficial in the future, as long as it can be omitted from the object file.
For more information on releasing a driver, see 5. Driver Release Procedure.

4 Development Strategies
4.2 Writing New VxBus Drivers

95

4

4.2.4 Adding the VxBus Driver Methods

The next step in your driver development is to find what external interface is used.
Typically, this involves finding the VxBus driver methods used by the driver class
and then adding the routines that provide the required functionality.

In the early stages of development, you may not want to publish the driver
methods. Deferring this step allows you to test the external interface manually
without having to worry about whether the middleware or other modules are
going to cause undesirable results when the new driver's empty routines are
called.

Once the functionality used by the required driver methods is available, add the
methods to the table of methods in your driver and make sure the table is
published in the pMethods field of the VXB_DEVICE_ID.

4.2.5 Removing Global Variables

One of the important goals of a generic driver is that it support multiple devices of
the same type. Earlier in the development process, you may have chosen to create
global variables specific to an instance (that is, a given device and driver paired
together). These global variables should be removed.

In VxBus, the main identification of a device is the VXB_DEVICE_ID. The structure
VXB_DEVICE_ID points to has a field for pDrvCtrl. pDrvCtrl is owned by the
driver and can be used for any purpose. Most drivers define a structure containing
all instance-specific information.

During initialization, this structure is allocated using hwMemAlloc(), filled in
with the data, and a pointer to the structure is saved in the pDrvCtrl field. Later,
when the driver is called for any reason, the VXB_DEVICE_ID is passed as a
parameter, from which the driver can extract the pDrvCtrl field to get access to the
instance-specific data.

In many cases, it is necessary to rewrite the prototype of some routines to pass the
pDrvCtrl or VXB_DEVICE_ID as a parameter.

NOTE: In this step, you are expected to create the actual device management code
which is a time-consuming step in the device driver development process.

VxWorks
Device Driver Developer's Guide, 6.6

96

4.3 VxBus Show Routines

There are a number of show routines available for use with VxBus. This section
describes some of the show routines, demonstrates how they can be used to assist
driver development, and explains how to configure them into the system.

4.3.1 Available Show Routines

This section lists and describes the available VxBus show routines.

vxBusShow()

The most basic show routine in the VxBus framework is vxBusShow(). This
routine provides a list of information related to drivers and devices.

There are several levels of detail available when using this routine. The level of
detail is specified by the value of the argument. A value of 0 provides the following
basic information:

■ bus types that are available on the system
■ drivers that are registered, and the bus types they use
■ buses that are present on the system
■ devices that are present on each bus
■ whether each device has been paired with a driver

Example 4-1 shows the output for a typical vxBusShow() routine run on a
Pentium target.

Example 4-1 Basic vxBusShow() Output

-> vxBusShow()
Registered Bus Types:
MII_Bus @ 0x004531d4
PCI_Bus @ 0x0044fbcc
Local_Bus @ 0x0044f98c

Registered Device Drivers:
yn at 0x00452ef8 on bus PCI_Bus, funcs @ 0x00452e18
fei at 0x00452d98 on bus PCI_Bus, funcs @ 0x00452c68
geiHEnd at 0x004530c4 on bus PCI_Bus, funcs @ 0x004530a8
genericPhy at 0x0045322c on bus MII_Bus, funcs @ 0x00453220
miiBus at 0x0045318c on bus PCI_Bus, funcs @ 0x0045312c
miiBus at 0x00453148 on bus Local_Bus, funcs @ 0x0045312c
ns16550 at 0x0044f4e4 on bus Local_Bus, funcs @ 0x0044f474
ns16550 at 0x0044f49c on bus PCI_Bus, funcs @ 0x0044f474

4 Development Strategies
4.3 VxBus Show Routines

97

4

pentiumPci at 0x0044fbf4 on bus Local_Bus, funcs @ 0x0044fbe8
plbCtlr at 0x0044f9b4 on bus Local_Bus, funcs @ 0x0044f9a8

Busses and Devices Present:
Local_Bus @ 0x00466790 with bridge @ 0x0044f9f4
Device Instances:

pentiumPci unit 0 on Local_Bus @ 0x00467a50 with busInfo 0x004669d0
ns16550 unit 1 on Local_Bus @ 0x004678d0 with busInfo 0x00000000
ns16550 unit 0 on Local_Bus @ 0x00467750 with busInfo 0x00000000

Orphan Devices:
i8042Mse unit 0 on Local_Bus @ 0x00469350 with busInfo 0x00000000
i8042Kbd unit 0 on Local_Bus @ 0x00469250 with busInfo 0x00000000

PCI_Bus @ 0x004669d0 with bridge @ 0x00467a50
Device Instances:

miiBus unit 1 on PCI_Bus @ 0x004747d0 with busInfo 0x0046be10
miiBus unit 0 on PCI_Bus @ 0x00469450 with busInfo 0x00469cd0
fei unit 0 on PCI_Bus @ 0x00468e50 with busInfo 0x00000000
ns16550 unit 3 on PCI_Bus @ 0x00468c50 with busInfo 0x00000000
yn unit 0 on PCI_Bus @ 0x00468350 with busInfo 0x00000000
geiHEnd unit 0 on PCI_Bus @ 0x00467e50 with busInfo 0x00000000

Orphan Devices:
(null) unit 0 on PCI_Bus @ 0x00469150 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00469050 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468f50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468b50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468a50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468950 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468850 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468750 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468650 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468550 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468450 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468250 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468150 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468050 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00467f50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00467d50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00467c50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00467b50 with busInfo 0x00000000

MII_Bus @ 0x0046be10 with bridge @ 0x004747d0
Device Instances:

genericPhy unit 0 on MII_Bus @ 0x00474850 with busInfo 0x00000000
Orphan Devices:

MII_Bus @ 0x00469cd0 with bridge @ 0x00469450
Device Instances:

genericPhy unit 0 on MII_Bus @ 0x004694d0 with busInfo 0x00000000
Orphan Devices:

Many VxBus routines require that the VxBus device ID be provided as an
argument. The most commonly used part of the vxBusShow() output is the device
ID for individual devices. The device ID is the field after the bus type, indicated
with the @ symbol. For example, the device ID of the mouse device, i8042Mse, is
0x00469350, as shown in:

i8042Mse unit 0 on Local_Bus @ 0x00469350 with busInfo 0x00000000

VxWorks
Device Driver Developer's Guide, 6.6

98

Higher verbose level values result in the display of additional information. Each
driver can publish a show routine that is integrated into vxBusShow() (see
4.4.1 Configuring Show Routines, p.110). The amount and format of the information
that is displayed depends on the driver and the information that the driver chooses
to display based upon a given verbose level.

For all devices, vxBusShow(1) displays non-null values of pRegBase[], in
addition to the information displayed at verbose level 0.

When the verbose level is greater than 1000, vxBusShow() displays all values of
pRegBase[], even if they are NULL. Because the output with non-zero verbose
levels is long, the following examples show only an excerpt of the outputs.

Example 4-2 vxBusShow() Verbose Output

-> vxBusShow(1)
...

iaTimestamp unit 0 on Local_Bus @ 0x0042ff48 with busInfo 0x00000000
pDrvCtrl @ 0x00430048

fileNvRam unit 0 on Local_Bus @ 0x00430148 with busInfo 0x00000000
BAR0 @ 0xffffffff (IO space)
pDrvCtrl @ 0x0042cb48

Orphan Devices:
PCI_Bus @ 0x0042bec8 with bridge @ 0x0042d048
Device Instances:

fei unit 0 on PCI_Bus @ 0x0042d848 with busInfo 0x00000000
BAR0 @ 0xfc9bf000 (memory mapped)
BAR1 @ 0x0000bc00 (IO space)
BAR2 @ 0xfc800000 (memory mapped)
pDrvCtrl @ 0x04419284

...
(null) unit 0 on PCI_Bus @ 0x0042d648 with busInfo 0x00000000

BAR2 @ 0x00030300 (memory mapped)
BAR3 @ 0x200000f0 (memory mapped)
BAR4 @ 0x0000fff0 (memory mapped)
BAR5 @ 0x0001fff0 (IO space)
pDrvCtrl @ 0x00000000

...

-> vxBusShow(1001)
...
PCI_Bus @ 0x0042bec8 with bridge @ 0x0042d048
Device Instances:

fei unit 0 on PCI_Bus @ 0x0042d848 with busInfo 0x00000000

NOTE: The remainder of this section discusses only the generic format used when
the driver does not publish a show routine.

NOTE: The following examples are displayed from a different system than shown
in Example 4-1.

4 Development Strategies
4.3 VxBus Show Routines

99

4

BAR0 @ 0xfc9bf000 (memory mapped)
BAR1 @ 0x0000bc00 (IO space)
BAR2 @ 0xfc800000 (memory mapped)
BAR3 @ 0x00000000 (none)
BAR4 @ 0x00000000 (none)
BAR5 @ 0x00000000 (none)
BAR6 @ 0x00000000 (none)
BAR7 @ 0x00000000 (none)
BAR8 @ 0x00000000 (none)
BAR9 @ 0x00000000 (none)
pDrvCtrl @ 0x04419284

...

vxbDevStructShow()

The prototype for vxbDevStructShow() is as follows:

STATUS vxbDevStructShow(VXB_DEVICE_ID devID)

The vxbDevStructShow() routine displays the fields of the device structure.
When developing bus controller and multifunction drivers, this routine is often
useful to display the information contained in the child devices created by the bus
controller driver or multifunction driver. For general driver development, this
routine is used to find the characteristics of a given device, such as pRegBase[]
values. For example:

-> fei0 = 0x00468350

-> vxbDevStructShow(fei0)
vxbDev fei @ 0x00468350

pNext -> 0x00468c50
pParentBus -> 0x004669d0
pMethods @ 0x00000000
pAccess @ 0x0042e0c8
pRegBase[0] @ 0xfc9bf000
pRegBase[1] @ 0x0000bc00
pRegBase[2] @ 0xfc800000
pRegBase[3] @ 0x00000000
pRegBase[4] @ 0x00000000
pRegBase[5] @ 0x00000000
pRegBase[6] @ 0x00000000
pRegBase[7] @ 0x00000000
pRegBase[8] @ 0x00000000
pRegBase[9] @ 0x00000000
pSubordinateBus @ 0x00000000
pBusSpecificDevInfo @ 0x0042c348
busID = PCI_Bus (3)
pIntrInfo @ 0x0042c908
pDriver @ 0x0041f7dc
pDrvCtrl @ 0x04419430
u.pDevPrivate @ 0x00000000

VxWorks
Device Driver Developer's Guide, 6.6

100

vxbDevPathShow()

The prototype for vxbDevPathShow() is as follows:

void vxbDevPathShow(VXB_DEVICE_ID devID)

The vxbDevPathShow() routine indicates the bus controllers upstream from the
specified device to the PLB. For example:

-> sio3 = 0x00468c50

-> vxbDevPathShow(sio3)
device ns16550 @ 0x00468c50
device pentiumPci @ 0x00467a50
device plbCtlr @ 0x0044f9f4

4.3.2 PCI Show Routines

The PCI show routines available in VxWorks prior to the introduction of the VxBus
driver infrastructure are still available in this release. However, the older PCI show
routines may not always work exactly as expected. In VxWorks 6.6, the PCI
configuration has been enhanced to support logically separate PCI buses. That is,
a single system can have two or more PCI buses that are not related to each other
in any way. When this occurs, there are two primary implications for the device
driver developer.

First, there is a default PCI bus, and any given device may not be reachable from
the default bus. The older PCI show routines use only the default bus, therefore if
the device you are looking for is not present on the default bus, it is not listed by
the older show routines.

The next consideration is that the [bus,device,function] triple no longer uniquely
identifies a single device. This means that older PCI show routines cannot be used.

Many of the older PCI show routines have corresponding show routines specific
to VxBus. In general, the first argument to a new routine is the VxBus device ID of
the bus controller immediately upstream from the device. The VxBus routines are
discussed in the following sections.

NOTE: When pRegBase[0] is NULL on PLB devices, the device is not matched with
a driver, but instead remains an orphan.

4 Development Strategies
4.3 VxBus Show Routines

101

4

pciDevShow()

The prototype for pciDevShow() is as follows:

void pciDevShow(VXB_DEVICE_ID devID)

The pciDevShow() routine displays PCI information about the specified device.
This includes the [bus,device,function] triple, and the device ID and vendor ID, that
were read from PCI configuration space when the device was created. For
example:

-> yn0 = 0x00468350

-> pciDevShow(yn0)
pDev @ 0x00468350 [3,0,0]

devID = 0x4b00
vendID = 0x1186

The devID and vendID fields shown by pciDevShow() are used when matching
PCI devices and drivers. If the information displayed by pciDevShow() does not
match the values listed in your driver, you may need to modify your driver to get
an exact match.

vxbPciDeviceShow()

The prototype for vxbPciDeviceShow() is as follows:

STATUS vxbPciDeviceShow
(
VXB_DEVICE_ID busCtrlID,
int busNo
)

The vxbPciDeviceShow() routine displays information about devices found on
the PCI bus downstream of the specified PCI bus controller device. Only
information about the PCI bus numbered busNo is listed.

-> pentiumPci = 0x0044fbf4

-> vxbPciDeviceShow(pentiumPci,0)
Scanning functions of each PCI device on bus 0 Using configuration
mechanism 1

NOTE: The following output is displayed from a different system than the
vxBusShow() output in vxBusShow(), p.96.

VxWorks
Device Driver Developer's Guide, 6.6

102

bus device function vendorID deviceID class/rev
0 0 0 0x8086 0x3590 0x0600000c
0 2 0 0x8086 0x3595 0x0604000c
0 4 0 0x8086 0x3597 0x0604000c
0 6 0 0x8086 0x3599 0x0604000c
0 28 0 0x8086 0x25ae 0x06040002
0 30 0 0x8086 0x244e 0x0604000a
0 31 0 0x8086 0x25a1 0x06010002
0 31 1 0x8086 0x25a2 0x01018a02
0 31 3 0x8086 0x25a4 0x0c050002

vxbPciHeaderShow()

The prototype for vxbPciHeaderShow() is as follows:

STATUS vxbPciHeaderShow
(
VXB_DEVICE_ID busCtrlID,
int busNo, /* bus number */
int deviceNo, /* device number */
int funcNo /* function number */
)

The vxbPciHeaderShow() routine displays the full contents of the PCI header for
an individual device. Note that the device is specified by four values: the bus
controller device, and the PCI triple [bus,device,function]. This means that
vxbPciHeaderShow() is usable even when the BSP excludes a particular device
from being configured. (For information about excluding a particular device
within the BSP, see the reference entry for vxbPciAutoConfig().)

The following sample shows the PCI header for the Yukon II network interface
device. Notice that the VxBus device ID for the yn0 device is not used as an
argument to vxbPciHeaderShow(). Instead, use the [bus,device,function] triple as
provided in the output of pciDevShow().

-> yn0 = 0x00468350

-> pciDevShow(yn0)
pDev @ 0x00468350 [3,0,0]

devID = 0x4b00
vendID = 0x1186

-> pciCtlr = 0x004669d0

-> vxbPciHeaderShow pciCtlr,3,0,0
vendor ID = 0x1186
device ID = 0x4b00
command register = 0x0007
status register = 0x4010
revision ID = 0x11
class code = 0x02

4 Development Strategies
4.3 VxBus Show Routines

103

4

sub class code = 0x00
programming interface = 0x00
cache line = 0x08
latency time = 0x00
header type = 0x00
BIST = 0x00
base address 0 = 0xfe3fc004
base address 1 = 0x00000000
base address 2 = 0x0000b801
base address 3 = 0x00000000
base address 4 = 0x00000000
base address 5 = 0x00000000
cardBus CIS pointer = 0x00000000
sub system vendor ID = 0x1186
sub system ID = 0x4b00
expansion ROM base address = 0xfe3c0000
interrupt line = 0x0b
interrupt pin = 0x01
min Grant = 0x00
max Latency = 0x00
Capabilities - Power Management
Capabilities - Vital Product Data
Capabilities - Message Signaled Interrupts: Disabled, 64-bit, MMC: 0 MME: 1

Address: 0082e0050082e005 Data: 0xe005 Capabilities - PCIe: Legacy
Endpoint, IRQ 0

Device: Max Payload: 128 bytes, Extended Tag: 5-bit
Acceptable Latency: L0 - >4us, L1 - >64us
Errors Enabled: AUX Pwr PM
Max Read Request 512 bytes

Link: MAX Speed - 2.5Gb/s, MAX Width - by 1 Port - 0 ASPM - L0s
Latency: L0s - <256ns, L1 - >64us
ASPM - Disabled, RCB - 128bytes
Speed - 2.5Gb/s, Width - by 1

vxbPciFindDeviceShow()

The prototype for vxbPciFindDeviceShow() is as follows:

STATUS vxbPciFindDeviceShow
(
VXB_DEVICE_ID busCtrlID,
int vendorId, /* vendor ID */
int deviceId, /* device ID */
int index /* desired instance of device */
)

The vxbPciFindDeviceShow() routine scans the PCI bus identified by busCtlrID,
searching for devices on the bus with the requested vendor and device ID. Because
multiple devices with the same vendor and device ID can be present on a single
PCI bus, you can provide an index parameter to identify which occurrence of the
device to display information for. For example, in the following sample output,

VxWorks
Device Driver Developer's Guide, 6.6

104

vxbPciFindDeviceShow() searches for the first occurrence of a device with
vendor ID 0x1186 and device ID 0x4b00:

-> pentiumPci = 0x0044fbf4

-> vxbPciFindDeviceShow(pentiumPci, 0x1186, 0x4b00, 0)
deviceId = 0x4b00
vendorId = 0x1186
index = 0
busNo = 3
deviceNo = 0
funcNo = 0

vxbPciFindClassShow()

The prototype for vxbPciFindClassShow() is as follows:

STATUS vxbPciFindClassShow
(
VXB_DEVICE_ID busCtrlID,
int classCode, /* 24-bit class code */
int index /* desired instance of device */
)

The vxbPciFindClassShow() routines scans the PCI bus identified by busCtlrID,
searching for devices on the bus with the requested class code. Because multiple
devices with the same class code can be present on a single PCI bus, you can
provide an index parameter to identify which occurrence of the device to display
information for. For example, in the following sample output,
vxbPciFindClassShow() searches for the first occurrence of a device with class
code 0x002:

-> pentiumPci = 0x0044fbf4

-> vxbPciFindClassShow(pentiumPci, 0x02, 0)
class code = 0x2
index = 0x0
busNo = 0x3
deviceNo = 0x0
funcNo = 0x0

vxbPciConfigTopoShow()

The prototype for vxbPciConfigTopoShow() is as follows:

void vxbPciConfigTopoShow
(
VXB_DEVICE_ID busCtrlID
)

4 Development Strategies
4.3 VxBus Show Routines

105

4

The vxbPciConfigTopoShow() routine displays information about PCI devices in
a relatively easy-to-use format.

-> pentiumPci = 0x0044fbf4

-> vxbPciConfigTopoShow(pentiumPci)
[0,2,0] type=P2P BRIDGE to [1,0,0]

base/limit:
mem= 0xfff00000/0x000fffff
preMem=0x00000000fff00000/0x00000000000fffff
I/O= 0xf000/0x0fff

status=0x4018 (CAP DEVSEL=0 ASSERT_SERR)
command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE) [0,4,0]

type=P2P BRIDGE to [2,0,0]
base/limit:
mem= 0xfff00000/0x000fffff
preMem=0x00000000fff00000/0x00000000000fffff
I/O= 0xf000/0x0fff

status=0x4018 (CAP DEVSEL=0 ASSERT_SERR)
command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE) [0,6,0]

type=P2P BRIDGE to [3,0,0]
base/limit:
mem= 0xfff00000/0x000fffff
preMem=0x00000000fff00000/0x00000000000fffff
I/O= 0xf000/0x0fff

status=0x4018 (CAP DEVSEL=0 ASSERT_SERR)
command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE) [0,28,0]

type=P2P BRIDGE to [4,0,0]
base/limit:
mem= 0xfc500000/0xfc9fffff
preMem=0x00000000fff00000/0x00000000000fffff
I/O= 0xb000/0xbfff

status=0x0030 (CAP 66MHZ DEVSEL=0)
command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE) [4,2,0]

type=NET_CNTLR
status=0x0290 (CAP FBTB DEVSEL=1)
command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE)
bar0 in 32-bit mem space @ 0xfc9bf000
bar1 in I/O space @ 0x0000bc00
bar2 in 32-bit mem space @ 0xfc800000 [0,30,0] type=P2P BRIDGE to

[5,0,0]
base/limit:
mem= 0xfca00000/0xfeafffff
preMem=0xfff00000/0x000fffff
I/O= 0xc000/0xcfff

status=0x0080 (FBTB DEVSEL=0)
command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE) [5,1,0]

type=DISP_CNTLR
status=0x0290 (CAP FBTB DEVSEL=1)
command=0x0087 (IO_ENABLE MEM_ENABLE MASTER_ENABLE WC_ENABLE)
bar0 in 32-bit mem space @ 0xfd000000

NOTE: The following output is displayed from a different system than the
vxBusShow() output in vxBusShow(), p.96.

VxWorks
Device Driver Developer's Guide, 6.6

106

bar1 in I/O space @ 0x0000c800
bar2 in 32-bit mem space @ 0xfeaff000 [0,31,0] type=ISA BRIDGE
status=0x0280 (FBTB DEVSEL=1)
command=0x000f (IO_ENABLE MEM_ENABLE MASTER_ENABLE MON_ENABLE)

[0,31,1] type=MASS STORAGE
status=0x0288 (FBTB DEVSEL=1)
command=0x0007 (IO_ENABLE MEM_ENABLE MASTER_ENABLE)
bar0 in I/O space @ 0x000001f0
bar1 in I/O space @ 0x000003f4
bar2 in I/O space @ 0x00000170
bar3 in I/O space @ 0x00000374
bar4 in I/O space @ 0x0000fc00

[0,31,3] type=SERIAL BUS
status=0x0280 (FBTB DEVSEL=1)
command=0x0001 (IO_ENABLE)
bar4 in I/O space @ 0x00000540

4.3.3 Using Show Routines from Software

This section describes how software can use certain VxBus services, including how
to find a VxBus device ID given suitable identification information.

One bit of information that is not provided directly by vxBusShow() is the
bus-specific information for orphan devices. For example, the vxBusShow()
output for an orphan PCI device is as follows:

(null) unit 0 on PCI_Bus @ 0x00468a50 with busInfo 0x00000000

Obviously, this is not enough information to know much about the device.

Ideally, when debugging a driver for PCI devices, you should know the
[bus,device,function] triple. You can get this by providing a routine that prints
information about the devices it sees and then using vxbDevIterate() to call the
routine for every device. For example, you could provide the following routine:

STATUS pciShowHelper
(
VXB_DEVICE_ID devID,
void * pArg
)
{
struct vxbPciDevice * pPci;

if (devID->busID != VXB_BUSID_PCI)
/* wrong bus type, just return */
return(OK);

pPci = (struct vxbPciDevice *)devID->pBusSpecificDevInfo;

4 Development Strategies
4.3 VxBus Show Routines

107

4

if (devID->pName == NULL)
printf("PCI device orphan 0x%08x devID 0x%04x vendID 0x%04x at

[%d,%d,%d]\n",
devID, pPci->pciDevId, pPci->pciVendId,
pPci->pciBus, pPci->pciDev, pPci->pciFunc);

else
printf("PCI device %s%d devID 0x%04x vendID 0x%04x at

[%d,%d,%d]\n",
devID->pName, devID->unitNumber,
pPci->pciDevId, pPci->pciVendId,
pPci->pciBus, pPci->pciDev, pPci->pciFunc);

return(OK);
}

Then, use this routine with vxbDevIterate(). When using vxbDevIterate(), you
can indicate that the routine should only be run on orphan devices by specifying
the value 2 as the third argument.

-> vxbDevIterate(pciShowHelper,0,2)
PCI device orphan 0x0042d348 devID 0x3590 vendID 0x8086 at [0,0,0]
PCI device orphan 0x0042d448 devID 0x3595 vendID 0x8086 at [0,2,0]
PCI device orphan 0x0042d548 devID 0x3597 vendID 0x8086 at [0,4,0]
PCI device orphan 0x0042d648 devID 0x3599 vendID 0x8086 at [0,6,0]
PCI device orphan 0x0042d748 devID 0x25ae vendID 0x8086 at [0,28,0]
PCI device orphan 0x0042d948 devID 0x244e vendID 0x8086 at [0,30,0]
PCI device orphan 0x0042da48 devID 0x4c52 vendID 0x1002 at [5,1,0]
PCI device orphan 0x0042db48 devID 0x25a1 vendID 0x8086 at [0,31,0]
PCI device orphan 0x0042fc48 devID 0x25a2 vendID 0x8086 at [0,31,1]
PCI device orphan 0x0042fd48 devID 0x25a4 vendID 0x8086 at [0,31,3]

It is possible to use the show routines from test code or other software. However,
to do this, your code needs to find the VxBus device ID of the desired device. This
can be accomplished by requiring that the user to provide the VxBus device ID.
However, it may be more convenient to provide the driver name and unit number.

struct devNameAndUnit
{
VXB_DEVICE_ID devID;
char * devName;
int devUnit;
};

STATUS pciDevByNameUnitHelper
(
VXB_DEVICE_ID devID,
struct devNameAndUnit * pDev
)
{
struct vxbPciDevice * pPci;

NOTE: The following output is displayed from a different system than other
output examples in this section.

VxWorks
Device Driver Developer's Guide, 6.6

108

if (pDev->devID != NULL)
/* already found, just return */
return(OK);

if ((strcmp(devID->pName,pDev->devName) == 0) &&
(devID->unitNumber == pDev->devUnit))
/* found it */
pDev->devID = devID;

return(OK);
}

VXB_DEVICE_ID pciDevByNameUnitFind(char * devName, int devUnit)
{
struct devNameAndUnit nmUnit;

nmUnit.devID = NULL;
nmUnit.devName = devName;
nmUnit.devUnit = devUnit;

vxbDevIterate(pciDevByNameUnitHelper, &nmUnit, 1)

return(nmUnit.devID);
}

The pciDevByNameUnitFind() routine can be used within the code to find the
VxBus device ID of the desired device.

-> pciDevByNameUnitFind("fei",0)
value = 4623952 = 0x00468e50

4.3.4 Configuring Show Routines into VxWorks

This section describes how to include the necessary components for VxBus show
routines in your VxWorks image.

Configuring Generic VxBus Show Routines

To include the generic Vxbus show routines, include the following macros or
components when building your VxWorks image:

■ INCLUDE_SHOW_ROUTINES
■ INCLUDE_PCI_BUS_SHOW
■ INCLUDE_VXBUS_SHOW

Configuring Interrupt Show Routines

If you are concerned with interrupt routing information, additional information
may be available from the interrupt controller driver. This information is more

4 Development Strategies
4.3 VxBus Show Routines

109

4

difficult to configure, due to the fact that interrupt controller drivers and the
interrupt controller driver support library are compiled outside the context of a
project or BSP.

Several source files need to be recompiled and archived into the driver library. The
files are all located in the installDir/vxworks-6.x/target/src/hwif/intCtlr directory.

The interrupt controller driver support library provides show routines when the
INTCTLR_LIB_SHOW macro is defined. Individual interrupt controller drivers are
configured with additional show routines by defining driver-specific macros.

To determine which macros you need to define, you must determine which
interrupt controller driver is included with your system, and check for
preprocessor macros containing any of the following strings:

■ _DEBUG_
■ _DBG_
■ _SHOW

For example, if the EPIC interrupt controller driver, vxbEpicIntCtlr.c is used, the
macro VXB_EPICINTCTLR_DBG_ON determines whether debug information is
included.

Once you have determined which macros need to be defined, run a make
command to build the files, specifying ADDED_CFLAGS to define the macros. You
must also specify the appropriate CPU and TOOL values for your hardware.

For example:

% make CPU=PPC32 TOOL=diab \
ADDED_CFLAGS="-DVXB_EPICINTCTLR_DBG_ON -DINTCTLR_LIB_SHOW"

The names and parameters that are required by the interrupt controller driver
show routines are driver-dependent.

NOTE: You may need to update the timestamp on the files in order to build the
object modules.

NOTE: Be sure to restore the non-debug versions of these files before creating your
final release code.

VxWorks
Device Driver Developer's Guide, 6.6

110

4.4 Debugging

This section provides general information on debugging VxBus device drivers. In
addition to the information in this section, you should also review any
class-specific debugging hints which are provided in the class-specific chapters of
volume 2 of the VxWorks Device Driver Developer’s Guide. (For information on
debugging legacy device drivers, see volume 3 of the VxWorks Device Driver
Developer’s Guide.)

The general debugging hints discussed in this section include:

■ Configuring the vxBusShow() routine. (4.4.1 Configuring Show Routines,
p.110)

■ Deferring driver registration. (4.4.2 Deferring Driver Registration, p.111)

■ Including debug code in the driver. (4.4.3 Including Debug Code, p.112)

■ Confirming register access. (4.4.4 Confirming Register Access, p.112)

■ Adjusting the size of HWMEM_POOL. (4.4.5 Increasing the Size of
HWMEM_POOL, p.112)

■ Confirming the driver and device names match for PLB devices.
(4.4.6 Confirming Device and Driver Name Matches, p.113)

4.4.1 Configuring Show Routines

When debugging, you may want to integrate a show routine into your driver with
the VxBus show module. This is done by advertising the {busDevShow}() driver
method. The func{busDevShow}() routine must have the following prototype:

STATUS sampleDriverpDrvCtrlShow
(
VXBUS_DEVICE_ID devID,
int verboseLevel
)

When verboseLevel is zero, the func{busDevShow}() routine prints the name,
unit number, and device ID in a manner similar to that displayed for the
vxBusShow() output for other devices.

When verboseLevel is non-zero, additional information is displayed. The
information displayed varies depending on the specific needs of your driver.
Larger verboseLevel values produce a wider range of information.

Table 4-1 lists recommended values for verboseLevel.

4 Development Strategies
4.4 Debugging

111

4

4.4.2 Deferring Driver Registration

Another simple debug modification is to defer the driver registration with VxBus.
When registration is deferred, VxBus is unaware of the driver at boot time. For
debugging purposes, you register the driver from the VxWorks shell (either the
host shell or the target shell). When VxBus finds that a new driver is available, it

Table 4-1 Recommended Values for verboseLevel

Level Description

0 Print only the driver name and unit, VXB_DEVICE_ID, and
bus type.

1 Print level 0 information, plus non-null pRegBase[] values.

2 Print level 1 information, plus all pRegBase[] values.

3 ... 8 Reserved, print only level 0 information.

9 Print level 1 information, plus the address of the
instance-specific data area pDrvCtrl. When multiple
channels are available (such as in a timer driver, DMA
driver, or serial driver), list which channels are available
but do not give details about them.

10 ... 49 Print level 9 information, but expand details about one
channel. For example, if four timers are available in a
particular timer device, then:

verboseLevel 10 lists details about timer 0
verboseLevel 11 lists details about timer 1
verboseLevel 12 lists details about timer 2
verboseLevel 13 lists details about timer 3

and verboseLevel 14 through 49 lists details of all four
timers.

50 Print level 9 information, plus the full contents of the
instance-specific data area pDrvCtrl.

51 ... 499 Reserved, print only level 0 information.

500+ Print all information available.

VxWorks
Device Driver Developer's Guide, 6.6

112

searches the list of orphan devices (devices not associated with a driver) for any
device that matches the new driver. If it finds one, it pairs the driver with the
device and runs through the normal initialization sequence.

For some driver classes, additional work may need to be done in order for the
device to be fully recognized by the available middleware modules. This is
explained further in the class-specific chapters in volume 2 of the VxWorks Device
Driver Developer's Guide.

4.4.3 Including Debug Code

Most VxBus drivers can be configured at compile time to include or exclude status
and debug code based on a compile-time option.

If the option is specified, a debug output macro is used, which depends on a
run-time debug level variable. For example:

#ifdef SAMPLE_DRIVER_DEBUG_ENABLE
int sampleDriverDebugLevel = 0;
#define SAMPLE_DRV_DBG_MSG(level,fmt,a,b,c,d,e,f) \

if (sampleDriverDebugLevel >= level) \
logMsg(fmt,a,b,c,d,e,f)

#else /* SAMPLE_DRIVER_DEBUG_ENABLE */
#define SAMPLE_DRV_DBG_MSG(level,fmt,a,b,c,d,e,f)
#endif /* SAMPLE_DRIVER_DEBUG_ENABLE */

This allows the driver to include the debug code available if required, but without
any overhead for a normal configuration.

4.4.4 Confirming Register Access

During development, you can choose to write routines that do nothing more than
read and write device registers. These routines can be called from a shell prompt.
This allows you to check that register access works correctly and that the contents
of the registers are as expected.

4.4.5 Increasing the Size of HWMEM_POOL

During driver development, the hardware memory pool can get exhausted. When
this happens, the behavior of the target system is unpredictable. To guard against
this situation, or to help resolve system crashes during development, increase the
size of the hardware memory pool, possibly doubling it or more.

4 Development Strategies
4.4 Debugging

113

4

4.4.6 Confirming Device and Driver Name Matches

When creating drivers for PLB devices, one frequently encountered problem is that
the name of the driver does not match the device name. When this happens, the
output of vxBusShow() displays the entry as an orphan rather than a device. If the
output shows an orphan, you must get the driver and device name to match up
before proceeding.

For PLB devices, VxBus uses the name to match a driver to the hardware. The
name is compared using strcmp(). Therefore, the name must be identical (the
comparison is case sensitive). When an orphan appears and the driver is available,
the first thing to check is that the driver name and the name listed in the
hcfDeviceList[] table (in hwconf.c) are identical.

The second most common problem at this stage is related to the device's register
base address. For PLB devices, the first register base address must be non-null. You
can verify this by running vxBusShow() with a verbose level argument greater
than 1.

This displays the full set of pRegBase[] entries for each device (instance and
orphan) known by VxBus. If the pRegBase[0] entry for your device is zero, fix the
problem by supplying the correct base address.

NOTE: In some cases, you may not want to supply the register base address in
hwconf.c. In this is the case for your driver, use ERROR or TRUE, both of which are
non-null. If you choose this option, your driver must not attempt to read or write
registers using the VxBus register access mechanism.

VxWorks
Device Driver Developer's Guide, 6.6

114

115

 5
Driver Release Procedure

5.1 Introduction 115

5.2 Driver Source Location 116

5.3 Driver-Specific Directories 117

5.4 Driver Installation and the README File 118

5.5 Driver Packaging 119

5.6 Driver Release Procedure 120

5.1 Introduction

This chapter documents a procedure for releasing VxBus model VxWorks device
drivers. The information in this chapter applies to developers that are releasing a
device driver within their organization for use with custom hardware and
applications as well as developers releasing a VxWorks device driver for general
distribution.

Following the release procedure in this chapter allows you to integrate your driver
with Workbench and the vxprj command-line utility so that it is configurable in a
manner similar to that of a standard Wind River supplied driver. This procedure
also allows your driver to be included in a BSP command-line build (using make).
The only significant difference between this method of packaging and that done
internally at Wind River is the way the driver files are packaged.

VxWorks
Device Driver Developer's Guide, 6.6

116

If you plan to distribute your driver independently, you can consider the
instructions in this chapter as suggestions rather than as requirements. However,
if you plan to provide your driver to Wind River for distribution as a standard
product, you must follow the guidelines in this chapter as well as the checklist
provided in B. Checklist for Device Drivers.

This discussion is presented in conjunction with a sample driver, provided by
Wind River, which is located in the installDir/vxworks-6.x/target/3rdparty/
windriver/wrsample directory.

5.2 Driver Source Location

Starting with VxWorks 6.6, a typical VxWorks installation includes the directory
installDir/vxworks-6.x/target/3rdparty.

When releasing a driver, you must create a unique vendor-specific subdirectory in
the third-party directory (3rdparty). This directory is typically named for your
company or organization. For example, the sample driver provided by Wind River
is located in installDir/vxworks-6.x/target/3rdparty/windriver/wrsample.

The company-specific directory should contain a makefile (Makefile) and one
subdirectory for each driver released by the organization. Each driver-specific
subdirectory should also contain a makefile (also named Makefile). The
driver-specific subdirectory also contains all of the required files for your driver
(see 3.3.2 Required Files, p.24).

When creating the driver-specific makefile for your driver releases, copy the file
from the Wind River sample directory (installDir/vxworks-6.x/target/3rdparty/
windriver/wrsample) to your driver-specific directory (installDir/vxworks-6.x/
target/3rdparty/vendor/driver), and make the modifications suggested in comments
for the code. The primary modification is to change the LIB_BASE_NAMES from
windriver to your company name. Do not modify the makefile in installDir/
vxworks-6.x/target/3rdparty/vendor.

5 Driver Release Procedure
5.3 Driver-Specific Directories

117

5

5.3 Driver-Specific Directories

Each third-party VxBus model device driver is located in a separate directory. The
name of the directory should be identical to the name of the driver, except that all
characters should be lowercase.

There are several required files in each driver specific directory. These include:

■ README
■ Makefile
■ driverName.cdf
■ driverName.dr
■ driverName.dc

In addition, one or more source or object files must be present. You may also have
header files or other supporting files included in this directory. For more
information on each of the required files, see 3.3.2 Required Files, p.24.

Without the required files, your driver cannot be correctly integrated with
Workbench, the vxprj command-line utility, or BSP command-line builds.

You can choose to release your driver as source or as binary only. The driver source
files (or binary files for a binary-only release) must be located in the driver-specific
directory.

A source release is the easiest release form. When producing a source release, you
can copy and rename the files from the Wind River sample driver (installDir/
vxworks-6.x/target/3rdparty/windriver/wrsample) into your driver directory, add
your source file and any required driver-specific header files, and update the
makefile and configuration files as necessary.

To make the modifications correctly, use the wrsample driver as a reference.
Follow the instructions in README, Makefile, and in this chapter, to integrate
your driver with your installation.

NOTE: An binary-only driver release is possible. However, the makefile
modifications needed to release a driver this way are not supported by Wind
River. In particular, you must be sure that object files are not given a .o extension.
Otherwise, object files may be removed when a user cleans object files.

VxWorks
Device Driver Developer's Guide, 6.6

118

Modify the driver configuration files, 40driverName.cdf, driverName.dc, and
driverName.dr as follows:

■ In all the driver configuration files, change the driver registration routine from
wrsampleRegister() to the registration routine used by your driver.

■ In all driver configuration files, replace the name DRV_DEMO_WRSAMPLE
with a component name suitable for your driver.

■ Modify other fields in the driverName.cdf file as appropriate.

If you choose to release in binary-only format, the filenames for your driver should
include the supported architecture and the tool used to build the driver. The driver
directory should not contain any files ending in a .o extension, as those files can be
accidentally removed when other drivers are installed. Use driverName.obj format
instead. For example, for the myDriver object file for the PowerPC architecture
using the Wind River Compiler toolchain with software floating-point (sfdiab),
you might name the file myDriver_PPC32_sfdiab.obj. You must modify the
makefile so that it copies the object files to the correct locations and causes the
correct object file archive to be updated.

5.4 Driver Installation and the README File

When releasing your driver, you must include instructions in the README file to
indicate how the user installs the new driver. The sequence of required commands
for manual installation—after the driver files are extracted from the ZIP file or
tarball—is:

For Linux and Solaris hosts:

% cd installDir/vxworks-6.x/target/src/hwif/methods
% make vxbMethodDecl.h
% cd installDir/vxworks-6.x/target/config/comps/src/hwif
% make vxbUsrCmdLine.c
% cd installDir/vxworks-6.x/target/config/comps/vxWorks
% rm CxrCat.txt
% make

For each processor (CPU) and tool (TOOL) combination used by the installer, run
the following commands:

% cd installDir/vxworks-6.x/3rdparty/vendor/driver
% make CPU=cpuName TOOL=tool

5 Driver Release Procedure
5.5 Driver Packaging

119

5

For Windows hosts:

C:\> cd installDir\vxworks-6.x\target\config\comps\src\hwif
C:\> make vxbUsrCmdLine.c
C:\> cd installDir\vxworks-6.x\target\config\comps\vxWorks
C:\> del CxrCat.txt
C:\> make
C:\> cd installDir\vxworks-6.x\target\3rdparty\vendor\driver

For each processor (CPU) and tool (TOOL) combination used by the installer, run
the commands:

C:\> make CPU=cpuName TOOL=tool

5.5 Driver Packaging

Your driver is considered complete when:

■ all associated driver files are properly located in installDir/
vxworks-6.x/target/3rdparty/vendor/driver

■ the driver is thoroughly tested
■ the driver checklist is complete (see B. Checklist for Device Drivers)
■ the release procedure is described in the driver README file
■ the driver can be packaged for release

You can now release your driver in an archive such as a ZIP file or tarball.

NOTE: The packaging procedure documented in this section is an alternative to the
formal practice used within Wind River. The internal driver release procedure
uses custom tools that are not currently available outside of Wind River. When
installed with the Wind River packaging, the installation updates the setup.log file
to indicate that the driver is installed, builds the driver, and causes several files to
be updated with the contents of the driver configuration files for integration with
the build process. This packaging is currently available from the Wind River
Professional Services organization. For more information, see your Wind River
representative.

VxWorks
Device Driver Developer's Guide, 6.6

120

5.6 Driver Release Procedure

Once you have satisfied the requirements in this section, you can distribute your
driver to internal or external customers using your standard release procedure.

As of this writing, Wind River does not include driver release pages as part of the
Wind River online support Web site. For the latest information, see the online
support Web site or contact your Wind River representative.

121

 A
Glossary

access routine

A routine provided by VxBus that a driver calls in order to access or manipulate a
device register.

advertise

Make available to VxBus, as with a driver method.

bus

A hardware mechanism for communication between the processor and a device,
or between different devices. This term can also apply to processor-to-processor
communication, such as with RapidIO or the processor local bus (PLB) on SMP
and AMP systems.

bus controller

The hardware device that controls signals on a bus. The bus controller hardware
must be associated with a bus controller device driver in order for VxBus to make
use of the device. The service that a bus controller device driver provides is to
support the devices downstream from the controller. The bus controller driver is
also responsible for enumerating devices present on the bus. See also device, driver,
enumeration, and instance.

bus discovery

See enumeration.

VxWorks
Device Driver Developer's Guide, 6.6

122

bus match

A VxBus procedure to create an instance whenever a new device or driver is made
available. This procedure is used to determine if a given driver and device should
be paired to form an instance.

bus type

A kind of bus, such as PCI or RapidIO. See also bus controller.

child

A device that is attached to a bus.

cluster

Buffers used by netBufLib to hold packet data. See also mBlk.

descriptor

For DMA, a descriptor is a data structure shared by the device and driver, which
communicates the size, location, and other characteristics of data buffers used to
hold transmit and receive data. The data format is defined by the design of the
device.

device

A hardware module that performs some specific action, usually visible (in some
way) outside the processor or to the external system. See also bus, driver, and
instance.

downstream

From the perspective of a device, downstream refers to a point farther from the CPU
on the bus hierarchy. See also child.

driver

A compiled software module along with the infrastructure required to make the
driver visible to Workbench and BSPs. The software module usually includes a text
segment containing the executable driver code plus a small, static data segment
containing information that is required to recognize whether the driver can
manage a particular device. The infrastructure typically includes a CDF that allows
integration with Workbench and vxprj, and stub files for integration with a BSP.

A Glossary

123

A

driver method

A driver method is a published entry point into a driver made available to an API
in VxBus. Examples of methods include functionality such as connecting network
interfaces to the MUX and discovery of interrupt routing. See also method ID.

enumeration

Enumeration refers to the discovery of devices present on a bus. For some bus
types such as PCI, the bus contains information about devices that are present. For
those bus types, dynamic discovery is performed during the enumeration phase.
For bus types such as VME, which do not have such functionality, tables that
describe the devices that may be present on the system are maintained in the BSP.
See also bus discovery.

instance

A driver and device that are associated with each other. This is the minimal unit
that is accessible to higher levels of the operating system. See also bus, device, and
driver.

mBlk

Structure used to organize data buffers. See also cluster.

method ID

A method ID is the identification of a specific driver method that may be provided
by a driver. This must be unique for each method (that is, specific functionality
module) on the system. See also driver method.

parameter

Information about some aspect of device software configuration. For further
discussion, see 3.6.1 Configuration, p.53. See also resource.

parent

The bus to which a device is attached, or the bus controller of that bus.

probe

See enumeration and probe routine.

VxWorks
Device Driver Developer's Guide, 6.6

124

probe routine

An entry point into drivers. After the system has tentatively identified a device as
being associated with a driver, VxBus gives the driver a chance to verify that the
driver is suitable to control the device. The driver registers the probe routine to
perform this comparison. This routine is optional. If specified, it is normally safe
and acceptable for the routine to simply indicate acceptance.

processor Local bus (PLB)

The bus connected directly to a processor. This term is used in a processor-agnostic
way in this documentation.

resource

information about some aspect of device hardware configuration. For further
discussion, see 3.6.1 Configuration, p.53. See also parameter.

serial bitbang

Serial bitbang describes a scenario where software writes the individual bits of a
word out on a serial line, often with a corresponding clock, rather than writing the
entire value into a register and allowing the underlying hardware to take care of
the delivery of the word.

service driver

A device driver that provides a service to the operating system or to middleware,
instead of a service for another device driver. Examples of service drivers include
drivers for serial and network devices.

stall

A condition that occurs when a network interface device stops operating due to
momentary lack of resources.

upstream

From the perspective of a device, upstream refers to a point closer to the CPU on
the bus hierarchy. See also parent.

125

 B
Checklist for Device Drivers

This appendix includes a checklist to help you determine when your driver is
ready for deployment or distribution. Successful completion of this checklist can
help you assess the quality of your driver and make decisions with respect to
deployment and distribution.

The checklist assumes you are familiar with VxBus device driver development or
you have reviewed the information in the VxWorks device driver documentation
set. (The items included in the checklist are discussed in detail throughout this
documentation set.)

VxWorks
Device Driver Developer's Guide, 6.6

126

Table B-1 VxWorks Device Driver Release Checklist

Description
Date

YYYY-MM-DD
Status

OK | FAIL | N/A

1. Install a clean product installation, including relevant patches.

2. Install the driver into the new installation.

3. Verify the README, makefile, .cdf, .dr, and .dc files are
present in the driver specific directory.

4. Start Workbench and create a VxWorks Image Project using a
BSP that is relevant to the driver.

5. Open the project configuration window and verify that the
driver shows up in the drivers folder.

6. If the device is located on a bus that allows device probe, such
as PCI, plug in the device. If the device is located on a bus that
does not allow device probe, such as PLB, modify the hwconf.c
file to add an entry for the device and create a new VxWorks
Image Project using the modified hwconf.c file. Boot the image
without the driver.

7. Configure the VxWorks Image Project to include the driver.
Verify that the image boots.

8. Configure the VxWorks Image Project to include show
routines and VxBus show routines.

Boot the image and run vxBusShow(). Verify that the driver is
registered and the device is present as a device and not an
orphan. Specifying the VxBus device ID of the device, call
vxbDevStructShow(), and verify that the driver field is
non-null, and matches the driver.

9. Repeat steps 4 through 7 for a boot ROM image. With the
device present and the driver configured into the image, verify
that the boot ROM loads and boots a VxWorks image.

10. Generate a list of all files installed by the driver product.

11. Verify that all files in the release are contained in the
directory installDir/vxworks-6.x/target/3rdparty/vendor/.

B Checklist for Device Drivers

127

B

12. Use the nmarch command to verify that there is only one
global symbol present. The symbol should be the registration
routine for the driver.

12. Verify that the VxBus version in the driver's registration
structure matches the current VxBus version.

13. If the VxTest test suite is available, verify that all VxTest tests
applicable to the driver class of this driver are successful.

Table B-1 VxWorks Device Driver Release Checklist (cont’d)

Description
Date

YYYY-MM-DD
Status

OK | FAIL | N/A

VxWorks
Device Driver Developer's Guide, 6.6

128

129

Index

Symbols
{busDevShow}() 110
{instParamModify}() 56
{isrRerouteNotify}() 86
{vxbDmaResDedicatedGet}() 75
{vxbDmaResourceRelease}() 77
{vxbDrvUnlink}() 48

see also dissociating a device from a driver

Numerics
pRegBase 100

A
access routine 121
accessing hardware 59
adding

debug code 94
driver methods 95

address
conversion for bus controllers 72
translation, considerations for DMA 72

address space
mapping 61

advertise 121
advertising driver methods 40
allocating

external DMA engines 75
memory 57, 58

during system operation 58
during system startup 57

ATA 17
atomic operators 77
atomic_t 77

B
boot process 42

early phase 44
BSP

configuration 54, 79
device parameter configuration 82
hwconf.c 113
modifications for drivers 93

bus
definition 121
discovery 121
match 122

bus controller
address conversion 72
definition 121
drivers 19

VxWorks
Device Driver Developer's Guide, 6.6

130

bus type 122
PCI 51
PLB 51
RapidIO 52

C
cache

considerations for DMA 73
cacheLib 73
calling driver methods 39
CDF, see component description file
CFG_PARAMS 32
changes in device parameters 56
child 122
classes, see driver classes
clkFreq 81
cluster 122
command-line builds

using make 34
communication

between device, driver, and OS 10
comparing

device and driver names 113
component 8, 27

INCLUDE_ISR_DEFER 85
INCLUDE_SHOW_ROUTINES 94
INCLUDE_VXBUS_SHOW 94
parameters

ISR_DEFER_MODE 86
component description file 27, 91, 117

example 28
fields

CFG_PARAMS 32
CHILDREN 30
Component 28
HDR_FILES 32
INIT_AFTER 32
INIT_BEFORE 32
INIT_ORDER 31
INIT_RTN 31
MODULES 29
NAME 29
Parameter 32

PROTOTYPE 31
REQUIRES 31
SYNOPSIS 29

parameter keywords
DEFAULT 33
NAME 33
SYNOPSIS 33
TYPE 33

writing 28
components

INCLUDE_PCI_BUS_SHOW 108
INCLUDE_SHOW_ROUTINES 108
INCLUDE_VXBUS_SHOW 108

configuration
driver services 53
in hwconf.c 54
information 53
resource 54

configuration stub files 34, 91, 117
configuring

BSPs 54, 79
device parameters in a BSP 82
interrupt show routines 108
parameters 54
show routines into VxWorks 108
VxBus show routines 110

confirming register access 112
console drivers 21
creating the VxBus infrastructure 90

D
data buffers

address mapping 73
data structures

VXB_DEVICE 60
VXB_DEVICE_ID 95

debugging 94, 110, 112
register access 112

deferral task 85
deferring

driver registration 111
interrupt processing in an SMP system 84

descriptor 122

 Index

131

Index

design goals 13
developing new VxBus drivers 90
development life cycle 42
device

ATA 17
bus controller
definition 122
display 21
DMA engines 19
Ethernet 17
floppy disks 17
interrupt controller 20
keyboard 21
MAC 17
matching to a driver 50, 92, 93
mouse 21
multifunction 20
network interface 17
non-volatile RAM 18
parameter configuration in BSP 82
PHY 17
PLB 79
responding to changes in parameters 56
SCSI 17
serial 17
serial ATA 17
timer 18
USB 20

device driver model
legacy 2
VxBus 1

device registers
address mapping 72

devInstanceConnect() 43, 46
see also initialization – VxBus phases

devInstanceInit() 43, 45
see also initialization – VxBus phases

devInstanceInit2() 43, 46, 49
see also initialization – VxBus phases

DEVMETHOD() 41
DEVMETHOD_CALL() 40
DEVMETHOD_END 41
devResourceGet() 54
direct memory access, see DMA
discovering hardware 50

dissociating a device from a driver 48
see also {vxbDrvUnlink}()

distributing drivers 115
DMA 70

address translation 72
allocating external DMA engines 75
cache considerations 73
DMA tag 70

DMA controller drivers 19
DMA_COPY_MODE_DEVBUF 76
DMA_COPY_MODE_FIFO 76
DMA_COPY_MODE_NO_HW 76
DMA_COPY_MODE_NO_SOFT 75, 76
DMA_TRANSFER_TYPE_RD 76
DMA_TRANSFER_TYPE_WR 77
documentation

about 2
additional 5
class-specific device drivers 3
conventions 4
intended audience 2
legacy drivers 3
migrating device drivers 3
navigating 3
VxBus device drivers 3

downstream 122
driver

bus controller 19
console 21
definition 122
DMA controller 19
file location 23
for Ethernet devices 17
initialization 42
interrupt controller 20
legacy file location 23
MAC 17
makefile 37
matching to a device 50, 93
multifunction 20
network interface 17
non-volatile RAM 18
organization 23
PHY 17
registration order 49

VxWorks
Device Driver Developer's Guide, 6.6

132

remote processing element 21
required files 24
resource 22
run-time life cycle 42
run-time operation 47
serial 17
services available to 52
source file 25, 90

example 25
storage 17
synchronization 66
third-party 23, 24
timer 18
USB 20

driver class 16
bus controller 19
console 21
DMA controller 19
documentation for class-specific drivers 3
interrupt controller 20
multifunction 20
network interface 17
non-volatile RAM 18
other 22
remote processing element 21
resource 22
serial 17
storage 17
timer 18
USB 20

driver methods 9, 38
{busDevShow}() 110
{instParamModify}() 56
{isrRerouteNotify}() 86
{vxbDmaResDedicatedGet}() 75
{vxbDmaResourceRelease}() 77
{vxbDrvUnlink}() 48
adding 95
advertising 40
calling 39
definition 123
invoking 46
limitations 42
parts of 39

routine prototype 39
syntax 38

driverName.cdf 117
driverName.dc 35, 91, 117
driverName.dr 35, 91, 117

E
enumeration 123
errInt 81
errIntLevel 81
Ethernet 17
examples

VxBus show routine output 96
VxBus show routine verbose output 98

F
files

component description file 27, 91, 117
configuration stub files 34, 91
driver source 90
driverName.cdf 117
driverName.dc 35, 91, 117
driverName.dr 35, 91, 117
in a device driver 23
location 23

for third-party drivers 116
makefile 36, 37, 117
README 36, 117, 118
required 24
third-party drivers 23
vendor makefile 37

finding the address of hardware registers 59
floppy disks 17

G
global symbols 27
global variables

removing 95

 Index

133

Index

H
hardware

access 59
discovery 44, 50
memory pool size 112
registers

finding the address of 59
reading and writing 62
special requirements 63

hardWareInterFaceBusInit() 44, 45, 46
hardWareInterFaceInit() 44
HCF_RES_ADDR 54
HCF_RES_INT 54
HCF_RES_STRING 54
header files 90

hwConf.h 80
vxBus.h 39

hwconf.c 54, 55, 79
supplying a register base address 113

hwConf.h 80
HWMEM_POOL 112
hwMemAlloc() 57

see also memory allocation
hwMemFree() 58

see also memory allocation

I
INCLUDE_HWMEM_ALLOC 44

see also memory allocation
INCLUDE_ISR_DEFER 85
INCLUDE_PCI_BUS_SHOW 108
INCLUDE_SHOW_ROUTINES 94, 108
INCLUDE_VXBUS_SHOW 94, 108
including debug code 112
initialization

driver 42
driver registration 45
early boot process 44
hardware discovery 44
kernel startup 46
order 43
PLB 44

sysHwInit() 44
VxBus phases 43

phase 1 43, 45
phase 2 43, 46
phase 3 43, 46

instance 9
definition 123

intConnect() 64
intCpuLock() 68
intCpuUnlock() 68
INTCTLR_LIB_SHOW 109
integration

with vxprj 8
with Workbench 8

interrupt
deferring processing in an SMP system 84
handling 63
index 64
locking 68

in an SMP system 83
minimizing work in an ISR 65
routing

in an SMP system 84
vector model 64

interrupt controller drivers 20
interrupt service routine, see ISR
interrupt show routines

configuring 108
interrupt-level synchronization 68

using interrupt locking 68
using spinlocks 69

intrN 81
intrNLevel 81
invoking driver methods 46
irq 81
irqLevel 81
ISR

deferral 66
deferral library component 85
minimizing work in 65

ISR_DEFER_MODE 86
ISR_DEFER_MODE_PER_CPU 86
ISR_DEFER_MODE_PER_SOURCE 86
isrDeferIsrReroute() 87
isrDeferJobAdd() 66

VxWorks
Device Driver Developer's Guide, 6.6

134

isrDeferLib 66, 87
isrDeferQueueGet() 66

K
kernel startup 46

L
late driver registration 48
ld() 48
legacy device driver model 2
legacy drivers

documentation 3
file location 23

LIB_BASE_NAMES 116
libraries

cacheLib 73
isrDeferLib 66, 87
vxAtomicLib 77
vxbDmaBufLib 70
vxbDmaLib 75

loading
an object module 48
drivers after boot time 48

loadModule() 48
loadModuleAt() 48

M
MAC drivers 17

see also network interface drivers
macros

DEVMETHOD() 41
DEVMETHOD_CALL() 40
DEVMETHOD_END 41
INTCTLR_LIB_SHOW 109
METHOD_DECL() 40

makefile 36, 37, 117
vendor 37

mapping
address space 61
data buffer addresses 73
device registers 72

matching
devices and drivers 50, 92, 93, 113

mBlk 123
media independent interface, see MII
memory allocation 44, 57

during system operation 58
during system startup 57
mixing methods within a driver 58
see also INCLUDE_HWMEM_ALLOC

memory pool 112
method ID 123
METHOD_DECL() 40
methods, see driver methods
migrating legacy drivers 3
MII 17
minimizing work in an ISR 65
modifying the BSP 93
msgQSend() 68
multifunction drivers 20

N
network interface drivers 17
non-volatile RAM 18, 59

drivers 18
notifying a driver of system shutdown 48
NVRAM, see non-volatile RAM

O
object module

loading 48
order of initialization 43
organization

driver 23

 Index

135

Index

P
packaging a driver for release 115, 119
pairing a device with a driver 50, 92, 113
parameter

configuration 54
definition 123

parent 123
PCI 19, 51

PCI triple 100
show routines 100

pciDevByNameUnitFind() 108
pciDevShow() 101
pDrvCtrl 95
performance testing 14
PHY drivers 17

see also network drivers
PLB 19, 44, 51

BSP configuration 79
definition 124

probe 123
probe routine 124
processor local bus, see PLB

Q
queue sharing 86

R
RapidIO 52
reading

hardware registers 62
README 36, 117, 118
regDelay 81
regInterval 81
register access

debugging 112
register base address

supplying in hwconf.c 113

registering
a driver 45
a driver after boot time 48
registration order 49
registration routine 45

regWidth 81
releasing

drivers 115
in binary format 117
in source format 117

providing driver installation instructions 118
third-party drivers 120

remote processing element drivers 21
removing a device from the system 47

see also vxbDevRemovalAnnounce()
removing global variables 95
required files 24
resource

clkFreq 81
configuration 54
definition 124
drivers 22
errInt 81
errIntLevel 81
intrN 81
intrNLevel 81
irq 81
irqLevel 81
names 80
regDelay 81
regInterval 81
regWidth 81
rxInt 81
rxIntLevel 81
txInt 81
txIntLevel 81

resource types
address 54
integer 54
string 54

routines
devInstanceConnect() 43, 46
devInstanceInit() 43, 45
devInstanceInit2() 43, 46, 49
devResourceGet() 54

VxWorks
Device Driver Developer's Guide, 6.6

136

driver registration 45
hardWareInterFaceBusInit() 44, 45, 46
hardWareInterFaceInit() 44
hwMemAlloc() 57
hwMemFree() 58
intConnect() 64
intCpuLock() 68
intCpuUnlock() 68
isrDeferIsrReroute() 87
isrDeferJobAdd() 66
isrDeferQueueGet() 66
msgQSend() 68
pciDevByNameUnitFind() 108
pciDevShow() 101
sysHwInit() 44, 46
sysHwInit2() 46
taskLock() 84
vxbDevInit() 46
vxbDevIterate() 47, 106
vxbDevMethodGet() 10, 40
vxbDevMethodRun() 40
vxbDevPathShow() 100
vxbDevRegister() 45
vxbDevRemovalAnnounce() 47
vxbDevStructShow() 99
vxbDmaBufMapLoad() 71
vxbDmaBufSync() 71
vxbDmaBufTagCreate() 70
vxbDmaChanAlloc() 75
vxbDmaChanFree() 77
vxbDriverUnregister() 47
vxbInstParamByNameGet() 54
vxbInstParamSet() 55, 56
vxbIntConnect() 49, 65
vxbIntDisable() 65, 66
vxbIntDisconnect() 65
vxbIntEnable() 65
vxbNonVolGet() 59
vxbNonVolSet() 59
vxbPciConfigTopoShow() 104
vxbPciDeviceShow() 101
vxbPciFindClassShow() 104
vxbPciFindDeviceShow() 103
vxbPciHeaderShow() 102
vxbReadxx() 62

vxbRegMap() 61
vxBusShow() 93, 96, 110
vxbWritexx() 63

rxInt 81
rxIntLevel 81

S
SATA, see serial ATA
SCSI 17
serial ATA 17
serial bitbang 124
serial drivers 17
service driver 124
services 52

atomic operators 77
configuration 53
DMA
hardware access 59
interrupt handling 63
memory allocation 57
synchronization 66

show routines 96, 110
configuring into VxWorks 108
generic 96
PCI 100
using from software 106
verbose level 98, 110

shutdown notification 48
SMP

see VxWorks SMP
source file 25

example 25
structure 25

stall 124
storage drivers 17
symmetric multiprocessing

see VxWorks SMP
synchronization 66

interrupt-level 68
task-level 67

sysHwInit() 44, 46
sysHwInit2() 46

 Index

137

Index

system startup
memory allocation at 57

T
task-level synchronization 67
taskLock() 84
terms

access routine 121
advertise 121
bus 121
bus controller 121
bus discovery 121
bus match 122
bus type 122
child 122
cluster 122
descriptor 122
device 9, 122
downstream 122
driver 9, 122
driver method 123
enumeration 123
instance 9, 123
mBlk 123
method ID 123
parameter 123
parent 123
PLB 124
probe 123
probe routine 124
resource 124
serial bitbang 124
service driver 124
stall 124
upstream 124
VxBus 8

third-party drivers 24, 116
file location 23
packaging for release 119
releasing 120

timer drivers 18
txInt 81
txIntLevel 81

U
u.pDevPrivate 48
unloading a driver 47

see also vxbDriverUnregister()
upstream 124
USB drivers 20
using show routines from software 106
using spinlocks 69

V
vendor makefile 37
verbose level 110

vxBusShow() 98
vxAtomicLib 77
VXB_DEVICE 60
VXB_DEVICE_ID 95
VXB_REG_MEM 61
vxbDevInit() 46
vxbDevIterate() 47, 106
vxbDevMethodGet() 10, 40
vxbDevMethodRun() 40
vxbDevPathShow() 100
vxbDevRegister() 45
vxbDevRemovalAnnounce() 47

see also removing a device from the system
vxbDevStructShow() 99
vxbDmaBufLib 70
vxbDmaBufMapLoad() 71
vxbDmaBufSync() 71
vxbDmaBufTagCreate() 70
vxbDmaChanAlloc() 75
vxbDmaChanFree() 77
vxbDmaLib 75
vxbDriverUnregister() 47

see also unloading a driver
vxbInstParamByNameGet() 54
vxbInstParamSet() 55, 56
vxbIntConnect() 49, 65
vxbIntDisable() 65, 66
vxbIntDisconnect() 65
vxbIntEnable() 65
vxbNonVolGet() 59

VxWorks
Device Driver Developer's Guide, 6.6

138

vxbNonVolSet() 59
vxbPciConfigTopoShow() 104
vxbPciDeviceShow() 101
vxbPciFindClassShow() 104
vxbPciFindDeviceShow() 103
vxbPciHeaderShow() 102
vxbReadxx() 62
vxbRegMap() 61
VxBus

about 8
creating infrastructure 90
driver components 8
driver model 9
initialization phases 43
instance 9
show routines 110

example 96, 98
verbose level 98

vxBus.h 39
vxBusShow() 93, 96, 110
vxbWritexx() 63
vxCas 78
vxprj

device driver integration with 8
VxWorks

components 27
VxWorks SMP 2

considerations for device drivers 82
deferring interrupt processing 84
interrupt routing 84
lack of implicit locking in 83
task-to-task contention 84

W
Workbench

device driver integration with 8
writing

hardware registers 62, 63
new VxBus drivers 90

	VxWorks Device Driver Developer's Guide, 6.6
	Contents
	1 Getting Started with Device Driver Development
	1.1 About Device Drivers
	1.2 About this Documentation Set
	1.2.1 Intended Audience
	1.2.2 Navigating this Documentation Set
	Experienced VxWorks Device Driver Developers
	Novice VxWorks Device Driver Developers

	1.2.3 Documentation Conventions

	1.3 Additional Documentation Resources

	2 VxBus and VxBus Device Drivers
	2.1 Introduction
	2.2 About VxBus
	2.3 VxBus Device Drivers
	2.4 Design Goals
	2.4.1 Performance
	2.4.2 Maintenance and Readability
	2.4.3 Ease of Configuration
	2.4.4 Performance Testing
	2.4.5 Code Size

	3 Device Driver Fundamentals
	3.1 Introduction
	3.2 Driver Classes
	3.2.1 General Classes
	Serial Drivers
	Storage Drivers
	Network Interface Drivers
	Non-Volatile RAM Drivers
	Timer Drivers
	DMA Controller Drivers
	Bus Controller Drivers
	USB Drivers
	Interrupt Controller Drivers
	Multifunction Drivers
	Remote Processing Element Drivers
	Console Drivers
	Resource Drivers

	3.2.2 Other Classes

	3.3 Driver Organization
	3.3.1 File Location
	Third-Party Drivers

	3.3.2 Required Files
	Driver Source File
	Component Description File
	Driver Configuration Stub Files
	README File
	Driver Makefile

	3.4 VxBus Driver Methods
	3.4.1 Representing Driver Methods in the Documentation
	3.4.2 Parts of a Driver Method
	3.4.3 Calling Driver Methods
	3.4.4 Advertising Driver Methods
	3.4.5 Driver Method Limitations

	3.5 Driver Run-time Life Cycle
	3.5.1 Driver Initialization Sequence
	Making Assumptions about Initialization Order
	Early in the Boot Process
	sysHwInit(), PLB, and Hardware Discovery
	Driver Registration
	Driver Initialization Phase 1
	Kernel Startup
	Driver Initialization Phase 2
	Driver Initialization Phase 3

	3.5.2 Invoking a Driver Method
	3.5.3 Run-time Operation
	Unloading a Driver
	Removing a Device from the System
	Dissociating a Device from a Driver

	3.5.4 Handling a System Shutdown Notification
	3.5.5 Handling Late Driver Registration
	3.5.6 Driver Registration Order Considerations
	3.5.7 Driver-to-Device Matching and Hardware Availability
	PLB
	Other Bus Types

	3.6 Services Available to Drivers
	3.6.1 Configuration
	Determining Driver Configuration Information
	Responding to Changes in Device Parameters

	3.6.2 Memory Allocation
	Allocating Memory During System Startup
	Allocating Memory During Normal System Operation
	Intermixing Memory Allocation Methods within a Single Driver

	3.6.3 Non-Volatile RAM Support
	3.6.4 Hardware Access
	Finding the Address of the Hardware Registers
	Reading and Writing to the Hardware Registers
	Special Requirements for Hardware Register Access

	3.6.5 Interrupt Handling
	Overview of Interrupt Handling
	Interrupt Indexes
	Minimizing Work Performed within an ISR

	3.6.6 Synchronization
	Task-Level Synchronization
	Interrupt-Level Synchronization

	3.6.7 Direct Memory Access (DMA)
	vxbDmaBufLib
	DMA Considerations
	Allocating External DMA Engines

	3.6.8 Atomic Operators

	3.7 BSP Configuration
	3.7.1 Requirements for PLB Devices
	3.7.2 Configuring Device Parameters in the BSP

	3.8 SMP Considerations
	3.8.1 Lack of Implicit Locking
	3.8.2 True Task-to-Task Contention
	3.8.3 Interrupt Routing
	3.8.4 Deferring Interrupt Processing

	4 Development Strategies
	4.1 Introduction
	4.2 Writing New VxBus Drivers
	4.2.1 Creating the VxBus Infrastructure
	Writing Driver Source Files
	Writing Header Files (Optional)
	Writing the Component Description File (CDF)
	Writing the Configuration Stub Files
	Verifying the Infrastructure

	4.2.2 Modifying the BSP (Optional)
	4.2.3 Adding Debug Code
	4.2.4 Adding the VxBus Driver Methods
	4.2.5 Removing Global Variables

	4.3 VxBus Show Routines
	4.3.1 Available Show Routines
	vxBusShow()
	vxbDevStructShow()
	vxbDevPathShow()

	4.3.2 PCI Show Routines
	pciDevShow()
	vxbPciDeviceShow()
	vxbPciHeaderShow()
	vxbPciFindDeviceShow()
	vxbPciFindClassShow()
	vxbPciConfigTopoShow()

	4.3.3 Using Show Routines from Software
	4.3.4 Configuring Show Routines into VxWorks

	4.4 Debugging
	4.4.1 Configuring Show Routines
	4.4.2 Deferring Driver Registration
	4.4.3 Including Debug Code
	4.4.4 Confirming Register Access
	4.4.5 Increasing the Size of HWMEM_POOL
	4.4.6 Confirming Device and Driver Name Matches

	5 Driver Release Procedure
	5.1 Introduction
	5.2 Driver Source Location
	5.3 Driver-Specific Directories
	5.4 Driver Installation and the README File
	5.5 Driver Packaging
	5.6 Driver Release Procedure

	A Glossary
	B Checklist for Device Drivers
	Index

