WIND RIVER

VxWorks’

COMMAND-LINE TOOLS USER'S GUIDE

6.6

Copyright 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_namel3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Command-Line Tools User’s Guide, 6.6

6 Nov 07
Part #: DOC-16079-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

OVEIVIBW ...t 7
11 Introduction 7
1.2 What's in This Book 8
1.3 Related Documents 9
Setting Environment Variables ..o 11
21 Introduction 11
2.2 Invoking wrenv 12
2.3 Options to wrenv 13
2.4 install.properties and package.properties 15
Configuring and Building VXWOrKSccccrrrmmmmnismssmnnssssnnssnsesnnnes 17
31 Introduction 17
3.2 Using vxprj 18
3.2.1 Creating Kernel Configuration Projectsccooooeeiiniiininnne. 18
Checking the Toolch@inccccooviiiiiiiiiiiie 20

Copying Projects ..o 21

fii

3.3

VxWorks
Command-Line Tools User's Guide, 6.6

USING PIOfILES ..o 21
322 Deleting Projects ... 21
323 Modifying PrOJECtSccceuiueueiririririccieieierer e 22
Adding COMPONENtScoviuiviiiieiiciiie e 22
Removing COMPONENtsccouoviiuiuriiieiieicce s 23
Setting Configuration Parameter Valuescccccoovvvriiniciniiccinicnnn. 23
Changing the Project Makefile Namecccccocoovvrniiiiiniiinicne, 24
Adding and Removing Individual Filescccocooovinininnnnnnn, 24
324 Generating Project and Component Diagnosticscccccocovurvruennnee. 24
Obtaining a List of COMPONENtscccccevvvviviiiiiiininiciiecns 24
Checking a Componentcccoeviiiiniiiiiiec e 26
Checking Component Dependenciescccccoovvviviiiiiiineccnnen. 26
Listing Configuration Parameters and Valuescccccoorennnne. 26
Listing the Source Files in a Projectc.cccococeueiiiiiininiinine, 27
3.25 Building Kernel Configuration Projects with VXpPIjccccccvvnivcucnnne 28
Examining Build Specifications and Rulesc.ccccccevvnniccrennnn. 28
Changing Build Settingsccccovvovririririiicicccccc e, 29
Adding and Changing Build Rulescccccoooviiiiiniicne, 29
3.2.6 Example VXPIj SESSION ...ccvrurviiieriiiiicciiceec s 30
3.2.7 Creating a Standalone Kernel Imagecccocooovuniininicninicinicicne 30
Using cmpScriptLib and Other Libraries 31
3.3.1 Building Kernel Configuration Projects with cmpScriptLib 32

Configuring and Building

Application Projectscccceremmermmmrmmessssssssssssssesssesssssssssssssssssssssssnsnas 33

41 Introduction 33

4.2 Other VxWorks Project Types 34

43 RTP and Library Projects 35

44 RTP Applications and Libraries 35
441 RTP Application Makefilesccccoveicucuemnnninicccieereccceneeeene 35
442 RTP LIDIariescccocccoieoiniiiiieiiectiecreeeereesee e 37

Contents

443 Makefile and Directory Structurecoccoceevnnecccennneccenenne 37

444 Rebuilding VxWorks RTP (User-Mode) Librariescccccccceuiuennene. 37

445 Make Variables ... 38

4.5 Downloadable Kernel Modules 41

5 Connecting to @ Targetccccccrmmrismrmnnimemnnss s eeans 43
51 Introduction 43

5.2 Connecting to a Target Board 43

5.3 Using the VxWorks Simulator 44

A Configuring and Building VxWorks Using config.hccccceeveeeeneenns 47
A1 Introduction 47

A.2 Configuring an Image Using config.h 48

A3 Configuration Examples 49

A3.1 Removing Network SUPPOItcccccoviiiiiiiiiiiiiiiiiicicccce 49

A32 Adding RTP SUPPOIt ...cccooviiiiiiiiicicicicccicces 49

A4 Using make 50

A4l Makefile Detailscocoeeevereveueuiiiiriniieicieicecctteneee et 50
Customizing the VxWorks Makefileccccovriiiiinnne, 51

Commonly Used Makefile Macroscccooeuvurniecniniiceiiccinicienens 51

A42 Building Custom Boot Loaderscccccooeeiieiniciniicciniciecccces 55

INAEX e 57

VxWorks
Command-Line Tools User's Guide, 6.6

Vi

Overview

1.1 Introduction 7
1.2 What’s in This Book 8
1.3 Related Documents 9

1.1 Introduction

This guide describes the command-line host tools provided with VxWorks. It
complements the Wind River Workbench User’s Guide for programmers who prefer
to do development tasks outside of the Workbench IDE’s graphical interface or
who need to create scripted build environments.

The Workbench IDE includes many features, such as code browsing, host-target
communication, and multicore debugging, that are not available from the
command line. For a complete description of the Workbench environment, see the
Wind River Workbench User’s Guide. For information about the VxWorks operating
system and developing applications that run under it, see the VxWorks Kernel
Programmer’s Guide and VxWorks Application Programmer’s Guide.

Workbench ships with two compilers and associated toolkits: The Wind River
Compiler (sometimes called the Diab compiler) and GCC (part of the GNU
project). Both toolkits use the GNU make utility for VxWorks application
development. To the largest extent possible, these toolkits have been designed for
interoperability, but it is not always safe to assume that code written for one set of

VxWorks
Command-Line Tools User's Guide, 6.6

tools will work perfectly with the other. While examples in this guide may use
either or both compilers, it is best to select one compiler and toolkit before starting
a project.

The Wind River Compiler and tools are documented in a separate user’s guide for
each supported target architecture. For example, information about the PowerPC
compiler is in the Wind River Compiler for PowerPC User’s Guide. GCC and the other
GNU tools are documented in a series of manuals from the Free Software
Foundation, including Using the GNU Compiler Collection, that are provided with
this release.

NOTE: Throughout this guide, UNIX refers to both Solaris and Linux host
development environments. Windows refers to all supported versions of Microsoft
Windows.

Examples in this guide include both UNIX and Windows command lines. It is
assumed that the reader can make appropriate modifications—such as changing
forward slashes (/) to backward slashes (\)—depending on the environment.

Workbench includes a variety of other tools whose use is illustrated in this guide.
In many cases, readers are referred to another document for detailed information
about a tool. This guide is a roadmap for command-line development, but it is not
self-contained.

Before starting to work with the tools, read 2. Setting Environment Variables.

1.2 What’s in This Book

This guide contains information about the following topics:

= This chapter introduces the command-line tools and reviews the contents of
the guide.

= Chapter 2 shows how to use the environment utility (wrenv) to set
environment variables in a host development shell.

= Chapter 3 explains how to create and modify projects with vxprj and other Tcl
scripts. It discusses VxWorks components and kernel configuration.

= Chapter 4 explains how to build applications with vxprj and other tools, and
describes the VxWorks build model.

1 Overview
1.3 Related Documents

» Chapter 5 explains how to run compiled applications on targets and
simulators.

1.3 Related Documents

Wind River Workbench Host Shell User’s Guide

Wind River Workbench User’s Guide

Wind River VxWorks Kernel Programmer’s Guide
Wind River VxWorks Application Programmer’s Guide
Wind River VxWorks Simulator User’s Guide

VxWorks
Command-Line Tools User's Guide, 6.6

10

Setting Environment Variables

21
2.2
2.3
24

Introduction 11
Invoking wrenv 12
Options to wrenv 13

install.properties and package.properties 15

2.1 Introduction

To use the tools efficiently from the command line, you need to configure some
environment variables and other settings. The best way to do this is with the wrenv
environment utility, which sets up a development shell based on information in the

install.properties file.

When using the Workbench tools from the command line, always begin by invoking the
environment utility as shown in the next section. The wrenv utility, which is also run
by the IDE on startup, guarantees a consistent, portable execution environment
that works from the IDE, from the command line, and in automated build systems.
Throughout this guide, whenever host operating system commands are shown or
described, it is assumed that you are working from a properly configured

development shell created by wrenv.

11

VxWorks
Command-Line Tools User's Guide, 6.6

2.2 Invoking wrenv

UNIX

Assuming a standard installation of Workbench, you can invoke wrenv as follows.

At your operating system’s shell prompt, type the following:

[

% installDir/wrenv.sh -p vxworks-6.6

However, if your shell configuration file overwrites the environment every time a
new shell is created, this may not work. If you find that you still cannot invoke the
Workbench tools after executing the command above, try this instead:

% eval installDir/wrenv.sh -p vxworks-6.6 -o print_env -f shell®
where shell is sh or csh, depending on the current shell program. For example:

[

% eval " ./wrenv.sh -p vxworks-6.6 -o print_env -f sh’

Windows

You can invoke wrenv from the command prompt by typing the following:
C:\> installDir\wrenv.exe -p vxworks-6.6

You can also invoke wrenv and start a development shell window using the
shortcut installed under Start > Programs > Wind River > VxWorks 6.6 &
General Purpose Technologies > VxWorks Development Shell. This shortcut
invokes wrenv to open a Windows command prompt configured with the proper
environment variables.

Workbench also supplies a fully configured Windows version of the Z shell
(sh.exe). The Z shell, sometimes called zsh, gives Windows users a UNIX-like
command-line interface.

12

2 Setting Environment Variables

2.3 Options to wrenv

2.3 Options to wrenv

The wrenv utility accepts several options, summarized in Table 2-1, that can be
useful in complex build environments. For most purposes, -p is the only option

you need.

Table 2-1 Options for wrenv

Option Meaning Example
-e Do not redefine existing environment variables. % wrenv.sh -p vxworks-6.6 -e
(Variables identified with addpath in
install.properties are still modified.)
-f format Select format for print_env or print_vars (see -0): C:\> wrenv -p vxworks-6.6 -o
print_vars -f sh
plain (the default)
sh
csh
bat
tel
-i path Specify the location of install.properties. % wrenv.sh -p vxworks-6.6 -i

-0 operation

(Overrides the default method of finding
install.properties.)

Select operation:

run
The default operation. Configures the

directoryPath/install .properties

C:\> wrenv -p vxworks-6.6 -o
run

environment and creates a command shell 3 yrenv.sh -p vxworks-6.6 -o

in which subsequent commands are
executed. Checks the value of SHELL
(usually defined under UNIX) to

run

determine which shell program to invoke;
if SHELL is not defined, it checks ComSpec

(Windows).

print_vars?

C:\> wrenv -o print_vars

Show environment settings that would be
made if wrenv were invoked with -o run.

13

VxWorks
Command-Line Tools User's Guide, 6.6

Table 2-1 Options for wrenv (cont'd)

Option Meaning

Example

print_env®
Like print_vars, but shows only variables
that are exported to the system
environment. (Such variables are identified
with export or addpath, rather than
define, in install.properties.)

print_packages?®
List the packages defined in
install.properties and their attributes. (The
displayed name of a package can later be
specified with the -p option.)

print_compatible?
Use with -p. Show the list of packages
defined in installation.properties as
compatible with the specified package.
Helpful for determining which IDE
version works with a given target OS
platform.

print_package_name®
Use with -r. Show the name of the package
in the specified root directory.

-p package Specity a package (a set of Workbench components)
for environment initialization. The package must
be defined in install.properties.

-1 root Specify the root path for a package. (Overrides the
default method of finding packages.) Usually, the
root path is a directory under installDir that has the
same name as the package.

-V Verbose mode. Show all altered environment
settings.

% wrenv.sh -o print_env

C:\> wrenv -o print_packages

)

% wrenv.sh -p vxworks-6.6 -o
print_compatible

C:\> wrenv -r directory -o
print_package_ name

)

% wrenv.sh -p vxworks-6.6

C:\> wrenv -p vxworks-6.6 -r
directory

% wrenv.sh -p vxworks-6.6 -v

14

2 Setting Environment Variables
2.4 install.properties and package.properties

Table 2-1 Options for wrenv (cont'd)

Option Meaning Example

env=value Set the specified variable in addition to other C:\> wrenv -p vxworks-6.6
environment settings. Overrides PATH=directory
install.properties.® env=value must be the last item
on the command line, except for command [args] (see
below).

)

command Execute the specified command in the new shell =~ % wrenv.sh -p viworks-6.6 1s
[args] environment. (Does not open a new shell.) Mustbe *-5®
the last item on the command line.

a. These operations are primarily for internal use and may change in later releases.

b. Once a setting has been overridden with this option, wrenv maintains the override on subsequent
executions—even if the option is omitted from the command line—as long as the new shell is running. A
list of overridden settings is stored in a temporary variable called WIND_PROTECTED_ENYV that
disappears when the shell terminates.

2.4 install.properties and package.properties

The install.properties file is a hierarchical registry of package components. It
aggregates information from the package.properties files that accompany each
installed package. An entry in a properties file has the following form:

rootkey . subkey[=value]| . subkey[=value] ...]

15

VxWorks
Command-Line Tools User's Guide, 6.6

A root key (for example, vxworks66) identifies each package. Subkeys include
name, version, and so forth. The entries for a typical package look like this:
vxworks66 .name=vxworks-6.6
vxworks66.version=6.6
vxworks66 . type=platform

vxworks66 . subtype=vxworks
vxworks66.label=Wind River VxWorks 6.6

this entry shows which version of Workbench works with vxworks-6.6
vxworks66.compatible=workbench-2.2

eval entries tell wrenv to make environment settings; see below
vxworks66.eval.0l=export WIND_HOME=$ (builtin:InstallHome)
vxworks66.eval.02=export WIND_BASE=$ (WIND_HOME) $/vxworks-6.6
vxworks66.eval.03=require workbench-3.0

vxworks66.eval.04=addpath PATH $ (WIND_BASE)S/host$/$ (WIND_HOST _TYPE)S$S/bin

An eval subkey specifies an environment processing command, such as defining
an environment variable. Each eval subkey has a unique integer subkey appended
to it that determines the order in which wrenv executes commands. However, if
there are multiple definitions for the same variable, the first (lowest-numbered)
definition takes precedence and subsequent definitions are ignored.

A define value for an eval key defines a variable for internal use, but does not
export it to the system environment. An export value defines a variable and
exports it to the system environment. An addpath value prefixes an element to an
existing path variable.

A require value for an eval key specifies the name of another package in which to
continue eval processing. An optional value is similar to a require value, except
that the command is treated as a no-op if the referenced package does not exist.

Comment lines in a properties file begin with a # symbol.

Properties files are created during installation and should not ordinarily be edited.

16

Configuring and Building
VxWorks

3.1 Introduction 17
3.2 Using vxprj 18
3.3 Using cmpScriptLib and Other Libraries 31

3.1 Introduction

This chapter explains how to create and modify VxWorks projects with the vxpzj
utility and related Tcl libraries. It contains information about VxWorks
components and kernel configuration. It also describes the use of profiles and
bundles to provide higher-level logical groupings of components.

A VxWorks component is a functional unit of code and configuration parameters. A
project is a collection of components and build options used to create an application
or kernel image. Components are defined with the Component Description
Language (CDL) and stored in .cdf files; for more information about components
and CDL, see the VxWorks Kernel Programmer’s Guide. Projects are defined in .wpj
or .wrproject files!; for more information about projects, see the Wind River
Workbench User’s Guide.

1. .wrproject files are created and used by the IDE.

17

VxWorks
Command-Line Tools User's Guide, 6.6

Wind River provides a variety of tools for managing projects:

» For most purposes, vxprj is the easiest way to manage kernel configuration
projects from the command line. However, vxprj manages kernel
configuration projects only. (A kernel configuration project, also called a VxWorks
image project, is a complete VxWorks kernel, possibly with additional
application code, that can be downloaded and run on a target.)

= Other Tcl libraries supplied with VxWorks—especially ecmpScriptLib—
provide direct access to scripts called by vxprtj.

» The IDE’s project management facility handles additional types of project,
such as downloadable kernel modules, shared libraries, RIPs, and file system
projects, and offers features of its own that are not available from
command-line tools.

* The default make system that uses Makefiles and the config.h file provide BSP
and driver developers a way to build kernels. In general, this method of build
management should only be used for early-stage development.

It is always possible to create and modify projects by directly editing VxWorks
component and source code files. However, if you plan to continue using the
Workbench or vxprj project management tools, you should not directly edit
generated project files or makefiles

3.2 Using vxprj

This guide covers only the most important vxprj functionality. For a complete
description of vxprj and all of its options, see the vxprj reference entry. For
information about using vxprj to invoke the compiler, see 4. Configuring and
Building Application Projects.

3.2.1 Creating Kernel Configuration Projects
The command-line vxprj utility can create a project based on an existing board
support package (BSP)—that is, a collection of files needed to run VxWorks on a

specific piece of hardware.? To create a kernel configuration project, type the
following:

18

3 Configuring and Building VxWorks
3.2 Using vxprj

vxprj create [-source| [-smp] [-profile profile] BSP tool [projectFile | projectDirectory]

The command sequence above uses the following arguments:
-source

An optional argument to enable source build. A project can be built from
source if both of the following are true:

» The -source option is used.
» All components in your project support the -source option.

If either of these conditions is not true, the project is created from pre-built
libraries (the default). After the project has been created, you can change the
build mode.

Note that only certain kernel profiles (the PROFILE_BASIC_KERNEL and
PROFILE_MINIMAL_KERNEL) support the -source option. If you modify a
pre-defined kernel profile by including additional components, building from
source may not be possible. If you specify the -source option, and building
from source is not possible, vxprj will notify you of that fact and use the
libraries to build.

For complete details on this option, see the vxprj reference entry.
-smp

An optional argument that enables an SMP kernel. Vxprj will now verify that BSPs

support SMP and will give an error when the feature is not available. For example,
vxprj create -smp sbl480_0_mips64 diab
Exception while creating project : "option SMP not available for BSP
sb1480_0_mips64"

-profile profile
An optional argument to specify the kernel profile type to be built. If you do
not specify a profile, the project is built according to the default profile that is
defined for your BSP. For information on profiles, see Using Profiles, p.21, and
the VxWorks Kernel Programmer’s Guide: Kernel.

BSP
The name or location of a BSP.
tool

A recognized compiler (usually diab or gnu). See Checking the Toolchain, p.20
for information about determining valid compilers for a given BSP.

2. For information about BSPs, see the VxWorks BSP Developer’s Guide.

19

VxWorks
Command-Line Tools User's Guide, 6.6

projectFile | projectDirectory

An optional argument to specify the name of the project file to create, or the
name of its parent directory. If no filename or directory is specified, vxprj
generates a name based on the other input arguments and stores the resulting
project in a new directory under installDir/target/proj.

If you do not have a target board for your application, the easiest way to
experiment with vxprj is to create projects for the VxWorks Simulator. A standard
Workbench installation includes a BSP for the simulator. For example:

C:\> vxprj create simpc diab C:\myProj\myproj.wpj

This command creates a kernel configuration project to be built with the Wind
River compiler (diab) and run on the VxWorks Simulator for Windows (simpc).
The project file (myproj.wpj), source files, and makefile are stored in C:\myProj.
To generate a similar project for Solaris or Linux hosts, specify solaris or linux as
the BSP, type the following:

% vXprj create solaris diab /myProj/myproj.wpj
$ vxprj create linux diab /myProj/myproj.wp3j

(For more information about the VxWorks Simulator, see 5.3 Using the VxWorks
Simulator, p.44, and the Wind River VxWorks Simulator User’s Guide.)

The following command creates a project in the default location using the
wrSbcPowerQuiccll (PowerPC) board support package:

[

% vxprj create wrSbcPowerQuiccII diab

When this command is executed, vxprj creates a subdirectory for the new project
and reports the location of directory.

The following command creates a GCC project in C:\myProjects\mips64\ using
the rh5500_mips64 BSP:

C:\> vxprj create rh5500_mips64 gnu C:\myProjects\mips64\mipsProject.wpj

The project file created by this command is called mipsProject.wpj.

Checking the Toolchain

You can use vxprj to check the valid toolchains for a BSP:
% vxprj tccheck list BSP
For example:

% vxprj tccheck list sbl250a_0_mipsi64

20

3 Configuring and Building VxWorks
3.2 Using vxprj

diab sfdiab gnu sfgnu

Copying Projects -
3

Using Profiles

To copy an existing project to a new location, type the following:
vxprj copy [sourceFile] destinationFile | destinationDirectory

If no source file is specified, vxprj looks for a .wpj file in the current directory. If a
destination directory—but no destination filename—is specified, vxprj creates a
project file with the same name as the directory it resides in. For example:

[

% vxprj copy myproj.wpj /New

This command copies myproj.wpj and associated files to /New/New.wpj.

A profile is a preconfigured set of components that provides a starting point for
custom kernel configuration. For example, PROFILE_DEVELOPMENT includes a
variety of standard development and debugging tools. The following command
creates a PROFILE_DEVELOPMENT-based project in the default location using the
wrSbcPowerQuicclIl BSP:

% vxprj create -profile PROFILE_DEVELOPMENT wrSbcPowerQuiccII diab

The profile affects only the components use to create the project: after creation, the
project does not retain any information about the profile used to create it.

For a list of profiles, see the VxWorks Kernel Programmer’s Guide: Kernel.

3.2.2 Deleting Projects

To delete a project, type the following:
vxprj delete projectFile

where projectFile is the .wpj file associated with the project. The delete command
permanently deletes the directory in which projectFile resides and all of its contents
and subdirectories. (Do not run the command from the project directory you are
trying to remove.) For example:

% vxprj delete /myProj/myproj.wpj

This command deletes the entire myProj directory.

21

VxWorks
Command-Line Tools User's Guide, 6.6

A CAUTION: vxprj delete removes any file passed to it, regardless of the file’s name
or extension, along with the entire directory in which the file resides. It does not
verify that the specified file is a Workbench project file, nor does it attempt to save
user-generated files.

3.2.3 Modifying Projects

Adding Components

To add components to a kernel configuration project, type the following:
vxprj component add [projectFile] component [component ...]

If no project file is specified, vxprj looks for a .wpij file in the current directory and
adds the specified components to that file. Components are identified by the
names used in .wpj and .cdf files, which have the form INCLUDE_xxx. For
example:

% vxprj component add MyProject.wpj INCLUDE_MMU_BASIC INCLUDE_ROMFS

This command adds support for a memory management unit and the ROMFS
target file system to MyProject.wpj.

Adding Bundles

Some components are grouped into bundles that provide related or complementary
functionality. Adding components in bundles is convenient and avoids unresolved
dependencies.
To add a bundle to a project, type the following:

vxprj bundle add [projectFile] bundle [bundle ...
For example:

% vxprj bundle add BUNDLE_RTP_ DEVELOP

This command adds process (RTP) support to the kernel configuration project
in the current working directory.

% vxprj bundle add MyProject.wpj BUNDLE RTP_DEVELOP
BUNDLE_STANDALONE_SHELL BUNDLE_ POSIX BUNDLE_EDR

This command adds support for processes, the kernel shell, POSIX, and error
detection and reporting to MyProject.wpj.

22

3 Configuring and Building VxWorks
3.2 Using vxprj

Removing Components

To remove components from a kernel configuration project, type the following:

vxprj component remove [projectFile] component [component ...]

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj component remove MyProject.wpj INCLUDE_MMU_BASIC INCLUDE_DEBUG

This command removes the specified components as well as any components that are
dependent on them.

Removing Bundles

To remove a bundle, type the following:

vxprj bundle remove [projectFile] bundle [bundle ...]

Setting Configuration Parameter Values

To set the value of a configuration parameter, type the following:
vxprj parameter set [projectFile] parameter value

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj parameter set MyProject.wpj VM PAGE_SIZE 0x10000
This command sets VM_PAGE_SIZE to 0x10000. (To list a project’s configuration
parameters, see Listing Configuration Parameters and Values, p.26.)

Parameter values that contain spaces should be enclosed in quotation marks. If a
parameter value itself contains quotation marks, they can be escaped with \
(Windows) or the entire value surrounded with *...” (UNIX). An easier way to set
parameter values that contain quotation marks is to use setstring, which tells vxprj
to treat everything from the space after the parameter argument to the end of the
command line as a single string. For example:

% vxprj parameter setstring SHELL_DEFAULT_ CONFIG "LINE_LENGTH=128"

This command sets SHELL_DEFAULT_CONFIG to “LINE_LENGTH=128",
including the quotation marks.

To reset a parameter to its default value, type the following:

vxprj parameter reset [projectFile] parameter [parameter ...]

23

VxWorks
Command-Line Tools User's Guide, 6.6

Changing the Project Makefile Name

To change the name of a project’s makefile, type the following:
vxprj makefile [projectFile] newMakefileName

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj makefile make.rules

This command changes the name of the makefile (for the project in the current
working directory) from the default Makefile to make.rules.

Adding and Removing Individual Files

To link a kernel application with the VxWorks kernel image, the source file must
be added to the project. To add a specific source code file to a kernel configuration
project, type the following:

vxprj file add [projectFile] sourceFile

If no project file is specified, vxprj looks for a .wpij file in the current directory.
When the project is built, the specified source file is compiled and linked into the
resulting kernel image.

To remove a file from a project, type the following:

vxprj file remove [projectFile] sourceFile

For information about configuring VxWorks to start kernel applications at boot
time, see the VxWorks Kernel Programmer’s Guide: Kernel.

3.2.4 Generating Project and Component Diagnostics

Obtaining a List of Components

To see a list of components, type the following:
vxprj component list [projectFile] [type] [pattern]

If no project file is specified, vxprj looks for a .wpij file in the current directory. If
pattern is specified, vxprj lists only components whose names contain pattern as a
substring; if pattern is omitted, all components are listed.

24

3 Configuring and Building VxWorks
3.2 Using vxprj

The type argument can be all, included, excluded, or unavailable. The default is

included, which lists components included in the project. Specify excluded to list

installed components that are not included in the project; all to list all installed
components; or unavailable to list components that are installed but not available
for the project. (An available component is one that is installed, with all its

dependent components, under the VxWorks directory.)

For example:

% vxprj component list MyProject.wpj SHELL

This command returns all components in MyProject.wpj whose names
contain “SHELL”, such as INCLUDE_SHELL_BANNER and
INCLUDE_RTP_SHELL C.

% vxprj component list MyProject.wpj excluded VM

This command returns all available components with names containing “VM”
that are not included in MyProject.wpj.
Examining Bundles

To see a list of bundles, type the following:
vxprj bundle list [projectFile] [type] [pattern]

For type and pattern, see Obtaining a List of Components, p.24.
To see the components and other properties of a bundle, type the following:

vxprj bundle get [projectFile] bundle

Examining Profiles

To see a list of profiles, type the following:
vxprj profile list [projectFile] [pattern]
For pattern, see Obtaining a List of Components, p.24.
To see the components and other properties of a profile, type the following:

vxprj profile get [projectFile] profile

Comparing the Components in Different Projects

To compare the components in two projects, type the following;:
vxprj component Aiff [projectFile] projectFile | directory

If only one project file or directory is specified, vxprj looks for a .wpj file in the
current directory and compares it to the specified project. For example:

25

VxWorks
Command-Line Tools User's Guide, 6.6

% vxprj component diff /Apps/SomeProject.wpj

This command compares the components included in /Apps/SomeProject.wpj to
those included in the project in the current working directory. It returns a list of the
unique components in each project.

Checking a Component

To verify that components are correctly defined, type the following:
vxprj component check [projectFile] [component o]

If no project file is specified, vxprj looks for a .wpij file in the current directory. If
no component is specified, vxprj checks every component in the project. For
example:

% vxprj component check MyProject.wpj

This command invokes the cmpTest routine, which tests for syntactical and
semantic errors.

Checking Component Dependencies

To generate a list of component dependencies, type the following:
vxprj component dependencies [projectFile] component [component ...]

If no project file is specified, vxptj looks for a .wpj file in the current directory. For
example:

% vxprj component dependencies INCLUDE_OBJ LIB

This command displays a list of components required by INCLUDE_OB]J_LIB.

Listing Configuration Parameters and Values

To list a project’s configuration parameters, type the following:
vxprj parameter list [projectFile] [pattern]

If no project file is specified, vxprj looks for a .wpij file in the current directory. If
pattern is specified, vxprj lists only parameters whose names contain pattern as a
substring; if pattern is omitted, all parameters are listed. For example:

% vxprj parameter list MyProject.wpj TCP

26

3 Configuring and Building VxWorks
3.2 Using vxprj

This command lists all parameters defined in MyProject.wpj whose names
contain “TCP”, such as TCP_MSL_CFG.

To list a project’s parameters and their values, type the following:
vxprj parameter value [projectFile] [Namepattern [valuePattern]]

If no project file is specified, vxprj looks for a .wpij file in the current directory. If
namePattern is specified, vxprj lists only parameters whose names contain
namePattern as a substring; if valuePattern is specified, vxprj lists only parameters
whose values contain valuePattern as a substring. For example:

% vxprj parameter value

% vxprj parameter value USER TRUE

The first command lists all parameters and values for the project in the current
directory. The second lists only parameters whose names contain “USER” and
whose values contain “TRUE”.

Comparing Parameters in Different Projects
To compare the configuration parameters of two projects, type the following:

vxprj parameter Aiff [projectFile] projectFile | directory

If only one project file or directory is specified, vxprj looks for a .wpj file in the
current directory and compares it to the specified project. For example:

% vxprj parameter diff /MyProject/MyProject.wpj /Apps/SomeProject.wpj

This command compares the parameters in MyProject.wpj to those in
SomeProject.wpj and returns a list of unique parameter-value pairs for each
project.

Listing the Source Files in a Project

To list a project’s source code files, type the following:
vxprj file list [projectFile] [pattern]

If no project file is specified, vxprj looks for a .wpij file in the current directory. If
pattern is specified, vxprj lists only files whose names contain pattern as a substring;
otherwise, all files are listed.

To see build information for a source code file, type the following:

vxprj file get [pmjectFile] sourceFile

27

VxWorks
Command-Line Tools User's Guide, 6.6

3.2.5 Building Kernel Configuration Projects with vxprj

A kernel configuration (VxWorks image) project includes build rules based on the
format used in makefiles. Projects also include build specifications, which organize
and configure build rules. Build specifications depend on the type of project and
BSP, but a typical project might have four build specifications: default,
default rom, default romCompress, and default romResident; for information
about these build specifications, see the VxWorks Kernel Programmer’s Guide: Kernel
Configuration. A build specification defines variables passed to make and flags
passed to the compiler. Each project has a current build specification, initially
defined as default.
To build a kernel configuration project with vxprtj, type the following:

vxprj build [projectFile] [buildSpecification | buildRule]

If no project file is specified, vxprj looks for a .wpij file in the current directory. If
the second argument is omitted, vxprj uses the project’s current build
specification. Output from the compiler is saved in a subdirectory—with the same
name as the build specification—under the project’s source directory. For example:

% vxprj build
% vxprj build myproj.wpj default_rom

The first command builds the project found in the current directory using the
project’s current build specification. The second command builds the project
defined in myproj.wpj using the default_rom build specification.

Examining Build Specifications and Rules

To see the name of the current build specification, type the following:
vxprj build get [projectFile]

If no project file is specified, vxprj looks for a .wpj file in the current directory. To
see all available build specifications for a project, type the following:

vxprj build list [projectFile]

To see all the build rules in a project’s current build specification, type the
following:

vxprj buildrule list [projectFile]

To examine a build rule in a project’s current build specification, type the
following:

vxprj buildrule get [projectFile] buildRule

28

3 Configuring and Building VxWorks
3.2 Using vxprj

For example:

% vxprj buildrule get prjConfig.o

This command displays the prjConfig.o build rule.

Changing Build Settings

To change a project’s current build specification, type the following;:
vxprj build set [projectFile] buildSpecification

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj build set myproj.wpj default_romCompress

This command changes the current build specification of myproj.wpj to
default_romCompress.

To reset a project’s current build specification to its default, type the following:
vxprj build reset [projectFile]

The set and reset commands update a project’s makefile as well as its .wpj file.

Adding and Changing Build Rules

The commands documented below edit project makefiles and .wpij files.
To add a build rule to a project’s current build specification, type the following:
vxprj buildrule add [projectFile] buildRule value

If no project file is specified, vxprj looks for a .wpj file in the current directory. For
example:

% vxprj buildrule add default_new "$(CC) $(CFLAGS) ./prjConfig.c -o $@"

This command creates a build rule (if it doesn’t already exist) called default_new,
adds it to the current build specification, and sets its value to
$(CC) $(CFLAGS) ./prjConfig.c -o $@.

To create or edit a build rule without including it in the project’s current build
specification, type the following:

vxprj buildrule set [projectFile] buildRule value

Rules created with set are added to the list of available build rules for the current
build specification.

29

VxWorks
Command-Line Tools User's Guide, 6.6

To remove a build rule from a project, type the following;:
vxprj buildrule remove [projectFile] buildRule

To set the default build rule for the current build specification, type the following:
vxprj buildrule [projectFile] buildRule

For example:

% vxprj buildrule default_new

3.2.6 Example vxprj Session

The following sample vxprj session creates an SMP kernel for the pcPentium4 BSP
using the diab compiler in the directory pcPentium4_diab (relative to the current
directory). In addition to the basic operations of creating and building the project,
this example demonstrates the addition of bundles, components, and build
macros.

o°

vXprj create -smp pcPentiumd4 diab pcPentiumd_diab

cd pcPentiumd_diab

vxprj bundle add pcPentiumd4_diab.wpj BUNDLE_STANDALONE_SHELL
vxprj bundle add pcPentiumd4_diab.wpj BUNDLE RTP_DEVELOP
vxprj bundle add pcPentiumd4_diab.wpj BUNDLE_POSIX

vxprj component add pcPentiumd4_diab.wpj INCLUDE_HRFS

vxprj component add pcPentiumd4_diab.wpj INCLUDE_HRFS_FORMAT
vxprj component add pcPentiumd4_diab.wpj INCLUDE_RAM DISK
vxprj parameter setstring RAM DISK_DEV_NAME /hrfs0

vxprj buildmacro add ROMFS_DIR

vxprj buildmacro set ROMFS_DIR ./romfs

vxprj build pcPentiumd4_diab.wpj

0 0 00 O d° o oP of

o0 o of

3.2.7 Creating a Standalone Kernel Image

A kernel image is a non-relocatable object file that gets loaded and runs on the
target board. For development , when you will be communicating with the target
board from a host machine, the symbol table can reside on the host. For a
standalone VxWorks image (vxWorks.st), the OS image includes the symbol table.
To get a standalone kernel image, add the INCLUDE_SHELL and
INCLUDE_STANDALONE_SYM_TBL components to your build:

% vxprj component add INCLUDE_SHELL INCLUDE_STANDALONE_SYM TBL

30

3 Configuring and Building VxWorks
3.3 Using cmpScriptLib and Other Libraries

3.3 Using cmpScriptLib and Other Libraries

The VxWorks tools include several Tcl libraries, such as cmpScriptLib, that
provide routines for project and component management. Additional information
about these routines is available in the reference pages for each library.

To access cmpScriptLib, you need a correctly configured Tcl shell. Start by entering
the following:

C:\> tclsh

package require OsConfig
From the new command prompt you can use routines in ecmpScriptLib, including
cmpProjCreate, which creates kernel configuration projects. For example:

UNIX

cmpProjCreate pcPentium4 /MyProject/projectl.wpj

Windows
cmpProjCreate pcPentium4 C:\\MyProject\\projectl.wpj

This command creates a kernel configuration project using the pcPentium4 BSP.
Notice the double backslashes (\\) in the Windows directory path.

To manipulate an existing project, first identify the project by “opening” it with
cmpProjOpen. (A project that has just been created with cmpProjCreate or
cmpProjCopy is already open. Only one project at a time can be open within a Tcl
shell.) When you are finished, you can close the project with cmpProjClose:

cmpProjopen ProjectFile

... additional commands ...

cmpProjClose
Another useful routine in cmpScriptLib is autoscale, which analyzes projects and
generates a list of unused components. This can help to produce the most compact
executable. For example:

cmpProjOpen myProj.wpj

autoscale

.. output ...

cmpProjClose
These commands generate a list of components that can be removed from
myProj.wpj (because their code is never called) as well as a list of components that
should be added to the project (because of dependencies). The autoscale facility
can also be invoked through vxprj; see the vxprj reference entry for details.

The vxprj utility gives you access to most cmpScriptLib functionality without
having to start a Tcl shell or write Tcl scripts. For example, consider the following
vxprj command:

31

VxWorks
Command-Line Tools User's Guide, 6.6

% vxprj component remove myProj.wpj INCLUDE_WDB
This command is equivalent to the following:

tclsh

package require OsConfig
cmpProjOpen myProj.wpj
cmpRemove INCLUDE_WDB
cmpProjClose

HH H H H o

3.3.1 Building Kernel Configuration Projects with cmpScriptLib

The ecmpScriptLib Tcl library includes routines that build and manipulate
downloadable kernel modules as well as kernel configuration projects. To access
cmpScriptLib, you need a correctly configured Tcl shell. Start by entering the
following:

% tclsh
package require OsConfig

From the new command prompt, you can build a project by typing the following:

cmpProjoOpen projectFile
cmpBuild

For example:

cmpProjOpen /Apps/SomeProject.wpj

cmpBuild
This command builds the project defined in SomeProject.wpj. If you specify a
Windows directory path with projectFile, be sure to use double backslashes (\\).

cmpScriptLib contains several routines that allow you to view and set build rules
and build specifications, including cmpBuildRule, cmpBuildRuleSet,
cmpBuildSpecSet, cmpBuildRuleListGet, cmpBuildRuleAdd,
cmpBuildRuleRemove, and cmpBuildRuleDefault. Information about these
routines is available in the reference entry for cmpScriptLib. For additional
information about ecmpScriptLib, see also 3.3 Using cmpScriptLib and Other
Libraries, p.31.

32

Configuring and Building

4.1
4.2
4.3
4.4
4.5

Application Projects

Introduction 33

Other VxWorks Project Types 34
RTP and Library Projects 35

RTP Applications and Libraries 35
Downloadable Kernel Modules 41

4.1 Introduction

This chapter explains how to configure and build application projects using the
vxprj facility, cmpScriptLib routines, and make, and how to generate makefiles for
building VxWorks kernel libraries.

The tools and methods available for build management depend on the type of
project under development. While the IDE supports most project types, the
command-line facilities are less uniform:

Kernel configuration (VxWorks image) projects can be built with the IDE, vxptj,
cmpScriptLib, or by calling make directly. The preferred command-line
method is to use vxprj. The output of a build is a group of object (.0) files and
a VxWorks kernel image (vxWorks).

33

VxWorks
Command-Line Tools User's Guide, 6.6

= RTP (user-mode) applications and libraries can be built with the IDE, or by
calling make directly. A standard series of make rules is available for this
purpose. The output of an RTP application build is a group of object (.o0) files
and an executable (.vxe) file that runs under VxWorks. The output of an RTP
library build is a group of object (.0) files and an archive (.a) file that can be
linked into RTP applications.

= Shared libraries, downloadable kernel modules, and file system projects are
most easily handled from the IDE, but they can also be built by calling make
directly.

Regardless of how build management is approached, Workbench supports two
toolkits—GCC and the Wind River Compiler (diab)—both of which use the GNU
make utility. When you create a kernel configuration project with vxprj or the IDE,
you must select a toolkit. When you build other projects from the command line,
you can (assuming that your application code is portable) select a toolkit at the
time of compilation.

For any project that is created from the IDE (including shared libraries,
downloadable kernel modules, and real-time process (RTP) applications), you can
examine the generated Makefile and create a separate copy of the project if you
want to hand-modify or script the build.

For information on building VxWorks kernel libraries, see the getting started guide
for your platform product.

4.2 Other VxWorks Project Types

Real-time process (RTP), shared library, downloadable kernel module, and file
system projects are most easily created and built from the IDE. For information
about managing these projects with the IDE, see the VxWorks User’s Guide. For
detailed information about RTPs, shared libraries, and file systems, see the
VxWorks Application Programmer’s Guide. For more information about
downloadable kernel modules—essentially object (.0) files that can be dynamically
linked to a VxWorks kernel—see the VxWorks Kernel Programmer’s Guide.

34

4 Configuring and Building Application Projects
4.3 RTP and Library Projects

4.3 RTP and Library Projects

User-mode (RTP) application and library projects can be created by following the

models in target/usr/apps/samples/ and target/usr/src/usr/ under the VxWorks

installation directory. For more information, see 4.4 RTP Applications and Libraries,
p-35.

4.4 RTP Applications and Libraries

To build a user-mode (RTP) application or library from the command line, you can
invoke the make utility directly. Wind River supplies a general build model
implemented by a series of make rules, with standard make variables that control
aspects of the build process such as target CPU and toolkit.

For example, the following command could be used to build an application like the
helloworld RTP sample included with Workbench:

% make cpu=CPU_Name TooL=diab

This command builds helloworld for PowerPC targets, using the Wind River
(Diab) compiler. For more information about CPU and TOOL, see the VxWorks
Architecture Supplement.

4.4.1 RTP Application Makefiles

You can make a simple makefile for the helloworld RTP application looks like this:

This file contains make rules for building the hello world RTP

EXE = helloworld.vxe

OBJS = helloworld.o

include $ (WIND_USR) /make/rules.rtp
This makefile is simple because most of the make rules are included by indirection
from rules.rtp and other files referenced in rules.rtp. When make processes this
file, helloworld.c is compiled to helloworld.o, which is then linked with other
VxWorks user-mode (RTP) libraries to produce the application executable
helloworld.vxe.

You can also make a simple, but more explicit makefile that builds an RTP
application in the current directory:

35

VxWorks
Command-Line Tools User's Guide, 6.6

basic build file for an RTP application

for Windows hosts, fix slashes
WIND_HOME := $(subst \,/,$(WIND_HOME))
WIND_BASE := $(subst \,/,$(WIND_BASE))
WIND_USR := $(subst \,/,$(WIND_USR))

project-specific macros
RTP = Hello_rtp.vxe

OBJ = Hello_rtp.o

SRC = Hello_rtp.c

libraries, includes

LIBS = -1lstlstd

INCLUDES = \
-IS$(WIND_BASE) /target/usr/h \
-I$(WIND_BASE) /target/usr/h/wrn/coreip

define CPU and tools
VX_CPU_FAMILY = simpentium
CPU = SIMPENTIUM
TOOL_FAMILY = diab

TOOL = diab

compiler, linker (dcc or dplus)

CC = dcc
LL = dcc
LFLAGS =

See Wind River compiler guide for information on target selection.
TARGET_SPEC = -tX86LH:rtp

FHFH S
generic build targets, rules
S(RTP) : $(OBJ)
$(LL) $(LFLAGS) \
-L$ (WIND_BASE) /target/usr/1ib/$ (VX_CPU_FAMILY) /$ (CPU) /common \
-0 $@ $(OBJ) S$(LIBS)

$(OBJ) : $(SRC)
$(CC) S (TARGET_SPEC) $(INCLUDES) \

-D_VX_CPU=_VX_S$ (CPU) \
-D_VX_TOOL=$ (TOOL) \
-D_VX_TOOL_FAMILY=$ (TOOL_FAMILY) \
-0 $@ -c $<

clean up

clean

rm $(RTP) $(OBJ)

See the Wind River compiler documentation for more details on
compiler and linker options.

36

4 Configuring and Building Application Projects
4.4 RTP Applications and Libraries

Note that the options for compiling an RTP include the following options:
-D_VX_CPU, -D_VX_TOOL, and -D_VX_TOOL_FAMILY. You need to use these
options when compiling an RTDP, instead of the compiler options -DCPU, -DTOOL,
and -DTOOL_FAMILY that you use when compiling a downloadable kernel
module.

4.4.2 RTP Libraries

The makefile for a static archive looks like this:

This file contains make rules for building the foobar library
LIB_BASE_NAME = foobar
OBJS = fool.o foo2.0 \
barl.o bar2.o
include $ (WIND_USR)/make/rules.library
This makefile could be used to build a library called libfoobar.a. It includes rules
defined in rules.library.

4.4.3 Makefile and Directory Structure

Typically, each application or library project is stored in a separate directory with
its own makefile. For examples, see target/usr/apps/samples/ under the VxWorks
installation directory.

rules.rtp, rules.library, and other make rule files (some of them host-specific) are
found in target/usr/make/ under the VxWorks installation directory. Except for the
LOCAL_CLEAN and LOCAL_RCLEAN variables (see 4.4.5 Make Variables, p.38),
rules.rtp or rules.library should usually be included as the last line of the makefile;
user-defined build rules must precede rules.rtp or rules.library.

4.4.4 Rebuilding VxWorks RTP (User-Mode) Libraries

The VxWorks user-mode source base, which provides supporting routines for
applications, is installed under target/ust/src/. These files can be used to build both
statically linked (.a) and dynamically linked (.so) libraries by setting the value of
LIB_FORMAT (see 4.4.5 Make Variables, p.38). From the target/ust/src/ directory, you
can rebuild the user-mode libraries by typing the following:

% make CPU=farget TOOL=toolkit

37

VxWorks
Command-Line Tools User's Guide, 6.6

Unless overridden with SUBDIRS or EXCLUDE_SUBDIRS (see 4.4.5 Make Variables,
p-38), the build system descends recursively through the directory tree, executing
make in each subdirectory.

When RTP libraries are compiled, the preprocessor macro _RTP__ is defined and
the preprocessor macro _WRS_KERNEL is not defined.

4.4.5 Make Variables

The VxWorks build system utilizes a number of make variables (also called
macros), some of which are described below. The files in target/ust/make/ include
additional variables, but only the ones documented here are intended for
redefinition by the user.

ADDED_C++FLAGS
Additional C++ compiler options.

ADDED_CFLAGS
Additional C compiler options.

ADDED_CLEAN_LIBS
Alist of libraries (static and dynamic) deleted when make clean is executed in
the application directory. See LOCAL_CLEAN and LOCAL_RCLEAN below.

ADDED_DYN_EXE_FLAGS
Additional compiler flags specific to the generation of dynamic executables.

ADDED_LIBS
A list of static libraries (in addition to the standard VxWorks RTP libraries)
linked into the application.

ADDED_LIB_DEPS
Dependencies between the application and the application’s static libraries
(with the += operator). For static linkage, this variable forces a rebuild of the
application if the static library has been changed since the last build.

ADDED_SHARED_LIBS
Alist of shared libraries dynamically linked to the application. Items in the list
are prefixed with lib and have the .so file extension added. For example,
ADDED_SHARED_LIBS="foo bar" causes the build system to try to link
libfoo.so and libbar.so.

CPU
The target instruction-set architecture to compile for. This is not necessarily the
exact microprocessor model.

38

4 Configuring and Building Application Projects
4.4 RTP Applications and Libraries

DOC_FILES
A list of C and C++ source files that are specially parsed during the build to
generate online API documentation. Should be an empty list if there are no
files to generate documentation from.

EXCLUDE_SUBDIRS
A list of subdirectories excluded from the build. Generally, when make is
executed, the system tries to build the default target for every subdirectory of
the current directory that has a makefile in it. Use EXCLUDE_SUBDIRS to
override this behavior. See also SUBDIRS.

EXE
The output executable filename. Specify only one executable per makefile. Do
not include a directory path. See VXE_DIR.

EXE_FORMAT
The format of the output executable (static or dynamic). The default is static.

EXTRA_INCLUDE
Additional search paths for the include files. Uses the += operator.

LIBNAME
A non-default directory for the static library.

LIB_BASE_NAME
The name of the archive that objects built in the directory are collected into. For
example, LIB_BASE_NAME-=foo causes the build system to create a static
library called libfoo.a or a dynamic library called libfoo.so. See LIB_FORMAT.
(Library builds only.)

LIB_DIR
Alocal make variable that can be used conveniently to identify where a library
is located (if it is not in the default location) in the ADDED_LIBS and
ADDED_LIB_DEPS lines without repeating the literal path information.

LIB_FORMAT
The type of library to build. Can be static, shared (dynamic), or both; defaults
to both. (Library builds only.)

LOCAL_CLEAN
Additional files deleted when make clean is executed. By default, the clean
target deletes files listed in OBJS. Use LOCAL_CLEAN to specify additional files
to be deleted. Must be defined after rules.rtp or rules.library.

LOCAL_RCLEAN
Additional files deleted when make rclean is executed. The rclean target
recursively descends the directory tree starting from the current directory,

39

VxWorks
Command-Line Tools User's Guide, 6.6

executing make clean in every subdirectory; if SUBDIRS is defined, only
directories listed in SUBDIRS are affected; directories listed in
EXCLUDE_SUBDIRS are not affected. Use LOCAL_RCLEAN to specify
additional files in the current directory to be deleted. Must be defined after
rules.rtp or rules.library.

OBJ_DIR
The output subdirectory for object files.

OBJS
A list of object files built; should include object files to be linked into the final
executable. Each item must end with the .o extension. If you specify an object
file that does not have a corresponding source file (.c for C, .cpp for C++, or .s
for assembly), there must be a build rule that determines how the object file is
generated. Do not include a directory path. See OBJ_DIR and LIBDIRBASE.

SL_INSTALL_DIR
A non-default location for the library file. It is often useful to keep project work
outside of the installation directory.

SL_VERSION
A version number for a shared library. By default, the shared library version
number is one (libName.s0.1), so this variable is not needed unless you want to
build an alternate version of the shared library.

SUBDIRS
Alist of subdirectories of the current directory in which the build system looks
for a makefile and tries to build the default target. If SUBDIRS is not defined,
the system tries to build the default target for every subdirectory of the current
directory that has a makefile in it. EXCLUDE_SUBDIRS overrides SUBDIRS.

TOOL
The compiler and toolkit used. The Wind River (Diab) and GCC (GNU)
compilers are supported. TOOL can also specify compilation options for
endianness or floating-point support.

VXE_DIR
The output subdirectory for executable files and shared libraries. Defaults to
target/usr/root/CPUtool/bin/ (executables) or target/ust/root/CPUtool/lib/
(shared libraries); for example, target/usr/root/PPC32diab/bin/.

For further information on these make variables, see the VxWorks Application
Programmer’s Guide: Applications and Processes.

For information on the supported values for the CPU and TOOL make variables,
see the VxWorks Architecture Supplement: Building Applications.

40

4 Configuring and Building Application Projects
4.5 Downloadable Kernel Modules

4.5 Downloadable Kernel Modules

The easiest way to create downloadable kernel modules is to use Workbench.

However, you can build downloadable kernel modules from the command line

using make. For example, the following simple makefile builds a downloadable
kernel module in the current directory:

basic build file for a DKM application

for Windows hosts, fix slashes
WIND_HOME := $(subst \,/,$(WIND_HOME))
WIND_BASE := $(subst \,/,$(WIND_BASE))
WIND_USR := $(subst \,/,$(WIND_USR))

project-specific macros
EXE = Hello_dkm.out

OBJ = Hello_dkm.o

SRC = Hello_dkm.c

libraries, includes

LIBS =

INCLUDES = -I$(WIND_BASE)/target/h \
-I$(WIND_BASE)/target/h/wrn/coreip

define CPU and tools
CPU = SIMPENTIUM
TOOL_FAMILY = diab
TOOL = diab

compiler, linker (dcc, dld)
CC = dcc
LL = dld

See Wind River compiler guide for complete details on linker options
-r retains relocation entries, so the file can be re-input to the
linker

LFLAGS = $(TARGET_SPEC) -r

See Wind River compiler guide for information on target selection.
TARGET_SPEC = -tX86LH:vxworks66

FHHFH
generic build targets, rules

executable constructed using linker from object files
$(EXE) : $(OBJ)
$(LL) $(LFLAGS) -o $@ $(OBJ) S$(LIBS)

objects compiled from source
$(OBJ) : $(SRC)
$(CC) S$(TARGET_SPEC) $(INCLUDES) \
-DCPU=S$ (CPU) \

41

VxWorks
Command-Line Tools User's Guide, 6.6

-DTOOL=$ (TOOL) \
-DTOOL_FAMILY=$ (TOOL_FAMILY) \
-0 $@ -c s<

clean up
clean :

rm $(EXE) $(OBJ)

See the Wind River compiler documentation for more details on
compiler and linker options.

Note that the compiler options for a downloadable kernel module include -DCPU,
-DTOOL, and -DTOOL_FAMILY.

42

Connecting to a Target

5.1 Introduction 43
5.2 Connecting to a Target Board 43
5.3 Using the VxWorks Simulator 44

5.1 Introduction

This chapter outlines procedures for running compiled VxWorks applications on
targets and simulators.

5.2 Connecting to a Target Board

Downloading VxWorks to a physical target involves the following steps:
1. Launch the Wind River registry:

* Run wrenv: wrenv -p vxworks-6.x.
* On Windows, type wtxregd.
*= On UNIX, type wtxregd start.

43

VxWorks

Command-Line Tools User's Guide, 6.6

The registry maintains a database of target servers, boards, ports, and other
items used by the development tools to communicate with targets. For more
information, see the wtxregd and wtxreg reference entries.

Connect the target to a serial terminal.
Switch on the target.

Edit the boot loader parameters to tell the boot loader the IP address of the
target and the location of the VxWorks image. See the VxWorks Kernel
Programmer’s Guide: Kernel for details.

Start the target server by typing the following:
% tgtsvr targetlPaddress -n target -e pathToVxWorkslmage

The target server allows development tools, such as the host shell or debugger,
to communicate with a remote target. For more information, see the tgtsrv and
wtxConsole reference entries.

Start the host shell by typing the following:
% windsh targetServer

The host shell allows command-line interaction with a VxWorks target. For an
overview of the host shell, see the Wind River Workbench Host Shell User’s Guide.

From the host shell, you can load and run applications. For example:

% 1d < filename.out
% rtpSp "filename.vxe"

For detailed information, see the Wind River Workbench Host Shell User’s Guide.

5.3 Using the VxWorks Simulator

To run under the VxWorks Simulator, an application must be specially compiled.
For VxWorks images, the best way to do this is to set up and build a
simulator-enabled version of the project. This can be done with vxprj:

vxprj create simpc|solaris|linux diablgnu [projectFile | directory]
vxprj build projectFile

For more information about these commands, see 3.2.1 Creating Kernel
Configuration Projects, p.18 and 3.2.5 Building Kernel Configuration Projects with
vxprj, p.28.

44

5 Connecting to a Target
5.3 Using the VxWorks Simulator

RTP applications that use the standard Wind River build model can be compiled
for the simulator by specifying an appropriate value for the CPU make variable:

cd projectDirectory
make CPU=SIMPENTIUM | SIMSPARCSOLARIS TOOL=diab |gnu

For more information, see 4.4 RTP Applications and Libraries, p.35.
To run the simulator, type the following:

wrenv -p vworks-6.x
vxsim [-£ pathToVxWorkslmage | filename .vxe] [otherOptions]

From the kernel shell on the simulator, you can run downloadable kernel modules
(DKMs) or real time process applications (RTPs).

For example, to download and run a DKM on the target simulator:

-> 1d < host:dkm_filepath.out # load the DKM
-> main # run main() routine

To spawn an RTP from a binary file on the host machine:
-> rtpSp "“host:rip_filepath.vxe" # spawn an RTP

For more information about the simulator, see the Wind River VxWorks Simulator
User’s Guide.

45

VxWorks
Command-Line Tools User's Guide, 6.6

46

Configuring and Building
VxWorks Using config.h

A.l Introduction 47

A.2 Configuring an Image Using config.h 48
A.3 Configuration Examples 49

A.4 Using make 50

A.1 Introduction

Wind River recommends using either Workbench or the vxprj command-line
facility to configure and build VxWorks. The legacy method using bspDir/config.h
and bspDir/make has been deprecated for most purposes, and you cannot use it for
multiprocessor (SMP and AMP) development.

However, you must still use the config.h method for the following:

» Some middleware products (see the VxWorks 6.6 Release Notes for further
information).

* Boot loaders, when the BSP does not support the PROFILE_BOOTAPP
configuration profile.

You can also use the config.h method for uniprocessor BSP development prior to
the CDF (configuration description file) development to support vxprj and
Workbench builds.

47

VxWorks
Command-Line Tools User's Guide, 6.6

A.2 Configuring an Image Using config.h

In the absence of CDFs (configuration description files), you can configure a boot
loader or VxWorks image using the config.h file. For example, you can select a
different network driver, or networking components can be removed if the system
does not require networking to boot or to operate.

In general, you should only configure a build manually if it is not already set up to
use vxprj or Workbench.

To add or remove components from a boot loader or VxWorks image, you must use
two BSP configuration files: configAlLh (for reference purposes only) and
config.h:

installDir/vxworks-6.6/target/config/all/configAll.h
installDir/vxworks-6.6/target/config/bspName/config.h

The configAlLh file provides the default VxWorks configuration for all BSPs. The
INCLUDED SOFTWARE FACILITIES section of this header file lists all
components that are included in the default configuration. The EXCLUDED
FACILITIES section lists those that are not. To add or remove components from a
kernel configuration, examine the configAlLh file to determine the default, then
change the default for a specific BSP by editing the config.h file for that BSP,
defining or undefining the appropriate components.

The config.h header file includes definitions for the following parameters:
= Default boot parameter string for boot ROMs.
* Interrupt vectors for system clock and parity errors.
* Device controller I/O addresses, interrupt vectors, and interrupt levels.
= Shared memory network parameters.
* Miscellaneous memory addresses and constants.

The config.h file overrides any setting in the configAlLh file. You should never
edit the configAlLh file.

A CAUTION: Do not edit the configAlLh file. Any changes that you make will affect
all BSPs. You should only edit the config.h files in the individual BSP directories.

48

A Configuring and Building VxWorks Using config.h
A.3 Configuration Examples

A.3 Configuration Examples

The following examples draw from configAll.h and from specific BSPs.

A.3.1 Removing Network Support

The INCLUDED SOFTWARE FACILITIES section of configAllh has the
following entry for the core networking component:

#define INCLUDE_NETWORK /* network subsystem code *

If you are creating a boot loader for a wrSbc8560 board that does not require
networking, you would add the following line to the config.h file in
installDir[vxworks-6.6/target/config/wrSbc8560:

#undef INCLUDE_NETWORK

A.3.2 Adding RTP Support

RTP (real-time process) support is not included by default in BSP builds. Even
though the line

#define INCLUDE_RTP

appears in configAlLh, it is in the EXCLUDED FACILITIES section (wrapped in
an #if FALSE block).

If you want to include RTP support, you need to define the appropriate macros in
config.h. For example (from the simpc BSP):

#define INCLUDE_RTP /* Real Time Process */
#define INCLUDE_RTP_APPL_INIT BOOTLINE /* RTP bootline Facility */

#ifdef INCLUDE_RTP

#define INCLUDE_SC_POSIX /* POSIX system calls */
#endif /* INCLUDE_RTP */

49

VxWorks
Command-Line Tools User's Guide, 6.6

A.4 Using make

The recommended way of building kernel configuration projects is to use vxpzj or
the IDE. You can build VxWorks projects of other types from the IDE. If you decide
to build a project by invoking the make utility directly, and especially if you edit
the makefile, you should discard any generated project (.wpj or .wrproject) files
and no longer use the Workbench project management tools.

The wrenv environment utility automatically configures the correct version of
make, and Workbench-generated makefiles contain information about build tools,
target CPUs, and compiler options. Hence you should be able to build a project
created by vxprj, cmpScriptLib, or the IDE simply by moving to the project’s
parent directory and entering make from the command prompt. If the project is set
up to support multiple compilers or target CPUs, you may need to specify values
for make variables on the command line; for example:

[

% make CPU=PPC32 TOOL=diab

On Windows, the make utility, as configured by wrenv, executes the Z shell (zsh,
installed with the Workbench tools as sh.exe). On UNIX, the make utility executes
whatever shell program is invoked by the command sh.

NOTE: Your compiler installation may include a copy of dmake, an alternative
open-source make utility. This make utility is used only for building libraries
shipped with the standalone Wind River Compiler toolkit. VxWorks projects,
whether compiled with GCC or the Wind River Compiler, should be managed
with make.

For complete information about make, see the GNU Make manual.

A.4.1 Makefile Details

Each BSP has a makefile for building VxWorks. This makefile, called Makefile, is
abbreviated to declare only the basic information needed to build VxWorks with
the BSP. The makefile includes other files to provide target and VxWorks specific
rules and dependencies. In particular, a file of the form depend.bspname is
included. The first time that make is run in the BSP directory, it creates the
depend.bspname file.

The Makefile in the BSP directory is used only when building from the traditional
command line. It is not used when building projects from the project tool. Each

50

A Configuring and Building VxWorks Using config.h
A.4 Using make

build option for a project has its own makefile that the tool uses to build the project
modules.

There are a number of different VxWorks image targets that can be created using
the Makefile, including vxWorks (a downloadable image that executes from
RAM), and vxWorks.st (a standalone image that includes a symbol table). In
addition, you can build VxWorks images that can be stored in ROM as well as
images that can be executed from ROM. In addition to VxWorks images, you can
build bootrom images that are VxWorks images configured with a boot loader as
the application. For details on VxWorks image types, see the Boot Sequence section
of the Wind River VxWorks BSP Developer’s Guide: Overview of a BSP.

When projects are created from a BSP, the BSP makefile is scanned once and the
make parameters are captured into the project. Any changes made to the BSP
makefile after a project has been created do not affect that project. Only projects
built from the BSP after the change is made are affected.

Customizing the VxWorks Makefile

The BSP makefile provides several mechanisms for configuring the VxWorks
build. Although VxWorks configuration is more commonly controlled at
compile-time by macros in configAllh and bspname/config.h.

Most of the makefile macros fall into two categories: macros intended for use by
the BSP developer, and macros intended for use by the end user. The needs of these
two audiences differ considerably. Maintaining two separate compile-time macro
sets lets the make separate the BSP-specific requirements from user-specific
requirements.

Macros containing EXTRA in their name are intended for use by the BSP developer
to specify additional object modules that must be compiled and linked with all
VxWorks images.

Macros containing ADDED in their name are intended for use by the end-user on
the make command line. This allows for easy compile time options to be specified
by the user, without having to repeat any BSP-specific options in the same macro
declaration.

Commonly Used Makefile Macros

Of the many makefile macros, this document discusses only the most commonly
used.

51

VxWorks
Command-Line Tools User's Guide, 6.6

MACH_EXTRA

You can add an object module to VxWorks by adding its name to the skeletal
makefile. To include fooLib.o, for example, add it to the MACH_EXTRA definition
in Makefile. This macro causes the linker to link it into the output object.

Finally, regenerate VxWorks with make. The module will now be included in all
future VxWorks builds. If necessary, the module will be made from fooLib.c or
fooLib.s using the .c.o or .s.0 makefile rule.

MACH_EXTRA can be used for drivers that are not included in the VxWorks driver
library. BSPs do not usually include source code for device drivers; thus, when
preparing your system for distribution, omit the driver source file and change the
object file’s name from .o to .obj (update the makefiles, too). Now the end user can
build VxWorks without the driver source, and rm *.0 will not inadvertently
remove the driver’s object file.

LIB_EXTRA

The LIB_EXTRA makefile variable makes it possible to include library archives in
the VxWorks build without altering the standard VxWorks archive or the driver
library archive. Define LIB_EXTRA in Makefile to indicate the location of the extra
libraries.

The libraries specified by LIB_EXTRA are provided to the link editor when building
any VxWorks or boot ROM images. This is useful for third-party developers who
want to supply end users with network or SCSI drivers, or other modules in object
form, and find that the MACH_EXTRA mechanism described earlier in this chapter
does not suit their needs.

The extra libraries are searched first, before Wind River libraries, and any
references to VxWorks symbols are resolved properly.

EXTRA_INCLUDE

The makefile variable EXTRA_INCLUDE is available for specifying additional
header directory locations. This is useful when the user or BSP provider has a
separate directory of header files to be used in addition to the normal directory
locations.

EXTRA_INCLUDE = -I../myHdrs
The normal order of directory searching for #include directives is:

$ (INCLUDE_CC) (reserved for compiler specific uses)
$ (EXTRA_INCLUDE)

$ (CONFIG_ALL)

52

A Configuring and Building VxWorks Using config.h
A.4 Using make

$ (TGT_DIR) /h
$ (TGT_DIR) /src/config
$ (TGT_DIR) /src/drv

EXTRA_DEFINE

The makefile variable EXTRA_DEFINE is available for specifying compile time
macros required for building a specific BSP. In the following example the macro
BRD_TYPE is given the value MB934. This macro is defined on the command line
for all compiler operations.

EXTRA_DEFINE = -DBRD_TYPE=MB934

By default a minimum set of macro names are defined on the compiler command
line. This is primarily used to pass the same memory addresses used in both the
compiling and linking operations.

These default macro definitions include:

-DCPU=$ (CPU)

ADDED_CFLAGS

Sometimes it is inconvenient to modify config.h to control VxWorks configuration.
ADDED_CFLAGS is useful for defining macros without modifying any source
code.

Consider the hypothetical Acme XYZ-75 BSP that supports two hardware
configurations. The XYZ-75 has a daughter board interface, and in this interface
either a Galaxy-A or a Galaxy-B module is installed. The drivers for the modules
are found in the directory src/drv/multi.

The macro GALAXY_C_FILE determines which driver to include at compile-time.
The file named by GALAXY_C_FILE is #included by sysLib.c.

The default configuration (Galaxy-A module installed) is established in config.h:

#ifndef GALAXY C_FILE

#define GALAXY C_FILE "multi/acmeGalaxyA.c"

#endif /* GALAXY_C_FILE */
When make is called normally, VxWorks supports the XYZ-75 with the Galaxy-A
module installed. To override the default and build VxWorks for the
XYZ-75/Galaxy-B configuration, do the following:

[

% make ADDED_CFLAGS='-DGALAXY_ C_FILE=\"multi\/acmeGalaxy02.c\"’ vxWorks

For ease of use, you can encapsulate the lengthy command line within a shell script
or independent makefile.

53

VxWorks
Command-Line Tools User's Guide, 6.6

To ensure that a module is incorporated in vxWorks, remove the module’s object
file and vxWorks before running make.

ADDED_MODULES

The ADDED_MODULES makefile variable makes it possible to add modules to
vxWorks without modifying any source code.

While MACH_EXTRA requires the makefile to be modified, ADDED_MODULES
allows one or more extra modules to be specified on the make command line. For
example, to build vxWorks with the BSP VTS support library included, copy
pkLib.c to the target directory and enter the following:

% make ADDED_MODULES=pkLib.o vxWorks

One disadvantage of using ADDED_MODULES is that makefile dependencies are
not generated for the module(s). In the above example, if pkLib.c, pkLib.o, and
VxWorks already exist, you must remove pkLib.o and vxWorks before running
make to force the latest pkLib.c to be incorporated into vxWorks.

CONFIG_ALL

Under extreme circumstances, the files in the config/all directory might not be
flexible enough to support a complex BSP. In this case, copy all the config/all files
to the BSP directory (config/bspname) and edit the files as necessary. Then redefine
the CONFIG_ALL makefile variable in Makefile to direct the build to the altered
files. To do this, define CONFIG_ALL to equal the absolute path to the BSP’s
config/bspname directory as shown in the following example:

CONFIG_ALL = $ (TGT_DIR) /config/bspname/

The procedure described above works well if you must modify all or nearly all the
files in config/all. However, if you know that only one or two files from config/all
need modification, you can copy just those files to the BSP’s config/bspname
directory. Then, instead of changing the CONFIG_ALL makefile macro, change one
or more of the following (which ever are appropriate).

USRCONFIG
The path to an alternate config/all/usrConfig.c file.

BOOTCONFIG
The path to an alternate config/all/bootConfig.c file.

BOOTINIT
The path to an alternate config/all/bootInit.c file.

DATASEGPAD
The path to an alternate config/all/dataSegPad.s file.

54

A Configuring and Building VxWorks Using config.h
A.4 Using make

CONFIG_ALL_H
The path to an alternate config/all/configAlLh file.

TGT_DIR
The path to the target directory tree, normally $(WIND_BASE)/target.

COMPRESS
The path to the host’s compression program. This is the program that
compresses an executable image. The binary image is input through stdin,
and the output is placed on the stdout device. This macro can contain
command-line flags for the program if necessary.

BINHEX
The path to the host’s object-format-to-hex program. This program is
called using HEX_FLAGS as command line flags. See
target/h/make/rules.bsp for actual calling sequence.

HEX_FLAGS
Command line flags for the $(BINHEX) program.

BOOT_EXTRA
Additional modules to be linked with compressed ROM images. These
modules are not linked with uncompressed or ROM-resident images, just
compressed images.

EXTRA_DOC_FLAGS
Additional preprocessor flags for making man pages. The default
documentation flags are -DDOC -DINCLUDE_SCSI. If
EXTRA_DOC_FLAGS is defined, these flags are passed to the man page
generation routines in addition to the default flags.

A.4.2 Building Custom Boot Loaders

Once a boot loader is configured, you can build the custom boot loader by running
make target in the BSP directory. There are a variety of boot loader image targets,
including the compressed bootrom that executes from RAM, the uncompressed
bootrom_uncmp (which also executes from RAM), and the bootrom_res (which
executes from ROM). For details, see the Boot Loader Image Types section of the
VxWorks Kernel Programmer’s Guide: Boot Loader.

55

VxWorks
Command-Line Tools User's Guide, 6.6

56

Symbols

symbols - see assignment operators, asterisk, at,
backslashes, quotation marks, slashes,
spaces

A

add (vxprj) 22
ADDED_C++FLAGS 38
ADDED_CFLAGS 38
ADDED_CFLAGS 53
ADDED_CLEAN_LIBS 38
ADDED_DYN_EXE_FLAGS 38
ADDED_LIB_DEPS 38
ADDED_LIBS 38
ADDED_MODULES 54
ADDED_SHARED_LIBS 38
archives

makefile 37
autoscale 31

B

backslashes 8

Index

Tcl 31
BINHEX 55
board support package
defined 18
documentation 19
BOOT_EXTRA 55
BOOTCONFIG 54
BOOTINIT 54
boot-loader 44
BSPs - see board support package
build rules
changing 29
defined 28
examining 28
build specifications
defined 28
examining 28
setting 29
bundles
adding to projects 22
defined 22
listing and examining 25
removing from projects 23

C

.cdf files 17
components 22

57

VxWorks
Command-Line Tools User's Guide, 6.6

CDL 17 D
check (vxprj component) 26
cmpProjClose 31 -D_VX_CPU 37
cmpProjCopy 31 -D_VX_TOOL 37
cmpProjCreate 31 -D_VX_TOOL_FAMILY 37
cmpProjOpen 31 DATASEGPAD 54
cmpScriptLib -DCPU 42

and vxprj 31

debugging

multicore 7
default... build specifications 28
delete (vxprj) 21

building projects 32
documentation 31
project management 18

using 31 depend.bspname file
cmpTest 2.6 generating 50
code-browsmg 7 dependencies (vxprj) 26
compiler . development shell - see wrenv
and make utility 34 diab
documentation 8 see also Wind River Compiler
GNU 7 specifying compiler with vxprj 20
option flags (C) 38 diff

option flags (C++) 38
selecting 34
TOOL make variable 40

vxprj component 25
vxprj parameter 27
directory structure (projects) 37

. prrj 19, dmake 50

Wind River (Diab) 7 DOC FILES 39
component (vxprj) - 22 docuﬁwntation
component dependencies 26 BSPs 19
Component Description Language (CDL) 17 compiler 8

components
adding to projects 22
CDL amd .cdf files 17
checking syntax 26

generating 39
make utility 50
projects 17
vxprj 18

defined 17 VxWorks 7
listing (projects) 24 VxWorks Simulator 20
removing from projects 23 Workbench 7

COMPRESSION 55
CONFIG_ALL 54
CONFIG_ALL_H 55

downloadable kernel modules
building 34
IDE project management 18

configuration parameters makefile 41
listing and examining 26 _DTOOL 42
sett'mg 23 -DTOOL_FAMILY 42
conventions

X dynamic libraries, building 39
Makefile macros 51

CPU (make variable) 38

58

E

-e 13
environment variables
displaying with wrenv 14
setting with wrenv 11
error detection 22
eval subkeys (properties files) 16
EXCLUDE_SUBDIRS 39
EXE (make variable) 39
EXE_FORMAT 39
EXTRA_DEFINE 53
EXTRA_DOC_FLAGS 55
EXTRA_INCLUDE 39
EXTRA_INCLUDE 52

F

-f 13

files
adding and removing in projects 24
examining source 27

file-system projects 18
building 34

G

GCC (GNU Compiler) 7
documentation 8

gnu
specifying compiler with vxprj 19

H

HEX_FLAGS 55

Index

IDE
exclusive features 7
project files 17
project management 18
wrenv 11
install.properties
syntax 15
wrenv 11
IP address 44

K

kernel
standalone image 30
kernel configuration
vxprj 17
kernel configuration projects
building 33
cmpScriptLib 32
vxprj 28
creating
cmpProjCreate 31
vxprj 18
defined 18
kernel shell 22

L

LIB_BASE_NAME 39
LIB_DIR 39
LIB_EXTRA 52
LIB_FORMAT 39
LIBNAME 39
libraries
linking to RTP applications 38
makefiles 37
shared (dynamic), building 39
static, building 39
user-mode (RTP), building 35
linux (simulator BSP) 20
LOCAL_CLEAN 39
LOCAL_RCLEAN 39

59

VxWorks

Command-Line Tools User's Guide, 6.6

M

MACH_EXTRA 52
make utility 7
calling directly 50
dmake 50
documentation 50
sh command 50
wrenv, configuring environment 50
Z shell 50
make variables 38
Makefile 50-55
customizing 51-55
macros 51-55
bootConfig.c file, alternate 54
bootlnit.c file, alternate 54
compile-time macros, specifying 53
compression program 55
configAlLh file, alternate 55
configuration files, modifying 54
conventions 51
dataSegPad.s file, alternate 54
defining without modifying source
code 53
header directory locations, adding 52
host object-format-to-hex program 55
library archives, including 52
object modules, adding 52
linked to compressed ROM
images 55
without touching source 54
preprocessor flags, adding 55
target directory tree 55
usrConfig.c file, alternate 54
makefiles
archives (libraries) 37
changing name 24
editing generated files 18
editing, and project files 50
RTPs (applications) 35
RTPs (libraries) 37
vxprj-generated 20
make-rule files 37
multicore debugging 7

60

o)

-0 13
OBJ_DIR 40
object files
specifying build output 40
OBJS 40

P

packages
displaying with wrenv 14
install.properties 15
Tel 31
parameter (vxprj) 23
POSIX 22
print_compatible (wrenv -o) 14
print_env (wrenv -o0) 14
print_package_name (wrenv -o0) 14
print_packages (wrenv -0) 14
print_vars (wrenv -o) 13
-profile 21
PROFILE_DEVELOPMENT 21
profiles
creating projects 21
defined 21
listing and examining 25
project files
wpj 17
.wrproject 17
editing generated files 18
IDE 17
makefiles
editing 50
projects
building 33
cmpScriptLib 32
vxprj 28
comparing
components 25
parameters 27
copying 21
defined 17
deleting 21

directory structure 37
documentation 17
managing 17

with Tcl seripts 31

see also kernel configuration projects, VxWorks

image project, downloadable kernel

modules, shared libraries, RTPs, file-

system projects
types of project
building 33
vxprj 18

Q

quotation marks
on command line 23

R

registry 43
remove (vxprj) 23
_ RTP__
building RTP libraries 38
RTPs (real time processes)
building 35
bundle 22
creating projects 35
makefiles for applications 35
makefiles for libraries 37
project management 18
VxWorks libraries, building 37
VxWorks simulator 45
ruleslibrary 37
and LOCAL_CLEAN 39
and LOCAL_RCLEAN 40
rules.rtp 37
and LOCAL_CLEAN 39
and LOCAL_RCLEAN 40
example of use 35
run (wrenv -0) 13

Index

S

serial terminal 44
sh command
make utility 50
sh.exe
Z shell 12
called by make 50
shared libraries 18
building 39
linking to RTP applications 38
shell
development 11
Z (zsh) 12
called by make 50
simpc 20
simulator (VxWorks)
BSPs 20
documentation 20
kernel configuration projects 20
running 44
SL_INSTALL_DIR 40
SL_VERSION 40
slashes
Td 31
UNIX and Windows 8
.so files 38
solaris (simulator BSP) 20
spaces
on command line 23
static libraries, building 39
SUBDIRS 40
symbol table
standalone 30
symbols - see assignment operators, asterisk, at,
backslashes, quotation marks, slashes,
spaces

T

target
connecting 43
see also CPU
target server

61

VxWorks
Command-Line Tools User's Guide, 6.6

starting 44 conventions 8
Tcl libraries Workbench
documentation 31 documentation 7
project management 18, 31 wpj files 17
see also cmpScriptLib components 22
TGT_DIR 55 wrenv
tgtsrv 44 IDE startup 11
TOOL (make variable) 40 options 13

overview 11
.wrproject files 17
U _WRS_KERNEL
building RTP libraries 38

UNIX wtxConsole 44

conventions 8
USRCONFIG 54

V4

V Z shell 12
called by make 50

variables

environment 11

displaying with wrenv 13

.vxe files 34
VXE_DIR 40
VXPT]j

and cmpScriptLib 31

building projects 28

documentation 18

managing projects 18
VxWorks

documentation 7
VxWorks image project

defined 18

see also kernel configuration projects
VxWorks Simulator

see simulator
vxWorks.st 30
vxworks66 package 16

w

Wind River Compiler 7
Windows

62

	VxWorks Command-Line Tools User's Guide, 6.6
	Contents
	1 Overview
	1.1 Introduction
	1.2 What’s in This Book
	1.3 Related Documents

	2 Setting Environment Variables
	2.1 Introduction
	2.2 Invoking wrenv
	2.3 Options to wrenv
	2.4 install.properties and package.properties

	3 Configuring and Building VxWorks
	3.1 Introduction
	3.2 Using vxprj
	3.2.1 Creating Kernel Configuration Projects
	Checking the Toolchain
	Copying Projects
	Using Profiles

	3.2.2 Deleting Projects
	3.2.3 Modifying Projects
	Adding Components
	Removing Components
	Setting Configuration Parameter Values
	Changing the Project Makefile Name
	Adding and Removing Individual Files

	3.2.4 Generating Project and Component Diagnostics
	Obtaining a List of Components
	Checking a Component
	Checking Component Dependencies
	Listing Configuration Parameters and Values
	Listing the Source Files in a Project

	3.2.5 Building Kernel Configuration Projects with vxprj
	Examining Build Specifications and Rules
	Changing Build Settings
	Adding and Changing Build Rules

	3.2.6 Example vxprj Session
	3.2.7 Creating a Standalone Kernel Image

	3.3 Using cmpScriptLib and Other Libraries
	3.3.1 Building Kernel Configuration Projects with cmpScriptLib

	4 Configuring and Building Application Projects
	4.1 Introduction
	4.2 Other VxWorks Project Types
	4.3 RTP and Library Projects
	4.4 RTP Applications and Libraries
	4.4.1 RTP Application Makefiles
	4.4.2 RTP Libraries
	4.4.3 Makefile and Directory Structure
	4.4.4 Rebuilding VxWorks RTP (User-Mode) Libraries
	4.4.5 Make Variables

	4.5 Downloadable Kernel Modules

	5 Connecting to a Target
	5.1 Introduction
	5.2 Connecting to a Target Board
	5.3 Using the VxWorks Simulator

	A Configuring and Building VxWorks Using config.h
	A.1 Introduction
	A.2 Configuring an Image Using config.h
	A.3 Configuration Examples
	A.3.1 Removing Network Support
	A.3.2 Adding RTP Support

	A.4 Using make
	A.4.1 Makefile Details
	Customizing the VxWorks Makefile
	Commonly Used Makefile Macros

	A.4.2 Building Custom Boot Loaders

	Index

