WIND RIVER

VxWorks

5.5 MIGRATION GUIDE

6.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks 5.5 Migration Guide, 6.6

9 Nov 07
Part #: DOC-16074-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

0 Y-
1.1 Introduction
1.2 Terminology
1.3 Related Documentation
VxWorks and Development Environment Changesccceemeeees
21 Introduction
2.2 Environment Variables and Development Shell
2.3 Directory Structure
23.1 Location of Header Files ..o,
24 Build Infrastructure
241 Makefile and make Changes ...
2.5 Compilers
2.5.1 Default Compiler Change ...,
252 Stricter Syntax Checkingccccooviiiiiiniiiiniiices
General GUIdelinesccocviiiiiiiiiiniiiiiicccc e
Wind River Compiler Warningscccccecevvieieiciiiicninninnicnnen

fii

2.6

2.7

2.8

VxWorks
5.5 Migration Guide, 6.6

253
254
255
256
257

C and C++ Libraries

2.6.1
2.6.2

IDE and CLI Configuration and Build Tools

271
272

VxWorks 6.6 Facilities

281
2.8.2

283
284
285

2.8.6
28.7
2.8.8
2.89
2.8.10
2.8.11
2.8.12

Extra Compiler Command-line Flagscccccoeeiiiinnnininennne.
Additional Build Flagscccccocoiiiiiiiiiiiiiiiiccccces
GNU Compiler SWItChesccccovuviviiiiiiiiiiiiiinicccccces
objCopy Replaces Wind River Utilitiescccccoevvviiicciinnicnne

Unsupported Optimization Levelsccccooevrniiicnincnicicne.

Dinkum C and C++ LiDIrariescoccooeeeeeeieeeeeeeeeeeeeeeeeeeeveeeveeeeeenes

Standard Template LibIary ..o

Configuration and Build Using config.hcccccoooiiii
vXWorks.st Image TYPeccccovviiiininiiiiiic e

Unsupported Facilities ...,
BOOt LOAdErSc.oiiiiiiiiicciic s

Boot Loader M and N Commandscooceeevveeieeieciieeeeeeee e
Custom Commands for the Boot Loader Shellc.ccocoevvevviverennnnee.

Default VxWorks Configurationcccccoceevvevineciniicnincceiccicnen,
Initialization ROUINES ...ccoooviiiieiiiiieeeceeeeeeeeeeeee et
Tasks and the TCBo.oooiiieieeeceeeceeceeeeeeeeeee ettt

TCB ACCESS . cvvieeteeeeee ettt et ee e e eaae e e eeareeereeeereeeesnaeens
Macros Changed ..o
Task Self-deStructioncooevuieevieeeiieiieeece ettt

Task-Specific Variables: taskVarLib and tIsLibccccccocoviinnnnn.
ACHVEQRNEAd ..ot

VXFUSION ettt e e et e e e eeae e e e e e eneaes
Resource Reclamationocveeeveeiieiiiieieieceeeeeeeeeee e
Stricter Error Checking on Semaphorescccoooeenieiviicceieneinen.

File System Changesccccoceuiiriniicninicicece e

12
13
13

14
14
15

Contents

CBIO and the Extended Block Device (XBD) Interfaceccccc.cuc... 22

File System MONItOTcccocouviiiiiiiiiiiiiiiiiccccce 23

Discontinued FEaturescccocvevieirinenieineseeseeeeseeteeeee e 23

VXBuUS INtroducedc.c.ceveiiinininiiieiccicctreeeeeeccee e 24

2.8.13 POSIX SUPPOTT c.oeouieiiiieieccicic s 24
Kernel and User Environments Decoupledcccccovviiiiciinnnes 24

VxWorks and POSIX TYPESccovuriruriieiririeiiicice e 24

mq_attr STructure ... 24

2.8.14 Lazy Initialization Removedcccccoeiriiiiiiiiice 25

2.8.15 Modified ROULINESc.cceuiuimiiiiiiiiicciciciiccee 26

2.8.16 Symbol Table and Module Changescccccccevviiviniiiininincne. 28

2.8.17 Kernel Object Module Loader ..o, 28
Loader errno Values ... 28

Loader Symbol Type Valuesccccooviriiiiiiiiiceecccee 29

Resolving Common Symbols ..., 31

SDA and Loading Kernel Object Modulesccccccovveiiiiiinnnns 31

2.8.18 Target Shell/Kernel Shellccccooiiiiiiininiiiincccceecee 32

2.9 Architecture-Specific Issues 33
SDA Support for POWerPC ..o 33

Migrating Kernel Applications ... ennnnnes 37
3.1 Introduction 37
3.2 Migration Checklist 38
3.3 Build Infrastructure 39
3.3.1 Recompiling Source Codecccovviiiininiiiiiiies 39

3.3.2 Header File Changesccccovviiiiiiiiiiciiiiiccccccenes 40

Type Changes ... 40

1SASCII(), TOASCII() vevveveveeereeerieretreeet ettt 40

Private objLib MaCrOccoooiiiiiiiiieiiccc 40

3.3.3 Compiling for Both VxWorks 6.x and VxWorks 5.5cccccceceueeen. 40

34

3.5

3.6

3.7

3.8

VxWorks
5.5 Migration Guide, 6.6

Unsupported Facilities

34.1 VXVMI and Migrationccccccceceiiniiininiiiiiiiiciiiincccccccns
VXxVMI and RTP Applicationscccoccueueuiuiiiiiiiniiiniiiiiciicccccciins
342 VxFusion and Migration ...
System Changes
351 taskSWItChHOOKAAA() wveviveeeirieiieieeie s
352 HASKCTEAL() werverereereinieiiirieereee ettt
3.5.3 _func_excBaseHook Daisy Chainingc.cccoccevvvvvniiiinnninnnnn.
354 cacheLib ROUHNESccocoovieininieiininiciicieeeee e
3.55 Private HASH_TBL Structurecccooovvieeiiieeeeeeiee e
3.5.6 vmBaseLib Parameter Changeccccooeviiiiiiiiiiiiicn,
3.5.7 Changed Virtual Memory Routinesccccooevniniiniiininnininnns
3.5.8 Memory Partition Options ..o,
3.5.9 Private Structures and ROUtiNeSccccoeueuireuccinecincicinccrcenene
3.5.10 Deprecated Power Management APIs ..o,
3511 RemMOVEd APIS ..coooiiiiiiiiiieieetesee ettt

I/O System Changes
I/0 Error Code Value Changes ...

File System Changes

3.71 Extended Block Device (XBD) SUPPOItccocvrvimriiciniieiniceiciees
3.72 Disk FOrmattingcccooveuiiminiiiciiicecececcc s
3.73 ioctl() Commands Removed ...
374 USTFSLID.C .o
375 dOSES o
3.7.6 Modified I/O APIS ...
POSIX Support Changes

POSIX Message QUEUESccceviieiiuiiciiiiiiiiiiiiieieieneeecsessesense s

POSIX Thread SUPPOTtc.ccoiuiiiiiiiiiiciciicc e

Vi

41
42
45
45

46
46
46
46
47
48
48
48
48
50
51
51

51
52

53
53
56
57
57
58
59

Contents

POSIX SEMAPROTEScoiiiiiiiiiiiiiccc s 61

POSIX Thread APISc.c.ooveiriciiecineinececee et 62

POSIX Signal APISccccviiiiiiiiiiiiiiiiiiiiciccc s 63

I/0 System Device Control APISscccccoiiiiiiciiiniiicciiiccee 64

POSIX-Related Changes in Libraries and APIsc.ccccccooviiririninnnen 64

3.9 WindView/System Viewer: wvLib 66

4 Migrating BSPs and DIiVersccccocmriiimmmmnnnssnmnssss s ssssssssssnssnns 67
41 Introduction 67

4.2 Migrating BSPs 68

421 Planning for BSP Migrationcccccoeoviniiiiinniiicccecces 68

422 BSP Migration Steps ...t 69

423 PowerPC BSPs and SDAccccoooiiiinininiiiiccicinneeceeeccae 74

424 Replacing VM_STATE_XXX MaCIOSccceoeuiuimimiiiiiiiiiiciiiiiicncicieenns 74

425 Addressing Compiler Errors and Warningscccccoevuvuiiuicicnnnne 76

Compiler Error and Warning Levels ..., 77

Example Problems and Solutionsccccooeevveinicnincnniicciccnens 77

426 Implementing the M Commandc.cccccoevinniininicniiccnccnes 77
Background ..o 77

Implementing the M Commandc.cccooevmeiicniiccinicccccee 78

4.2.7 Converting BSP Documentationccccoooiviiiiiiiiiic, 79

Convert target.nr ..o 79

Convert Other BSP Documentationcccccceeiiinnniniicciccicnnne. 79

Test the BSP Documentation Buildcccccccciiiiinnninicicicne, 80

Update the Infrastructure Files ... 80

4.3 Migrating Drivers 81

5 Converting t0 apigenccccccemeriiiimnsmnnsess s 83
INAEX e ————————— 85

vii

VxWorks
5.5 Migration Guide, 6.6

viii

Overview

1.1 Introduction 1
1.2 Terminology 2

1.3 Related Documentation 4

1.1 Introduction

One of the original goals for VxWorks 6.0 was that existing VxWorks 5.5 kernel
applications, BSPs, and drivers should be source-compatible. This goal has not
changed for VxWorks 6.6. Most applications, BSPs, and drivers work once they are
recompiled for VxWorks 6.6—as long as they do not rely on the few features that
are not supported in VxWorks 6.6 (such as VxVMI), for which alternatives must be
employed.

This guide focuses on the following topics related to VxWorks 5.5 to VxWorks 6.6
migration:

= Changes in the operating system and development environment.

» Configuring VxWorks 6.6 to provide an operating system platform similar to
VxWorks 5.5.

» Migrating kernel applications.

= Migrating BSPs.

VxWorks
5.5 Migration Guide, 6.6

= Migrating drivers.

For general information about VxWorks development, see 1.3 Related
Documentation, p.4.

1.2 Terminology

The following terms describe features of VxWorks, Wind River Workbench, and
related development tools.

VxWorks Terms

real-time process (RTP)
The user-mode application execution environment provided by
VxWorks 6.x. Each real-time process has its own address space, containing
the executable program, the program data, execution and exception stacks
for each task, the heap, and resources associated with the management of
the process itself.

project
A collection of source code, binary files, and build specifications within
the Workbench development environment.

workspace
A collection of projects in the Workbench development environment.

component
A VxWorks facility that can be included or excluded, making VxWorks
scalable.

error detection and reporting
The runtime facility for detecting errors, logging error information, and
making that information available across a warm reboot.

Project-related Terms

VxWorks image project
The project type used to configure and build VxWorks images.

1 Overview
1.2 Terminology

downloadable kernel module project
The project type used to manage and build dynamically linked application
modules that run in kernel mode.

real-time process project
The project type used to manage and build statically or dynamically
linked application modules into an executable that can be dynamically
downloaded and run as a real-time process.

shared-library project
The project type used to manage and build dynamically linked shared
libraries.

Tool-related Terms

toolchain
A collection of development tools for a specific target CPU; includes the
compiler, linker, assembler, and so on.

build specification
User-specified settings and rules that are used to build a project.

graphical user interface
The interactive, graphical face (GUI) of Workbench. Workbench also
offers a command-line interface. For more information on Workbench, see
the Wind River Workbench User’s Guide. For more information on the
command line, see the VxWorks Command-Line Tools User’s Guide.

Release-related Terms

deprecated
Wind River intends to discontinue an API in a future release; it currently
works for the benefit of existing applications, but it should not be used in
new applications and existing applications should be migrated away from
it as soon as convenient.

VxWorks
5.5 Migration Guide, 6.6

1.3 Related Documentation

For general information about VxWorks kernel facilities, boot loaders, and kernel
application development, see the VxWorks Kernel Programmer’s Guide.

For information about migrating kernel applications to real-time process (RTP)
applications, as well as RTP application development in general, see the VxWorks
Application Programmer’s Guide.

For information about migrating block-device drivers from the CBIO interface to
the XBD interface, for information about migrating drivers to the current VxBus

driver model, and for general information about device driver development, see
the VxWorks Device Driver Developer’s Guide.

For information about BSP development, see the VxWorks BSP Developer’s Guide.

For information about development facilities, see Wind River Workbench
for VxWorks User’s Guide, the VxWorks Command-Line Tools User’s Guide, and the
Wind River compiler and GNU compiler guides.

VxWorks and Development
Environment Changes

2.1 Introduction 5

2.2 Environment Variables and Development Shell 6
2.3 Directory Structure 7

2.4 Build Infrastructure 8

2.5 Compilers 9

2.6 Cand C++ Libraries 12

2.7 IDE and CLI Configuration and Build Tools 14
2.8 VxWorks 6.6 Facilities 15

2.9 Architecture-Specific Issues 33

2.1 Introduction

VxWorks 6.6 both maintains backward compatibility with VxWorks 5.5, and also
provides extensive new features. This chapter provides an overview of the changes
as they affect basic migration. The focus is on differences between VxWorks 5.5
and VxWorks 6.6 as they generally relate to operating system configuration,
application migration, BSP migration, and driver migration. For detailed
information in migrating applications, see 3. Migrating Kernel Applications. For

VxWorks
5.5 Migration Guide, 6.6

detailed information about migrating BSPs and drivers, see 4. Migrating BSPs and
Drivers.

In general, VxWorks 5.5 kernel applications, BSPs, and drivers will work with
VxWorks 6.6—after recompilation—except in the following cases:

* You have made modifications to your BSP.
* Your application is written in C++.
* You use certain APIs that have changed.

* You use block device drivers that are not fully compatible with the new
Extended Block Device facility (XBD) facility.

* You use the dosFs 1.0 API or Wind River’s proprietary VxWorks long name
support for dosFs. You use tapeFs or rt11Fs, which are not supported.

* You use VxVMI, which is not supported.

* You use VxFusion, which is not supported.

A WARNING: Apart from the exceptions listed above, VxWorks 6.x is source
compatible with VxWorks 5.5. Your VxWorks 5.5 BSP, drivers, and applications
must be recompiled against VxWorks 6.3.

2.2 Environment Variables and Development Shell

The wrenv script replaces the torVars script that was used to set up the working
environment for VxWorks 5.x. For Workbench users, this change is transparent; as
with Tornado 2.2, Workbench automatically sets the environment appropriately.

Command-line users should run the wrenv script at the root of their installation to
set up the command-line environment and start the VxWorks command shell. For
additional information on wrenv, see the VxWorks Command-Line Tools User’s
Guide.

2 VxWorks and Development Environment Changes
2.3 Directory Structure

Windows

To start a command shell from Windows, use the new VxWorks 6.x command
shell, available from the Start menu:

Start > Programs > Wind River > VxWorks 6.x and General Purpose Technolog
ies > VxWorks Development Shell. The command shell is also available from the
command prompt by entering:

C:\> installDir\wrenv.exe -p vxworks-6.x

Solaris/Linux

From Solaris or Linux, the new VxWorks 6.x command shell starts automatically
when you type wrenv.sh on the command line.

% installDir/wrenv.sh -p vxworks-6.x

2.3 Directory Structure

The the target and host directory trees are now stored one sub-directory deeper in
the install tree, under the vxworks-6.x directory. Also note that the Wind River
Compiler (formerly known as Diab) and the Wind River GNU Compiler have
moved from the installDirTornado/host directory tree and into their own separate
subdirectory trees in VxWorks 6.x. Finally, in VxWorks 6.x, the header files for the
network stack have been more finely divided.

These changes impact your makefiles in several ways. First, your binary
executable path must include one of the following paths:

WIND_DIAB_PATH=$WIND_HOME/diab/relNum
WIND_GNU_PATH=$WIND_HOME/gnu/re]Num-vxworks-6.x

It is important to note that common build utility binaries, some of them from the
GNU distribution, are still located in:

$WIND_BASE/host/SWIND_HOST_TYPE/bin

However, the location pointed to by the above string has changed because the
value of WIND_BASE is now defined as follows:

WIND_BASE=$WIND_HOME/vxworks-6.x

VxWorks
5.5 Migration Guide, 6.6

2.3.1 Location of Header Files

There are two sets of header files provided with VxWorks 6.x. One is for building
the kernel, BSPs, and applications that are linked with the kernel. The other is for
building VxWorks executables that run with memory protection in user mode, as
real-time processes (RTPs). These header files should not be mixed. Each tree
exposes the supported set of functionality in the two different operating modes.

The compilers and the Workbench tools know the difference between the two
environments and use the appropriate header file tree. If the wrong set of header
files is being used, check to be sure you are using the appropriate type of project.

The kernel-mode development header files can be found in:
installDir / vxworks-6.x/target/h
The user-mode application development header files can be found in:

installDir / vxworks-6.x/target/usr/h

2.4 Build Infrastructure

The build infrastructure has changed. If you use the default build method, these
changes are transparent. If, however, you have a customized build system, some
changes to your build mechanism may be necessary. See for information about
changes in the product installation directory tree, see 2.3 Directory Structure, p.7.
For general information, see the Wind River Workbench User’s Guide and the
VxWorks Command-Line Tools User’s Guide.

2.4.1 Makefile and make Changes

No makefile changes are required to migrate any Wind River-supported
VxWorks 5.5 BSP to VxWorks 6.x. However, if you have made custom
modifications to the makefile or if there are differences between a third-party
makefile and the standard Wind River makefile, some effort may be required to get
a working VxWorks 6.x BSP makefile.

If you need to convert your makefile for this release, Wind River recommends that
you start with a standard VxWorks 6.x makefile and get the BSP to build correctly.

2 VxWorks and Development Environment Changes
2.5 Compilers

When your BSP builds correctly using the standard makefile, apply non-standard
additions and modifications from the VxWorks 5.5 version of the makefile one at
a time. Be sure to test your modifications using both command-line builds and
project builds.

2.5 Compilers

All VxWorks 5.5 user libraries are functionally compatible with VxWorks 6.x.
However, your code, including your BSP, must be recompiled with either the
Wind River Compiler or the Wind River GNU compiler.

2.5.1 Default Compiler Change

For VxWorks 6.x, the kernel libraries are built with the Wind River Compiler.
However, Wind River continues to support both the Wind River Compiler and the
Wind River GNU Compiler for building VxWorks applications. For general build
information, see the Wind River Workbench User’s Guide and the VxWorks
Command-Line Tools User’s Guide.

For information on compiling C++ code with the Wind River Compiler and the
Dinkum standard template library, see 2.6 C and C++ Libraries, p.12 or the
Wind River Compiler user’s guide for your architecture.

2.5.2 Stricter Syntax Checking
The Wind River-supplied makefiles for VxWorks 6.x implement stricter compiler
error checking and issue more warnings and errors than in past releases.

You will probably need to modify some code because both the Wind River
Compiler and the GNU compiler are stricter regarding syntax.

VxWorks
5.5 Migration Guide, 6.6

General Guidelines

The following issues apply to both compilers.

= Because both compilers are stricter about C++ syntax in particular, you must
add "struct" in front of a C++ "enum" where the compiler asks for it.

* Multiline _asm("") macros now require a backslash \ continuation character at
the end of the continued line.

= String literals " " spanning two lines are not allowed; use separate pairs of
quotes on each line.

* The Dinkum STL has no assumed size for an enum type in a C++ class;
unfortunately GNU 3.3 does not auto-convert enum types to the presumed
width; thus, a cast is necessary in order to compile.

Wind River Compiler Warnings

The following compilation errors and warnings may occur when using the
Wind River Compiler. The first example indicates incorrect code and requires
modifying your code. The other warnings may not require modifying your code,
but they could indicate problems and should be reviewed and understood.

warning (etoa:4175): subscript out of range
This warning flags the case when something like the following is done:

char a[10];
al60] = "\0';
warning (etoa:1583): overflow in constant expression

This warning points to the case where a variable is being assigned a value that
does not legally fit into its type.

warning (etoa:4167): argument of type foo is incompatible with parameter of type
bar
This warning requires type casting to make sure the types are as the function
expects.

warning (etoa:4513): a value of type foo cannot be assigned to an entity of type
bar
This warning also needs type casting.

warning (etoa:4171): invalid type conversion
Bad type conversions could cause silent failures.

10

2 VxWorks and Development Environment Changes
2.5 Compilers

warning (etoa:4167): argument of type foo is incompatible with parameter of type
bar
warning (etoa:4513): a value of type foo cannot be assigned to an entity of type
bar
warning (etoa:1047): trying to assign "ptr to const' to 'ptr’'
If it is acceptable to use to different types, an explicit cast should be used, so
the intent is clear. Passing around a const pointer as a non-const pointer is a
particularly bad case.

warning (etoa:4111): statement is unreachable
The code should be inspected to make sure the control flow is as you intend.

warning (etoa:4068): integer conversion resulted in a change of sign
This warning usually results from assigning constants (which are by default of
type int) to unsigned variables. It can be solved by explicitly casting the
constant to the appropriate unsigned type.

warning (etoa:4940): missing return statement at end of non-void function bar
warning (etoa:4117): non-void function foo should return a value
This example could result in erroneous values being returned by the function.

2.5.3 Extra Compiler Command-line Flags
When compiling from the command line in VxWorks 6.x, it is necessary to define
several macro values as command-line switches. For example:

Wind River Compiler:
-DCPU=PPC604 -DTOOL_FAMILY=diab -DTOOL=diab -D${BSPNAME}

Wind River GNU Compiler:
-DCPU=PPC604 -DTOOL_FAMILY=gnu -DTOOL=gnu -D${BSPNAME}

While some Wind River header files may not produce compilation errors without
these definitions, the resulting binary is suspect.

For more information about command-line compilation, see the VxWorks
Command-Line Tools User’s Guide.

11

VxWorks
5.5 Migration Guide, 6.6

2.5.4 Additional Build Flags

If you wish to set additional build flags, use the following macros:

Command line use: ADDED_CFLAGS, ADDED_C++FLAGS
Workbench use: CC_ARCH_SPEC

2.5.5 GNU Compiler Switches

The GNU complier switch -fvec has become -maltivec.

When compiling the kernel with the Wind River GNU Compiler, the -nostdlib
option should still be used when linking but note that many of the other compiler
options used as workarounds are no longer necessary. Most notably, the GNU 3.3
compiler is capable of producing valid C++ code with automatic template
instantiation without any special directives. However, C++ code that is manually
instantiated should continue to be compiled with -fno-implicit-templates.

The GNU 3.3 C++ compiler does not support -fvolatile, though this capability is
still available for C code. The Wind River Compiler supports the equivalent
capability for C++ code and may be used instead.

A WARNING: Do not mix C++ object files compiled by different Wind River
compilers. If you need to use -fvolatile in C++ code builds, you must use the Wind
River Compiler to build all your C++ code.

For more information on this and other switches, see the Wind River GNU
Compiler documentation.

2.5.6 objCopy Replaces Wind River Utilities
The objcopy utility, rather than the legacy Wind River utilities, is used to convert
files to binary and Motorola hex format. (Some utilities may still be present in this

release, but their use is deprecated. They have known bugs and have not been
updated in several major releases.)

12

2 VxWorks and Development Environment Changes
2.6 Cand C++ Libraries

2.5.7 Unsupported Optimization Levels

Optimizing at the -03 level is not supported in VxWorks 6.x, and was not
supported in VxWorks 5.x. In some cases, it may be possible to compile with -O3
optimization and produce a valid object module but this is not supported.

CAUTION: The fact that your application compiled successfully with -O3
optimization in the past is not a guarantee that it will do so with the new compiler.
Optimizing at the -O3 level is not supported in VxWorks 6.x.

2.6 C and C++ Libraries

VxWorks 6.x is backward compatible for kernel applications written in C, within
the limits set by stricter compiler syntax checking and the new C libraries.
Applications written in C++ have additional considerations. For more
information, see 2.5 Compilers, p.9.

2.6.1 Dinkum C and C++ Libraries

Table 2-1

For VxWorks 6.x, Dinkum C and C++ libraries are provided. As shown in
Table 2-1, Dinkum libraries are used in all cases except for C language applications
in a kernel project, where the VxWorks native C libraries are used.

Standard Libraries and Where They Are Used

Type of Application C Language C++ Language
User-mode RTP Dinkum C libraries Dinkum C++ and
application embedded C++ libraries

Kernel-mode application VxWorks native libraries Dinkum C++ and
embedded C++ libraries

The VxWorks native C libraries provide routines outside the ANSI specification
and provide no support for wide or multibyte characters and no support for
locales. For more information, see the various reference entries.

13

VxWorks
5.5 Migration Guide, 6.6

Because the Dinkum C++ libraries are different from the VxWorks 5.5 libraries,
applications written in C++ require some migration due to differences in the STL
implementation.

2.6.2 Standard Template Library

Example 2-1

The C++ standard template library (STL) supplied with VxWorks 6.x is the
Dinkum library, not the SGI library. Wind River provides no support for using the
SGI STL with VxWorks 6.x. For information about the SGI STL, see
http://www.sgi.com/tech/stl/.

There are certain differences that must be taken into account when you compile
your C++ code with the Dinkum STL.

The Dinkum standard template library is more compliant with the ANSI standard
than the SGI library it replaces. As a result, it provides fewer backward-compatible
headers (for example, "template.h" versus <template>). Also, it does not include
some STL extensions provided by the SGI library.

Namespace Information

The standard used in the past:

#include <map.h>
map<const int, int*, int*>::iterator pPtrIt;

becomes:

#include <map>
std: :map<int, int*, int *>::iterator pPtrIt;

The instructions for using the Dinkum STL with the Wind River Compiler are in
the Wind River Compiler user’s guide for your architecture.

To use the Dinkum embedded STL with the Wind River Compiler:

* Add -fno-exceptions -fno-rtti to your compiler line to disable exceptions.

» Modify installDir/gnu/3.3.2-vxworks62/x86-win32/include/c++/3.3.2/yvals.h:
Change the macro to #define _ CONFIGURE_EXCEPTIONS 0.

There is no strict standard for the embedded STL; thus, there is no guarantee that
what was included in the SGI embedded STL (no exceptions version) is the same
as the Dinkum embedded STL. For more information, see the Dinkumware
documentation.

14

http://www.sgi.com/tech/stl/

2 VxWorks and Development Environment Changes
2.7 IDE and CLI Configuration and Build Tools

2.7 IDE and CLI Configuration and Build Tools

In the past, VxWorks 5.5 could be configured either by using the Tornado project
facility or by modifying config.h. For VxWorks 6.x, projects should be configured
in Workbench or using vxprj. You can migrate your config.h changes to
VxWorks 6.x by creating a VxWorks image project based on your BSP.

2.7.1 Configuration and Build Using config.h

Wind River recommends using either Workbench or the vxprj command-line
facility for configuring and building VxWorks. The legacy method using
bspDir/config.h and bspDir/make has been deprecated for most purposes since
VxWorks 6.0, and it cannot be used for multiprocessor (SMP and AMP)
development.

However, the config.h method must still be used for the following:
* Some middleware products (consult the documentation in this regard).

* Boot loaders, when the BSP does not support the PROFILE_BOOTAPP
configuration profile.

The config.h method can also be used for uniprocessor BSP development before
CDFs have been implemented.

2.7.2 vxWorks.st Image Type

Building a vxWorks.st type of image is not supported by Workbench or the vxpr;j
command-line tool, and the legacy config.h method has been deprecated (see
2.7.1 Configuration and Build Using config.h, p.14).

However, a comparable VxWorks image that includes a standalone symbol table
can be configured and built with a Workbench VIP project or vxprj. To do so,
configure VxWorks with the INCLUDE_STANDALONE_SYM_TBL and
INCLUDE_SHELL components.

In order to prevent the network from starting automatically, add
INCLUDE_NET_INIT_SKIP as well. The network can then be started from the shell
as follows:

-> sp usrNetworkInit

15

VxWorks
5.5 Migration Guide, 6.6

Note however, that since INCLUDE_NET_INIT_SKIP is incompatible with the WDB
agent running WDB_COMM_END or WDB_COMM_NETWORK, the WDB agent
must be excluded, or a non-network back end (such as
INCLUDE_WDB_COMM_SERIAL) must be used.

To get closer to the legacy configuration of a vxWorks.st image, components such
as the following, can be added as well:

INCLUDE_SHOW_ROUTINES
INCLUDE_DEBUG
INCLUDE_UNLOADER
INCLUDE_DISK_UTIL

2.8 VxWorks 6.6 Facilities

Every effort has been made to minimize the migration effort between VxWorks 5.5
and VxWorks 6.6. To reproduce VxWorks 5.5 functionality with VxWorks 6.x,
there are limited changes to system behavior and supported facilities. These
changes are discussed in this section.

2.8.1 Unsupported Facilities

In addition to changes to some individual components and parameters, the
following VxWorks 5.5 facilities are not supported in VxWorks 6.6:

* dosFs1.0
= tapeFs

= rtll1Fs

= VxVMI

= VxFusion

In the case of dosFs 1.0, the current version of dosFs should be used. For the other
file systems, an alternative file system must be selected. For VxVMI, VxWorks
provides various memory protection features by default, and applications can be
migrated to RTP applications (see 3.4.1 VxVMI and Migration, p.42).

For VxFusion, alternate communication mechanisms may be implemented (for
more information, see 3.4.2 VxFusion and Migration, p.45).

16

2 VxWorks and Development Environment Changes
2.8 VxWorks 6.6 Facilities

2.8.2 Boot Loaders

Boot loaders created with VxWorks 5.5 are generally compatible with
VxWorks 6.x. Wind River recommends that you try using your VxWorks 5.x boot
loader, and if it does not work, then rebuild the boot loader for VxWorks 6.x.

Note the following with regard to using 5.5 boot loaders:

* You can use your VxWorks 5.5 boot loaders with kernel-mode applications
that use only 5.5-compatible facilities. Your boot loader must have a 160-byte
image path to be fully compatible.

* You can use a custom boot loader that works with VxWorks 5.5. However, the
bootConfig.c file does not exist in the current release of VxWorks. If
bootConfig.c was modified for custom features, and the custom features are
needed for the current release, see Custom Commands for the Boot Loader Shell,
p-17 for information about how to address this issue.

Many, butnot all, VxWorks 5.4 boot loaders are compatible with VxWorks 5.5, and
are therefore compatible with VxWorks 6.x, subject to the two conditions
described previously.

Some, but not all, VxWorks 5.3 boot loaders are VxWorks 5.4- and 5.5-compatible.
If the object module format (OMF) and the defaultload addresses are the same, the
boot loader should be VxWorks 5.5 compatible, and therefore VxWorks 6.x
compatible.

Boot Loader M and N Commands

The M command is a replacement for the N command, which is maintained for
backward compatibility purposes. The commands are provided with the
INCLUDE_BOOT_ETH_MAC_HANDLER and INCLUDE_BOOT_ETH_ADR_SET,
respectively. Do not use both components in the same configuration of VxWorks.
For information about which of the two commands is supported for a given BSP,
consult the BSP reference.

In addition, do not use boot loaders configured with the
INCLUDE_BOOT_ETH_MAC_HANDLER component to boot VxWorks images
produced with any release prior to VxWorks 6.5.

17

VxWorks
5.5 Migration Guide, 6.6

Custom Commands for the Boot Loader Shell

If changes to bootConfig.c involved the addition of new boot loader shell
commands, they can be ported to the current release with the
INCLUDE_USER_APPL component.

To add custom commands to the boot loader shell, an initialization routine must
be called to register the command processing function. Configure the boot loader
with the INCLUDE_USER_APPL component, and call the initialization routine
using the usrApplnit() routine stub, which is in
installDirlvxworks-6.x/target/proj/projDir/ustApplnit.c.

For example, a command-registration call might look like the following:

/* setup command handlers */

bootCommandHandlerAdd ("f", bootAppMemFill, BOOT CMD_MATCH_STRICT,

"f adrs, nbytes, value", "- fill memory");

For more information about the bootCommandHandlerAdd() routine, see the
VxWorks API reference.

2.8.3 Default VxWorks Configuration

VxWorks 6.6 provides the PROFILE_COMPATIBLE configuration profile, which a
minimal VxWorks 6.6 configuration that is compatible with VxWorks 5.5. For
information about configuration profiles, see the VxWorks Kernel Programmer’s
Guide: Kernel.

2.8.4 Initialization Routines

Some of the xxxLibInit() library initialization routines have been published
previously in the API reference manuals. These routines are now called
automatically by the kernel initialization process and user code is not required to
call them. The routines have been marked private and removed from the
published documentation.

2.8.5 Tasks and the TCB

For VxWorks 6.x a new library replaces direct access to the TCB. Also, task
self-destruction without a helper task is no longer supported.

18

TCB Access

2 VxWorks and Development Environment Changes
2.8 VxWorks 6.6 Facilities

Currently, direct access to the task control block (WIND_TCB) structure is
permitted, but it is deprecated. For this release the taskUtilLib library provides
controlled access to fields in the WIND_TCB structure. Wind River advises
replacing any code that directly accesses the TCB with routines provided by this
library and routines in the taskLib and taskInfo libraries.

The task name is now stored as part of the generic object structure, and can no
longer be referenced directly from the TCB. For complete portability use
taskName() instead.

The taskUtilLib library has been added to VxWorks and the following APIs are
published. This library provides utility routines to access fields in the task control
block (WIND_TCB) structure. Wind River advises using these routines when
accessing fields in the WIND_TCB structure, because direct access to the structure
will not be allowed in a future release. The new routines are the following:

taskSpareNumAllot()
This routine allocates the first available spare field in the TCB.

taskSpareFieldGet()
This routine gets the spare field of a TCB.

taskSpareFieldSet()
This routine sets the spare field of a TCB.

For more information, see the associated reference entries.

Macros Changed

The following macros have been introduced in taskUtilLib.h:

TASK_SCHED_INFO_GET
This macro gets the pSchedInfo field in the TCB.

TASK_SCHED_INFO_SET
This macro sets the pSchedInfo field in the TCB.

Task Self-destruction

Task self-destruction occurs when the entry point function specified to
taskSpawn() returns, or when a task performs one of the following functions:

19

VxWorks
5.5 Migration Guide, 6.6

taskDelete (0);

taskDelete (taskIdSelf ());

exit();
In VxWorks 5.5, a task self-destruct is handled by the exception task (tExcTask), if
it exists. In other words, if the INCLUDE_EXC_TASK component is configured into
the VxWorks image, the taskDelete() routine refers the self destruction to the
tExcTask. If the tExcTask task does not exist, taskDelete() performs the self
destruction in the context of the task itself. In order to support the task in
destroying itself without a helper task, certain non-standard memory management
techniques were introduced.

VxWorks 6.x introduces a memory partition and a heap instrumentation library
(INCLUDE_MEM_EDR) to help detect common programming errors such as
double-freeing an allocated block, freeing or reallocating an invalid pointer,
writing into freed buffers, memory leaks, and so forth. In this new context, task
self-destruction as practiced in VxWorks 5.5 results in false alarms from the
memory partition and heap instrumentation library.

For these reasons, in VxWorks 6.x, task self-destruction without a helper task is no
longer supported. In addition, tExcTask no longer supports task self-destruction.
Instead, a new task named tJobTask is used; it executes at the priority of the task
performing one of the self-destruct functions. To include support for task
self-destruction, the INCLUDE_JOB_TASK component must be configured into the
kernel; it is included by default.

If the INCLUDE_JOB_TASK component is not included in the kernel, any task that
attempts to self-destruct is left in a suspended state. The task can then be deleted
by another task using taskDelete().

An important consequence of this change is that the root task (tRootTask)
self-destructs once it completes initialization of the kernel and applications. Thus,
if the INCLUDE_JOB_TASK component is not included, the tRootTask remains in
a suspended state. An application task spawned by USR_APPL_INIT (BSPs) or
usrApplInit() (projects) is required to explicitly delete the root task:

rootTid = taskNameToId ("tRootTask");

if (rootTid != ERROR)
taskDelete (rootTid) ;

2.8.6 Task-Specific Variables: taskVarLib and tisLib

The taskVarLib and tlsLib facilities are maintained primarily for
backward-compatibility. They are not compatible with the SMP configuration of
VxWorks, and their use is not recommended. In addition to being incompatible

20

2 VxWorks and Development Environment Changes
2.8 VxWorks 6.6 Facilities

with VxWorks SMP, the taskVarLib and tlsLib facilities increase task
context-switch times.

2
Note that tlsLib is now named tlsOldLib. -

The __thread storage class variables can be used for both uniprocessor and SMP
configurations of VxWorks, and Wind River recommends its use in both cases as
the best method of providing task-specific variables. For more information, see the
VxWorks Kernel Programmer’s Guide: Multitasking.

2.8.7 activeQhead

Example 2-2

2.8.8 VxVMI

activeQhead no longer exists and cannot be used to determine if tasking has
started. Example 2-2 shows the previous and current methods:

Determining if Tasking Has Started

The following method was used in previous releases:

if (Q_FIRST (&activeQHead) == NULL) /* pre kernel */

reboot (BOOT_WARM_AUTOBOOT) ; /* better reboot */
Because activeQHead no longer exists, instances where this method was used in
the past must be replaced with the method shown below:

if (taskIdCurrent == NULL) /* pre kernel */
reboot (BOOT_WARM_AUTOBOOT) ; /* better reboot */

In VxWorks 5.x, VXVMI provided a form of MMU protection. This facility is not
supported in VxWorks 6.x, which provides superior facilities with kernel
hardening and real-time processes. For information on migrating from VxVMI to
VxWorks 6.x, see 3.4.1 VxVMI and Migration, p.42.

For information about real-time processes, and about migrating kernel
applications to RTP applications, see the VxWorks Application Programmer’s Guide:
Applications and Processes and the VxWorks Application Programmer’s Guide: Kernel to
RTP Migration.

21

VxWorks
5.5 Migration Guide, 6.6

2.8.9 VxFusion

VxFusion is not supported in VxWorks 6.0. Wind River advises customers to
migrate their applications to message channels over TIPC, which provides
superior functionality. For information about message channels, see the VxWorks
Kernel Programmer’s Guide: Message Channels. For information about TIPC, see the
Wind River TIPC Programmer’s Guide.

2.8.10 Resource Reclamation

The introduction of resource reclamation has minimal impact on drivers and BSPs.
Objects such as semaphores, message queues, and tasks created by a process are
owned by the process that created them. If a driver or a BSP creates objects, they
are typically created during the kernel initialization phase, which occurs in the
context of the kernel. Thus, there should be no concern that an object can be
unexpectedly deleted, because the kernel is never deleted.

Resource reclamation can be an issue for any kernel routine that is executed as a
result of a user task performing a system call. Any objects that are created are
owned by the calling process, and are deleted when the process terminates. If any
subsystem creates objects that must survive after the creating process terminates,
the objOwnerSet() routine should be used to assign the object to the kernel, or to
some other process that persists after the creating process terminates.

Resource reclamation is also an issue for kernel task create hooks. For most
scenarios, a task create hook routine need not worry about the ownership of
objects. The only case that presents a problem is when a process (for example,
applA running in process A) performs an rtpSpawn(). The rtpSpawn() system
call creates an initial task (iApplA) in the newly created process. However, the
taskSpawn() of the iApplA occurs in the context of process A; thus, the task create
hooks also execute in the context of process A. Any objects created in a task create
hook for the iApplA are owned by process A. If process A terminates, the objects
will be deleted. Use objOwnerSet() to set ownership of newly created objects to
the new process as recommended in the reference entry for the kernel version of
taskCreateHookAdd().

A similar issue exists for process post-create hooks. Use objOwnerSet() to set
ownership of newly created objects to the new process as recommended in the
reference entry for rtpPostCreateHook().

22

2 VxWorks and Development Environment Changes
2.8 VxWorks 6.6 Facilities

2.8.11 Stricter Error Checking on Semaphores

The semaphore create routines for all types of semaphores, for example
semBCreate(), have been updated to perform stricter error checking on the

options passed to the routine. In VxWorks 5.x, reserved bits are not checked. For

VxWorks 6.x, all options passed are checked against allowed options. Therefore,

code that worked in the past may nevertheless have passed disallowed options;

now, when checking identifies the disallowed options, such code generates an

errno with the value S_semLib_INVALID_OPTION.

2.8.12 File System Changes

CBIO and the Extended Block Device (XBD) Interface

In previous systems, a stack consisting of some number of CBIO modules with a
file system component on top of it was created at initialization time. This stack
monitored insertion and removal of disks such as floppies or CD-ROMs, mounting
and unmounting the file system as disks were inserted and removed. The CBIO
stack has been replaced by the extended block device (XBD) which serves many of
the purposes of CBIO, but which also provides for insertion and removal as well
as safe dynamic creation and deletion.

VxWorks must be configured with the special components for any drivers that
were designed to work with the 5.5 CBIO interface. For more information in this
regard, see 3.7.1 Extended Block Device (XBD) Support, p.53the VxWorks Kernel
Programmer’s Guide: 1/O System.

File System Monitor

When a device insertion is detected, a new component, the file system monitor,
automatically detects the file system type of the inserted device and creates a file
system stack with the appropriate file system at the top. There is no longer the
requirement to explicitly create file systems by invoking a creation routine; this is
handled by the file system monitor.

23

VxWorks
5.5 Migration Guide, 6.6

Discontinued Features

dosFs 1.0 Support

dosFs 1.0 is no longer supported in this release. For information on migrating from
dosFs 1.0 to dosFs 2.0, see 3.7.5 dosFS, p.58.

dosFs Long Filename Support

Wind River’s proprietary long name support for dosFs is not fully supported in
this release. Wind River advises customers to migrate to the Microsoft standard of
long names.

tapeFs

The tapeFs file system is no longer supported in this release.
Deprecated Features

RAM Disk

The BLK_DEV-based RAM disk is deprecated. The XBD-based RAM disk should
be used instead. For more information, see 3.7.1 Extended Block Device (XBD)
Support, p.53.

VxWorks CBIO Interface

The VxWorks CBIO interface is replaced by the XBD facility. For information on
migrating to XBD, see 3.7.1 Extended Block Device (XBD) Support, p.53.

VxBus Introduced

VxWorks 6.2 introduces a new bus and device model. For more information, see
4.3 Migrating Drivers, p.81.

2.8.13 POSIX Support

Kernel and User Environments Decoupled

The header files unistd.h and limits.h are now different in the two environments.
In the user environment, changes reflect PSE52 compliance and involve changes to

24

2 VxWorks and Development Environment Changes
2.8 VxWorks 6.6 Facilities

macro values, changes in function prototypes, and changes in the list of
prototypes.

VxWorks and POSIX Types

In order to prevent the native VxWorks symbols from polluting the namespace of
a conforming POSIX application, the VxWorks types used in POSIX header files
have been prepended with either _VX_ or _Vx_. The original VxWorks types are
still defined and used by the native VxWorks header files. For example, the new
type is _VX_SEM_ID, but SEM_ID is also still available for non-POSIX applications.

This change means that a VxWorks application that uses POSIX header files may
not get some of the VxWorks types and macros it used to get indirectly by
including the POSIX header files. You may have to explicitly include the VxWorks
header files that define these types and macros.

mgq_attr Structure

The mq_attr structure has been updated in both the kernel and application spaces
to use type long to conform to PSE52. Previously the type for the fields in the
structure was size_t.

In previous releases the structure was defined as follows:

struct mg_attr
{

size_t mg_maxmsg;
size_t mg_msgsize;
unsigned mg flags;
size_t mg_Ccurmsgs;

}i
In VxWorks 6.3 the structure is defined as follows:

struct mg _attr
{

long mg_maxmsg;
long mg_msgsize;
long mg flags;
long mg_Ccurmsgs;

Y

The size of the old and new types is the same, so the change should be transparent.

25

VxWorks
5.5 Migration Guide, 6.6

2.8.14 Lazy Initialization Removed

Table 2-2

In the past, it was possible for some kernel facilities (message queues, semaphores,
watchdogs, tasks) to be used in an application without either including the facility
components (such as INCLUDE_SEM_MUTEX) in your project or initializing the
library in your code. This was possible because the compiler pulled in the library
when it found the call in the code and the routines for these kernel facilities
auto-initialized the associated libraries when they were called. In other words, if
semMCreate() was called on a mutex semaphore, the semMCreate() API checked
and initialized the necessary semaphore library, before making the actual
semMCreate() call.

Checking initialization status before creating every object was expensive, and also
introduced the possibility that the library could be initialized at any time, leading
to indeterminacy and sometimes unacceptable latency.

This scenario is no longer supported. If you use message queues, semaphores,
watchdogs, or tasks, you must include the appropriate components in your
project. Once you do this, VxWorks automatically initializes the libraries at
startup.

In most cases, you will already have the appropriate components included.
However, you should check to confirm that this is the case. Table 2-2 lists the
libraries and their associated components.

Libraries and Associated Components

Library Component
taskLib INCLUDE_KERNEL (always present)
semBLib INCLUDE_SEM_BINARY,

INCLUDE_SEM_BINARY_CREATE

semCLib INCLUDE_SEM_COUNTING,
INCLUDE_SEM_COUNTING_CREATE

semMLib INCLUDE_SEM_MUTEX,
INCLUDE_SEM_MUTEX_CREATE

msgQLib INCLUDE_MSG_Q,
INCLUDE_MSG_Q_DELETE

wdLib INCLUDE_WATCHDOGS

26

2 VxWorks and Development Environment Changes
2.8 VxWorks 6.6 Facilities

2.8.15 Modified Routines

In addition to routines discussed in the context of specific technologies elsewhere
in this guide, the following routines have changed.

Private Routines
The following routines are no longer public:

» sigeventCreate()

» sigeventlnit()

» sigeventNotify()

» sigeventSigOverrunGet()

They should not have been published in the past, and are not required by users in
order to use the POSIX signal events facilities.

Modified Kernel Routines

The following routines have been moved from memLib
(INCLUDE_MEM_MGR_FULL) to memlInfo (new component
INCLUDE_MEM_MGR_INFO):

* memPartInfoGet()
* memPartFindMax()
* memlnfoGet()

* memFindMax()

symLib APIs

The symLib routines symFindByValue() and symFindByValueAndType() have
been deprecated since the VxWorks 6.0 release and will be removed in a future
release. The following alternatives should be used:

= For symFindByValue(), use symByValueFind() instead.
* For symFindByValueAndType(), use symByValueAndTypeFind() instead.
Semaphore APls

The non-public semCCorelnit(), semBCorelnit(), and semMCorelnit() APIs are
no longer available. Use the following alternatives:

» For semCCorelnit(), use semClInit() instead.
» For semBCorelnit(), use semBInit() instead.
» For semMCorelnit(), use semMInit() instead.

27

VxWorks

5.5 Migration Guide, 6.6

The semOLib library has been removed. It provided the following routines:

Shell APIs

semOLibInit()
semCreate()
semlInit()
semQOTake()
semClear()

The shell routines shellInit(), shell(), and shellOrigStdSet() have been
deprecated since the VxWorks 6.0 release, and are no longer available. Use the
following alternatives:

Other APIs

For shelllnit(), use shellGenericInit() instead.
For shell(), use shellGenericlnit() instead.
For shellOrigStdSet(), use shellInOutSet() instead.

The pipe() routine has been removed. It was implemented previously as a stub
routine that returned ERROR.

In addition, the following individual routines have also been removed:

shelllnit()
shell()
shellOrigStdSet()

2.8.16 Symbol Table and Module Changes

Symbol tables and modules are no longer objects.

28

The objShow() and show() APIs no longer work with a module ID or a
symbol table ID. For modules, use moduleShow(). For symbol tables, use
lkup() with no arguments; it prints the contents of the symbol table. The new
routine symShow() can be used to display general information about a
symbol table.

If an invalid ID is provided to symbol table or module APlIs, the errno is no
longer set to S_objLib_OB]J_ID_ERROR. Instead, it is now set to either
S_symLib_INVALID_SYMTAB_ID or S_moduleLib_INVALID_MODULE_ID.

2 VxWorks and Development Environment Changes
2.8 VxWorks 6.6 Facilities

2.8.17 Kernel Object Module Loader

The kernel object module loader and its supporting libraries (including loadLib,
unldLib, symLib, and moduleLib) have undergone an internal overhaul for
VxWorks 6.x. For the most part, changes are transparent to users:

» APIs have the same signatures and the same options (or additional ones). All
API behavior remains the same except where it changed due to a bug fix. For
more information, see the online support Web page at
http://www.windriver.com/support.

= The same errno is returned by the VxWorks 6.x loader for most error
conditions as was returned by the VxWorks 5.5 loader.

Changes to errno values returned and to the loader symbol values are discussed in
the following sections. However, the loader, unloader, module, and symbol
libraries are essentially backward compatible, after you re-compile with new
headers.

Loader errno Values

Certain errno values returned have changed in order to provide better information
about the error.

» In VxWorks 6.x the errno that is set when there is a relocation overflow is now
S_loadEIfLib_ RELOCATION_OFFSET_TOO_LARGE. In all other
relocation error cases, the errno value is S_loadElfLib_RELOC, which is the
same as was set by the VxWorks 5.5 loader.

= In certain cases S_loadElfLib_SCN_READ, S_loadElfLib_ SHDR_READ,
and S_loadElfLib_READ_SECTIONS are set by the VxWorks 5.5 loader
when there is an error reading the header of the module to download. The
VxWorks 6.x loader now keeps the errno that is set by underlying routines
while executing the module to provide more information about the cause of
the error.

Loader Symbol Type Values
The single notable exception to full backward compatibility of the loader libraries

is that the values used to represent symbol types have changed. In general,
changes to values associated with macros do not violate backward compatibility,

29

http://www.windriver.com/support

VxWorks
5.5 Migration Guide, 6.6

because VxWorks is not binary backward compatible. Code that uses only the
symbol names of the macros should not encounter any compatibility problems.

However, the previous set of values used for representing symbol types were
almost, but not quite, usable as a bit map. The result was that sometimes code
could be forced to look at the actual numeric values contained in a symbol type
variable to try to deduce the real meaning of the variable.

Any code that used the numeric values of these macros must be modified to use
only the symbolic names. The new set of values makes it possible to always work
only with the symbolic names; thus, this problem no longer occurs.

The previous (VxWorks 5.5) values are as follows:

#define SYM_UNDF 0x0 /* undefined */
#define SYM_ LOCAL 0x0 /* local */
#define SYM_GLOBAL Ox1 /* global (external) (ORed) */
#define SYM_ABS 0x2 /* absolute */
#define SYM_TEXT 0x4 /* text */
#define SYM_DATA 0x6 /* data */
#define SYM_BSS 0x8 /* bss */
#define SYM_COMM 0x12 /* common symbol */
#define SYM_SDA 0x40 /* symbols related to a */

/* PowerPC SDA section */
#define SYM_SDA2 0x80 /* symbols related to a */

/* PowerPC SDA2 section */
#define SYM_ THUMB 0x40 /* Thumb function */

The new (VxWorks 6.x) values are as follows:

#define SYM_UNDF 0x0 /* undefined (lowest 8 bits only) */
#define SYM_GLOBAL 0x1 /* global (external) */
#define SYM_ABS 0x2 /* absolute */
#define SYM_TEXT 0x4 /* text */
#define SYM_DATA 0x8 /* data */
#define SYM_BSS 0x10 /* bss */
#define SYM_COMM 0x20 /* common symbol */
#define SYM_ LOCAL 0x40 /* local */
#define SYM_THUMB 0x80 /* Thumb function */

With the VxWorks 5.5 values, some bits could be meaningfully OR’d together (for
instance, the global symbol type could be meaningfully OR’d with any other
symbol type). However, if certain symbol types were OR’d together, the original
meaning could be lost. For example, with the old values:

SYM_ABS ‘ SYM_TEXT = 0x6 = SYM_DATA.

The VxWorks 6.x values work as a true bit field. Each bit carries one (and only one)
possible meaning. The symbol masks should be used to avoid these bit-field and

30

2 VxWorks and Development Environment Changes
2.8 VxWorks 6.6 Facilities

compatibility problems. You should test for symbol types with the following
macros, defined in symbol.h:

#define SYM_IS_UNDF(symType)

#define SYM_IS_GLOBAL(symType)

#define SYM_IS_LOCAL(symType)

#define SYM_IS_TEXT(symType)

#define SYM_IS_DATA(symType)

#define SYM_IS_BSS(symType)

#define SYM_IS_ABS(symType)

#define SYM_IS_COMMON(symType)

A WARNING: Code that only uses the symbolic names of these macros should not
encounter any problems. However, any code that uses the numeric values of these
macros must be modified to use only the symbolic names.

Resolving Common Symbols

Resolving common symbols has changed between VxWorks 5.5 and VxWorks 6.x.
In the past, if you used the LOAD_COMMON_MATCH_USER or
LOAD_COMMON_MATCH_ALL loader options and there were several matches,
bss symbols would be picked first, then data symbols. Starting with VxWorks 6.1,
the matching order is data symbols, then bss symbols.

SDA and Loading Kernel Object Modules

Small data area (SDA) support is provided for the VxWorks kernel programming
environment with the PowerPC architecture (it is also supported in the user-space
programming environment). The SDA construct is defined by the PowerPC
Embedded Application Binary Interface (EABI) specification. SDA is designed to
take advantage of base plus displacement addressing mode, which provides a
more memory-efficient way of accessing a variable and better performance.

If a kernel module is built with SDA, the loader will not load it, but generates an
error message. The error messages for the kernel object module loader and the host
loader (respectively), are as follows:

31

VxWorks
5.5 Migration Guide, 6.6

* S_loadLib_SDA_NOT_SUPPORTED
= WTX_ERR_LOADER_SDA_NOT_SUPPORTED

Workbench also displays the following error message: “WTX Loader Error:
dynamic loading of modules with SDA (Small Data Area) sections is not
supported; check your build rules and make sure your module does not contain
any SDA section or relocation. The loader cannot perform SDA relocation.”

Modules with SDA should be statically linked with the kernel. For more
information about VxWorks SDA support, see SDA Support for PowerPC, p.33.

The the Wind River Compiler (diab) assembler flag -Xwarn-use-greg can be used
to generate the following warning if code accesses the SDA reserved registers:

Xwarn-use-greg=0x2004

In addition, the SDA_DISABLE makefile variable can be used to disable SDA, as
follows:

SDA_DISABLE=TRUE

2.8.18 Target Shell/Kernel Shell

With VxWorks 6.0, the name of the target shell was changed to the kernel shell.

Several changes in the kernel shell reflect process support. The behavior of
multiple sessions can be restored to the VxWorks 5.5 behavior. unld() and reld()
are now supported in the shell only.

Multiple Sessions

It is possible to have several kernel shell sessions running at the same time on
different terminals (such as the console, VIO, telnet, rlogin, and so on). Each
session has a different environment (user ID, current path, prompt) and does not
affect the global standard I/0O.

The initial shell script is launched on a different shell session from the initial kernel
shell session on the console. A side effect of this behavior is that when
shellPromptSet() is called in the shell script, the scope is limited to the script shell
session and does not affect the prompt of other sessions. The default prompt can
be changed with shellPromptFmtDftSet().

To restore VxWorks 5.5 behavior, set the shell component parameter
SHELL_COMPATIBLE to TRUE when creating a project.

32

2 VxWorks and Development Environment Changes
2.9 Architecture-Specific Issues

unld() and reld()

The unld() and reld() routines have been moved from the file unldLib.c to
usrLib.c. To include these routines in your image, use the component
INCLUDE_SHELL.

These routines were deprecated in VxWorks 5.5 and can no longer be called
directly from programs; they are now for use from the shell only. For unloading
from within a program, use either unldByModuleld() or
unldByNameAndPath(). For reloading from within a program, you must first
unload the module (using unldByModuleld() or unldByNameAndPath()) and
then load it again using one of the load routines: loadModule() or
loadModuleAt().

2.9 Architecture-Specific Issues

Architecture-specific migration issues, as well as all other architecture-specific
issues, are covered in the VxWorks Architecture Supplement. Some concerns include
the following:

PowerPC:
PHYS_ADDR is now an unsigned long long type.

PPC603 now uses a two-level translation table instead of a hash table. (The
PPC604 family still uses both a hash table and translation tables.)

Intel Architecture
Cacheability and type of cacheability are now treated as one entity; thus
VM_STATE_WBACK and VM_STATE_WBACK_NOT cannot be combined with
VM_STATE_CACHEABLE or VM_STATE_CACHEABLE_NOT.

MIPS
PHYS_ADDR is now an unsigned long long type.

ARM
Boot offsets must move in order to support kernel hardening. By default, BSPs
are built with T2_BOOTROM_COMPATIBILITY. Enable kernel hardening by
defining INCLUDE_KERNEL_HARDENING and un-defining
T2_BOOTROM_COMPATIBILITY. For additional information, see the
architecture supplement.

33

VxWorks
5.5 Migration Guide, 6.6

XScale
Boot offsets must move in order to support kernel hardening. By default, BSPs
are built with T2_BOOTROM_COMPATIBILITY. Enable kernel hardening by
defining INCLUDE_KERNEL_HARDENING and un-defining
T2_BOOTROM_COMPATIBILITY. For additional information, see the
architecture supplement.

ColdFire
Support for the ColdFire architecture is added in VxWorks 6.3. Note that none
of the boards supported was supported in Tornado 2.2.x. You must use a
VxWorks 6.3 BSP and create a VxWorks 6.3 boot loader.

SDA Support for PowerPC

Small data area (SDA) support has been implemented for the VxWorks kernel
programming environment with the PowerPC architecture (it is also currently
supported in the user-space programming environment and has been in the past).
The SDA construct is defined by the PowerPC Embedded Application Binary
Interface (EABI) specification. SDA is designed to take advantage of base plus
displacement addressing mode, which provides a more memory-efficient way of
accessing a variable and better performance. For information about the impact of
SDA support on other features, see SDA and Loading Kernel Object Modules, p.34
and SDA and Custom PowerPC BSPs, p.34.

SDA and Loading Kernel Object Modules

If a kernel module is built with SDA, the loader will not load it, but generates an
error message. The error messages for the kernel object module loader and the host
loader (respectively), are as follows:

* S_loadLib_SDA_NOT_SUPPORTED
= WTX_ERR_LOADER_SDA_NOT_SUPPORTED

Workbench also displays the following error message: “WTX Loader Error:
dynamic loading of modules with SDA (Small Data Area) sections is not
supported; check your build rules and make sure your module does not contain
any SDA section or relocation. The loader cannot perform SDA relocation.”

Modules with SDA should be statically linked with the kernel.

The the Wind River Compiler (diab) assembler flag -Xwarn-use-greg can be used
to generate the following warning if code accesses the SDA reserved registers:

Xwarn-use-greg=0x2004

34

2 VxWorks and Development Environment Changes
2.9 Architecture-Specific Issues

In addition, the SDA_DISABLE makefile variable can be used to disable SDA, as
follows:

SDA_DISABLE=TRUE

SDA and Custom PowerPC BSPs

The VxWorks kernel initialization process now initializes PowerPC SDA /SDA2
base registers. If a custom BSP invokes a C function from within _sysInit()—that
is, before the invocation of usrInit()—the SDA /SDAZ2 base registers need to be
initialized prior to calling the C function. They should be initialized as follows:

lis r2, HI(_SDA2_BASE_)

ori r2, r2, LO(_SDA2_BASE_)
lis rl3, HI(_SDA_BASE_)

ori rl3, rl3, LO(_SDA_BASE)

Note that the Wind River Compiler (diab) assembler flag -Xwarn-use-greg can be
used to generate the following warning if code accesses the SDA reserved
registers:

Xwarn-use-greg=0x2004

35

VxWorks
5.5 Migration Guide, 6.6

36

Migrating Kernel Applications

3.1 Introduction 37

3.2 Migration Checklist 38

3.3 Build Infrastructure 39

3.4 Unsupported Facilities 41

3.5 System Changes 46

3.6 I/O System Changes 51

3.7 File System Changes 53

3.8 POSIX Support Changes 60

3.9 WindView/System Viewer: wvLib 66

3.1 Introduction

VxWorks 5.5 application software can be migrated to the VxWorks 6.x kernel
without modification, provided it uses standard features of the 5.5 release and
does not include components or facilities that are obsolete. For information about
individual components and facilities that are not supported see 2.8 VxWorks 6.6
Facilities, p.15.

37

VxWorks
5.5 Migration Guide, 6.6

This chapter provides information specific to migrating VxWorks 5.5 kernel
applications to the VxWorks 6.6 kernel. You should also consult 2. VxWorks and
Development Environment Changes for general information about 5.5-to-6.6
migration, much of which is relevant to application migration as well.

For information about migrating kernel applications to user-mode, real-time
process (RTP) applications, see the VxWorks Application Programmer’s Guide: Kernel
to RTP Migration.

For information on using new features have been introduced with the
VxWorks 6.x releases, see the VxWorks Kernel Programmer’s Guide and the VxWorks
Application Programmer’s Guide.

3.2 Migration Checklist

Once recompiled, kernel applications from VxWorks 5.5 should run in the
VxWorks 6.x kernel, unless the application uses non-standard libraries or compiler
options or the WDB API.

A WARNING: The checklist below assumes a Tornado 2.2 and VxWorks 5.5 baseline.
If your applications are based on VxWorks 5.4, you must first migrate to
VxWorks 5.5 using the Tornado Migration Guide, 2.2.

The checklist that follows provides guidance for assessing what aspects of existing
applications might require additional effort to migrate to kernel projects. If the
answer is no to all questions, there should not be any migration issues.

= Do your applications utilize Wind River private APIs (libraries that are not
documented as part of the VxWorks kernel)? Examples are aioSysDrv, avlLib,
avlUintLib, cbioLib, classLib, dcacheCbio, dpartCbio, hashLib, inflateLib,
objLib, passFsLib, poolLib, and ramDiskCbio. Not all libraries defined in
installDirTornado/target/h in earlier releases are considered public APIs.

NOTE: As in earlier releases, private APIs continue to be undocumented.
These APIs can change without notification as they are internal. If you have
used private APIs in the past, you should migrate to public APIs, which are
documented in the VxWorks reference entries.

38

3 Migrating Kernel Applications
3.3 Build Infrastructure

* Do you utilize any special Wind River Compiler options, pragmas, or in-line
assembly code?

If so, use standard Wind River macros for portability. For more information,
see the Wind River Compiler User’s Guide.

* Do you utilize any special GNU compiler options, pragmas, or in-line
assembly code?

If so, use standard Wind River macros for portability. For more information,
see the Wind River Compiler documentation.

* Does your product use any WTX tool interface APIs such as wtxtcl or the
Tornado C API?

Changes have occurred in these areas. For more information, see the
Wind River Workbench Migration Guide.

* Does your application include any make rule changes?
Changes to make rules must be migrated manually.
* Does your application use the following POSIX thread APlIs:

pthread_attr_setscope()
pthread_cond_init()
pthread_create()
pthread_mutex_init()
pthread_setschedparam()

3.3 Build Infrastructure

Most build changes are transparent if you use Workbench. This section highlights
some exceptions. For more build information, see 2. VxWorks and Development
Environment Changes.

3.3.1 Recompiling Source Code
If you need to recompile the VxWorks kernel libraries from source code, or if you

wish to create additional kernel libraries from your own source code, use the
wreonfig utility to set up a build environment. wrconfig generates a makefile and

39

VxWorks
5.5 Migration Guide, 6.6

subdirectory structure to support the build; the resulting archive (.a) files can later
be linked into VxWorks image projects. For more information, see the VxWorks
Command-Line Tools User’s Guide.

NOTE: The VxWorks 5.5 kernel library build model is still supported, in order to
maintain backward compatibility.

3.3.2 Header File Changes

Type Changes

The pathLib.h header file now uses const char *.

isascii(), toascii()

These routines have been moved. They are no longer defined in vxWorks.h;
instead they now reside in ctypes.h to parallel the user-mode library APL. If you
rebuild an application and see undefined references to these routines, include
ctypes.h.

Private objLib Macro

The OBJ_VERIFY macro has moved into the private header file objLibP.h, which is
located in installDir/vxworks-6.x/target/h/private.

3.3.3 Compiling for Both VxWorks 6.x and VxWorks 5.5

Because VxWorks 6.x is highly backward compatible, the same code can be
compiled for both VxWorks 6.x and VxWorks 5.5. Provided you are aware of the
differences, it is straightforward to design code that can be moved between the two
environments.

In the short run, the following macros set in version.h can assist you in compiling
for multiple versions. However, you should be aware that these macros are
intended for internal Wind River use. Their definition will change with each
release, according to the release level, making any code that uses them potentially
obsolete.

40

3 Migrating Kernel Applications
3.4 Unsupported Facilities

For code intended to run in processes, it is more appropriate to use the uname()
API, which is provided for this purpose.

Table 3-1 Macros For Specifying the VxWorks Version
Macro Name Value
_WRS_VXWORKS_MAJOR 6
_WRS_VXWORKS_MINOR 32
_WRS_VXWORKS_MAINT 0
_WRS_VXWORKS_5_X N/A

a. Updated in VxWorks 6.3.

3.4 Unsupported Facilities

The following VxWorks 5.5 facilities are not supported in VxWorks 6.6:

* dosFs1.0
= tapeFs

= rtllFs

= VxVMI

= VxFusion

In the case of dosFs 1.0, the current version of dosFs should be used. For the other
file systems, an alternative file system must be selected.

For VxVMI, VxWorks provides various memory protection features by default,
and applications can be migrated to RTP applications (see 3.4.1 VxVMI and
Migration, p.42).

For VxFusion, alternate communication mechanisms may be implemented (for
more information, see 3.4.2 VxFusion and Migration, p.45).

41

VxWorks
5.5 Migration Guide, 6.6

3.4.1 VxVMI and Migration
VxVMl s no longer supported in VxWorks 6.x. It is replaced by real-time process
(RTP) support. Table 3-2 compares VxVMI features to those provided in
VxWorks 6.x.

Table 3-2 VxVMI Memory Management Features and VxWorks 6.x Support

Supported in

VxVMI Feature VxWorks 6.x
text write protection Yes
kernel vector table write protection Yes
API to map physical to virtual memory Yes
API to modify and examine state of virtual memory Yes
API to generate report on state of virtual memory Yes
creation of virtual memory contexts No

In VxWorks 6.x, all of the features shown in Table 3-2, except creation of virtual
memory contexts, are available as part of the basic virtual memory library,
INCLUDE_MMU_BASIC.

Creation of virtual memory contexts as implemented for VxVMI is no longer
available. This functionality is replaced by real-time processes. In VxWorks 6.x,
processes execute in private virtual memory contexts.

The behavior of vmBaseStateSet() and vinStateSet() has changed with regard to
the cache attributes, projection attributes, and validity attribute, as described
below.

Cache Attributes

When changing cache attributes, the user must always specify the cacheability
and, if supported by the architecture, the guarded and coherency bits together.
These are changed using a single mask, MMU_ATTR_CACHE_MSK. The
cacheability must be specified with one (and only one) of the following;:
MMU_ATTR_CACHE_OFF, MMU_ATTR_CACHE_COPYBACK, or
MMU_ATTR_CACHE_WRITETHRU.

42

3 Migrating Kernel Applications
3.4 Unsupported Facilities

Protection Attributes

In previous releases, the protection setting of VM_STATE_WRITABLE changed

both supervisor- and user-mode protection. In VxWorks 6.x, supervisor and user
protection attributes are set with distinct macros, that is, MMU_ATTR_SUP_RWX
and MMU_ATTR_USR_RWX.

Validity Attribute

There is no change in behavior for the validity attribute.

In VxWorks 6.x, these states must be changed by first calling vmStateGet() to get
the current state for the page and then calling vmStateSet() or vmBaseStateSet()
to set the new state.

Table 3-3 illustrates the VxVMI APIs and their VxWorks 6.x replacements, where
replacements are available.

43

Table 3-3

VxWorks

5.5 Migration Guide, 6.6

VxVMI APIs Mapped to VxWorks 6.x Routines

VxVMI

VxWorks 6.x

vmMap()
vmTextProtect()
vmStateSet()
vmStateGet()
vmTranslate()
vmPageSizeGet()
vmContextShow()
vmShowlInit()
vmContextCreate()
vmContextDelete()
vmCurrentGet()
vmCurrentSet()
vmGloballnfoGet()
vmGlobalMap()

vmMap()
vmTextProtect()?
vmStateSet()
vmStateGet()
vmTranslate()
vmPageSizeGet()
vmContextShow()
not available

not available

not available

not available

not available

not available

not available

vmPageBlockSizeGet() not available

a. vinTextProtect() now takes an argument

(BOOL setState)

The type of the parameter specifying the virtual address defined for the routines
vmMap(), vinStateSet(), vmBaseStateSet(), vimStateGet(), and vinTranslate()
is changed from void * in VxWorks 5.5 to VIRT_ADDR in VxWorks 6.x.
VIRT_ADDR is declared as an unsigned integer (UINT32). Depending on the level
of compiler warnings and error checking selected, as well as the toolchain used
(the Wind River Compiler or the Wind River GNU Compiler), this change may
generate compiler warnings or errors. You must either change the type of variables
used in your application to represent virtual addresses or cast them to

VIRT_ADDR where required.

44

3 Migrating Kernel Applications
3.4 Unsupported Facilities

The type of the parameter specifying the physical address defined for the routines
vmMap() and vmTranslate() is changed respectively from void * and void ** in
VxWorks 5.5 to PHYS_ADDR, and PHYS_ADDR * in VxWorks 6.x. On some
architectures (PowerPC and MIPS), PHYS_ADDR is defined as an unsigned

long long (64-bit unsigned integer, UINT64), while on the other architectures it is
defined as a unsigned integer (32-bit unsigned integer, UINT32). Again, depending
on the level of compiler warnings and error checking selected, as well as the
toolchain used (the Wind River Compiler or the Wind River GNU Compiler), this
change may generate compiler warnings or errors. You must either change the
type of variables used in your application to represent physical addresses, or cast
them to PHYS_ADDR where required.

VxVMI and RTP Applications

In some situations, it may be appropriate to migrate your VxWorks 5.5 application
to a VxWorks 6.x process instead of a VxWorks 6.x kernel application. This is
usually the case when the application requires memory protection or if it makes
use of the VxVMI library routines which are no longer supported. It may also be
desirable when the product contains multiple disparate applications that are
largely independent of each other, or if the application relies on POSIX behaviors
and interfaces that may not be provided in the kernel space.

Note that processes are built differently from kernel application legacy code. When
examining the build support for VxWorks 6.x, you must not confuse the new
support included for building processes and shared libraries with that provided
for building the kernel and dynamically linked objects. For more information, see
the VxWorks Application Programmer’s Guide.

3.4.2 VxFusion and Migration

For information about VxFusion and migration, see 2.8.9 VxFusion, p.21.

45

VxWorks
5.5 Migration Guide, 6.6

3.5 System Changes

Changes have occurred in several areas, including tasks, caching, and memory
partition options. For additional changes, see 2.8 VxWorks 6.6 Facilities, p.15.

3.5.1 taskSwitchHookAdd()

The general behavior of this routine has not changed, but a subtle change in the
VxWorks 6.x scheduler may affect customer task switch hooks.

In the VxWorks kernel, there is a global variable called taskIldCurrent that
typically contains the task ID of the currently executing task (or, in an ISR context,
the task ID of the task that was interrupted). In the VxWorks 5.5 scheduler, the
value of taskldCurrent was updated to contain the task ID of the task to be
scheduled in before invoking the task switch (and swap) hooks. In the VxWorks 6.x
scheduler, the value of taskIdCurrent is updated to contain the task ID of the task
to be scheduled in after invoking the task switch (and swap) hooks.

3.5.2 taskCreat()

The unpublished VxWorks 5.5 routine taskCreat(), defined in taskLibP.h in the
installDirlvxworks-6.x/target/h/private directory, is deprecated. The new
taskCreate() routine has the same behavior and API as taskCreat() and should be
used in its place.

3.5.3 _func_excBaseHook Daisy Chaining

The _func_excBaseHook function pointer is private in VxWorks 5.5 and remains
so in VxWorks 6.x. If you continue to use this function pointer, you must follow the
daisy chaining policy described in this section.

The _func_excBaseHook is provided so that Wind River components can use the
exception mechanism to handle exceptions in their own way. Currently, the only
user of this feature is objVerify(). The object management system installs a hook
during system initialization; the hook is always present to trap accesses to
non-existing or protected memory when an application supplies a bad object
identifier.

The functions hooked into _func_excBaseHook must return a non-zero value to
indicate that the exception has been handled, which allows excExcHandle() to

46

3 Migrating Kernel Applications
3.5 System Changes

return without taking any action. A zero return value indicates that normal
exception handling should continue.

If an additional Wind River subsystem wishes to hook into the exception handling
path, the _func_excBaseHook can be daisy-chained. When the subsystem
initialization function executes, the existing FUNCPTR value of
_func_excBaseHook mustbe cached. Then, during exception handling, the cached
FUNCPTR must be called if the exception is not to be handled by the current hook.

NOTE: The VxWorks simulator temporarily overwrites the _func_excBaseHook
hook (and does not perform daisy chaining) in vxMemProbeArch(). However, the
entire sequence of operations in vxMemProbeArch() where the
_func_excBaseHook hook has been used in a non-standard manner is protected
with intLock()/intUnlock().

3.5.4 cachelLib Routines

Table 3-4

In previous versions of VxWorks, two non-published routines, cacheArchFlush()
and cacheArchInvalidate(), have occasionally been used to manipulate the
PowerPC caches. These routines were part of the PowerPC cache library
implementation. Occasionally, BSPs and device drivers made direct use of these
routines instead of calling the standard library entry points for these operations.

In VxWorks 6.x, cacheArchFlush() and cacheArchInvalidate() have been
removed from the VxWorks libraries. Any source file that uses either of these two
function calls can instead use the following architecture-independent cache library
routines:

Cache Replacement Routines

Obsolete Routines Replacement Routines

cacheArchFlush() cacheFlush()

cacheArchlInvalidate() cachelnvalidate()

The cacheFlush() and cachelnvalidate() routines accept the same parameters as
the cacheArchFlush() and cacheArchInvalidate() routines they replace.

47

VxWorks
5.5 Migration Guide, 6.6

3.5.5 Private HASH_TBL Structure
The definition of the HASH_TBL structure has been moved into the private header
file installDirfvxworks-6.x/target/h/private/hashLibP.h.

3.5.6 vmBaseLib Parameter Change

The VxWorks 6.x version of the vmBaseLiblInit() routine takes the parameter
cacheDefault. The VxWorks 5.5 version of the routine takes the parameter pageSize.

NOTE: In general, library initialization routines should not be called by user code;
they should only be called by the operating system.

3.5.7 Changed Virtual Memory Routines

The vinBaseStateSet() and viStateSet() routines are not fully backward
compatible with the VxWorks 5.5 versions. For more information, see 3.4.1 VxVMI
and Migration, p.42.

3.5.8 Memory Partition Options

This section provides a summary of the new and changed memory partition
options introduced in VxWorks 6.2. For more information about the memory
partition error handling options see the reference entry for the memLib kernel
library and the memPartLib application library, as well as the kernel and
application versions of memPartOptionsSet() and memOptionsSet(). For more
information about the error detection and reporting facility and policy handlers
see the VxWorks Kernel Programmer’s Guide: Error Detection and Reporting.

New Options

In VxWorks 6.2 the following new memory partition options have been added to
memPartLib.c and memLib.c:

MEM_ALLOC_ERROR_EDR_FATAL_FLAG
Inject a fatal event when there is an error in allocating memory.

MEM_ALLOC_ERROR_EDR_WARN_FLAG
Inject a warning when there is an error in allocating memory.

48

3 Migrating Kernel Applications
3.5 System Changes

MEM_BLOCK_ERROR_EDR_FATAL_FLAG
Inject a fatal event when there is an error in freeing or reallocating memory.

MEM_BLOCK_ERROR_EDR_WARN_FLAG
Inject a non-fatal event when there is an error in freeing or reallocating
memory.

Enabling the error detection and reporting-specific options does not require the
infrastructure to be enabled. However, when error detection and reporting is
enabled, these flags provide additional debug capability, such as call stack trace
information.

Deprecated Options

The following options are deprecated; for alternatives, see Replacement Options,
p-49.

MEM_ALLOC_ERROR_SUSPEND_FLAG
Suspend the task when there is an error in allocating memory unless the task
was spawned with the VX _UNBREAKABLE option.

MEM_BLOCK_ERROR_SUSPEND_FLAG
Suspend the task when there is an error in freeing or reallocating memory,
unless the task was spawned with the VX_UNBREAKABLE option.
Replacement Options

MEM_ALLOC_ERROR_EDR_FATAL_FLAG
This flag replaces MEM_ALLOC_ERROR_SUSPEND_FLAG. It differs in that it
suspends all tasks, including unbreakable ones.

MEM_BLOCK_ERROR_EDR_FATAL_FLAG
This flag replaces MEM_BLOCK_ERROR_SUSPEND_FLAG. It differs in that it
suspends all tasks, including unbreakable ones.

For information on modifying the behavior of the fatal error flags, see the VxWorks
Kernel Programmer’s Guide: Error Detection and Reporting.

Changed Default Options

In the kernel, the default memory partition options have been changed as follows:

49

VxWorks
5.5 Migration Guide, 6.6

Figure 3-1 Changes to Kernel Default Memory Partition Options

VxWorks 6.2 Prior Versions

MEM_ALLOC_ERROR_LOG_FLAG MEM_ALLOC_ERROR_LOG_FLAG
MEM_ALLOC_ERROR_EDR_WARN_FLAG -

MEM_BLOCK_CHECK MEM_BLOCK_CHECK
MEM_BLOCK_ERROR_LOG_FLAG MEM_BLOCK_ERROR_LOG_FLAG
MEM_BLOCK_ERROR_SUSPEND_FLAG MEM_BLOCK_ERROR_SUSPEND_FLAG

MEM_BLOCK_ERROR_EDR_WARN_FLAG -

NOTE: The default partition options are applied to all new partitions created,
including the heap memory partition. In the kernel, these default options apply
when the INCLUDE_MEM_MGR_FULL component is included.

The addition of the error detection and reporting warning flags in kernel space
does not have backward compatibility consequences.

In future releases the MEM_BLOCK_ERROR_SUSPEND_FLAG flag will be removed
from the default options.
Restoring Prior Options

If you prefer to deploy the default memory partition options of previous releases,
memOptionsSet() can be used for the heap memory partition. For example:

memOptionsSet (MEM_ALLOC_ERROR_LOG_FLAG | MEM_BLOCK_CHECK |

MEM_BLOCK_ERROR_LOG_FLAG | MEM_BLOCK_ERROR_SUSPEND_FLAG).
3.5.9 Private Structures and Routines

The excLib library documentation has changed. The excTask() routine, which was

not intended to be public, is no longer published. The excJobAdd() routine is now
provided.

50

3 Migrating Kernel Applications
3.6 /O System Changes

3.5.10 Deprecated Power Management APls

With the introduction of the new power management facility, the

vxPowerModeSet() and vxPowerModeGet() routines are deprecated. The
routines still exist but have no effect on power management. Applications making

use of these routines should migrate to APIs provided by the light CPU power

manager.

To migrate your kernel applications to the new facility, do the following:

* Replace calls to vxPowerModeSet(VX_POWER_MODE_DISABLE) with
cpuPwrMgrEnable(FALSE).

= Replace calls to vxPowerModeSet(VX_POWER_MODE_AUTOHALT) with
cpuPwrMgrEnable(TRUE).

» Replace calls to vxPowerModeGet() with cpuPwrMgrIsEnabled(). Note that
the return values for these two routines are not the same.

The INCLUDE_CPU_LIGHT_PWR_MGR component is used to include or exclude
this module from VxWorks. It is included in the default VxWorks configuration.

3.5.11 Removed APIs

The following unpublished routines are not available in this release:

semBCorelnit()

semCCorelnit()

semMCorelnit()
semQInit()

If you have used these unpublished APIs with a past release, you should modify
your code to use semBlnitialize(), semClnitialize(), and semMInitialize()
routines (or their associated macros) instead.

3.6 I/0 System Changes

The I/O system has been updated to support POSIX compliance as well as the new
file system architecture.

51

VxWorks
5.5 Migration Guide, 6.6

1/0 Error Code Value Changes

Table 3-5

In order for the VxWorks I/O system to be more in-line with POSIX 1/O system
error codes, the numeric values for the old VxWorks I/O-related errors have been
changed. The macro names have not been changed; only the numeric values that
represent them have changed.

Because VxWorks had a richer set of error codes than POSIX, some of the VxWorks
error codes are no longer numerically unique. This could cause application code
that tries to decode the numeric values to fail with compiler errors. For example, a

switch statement that tries to decode S_iosLib_NO_DEVICE_FOUND and
S_ioLib_NO_DEVICE_NAME_IN_PATH as different cases now generates a
compiler error because the two are not unique.

Table 3-5 provides a mapping of VxWorks error codes to their POSIX equivalents.
This table contains those error codes that are no longer numerically unique.

VxWorks I/0O Errors with Non-Unique Numeric Error Codes

VxWorks Name POSIX Name
S_iosLib_NO_DEVICE_FOUND ENODEV
S_ioLib_NO_DEVICE_NAME_IN_PATH ENODEV
S_iosLib_CONTROLLER_NOT_PRESENT ENXIO
S_ioLib_DISK_NOT_PRESENT ENXIO
S_ioLib_NO_DRIVER ENXIO
S_iosLib_DUPLICATE_DEVICE_NAME EINVAL
S_iosLib_INVALID_ETHERNET_ADDRESS EINVAL
S_ioLib_NO_FILENAME EINVAL
S_ioLib_DEVICE_ERROR EIO
S_ioLib_DEVICE_TIMEOUT EIO
S_ioLib_UNFORMATTED EIO

Table 3-6 provides a list of error codes that are still numerically unique.

52

3 Migrating Kernel Applications
3.7 File System Changes

Table 3-6 VxWorks I/O Errors with Unique Numeric Error Codes

VxWorks Name POSIX Name
S_iosLib_DRIVER_GLUT ENOMEM
S_iosLib_INVALID_FILE_DESCRIPTOR EBADF
S_iosLib_TOO_MANY_OPEN_FILES EMFILE
S_ioLib_UNKNOWN_REQUEST ENOSYS
S_ioLib_WRITE_PROTECTED EACCES
S_ioLib_CANCELLED ECANCELED
S_ioLib_NAME_TOO_LONG ENAMETOOLONG
S_ioLib_CANT_OVERWRITE_DIR EISDIR

3.7 File System Changes

If an application does not use a custom block device driver or file system, the
changes to the changes to the file system should have no impact on your
application, other than minor changes to initialization APIs.

VxWorks 6.2 introduces extensive changes to file system support. This section
contains information about migrating your kernel applications. For an overview of
XBD support, the new highly reliable file system (HRFS), and other changes, see
2.8.12 File System Changes, p.22. For more information, see the VxWorks Kernel
Programmer’s Guide: Local File Systems.

3.7.1 Extended Block Device (XBD) Support

Under the new XBD facility, only file system code should directly access XBDs. If
it is necessary to access the underlying device, rawFs is available.

53

VxWorks
5.5 Migration Guide, 6.6

XBD Replaces CBIO

Table 3-7

The XBD facility resides between the file system and the driver, replacing CBIO. In
most cases, migration is straightforward.

The Wind River device drivers for USB block storage, ATA, and RAM disk
devices have been updated to be compliant with the XBD driver interface. The
only migration steps are:

— Include the INCLUDE_XBD component in your VxWorks project.

— Remove any code that directly initializes a file system. For example, a call
to dosFsDevCreate() must be removed.

The BLK_DEV-based device drivers for floppy drives, SCSI, and TrueFFS (the
disk-access emulator for flash) have not been updated to be compliant with the
XBD driver interface. They require the XBD wrapper component in order to
work with the XBD facility.

— Inaddition to INCLUDE_XBD, add the INCLUDE_XBD_BLK_DEV
component in your VxWorks project.

— Remove any code that directly initializes a file system.

Custom drivers that were compliant with the BLK_DEV interface can be used
with XBD by using INCLUDE_XBD_BLK_DEV.

Custom drivers that were not BLK_DEV-compliant must be migrated to be
either BLK_DEV-compliant or XBD-compliant. XBD is the preferred route.

XBD Support for Wind River Drivers

XBD-Compliant Drivers Requiring XBD
Drivers Wrapper Component

USB block storage Floppy devices

ATA SCSI
RAM disk TrueFFS
xbdBlkDev.c

XBDs replace CBIO and block device drivers. These are soft or logical extended
block devices. The xbdBlkDev.c library provides the XBD block wrapper for
BLK_DEYV drivers.

54

3 Migrating Kernel Applications
3.7 File System Changes

xbdBlkDevLibInit()
This routine initializes the XBD block wrapper library.

xbdBlkDevCreate()
This routine creates an XBD block device wrapper on top of a BLK_DEV device.

xbdBlkDevDelete()
This routine destroys a previously created XBD block device wrapper.
cdromFsLib.c

cdromFsDevCreate()
This routine now takes a device_t instead of a BLK_DEV *. However, it is not
necessary to call this routine in VxWorks 6.x as the new file system framework
calls it automatically when the CD-ROM device is detected.

cdromFsVersionDisplay()
cdromFsVersionNumGet()
These routines are deprecated.
usrFdiskPartLib.c
While still supported, this component and all CBIO-based components are
deprecated.
partLib.c

partLib.c is the XBD version of the usrFdisk component. Include it with
INCLUDE_XBD_PART_LIB.

xbdCreatePartition()
This routine creates an FDIDK-like partition table on a disk.
xbdRamDisk.c

The following routines are provided by xbdRamDisk.c, the XBD version of the
BLK_DEV and CBIO RAM disk components.

xbdRamDiskDevCreate()
This routine creates an XBD RAM disk. It replaces ramDiskDevCreate().

xbdRamDiskDevDelete()
This routine deletes a previously created XBD RAM disk.

55

VxWorks
5.5 Migration Guide, 6.6

Disk Partitioning

The usrFdiskPartCreate() routine is no longer used for disk partitioning. It is
replaced by the xbdCreatePartition() routine.
STATUS xbdCreatePartition
(

char * pathName,

int nPart,
int sizel,
int size2,
int size3

)

This routine creates a partition table using pathName to specify the appropriate
XBD. The nPart parameter indicates the number of partitions to create (up to 4).
The sizel, size2, and size3 parameters indicate the percentage of the disk to use for
the first, second and third partitions respectively.

This routine performs the following steps:

= Removes all of the file systems and intermediate XBDs from the XBD stacks
based on a single XBD.

* Removes the partition manager.
= Places a partition table on the XBD which actually accesses the media.

= Recreates the XBD stacks by creating a new partition manager based on the
newly created table.

Fallback to rawFs

In situations in which a file system cannot be detected on an XBD, or where
unformatted access to the media is required (as when formatting a file system or
partitioning a disk) rawFs is used as a file system on the XBD. The top of every XBD
stack is accessible in core I/O as a pathname; if no other file system exists, then that
XBD stack is accessed by rawFs.

3.7.2 Disk Formatting

Disk formatting routines, such as dosFsVolFormat() and hrfsFormat(), take a
pathname argument that specifies what to format. That pathname must refer to an
entry in the core I/O device table (accessible by the devs command). Once
formatting is complete, the path refers to the newly formatted file system. This
differs from pre-VxWorks 6.2 versions, when you created the file system by calling
xxxDevCreate(). Now, once you format the disk, file system creation is automatic.

56

3 Migrating Kernel Applications
3.7 File System Changes

3.7.3 ioctl() Commands Removed

Several ioctl() commands are no longer supported by file systems.

FIODISKCHANGE
This command is no longer supported. XBD-based devices determine their
status either automatically or by calling the XBD_TEST ioctl() command.
XBD_TEST causes the devices to test for status and insert or remove a new file
system as appropriate.

FIOFORMAT
This command is no longer supported. There are now multiple, general
purpose file systems, which cannot be specified using FIOFORMAT ioctl().

3.7.4 usrFsLib.c

There have been some changes to ustFsLib.c. Most routines have stayed the same,
but the following APIs have changed:

diskFormat()
This routine is deprecated and prints a warning, but proceeds with formatting
the device for dosFs.

diskInit()
This routine is deprecated and prints an error when used.

dosfsDiskFormat()
This routine is new in VxWorks 6.2; it replaces disklInit() and diskFormat().

57

VxWorks
5.5 Migration Guide, 6.6

3.7.5 dosFS

VxWorks no longer supports dosFs 1.0, which was deprecated in the VxWorks 5.x
time frame.

dosFs 2.0 Migration APls Removed

This VxWorks release does not provide backward compatibility with the dosFs 1.0
APL The following migration routines have been replaced with empty stub
routines:

dosFsInit()
dosFsDevInit()
dosFsDevInitOptionsSet()
dosFsMkOptionsSet()
dosFsConfigInit()
dosFsConfigGet()
dosFsConfigShow()
dosFsModeChange()
dosFsReadyChange()
dosFsVolOptionsGet()
dosFsVolOptionsSet()
dosFsDateTimelInstall()

Caches and Cache Tuning

The cache has been modified so that the FAT, directory entries, and the data each
have their own cache. This allows for finely tuning the cache and improved
performance. The following parameters to INCLUDE_DOSFS_CACHE allow for
cache configuration:

* DOSFS_DEFAULT_FAT_CACHE_SIZE (default 16 KB)
* DOSFS_DEFAULT_DATA_CACHE_SIZE (default 128 KB)
* DOSFS_DEFAULT_DIR_CACHE_SIZE (default 64 KB)

These parameters replace DOSFS_DEFAULT_CACHE_SIZE (which does exist in
this release). The settings for a particular cache can be retrieved using
dosFsCachelnfo() and dosFsCacheTune().

58

3 Migrating Kernel Applications
3.7 File System Changes

The dosFsCacheCreate() routine now takes additional parameters for all three
cache types.

Other API Changes s

dosFsLib.c

dosFsDevCreate()
This routine now takes a device_t instead of a CBIO_DEVI_ID. However, it is
not necessary to call this routine in VxWorks 6.2 as the new file system
framework calls it automatically when the CD-ROM device is detected.

dosFsFmtLib.c

dosFsVolFormat()
This routine now exclusively takes the name of the device to format:

Previous: void *device

Current: char *device

3.7.6 Modified I/O APIs

The following file system routines have changed:

creat()
This routine now accommodates HRFS permission bits. This means that it is
unchanged for dosFs, but for HRFS, you change the open mode flags to
permission bits. For example:

dosFs:
creat ("/mydiskimyfile", O_RDWR);

HREFS:
creat ("/mydiskimyfile", 0666);

fentl()
This routine now supports advisory file locking. The following values for the
command argument are now supported:

F_GETLK
Find out if a lock already exists.

F_SETLK
Set a shared or exclusive lock, or return -1.

59

VxWorks
5.5 Migration Guide, 6.6

F_SETLKW
Set a shared or exclusive lock, waiting until the resource is available if
necessary. Return -1 if interrupted before the lock is set.

rmdir()
This routine now removes. and.. entries on HRFS if the directory being
removed is open; this conforms to the POSIX standard.

3.8 POSIX Support Changes

The changes in POSIX support in the kernel are discussed in this section.

POSIX Message Queues

Several changes have been made to the mq_des structure.

In both VxWorks 5.5 and VxWorks 6.x, the POSIX message queue (mqPxLib)
structure type mqd_t is defined as follows in mqueue.h:

struct mg des;

typedef struct mg des * mqgd_t;
The internals of the mq_des structure have changed between VxWorks 5.5 and
VxWorks 6.x. Because this structure is defined in a private header
(installDirlvxworks-6.x/target/h/private/mqPxLib.h), the possibility of
applications accessing mqd_t internals is much less likely than in the POSIX
semaphore situation described below. However, the impact of the change to the
mgq_des structure is that an mqd_t value is no longer a VxWorks kernel object ID.
In concrete terms, performing the following no longer works:

magd_t mg id = mg open ("test", 0x202, 0, 0);
show (mg_id);

Instead, the mqPxShow() command must be substituted for show():

magd_t mg id = mg open ("test", 0x202, 0, 0);
mgPxShow (mg_id) ;

60

3 Migrating Kernel Applications
3.8 POSIX Support Changes

POSIX Thread Support

Several changes have been made to pthreadLib, as follows:

pthread_attr_setstacksize()
This routine now returns the EINVAL status if the stack size is smaller than
PTHREAD_STACK_MIN. Previously (in VxWorks 5.5), stack size was not
checked, even though this check is required by the POSIX standard.

pthread_create()
This routine now returns the EINVAL status if the a user-supplied stack area is
provided but its size is not valid. Previously (in VxWorks 5.5), the stack size, if
invalid, was forced to the default stack size. Then, because no stack area of this
default size was actually provided by user code, thread creation would (at
best) fail with an EAGAIN status. According to the POSIX standard, EINVAL is
the status that should be returned when the thread attributes are invalid. The
EAGAIN error status should be returned when the system does not have the
necessary resources to create a new thread, which is not the case in this
situation.

POSIX Semaphores

Several changes have been made to semPxLib.

The sem_t type is defined as follows in the VxWorks 5.5 semaphore.h file:

typedef struct sem_des /* sem_t */
{
OBJ_CORE objCore; /* semaphore object core */
SEM_ID semId; /* semaphore identifier */
int refCnt; /* number of attachments */
char * sem_name; /* name of semaphore */
} sem_t;

In VxWorks 6.x, the definition of the structure has been made private
(private/semPxLibP.h) and the definition of sem_t appears as follows in
semaphore.h:

typedef void * sem_t;

It is non-standard for POSIX applications to access the internals of the sem_t
structure. Any application that accesses the internals of the sem_t structure must
be modified to execute in VxWorks 6.x, preferably by eliminating such references.

61

VxWorks
5.5 Migration Guide, 6.6

POSIX Thread APIs

The following pthread routines have been modified:

pthread_attr_getdetachstate()
This routine now returns the EINVAL error code if either the pAttr parameter
or the pDetachState parameter is not valid.

pthread_attr_getname()
This routine now returns the EINVAL error code if either the pAttr parameter
or the name parameter is not valid.

pthread_attr_getopt()
This routine now returns the EINVAL error code if either the pAttr parameter
or the pOptions parameter is not valid.

pthread_attr_getschedpolicy()
SCHED_OTHER is now described as the equivalent of the active native
VxWorks scheduling policy.

pthread_attr_getstackaddr()
This routine now returns the EINVAL error code if either the pAttr parameter
or the ppStackAddr parameter is not valid.

pthread_attr_getstacksize()
This routine now returns the EINVAL error code if either the pAttr parameter
or the pStackSize parameter is not valid.

pthread_attr_init()
This routine now sets the default scheduling policy to be SCHED_OTHER, the
active VxWorks native scheduling policy, instead of SCHED_RR.

pthread_attr_setdetachstate()
This routine now returns the EINVAL error code if the pAttr parameter is not
valid.

pthread_attr_setname()
This routine now returns the EINVAL error code if the pAttr parameter is not
valid.

pthread_attr_setschedpolicy()
SCHED_OTHER is now described as the equivalent of the active native
VxWorks scheduling policy.

62

3 Migrating Kernel Applications
3.8 POSIX Support Changes

pthread_attr_setscope()
This routine now returns the error code ENOTSUP, instead of indicating
success, for the specific case when the requested contention scope is
PTHREAD_SCOPE_PROCESS.

pthread_attr_setopt()
This routine now returns the EINVAL error code if the pAttr parameter is not
valid.

pthread_attr_setstackaddr()
This routine now returns the EINVAL error code if the pAttr parameter is not
valid.

pthread_attr_setstacksize()
This routine now returns the EINVAL error code if the pAttr parameter is not
valid.

pthread_create()
This routine now returns the EPERM error code instead of ENOTTY when the
requested scheduling policy is not the current system one. It no longer fails
when the requested scheduling policy is SCHED_OTHER because this now
defaults to using the active native scheduling policy.

pthread_getschedparam()
The reference entry for this routine has been updated.

pthread_setschedparam()
This routine now returns the EPERM error code, instead of EINVAL, when the
scheduling policy is not the same as the active native VxWorks scheduling

policy.

POSIX Signal APIs

The following signal routines have been modified:

sigtimedwait()
The API for this routine has changed from:

int sigtimedwait (const sigset_t, struct siginfo, const struct
timespec) ;

to:
int sigtimedwait (const sigset_t, siginfo_t, const struct timespec) ;

This change is to conform with POSIX but should be transparent to existing
application code.

63

VxWorks
5.5 Migration Guide, 6.6

sigwaitinfo()
The API for this routine has changed from:

int sigwaitinfo (const sigset_t, struct siginfo);
to:
int sigwaitinfo (const sigset_t, siginfo_t);

This change is to conform with POSIX but should be transparent to existing
application code. This routine may set errno to ESRCH. For more information,
see the reference entry.

1/0 System Device Control APIs

The following I/O system device control routines have been modified:

iosDevDelete()

iosDrvRemove()
The iosDevDelete() and iosDrvRemove() APIs now support the device
delete callback feature. This is transparent to existing applications. For more
information on these routines, see the reference entries and the VxWorks Kernel
Programmer’s Guide: 1/O System.

POSIX-Related Changes in Libraries and APls

API changes support the POSIX clock and timer, and POSIX threads.

POSIX Clock and Timer
The following routines have been modified:

timer_settime()
This routine now rounds up time values that are between two consecutive
non-negative integer multiples of the resolution of the specified timer to the
larger multiple of the resolution.

POSIX Threads
The following routines have been modified:

pthread_cancel()
This routine no longer discards cancellation requests against threads in the
PTHREAD_CANCEL_DISABLE or PTHREAD_CANCEL_DEFERRED states.

64

3 Migrating Kernel Applications
3.8 POSIX Support Changes

pthread_cond_init()
This routine no longer checks whether the mutex or condition variable object
it initializes is already initialized, and potentially, in use.

pthread_cond_timedwait()
This routine now correctly handles its timeout value and can return the
ETIMEDOUT error.

pthread_cond_wait()
This routine now checks that its pthread_mutex_t parameter is a valid object
and returns EINVAL if it is not.

pthread_exit()
This routine now sets the exiting thread cancellation type to
PTHREAD_CANCEL_DEFERRED and its cancellation state to
PTHREAD_CANCEL_DISABLE in order to prevent cancellation loops if a
cleanup handler is a cancellation point.

pthread_getspecific()
This routine now returns NULL when called with a valid key parameter to
which no value is associated. (This occurs when no corresponding call to
pthread_setspecific() has been made.)

pthread_mutexattr_init()
This routine now initializes all the fields of its pthread_mutexattr_t argument.

pthread_mutex_init()
This routine no longer checks whether the mutex or condition variable object
it initializes is already initialized, and potentially, in use.

pthread_mutex_lock()
This routine now correctly handles the PTHREAD_PRIO_PROTECT protocol
and no longer risks triggering a priority inversion situation.

pthread_mutex_setprioceiling()
This routine now checks whether the new priority ceiling value is within the
supported range of priorities (that is, 0 to 255).

pthread_mutex_trylock()
This routine now correctly handles the PTHREAD_PRIO_PROTECT protocol
and no longer risks triggering a priority inversion situation.

pthread_mutex_unlock()
This routine now checks whether the calling thread owns the semaphore
before it changes the priority of the thread when the
PTHREAD_PRIO_PROTECT protocol applies.

65

VxWorks
5.5 Migration Guide, 6.6

3.9 WindView/System Viewer: wvLib

Note that WindView was renamed System Viewer with VxWorks 6.0.

The wvLib library has been updated for VxWorks 6.x in order to simplify creation
of System Viewer logs. It is no longer necessary to create and manage the log
header, task name buffer, and ring buffer as separate entities. Instead, a ring buffer
is created and added to a System Viewer log; the log is managed as a single item.
Examples are provided in the wvLib documentation, and also in the supplied
wvOn() and wvOff() routines.

APIs Changed

The following System Viewer routine has changed:

wvUploadStart()
This routine, used to upload System Viewer log data to a host, now takes a
pointer to a WV_LOG structure instead of a pointer to a ring buffer.

APIs Removed

The following System Viewer routines have changed:

wvEvtLoglInit()
Event logging is now initialized when the System Viewer log is created, as part
of wvLogCreate().

wvLogHeaderCreate()
The log header is now created when the System Viewer log is created, as part
of wvLogCreate().

wvLogHeaderUpload()
The entire log is now uploaded as a single entity as part of wvUploadStart(),
rather than in parts.

wvTaskNamesPreserve()
Task name preservation is now done as part of System Viewer log creation, in
wvLogCreate().

wvTaskNamesUpload()
Task names are now uploaded as part of the System Viewer log upload, by
wvUploadStart().

66

Migrating BSPs and Drivers

4.1 Introduction 67
4.2 Migrating BSPs 68
4.3 Migrating Drivers 81

4.1 Introduction

The goal of this chapter is to provide an example of how to convert VxWorks 5.5
BSPs and drivers to VxWorks 6.6. The Wind River BSPs shipped with VxWorks 6.x
can be used for reference purposes.

This chapter provides information specific to migrating VxWorks 5.5 BSPs and
drivers to VxWorks 6.6. You should also consult 2. VxWorks and Development
Environment Changes for general information about 5.5-to-6.6 migration, much of
which is relevant to BSP and driver migration as well.

For a complete discussion of BSPs, including new features provided with VxWorks
6.x, see the VxWorks BSP Developer’s Guide. For information about drivers,
including the 6.x XBD driver interface, see the VxWorks Device Driver Developer’s
Guide.

Note that VxWorks 6.x BSPs do not work with VxWorks 5.5, meaning you cannot
build and run a VxWorks 6.x BSP in a VxWorks 5.5 environment.

67

VxWorks

5.5 Migration Guide, 6.6

4.2 Migrating BSPs

This section covers the process of migrating a VxWorks 5.5 BSP to VxWorks 6.6,
including the step-by-step procedure and additional detail on several topics.

4.2.1 Planning for BSP Migration

Wind River recommends that you study VxWorks 6.6 BSPs to see what changes
might be required for your VxWorks 5.5 BSP. A few changes (such as the need to
recompile) affect your BSP even if you choose not to use new VxWorks 6.x
capabilities. Other changes need only concern you when you incorporate new
functionality. Note that the sets of BSPs supported for 5.5 and 6.6 are different.

The following checklist highlights the areas that you may have customized in your
BSP; the steps you must take if you have done so are detailed in 4. Migrating BSPs
and Drivers.

1.

68

Is your architecture supported?
See your product release notes for a complete list of supported architectures.
Is your host supported, and is your preferred compiler supported on that host?

See your product release notes for a complete list of supported hosts and
compilers.

Is your BSP based on VxWorks 5.5?

WARNING: If your BSP is based on a release older than VxWorks 5.5, you must
first migrate your BSP to VxWorks 5.5. For instructions on migrating a BSP to
VxWorks 5.5, see the Tornado Migration Guide, 2.2.

Do you have existing VxWorks 5.5-based code that must be migrated?
Does your BSP include or link with any third-party binary libraries or objects?

Any binary objects provided by customers or third-parties must be recompiled
to be compatible with VxWorks 6.x data structures and headers.

Does your BSP contain modified versions of any standard files from the
installDirTornadoltarget/config/all directory? If you have modified any of the
standard BSP files, then you must migrate those changes to the latest versions
of those files.

4 Migrating BSPs and Drivers
4.2 Migrating BSPs

7. Does the BSP contain modified versions of any standard configlette files from
installDirTornadoltarget/src/config or installDirTornado/target/config/comps/src?

If you have modified any of the standard configlette files, then you must
migrate those changes to the latest versions of those files.

8. Does the BSP try to patch any architecture code through means other than a
published hook or call-out function?

9. Does the BSP have customized make targets or rules?

4.2.2 BSP Migration Steps

Step 1:

Step 2:

Step 3:

The following steps explain how to port a BSP so that it is compatible with
VxWorks 6.6.

NOTE: These steps are cumulative. You must follow the steps in the order shown
in order for the later ones to work properly.

Copy your BSP.
Copy your BSP to the VxWorks 6.x directory structure.

Establish your environment.

If you are using Workbench, this is automatic. From the command line, start wrenv
as described in 2.2 Environment Variables and Development Shell, p.6.

Make local copies and customize non-standard files.

If your BSP contains a modified version of any of the standard files from the
installDirTornado/target/config/all directory, the corresponding files provided in
installDir/[vxworks-6.x/target/config/all must be patched with your changes. Make
a local copy of the common file in your BSP directory before patching it. Use the
filename build macro in Makefile under your BSP.

WARNING: This procedure may not work, depending on what you have modified
and how you have modified it. Many of the standard files have been extensively
modified for VxWorks 6.x, so that it may not be obvious how to reapply the
changes. You should expect the effort to modify the files again to be equivalent to
the effort required to make the modifications to the previous version of the
standard file.

69

Step 4:

Step 5:

Step 6:

VxWorks
5.5 Migration Guide, 6.6

Create custom configlettes.

If your BSP contains a modified version of any of the standard configlette files in
installDirTornadoltarget/src/config or installDirTornado/target/config/comps/src,
the modifications must be re-applied to the VxWorks 6.x configlette files in
installDirlvxworks-6.x/target/src/config or installDirfvxworks-6.x/target/config/comps/src
and added to your BSP. Do not expect to copy the working VxWorks 5.5 or 5.5.1
files; Wind River has made extensive changes in many configlettes. Instead, use the
following procedure:

1. Copy the files from target/src/config to your BSP directory and link them using
MACH_EXTRA. For example:

MACH_EXTRA = usrNetwork.o

2. Copy the modified file from target/comps/src to your BSP directory and
rename the file.

3. Make modifications to bsp.cdf in your BSP directory to include your file for a
component name. Decide on a component name for your changed file.

4. Merge changes in the modified VxWorks 5.5 or 5.5.1 configlettes with the
Wind River changes that were applied to VxWorks 6.x. If you choose a merge
method that requires a common ancestor, the as-shipped files from 5.5 or 5.5.1 (as
applicable) can be used for this purpose.

NOTE: Depending on the nature of your changes, some amount of redesign
may be needed. In some cases, it may be easier to reapply your changes to the
VxWorks 6.x files.

Copy and link any custom files.

If your BSP patches any architecture code through means other than a published
hook or call-out function, copy the custom architecture file to the BSP and link it
using MACH_EXTRA.

Optionally Update your cache library APlIs.

Optionally, update your BSP to use the architecture-independent cache library
APT; replace routines named cacheArch* or cachePpc* with their associated
architecture-independent cache routines.

70

Table 4-1

Step 7:

4 Migrating BSPs and Drivers
4.2 Migrating BSPs

Sample Routine Replacements

Architecture-dependent Architecture-independent
Routines Routines

cacheArchFlush() cacheFlush()

cacheArchInvalidate() cachelnvalidate()

cachePpcEnable() cacheEnable()

cachePpcDisable() cacheDisable()

Add support for the new shared-memory networking driver (if used).

The old shared-memory driver, if_sm, is no longer supported. If your BSP will
support shared memory, make the following changes to support the new smEnd
driver.

Change config.h.

If INCLUDE_SM_NET is defined in the original BSP, conditionally include the
INCLUDE_SMEND component. Remove the INCLUDE_BSD component if it is
defined.

Change configNet.h.

Add the shared memory entry in the endDevTbl[] before the last NULL
entry.

For example:

#ifdef INCLUDE_SMEND

define SMEND_LOAD_STRING

define SMEND_LOAD_FUNC sysSmEndLoad
IMPORT END_OBJ* SMEND_LOAD_FUNC (char*, void*);
#endif /* INCLUDE_SMEND */

#ifdef INCLUDE_SMEND

{ 0, SMEND_LOAD_FUNC, SMEND_LOAD_STRING, O,
NULL, FALSE},

#endif

Create a new routine, sysSmEndLoad().

Although this routine can be placed in any appropriate file (such as sysNet.c),
some BSPs include a placeholder for sysSmEndLoad(). (This is the case, for
example, with mv5100/sysSmEnd.c.)

71

Step 8:

Step 9:

Step 10:

VxWorks
5.5 Migration Guide, 6.6

The routine sysSmEndLoad() converts all shared memory configuration
parameters to a load string. The load string format is as follows:

"unit:p Anchor:smAddr:memSize:tasType:maxCpus:masterCpu:local Cpu:
maxPktBytes:maxInputPkts:intType:int Argliint Arg2:int Arg3:mbNum:
cbNum:configFlg:pBoot Params"

= If you create a new file for the routine described in the previous step, modify
sysLib.c or Makefile to include this file.

In sysLib.c:
#ifdef INCLUDE_SMEND
include "./sysSmEnd.c"
#endif /* INCLUDE_SMEND */
In Makefile:
MACH_EXTRA = sysSmEnd.o

NOTE: usrNetwork.c and bootConfig.c have been modified to support the shared
memory END driver.

Update any custom make rules.

Make sure any custom rules are in Makefile under the BSP, and that they are
documented in the target.ref file. This requires case-by-case evaluation. For more
information, see 2.4.1 Makefile and make Changes, p.8.

Build your BSP.

The level of compiler warning and error checking in Wind River’s BSP makefiles
has increased. This results in higher quality BSPs. However, some BSPs that
compiled silently using the VxWorks 5.5 and 5.5.1 makefiles require modification
to compile without errors or warnings in VxWorks 6.x.

In order to avoid compiler warnings and errors for your BSP, you can increase the
level of checking in your BSP makefiles and consider rewriting your code if
necessary (Wind River recommends this approach) or you may choose to reduce
the level of checking. For information on how to do this, see 4.2.5 Addressing
Compiler Errors and Warnings, p.76 and the documentation for your compiler.

Change the version number.

In config.h, update the BSP version to correspond to the operating system version,
and also increment the BSP revision. For example:

#define BSP_VERSION "2.0"
#define BSP_REV "/4" <- increased by 1

72

Step 11:

Step 12:

Step 13:

4 Migrating BSPs and Drivers
4.2 Migrating BSPs

The BSP_VERSION definition should be 2.0 for all VxWorks 6.x BSPs.

In the README, add release notes for the VxWorks 6.x version. An example of a
Wind River BSP entry is:

RELEASE 2.0/4
Released by Wind River for VxWorks 6.6.

Migrate the Ethernet MAC address boot loader command.

In providing boot loader support that works easily, it helps if a BSP is modified to
use the M interface to MAC addresses. There are a number of problems with the
existing N command. For this reason, you may wish to add M command support,
while keeping the N command for backward compatibility. For more information
and directions, see 4.2.6 Implementing the M Command, p.77.

Convert your BSP documentation.

Many BSP developers want to provide documentation similar to that provided for
Wind River BSPs. For this reason, the tools that Wind River uses internally to
generate BSP documentation are provided with this release.

The following is a summary of the required steps:
1. Convert target.nr to the current format.

2. Convert other BSP documentation.

3. Test the BSP documentation build.

4. Update the infrastructure files.

For detailed instructions, see 4.2.7 Converting BSP Documentation, p.79.

Compile your BSP and documentation.

Build both your VxWorks image and your BSP documentation. See 2.5 Compilers,
p-9 and your product getting started.

73

VxWorks
5.5 Migration Guide, 6.6

4.2.3 PowerPC BSPs and SDA

The VxWorks kernel initialization process now initializes PowerPC SDA /SDA2
base registers. If a custom BSP invokes a C function from within _sysInit()—that

is, before the invocation of usrInit()—the SDA /SDAZ2 base registers need to be
initialized prior to calling the C function. They should be initialized as follows:

lis r2, HI(_SDA2_BASE_)

ori r2, r2, LO(_SDA2_BASE)
lis rl3, HI(_SDA_BASE_)

ori rl3, rl3, LO(_SDA_BASE_)

4.2.4 Replacing VM_STATE_xxx Macros

Table 4-2

The VM_STATE_xxx macros may be deprecated in a future release. You may,
therefore, want to replace the VM_STATE_xxx macros in sysPhysMemDesc|]
(located in sysLib.c) with the MMU_ATTR_xxx macros as shown in Table 4-2.

In VxWorks 6.x, the VM_STATE_xxx macros are mapped to the appropriate
MMU_ATTR_xxx macros. However, For definitions of VM_STATE_xxx and
MMU_ATTR_xxx, see the vmLib.h and vmLibCommon.h header files.

Old and New Memory Protection Macros

VxWorks 5.5 Macros

VxWorks 6.x Macros

VM_STATE_MASK_VALID
VM_STATE_MASK_WRITABLE
VM_STATE_MASK_CACHEABLE
VM_STATE_MASK_MEM_COHERENCY
VM_STATE_MASK_GUARDED
VM_STATE_VALID
VM_STATE_VALID_NOT
VM_STATE_WRITABLE

VM_STATE_WRITABLE_NOT

MMU_ATTR_VALID_MSK
MMU_ATTR_PROT_MSK
MMU_ATTR_CACHE_MSK
MMU_ATTR_CACHE_MSK
MMU_ATTR_CACHE_MSK
MMU_ATTR_VALID
MMU_ATTR_VALID_NOT
MMU_ATTR_SUP_RWX

(MMU_ATTR_PROT_SUP_READ |
MMU_ATTR_PROT_SUP_EXE)

74

4 Migrating BSPs and Drivers
4.2 Migrating BSPs

Table 4-2 Old and New Memory Protection Macros (cont'd)

VxWorks 5.5 Macros VxWorks 6.x Macros
VM_STATE_CACHEABLE MMU_ATTR_CACHE_DEFAULT
VM_STATE_CACHEABLE_NOT MMU_ATTR_CACHE_OFF
VM_STATE_MEM_COHERENCY MMU_ATTR_CACHE_COHERENCY

VM_STATE_MEM_COHERENCY_NOT 0 (set this macro to 0 for VxWorks 6.x)
VM_STATE_GUARDED MMU_ATTR_CACHE_GUARDED

VM_STATE_GUARDED_NOT 0 (set this macro to 0 for VxWorks 6.x)

» For those architectures where PHYS_ADDR is defined as a 64-bit type, such as
PowerPC and MIPS, physical addresses in sysPhysMemDesc|[] should be
changed from 32-bit values to 64-bit values in sysLib.c. This prevents type
mismatch warnings when compiling. You may need to change explicit
castings in your BSP if they conflict with the new definitions of PHYS_ADDR
or VIRT_ADDR.

* Pentium BSPs Only: In VxWorks 5.5, Pentium MMU support is implemented
in a slightly different manner than other architectures with regard to cache
states. This is no longer the case in VxWorks 6.x; therefore Pentium BSPs must
change the cache state definitions as shown in Table 4-3.

Table 4-3 New Cache State Definitions for Pentium BSPs

VxWorks 5.5 Definition Required VxWorks 6.x Definition

VM_STATE_MASK_CACHEABLE | V. VM_STATE_MASK_CACHEABLE or
M_STATE_MASK_WBACK MMU_ATTR_CACHE_MSK

VM_STATE_CACHEABLE_NOT | VM VM_STATE_CACHEABLE_NOT or
_STATE_WBACK_NOT MMU_ATTR_CACHE_OFF

VM_STATE_CACHEABLE | VM_STAT VM_STATE_WBACK or
E_WBACK MMU_ATTR_CACHE_COPYBACK

75

VxWorks
5.5 Migration Guide, 6.6

Failure to make these changes results in an error similar to the following;:

invalid combination of MMU attributes for sysPhysMemDesc|[] entry

Example 4-1 Replacing Cache States in Pentium BSPs

The following example illustrates how to replace the cache states in Pentium
BSPs while maintaining backward compatibility. In config.h:

#ifdef MMU_ATTR_SUP_RO /* VxWorks 6.x settings */

define VM_STATE MASK_FOR_ALL \
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | \
VM_STATE_MASK_CACHEABLE | VM_STATE_MASK_GLOBAL

define VM_STATE_FOR_IO \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE_NOT | VM_STATE_GLOBAL_NOT

define VM_STATE_FOR_MEM_OS \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_WBACK | VM_STATE_GLOBAL_NOT

define VM_STATE_FOR_MEM_APPLICATION \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_WBACK | VM_STATE_GLOBAL_NOT

define VM_STATE_FOR_PCI \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE_NOT | VM_STATE_GLOBAL_NOT

#else /* VxWorks 5.x settings */

define VM_STATE_MASK_FOR_ALL \
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | \
VM_STATE_MASK_CACHEABLE | VM_STATE_MASK_WBACK | \
VM_STATE_MASK_GLOBAL

define VM_STATE_FOR_IO \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE_NOT | VM_STATE_WBACK_NOT | \
VM_STATE_GLOBAL_NOT

define VM_STATE_FOR_MEM_OS \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE | VM_STATE_WBACK | VM_STATE_GLOBAL_NOT

define VM_STATE_FOR_MEM_APPLICATION \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE | VM_STATE_WBACK | VM_STATE_GLOBAL_NOT

define VM_STATE_FOR_PCI \
VM_STATE_VALID | VM_STATE_WRITABLE | \
VM_STATE_CACHEABLE_NOT | VM_STATE_WBACK_NOT | \
VM_STATE_GLOBAL_NOT

#endif /* MMU_ATTR_SUP_RO */

4.2.5 Addressing Compiler Errors and Warnings
This section summarizes warning levels and some common reported problems.

For more information, see Wind River Compiler Warnings, p.10 and your compiler
documentation.

76

4 Migrating BSPs and Drivers
4.2 Migrating BSPs

Compiler Error and Warning Levels

In addition to the obsolete (but still present) CC_WARNINGS_NONE and
CC_WARNINGS_ALL, VxWorks 6.x introduces three new warning levels. The new
warning level settings are:

4

. CC_WARNINGS_LOW -
. CC_WARNINGS_MED

. CC_WARNINGS_HIGH

For library builds, the default setting is now CC_WARNINGS_LOW. For BSP and
application builds, the default setting is now CC_WARNINGS_MED. The
CC_WARNINGS_HIGH level is provided for the purpose of detailed code
inspections. The warning level setting can be changed from the command-line
make as follows (bash shell on Solaris):

[

% make CPU=PPC32 TOOL=diab CC_WARNINGS=$ (CC_WARNINGS_ HIGH)

Example Problems and Solutions

The following problems are commonly encountered due to the increased compiler
warning level:

signed /unsigned value mismatch
A signed constant or variable may be assigned to an unsigned variable.
Re-defining the variable’s value (for example, -1 to OXFFFFFFFF) or using a
more suitable typedef may fix this problem.

condition always true or always false
The use of a constant as the expression in a condition such as while (TRUE)
can be replaced with for (;;).

4.2.6 Implementing the M Command

Background

This section provides background and details on the process of providing M
interface support for your BSP.

There are a number of problems with the N command. These relate to multiple
interfaces and to a lack of definition of the byte order of the data. The original N

77

VxWorks
5.5 Migration Guide, 6.6

command did not provide a mechanism for the user to set the MAC address of any
interface except the one designated at BSP creation time.

Although some workarounds exist in some BSPs, they are not consistently applied,
well documented, or obvious to use. In addition, the design of the N command
does not define the order of bytes within the MAC address for various functions.
This means that on some architectures and configurations, the MAC address is
reversed from the intended order, or other odd behavior results.

The design of the M command defines the byte order for the MAC address at every
level in order to eliminate confusion of the MAC address at BSP development time.
It also requires the use of a mechanism to allow multiple interfaces to be handled
without special consideration.

Keep code supporting the N command for backward compatibility, unless code
size or other considerations forbid it. However, where problems occur, the new M
command is available.

Implementing the M Command

To provide the option of the M command for a BSP, do the following:
1. From the console, identify whether or not the BSP supports the N command.

a. Check to see if ETHERNET_ADR_SET is defined in config.h in the BSP
directory. If so, support for M command must be added.

b. Keep code supporting the N command for backward compatibility.
2. Add M support. The following is a synopsis of the steps required:

a. Replace ETHERNET_ADR_SET with ETHERNET_MAC_HANDLER in
config.h.

b. Replace sysEnetAddrGet() with sysNetMacNVRamAddrGet() in
sys{IF}End.c.

c. Modify sysNet.c or sysLib.c to add the routines
sysNetMacNVRamAddrGet(), sysNetMacAddrGet(), and
sysNetMacAddrSet() to sysNet.c or sysLib.c, depending on which file
currently contains sysEnetAddrGet().

For examples of these changes, see the appropriate files in the wrSbc8260Atm and
wrSbcPowerQuiccll BSPs.

78

4 Migrating BSPs and Drivers
4.2 Migrating BSPs

4.2.7 Converting BSP Documentation

For VxWorks 6.x, the tool that generates reference documentation is a Perl script,
apigen. apigen uses a simpler syntax than the previous nroff-based markup
(found in target.nr files).

4
The apigen and other documentation tools are located in -
installDirlvxworks-6.x/host/resource/doctools. For syntax information see

5Converting to apigen, p.83.

Convert target.nr

Start by editing the target-specific documentation file to generate clean output
using apigen.
1. If you have a target.nr file, convert it to target.ref using the mg2ref tool.

% mg2ref target.nr

If you already have a target.ref file, proceed to the next step.

2. Edit the target.ref file to correct any markup errors. This effort can vary
significantly, depending on the compliance of the original file to the Wind River
Coding Conventions. Your goal is to eliminate warning and error messages
generated by apigen.

a. Change the name in the first line to target.ref.

b. Align all table columns and diagrammatic representations if they are not
already aligned. Blank characters at the beginning of a line cause the line
to be unformatted or document generation to fail.

c. Eliminate all remaining nroff formatting; for a table of correspondences,
see 5. Converting to apigen. In particular, remove any remaining nroff
formatting at the beginning of tables; it is no longer required or allowed.

d. Correct grammar and spelling.
e. Edit content for completeness.

3. Run apigen manually to create the bsp.html file. Edit the target.ref until the
bsp.html is acceptable.

% apigen target.ref

79

VxWorks
5.5 Migration Guide, 6.6

Convert Other BSP Documentation

Convert other BSP API documentation, such as sysLib.c.
1. Follow the same procedure on your remaining files as you did for target.nr.
2. Test your conversion by running apigen manually.

% apigen -missingok sysLib.c

The -missingok flag allows you to convert your document without warnings
for failure to comply with the Wind River coding conventions. For example,
failure to include an ERRNO section in an unpublished routine does not
generate a warning when you use -missingok.

Test the BSP Documentation Build

Test the BSP documentation build.

1. Execute make man for your BSP.

% make man

2. Check the output in the $DOCS_ROOT/com.windriver.ide.doc.bsp/bspName
directory.

a. To correct markup and formatting errors that generate error messages in
the build logs, be sure the files conform to the coding conventions
described in Wind River Coding Conventions, available from Online
Support.

b. If the sysLib.html has unknown() routines listed, it is possible that files
with third-party copyright information are not tagged correctly. To fix this
problem:

[RE KKK KKK

Third-party copyright and license blurb...

\NOMANUAL <-ADD THIS

KKK KK EXK)

Update the Infrastructure Files

The bspinstall script dynamically updates the online help table of contents with
new BSPs. The script is located in installDir/setup. In Wind River products, this

80

4 Migrating BSPs and Drivers
4.3 Migrating Drivers

runs as a post-installation step. In order for your BSP to appear in the Workbench
table of contents, you need to run it manually or package it into your own installer.

4.3 Migrating Drivers

VxWorks 5.5 drivers are not binary compatible with VxWorks 6.x drivers. You
must install your driver source and recompile the drivers. For general information
about 5.5-to-6.6 migration—some of which is relevant to driver migration as
well—see 2. VxWorks and Development Environment Changes.

As part of migrating your drivers from 5.5 to 6.6, Wind River recommends
migrating to the VxBus driver framework. For information in this regard, see the
VxWorks Device Driver Developer’s Guide.

If you choose not to migrate to the VxBus framework, note that VxWorks must be
configured with the INCLUDE_XBD_BLK_DEV component for any drivers that
were designed to work with the 5.5 CBIO interface. The CBIO interface is
superseded by the XBD (extended block device) facility. For more information in
this regard, see the VxWorks Kernel Programmer’s Guide: I/O System.

81

VxWorks
5.5 Migration Guide, 6.6

82

Converting to apigen

Summary of apigen Markup

Table 5-1 is a summary of apigen markup. It also shows the corresponding
mangen markup for those more familiar with that style. For details, see the
reference entry for apigen and the conversion steps provided in 4.2.7 Converting
BSP Documentation, p.79.

Table 5-1 apigen Markup

apigen Mangen
Column Markup Equivalent Description
any 'text..'or'text..' same boldface words
any <text> same italicized words (text variables,
emphasis)
any \\or\/ \e the character \
any A< \> \v N/A the characters < > + *
any \ N/A the character | within a table
1 \ss S preformatted text (syntax)
\se {E
1 \cs .CS literal text (code)
.\nce CE

83

VxWorks
5.5 Migration Guide, 6.6

Table 5-1 apigen Markup (cont'd)

apigen Mangen
Column Markup Equivalent Description

1 \bs bS literal text, smaller (board layout)
\be .bE

1 \is iPor.IP itemized list (terms list)
\i item
\ie

1 \ms AiPor IP marker list (numbered or dashed)
\m mark
\me

1 \ts IS table
\te .TE

1 \sh text .SS text subheading

1 \tb reference I .pG, tG cross-reference to a publication

NOTE: In Table 5-1, “any” denotes inline markup (it can appear anywhere in text);
“1” denotes a tag that must start in effective column 1.

84

Symbols

_func_excBaseHook 46

activeQhead 20
apigen

BSP conversion 79
markup summary 83

APIs added

kernel
cacheFlush() 47
cachelnvalidate() 47
cdromFsDevCreate() 55
cdromFsVersionDisplay() 55
cdromFsVersionNumGet() 55
dosfsDiskFormat() 57
partLib.c 55
xbdBlkDevLibCreate() 55
xbdBlkDevLibDelete() 55
xbdBlkDevLibInit() 55
xbdCreatePartition() 55
xbdRamDiskDevCreate() 55
xbdRamDiskDevDelete() 55

APIs changed

kernel
creat() 59

Index

dosFsDevCreate() 59
dosFsVolFormat() 59

fentl() 59

ioctl() 57

iosDevDelete() 64
iosDevRemove() 64
pthread_attr_getdetachstate() 62
pthread_attr_getname() 62
pthread_attr_getopt() 62
pthread_attr_getschedpolicy() 62
pthread_attr_getstackaddr() 62
pthread_attr_getstacksize() 62,63
pthread_attr_init() 62
pthread_attr_setdetachstate() 62
pthread_attr_setname() 62
pthread_attr_setopt() 63
pthread_attr_setschedpolicy() 62
pthread_attr_setscope() 63
pthread_attr_setstackaddr() 63
pthread_cancel() 64
pthread_cond_init() 65
pthread_cond_timedwait() 65
pthread_cond_wait() 65
pthread_create(), VxWorks 6.0 61
pthread_create(), VxWorks 6.2 63
pthread_exit() 65
pthread_getschedparam() 63
pthread_getspecific() 65
pthread_mutex_init() 65
pthread_mutex_lock() 65

85

VxWorks
5.5 Migration Guide, 6.6

pthread_mutex_setprioceiling() 65
pthread_mutex_trylock() 65
pthread_mutex_unlock() 65
pthread_mutexatt_init() 65
pthread_setschedparam() 63
rmdir() 60
sigtimedwait() 63
sigwaitinfo() 64
timer_settime() 64
usrFsLib.c 57
vmBaseLiblnit() 48
APIs deprecated
kernel
diskFormat() 57
diskInit() 57
taskCreat() 46
vxPowerModeGet() 51
vxPowerModeSet() 51
APIs moved
kernel
isascii() 40
toascii() 40
APIs removed
kernel
cacheArchFlush() 47
cacheArchlnvalidate() 47
semBCorelnit() 51
semCCorelnit() 51
semMCorelnit() 51
semQCorelnit() 51
usrFdiskPartCreate() 56
APIs, System Viewer
changed
wvUploadStart() 66
removed
wvEvtLogInit() 66
wvLogHeaderCreate() 66
wvLogHeaderUpload() 66
wvTaskNamesPreserve() 66
wvTaskNamesUpload() 66
architecture-specific migration issues 33

86

backward compatibility
5.5 boot loaders 16
kernel mode 37
vmBaseLib 48
boot loaders
backward compatibility 16
VxWorks 5.5 16
BSPs
apigen 79
compatibility checklist 68
compatibility with VxWorks 6.x 6
compiler warnings 72
custom 8
porting
cache library APIs 70
custom configlettes 70
documentation 79
Ethernet MAC address 77
ETHERNET_ADR_SET 78
ETHERNET _MAC_HANDLER 78
introduction 67
version number 72
VM_STATE_xxx macros 74
source compatible 6
building
build specification, glossary definition 3
infrastructure changes 8
setting flags 11
user applications 45
wreonfig utility 39

C

C and C++ libraries, Dinkum 13

cache attributes
MMU_ATTR_CACHE_MSK 42
MMU_ATTR_CACHE_OFF 42
MMU_ATTR_CACHE_WRITETHRU 42
MMU_ATTR_SUP_RWX 43
MMU_ATTR_USR_RWX 43
MMU_ATTR_xxx 74

cache state definitions 75

cacheArchFlush() 47
cacheArchlnvalidate() 47
cacheFlush() 47
cachelnvalidate() 47
cacheLib 47
cdromFsDevCreate() 55
cdromFsVersionDisplay() 55
cdromFsVersionNumGet() 55
changes
build
kernel 39
file system
kernel 53
I/0 system
kernel 51
POSIX
kernel 60
system support
kernel 46
VxWorks components
kernel 41
command line environment setup 6
compiler
default changed 9
extra command-line flags 11
new warning and error levels
GNU, VxWorks 6.x 9
Wind River Compiler 9
options, GNU 11
path, specifying 7
stricter syntax 9

warnings
building BSPs 72
levels 77
compiling

VxWorks 5.5 40

VxWorks 6.x 40
components

glossary definition 2

INCLUDE_BSD 71

INCLUDE_EXC_TASK 19

INCLUDE_JOB_TASK 20

INCLUDE_MEM_EDR 19

INCLUDE_MMU_BASIC 42

INCLUDE_SM_NET 71

Index

INCLUDE_SMEND 71
config.h

changing version number, BSPs 72

replaced for projects 14
creat()

kernel 59
create hooks

kernel task 22

process, post-create 22

D

definitions
build specification 3
component 2
deprecated 3

downloadable kernel module project 3
error detection and reporting 2

graphical user interface
project 2

real-time process 2
real-time process project
shared-library project 3
toolchain 3

VxWorks image project
workspace 2

3

3

2

deprecated, glossary definition 3

Dinkum C and C++ libraries

Dinkum standard template library 13

directory structure, changed
diskFormat()

kernel 57
diskInit()

kernel 57
dosFs 1.0 23
dosFsDevCreate() 59
dosfsDiskFormat() 57
dosFsVolFormat()

device name 59

pathname argument 56

downloadable kernel module project 3

driver

source-compatible with BSPs 81

13

7

87

VxWorks
5.5 Migration Guide, 6.6

E

ED&R, see error detection and reporting
environment setup, command line 6
errnos
I/0
duplicate values 52
unique values 52
error detection and reporting
glossary definition 2
error-checking, semaphores 22
Ethernet MAC address 77
ETHERNET_ADR_SET 78
ETHERNET MAC_HANDLER 78
excJobAdd() 50
excTask() 50
extended block device 22

F

fentl()
kernel 59
file system
removability support 23
FIODISKCHANGE 57
FIOFORMAT 57
flags
build, setting 11
GNU
-fno-exception 14
-fno-implicit-templates 11
-fno-rtti 14
-fvec 11
-fvolatile 11
-maltivec 11
-nostdlib 11

G

graphical user interface, glossary definition 3
GUI, see graphical user interface

88

H

hashLib 48

header files
kernel and process 7
kernel mode 8
user mode 8

hrfsFormat() 56

I/0 system, POSIX compliance 52
INCLUDE_XBD 54
INCLUDE_XBD_BLK_DEV 54
initialization

routines 18
ioctl()

kernel 57
iosDevDelete() 64
iosDevRemove() 64
isascii() 40

K

kernel shell 32
kernel task create hooks 22

L

loader
changes 28
macros 29
loadModule() 32
loadModuleAt() 32

M

MACH_EXTRA
linking configlettes 70

linking custom architecture code 70
makefiles, BSP 8
MEM_ALLOC_ERROR_EDR_FATAL_FLAG
kernel 48
MEM_ALLOC_ERROR_EDR_WARN_FLAG
kernel 48
MEM_ALLOC_ERROR_SUSPEND_FLAG
kernel 49
MEM_BLOCK_ERROR_EDR_FATAL_FLAG
kernel 49
MEM_BLOCK_ERROR_EDR_WARN_FLAG
kernel 49
MEM_BLOCK_ERROR_SUSPEND_FLAG
kernel 49
memory partition options
kernel 48
memory protection macros 74
migrating
BSPs
Ethernet MAC address 77
version number 72
migration

architecture-specific issues 33

BSPs
cache library APIs 70
custom configlettes 70
documentation 79
sysEnetAddrGet() 78
sysNetMacNVRamAddrGet() 78
VM_STATE_xxx macros 74

checklist, kernel
VxWorks 5.5 to VxWorks 6.x 38

custom BSP makefiles 8
MMU_ATTR_CACHE_MSK 42
MMU_ATTR_CACHE_OFF 42
MMU_ATTR_CACHE_WRITETHRU 42
MMU_ATTR_SUP_RWX 43
MMU_ATTR_USR_RWX 43
MMU_ATTR xxx 74
mgq_attr 24
mq_des 60

Index

N

new
configuration process 14

o)

OBJ_VERIFY() 40
objCopy 12
objLib 40
optimization
compiler 12

P

parameter type change
physical address 45
virtual address 44
partLib.c 55
pathLib.h 40
Pentium BSPs, new cache state definitions
PHYS_ADDR
parameter 75
type changed 45
porting a BSP
introduction 67
VxWorks 6.x,to 68
POSIX
1/0, kernel
iosDevDelete() 64
iosDevRemove() 64
message queues, kernel
mq_des 60
semaphores, kernel
sem_t moved 61
signals, kernel
sigtimedwait() 63
sigwaitinfo() 64
threads, kernel
pthread_attr_getdetachstate() 62
pthread_attr_getname() 62
pthread_attr_getopt() 62

89

75

VxWorks
5.5 Migration Guide, 6.6

pthread_attr_getschedpolicy() 62
pthread_attr_getstackaddr() 62
pthread_attr_getstacksize() 62
pthread_attr_init() 62
pthread_attr_setdetachstate() 62
pthread_attr_setname() 62
pthread_attr_setopt() 63
pthread_attr_setschedpolicy() 62
pthread_attr_setscope() 63
pthread_attr_setstackaddr() 63
pthread_attr_setstacksize() 63
pthread_cancel() 64
pthread_cond_init() 65
pthread_cond_timedwait() 65
pthread_cond_wait() 65
pthread_create(), VxWorks 6.0 61
pthread_create(), VxWorks 6.2 63
pthread_exit() 65
pthread_getschedparam() 63
pthread_getspecific() 65
pthread_mutex_init() 65
pthread_mutex_lock() 65
pthread_mutex_setprioceiling() 65
pthread_mutex_trylock() 65
pthread_mutex_unlock() 65
pthread_mutexatt_init() 65
pthread_setschedparam() 63

timers, kernel
timer_settime() 64
private headers
cacheLib 47

hashLib 48
objLib 40
processes

glossary definition 2
post-create hooks 22
project, glossary definition 2
pthread_attr_getdetachstate()

kernel 62
pthread_attr_getname()

kernel 62
pthread_attr_getopt()

kernel 62
pthread_attr_getschedpolicy()

kernel 62

90

pthread_attr_getstackaddr()

kernel 62
pthread_attr_getstacksize()

kernel 62
pthread_attr_init()

kernel 62
pthread_attr_setdetachstate()

kernel 62
pthread_attr_setname()

kernel 62
pthread_attr_setopt()

kernel 63
pthread_attr_setschedpolicy()

kernel 62
pthread_attr_setscope()

kernel 63
pthread_attr_setstackaddr()

kernel 63
pthread_attr_setstacksize()

kernel 63
pthread_cancel()

kernel 64
pthread_cond_init()

kernel 65
pthread_cond_timedwait()

kernel 65
pthread_cond_wait()

kernel 65
pthread_create()

kernel, VxWorks 6.0 61

kernel, VxWorks 6.2 63
pthread_exit()

kernel 65
pthread_getschedparam()

kernel 63
pthread_getspecific()

kernel 65
pthread_mutex_init()

kernel 65
pthread_mutex_lock()

kernel 65
pthread_mutex_setprioceiling()

kernel 65
pthread_mutex_trylock()

kernel 65

Index

pthread_mutex_unlock() semaphores
kernel 65 semBCorelnit() 51
pthread_mutexatt_init() semCCorelnit() 51
kernel 65 semMCorelnit() 51
pthread_setschedparam() semQCorelnit() 51
kernel 63 stricter error-checking 22

semBCorelnit() 51
semCCorelnit() 51

R semMCorelnit() 51
semQCorelnit() 51
SGI standard template library 13

RAM.dISk 23 . . shared-library project, glossary definition 3
real-time process project, glossary definition 3
reld() 32 shell prompt
¢ . shellPromptFmtDftSet() 32
reloading

shellPromptSet() 32
SHELL_COMPATIBLE 32
shellPromptFmtDftSet() 32

loadModule() 32
loadModuleAt() 32

removed
dosFs 1.0 23 shellPromptSet() - 32
sigtimedwait()
tapefs 23 kernel 63
VxVMI 42 L
. sigwaitinfo()
resolving common symbols 31 kernel 64

resource reclamation 21 standard template library 13

rmdllz() e Dinkumware 13
eme SGI 13
STL, see standard template library
stricter syntax, compilers 9
S symbol types 29
symbolic names 29
S_loadElfLib_READ_SECTIONS sysEnetAddrGet() 78
when returned 29 sysNetMacNVRamAddrGet() 78
S_loadElfLib_ RELOC sysSmEndLoad() 71
when returned 29 System Viewer
S_loadElfLib_RELOCATION_OFFSET_TOO_ wvEvtLogInit() 66
LARGE wvLib 66
when returned 29 wvLogHeaderUpload() 66
S_loadEIfLib_SCN_READ 29 wvTaskNamesPreserve() 66
S_loadEIlfLib_SHDR_READ wvTaskNamesUpload() 66
when returned 29 wvUploadStart() 66
S_moduleLib_INVALID_MODULE_ID 28
S_objLib_OBJ_ID_ERROR 28
S_semLib_INVALID_OPTION 22 T
S_symLib_INVALID_SYMTAB_ID 28
sem_t
kernel 61 tapefs 23

targetnr 79

91

VxWorks
5.5 Migration Guide, 6.6

target.ref 79 vmContextCreate() 44
task self-destruction 19 vmContextDelete() 44
TASK_SCHED_INFO_GET 19 vmContextShow() 44
TASK_SCHED_INFO_SET 19 vmCurrentGet() 44
taskCreat() 46 vmCurrentSet() 44
taskDelete() 19 vmGloballnfoGet() 44
taskName() 18 vmGlobalMap() 44
taskSpareFieldGet() 19 vmMap() 44
taskSpareFieldSet() 19 vmPageBlockSizeGet() 44
taskSpareNumAllot() 18 vmPageSizeGet() 44
taskSwitchHookAdd() vmShowInit() 44

scheduling change 46 vmStateGet() 44
TCB, accessing 18 vmStateSet()
timer_settime() kernel 44

kernel, VxWorks 6.3 64 vmTextProtect() 44
toascii() 40 vmTranslate() 44
toolchain, glossary definition 3 VxFusion, replaced 21
torVars 6 vxMemProbeArch() 47

vxPowerModeGet() 51
vxPowerModeSet() 51
U VxVMI
removed 42
routines, removed
vmContextCreate() 44
vmContextDelete() 44
vmCurrentGet() 44
vmCurrentSet() 44
vmGloballnfoGet() 44
vmGlobalMap() 44
vmPageBlockSizeGet() 44
vmShowInit() 44
routines, still present in kernel
vmContextShow() 44
vmMap() 44
vmPageSizeGet() 44
vmStateGet() 44

unld() 32
unldByModuleld() 32
unldByNameAndPath() 32
unloading
unldByModuleld() 32
unldByNameAndPath() 32
user applications, building 45
usrFdiskPartCreate() 56
usrFdiskPartLib 55
usrFsLib.c 57
utilities, compiler 12

V vmStateSet() 44
vmTextProtect() 44
VIRT_ADDR vmTranslate() 44
BSP macro 75 VxWorks 5.x boot loaders 16
parameter type change 44 VxWorks image project, glossary definition 2
VM_STATE xxx 74
vmBaseLib

not backward compatible 48
vmBaseLibInit() 48

92

Index

w

warnings, Wind River Compiler 10
Wind River Compiler 9

Wind River Compiler warnings 10
Wind River GNU compiler 9
WIND_BASE 7

WIND_TCB structure 18

workspace, glossary definition 2
wreonfig build utility 39

wrenv 6

wvEvtLogInit() 66

wvLib 66

wvLogHeaderCreate() 66
wvLogHeaderUpload() 66
wvTaskNamesPreserve() 66
wvTaskNamesUpload() 66
wvUploadStart() 66

X

XBD facility 54
xbdBlkDevLibCreate() 55
xbdBlkDevLibDelete() 55
xbdBlkDevLibInit() 55
xbdCreatePartition() 55
xbdRamDiskDevCreate() 55
xbdRamDiskDevDelete() 55

93

	VxWorks 5.5 Migration Guide, 6.6
	Contents
	1 Overview
	1.1 Introduction
	1.2 Terminology
	1.3 Related Documentation

	2 VxWorks and Development Environment Changes
	2.1 Introduction
	2.2 Environment Variables and Development Shell
	2.3 Directory Structure
	2.3.1 Location of Header Files

	2.4 Build Infrastructure
	2.4.1 Makefile and make Changes

	2.5 Compilers
	2.5.1 Default Compiler Change
	2.5.2 Stricter Syntax Checking
	General Guidelines
	Wind River Compiler Warnings

	2.5.3 Extra Compiler Command-line Flags
	2.5.4 Additional Build Flags
	2.5.5 GNU Compiler Switches
	2.5.6 objCopy Replaces Wind River Utilities
	2.5.7 Unsupported Optimization Levels

	2.6 C and C++ Libraries
	2.6.1 Dinkum C and C++ Libraries
	2.6.2 Standard Template Library

	2.7 IDE and CLI Configuration and Build Tools
	2.7.1 Configuration and Build Using config.h
	2.7.2 vxWorks.st Image Type

	2.8 VxWorks 6.6 Facilities
	2.8.1 Unsupported Facilities
	2.8.2 Boot Loaders
	Boot Loader M and N Commands
	Custom Commands for the Boot Loader Shell

	2.8.3 Default VxWorks Configuration
	2.8.4 Initialization Routines
	2.8.5 Tasks and the TCB
	TCB Access
	Macros Changed
	Task Self-destruction

	2.8.6 Task-Specific Variables: taskVarLib and tlsLib
	2.8.7 activeQhead
	2.8.8 VxVMI
	2.8.9 VxFusion
	2.8.10 Resource Reclamation
	2.8.11 Stricter Error Checking on Semaphores
	2.8.12 File System Changes
	CBIO and the Extended Block Device (XBD) Interface
	File System Monitor
	Discontinued Features
	VxBus Introduced

	2.8.13 POSIX Support
	Kernel and User Environments Decoupled
	VxWorks and POSIX Types
	mq_attr Structure

	2.8.14 Lazy Initialization Removed
	2.8.15 Modified Routines
	2.8.16 Symbol Table and Module Changes
	2.8.17 Kernel Object Module Loader
	Loader errno Values
	Loader Symbol Type Values
	Resolving Common Symbols
	SDA and Loading Kernel Object Modules

	2.8.18 Target Shell/Kernel Shell

	2.9 Architecture-Specific Issues
	SDA Support for PowerPC

	3 Migrating Kernel Applications
	3.1 Introduction
	3.2 Migration Checklist
	3.3 Build Infrastructure
	3.3.1 Recompiling Source Code
	3.3.2 Header File Changes
	Type Changes
	isascii(), toascii()
	Private objLib Macro

	3.3.3 Compiling for Both VxWorks 6.x and VxWorks 5.5

	3.4 Unsupported Facilities
	3.4.1 VxVMI and Migration
	VxVMI and RTP Applications

	3.4.2 VxFusion and Migration

	3.5 System Changes
	3.5.1 taskSwitchHookAdd()
	3.5.2 taskCreat()
	3.5.3 _func_excBaseHook Daisy Chaining
	3.5.4 cacheLib Routines
	3.5.5 Private HASH_TBL Structure
	3.5.6 vmBaseLib Parameter Change
	3.5.7 Changed Virtual Memory Routines
	3.5.8 Memory Partition Options
	3.5.9 Private Structures and Routines
	3.5.10 Deprecated Power Management APIs
	3.5.11 Removed APIs

	3.6 I/O System Changes
	I/O Error Code Value Changes

	3.7 File System Changes
	3.7.1 Extended Block Device (XBD) Support
	3.7.2 Disk Formatting
	3.7.3 ioctl() Commands Removed
	3.7.4 usrFsLib.c
	3.7.5 dosFS
	3.7.6 Modified I/O APIs

	3.8 POSIX Support Changes
	POSIX Message Queues
	POSIX Thread Support
	POSIX Semaphores
	POSIX Thread APIs
	POSIX Signal APIs
	I/O System Device Control APIs
	POSIX-Related Changes in Libraries and APIs

	3.9 WindView/System Viewer: wvLib

	4 Migrating BSPs and Drivers
	4.1 Introduction
	4.2 Migrating BSPs
	4.2.1 Planning for BSP Migration
	4.2.2 BSP Migration Steps
	4.2.3 PowerPC BSPs and SDA
	4.2.4 Replacing VM_STATE_xxx Macros
	4.2.5 Addressing Compiler Errors and Warnings
	Compiler Error and Warning Levels
	Example Problems and Solutions

	4.2.6 Implementing the M Command
	Background
	Implementing the M Command

	4.2.7 Converting BSP Documentation
	Convert target.nr
	Convert Other BSP Documentation
	Test the BSP Documentation Build
	Update the Infrastructure Files

	4.3 Migrating Drivers

	5 Converting to apigen
	Index

