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1.3 Additional Documentation Resources 5

1.1  About Device Drivers 

In the simplest terms, VxWorks device drivers are a means of communication 
between a hardware device and the VxWorks operating system. However, Wind 
River currently supports two device driver models for accomplishing this task. 

In later VxWorks 6.x releases, device drivers can be implemented in one of two 
ways: as VxBus-enabled device drivers or as legacy (pre-VxBus) device drivers. 
Each method is described briefly below:

■ VxBus-Enabled Device Drivers 

The preferred method for new development uses the VxBus device driver 
infrastructure. This infrastructure supports device drivers by defining 
standard interfaces for the driver to interact with the operating system and 
device hardware.
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■ Legacy (Pre-VxBus) Device Drivers 

The term legacy device drivers is used to describe pre-VxBus device drivers as 
implemented in early VxWorks 6.x and in VxWorks 5.x releases. Legacy 
drivers do not share a common interface to the operating system or hardware. 

Wind River strongly recommends that you develop new VxWorks device drivers 
according to the VxBus model whenever possible. The VxWorks Device Driver 
Developer’s Guide (Vol. 3): Migrating to VxBus includes information on migrating an 
existing legacy-model driver to the VxBus model. 

1.2  About this Documentation Set 

This section provides information on the intended audience for this 
documentation, including the level of expertise expected from the developer. It 
also provides a map of this documentation to help you get the information you 
need regarding device driver development quickly and efficiently. 

1.2.1  Intended Audience 

This documentation is primarily designed for the experienced device driver 
developer. In general, the documentation does not assume specific experience with 
VxWorks device drivers or with the VxBus or legacy VxWorks device driver 
model. However, it does assume general experience writing device drivers for 
embedded hardware systems (for example, a basic understanding of reading and 
writing device registers). 

NOTE:  If you are developing for a symmetric multiprocessing (SMP) system, 
the device drivers used in the system must be VxBus-enabled. You cannot use 
legacy device drivers in SMP systems. (For information on SMP support, see 
the VxWorks Kernel Programmer’s Guide: VxWorks SMP).

NOTE:  In VxWorks 6.6, the legacy device driver implementation is valid only 
for uniprocessor (UP) systems. (For information on SMP and UP systems, see 
the VxWorks Kernel Programmer’s Guide).
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1For specific information on navigating this documentation set based on your 
experience level, see 1.2.2 Navigating this Documentation Set, p.3. 

1.2.2  Navigating this Documentation Set 

The VxWorks Device Driver Developer’s Guide includes three volumes:

Volume 1: Fundamentals of Writing Device Drivers (this document) 
This volume provides information and concepts that are fundamental to the 
development of most VxBus model device drivers. It serves as a foundation for 
the class-specific information presented in Volume 2. 

Volume 2: Writing Class-Specific Device Drivers 
Volume 2 provides specific information and requirements for class-specific 
device drivers for all driver classes supported by VxWorks (for example, 
network drivers, bus controller drivers, USB drivers, and so forth). It also 
includes some guidelines for developing drivers for classes that are not 
currently supported. 

Volume 3: Legacy Drivers and Migration 
Although Volumes 1 and 2 may provide information that is generic to all 
VxWorks device drivers, they should not generally be used as a reference for 
legacy model device drivers. Volume 3 provides legacy model driver 
information for the purpose of maintaining existing legacy device drivers. 
Wind River strongly recommends that all new device driver development be 
done according to the VxBus device driver model. Volume 3 also provides 
guidelines for migrating legacy model device drivers to the VxBus model, 
including specific migration information for certain driver classes. 

Experienced VxWorks Device Driver Developers 

Your level of experience with VxWorks device driver development will influence 
how you approach Volume 1 (this document). If your experience is limited to 
legacy model VxWorks device driver development, the majority of the concepts 
described in this document will be new to you. Understanding these concepts is 
critical before beginning any VxBus model driver development. If you are an 
experienced VxBus device driver developer, some of the information in Volume 1 
is likely to be familiar to you. However, you may still need to carefully review the 
requirements for your driver class in Volume 2 and may even need to review 
certain concepts in Volume 1. 
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If you are an experienced legacy model device driver developer, the early chapters 
of Volume 3 are likely to be familiar to you. However, if you plan to migrate any 
existing drivers to the VxBus model, or you have plans to use the optional 
VxWorks symmetric multiprocessing model (SMP) product, you should carefully 
review the migration information in Volume 3. It is also critical that you carefully 
examine Volume 1 (this document) and relevant chapters of VxWorks Device Driver 
Developer’s Guide, Volume 2: Writing Class-Specific Drivers before beginning any 
VxBus model driver development. 

Novice VxWorks Device Driver Developers 

If you are fairly new to VxWorks device driver development and you are not 
interested in migrating an existing device driver, you should focus your attention 
on Volume 1 (this document) and Volume 2 of this documentation set. The 
fundamentals presented in Volume 1 are critical for most VxBus model device 
drivers. Once you have a basic understanding of these fundamentals, you can 
move on to the class-specific information in Volume 2 that is appropriate for your 
device class. 

If you are new to device driver development in general (not specific to VxWorks), 
you may need to consult some third-party information in order to better 
understand the basic concepts associated with all device driver development. 
However, if you are fairly experienced with embedded development and have 
some hardware experience, you should find that the information in Volume 1 is 
sufficient to get you started. 

1.2.3  Documentation Conventions 

The following conventions are used in this document:

installDir 
Within this document, file paths are typically expressed as a full path; this 
practice maintains consistency between this and other Wind River 
documentation. For example: 

installDir/vxworks-6.x/target/src/hwif/sio/Makefile 

bspname 
In several places within this document, there are references to filenames that 
are based on the BSP. These filenames have the string bspname substituted. For 
example, if you are working on a BSP called acmeBSP, change any reference 
bspname to acmeBSP. For example, bspname.h would become acmeBSP.h. 
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1class 
Drivers for specific devices are grouped by device class. For example, serial 
drivers are located at installDir/vxworks-6.x/target/src/hwif/sio. For the 
general case, class represents the device type: 
installDir/vxworks-6.x/target/src/hwif/class. 

dev 
Where this document refers to devices in general, these devices are generically 
referred to as dev. In such cases, substitute the name of each device or device 
type for dev. For example, if your driver supports ncr810, the general file 
devInit.c becomes ncr810Init.c. 

1.3  Additional Documentation Resources 

Before beginning any device-driver development, you should have a good 
understanding of the overall VxWorks I/O system. For more information, see the 
VxWorks Kernel Programmer's Guide: I/O System. 

In addition, you may want to refer to the VxWorks BSP Developer’s Guide. This 
document discusses VxWorks BSP development. In particular, it provides 
guidelines for writing a custom BSP based on an existing reference BSP. 
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2.1  Introduction 

This chapter explains some of the key concepts and terms associated with VxBus 
and VxBus device drivers including the term VxBus itself, instances, and driver 
method advertisement. This chapter is intended as a system overview only. The 
concepts and terms introduced here are explained further in 3. Device Driver 
Fundamentals. 

Class-specific driver information for all supported VxBus classes is provided in 
VxWorks Device Driver Developer’s Guide, Volume 2: Writing Class-Specific Device 
Drivers. 
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2.2  About VxBus 

The term VxBus generally refers to one of two things. In general, it refers to a 
specific infrastructure for support of device drivers in VxWorks, with minimal BSP 
support. This includes functionality to allow device drivers to be matched up with 
devices, mechanisms for drivers to gain access to device hardware, a mechanism 
for other parts of the software environment to gain access to device functionality, 
and other functionality required in order for device drivers to be functional in a 
VxWorks system.

In addition, the term VxBus sometimes refers to a set of components of the 
VxWorks operating system for use with Workbench, the vxprj command-line 
utility, and VxWorks image projects. The core VxBus functionality is one 
component, each VxWorks VxBus driver is a component, and the VxBus support 
modules are components. Each of these components can be selected individually 
from within Workbench.

Before the first release of VxBus with VxWorks 6.2, device drivers were not 
integrated with VxWorks project configuration, and to add and remove support 
for specific devices required significant knowledge of the BSP and of the driver, as 
well as requiring extra effort to manage VxWorks projects when drivers needed to 
be added or removed. As a set of components, VxBus eliminates most of that by 
allowing various drivers and support modules to be selected from within 
Workbench, without requiring knowledge of the BSP and driver, and without 
requiring extra effort for management of VxWorks projects when drivers are 
added or removed.

Many BSPs are released in a format in which VxBus is required. If you remove the 
VxBus component from projects based on these BSPs, your project does not build. 
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2

2.3  VxBus Device Drivers 

There are three terms that are important for understanding VxBus device drivers: 
device, driver, and instance. The term device refers to a bit of hardware. The term 
driver refers to the executable code plus the configuration information required to 
make the hardware device accessible to the OS. Each driver can be associated with 
zero or more devices. The term instance refers to one such association. Figure 2-1 
illustrates this pairing. 

Driver methods make up the mechanism for other parts of the software 
environment to gain access to device functionality. 

Figure 2-1 VxBus Instance 
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When using a driver method, the module making the request can query a single 
instance or all instances. And the query can either ask for information on how to 
accomplish an action or it can be a request for the driver to perform some action. 
At the top level, then, the query can consist of a question of whether a specific 
instance can support an action, a question of what instances can support an action, 
or a request to perform an action.

Figure 2-2 illustrates device/driver/operating system communication in a subset 
of a VxWorks system. The system shown includes two middleware modules or 
VxWorks subsystems (in this case, the network stack and the auxiliary timer) 
which are attempting to communicate with a hardware device on the system. Note 
that an actual system is likely to have several instances and many middleware 
modules, Figure 2-2 is a subset only. 

An instance makes itself available to the overall VxWorks system by advertising 
the driver methods it supports. In Figure 2-2, the network stack uses the 
vxbDevMethodGet( ) routine to query each instance (device/driver pairing) 
known to the system. In the example, the network stack module is searching for an 
instance that supports the {muxDevConnect}( ) driver method. If the instance 
supports the method, it returns a pointer to the driver’s routine implementing that 
method. If an instance does not support the requested method, it returns NULL. In 
the example shown, the stack finds a Yukon II network interface advertising 
support for the required method.

The system also shows an auxiliary timer making a similar query. In this case, the 
timer looks for the {vxbTimerFuncGet}( ) method and gets a positive response 
from the OpenPic timer instance in the system. 

Note that although this example shows only a single instance making a positive 
response in each case, any number of instances (or none at all) can include the 
necessary support.
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Figure 2-2 Method Advertising

ns16550 Serial Port

OpenPic Timer

{sioChanGet}( )

{sioChanConnect}( )

{vxbTimerFuncGet}( )

Yukon II Network Interface

{muxDevConnect}( )

{vxbDevShow}( )

...

{vxbIntCtlrConnect}( )

{vxbIntCtlrEnable}( )

...

Interrupt Controller

Support for 

{vxbTimerFuncGet}( )

Support for 

{muxDevConnect}( )

Network Stack Auxiliary Clock

vxbDevMethodGet( )vxbDevMethodGet( )

Yes

Device Driver Pairings (instances) Middleware ModuleMiddleware Module

other instances ... other modules...other modules...

??

Yes



VxWorks
Device Driver Developer's Guide, 6.6 

12

Figure 2-3 shows the OpenPic timer instance (as seen in Figure 2-2) querying the 
interrupt controller instance directly. The interrupt controller includes support for 
{vxbIntCtlrEnable}( ) and therefore responds to the timer request. 

Figure 2-3 Known Instance Method Discovery
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2.4  Design Goals 

VxWorks is an operating system for real-time and embedded applications. This 
places some constraints on the design of device drivers.

The primary goal for most VxWorks drivers is real-time performance of the target 
system as a whole. In general, if a driver does not allow real-time execution of 
applications running on the target, the driver is a poor choice for use with 
VxWorks and another driver should be selected. Depending on the application, 
this may be an absolute requirement, or it may be an important consideration. 

Memory footprint is another constraint for VxWorks drivers. Many embedded 
applications have limited memory and because demand paging to disk is not 
compatible with real-time operation, memory constraints are extremely important.

Standard software requirements are also important in the VxWorks environment. 
This includes requirements such as driver flexibility, code maintainability, code 
readability, and driver configurability.

2.4.1  Performance 

Drivers must perform well enough to match the real-time kernel's abilities. 
Designing for performance implies many things. First, it requires using direct 
memory access (DMA) and interrupts in an efficient manner. This requires you to 
keep your routine nesting at an optimum level. For example, too many routine 
calls and restore operations can increase process dispatch latency and reduce 
performance. However, performance requirements must be balanced against 
proper use of routines for keeping code size small and making your driver design 
easy to follow and understand.

Designing for performance also means keeping interrupt latency to a minimum. 
Interrupt handlers must receive the greatest care in any design. Overall system 
performance is just as important as the specific driver's performance.

For specific applications, you may consider it acceptable to write a VxWorks driver 
that sacrifices one or more of these goals. For example, when writing a driver for a 
system that is expected to be used only for a specific non-real-time application, you 
may be tempted to sacrifice real-time system performance in your driver design. 
However, because of issues such as code re-use, Wind River strongly discourages 
this approach. Real-time performance and memory footprint are an important 
concern for all VxWorks drivers.



VxWorks
Device Driver Developer's Guide, 6.6 

14

2.4.2  Maintenance and Readability 

Most of the effort involved in software engineering is maintenance. Therefore, any 
effort that reduces the maintenance burden is valuable. By adhering to coding 
standards and producing quality documentation, you make your code easy to 
read, easy to understand, and easy to maintain. Poor quality documentation is just 
as detrimental to the maintenance process as insufficient documentation. Any new 
device driver documentation should be reviewed by at least one objective person 
(not the author of the code). 

2.4.3  Ease of Configuration 

Your driver should not limit the end user’s options or requirements. Do not 
impose limits on the number of devices that can be supported or on other features. 
You may not be able to support all device features or operating modes in your 
original driver, but your design should not preclude expanded device support at 
a later time.

2.4.4  Performance Testing 

All drivers must be tested for expected behavior, and all drivers should be tested 
for performance. In addition to writing the driver functionality, you must also 
consider writing test routines. This involves inserting debug information into your 
code as well as supporting benchmark tests. If a standard benchmark test is not 
available, you must consider writing one. You should consider testing for both 
performance and expected behavior regardless of your driver type (Ethernet, 
serial, timers, interrupt controllers, and so forth). 

In general, high-level debug code such as that used during performance testing 
should be well-written, surrounded by #ifdef/#endif statements, and left in the 
source code in order to ease future debugging efforts. 

2.4.5  Code Size 

In the embedded real-time operating system (RTOS) market, code size (footprint) 
is important. Code size should be minimized through structured design. However, 
reducing code size can hurt performance. As a developer, you must balance your 
design such that you provide adequate performance without excessive code size. 
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3.1  Introduction

This chapter discusses the key concepts related to VxWorks device drivers that use 
the VxBus driver model. In particular, it provides detailed information about the 
anatomy of the VxBus device driver ecosystem including information on 
driver-related file locations and directory structure, an explanation of VxBus 
methods, a description of the services available to VxBus device drivers, and the 
general life cycle of a VxBus device driver. In addition, this chapter provides 
guidelines for developing device drivers for use with the optional VxWorks 
symmetric multiprocessing (SMP) product. 
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In general the concepts explained in this chapter apply to many (or all) types of 
device-specific drivers. Volume 2 of the VxWorks Device Driver Developer’s Guide 
provides information about specific driver classes and is intended to supplement 
the information provided in this volume. 

3.2  Driver Classes 

One of the most basic pieces of information about a device, and about the driver 
that manages it, is what function the device performs. Different devices perform 
different tasks. There are devices that read and write data on magnetic disk or 
other long-term data storage, devices that print text and graphics to paper or to a 
video display, and still other devices that control the location of robotic arms, pens, 
and so forth.

For each type of functionality, there may be many different devices that perform 
similar tasks. For example, when displaying graphical information on a video 
device, the display controller may be a simple VGA controller (like those found on 
older PCs), or it may be a modern display controller running on PCI Express, with 
several megabytes of graphics RAM buffers. However, in each case, the underlying 
purpose of the device is the same.

Because of this similarity of function, device drivers can be divided into several 
different classes based on the tasks that the associated device performs.

3.2.1  General Classes 

This section gives an overview of the different driver classes as defined by 
Wind River, along with a brief description of the functionality provided by each 
class. For more information about an individual driver class, refer to the 
appropriate chapter of VxWorks Device Driver Development Guide, Volume 2: Writing 
Class-Specific Drivers.
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Serial Drivers 

Serial drivers manage interfaces to terminals and other devices with serial 
interface such as RS-232 or RS-422. These devices are connected to the I/O system, 
and may be configured as the VxWorks system console. Software can gain access 
to these devices by making a call to open( ), read( ), write( ), ioctl( ), and so forth.

Within the VxBus framework, serial driver source files are located in 
installDir/vxworks-6.x/target/src/hwif/sio. The primary operations they support 
are connection to the I/O system and fetching channel-specific data.

Storage Drivers 

Storage drivers manage interfaces to magnetic disks, tape drives, flash disks (also 
known as flash keys), and on-board flash devices. Some general characteristics of 
these devices are:

■ The storage contents are maintained when power is turned off. 

■ Access to the data is slow compared to RAM.

■ Typically, the per-byte cost of these devices is low compared to RAM.

These devices include ATA disks, Serial ATA disks, SCSI disks, USB flash disks, 
floppy disks, and so forth.

Within the VxBus framework, storage driver source files are located in 
installDir/vxworks-6.x/target/src/hwif/storage. The primary operation they 
support is connecting to an extended block device (XBD), which occurs during the 
instConnect( ) phase of VxBus initialization. (For information on device driver 
initialization phases, see 3.5 Driver Run-time Life Cycle, p.42.)

For more information on XBD, see VxWorks Device Driver Developer’s Guide (Vol. 2): 
Storage Drivers. 

Network Interface Drivers 

Network interface drivers manage interfaces to network hardware. Ethernet is the 
most common type of network hardware supported by network drivers, though 
drivers for other types of network hardware are also included in this class.

Ethernet network devices typically are separated into two main parts: the media 
access controller (MAC), and physical layer support (PHY). PHY devices reside on 
a bus type called the media independent interface (MII). 



VxWorks
Device Driver Developer's Guide, 6.6 

18

Within the VxBus framework, MAC drivers are typically located in 
installDir/vxworks-6.x/target/src/hwif/end, and PHY drivers are located in 
installDir/vxworks-6.x/target/src/hwif/mii. The primary operation that MAC 
drivers support is connection to the MUX. (For information on the MUX, see the 
Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 3: Interfaces and 
Drivers.) Both PHY and MAC drivers provide mechanisms to coordinate between 
the MAC and the PHY. 

Non-Volatile RAM Drivers 

Non-Volatile RAM (NVRAM) devices provide data storage that is not erased when 
power is turned off. There is some overlap between NVRAM devices and storage 
devices (see Storage Drivers, p.17). The primary distinction is that NVRAM devices 
generally allow random byte-sized access to the data, while storage devices 
typically do not allow random byte-sized access to the data. However, this is not 
always the case and exceptions occur in both directions. Functionally, NVRAM 
devices store small amounts of data for use during system configuration, and 
storage devices store application data.

Within the VxBus framework, NVRAM driver source files are located in 
installDir/vxworks-6.x/target/src/hwif/nvram. The primary operations supported 
by these drivers are reading and writing to and from the media according to 
specified allocation.

Timer Drivers 

Timer devices can provide two services. They provide a counter that increments or 
decrements periodically that an application can read to determine elapsed time. 
They can also provide a mechanism to notify the CPU that a given time period has 
elapsed. This is done using an interrupt. 

Within the VxBus framework, timer driver source files are located in 
installDir/vxworks-6.x/target/src/hwif/timer. The primary operations supported 
are allocation of a timer to a specific purpose, attaching an interrupt service routine 
(ISR) to the timer interrupt, reading the current value of the timer, and enabling or 
disabling counting and interrupt generation.
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DMA Controller Drivers 

DMA engines allow data to be copied from one location in RAM to another 
without the overhead of using the CPU to perform the data copy. They are 
typically used to copy data between a device buffer and system RAM.

Many devices have built-in DMA engines to help increase performance. This is 
typical in devices such as network interfaces (MACs) and storage devices. 
However, many systems include DMA engines available for general purpose use. 
With respect to VxWorks device drivers, devices with built-in DMA engines are 
not considered to be DMA controller drivers. Rather, they are part of another class 
such as network or storage. Only drivers for the general-purpose DMA engines are 
considered to be in the DMA controller driver class.

Within the VxBus framework, DMA controller driver source files are located in 
installDir/vxworks-6.x/target/src/hwif/dma. The primary operations supported 
are allocation of a DMA engine to a specific purpose, and copying data.

Bus Controller Drivers 

Bus controller devices provide an interface between different types of computer 
buses. Every CPU design includes the interface from the CPU to the outside world. 
In the VxBus context, this bus—regardless of CPU type—is called the processor 
local bus (PLB). Many devices are connected directly to the PLB. However, other 
devices are connected to other bus types, which are then connected to the PLB 
through a bus controller. In some cases, additional bus controller devices provide 
a bridge from one device bus type to another, such as from PCI to VME.

Within the VxBus framework, bus controller driver source code is kept in 
installDir/vxworks-6.x/target/src/hwif/busCtlr or its subdirectories, regardless of 
the type of bus the device manages. Bus controller drivers manage the devices 
present on the bus in several ways. First, the bus controller driver is responsible for 
determining what devices are present on the subordinate bus. Second, bus 
controller drivers are responsible for configuring downstream devices so that their 
drivers can access device registers properly. Third, bus controller drivers are 
responsible for managing any address mapping that might be required.
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USB Drivers 

USB functionality is split into two different types. USB host adaptors are a kind of 
bus controller device, usually providing a bridge between the PLB or a PCI bus and 
a USB bus. USB class drivers provide the functionality of storage drivers, network 
drivers, and so on.

Within the VxBus framework, USB host adaptor drivers are located in 
subdirectories under installDir/vxworks-6.x/target/src/hwif/busCtlr/usb/hcd. 

As of VxWorks 6.6, USB class drivers are not integrated with the VxBus 
framework, so their source files are located in 
installDir/vxworks-6.x/target/src/drv/usb. For more information on USB class 
drivers, see Wind River USB Programmer’s Guide: USB Class Drivers.

Interrupt Controller Drivers 

Interrupt controller devices allow management of interrupt input sources, usually 
fine-grained control. When devices assert interrupts, the interrupt controller 
hardware passes the interrupt to the processor at an appropriate time, preventing 
some interrupts from occurring while allowing other interrupt sources to be 
delivered to the CPU.

Within the VxBus framework, interrupt controller driver source code is kept in 
installDir/vxworks-6.x/target/src/hwif/intCtlr. Interrupt controller drivers are 
responsible for determining what devices are connected to each of the interrupt 
controller's inputs, and enabling or disabling each input according to whether any 
device connected to that input should be enabled. They are also responsible for 
configuring interrupt characteristics such as trigger type (edge versus level), 
activation (high versus low), and other interrupt characteristics.

Multifunction Drivers 

Many physical devices contain multiple logical devices. That is, a single chip can 
include several timers, several DMA engines, one or more network interfaces, a 
USB host adaptor, a PCI bus controller device, and various other devices. 

Because many of the devices on a chip are identical copies of devices available 
elsewhere, it is not practical to create a single driver that supports all the functions 
of a chip. A single driver targeted at a specific device can be used to control a 
device on a given multifunction chip or a device that is not on the chip. This 
eliminates duplication of code.
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Having a single driver to manage the entire chip also reduces your ability to 
configure the final system. For example, if you do not require USB for your 
application, using a single driver to manage an entire multifunction chip 
containing a USB host adaptor results in the entire USB stack being included in 
your application. This can cost several hundred kilobytes of unnecessary memory 
overhead.

Because of this, the recommended device driver development strategy for 
multifunction devices is to have multiple drivers to support a single chip, one 
driver for each functional component. In addition, you should create a 
multifunction driver that manages the functional blocks on the chip. The 
multifunction driver leaves management of the functional blocks to the individual 
drivers for each functional block. The multifunction driver’s job to announce to 
VxBus that each functional component part is available, what the register base 
address of each functional component is, and manages other high level 
information about the chip as a whole and about how it is divided into the 
individual functional components.

Remote Processing Element Drivers 

Many modern computers provide general purpose processors other than the 
primary CPU. These processors can be similar to the primary CPU, or a different 
processor type. They can also be custom processing elements such as digital signal 
processors (DSPs). These remote processing elements can be dedicated to specific 
tasks, depending on the application, and controlled by the primary CPU, or they 
can be autonomous or semi-autonomous systems running their own operating 
system.

Within the VxBus framework, processing element driver source code is kept in 
installDir/vxworks-6.x/target/src/hwif/cpu. Processing element drivers are 
responsible for establishing communication with the remote processing element. 
Each VxBus processing element instance (see 2.3 VxBus Device Drivers, p.9) is 
responsible for establishing and maintaining communication with one remote 
processor. 

Console Drivers 

Console devices are those devices that can be used as a graphical system console 
when the console is not a terminal connected to a serial port. This includes 
keyboards, mouse devices, and display devices. 
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Within the VxBus framework, console driver source code is kept in 
installDir/vxworks-6.x/target/src/hwif/console. Each type of console driver 
provides management features specific to the device. 

Resource Drivers 

Many modern processor designs include hardware resources that are used by, and 
shared among, several peripheral devices. The types of services provided by these 
resources include things such as data routing and address translation. Sometimes, 
each peripheral device has enough dedicated resources, that those resources can be 
considered part of the device. However, when the available resources must be 
shared among several peripheral devices, there may not be enough of these 
resources available in the running system to enable full functionality of all the 
peripheral devices available. In this case, you must create a resource management 
driver to allocate the resources to other peripheral devices.

Within the VxBus framework, resource driver source code is kept in 
installDir/vxworks-6.x/target/src/hwif/resource. The primary function of resource 
drivers is allocation of the available resources to other peripheral devices. It can 
also be used for configuring the resources.

3.2.2  Other Classes 

There are classes of common devices for which Wind River does not define a driver 
class. These classes include devices such as digital-to-analog converters and 
analog-to-digital converters (D/A and A/D), robot control systems, and so forth. 
In the future, Wind River may define driver classes for these device types.

Highly-specialized hardware is not likely to be supported by any of the 
pre-defined Wind River device classes. 

For more information on developing drivers for non-standard classes, see VxWorks 
Device Driver Developer’s Guide (Vol. 2): Other Driver Classes.
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3.3  Driver Organization 

A key part of your driver implementation is the driver source code file. This file 
conveys the basic information that allows your device to communicate with the 
VxBus infrastructure and the VxWorks operating system. However, VxWorks 
device drivers require a number of other files in addition to the driver source file. 
These additional files enable you to fully integrate your driver into the VxWorks 
build environment, a key step in preparing your device driver for distribution. 

This chapter discusses how to find (and place) device driver files in the VxWorks 
source tree. It also provides specific details regarding each of the required files that 
make up a VxWorks (VxBus-enabled) device driver. 

Ultimately, the goal of this section is to show how the various pieces of a driver fit 
together in a VxWorks system. 

3.3.1  File Location 

Before beginning your development, it is important to understand the placement 
of device driver files in the VxWorks source tree. There are three distinct places in 
the source tree where device driver files are located. These are:

installDir/vxworks-6.x/target/3rdparty 
VxBus model device drivers written by third party developers that are 
installed as add-ons to an existing VxWorks installation.

installDir/vxworks-6.x/target/src/hwif 
Drivers written in compliance with the VxBus device model, distributed and 
supported by Wind River, and provided as part of a standard product 
installation or patch.

installDir/vxworks-6.x/target/src/drv 
Wind River legacy drivers (not in VxBus compliance).

Drivers underneath installDir/vxworks-6.x/target/src/hwif are organized into 
different subdirectories based on their driver class. For example, the source code 
for timer drivers is found in installDir/vxworks-6.x/target/src/hwif/timer. Similar 
subdirectories exist for each driver class that is supported by Wind River. For more 
information on class-specific driver files, see Volume 2 of the VxWorks Device Driver 
Developer’s Guide.
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Third-Party Drivers 

Third-party drivers are organized in a way that allows individual driver vendors 
and developers to create third-party drivers without worrying about namespace 
collisions between files created by different vendors. Each vendor wishing to write 
a device driver for VxWorks should first create a vendor-specific subdirectory in 
installDir/vxworks-6.x/target/3rdparty. For example, if a developer for the Acme 
Corporation plans to create a third-party driver for VxWorks, the first step for the 
driver developer is to create a new subdirectory, 
installDir/vxworks-6.x/target/3rdparty/acme, to store the new driver files. Within 
this subdirectory, each individual driver is created within its own subdirectory. For 
example, use the subdirectory 
installDir/vxworks-6.x/target/3rdparty/acme/acmeFoo to store the foo driver 
provided by the Acme Corporation.

3.3.2  Required Files 

Although a driver can include many files (including multiple source files and a 
header file), there is a minimum set of files that make up a standard VxWorks 
driver. For most VxWorks device drivers, a minimum of six separate files are 
required. These include:

■ a driver source file—implements the runtime logic of the driver 
■ a component description file (CDF)—allows you to integrate the driver with 

the VxWorks development tools 
■ a driverName.dc file—provides the prototype for the driver registration routine
■ a driverName.dr file—provides a fragment of C code to call the driver 

registration routine
■ a README file—provides versioning information
■ a makefile (Makefile)—provides the make rules used to build the driver 

The following sections describe each of these file types in greater detail. 

NOTE:  Collectively, the CDF file (40driverName.cdf), driverName.dc, and 
driverName.dr are referred to as driver configuration files. 
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Driver Source File 

The driver source file contains the logic that implements the functionality of the 
device driver. As stated previously, VxWorks device drivers are found under 
installDir/vxworks-6.x/target/src/hwif, while third-party drivers are found under 
installDir/vxworks-6.x/target/3rdparty. The example in this section discusses the 
file locations for a Wind River driver. 

While many VxWorks device drivers consist of a single source file, this is not a 
requirement. A driver can include one or more optional header files in order to 
allow for a cleaner presentation of the driver source code. A driver can also include 
multiple source files, with makefile rules to build a single driver object module for 
installation in the VxWorks library. 

In the following example, fragments from the Wind River device driver file 
vxbCn3xxxTimer.c are used to illustrate the structure of a VxWorks device driver. 

Example 3-1 Device Driver Structure 

The first part of a device driver (following the driver header lines) is a data 
structure describing the routines that VxWorks must call during the VxBus 
initialization phases. (For more information on VxBus initialization phases, see 
3.5.1 Driver Initialization Sequence, p.42.)

/* data structures used by the driver to register itself
* with Vxworks
*/

/* drvBusFuncs provides a set of entry points into the
* driver that are called during various phases of the
* boot process. Drivers can choose to implement 1 or
* more of these entry point, according to the needs of
* the driver during its initialization phases.
*/

LOCAL struct drvBusFuncs cn3xxxTimerDrvFuncs =
{
cn3xxxTimerInstInit, /* devInstanceInit */
cn3xxxTimerInstInit2, /* devInstanceInit2 */
cn3xxxTimerInstConnect /* devConnect */
};

NOTE:  The bold items in this example code are intended to emphasize certain 
content. The bold highlighting does not represent any actual syntax in the source 
code. 
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Following this registration data structure, there is a data structure describing the 
driver methods that the driver supports. (Drivers that belong to a specific class 
always implement the driver methods that are required for that class.)

/* cn3xxxTimerDrv_methods provides the list of driver
* methods that this driver supports. For each driver
* class supported by Wind River, one or more methods
* are expected to be defined for the driver. For
* timer driver class, the 'vxbTimerFuncGet' method 
* is required to be supported.
*/

LOCAL struct vxbDeviceMethod cn3xxxTimerDrv_methods[] =
{
DEVMETHOD(vxbTimerFuncGet, cn3xxxTimerFuncGet),
{0,NULL}
};

Following the list of driver methods, the driver includes a data structure to 
describe the driver registration information. 

/* The cnxxxTimerDrvRegistration structure provides a
* description of the driver to VxWorks, so that VxWorks
* can connect this driver to appropriate hardware during
* the boot process.
*/

LOCAL struct vxbDevRegInfo cn3xxxTimerDrvRegistration =
{
NULL, /* reserved for VxBus use */
VXB_DEVID_DEVICE, /* devID */
VXB_BUSID_PLB, /* busID = PLB */
VXBUS_VERSION_3, /* vxbVersion */
"cn3xxxTimerDev", /* drvName */
&cn3xxxTimerDrvFuncs, /* pDrvBusFuncs */
NULL /* pMethods */
NULL /* devProbe */
};

After the registration information, the driver provides a routine to register with 
VxBus. 

/* The vxbCn3xxxTimerDrvRegister function contains the
* first instructions of the device driver that are 
* ever executed within a VxWorks system.  This function
* registers the driver with VxBus by providing pointers
* to the data structures listed previously.  Once this
* step is complete, VxWorks is able to associate this
* driver with appropriate hardware within the system 
* to form an instance.
*/
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void vxbCn3xxxTimerDrvRegister (void)
{
vxbDevRegister (&cn3xxxTimerDrvRegistration);
}

Because the driver registration routine is used as the first entry point into the 
driver, VxWorks needs to be configured so that it knows to call this entry point 
when it is registering the driver with VxBus. To do this, VxWorks uses information 
that is found in the driver configuration files: driverName.cdf, driverName.dc, and 
driverName.dr. For information on these driver configuration files, see Component 
Description File, p.27 and Driver Configuration Stub Files, p.34. 

Component Description File 

VxBus model VxWorks device drivers are easily integrated into a BSP. VxWorks 
device drivers that are developed according to the VxBus standard are compiled 
as stand-alone object files that can be included in a BSP using the VxWorks 
configuration tools. To do this, you must create a VxWorks component for your 
device driver. 

A component is a basic unit of functionality that can be configured into a VxWorks 
image. In order for VxWorks to include or exclude individual device drivers, the 
drivers must be written so that they appear to the VxWorks configuration tools as 
individual components.

In order for a device driver to be configurable in Workbench or vxprj, you must 
create a component description file (CDF) that describes the driver to these 
configuration tools. This done by creating a configuration file named 
40driverName.cdf. 

For device drivers distributed by Wind River, the 40driverName.cdf file is located in 
installDir/vxworks-6.x/target/config/comps/vxWorks. For these Wind River 
drivers, there may be a single configuration file that contains component 

NOTE:  VxBus model VxWorks device drivers require the registration routine to be 
a global symbol. Most drivers do not require any other global symbols therefore 
other routines and data variables should be declared LOCAL. 

NOTE:  Component description files are briefly described in this chapter for the 
benefit of the device driver developer. However, this is not an exhaustive 
discussion. For more detailed information on CDFs, see the VxWorks Kernel 
Programmer's Guide: Kernel.
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descriptions for multiple drivers. This is because Wind River drivers are shipped 
as a collection. 

For third-party drivers, the 40driverName.cdf files are located in the same directory 
as the driver itself (for example, installDir/vxworks-6.x/3rdparty/vendor/
driver/40driverName.cdf). For these drivers, each third-party CDF should contain 
only a single component description.

Writing a CDF File 

To create a CDF file for a new driver, copy an existing CDF (extension for this file 
type is .cdf) from the standard VxWorks installation tree to the directory where you 
are creating your driver and then modify the CDF to suit the needs of your driver. 
The CDFs for device drivers shipped with VxWorks are located in installDir/
vxworks-6.x/target/config/comps/vxWorks. 

Example 3-2 shows the contents of a CDF for a PCI bus controller. This file is 
located in installDir/vxworks-6.x/target/config/comps/VxWorks/40m85xxPci.cdf. 

Example 3-2 Device Driver Component Description File 

/* 40m85xxPci.cdf - Component configuration file */

Component DRV_PCIBUS_M85XX {
NAME M85xx PCI bus
SYNOPSIS M85xx PCI bus controller Driver
MODULES m85xxPci.o
SOURCE $(WIND_BASE)/target/src/hwif/busCtlr
_CHILDREN FOLDER_DRIVERS
_INIT_ORDER hardWareInterFaceBusInit
INIT_RTN m85xxPciRegister();
PROTOTYPE void m85xxPciRegister (void);
REQUIRES DRV_RESOURCE_M85XXCCSR \

INCLUDE_PARAM_SYS \
INCLUDE_PCI_BUS  \
INCLUDE_PLB_BUS \
INCLUDE_VXBUS

INIT_AFTER INCLUDE_PCI_BUS
}

The individual lines of this example can be broken down as follows:

Component DRV_PCIBUS_M85XX {

Each component in VxWorks is described using a component identifier, 
designated using the keyword Component. Device driver component 
identifiers always begin with DRV_ and include information to describe the 
named device driver. Each class of driver uses a similar naming convention for 
component identifiers. In this example, DRV_PCIBUS_M85XX informs the 
reader that this is a component for a PCI bus controller driver.
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The standard naming convention for a device driver component is 
DRV_CLASS_NAME. The name of the driver component must be unique 
therefore it is important that the NAME portion of the identifier be specified 
uniquely. When you are writing a third-party driver, include both the vendor 
and driver name in the NAME portion of the component identifier (for 
example, DRV_CLASS_VENDORANDDRIVERNAME). This avoids name 
conflicts with other drivers in the system.

Component identifiers are displayed in the Workbench kernel configuration 
editor under the Name column in Component Configuration. Figure 3-1 
shows the display in Workbench. 

NAME M85xx PCI bus 

The NAME field is used to provide a human-readable description of the 
component. In Workbench, this appears as the description in the kernel 
configuration editor (see Figure 3-1). 

SYNOPSIS M85xx PCI bus controller Driver 

The SYNOPSIS field is used to provide a short human-readable description of 
the component. In Workbench, this appears in the Synopsis field in the kernel 
configuration editor (see Figure 3-1). 

MODULES m85xxPci.o 

The MODULES field lists the names of the object files that are created when the 
driver is built. In this example, only a single module is included. When a driver 
is included in a project, the VxWorks configuration services parse the contents 
of the object files that are listed on the MODULES line in order to determine 
what other components are needed in order to build this driver into the 
VxWorks image. 

For example, if a driver makes use of the routine strlen( ), the symbol name 
strlen appears as an unresolved external in the driver's object file. Using this 
information, the VxWorks project configuration services automatically create 
a dependency on the component that provides strlen( ). This simplifies the 
REQUIRES field, because many of the dependencies that a driver has on other 
components are inferred from the direct dependencies parsed from the object 
modules. 

NOTE:   Driver component identifiers for some older drivers continue to follow 
the standard VxWorks component naming convention and begin with 
INCLUDE_ (for example, INCLUDE_FEI8255X_VXB_END). For new 
development, use the DRV_ convention for your driver components. 
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The MODULES field and the files listed in MODULES, in conjunction with the 
REQUIRES field, provide all of the information necessary for VxWorks to 
determine which components need to be included in order to support a given 
driver. 

_CHILDREN FOLDER_DRIVERS 

The _CHILDREN field is used to group a component with other similar 
components for display in Workbench. Workbench displays all of the 
components that are contained within the same folder together in the kernel 
configuration tool dialog, allowing easy selection of individual components 
within the folder. All device drivers should be added to the FOLDER_DRIVERS 
folder. Therefore, this line can be copied to your driver without modification. 

Figure 3-1 Workbench CDF Field Display

SYNOPSIS field

NAME field COMPONENT field
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_INIT_ORDER hardWareInterFaceBusInit 

The _INIT_ORDER field is used to describe when in the VxWorks boot process 
this driver needs to be initialized. All VxBus device drivers must be initialized 
in the hardWareInterFaceBusInit initialization group. Therefore, copy this 
line into your driver without change.

INIT_RTN m85xxPciRegister(); 

The INIT_RTN field is used to perform the preliminary initialization of the 
device driver. Device drivers must provide the name of their driver 
registration routine in this field. Subsequent initialization of the driver occurs 
when VxWorks finds appropriate hardware and then binds the hardware and 
device driver together to form an instance. 

PROTOTYPE void m85xxPciRegister (void); 

The PROTOTYPE field is used to provide a forward declaration of the routine 
specified by INIT_RTN, if no forward declaration of that routine is provided in 
the header files listed in HDR_FILES.

REQUIRES … 

The REQUIRES field lists the components that must also be used in order for 
this driver to work correctly within VxWorks. 

This field is necessary because not all device driver dependencies can be 
determined by examining the unresolved externals that are present in a driver. 
The REQUIRES field, in conjunction with the MODULES field, is used to 
determine the set of components that must be included to support the driver. 

For example, the PowerPC 85XX PCI bus controller driver requires services 
from the CCSR resource driver. (For more information on resource drivers, see 
Resource Drivers, p.22.) In this case, none of the public symbols of the CCSR 
driver appear as unresolved references in the network driver. Therefore, the 
MODULES method of determining component dependencies does not work. 
Instead, you must use explicit entries in the REQUIRES field of your CDF to 
describe the indirect dependencies.

NOTE:  Be sure to include the leading underscore on the keywords of the CDF 
file (where shown in the example above). The underscore reverses the 
meaning. For example, a _CHILDREN entry indicates that this component (in 
this case, your driver) is a child of the specified folder. If the underscore is not 
present, the folder (FOLDER_DRIVERS) is configured as a child of your driver, 
which is not correct.
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Another more common example of this, is the use of PHY driver services from 
some network drivers. Some network drivers can use one of several PHY 
drivers, but others require a specific PHY driver. The network driver uses 
driver lookup services to locate the PHY instance to which it is attached. 
Again, no public symbols of the PHY driver are used by the network driver. 
Therefore, if a specific PHY driver is required, that PHY driver must be 
explicitly listed in REQUIRES field.

INIT_AFTER INCLUDE_PCI_BUS 

The INIT_AFTER and INIT_BEFORE (not shown in the example) fields are used 
to indicate any initialization dependencies within the initialization group 
specified by _INIT_ORDER. The component listed here must belong to the 
same initialization group as specified by _INIT_ORDER. In this example, this 
line indicates that this driver should not be initialized until after the PCI bus 
driver is initialized.

HDR_FILES $(WIND_BASE)/target/src/hwif/h/end/fei8255xVxbEnd.h 

The above line is not shown in the example. However, your driver may require 
a HDR_FILES field. This field is used to list the driver header file that provides 
the routine prototype for the driver registration routine. This field works in 
conjunction with the INIT_RTN field. When VxWorks is configured, the header 
file provided by HDR_FILES is added to the generated C code for the VxWorks 
image. This allows the C code provided by INIT_RTN to compile without 
errors such as undefined references. By default, the project facility searches for 
HDR_FILES in the directory installDir/vxworks-6.x/target/h. To access files that 
are located in directories outside of installDir/vxworks-6.x/target/h, the 
complete path to the desired header file should be used, starting with the 
installation directory (installDir). 

For a complete description of the component description language (CDL) used to 
create CDFs, see the VxWorks Kernel Programmer’s Guide: Kernel. 

CFG_PARAMS 

Drivers sometimes need configuration information during initialization. If the 
required information is specific to the driver, but not specific to each instance, then 
it is suitable to provide this information at compile time as a parameter. This can 
be represented with the CDF keywords CFG_PARAMS and Parameter. 
CFG_PARAMS is used to indicate that the specified parameters are used by a 
component. The Parameter keyword is used to define a parameter.

The component should specify each parameter in the CFG_PARAMS section.
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For example, a driver for a network device that supports jumbo frames might use 
a parameter to specify the maximum size of the jumbo frames that the driver can 
accept. An example of the relevant fields of the Component and Parameter blocks 
is:

Component DRV_NET_SAMPLE {
NAME network device supporting jumbo frames
...
CFG_PARAMS SAMPLE_JUMBO_MTU_VALUE

}

Parameter SAMPLE_JUMBO_MTU_VALUE {
NAME Jumbo frame MTU size
SYNOPSIS max num of bytes in a jumbo MTU
TYPE int
DEFAULT 9000

}

Each parameter consists of four keywords: NAME, SYNOPSIS, TYPE, and 
DEFAULT.

NAME Jumbo frame MTU size
SYNOPSIS max num of bytes in a jumbo MTU

The NAME and SYNOPSIS fields in a parameter are similar to the same fields 
in a component.

TYPE int

The TYPE keyword describes the type of data in the parameter. The valid types 
include any valid C language type, as well as the string, bool, and exists types.

The string type is a NULL terminated ASCII string.

The bool type indicates a logical true/false variable. This can be either all 
uppercase or all lowercase, bool or BOOL.

The exists type is used when the parameter name, as a C macro, is either 
defined or not defined. When used, the default value can be TRUE or FALSE.

DEFAULT 9000

The DEFAULT keyword indicates the default value if the user does not change 
it.

For more information about driver parameters, see Configuring Resources, p.54 and 
Configuring Parameters, p.54. 
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Driver Configuration Stub Files 

For some BSPs, VxWorks supports two distinct ways of building run-time images:

■ Using Workbench or the vxprj command-line facility to create an image (as 
described in Component Description File, p.27).

■ Invoking the make command directly in the BSP directory. 

The first method (using Workbench or vxprj) is supported for all BSPs. 

The second method allows you to create a VxWorks image by invoking the make 
command from within a BSP directory. 

When a BSP is built directly from its makefile, the information that is contained in 
the driver component (.cdf file) is not used to configure the BSP. Instead, the BSP 
author includes or excludes components directly within the source files of the BSP, 
by creating lines in the BSP config.h file that specify which components to include 
or exclude. 

For example, if you want to include the Cn3xxx timer driver in the run-time image 
created using your BSP, you can add the following line to your BSP config.h file:

#define DRV_TIMER_CN3XXX

After adding the appropriate define to the BSP config.h file, you can invoke make 
in the BSP directory to rebuild the BSP. Once the BSP is rebuilt, the component (in 
this case, the timer driver) is included in the VxWorks run-time image generated 
using this BSP. 

NOTE:  Although the facility for building your BSP using the make command is 
available for most BSPs, it is not supported for all VxWorks development scenarios 
or for the optional VxWorks SMP product. For more information, see the VxWorks 
Command-Line Tools User’s Guide. 

NOTE:  For simplicity, this example ignores the fact that the Cn3xxx timer driver 
has dependencies on other components, and that these other components must 
also be added to the BSP config.h file in order to satisfy the device driver 
dependencies.

NOTE:  BSP builds are not supported for VxWorks SMP BSPs. For more information 
on working with the optional VxWorks SMP product, see the VxWorks Kernel 
Programmer’s Guide: VxWorks SMP. 
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To support direct BSP builds for your driver, you must create two additional 
configuration stub files, the driverName.dc and driverName.dr file. These files 
connect the device driver to the BSP command-line build. 

The driverName.dc file is created using the same base name as the driver source file, 
but with a .dc extension instead of a .c extension. Again, using the Cn3xxx timer 
driver as an example, here is the vxbCn3xxxTimer.dc file:

IMPORT void vxbCn3xxxTimerDrvRegister();

The purpose of the driverName.dc file is to provide a function prototype for the 
device driver registration routine. The prototype may be surrounded in an 
#ifdef/#endif construct using the driver component identifier 
(DRV_CLASS_NAME) but this is not required. 

The vxbCn3xxTimer.dr file is similarly brief:

#ifdef DRV_TIMER_CN3XXX
vxbCn3xxxTimerDrvRegister ();

#endif /* DRV_TIMER_CN3XXX */

The purpose of the driverName.dr file is to call the driver registration routine that 
announces the driver to the VxWorks operating system. This code must be 
surrounded in an #ifdef/#endif construct in order to ensure that the registration 
routine for the driver is run only when the component is included using the BSP 
config.h file. 

For Wind River drivers, both the driverName.dc and driverName.dr files are located 
in installDir/vxworks-6.x/target/config/comps/src/hwif. For third-party drivers, 
these files are located in the same directory as the driver source file. 

For these files to be useful, they must be merged into an initialization file that is 
linked into a VxWorks run-time image. The VxWorks makefile environment 
contains all of the necessary commands to create this initialization file. If a new 
driver is added to the VxWorks source tree, the initialization file must be recreated 
as follows:

% cd installDir/vxworks-6.x/target/config/comps/src/hwif 
% make vxbUsrCmdLine.c 

When these commands are run, the VxWorks makefile environment searches all of 
the locations where driver configuration stub files are found, and merges the files 
into the initialization file vxbUsrCmdLine.c. 

NOTE:  The macro used on the #ifdef line must match the component name used 
in the CDF file (see Component Description File, p.27).
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README File 

While not required by the makefile environment, each device driver should 
include a README file that describes the driver to a user. Third-party vendors may 
wish to include driver version information, a list of all files that make up the driver 
(source files, configuration files, and so forth), any known bugs, driver version 
information, and perhaps even a URL where an end user might go to find an 
updated copy of the driver. 

The driver README includes three sections of data as well as separation lines as 
follows:

■ a one-line statement that this is the README file for a VxWorks driver and 
stating the device for which the driver is intended. For example:

README: VxWorks/VxBus driver for device device 

■ a line of dashes separating the first and second sections

■ one or more paragraphs showing what devices the driver is suitable for, as 
well as the specific devices that have been tested with the driver. This section 
also lists which version of VxWorks and VxBus the driver has been developed 
for. This section may also list the files that make up the driver, provide a list of 
known bugs, or provide other information to the user.

Optionally, you can include instructions for the installation procedure in this 
section. (For more information, see 5.6 Driver Release Procedure, p.120.)

■ a line of dashes separating the second and third sections

■ a list of version numbers, along with a description of the changes between each 
version. 

An example README file is available as part of the wrsample driver (see 
installDir/vxworks-6.x/target/3rdparty/windriver/wrsample).

Driver Makefile 

In order for a device driver to build correctly under VxWorks, you must provide 
the appropriate makefiles so that your device driver can be incorporated into an 

NOTE:  Driver version numbers consist of two parts (for example, 7.4). Do not 
use three-part version numbers, and do not use slashes to separate version 
fields.
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object file that can be linked into a VxWorks image. There are two makefiles that 
are used to address this issue. These files are: 

■ the vendor makefile located in installDir/vxworks-6.x/target/
3rdparty/vendor/Makefile 

■ the driver makefile located in installDir/vxworks-6.x/target/
3rdparty/vendor/driver/Makefile 

The contents of these makefiles can be complex because the makefiles need to be 
correctly integrated into the overall makefile hierarchy used by VxWorks. To create 
these makefiles properly, copy the appropriate sample makefiles from 
installDir/vxworks-6.x/target/3rdparty/windriver and installDir/vxworks-6.x/
target/3rdparty/windriver/wrsample. Modify the sample files to match your 
vendor and driver names as needed. 

Vendor Makefile 

The vendor makefile is created in installDir/vxworks-6.x/target/3rdparty/
vendor/Makefile and is shared for all drivers provided as a subdirectory to a given 
vendor directory. The makefile uses wildcards to determine what drivers are 
installed underneath the vendor directory (vendor), and to launch appropriate 
make commands for each driver. 

To create a vendor makefile, copy the example Makefile from installDir/
vxworks-6.x/target/3rdparty/windriver to installDir/vxworks-6.x/target/
3rdparty/vendor where vendor is the designated name for your company. The 
sample makefile provides guidelines for making the necessary updates for your 
driver. 

Driver Makefile 

The driver makefile is created in installDir/vxworks-6.x/target/3rdparty/
vendor/driver. This makefile is used exclusively to compile the driver located within 
the driver subdirectory (driver). Like the vendor makefile, this file should be copied 
from the example Makefile located in installDir/vxworks-6.x/target/3rdparty/
windriver/wrsample. 

Unlike the vendor makefile, the driver makefile does not use wildcards to find the 
driver source files. Instead, this makefile includes a specific list of object files that 
are built from the source files in the driver subdirectory (driver). 

Use the makefile included with the wrsample driver as a reference for creating 
your driver makefile. The comments in the wrsample makefile provide specific 
guidance for updating the makefile to suit your driver. However, in general, the 
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primary modifications include changing the LIB_BASE_NAME (which should be 
your company name) and listing the driver object file in OBJS_COMMON.

If you want your driver to be available on a single CPU type only, specify the driver 
object file in the macro specific to that CPU type (for example OBJS_PPC32 for 
PowerPC). In this case, the driver should not be listed in OBJS_COMMON.

3.4  VxBus Driver Methods 

This section discusses VxBus driver methods. In order for a device and driver to be 
useful to a VxWorks system, there must be a way for the application, middleware, 
or VxWorks kernel module to gain access to the device and cause the device to 
perform some function. The most basic way of doing this within the VxWorks 
framework is by using a VxBus driver method. In simple terms, a driver method 
is a published entry point into a driver made available to an API in VxBus. 

3.4.1  Representing Driver Methods in the Documentation 

This section discusses the representation used to discuss driver methods in this 
documentation (and elsewhere in the VxWorks documentation set). 

The basic convention is that a driver method is represented as a name surrounded 
by braces and followed by parenthesis. For example, as in {thisDriverMethod}( ). 
This syntax refers to the driver method and all its parts as a single callable item. 

Driver methods resolve to a callable routine published by a device driver. When 
referring to this called routine, the standard driver method syntax is prepended 
with the string func to get func{thisDriverMethod}( ).

To explicitly indicate specification of the arguments and return value of 
func{thisDriverMethod}( ), the callable routine is treated as a pseudo-C function and 
includes prototype information. For example:

STATUS func{thisDriverMethod}
(
VXB_DEVICE_ID devID,
void * pArg
)
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3.4.2  Parts of a Driver Method 

This section describes the basic concepts associated with a driver method. Specific 
definitions of the functionality provided by each supported driver method are 
provided in the class-specific chapters of Volume 2 of the VxWorks Device Driver 
Developer’s Guide.

In the most basic sense, a driver method defines a set of actions to be performed by 
a hardware device, and provides an API that allows the software to gain access to 
the hardware that performs those actions. Within the VxWorks VxBus framework, 
a driver method is represented as a pair of data: 

■ a method ID which is a data value the size of a pointer1 
■ a pointer to a routine that can be called to perform the actions defined by the 

method 

The routine associated with a driver method must be a valid executable routine. 
Every routine for a given driver method must use the same prototype. 

Most driver methods use a standard prototype because there are mechanisms to 
call driver methods in VxWorks that assume that the driver method routine being 
called conforms to this standard. 

The standard driver method prototype is as follows:

STATUS func{driverMethod}
(
VXB_DEVICE_ID devID, 
void * pArg 
)

For more information on these calling mechanisms, see 3.4.3 Calling Driver 
Methods, p.39.

3.4.3  Calling Driver Methods 

As a driver developer, you do not normally call driver methods. However, you 
must be aware of what is involved in calling a driver method so that you can avoid 
performance and functionality problems in your driver.

There are certain macros required when referring to driver methods These macros 
are defined in installDir/vxworks-6.x/target/h/hwif/vxBus.h. The macros available 
to applications that need to call driver methods are:

1. For performance reasons, VxBus methods are searched using pointer comparisons. The data 
pointed to by the pointer is never dereferenced. 
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METHOD_DECL( ) 
Provides a forward reference to the driver method. 

DEVMETHOD_CALL( )
Provides the method ID in a form suitable to pass to a routine.

The vxbDevMethodRun( ) routine can be used to call a specific driver method 
within each driver in the system that has published the method. This routine 
iterates through all instances on the system and checks each one to see whether it 
publishes the specified method. If a given instance publishes the specified method, 
vxbDevMethodRun( ) invokes the method routine, func{driverMethod}( ). For 
example:

vxbDevMethodRun(DEVMETHOD_CALL(driverMethod), pArg); 

To avoid iterating through all instances on the system, you must know the device 
ID for every instance containing the desired driver method. However, given the 
device ID of an instance, vxbDevMethodGet( ) can be used to discover the driver 
routine associated with the desired driver method, so that it can then be invoked.

The routine vxbDevMethodGet( ) returns either a pointer to the function within 
the driver, func{driverMethod}( ), or NULL if the driver does not publish the 
specified method.

When the func{driverMethod}( ) is known, it can be called directly. For example: 

STATUS (*methodFunc)(VXB_DEVICE_ID devID, void * pArg);

methodFunc = vxbDevMethodGet(devID, DEVMETHOD_CALL(driverMethod)); 
if ( methodFunc != NULL )

(*methodFunc)(devID, pArg);

There is a performance impact for each of these mechanisms. Whenever 
vxbDevMethodGet( ) is called, it performs a linear search through the published 
driver methods for the instance specified, stopping when it finds a match or when 
it reaches the end of the table of advertised driver methods. It performs this search 
first on the table advertised in the instance's device structure, then through the 
table advertised in the driver's registration structure.

Whenever vxbDevMethodRun( ) is called, it iterates through all of the devices on 
the system, regardless of bus topology. For each device, it performs the same linear 
search that vxbDevMethodGet( ) uses.

3.4.4  Advertising Driver Methods 

Each driver maintains one or more tables of driver methods that are supported by 
the driver or the instance. The table contains the method ID and the function 
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pointer to call when invoking the driver method. You can choose to have a separate 
method table for each instance on the system, a single method table for all 
instances involving your driver, or a combination of both.

Drivers can choose to replace the table dynamically to change what methods are 
advertised.

Most often, a driver includes only a single method table, which is allocated 
statically by the compiler. There is a macro available in installDir/vxworks-6.x/
target/h/hwif/vxBus.h that you must use when creating the method table at 
compile time. The macro is DEVMETHOD( ). This macro accepts two arguments: 
the method ID of the method, and the routine associated with the method in the 
driver. In addition, your driver must use DEVMETHOD_END to terminate the 
table.

The following is an example of a statically defined method table. (This is a 
modified version of a table from the NS16550 SIO driver.)

LOCAL device_method_t ns16550vxb_methods[] =
{
DEVMETHOD(sioChanGet, ns16550vxbSioChanGet),
DEVMETHOD(sioChanConnect, ns16550vxbSioChanConnect),

#ifdef NS16550_DEBUG_ON
DEVMETHOD(busDevShow, ns16550vxbSioShow), 

#endif /* NS16550_DEBUG_ON */

DEVMETHOD_END
};

To make the driver methods available to the rest of the system, there are two places 
that the driver can put a pointer to its method table. Each device in a VxWorks 
system, in the device structure, provides a field called pMethods that contains a 
pointer to a table of methods relevant to the instance. This is the preferred location 
to advertise driver methods. As mentioned previously, the driver can have a single 
table pointed to by each instance, or it can allocate a separate table for each 
instance, or it can set up groups of instances sharing a table each. 

Although Wind River does not recommend this option, you can also advertise 
methods in the driver's registration structure. This method table is intended to be 
used for methods that do not require the driver to be paired with a device. Putting 
a pointer to the same table in both places does not cause the system to fail, but it 
doubles the time to perform method calls.
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3.4.5  Driver Method Limitations 

Driver methods are the most primitive form of communication between drivers 
and other parts of the system. Methods are not designed to be efficient in the 
run-time sense nor are they designed to be deterministic. The design goal of driver 
methods is to provide a mechanism that can be used during system startup to 
provide information needed for high-performance communication in the later 
running system.

Limit the number of times that methods are looked up. Storing the function pointer 
for a method is a useful optimization. The user saves the pointer or other returned 
information, and then calls the appropriate routines through the table of function 
pointers. 

3.5  Driver Run-time Life Cycle 

This section describes the run-time life cycle for a VxWorks (VxBus) device driver, 
starting from the point at which the VxWorks target boots and ending when the 
driver is no longer relevant to the system. 

3.5.1  Driver Initialization Sequence 

A high level overview of the VxWorks boot process is described in VxWorks BSP 
Developer's Guide: Porting a BSP to Custom Hardware. This section provides a more 
detailed discussion of the driver initialization sequence than that provided in the 
BSP documentation. 

NOTE:  This section does not document the device driver development life cycle or 
how to configure the driver into a VxWorks bootable image. For more information 
on the device driver development cycle, see 4. Development Strategies. For more 
information on configuring a driver into a bootable image, see Component 
Description File, p.27. 
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At the most basic level, there are five initialization phases. 

The following sections provide more information about each of these phases, along 
with context of what the overall system is doing during each phase. The overall 
initialization process includes the following states: 

■ early boot process (see Early in the Boot Process, p.44)
■ hardware discovery (sysHwInit( ), PLB, and Hardware Discovery, p.44)
■ driver registration with the OS (Driver Registration, p.45)
■ phase 1, pre-kernel initialization (Driver Initialization Phase 1, p.45)
■ kernel startup (Kernel Startup, p.46) 
■ phase 2, post-kernel initialization (Driver Initialization Phase 2, p.46) 
■ phase 3, asynchronous initialization (Driver Initialization Phase 3, p.46) 

Making Assumptions about Initialization Order 

At each phase of initialization, VxBus executes this initialization phase level for all 
instances before moving to the next phase. The order in which instances are 
initialized within a phase is not specified. The only assumption your driver can 
make is that its parent bus controller instance has initialized to the point where the 
driver can get access to the hardware. 

NOTE:  This version of VxWorks continues to support legacy device drivers as well 
as BSPs that are not enabled to support VxBus. Note that the initialization sequence 
described in this section does not represent the initialization sequence for legacy 
drivers or BSPs that do not support VxBus. 

Table 3-1 Device Driver 

Phase Description Comments 

Registration 

Match/Probe Device and driver pairing 
routine. 

Optional. 

Phase 1 devInstanceInit( ) Pre-kernel initialization. 

Phase 2 devInstanceInit2( ) Post-kernel initialization. 

 Phase 3 devInstanceConnect( ) Asynchronous initialization. 
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Early in the Boot Process 

Device drivers do not play any role in the early boot process. Depending on which 
processor architecture you are working with, the CPU typically jumps to a 
specified address at power-on and starts executing instructions. Those instructions 
typically come from ROM or flash.

These early instructions initialize the memory controller and CPU, then start the 
procedure for initializing VxWorks.

sysHwInit( ), PLB, and Hardware Discovery 

Early in the VxWorks initialization process the BSP routine sysHwInit( ) is 
executed. It is during this step that device drivers first become active.

The sysHwInit( ) routine, provided by the BSP, performs some early initialization 
(typically restricted to CPU initialization) and then makes a call to 
hardWareInterFaceInit( ). The first task performed by hardWareInterFaceInit( ) is 
to initialize the hardware memory allocation mechanism, 
INCLUDE_HWMEM_ALLOC. This step allows limited memory allocation for 
device drivers before the system memory pool is initialized. The 
hardWareInterFaceInit( ) routine then calls hardWareInterFaceBusInit( ). At this 
point, individual drivers become active by registering with VxBus.

One of the first drivers to become active is the driver for the processor local bus 
(PLB). The PLB2 is a special driver in the sense that some of the first parts of 
initialization occur in this driver.

Bus controller drivers, including the PLB driver, are responsible for determining 
what hardware is present on the system. The PLB hardware does not include 
support for device discovery, but the PLB driver is able to read a BSP-provided 
table containing information about devices connected directly to the bus. For each 
table entry, the PLB driver notifies VxWorks of the device.

In this way, VxWorks discovers what devices are connected directly to the PLB. 
However, at this time, devices on other buses are not yet known. These devices are 
discovered later in the initialization sequence.

2. Silicon vendors do not use the acronym PLB consistently. While some silicon 
vendors use the acronym PLB to describe the peripheral bus connected directly to 
the processor, others use a different definition. In this document, the term 
processor local bus (and the acronym PLB) describe the peripheral bus described 
above regardless of the terms used by the processor vendor. 
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Driver Registration 

The next step—and main function of hardWareInterFaceBusInit( )—is driver and 
utility module registration. During this phase, each driver calls a registration 
routine, vxbDevRegister( ), which notifies VxWorks that the driver is available 
and provides the required information about the driver.

Recall that when the PLB driver is initialized, it discovers the devices connected 
directly to the processor local bus. VxWorks knows how to match a given driver to 
a device (see 3.5.7 Driver-to-Device Matching and Hardware Availability, p.50) 
therefore, registering the PLB driver is enough to set up the condition where a 
driver can be attached to hardware. 

Driver Initialization Phase 1 

Immediately after the driver and device are associated to form an instance, 
VxWorks examines the registration structure that is provided when the driver calls 
vxbDevRegister( ) (see Driver Registration, p.45).

This structure contains several initialization entry points into the driver. The first 
of these is the devInstanceInit( ) routine.

The devInstanceInit( ) routine that is called during phase 1 of VxBus initialization, 
is the first chance the driver has to initialize the hardware in any meaningful way. 
However, there are severe restrictions on what can be performed because no 
operating system services of any kind are available at this point.

Some driver classes, such as interrupt controller drivers and serial drivers, have 
special requirements for what must be ready after the devInstanceInit( ) routine is 
complete. However, for most drivers, the devInstanceInit( ) routine is relatively 
simple. At a minimum, your driver devInstanceInit( ) routine should ensure that 
the device interrupts are disabled.

NOTE:  Bus controller hardware is managed by the VxWorks device drivers for the 
bus controller class. For more information on bus controller device drivers, see 
VxWorks Device Driver Developer's Guide (Vol. 2): Bus Controller Drivers.
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Kernel Startup 

After all drivers have registered with VxWorks, the hardWareInterFaceBusInit( ) 
and hardWareInterFaceInit( ) routines return, sysHwInit( ) completes any 
non-VxBus driver initialization and returns. After sysHwInit( ) is complete, the 
VxWorks kernel is initialized. The next phase of VxBus initialization occurs in 
sysHwInit2( ).

Driver Initialization Phase 2 

In sysHwInit2( ), the BSP calls vxbDevInit( ). From the point of view of a driver, 
this is the next available window for additional initialization. At this second phase 
of VxBus initialization, the devInstanceInit2( ) routine for each instance is called.

By this point, kernel services are initialized and are accessible to your driver. 
However, middleware services (such as network MUX) may not be available. 

Driver Initialization Phase 3 

At the end of sysHwInit2( ), a task is created that runs the third and final phase of 
VxBus driver initialization. During phase 3, the devInstanceConnect( ) routine for 
each instance is called.

This phase is available for drivers that take a long time to perform their 
initialization, and where it is not appropriate to slow the system boot time in order 
to wait for a driver to initialize.

Execution of devInstanceConnect( ) can occur simultaneously with additional 
system and application configuration and startup. 

3.5.2  Invoking a Driver Method 

Middleware modules can invoke driver methods at any time, either during 
initialization or afterward. Drivers must advertise their methods before any 
middleware module or application attempts to invoke the driver method. 
Otherwise, the middleware, application, or VxWorks kernel module may not 
realize that the device exists. Volume 2 of the VxWorks Device Driver Developer’s 
Guide provides information on which driver methods the relevant middleware 
modules use and about what part of the initialization phase the method must be 
advertised in.
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3.5.3  Run-time Operation 

During normal system operation, there are a number of state transitions that can 
occur that relate to drivers and to instances. These are related to one of two 
situations: removal of a device from the system, or unloading a driver from the 
system. In each case, the instance must be broken down into a driver and device. 
That is, the driver must be dissociated from the device as described in Dissociating 
a Device from a Driver, p.48. 

Unloading a Driver 

To unload a driver, some entity on the system makes a call to 
vxbDriverUnregister( ). This routine requires the driver registration structure 
pointer as a parameter, therefore drivers supporting this operation must provide 
some mechanism for an application to discover the registration structure pointer. 
However, if the driver is unloaded manually from the command line, the output 
of vxBusShow( ) can be used to find the necessary information.

The flow of execution is as follows:

1. Call vxbDriverUnregister( ). 

2. Iterate through relevant devices. 

3. Call func{vxbDrvUnlink}( ) for the driver. 

For information on the {vxbDrvUnlink}( ) method, see Dissociating a Device from a 
Driver, p.48. 

Removing a Device from the System 

Normally, bus controller drivers are responsible for managing device discovery 
and device removal. Wind River does not currently support a bus-independent 
high-level interface for device removal while the system is running. This 
functionality is one aspect of the feature known as hot swap.

When an application handles removal of a device, it must know the exact VxBus 
device ID of the device being removed. The application makes a call to 
vxbDevRemovalAnnounce( ). This routine requires a VxBus device ID as a 
parameter. The application can find the VxBus device ID by using 
vxbDevIterate( ). The helper routine passed to vxbDevIterate( ) can look at any 
parameter of each device or instance, and choose the one (or more) that should be 
removed, based on criteria defined by the application. 
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Dissociating a Device from a Driver 

Unlinking a device from a device driver is handled by the VxBus driver method, 
{vxbDrvUnlink}( ).

The func{vxbDrvUnlink}( ) routine shuts down a device instance in response to an 
unlink event from VxBus. This event occurs when a VxBus instance is terminated, 
or when an associated device driver is unloaded. When an unlink event occurs, 
your driver must shut down and unload any connection to the operating system, 
middleware, or an application that is associated with the affected device instance. 
You must also release all of the resources that were allocated during the instance 
creation.

3.5.4  Handling a System Shutdown Notification 

Some BSPs provide a mechanism to notify specific drivers that the system is about 
to shut down. This is currently done on an as needed basis in individual BSPs.

3.5.5  Handling Late Driver Registration 

The initialization sequence (described in 3.5.1 Driver Initialization Sequence, p.42), 
is the standard boot procedure. However, it is possible to download and register a 
driver at any time during normal system operation. Provided that the deployed 
system is configured with a symbol table included, this feature is useful for 
debugging drivers and for adding new devices and drivers into a deployed 
system. 

Wind River recommends that all drivers be located in a single object module. If the 
complete driver is in a single object module, you can use the ld( ) shell command 
to load the object module into the running VxWorks system. Alternatively, 
applications can use loadModule( ) or loadModuleAt( ) to load the module.

NOTE:  Drivers supporting device removal must not make use of the 
u.pDevPrivate field of the device structure. 

NOTE:  VxWorks does not currently support a uniform mechanism to notify drivers 
during system shutdown. For the latest information on this feature, see the online 
support Web site.
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In addition, you can use deferred registration in the debug version of your driver. 
This allows the driver to be included in the VxWorks image, but not started 
automatically. One way to enable deferred registration is to split the driver's 
registration routine. When debugging is enabled in the early version of the driver, 
the second level of the registration routine—which actually calls 
vxbDevRegister( )—is not called. The following is a sample from the early phases 
of development for the NS16550 SIO driver. 

void ns16550sioRegister2(void)
{
vxbDevRegister((struct vxbDevRegInfo *)&ns16550vxbDevRegistration);
}

void ns16550sioRegister(void)
{

#ifdef NS16550_DEBUG_ON
ns16550sioRegister2();

#endif /* NS16550_DEBUG_ON */
}

3.5.6  Driver Registration Order Considerations 

In general, the order in which drivers are registered is not important. Drivers 
generally do not depend on services from other drivers, unless the other class of 
driver is defined as providing those services in an earlier initialization phase. 

An example of this dependency can be seen with interrupt management. Drivers 
may call vxbIntConnect( ) starting with phase 2 of device initialization, when 
devInstanceInit2( ) is called. In systems configured to use an interrupt controller 
driver to manage interrupts, rather than managing interrupts in BSP code, the 
interrupt controller must be able to receive the vxbIntConnect( ) call from the time 
the first devInstanceInit2( ) routine is called, which may be before its own 
devInstanceInit2( ) routine is called. Therefore, interrupt controllers must be able 
to provide their services when they exit from their devInstanceInit( ) routines in 
phase 1.

NOTE:  This split level of function call should be removed before releasing the 
driver.

NOTE:  Depending on the system, there is a chance that the vxbIntConnect( ) 
routine will work when called from the driver devInstanceInit( ) routine. 
However, this is inherently non-portable. Do not call vxbIntConnect( ) until 
devInstanceInit2( ).
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However, despite the general lack of requirements, the order of device discovery 
can sometimes affect driver behavior for devices downstream from the bus 
controller. 

During hardware discovery and driver match (see sysHwInit( ), PLB, and Hardware 
Discovery, p.44), the bus controller driver is responsible for discovery of devices 
located on its bus. One implication of this is that devices located downstream from 
the bus controller do not show up in the system until after the bus controller driver 
is associated with the device, and the instance is given a chance to initialize the 
device and discover the devices located on the bus. 

For this reason, while PLB devices may be associated with the driver during the 
devInstanceInit( ) phase of initialization (immediately after the driver registers), 
devices on any other bus may not be available this early in the boot process.

When developing a new driver, this behavior can result in insufficient testing. For 
example, if the bus controller driver used on the board initializes the bus during 
the devInstanceInit2( ) initialization phase, the downstream driver's initialization 
code is not called until after the operating system is running. However, other bus 
controller drivers for the same bus type may initialize the device and discover 
devices during the devInstanceInit( ) phase (when operating system services are 
not yet available). Therefore, moving a driver that has been tested only on a 
late-configuration system can crash the system. The solution to this issue is to 
avoid using services that are not always available in an initialization phase (see 
3.5.1 Driver Initialization Sequence, p.42). 

3.5.7  Driver-to-Device Matching and Hardware Availability 

This section describes the mechanisms used to match devices to the drivers that 
control them. This process is, in some ways, specific to the type of bus on which the 
device resides, but there are many similarities among the various types.

The basic flow is a three stage process: 

1. First, VxBus verifies that the driver's registered bus type is the same as the bus 
on which the device actually resides.

2. Second, VxBus runs a match routine provided by the code specific to the bus 
type.

3. Third, if a driver has provided a probe routine, this routine is called to give the 
driver a chance to verify that it will work correctly with the discovered 
hardware.
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The first and third stages are always followed with no variation. However, what 
happens during the second phase of driver-to-device matching varies depending 
on the bus type. This is based on the fact that the driver registration information 
includes a component that is specific to the bus type for which the driver registers.

PLB 

The most basic mechanism used to match a driver and a device is used when the 
bus type does not support dynamic discovery of devices present on the bus. In this 
case, a BSP-provided table is used to determine what devices are present. The table 
contains an identifier for each device, and the driver provides an identifier for 
those devices it can manage. When a bus type match is identified, the bus-specific 
match code compares the two identifiers and succeeds or fails depending on 
whether or not they match.

Other Bus Types 

For other bus types, the device provides a mechanism to identify hardware. The 
driver must provide bus-specific information in its registration structure that can 
be compared against the information provided by the device (for example, PCI 
vendor and device registers). 

PCI 

The information used to match a driver and device consists of the 16-bit device ID 
and the 16-bit vendor ID. The device driver registration structure contains a 
pointer to a table containing these value-pairs.

Note that PCI provides additional configuration space fields that can be helpful to 
the driver when deciding whether to accept or reject a device. These fields include 
the class field and subclass field, the sub vendor ID and sub system ID, as well as 
other fields.

The driver can include valid information in its registration structure and also 
provide a match or probe routine that checks these additional fields. Alternatively, 
the driver can specify values of all-ones (0xFFFF) for both the device ID and the 
vendor ID fields of the registration structure and provide a match or probe routine 
that checks all of the configuration space fields.
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RapidIO 

RapidIO provides device ID and vendor ID fields. VxWorks uses a mechanism 
similar to the PCI case for matching drivers with their devices. Namely, the driver 
of a RapidIO device specifies a table containing the device ID and vendor ID in its 
registration structure. However, with RapidIO, there is currently no wildcard 
mechanism to force the driver's probe routine to be called regardless of the device 
ID and vendor ID that are made available by the hardware.

3.6  Services Available to Drivers 

VxBus and VxWorks provide a rich set of services that make it easier to develop 
device drivers. Examples of these services include:

■ Retrieval of various types of configuration information for the driver, 
including the hardware environment that the driver is running in, the set of 
installed devices that are present in the system, individual device or instance 
properties, and other types of configuration information that are relevant in 
driver context.

■ Handling the exchange of data between a driver and its device, including 
routines to read and write data to device registers, routines to probe memory 
within the address space of a device, routines to transfer blocks of data to and 
from drivers through DMA channels, and so forth.

■ Allocating and freeing memory buffers, both during system startup and 
during normal system operation.

■ Synchronizing access to driver shared resources, including semaphores, 
spinlocks, and a full set of atomic operators.

■ Managing interrupts, including interrupt connection and disconnection, 
masking and unmasking interrupts, and deferral of interrupt processing to the 
task level.

■ Handling data management within the driver, such as singly linked lists, 
doubly linked lists, and lock-free ring buffers.

■ Handling device timeout conditions through the use of watchdog timers.

■ Displaying useful diagnostic information about the drivers, hardware devices, 
and device instances that are present in a running system.
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This section provides an overview of these services in order to give you a feel for 
the type of services that are available to you as a device driver developer. Because 
this information is designed as an overview, it is necessarily brief, and favors 
simplicity and brevity over detail. For detailed information about any of the 
services described in this section, see the related reference documentation.

3.6.1  Configuration 

When a driver is initialized in VxWorks, the driver sometimes needs to learn about 
the properties of the hardware and software run-time environment. For example, 
a serial driver for the NS16550 serial port can to be written to support densely 
packed device registers, or to support registers that have 2, 4, 8, or more bytes of 
offset between them. Because this type of information cannot always be 
determined by inspecting the hardware itself, the driver must determine the 
information for itself during initialization. This allows the driver to conform to the 
exact hardware and software requirements of the system. 

Determining Driver Configuration Information 

Drivers within VxWorks are configured using two broad types of driver 
configuration information, resources and parameters. Resources provide the 
information that the driver needs about its hardware run-time environment, such 
as hardware register spacing, availability of optional hardware services within a 
device, and so forth. Parameters provide the information that the driver needs to 
know about its software run-time environment, such as the size of memory buffers 
to allocate for transmit and receive, whether or not to support Ethernet jumbo 
frames, and so forth.

VxWorks provides routines that are used to determine both the hardware and 
software configuration information required by the driver at runtime. The routines 
that are used to query (and in some cases modify) the configuration information 
are described later in this section.

VxWorks driver resources and driver parameters are easily confused because both 
deal with querying configuration information from outside the driver. In general, 
a driver uses resources when the property being configured determines whether 
or not the driver functions correctly in a given run-time system, and uses 
parameters when the property being configured has more to do with driver 
performance, memory usage, or other software properties. 
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Working with the BSP Configuration File 

Both resources and parameters can be set in a file in the BSP directory called 
hwconf.c. This file lists all devices that reside on the PLB bus, resource information 
about each such device, and, potentially, parameter information about all devices 
on any bus type. For more information, see 3.7 BSP Configuration, p.79 and the 
VxWorks BSP Developer's Guide. 

Configuring Resources 

To retrieve run-time initialization information from its environment, a device 
driver can use the devResourceGet( ) routine. This routine is used to query the 
run-time environment information provided by a BSP in order to determine the 
desired configuration for the driver. 

Resources are restricted to three types: integer, string, and address. These types are 
denoted by HCF_RES_INT, HCF_RES_STRING, and HCF_RES_ADDR, respectively. 
The value associated with an integer resource is simply a 32-bit numeric value. The 
value associated with a string resource is a null-terminated ASCII string. The value 
associated with an address resource is the address of a memory location. This can 
be a function pointer, a pointer to a table, or any other pointer value.

For example, the following is taken from the ns83902VxbEnd.c device driver:

devResourceGet (pHcf, "regWidth", HCF_RES_INT, (void *) &registerWidth); 

In this call, the device driver queries the BSP to determine what value to use for 
register width. Elsewhere in the driver, the driver uses the queried value for the 
register width when performing register I/O operations, rather than using a 
hard-coded assumed value for the register width. 

Well written drivers make judicious use of devResourceGet( ) to maximize the 
portability of the driver. However, if a driver requires an excessive number of 
resources from the BSP, the driver becomes less portable because the work required 
by the BSP developer to incorporate the driver into the BSP increases significantly. 

For information on creating BSP resource entries, see the VxWorks BSP Developer’s 
Guide. For further information on using devResourceGet( ), refer to the reference 
entry for the routine.

Configuring Parameters 

To retrieve parameter information from its environment, the driver uses the 
vxbInstParamByNameGet( ) routine. Use of this routine is similar to 
devResourceGet( ), as shown in the following example:

vxbInstParamByNameGet (pInst, "jumboEnable", VXB_PARAM_INT32, &val);
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In this example, a driver queries the run-time environment to determine what 
value to use for the parameter jumboEnable. Depending on the return value, the 
driver can change its behavior to enable or disable support for (in this case) jumbo 
Ethernet frames.

While vxbInstParamByNameGet( ) behaves similarly to devResourceGet( ), the 
parameter configuration services in VxWorks are more flexible than those offered 
for resource configuration. Unlike the situation with resources, a parameter can be 
given an initial value by the device driver. When a device driver registers with 
VxWorks, it can optionally provide a set of parameters, along with their default 
values, to VxWorks. 

The following table is extracted from rtl8169VxbEnd.c:

LOCAL VXB_PARAMETERS rtgParamDefaults[] = 
{ 

{"rxQueue00", VXB_PARAM_POINTER, {(void *)&rtgRxQueueDefault}}, 
{"txQueue00", VXB_PARAM_POINTER, {(void *)&rtgTxQueueDefault}}, 
{"jumboEnable", VXB_PARAM_INT32, {(void *)0}}, 
{NULL, VXB_PARAM_END_OF_LIST, {NULL}} 

};

In this table, the rtl8169VxbEnd driver declares that it supports three parameters, 
named rxQueue00, txQueue00, and jumboEnable. When the driver registers with 
VxWorks, it provides a pointer to these parameters as part of its driver registration 
data structure. For example:

LOCAL struct vxbPciRegister rtgDevPciRegistration = 
{ 

{ 
/* . */
rtgParamDefaults /* pParamDefaults */
/* . */
}

};

Using this information, VxWorks stores the driver's default values for each of its 
parameters. Unless the parameters are changed by the BSP or application, the 
default driver values are the values that are returned when the driver calls 
vxbInstParamByNameGet( ). 

There are two methods that can be used to override the default value of a 
parameter for a driver:

■ The BSP can provide a different default value in its hwconf.c file. 

or 

■ A call can be made to vxbInstParamSet( ), to change the value of the 
parameter at runtime. 



VxWorks
Device Driver Developer's Guide, 6.6 

56

When the BSP provides a different default value for a parameter, the BSP default 
value replaces the driver-provided value for the parameter. This replacement 
occurs as soon as the driver registers with VxWorks, therefore there is no period of 
time where the driver default can be returned using vxbInstParamByNameGet( ). 

In addition to the BSP override method, the default value of a parameter can also 
be changed at runtime through a call to vxbInstParamSet( ). vxbInstParamSet( ) 
can be used to modify the default values for a driver parameter. 

For complete information on vxbInstParamByNameGet( ) and 
vxbInstParamSet( ), see the reference entries for these routines.

Responding to Changes in Device Parameters 

When a call is made to vxbInstParamSet( ), the parameter value for a driver is 
altered. However, unless special steps are taken by the device driver, the updated 
value may not be noticed by the driver. For example, consider the following steps:

1. The driver registers with VxWorks, its default parameter values are stored by 
VxWorks. 

2. The driver is bound to a device, creating a hardware instance. The driver uses 
the stored values for its parameters to configure the instance. 

3. An application calls vxbInstParamSet( ) to change the parameters used by the 
driver. However, because the driver is already initialized when 
vxbInstParamSet( ) occurs, the call to vxbInstParamSet( ) has no effect within 
the driver.

To address this scenario, device drivers are given the option to be informed of any 
changes to their parameter list that occur through a call to vxbInstParamSet( ). 
VxWorks provides a special driver method that can be implemented for any device 
driver that needs to monitor changes to its parameter list. To implement this 
method in your driver, the driver must publish the {instParamModify}( ) driver 
method. If the driver publishes this method, the method's callback function is 
invoked whenever a change occurs to the driver parameters.

Support for the {instParamModify}( ) method is optional, and is not required for 
most drivers. In practice, driver parameters are generally expected to be 
overridden by the BSP hwconf.c file, rather than at runtime.
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3.6.2  Memory Allocation 

When a VxBus model device driver is connected to a device to form an instance, 
the driver typically stores information about this instance in a memory-resident 
data structure. This data structure can be declared statically within the driver 
source file, or the driver can allocate the structure dynamically at runtime using 
one of the available memory allocation libraries offered by VxWorks. For example, 
a simple driver might declare the following data structure to allocate memory for 
its data structures: 

LOCAL simpleDriver_t simpleDriverInstanceStore[MAX_INSTANCES]; 

While a driver can use this method to reserve the memory for its instance data, this 
method is not recommended for two reasons:

■ The number of simultaneous instances that the driver can support is artificially 
restricted.

■ When the driver is used fewer less than the maximum number of instances, the 
memory for the unused instances is wasted.

Well-written drivers should utilize one of the two memory allocation strategies 
that are available to dynamically allocate instance data structures, to avoid the 
problems listed above.

Allocating Memory During System Startup 

When the VxWorks operating system is booting, some device drivers must 
initialize themselves early in the boot process. For example, a serial driver is 
initialized early in the VxWorks bootstrap process so that it can be used for console 
messages during the remainder of system startup. This early initialization also 
allows the serial driver to be used with WDB before the kernel is initialized. When 
a driver instance is initialized early in system startup, the standard 
application-level memory allocation strategies—such as malloc( ), calloc( ), 
memPartAlloc( ), and so forth—cannot be used because these routines use 
semaphores, which are not available for use until the operating system is booted, 
to protect the memory allocation data area.

To allow device drivers to allocate memory during system boot, a special set of 
memory allocation services are provided to device drivers. This includes:

hwMemAlloc( ) 
Allocate n bytes of storage from a static pool. 
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hwMemFree( ) 
Return allocated storage to the static pool. 

As their names imply, hwMemAlloc( ) and hwMemFree( ) perform memory 
allocation services. These routines are useful to driver writers because they can be 
called at any time during system startup, even when the multitasking services of 
VxWorks are not available. 

hwMemAlloc( ) allocates its memory from a pool of memory that is reserved for 
hwMemAlloc( ). The size of this pool of memory defaults to 50,000 bytes for most 
BSPs, and is configurable by adjusting the HWMEM_POOL_SIZE parameter 
associated with the INCLUDE_HWMEM_ALLOC component.

Because this pool size is adjustable, the size can be configured downward on 
systems that want to minimize wasted memory. For this reason, device drivers 
must always check the return value of hwMemAlloc( ) to ensure that any 
requested memory allocation is successful. Even on systems with large amounts of 
available memory, the pool of memory that is reserved for hwMemAlloc( ) may 
not be sufficient to support all of the requirements for all of the device drivers that 
are configured in a VxWorks image.

For complete descriptions of hwMemAlloc( ) and hwMemFree( ), see the 
reference entries for these routines.

Allocating Memory During Normal System Operation 

Once VxWorks completes its initialization, the standard memory allocation 
routines (malloc( ), calloc( ), memPartAlloc( ), and so forth) can be used by device 
drivers. For more information, see the reference entries for these routines.

Intermixing Memory Allocation Methods within a Single Driver 

Drivers that utilize both hwMemAlloc( ) and the standard memory allocation 
routines must be sure to use the corresponding memory free routine. For example, 
do not use hwMemFree( ) to free memory that has been allocated using the 
standard memory allocation routines, and do not use the standard memory free 
routine to free memory that has been allocated using hwMemAlloc( ). 

To eliminate potential mismatching of memory allocation and memory free 
routines in your driver, you may wish to use the same type of memory allocation 

NOTE:  hwMemAlloc( ) can only allocate blocks of 2012 bytes or smaller. 
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routine for each example of a particular data type. For example, if your driver 
allocates some objects of type FOO before the standard memory allocation routines 
are available, and other objects of type FOO after the system is up and those 
routines are available, continue using hwMemAlloc( ) for all objects of type FOO, 
regardless of when they are allocated.

However, if the driver also allocates objects of type BAR, but not until the standard 
memory allocation routines are available, then all objects of type BAR should be 
allocated using the standard memory allocation routines, and not hwMemAlloc( ).

3.6.3  Non-Volatile RAM Support 

When non-volatile storage is required, VxBus drivers can make use of the 
non-volatile RAM library. This occurs when some part of device initialization 
requires information that is board-specific, such as the Ethernet addresses of 
network interfaces.

There are two routines available in this library: 

vxbNonVolGet( ) 
This routine retrieves data from non volatile memory, which is dedicated to the 
caller, and copies it into a buffer provided by the caller.

vxbNonVolSet( ) 
This routine takes a data buffer provided by the caller, finds the data buffer 
allocated to the caller, and copies the data from the caller's buffer into the non 
volatile memory. 

3.6.4  Hardware Access 

At the lowest level, a driver communicates with its associated hardware by 
reading to, and writing from, the specific registers that are available within the 
hardware. When a VxWorks device driver is connected to a specific piece of 
hardware to form an instance, VxWorks provides the necessary information to the 
driver so that it can locate the hardware registers within the address space of the 
system. This section discusses the how a driver accesses its hardware registers.

Finding the Address of the Hardware Registers 

Whenever a call is made to a VxWorks device driver, a pointer to the driver 
instance state is provided as the first parameter. For example, the following code is 
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excerpted from the fei8255xVxbEnd.c device driver, located in installDir/
vxworks-6.x/target/src/hwif/end:

LOCAL void feiInstInit2
(
VXB_DEVICE_ID pInst
)
{
…
}

The VXB_DEVICE data structure contains information that is useful for a specific 
instance of the driver (that is, a specific device and driver pairing). In order for the 
driver to learn where its hardware registers are located within the system address 
space, the driver refers to the regBase[ ] array of pointers that is located within the 
pInst structure, and uses the corresponding regBaseFlags[ ] array to determine 
what type of address space is present at each location. Figure 3-2 illustrates the 
regBase[ ] and regBaseFlags[ ] data structures. 

Figure 3-2 regBase[ ] and regBaseFlags[ ] Data Structures 
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In Figure 3-2, VxWorks provides the driver with two windows into the hardware 
address space. The first window is defined by the base address contained within 
pInst->regBase[0], and is used for I/O mapped transactions, as shown in 
Figure 3-2 by the value of VXB_REG_IO found in pInst->regBaseFlags[0]. In 
addition, a second window is defined by the base address contained within 
pInst->regBase[1]. This second address range is used for memory-mapped 
register access, as shown in Figure 3-2 by the value of VXB_REG_MEM in 
pInst->regBaseFlags[1]. 

When a device driver initializes itself, it must inspect the various register windows 
that are provided by the device and then determine which windows must be used 
and which windows can be safely ignored. For example, if a hardware device 
provides two windows into its hardware registers, one that is mapped into the I/O 
space of the system and another symmetric window that is mapped into the 
memory space of the system, the device driver can choose to utilize only the I/O 
space for its interaction with the hardware.

Once the driver decides which of the available windows to use for its interaction 
with the hardware, the instance must create a mapping between the driver and the 
hardware so that transactions in this memory window are performed correctly in 
the system. This mapping is created by a call to vxbRegMap( ). The following 
example is from the fei8255xVxbEnd.c driver:

/* find the memory mapped window for the device registers */

for (i = 0; i < VXB_MAXBARS; i++)
{
if (pInst->regBaseFlags[i] == VXB_REG_MEM)

break;
}

pDrvCtrl->feiBar = pInst->pRegBase[i]; /* store the base address */
vxbRegMap (pInst, i, &pDrvCtrl->feiHandle); /* map the window */

In this example, the device driver searches the available register windows until it 
finds a register window of type VXB_REG_MEM. Once the window is located, the 
driver stores the base address of the window in its driver control structure 
(pDrvCtrl), and then maps in the address space using vxbRegMap( ). 
vxbRegMap( ) performs the necessary operations to ensure that subsequent writes 
to, or reads from, this window of the address space are performed correctly. It also 
returns a handle for the address space that the driver can use for subsequent reads 
and writes to the device. 
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Reading and Writing to the Hardware Registers 

Once the hardware registers are located and mapped by the driver, the driver can 
perform read and write transactions to the register space using any of the 
following routines:

■ vxbRead8( ) 
■ vxbRead16( ) 
■ vxbRead32( ) 
■ vxbRead64( ) 
■ vxbWrite8( ) 
■ vxbWrite16( ) 
■ vxbWrite32( ) 
■ vxbWrite64( ) 

All of the read routines have essentially identical semantics, differing only in the 
size of the data element read during the transaction. Likewise, all of the write 
routines have equivalently identical semantics. 

In later sections, the interfaces to these routines are described collectively because 
the concepts are the same for all of the read routines, and for all of the write 
routines.

Reading from the Hardware Registers 

A device driver can read either 8, 16, 32, or 64 bit quantities from a hardware 
register using a single function call. The interface to each of the vxbReadxx( ) 
routines is essentially the same. For example:

UINT8 value = vxbRead8 (handle, UINT8 *);
UINT16 value = vxbRead16 (handle, UINT16 *);
UINT32 value = vxbRead32 (handle, UINT32 *);
UINT64 value = vxbRead64 (handle, UINT64 *);

In this example, handle is used to hold a handle to a portion of the device address 
space. This handle is generated when the driver calls vxbRegMap( ). The address 
represents the absolute address of the hardware register to be read. For example, if 
a device provides three 32-bit registers in one of its mapped areas, a device driver 
can read the middle 32-bit value by performing pointer arithmetic to generate the 
address for the register as follows:

value = vxbRead32 (handle, (UINT32 *) (pDrvCtrl->feiBar + sizeof(UINT32)));

When making calls into any of the vxbReadxx( ) routines, use a base address value 
for the appropriate register window, and then add the appropriate offset into the 
register window to access the desired hardware register. The handle value does not 
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encode any type of pointer offset for the window therefore the pointer arithmetic 
must always be performed explicitly by the driver.

Writing to the Hardware Registers 

A device driver can write either 8, 16, 32, or 64 bit quantities to a hardware register 
using a single function call. The interface to each of the vxbWritexx( ) routines is 
essentially the same. The only significant difference is the data types for the 
parameter values. For example: 

void vxbWrite8 (handle, UINT8 *, UINT8); 
void vxbWrite16 (handle, UINT16 *, UINT16);
void vxbWrite32 (handle, UINT32 *, UINT32);
void vxbWrite64 (handle, UINT64 *, UINT64);

As with read routines, you are responsible for any pointer arithmetic required to 
access registers located in the mapped register window.

Special Requirements for Hardware Register Access 

When a device driver writes to or reads from a hardware register, the vxbReadxx( ) 
and vxbWritexx( ) routines perform whatever memory or I/O transactions are 
required in order to deliver the data to (or read the data from) the underlying 
hardware. On some processor architectures, this task involves the execution of 
special instructions (such as eieio on PowerPC processors), or a read-after-write 
transaction to flush any write buffers that exist between the CPU and the target 
hardware. The special operations that are required for each memory region are 
encoded as part of the state that is contained in the handle for each of the memory 
regions that are mapped by vxbDevMap( ). Because of this, you do not need to 
perform any additional operations in your driver in order to ensure that data that 
is read or written is transferred correctly.

3.6.5  Interrupt Handling 

This section describes how VxWorks device drivers work with hardware 
interrupts. The following topics are covered:

■ overview of interrupt handling
■ interrupt indexes 
■ services available to drivers to manage interrupts.
■ minimizing work performed within an interrupt service routine
■ additional interrupt requirements for VxWorks SMP 
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Overview of Interrupt Handling 

In previous versions of VxWorks, device drivers connected driver interrupt service 
routines (ISRs) by calling intConnect( ) and providing the necessary interrupt 
vector information, this is referred to as the interrupt vector model. This interrupt 
vector model worked well for hardware architectures that provided a 
straightforward mapping of device interrupts onto interrupt vectors. However, 
with the growth of hardware complexity and interrupt routing through multiple 
interrupt controllers, this simple interrupt vector model has become unwieldy and 
difficult to maintain. 

To address this issue, device drivers now use a different set of operating system 
services to connect interrupt service routines to the operating system. Device 
drivers now only need to be aware of how many individual interrupt sources are 
generated by the supported device hardware, so that the driver can connect 
appropriate ISRs to each hardware interrupt source. The individual interrupt 
sources that are generated by a device are assigned individual interrupt index 
values. 

These interrupt index values are used to describe the interrupt to the operating 
system. Interrupt index values are described in greater detail in the following 
section.

Interrupt Indexes 

VxWorks provides a set of services that you can use to manage interrupts from 
devices. These services allow you to:

■ Connect a driver-specific handler routine to any device interrupt.

■ Enable and disable delivery of the device interrupt. 

■ Disconnect from the device interrupt. 

Each of the separate interrupt signals a device generates is identified by its 
interrupt index. Most hardware devices only generate a single interrupt, which in 
VxWorks is identified as interrupt index 0. For more complex devices, additional 
interrupt signals are generated. These are assigned increasing interrupt indexes, 
starting at index 0.   

When a device can generate more than one interrupt signal, the interrupt signal is 
assigned an interrupt index that describes the type of information that is delivered 
implicitly with the arrival of the interrupt. For example, high performance 
network devices often have three interrupt sources; a transmit interrupt, a receive 
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interrupt, and an error interrupt. Each interrupt represents a different type of 
hardware event. For a given driver class, each type of interrupt index is assigned 
to a specific event and the same interrupt index is used for all device drivers in that 
driver class. For example, for all network device drivers, interrupt index 0 is 
assigned to the hardware device's transmit interrupt, interrupt index 1 is assigned 
to the hardware device's receive interrupt, and interrupt index 2 is assigned to the 
hardware device's error interrupt.

For information on the interrupt index conventions for any particular driver class, 
see the appropriate class-specific documentation in VxWorks Device Driver 
Developer’s Guide, Volume 2. 

Device drivers need to be able to connect device interrupts to ISRs, enable and 
disable delivery of these interrupts, and (for removable device drivers) disconnect 
an ISR from its device interrupt. VxWorks provides the following routines to 
support these services:

vxbIntConnect( ) 
This routine connects an ISR to a device interrupt. Once an ISR has been 
connected using vxbIntConnect( ), vxbIntEnable( ) must also be called to 
enable delivery of the device interrupt to the CPU.

vxbIntDisconnect( ) 
This routine disconnects an ISR from a device interrupt

vxbIntEnable( ) 
This routine enables delivery of a device interrupt by programming the 
appropriate hardware devices between the interrupting device and the CPU. 

vxbIntDisable( )
This routine disables delivery of a device interrupt by programming the 
appropriate hardware devices between the interrupting device and the CPU.

For more information on these routines, see the corresponding reference entries. 

Minimizing Work Performed within an ISR 

When an ISR is started by VxWorks as a result of interrupt handling, all task 
processing is suspended while the ISR is executing3. Because task processing is 
suspended for the duration of the ISR, ISRs should be structured to be as fast as 
possible, to minimize overall system interrupt latency. 

3. For VxWorks SMP, all task processing is suspended on the core that is executing 
the ISR; other cores continue to execute tasks. 
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One method for minimizing the time spent in an ISR is to defer any processing so 
that it is performed within a task context instead of within an interrupt context 
using the functionality provided by isrDeferLib. When an ISR is structured to 
support ISR deferral, the ISR does the following:

1. Disables interrupts from the device by programming device-specific registers 
so that interrupts are disabled. (Note that calling vxbIntDisable( ) may not 
disable interrupts if the interrupt line is shared by some other device.)

2. Prepares a data structure to describe the work that needs to be deferred. This 
data structure is then provided as an input parameter to the routine that 
performs the deferred work at task level. 

3. Unblocks a task that is waiting on a semaphore. This task handles the deferred 
work once the ISR completes execution. 

4. Returns from the ISR. This signals the operating system to schedule the task to 
handle the deferred work. 

VxWorks provides a support library to make the process of deferring interrupts to 
the task level easier for you. The following routines are available to support ISR 
deferral:

isrDeferQueueGet( ) 
Returns a handle to an ISR deferral queue. This handle is used defer work from 
an ISR to task level. The deferral queue returned by this function can be a 
shared queue (used by more than one device driver), or it can be an exclusive 
queue. 

isrDeferJobAdd( ) 
Adds a data structure describing the deferred work to be performed onto an 
ISR deferral queue. This work is performed once the ISR enqueuing the work 
terminates and task processing resumes. 

For more information on these routines, see the corresponding reference entries. 

3.6.6  Synchronization 

VxWorks device drivers have unique synchronization requirements when 
compared with VxWorks application code. A typical device driver receives 
requests from user tasks to perform various forms of I/O. In addition, the driver 

NOTE:  If this step is not performed, VxWorks immediately resumes interrupt 
processing after the ISR exits because the original interrupt is still pending.
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must service device interrupts from the hardware that the driver is controlling. 
These requests create a fairly chaotic environment within the driver because it 
must ensure that all of the individual threads and interrupts that are competing for 
the driver's resources do not corrupt the driver's data structures. Simultaneous 
access to shared data structures can lead to data corruption, incorrect driver 
behavior, and possibly system crashes. As a driver developer, you must take active 
steps to ensure that the data structures maintained by your driver are protected 
from corruption by these competing threads of execution. 

Task-Level Synchronization 

When a driver is running in task context, it can use the full suite of available 
operating system services to perform synchronization operations. These services 
include:

■ taking and releasing mutexes 
■ sending data to, or receiving data from, a message queue 
■ adding and removing items from ring buffers 
■ taking and giving spinlocks 
■ locking and unlocking interrupts (uniprocessor VxWorks only) 

You can choose any of these synchronization methods, depending on the data flow 
needs of your device and the I/O interface between your device driver and its 
calling tasks. However, your overall goal is to ensure that the data structures that 
are maintained by the driver remain consistent. 

For example, a common task-level synchronization scenario would be to have a 
single driver instance allocate and initialize a semaphore then store that 
semaphore as part of the per-instance data structure maintained by the driver. The 
semaphore can then be used to protect all access to the shared data structures that 
the driver maintains.

However, while semaphores provide a useful method to protect driver data 
structures from corruption by competing tasks, they have a significant drawback 
that prevents them from being a good general-purpose solution—they cannot be 
used from the interrupt context. If your device driver maintains data structures 
that must be accessed from both task context and interrupt context, you must 
employ a different synchronization method.
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Interrupt-Level Synchronization 

When a VxWorks device driver is servicing an interrupt from a hardware device, 
the driver can no longer use any synchronization primitives that could cause the 
interrupt service routine to block. For example, an interrupt service routine cannot:

■ Take a mutex. 

■ Add an item to a message queue. 

Because these operations are not allowed in interrupt context, another method to 
provide mutual exclusion is required to resolve the shared data contention issues 
between task context and interrupt context.

In interrupt context, there are two methods you can employ to gain exclusive 
access to a shared resource:

■ interrupt locking using intCpuLock( ) and intCpuUnlock( ) 
■ spinlocks using isrSpinLockTake( ) and isrSpinLockGive( ) 

These two methods are each discussed in the following sections

Interrupt-Level Synchronization Using Interrupt Locking 

Interrupt locking is the traditional method used to protect device driver data 
structures from being modified simultaneously in both task and interrupt context, 
and this method works well in uniprocessor VxWorks environments, provided the 
code executed while interrupts are locked is short. Using interrupt locking, any 
piece of code running in task context that wants to gain access to a shared data 
structure must surround the code in an intCpuLock( ) and intCpuUnlock( ) pair 
of function calls. For example:

key = intCpuLock ();
/* access shared data structures. */
intCpuUnlock (key);

By locking out interrupts for the duration of the access to any shared data 
structures, you can guarantee that no interrupts occur while the driver shared data 
structures are accessed in task context.

Within the interrupt service routine of your driver, the driver shared data 
structures can be accessed without explicitly locking interrupts in a UP 
environment. Because an ISR cannot be preempted in order to run any task-level 

NOTE:  This is not true in all cases. You can add an item to a message queue 
from an ISR. However, when calling msgQSend( ) from an ISR, the timeout 
option must be zero. 
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code, explicit locking is not required within the ISR. An ISR can infer from the very 
fact that it is running that no tasks are executing in any regions bracketed by 
intCpuLock( ) and intCpuUnlock( ).

Despite the simplicity and efficiency offered by interrupt locking, Wind River 
discourages the use of interrupt locking in modern device drivers. There are two 
reasons for this:

■ Interrupt locking increases system latency because no interrupts for any 
device in the system can be serviced while interrupts are locked. 

■ Interrupt locking does not work if more than one processor is present in the 
system, as is the case for the optional VxWorks SMP product. 

In place of interrupt locking, you can use spinlocks in modern device drivers that 
need to provide protection between task and interrupt context. This service is 
available in both uniprocessor VxWorks and VxWorks SMP systems (see 
Interrupt-Level Synchronization Using Spinlocks, p.69). 

Interrupt-Level Synchronization Using Spinlocks 

When you use interrupt locking to protect a shared data structure, each task that 
wants to access the shared data structure must first lock interrupts, and then access 
the shared data. In a uniprocessor VxWorks system, your driver can safely access 
shared data in this context because it knows that it will not be preempted, whether 
by another task of higher priority, or by any type of ISR. This is guaranteed in 
uniprocessor systems because only one processing unit is available to execute 
instructions. 

However, in a symmetric multiprocessing (SMP) system, more than one 
processing unit is available, and instructions that access shared data can be 
executed on any (or even all) cores in the system. As a result, a core in a VxWorks 
SMP system that executes intCpuLock( ) cannot make any assumptions about 
code that is running on any other core in the system. A second core could be 
executing code that is accessing the shared driver resources, while a third core 
could be executing an ISR for the driver. Unless you take positive steps in your 
driver to ensure that only one of these entities can gain access to the driver shared 
data structures, data corruption of the shared data structures is inevitable.

NOTE:  A complete discussion of spinlocks is beyond the scope of this document. 
For more information on spinlocks, see the VxWorks Kernel Programmer’s Guide: 
VxWorks SMP. 
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To address this need, VxWorks SMP provides spinlocks that can be used to provide 
exclusive access to a shared resource, even when the resource is being contended 
for by multiple cores in a multiprocessor system.

Spinlocks can be taken and given. After spinlock is taken, the driver that holds the 
spinlock can access any data structures that are protected by the spinlock. For 
example:

isrSpinLockTake (pSpinlock);
/* access shared data structures */
isrSpinLockGive (pSpinLock);

Unlike interrupt locking, spinlocks must be used in both task context and in 
interrupt context to ensure exclusive access to a driver shared resource. An ISR 
must use a spinlock because it cannot know whether or not a task on another core 
in the system will try to access the driver shared resources while the ISR is running. 
That is, an ISR cannot depend upon the implicit locking that is available in a 
uniprocessor system. You must use an explicit lock to ensure data integrity.

3.6.7  Direct Memory Access (DMA) 

This section describes the facilities provided by VxBus for management of devices 
which read and write system memory directly. 

When data transfer is involved, reading and writing system memory is referred to 
as direct memory access (DMA). However, the same operations used for DMA are 
also used for other operations, such as management of tables that describe what 
operations are to be performed. These tables are known as descriptors.

Address translation and cache present some issues related to DMA. These are 
discussed in DMA Considerations, p.71. 

vxbDmaBufLib 

VxBus provides the vxbDmaBufLib library as a solution to both address 
translation and cache operations, as required by device drivers that control devices 
that use DMA. This library uses a construct known as a DMA tag to identify 
restrictions on DMA, including address translation. After a DMA tag is created, a 
DMA map is created to perform address translation. The caller creates a tag with 
the vxbDmaBufTagCreate( ) call. For buffers, the driver creates a DMA map, using 
the tag created earlier and other information.
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When setting up for a write operation (where the CPU writes to RAM and the 
device reads the data), the driver calls vxbDmaBufMapLoad( ) or a variant of it4. 
At the appropriate time, the driver calls vxbDmaBufSync( ) with appropriate 
arguments to cause cache flush or invalidate. For more information on these 
routines, see the corresponding reference entries and the reference entry for 
vxbDmaBufLib. 

When processing incoming data, the driver first finds what buffers contain data, 
the DMA tag, and the DMA map associated with each buffer. For each buffer, the 
driver calls vxbDmaBufSync( ) to invalidate any cache entries, followed by 
vxbDmaBufMapLoad( ), followed by another call to vxbDmaBufSync( ) with a 
different operation flag. At this point, it is safe to read the data from the buffer.

When processing outgoing data already in a buffer, the driver calls 
vxbDmaBufMapLoad( ) followed by vxbDmaBufSync( ). Once this occurs, it is 
safe to initiate the write operation. 

For more information on vxbDmaBufLib, see the library reference entry as well as 
the reference entries for vxbDmaBufTagCreate( ) and other routines provided by 
vxbDmaBufLib.

DMA Considerations 

There are several issues related to these operations. Both data operations and 
operations on descriptors have similar issues, and the same mechanism is used to 
manage both types. The mechanisms used to manage these operations are address 
translation and cache. 

NOTE:  When writing data to a disk, the disk controller device reads the data from 
RAM as the first step. Similarly, when reading data from a disk, the last step for 
the disk controller device is to write the data into RAM. Thus, the terms read and 
write are ambiguous, depending on whether the application or the device is 
performing the operation. In this documentation, unless otherwise noted, these 
terms should be considered relative to the application.

4. Variants of vxbDmaBufMapLoad( ) are available for mBlk and uio structures so 
that multiple buffers can be mapped with the same call. The basic version maps a 
single buffer. Unless otherwise noted, references to vxbDmaBufMapLoad( ) 
indicate all variants.
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Address Translation 

First, the memory address used by the device may not be the same as the memory 
address used by the CPU. That is, if the bus controller performs address 
translation, the same memory addresses are known by one address from the CPU 
and a different address from the device. Figure 3-3 illustrates this situation. In this 
example, the driver allocates a buffer from RAM at 0xC0001000. The CPU uses this 
address to read and write the buffer. However, because the bus controller 
translates the address, the device must read and write at 0x00001000 in order to 
manipulate the same RAM locations.

Bus Controller Address Conversion 

There are two types of address conversion that are relevant to device drivers. These 
are the conversion of device register addresses and the conversion of buffer 
addresses.

In most cases, drivers do not need to handle address conversion directly because 
utility routines perform the mapping on behalf of the driver. However, as a driver 
writer, you must be aware of the mappings that are performed. The following 
sections discuss mappings of device register addresses and mappings of data 
buffer addresses. 

Device Registers 

Device registers reside on the device itself, and are therefore subject to the rules 
and restrictions of the bus type on which the device resides. Often, device registers 
are not seen at the same address on the CPU as on the bus that the device resides 

Figure 3-3 Bus Address Translation 
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on. Because of this, most drivers need to use the device register management 
routines to manipulate register contents. For more information on the register 
management routines, see 3.6.4 Hardware Access, p.59.

Data Buffers 

Data buffers typically reside in system RAM. In most systems, there is a bus 
controller device of some sort between the device and RAM. The bus controller 
device performs address conversion between the CPU and the downstream 
devices, as shown in Figure 3-3. The driver, which is running on the CPU, needs to 
use one address to access a particular location in RAM. However, the device on the 
downstream bus needs to use a different address to access the same location in 
RAM. 

In most cases, drivers for devices that use system memory rely on the routines in 
vxbDmaBufLib to manage buffers, and these routines allow the driver to handle 
the address translation. 

The RAM addresses are passed to the appropriate vxbDmaBufLib routines, and 
the converted addresses—as seen by the device—are available from the returned 
structures. 

Cache 

Detailed cache considerations are beyond the scope of this document. Therefore, 
the cache discussion in this section is presented as a simplified description of cache 
operations and how they affect device drivers. Many cache configurations are 
possible, and this discussion does not reflect the full range of available 
configurations. For more detailed cache information, see the VxWorks Architecture 
Supplement and the reference entry for cacheLib. 

In Figure 3-4, the CPU has an associated cache. This introduces another layer of 
complexity for address translation. For every memory access by the CPU, the cache 
checks the memory address of the access. If the address is already in cache, the 
cache responds with the data stored in cache. Depending on the cache 
configuration, the cache may respond to the CPU request by reading data from, or 
writing data to, its cache memory, completely avoiding any transactions with 
system RAM. 

For example, assume a copy of RAM from a certain address is held in cache. If the 
device writes to that address, the data are written to RAM. If the processor tries to 
read that address, the cache responds to the CPU with the cached data and 
prevents it from accessing the data in RAM. The result is that the data received by 
the CPU does not contain the updated data written by the device.
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Similarly, if the CPU writes to an address, the cache will intercept the write request 
and store the data in cache, but it will not necessarily store the data in RAM. If the 
device then attempts to read data from the address, the device reads old data from 
RAM rather than the current data from cache.

To resolve these cache issues, the processor must perform operations known as 
cache invalidate and cache flush. When reading from cached RAM addresses, the 
CPU configures the device to write to RAM. However, before doing so, the CPU 
invalidates the cache addresses being written to. When the CPU next tries to read 
the address, the cache does not respond directly. Instead, it reads the data from 
RAM, stores the data in cache, and sends the data to the CPU.

Provided the CPU does not read from the address until after the device writes to 
it, the operation is performed as expected.

In the second situation, the CPU writes into an address and then notifies the device 
that the device should read the data there. Before notifying the device to perform 
the read, the CPU flushes the cache. This instructs the cache to write any pending 
data from cache into RAM. After this has happened, the device can read the latest 
information directly from RAM. 

Recall that before configuring the device to write into the buffer, the cache 
invalidate operation is performed, which causes the entire contents of the cache 

Figure 3-4 Bus Address Translation and CPU Cache 
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line to be discarded. However, in some cases, it is possible that valid data have 
been written into the cache line but not written to RAM. In this case, the valid data 
are discarded along with the invalid cached buffer contents.

To prevent this, driver writers must ensure that all data buffers used for DMA are 
cache aligned.

Allocating External DMA Engines 

Most devices that manipulate large amounts of data have DMA engines included 
in the device. This allows data to be copied without requiring the CPU to perform 
the copies, resulting in better overall system performance. However, some devices 
that manage large amounts of data do not include built-in DMA hardware. 
VxWorks provides a way for device drivers for such devices to allocate an external 
DMA engine, also known as a slave DMA engine, if one is available. This allows 
drivers to eliminate the CPU data copy operations. 

This functionality is achieved with vxbDmaLib. The driver calls 
vxbDmaChanAlloc( ) to allocate a DMA channel, and then calls one of the data 
copy routines made available when you allocate the channel. There are two 
variants of the copy. One variant copies the data and waits for the copy operation 
to complete before returning to the caller, the other variant initiates the copy 
operation and returns immediately. When the copy is complete, the caller is 
notified. Both variants are called through function pointers made available when 
a DMA channel is allocated.

By default, when vxbDmaChanAlloc( ) is called and no DMA engine is available, 
the routine allocates a software entity that performs the operations using CPU 
cycles. This allows a driver to request a DMA channel, but use the same interface 
whether one is available or not. The driver can specify not to use software copy by 
specifying the DMA_COPY_MODE_NO_SOFT flag.

vxbDmaChanAlloc( ) 

This routine allocates and initializes a DMA channel for use by a device instance. 
It searches the system for DMA controller drivers that have dedicated channels, 
and if found, calls the {vxbDmaResDedicatedGet}( ) method to allocate the 
dedicated channel. If no dedicated channels are available, this routine searches 
through the system for any DMA controller drivers that can allocate a channel 
satisfying the parameters passed to the routine. If a channel is allocated, the routine 
returns an ID for the channel.
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VXB_DMA_RESOURCE_ID vxbDmaChanAlloc
(
VXB_DEVICE_ID pInst,
UINT32 minQueueDepth,
UINT32 flags,
void * pDedicatedChanInfo
)

pInst refers to the VXB_DEVICE_ID associated with the device requesting the 
DMA channel. DMA device drivers normally select a DMA channel based upon 
minQueueDepth and flags. Device drivers can optionally pass a pointer to DMA 
device-specific information in pDedicatedChanInfo, which signals the DMA 
library to call the {vxbDmaResDedicatedGet}( ) method.

minQueueDepth refers the minimum queue depth required by the device, in 
transaction units. The DMA model expects a chained DMA command mode, 
where multiple DMA transactions can be initiated and a single interrupt occurs 
when the DMA command chain is completed and no further transactions are 
available to be performed. If the device uses a direct mode, where one transaction 
is performed at a time, then the DMA driver should reject requests containing a 
minQueueDepth of any value other than 1.

flags allows drivers to specify any options in configuring the DMA channel. The 
acceptable values for flags are defined in vxbDmaLib.h and are described as 
follows:

■ DMA_COPY_MODE_DEVBUF (0x00000000) - this flag indicates that the device 
provides a data buffer which is fully accessible as memory.

■ DMA_COPY_MODE_FIFO (0x00000100) - this flag indicates that the 
mechanism used by the device for presenting its data buffers is a register. 
Successive reads or writes to this register are required to complete a transfer to 
or from CPU memory.

■ DMA_COPY_MODE_NO_SOFT (0x00000200) - be default, 
vxbDmaChanAlloc( ) will assign a software copy routine if no hardware 
DMA channel is available. If this flag is set, vxbDmaChanAlloc( ) will instead 
return ERROR.

■ DMA_COPY_MODE_NO_HW (0x00000300) - in cases where the driver 
developer wishes to use the API, but knows that there will not be adequate 
DMA hardware to provide appropriate performance, this flag can be specified. 
It indicates that the library should return a software copy routine to the driver.

■ DMA_TRANSFER_TYPE_RD (0x00001000) - this flag indicates to the DMA 
driver that the DMA channel is requested for read operations, that is, data is 
read from the device into memory.
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■ DMA_TRANSFER_TYPE_WR (0x00002000) - this flag indicates to the DMA 
driver that the DMA channel is requested for write operations, that is, data is 
written to the device from memory.

vxbDmaChanFree( ) 

This routine frees the DMA channel identified by dmaChan, by calling the DMA 
device driver through the {vxbDmaResourceRelease}( ) method.

void vxbDmaChanFree
(
VXB_DMA_RESOURCE_ID dmaChan
)

3.6.8  Atomic Operators 

Device driver writers often need to update internal data structures to reflect 
changes in driver state. If they are simultaneously updated by more than one 
thread of execution, driver data structures can become corrupt. Therefore, you 
must take specific steps to ensure that corruption does not occur due to contention 
for the driver data structures. 

Traditionally, some type of synchronization primitive is used to ensure that a data 
structure is updated atomically. Common synchronization primitives include:

■ semaphores
■ spinlocks
■ interrupt locking

In this release, atomic operators have been added to this set of synchronization 
primitives. As their name implies, atomic operators can be used to atomically 
modify a data structure. Atomic operators guarantee that their update to a data 
structure is atomic, even when more than one thread of execution is contending for 
the shared data structure. In VxWorks, atomic operators are divided into four 
logical groups:

■ arithmetic
■ logical
■ read/write
■ compare/swap

All of the atomic operators act upon a variable of type atomic_t. The atomic_t type 
is an architecture-dependent integral type, guaranteed to be at least 32 bits in size. 
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The atomic arithmetic operators are:

atomicVal_t vxAtomicAdd (atomic_t * pTarget, atomicVal_t value); 
atomicVal_t vxAtomicDec (atomic_t * pTarget); 
atomicVal_t vxAtomicInc (atomic_t * pTarget); 
atomicVal_t vxAtomicSub (atomic_t * pTarget, atomicVal_t value); 

Each of the arithmetic operators take as input a pointer to a variable of type 
atomic_t, which is atomically updated by the operator. In all cases, the atomic 
arithmetic operators return the original value of *pTarget.

The atomic logical operators are:

atomicVal_t vxAtomicAnd (atomic_t * target, atomicVal_t value); 
atomicVal_t vxAtomicNand (atomic_t * target, atomicVal_t value); 
atomicVal_t vxAtomicOr (atomic_t * target, atomicVal_t value); 
atomicVal_t vxAtomicXor (atomic_t * target, atomicVal_t value); 

Each of the logical operators take as input a pointer to a variable of type atomic_t, 
which is atomically updated by the operator. In all cases, the atomic logical 
operators return the original value of *pTarget.

The atomic read/write operators are:

atomicVal_t vxAtomicClear (atomic_t * target); 
atomicVal_t vxAtomicGet (atomic_t * target); 
atomicVal_t vxAtomicSet (atomic_t * target, atomicVal_t value); 

Each of the read/write operators take as input a pointer to a variable of type 
atomic_t, which is atomically updated by the operator. In all cases, the atomic 
logical operators return the original value of *pTarget. 

The atomic compare/swap operator is:

BOOL vxCas (atomic_t * target, atomicVal_t oldValue, atomicVal_t newValue);

The vxCas operator is the most complex of the atomic operators. It is designed to 
be used to update a data structure by:

■ Reading a value from a data structure. 

■ Updating the value, according to the needs of the algorithm. 

■ Writing the value back, but only if the data structure has been left unchanged 
singe the original read from the data structure occurred. 

vxCas can be useful in cases where a data structure is accessed intermittently, so 
that it is highly likely that a single thread of execution can read a value from the 
data structure, modify it, and then write it back, without another thread of 
execution making a simultaneous attempt to update the structure. This is useful for 
data structures that have low contention.
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If atomic operators are used within a device driver, they must be used consistently. 
Data elements of type atomic_t should never be directly accessed using simple 
pointer indirection. The atomic operators perform other operations aside from 
simple memory operations to ensure that the atomic operations occur as designed. 
If the atomic operators are not used consistently, correct behavior is not assured.

For further information about the atomic operators, see reference entry for 
vxAtomicLib.

3.7  BSP Configuration 

One of the goals of the VxBus model is to minimize the need to modify a BSP in 
order to support new devices. Where BSP support is required, the Vxbus model 
reduces the effort required to integrate a driver with a new BSP. However, the 
amount of BSP work required in order for a new driver to work on an existing BSP 
depends on the type of bus on which the device resides. 

If the device resides on a bus such as PCI, which allows the system to probe the 
device in order to find out what devices are present and what kind of devices they 
are, then typically, no BSP modifications are required. In this case, the bus 
controller finds the devices on the bus and ensures that VxBus knows about them. 

For PLB devices, and for other bus types that do not allow the system to discover 
what devices are present, the system needs some way to determine what devices 
are present, and to determine the characteristics of those devices. This is normally 
accomplished by reading an array of devices provided by the BSP. 

3.7.1  Requirements for PLB Devices 

For PLB-type devices, the BSP typically provides the required array of devices in a 
table called hcfDeviceList[ ]. This table is usually provided in a hwconf.c file in the 
BSP. Each entry in hcfDeviceList[ ] contains the name and unit number of a device, 
the bus type and unit number on which the device resides (which is usually 
VXB_BUSID_PLB unit 0), and a reference to an array of resources associated with 
the device. For example, the following data structures are typically present in the 
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BSP hwconf.c file in order to incorporate a D1643 timer driver into the BSP, and to 
configure the timer driver so that it is accessible through the PLB: 

const struct hcfResource d16430Resources[] = {
/* entries describing resources tailored to the D1643 timer on PLB */

};

const struct hcfDevice hcfDeviceList[] = { 
{"d1643", 0, VXB_BUSID_PLB, 0, d16430Num, d16430Resources},

};
const int hcfDeviceNum = NELEMENTS(hcfDeviceList); 

The hcfDevice structure and hcfResource structure are defined in 
installDir/vxworks-6.x/target/h/hwif/vxbus/hwConf.h.

There are already many resource names defined in a standardized way as well as 
a naming convention for resources. When an existing resource name is available 
for a resource that your driver needs, use the existing resource name. The standard 
names are as follows:

Device drivers may also require resources that have not been previously named by 
another driver. In this case, you can assign a name to the resource. 

The one required resource is regBase, which is of type HCF_RES_INT. This resource 
represents the base address of the device registers, or the base address of the first 
bank of device registers. It must be present and non-zero in order for a device to be 
associated with a driver. Other regBase entries can optionally exist as well. These 
entries are identified as regBaseN, where N is a value between 1 and 9. Drivers do 
not need to read the regBase and regBaseN entries. The system reads those entries 
and stores the results in the pRegBase[ ] entries in the VXB_DEVICE structure.

When your system is configured with interrupt controller support provided by a 
VxBus model device driver, interrupt routing information is provided with the 
interrupt controller driver resources. However, when the BSP provides the code to 
manage the interrupt controller devices, interrupt information is listed as a 
resource for each device. In this case, there are two required interrupt resources for 
each interrupt the device can generate.

regBase intrNLevel rxIntLevel
regBaseN txInt errIntLevel
irq rxInt regInterval
irqLevel errInt regWidth
intrN txIntLevel regDelay
clkFreq
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Each interrupt requires two resources, an interrupt number and an interrupt level. 
To ease BSP development, the resources have several aliases. These aliases are:

irq and irqLevel
These aliases can be used to represent the first interrupt that a device 
generates. 

intrN and intrNLevel 
These aliases can be used to represent multiple interrupts. The character N is 
replaced either by a decimal number, or it is deleted. For example, valid values 
can include intr, intr0, intr1, intr27, and so on, along with the corresponding 
intrLevel, intr0Level, and so on. 

txInt, rxInt, and errInt 
txIntLevel, rxIntLevel, and errIntLevel 

These resource names can be used for a device that generates three interrupts 
for transmit events, receive events, and error events. Note that txInt always 
refers to interrupt 0, rxInt always refers to interrupt 1, and errInt always refers 
to interrupt 2.

There are two additional generic resources that are required in some cases and may 
be used by your driver: 

regInterval 
Describes the amount of space between registers. For example, sometimes a 
device uses four 8-bit registers, and the board maps the register addresses so 
that they appear to be located at 32-bit boundaries. In this case, the value of 
regInterval must be specified as 4.

regWidth 
Describes the size that must be used to access a register. For example, 
sometimes a device uses four 8-bit registers, and the board maps the register 
addresses so that they appear to be located at 32-bit boundaries, and in 
addition, the device is located on a bus that allows only 32-bit transactions. In 
this case, the driver needs to access each register with 32-bit transactions or a 
bus error results. Therefore, the value of regWidth must be specified as 4.

regDelay 
Describes the delay required between accesses to registers, in milliseconds.

clkFreq
Describes the frequency of an oscillator in Hz.

Wind River provides a general naming convention as part of the coding 
convention described in Wind River Coding Conventions. Resource names should 
follow the conventions for variable names. For example, if you need to represent a 
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minimum clock rate as a resource, the resource name should be clkRateMin. 
Where another driver uses a given resource name for a specific kind of 
information, you should use the same name.

3.7.2  Configuring Device Parameters in the BSP 

In addition to resources, each instance can have parameters associated with it. 
Each parameter has a default value that is provided by the driver, but the BSP can 
override the value on a per-instance basis. This is done in the parameter table in 
hwconf.c. The parameter table is terminated by an entry with 
VXB_PARAM_END_OF_LIST specified as follows:

VXB_INST_PARAM_OVERRIDE sysInstParamTable[] =
{
...
{ NULL, 0, NULL, VXB_PARAM_END_OF_LIST, {(void *)0} }
};

Parameters are driver specific. There may be conventions for a given driver class, 
but many parameters are specific to an individual device. Unlike resources, which 
have required generic entries for all device classes, there are no generic parameters.

Wind River provides a general naming convention as part of the coding 
convention described in Wind River Coding Conventions. Parameter names should 
follow the conventions for variable names. 

3.8  SMP Considerations 

When writing a device driver, you must decide whether or not the device driver is 
written to handle the unique challenges presented by symmetric multiprocessing 
(SMP), or is written to support only a uniprocessor VxWorks system. 

If your driver is only planned to run on a uniprocessor system for initial 
development, you may be tempted to take advantage of the simpler environment 
that uniprocessor VxWorks presents, and defer any consideration of 
multiprocessing until the driver is actually required on an SMP platform. 

Because the silicon industry is moving inexorably to multicore processors, 
regardless of vendor, it is difficult to predict what the future requirements will be 
for any driver. And while it is simpler to write a device driver for a uniprocessor 
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system, you can save yourself a great deal of time in the future by writing a driver 
to be “SMP-ready” when compared with the cost of retrofitting SMP support into 
a previously uniprocessor-only driver. 

This section describes some of the unique device driver challenges posed by an 
SMP system, and provides you with some possible solutions to the challenges. 

For more information on VxWorks SMP, see the VxWorks Kernel Programmer’s 
Guide: VxWorks SMP. 

3.8.1  Lack of Implicit Locking 

As described in Interrupt-Level Synchronization, p.68, the most significant difference 
between a VxWorks SMP system and a uniprocessor system occurs in the area of 
mutual exclusion. In a uniprocessor VxWorks system, only one core can execute 
instructions at any one time, so it is relatively simple for you to keep track of all of 
the possible sources of contention. For example:

■ If a driver for a uniprocessor system is executing an ISR, no other task can 
possibly be competing for the shared resource. 

■ If a driver for a uniprocessor system is executing in task context, the driver can 
lock interrupts in order to prevent any other thread of execution or ISR from 
gaining control of the CPU, and thus guarantee itself exclusive access to device 
driver resources. 

Given this knowledge, you can construct small areas in the driver where interrupts 
must be locked, and can guarantee that within these locked regions any driver 
shared resources cannot be accessed simultaneously by more than one thread of 
execution.

In a VxWorks SMP system, the simple mutual exclusion model used for a 
uniprocessor system does not work because multiple cores within the system can 
execute instructions simultaneously on more than one core. Because of this “true 
multiprocessing”, your driver must use explicit locking to ensure that the driver's 
shared data structures are protected from corruption by competing threads of 
execution.

For details about methods than can be used to protect data structures against 
simultaneous access on VxWorks SMP systems, see 3.6.6 Synchronization, p.66.
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3.8.2  True Task-to-Task Contention 

When you write a driver for a uniprocessor VxWorks system, you can ensure that 
only one task is competing for a shared driver resource by judicious use of the 
taskLock( ) routine. When taskLock( ) is called, the VxWorks scheduler only 
schedules the task that invoked taskLock( ), regardless of its relative priority when 
compared with other ready-to-run tasks. The only way in which a task that has 
called taskLock( ) can be preempted is using an interrupt. 

However, in VxWorks SMP, the taskLock( ) routine is not supported. If your device 
driver uses the taskLock( ) routine, it will not compile correctly for VxWorks SMP. 
Therefore, instead of using task locking to avoid task-to-task contention, you must 
again use synchronization methods that are appropriate for VxWorks SMP. 

For more information on using synchronization methods to avoid task-to-task 
contention, see VxWorks Kernel Programmer’s Guide: VxWorks SMP.

3.8.3  Interrupt Routing 

In VxWorks SMP, interrupts from hardware devices can be routed to specific CPUs 
within the system. At any given time, each hardware interrupt can be routed to at 
most one CPU in the system. When an interrupt is delivered in an SMP system, the 
ISR that is attached to the interrupt is executed on the core that the device interrupt 
is routed to. While this ISR is executing, all task processing is suspended on the 
core that is handling the interrupt. However, tasks can continue to run on all of the 
other enabled cores within a the system. 

Because tasks can run in parallel with ISRs in VxWorks SMP, device drivers that 
are structured to work correctly in an SMP system must be designed to explicitly 
protect any data structures that are shared between the ISR and those portions of 
the driver that run from task context. There are two methods that you can employ 
to explicitly protect these shared data structures. The methods are:

■ ISR-callable spinlocks
■ ISR deferral of work to a task context 

3.8.4  Deferring Interrupt Processing 

There are two methods that a device driver can use to protect driver shared 
resources while a driver is executing in interrupt context. These are: 
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■ use a spinlock to protect the shared resource
■ defer processing of the interrupt to a specialized deferral task 

In a VxWorks SMP system, you cannot always use a spinlock within an ISR to 
protect a driver shared resource. For example, this can be because the driver's data 
structures are part of a protocol stack, and access to the protocol stack is protected 
using a semaphore. Because your driver cannot take a semaphore within an ISR, 
the ISR must find another way to manipulate the shared data structures.

ISRs commonly use a deferral task to modify data that is protected by a semaphore. 
A deferral task is a dedicated task within VxWorks that pends on a binary 
semaphore, waiting to be unblocked by an ISR. Within an interrupt service routine, 
if your driver needs to defer work, you can perform a set of steps to defer the 
necessary work to task context:

1. Block further interrupt delivery from the hardware. This is necessary because 
the driver may not be able to clear the interrupt condition from the 
interrupting device. If your device driver's interrupt service routine returns 
while the device interrupt is still pending, the pending interrupt is serviced 
immediately following the ISR return which causes an infinite loop of 
interrupt processing. 

2. Prepare a data buffer that describes the work to be performed. This data buffer 
needs to be private to the ISR so that it can modify its contents without 
worrying about contention with other threads of execution. 

3. Deliver the data buffer to a waiting deferral task so that the task knows what 
required work to perform. 

4. Unblock the deferral task so that it can then perform the deferred work.

VxWorks provides a utility library to simplify the deferral of interrupt processing. 
This library, isrDeferLib, is introduced in s3.6.5 Interrupt Handling, p.63. In 
addition to the services outlined in that section, isrDeferLib provides additional 
services to support deferred interrupt processing in an SMP environment.

isrDeferLib supports two distinct models of interrupt deferral:

■ individual deferral tasks, dedicated to a specific driver instance 
■ shared deferral tasks, which are (potentially) used by more than one driver 

instance 

The choice of deferral model is made when VxWorks is configured. The ISR 
deferral library (INCLUDE_ISR_DEFER) is typically included in a VxWorks system 
when a driver that uses the library is included. This is because the driver's use of 
the deferral library creates a dependency on the deferral library that causes the 
component to be pulled into the VxWorks system. The deferral library uses its 
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ISR_DEFER_MODE parameter to configure its run-time queue sharing behavior as 
follows:

■ ISR_DEFER_MODE_PER_CPU—One deferral task is created per CPU that 
receives deferred interrupts. This deferral task processes all deferred 
interrupts for a specific CPU within the system. 

■ ISR_DEFER_MODE_PER_SOURCE—One deferral task is created for each 
driver instance that requires a deferral queue. 

When device drivers defer interrupts, it is much more efficient to defer interrupts 
to a task that is running on the same CPU as the CPU where the interrupt is first 
received. When VxWorks first boots, all interrupts are delivered to CPU 0, but this 
can be changed at run time by reconfiguring the routing of interrupts through the 
various interrupt controllers. If an interrupt is migrated from CPU 0 to another 
CPU in the SMP system, the deferral library must be informed of the change, so 
that it can adapt to the new interrupt routing. The library uses two methods to 
adapt to the change in routing:

■ For shared deferral tasks, the ISR deferral library locates a preexisting deferral 
task (or creates one, if necessary) running on the CPU receiving the rerouted 
interrupt. The deferral library returns a handle to this new queue. The driver 
that receives the new handle should use this handle for all subsequent deferral 
operations.

■ For individual deferral tasks, the ISR deferral library changes the CPU affinity 
of the deferral task to correspond to the CPU where the interrupt has been 
routed. A handle to the deferral task is still returned, but in this situation the 
handle is unchanged, because no new deferral task is used for interrupt 
processing.

When an interrupt is rerouted in a running VxWorks system, those device drivers 
with interrupts that are affected by the reroute, and who publish the 
{isrRerouteNotify}( ) method, are informed of interrupt reroute events. If your 
driver uses ISR deferral, publish this driver method so that the driver can be 
notified of any changes to its interrupt state, and propagate this information to the 
deferral library. The prototype for {isrRerouteNotify}( ) is:

LOCAL void func{isrRerouteNotify}
(
VXB_DEVICE_ID pInst, /* instance data for driver */
int intIndex, /* index for rerouted interrupt */
int destCpu /* destination CPU for rerouted interrupt */
)
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The body of a driver func{isrRerouteNotify}( ) routine should contain a call to 
isrDeferIsrReroute( ):

newHandle = isrDeferIsrReroute(pInst->pInstData->dHandle, destCpu); 
pInst->pInstData->dHandle = newHandle;

For more information, see the reference entry for isrDeferLib.
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4.1  Introduction 

This chapter outlines development strategies for creating a VxBus model device 
driver. The chapter presents an overall methodology for creating a new device 
driver (where no previous VxWorks driver exists). It also presents several 
suggestions for debugging those aspects of a device driver that are relevant to the 
interface between the device driver and other modules such as the VxBus core 
features and middleware. 
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4.2  Writing New VxBus Drivers 

The steps to create a new VxBus driver generally include the following:

1. Create the VxBus infrastructure needed for your driver. 

2. Modify your BSP, if necessary. 

3. Add debug code based on conditional compilation. 

4. Add the VxBus driver methods required by your driver class. 

5. Remove all global variables. 

4.2.1  Creating the VxBus Infrastructure 

There are several elements required in every VxBus device driver. Start by adding 
the empty driver framework that interacts with VxBus. The required parts of this 
framework include the driver source file itself, one or more optional header files, a 
CDF file (to allow the driver to be visible in Workbench and the vxprj 
command-line utility), and configuration stub files so that the driver can be 
included in BSP command-line builds (executed using the make command). (For 
more information on CDF and configuration stub files, see 3.3.2 Required Files, 
p.24). 

Once all of the elements of the driver are present in the correct places, configure the 
BSP for the development effort.

Writing Driver Source Files 

To create the driver source file, start with a template file or an existing driver from 
the same driver class. Templates, if available, are kept in the same directory as 
other drivers of the same class. 

Writing Header Files (Optional) 

Many VxBus device drivers have all source code located in a single source file, with 
no external header file. However, if your driver includes a number of 
device-specific macros or other driver-specific information, you can put this 
information in an optional header file.
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Writing the Component Description File (CDF) 

The component description file (CDF) for your driver allows the driver to be 
configured and included in a project using standard Wind River tools (Workbench 
and the vxprj command-line utility). 

Wind River driver CDF files are located in installDir/vxworks-6.x/target/config/
comps/vxWorks and in the architecture specific directories under this directory. 
Third-party driver CDF files are located in installDir/vxworks-6.x/target/3rdparty/
vendor/driver. By convention, driver files use the prefix 40, for example 
40g64120a.cdf. 

In most cases, the CDF file for a driver is simple. You must supply a value for 
Component. 

For example:

Component DRV_CLASS_NAME { 
NAME DriverName 
SYNOPSIS Description Of Driver 
_CHILDREN FOLDER_DRIVERS 
REQUIRES INCLUDE_VXBUS \ 

INCLUDE_PLB_BUS \ 
other requirements 

INIT_RTN sampleDriverRegister(); 
INIT_AFTER INCLUDE_PLB_BUS 
_INIT_ORDER hardWareInterFaceBusInit 
_CHILDREN FOLDER_DRIVERS 

}

Many drivers have configuration options. For more information on how the driver 
manages configuration options internally, see VxWorks Kernel Programmer’s Guide: 
Kernel. Configuration options that are specified as parameters should be 
configurable from within Workbench and in vxprj. To do this, provide Parameter 
entries for each parameter and link the parameters to your Component with the 
CFG_PARAMS keyword. For more information, see CFG_PARAMS, p.32. 

Writing the Configuration Stub Files 

Configuration stub files provide similar functionality to the CDF file, but are used 
when building the VxWorks image from the BSP directory using the make 
command (this is known as the bspDir/config.h build method). 

NOTE:  This section provides an overview of the component description file 
requirements for adding a driver. For detailed information, see Component 
Description File, p.27 and VxWorks Kernel Programmer’s Guide: Kernel. 
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In most cases, each driver requires two stub files. The stub files are named 
according to the convention for your driver, with the extensions .dc and .dr.

The driverName.dc file usually contains a forward reference to the driver 
registration routine, and nothing else. Use the Wind River macro IMPORT to 
declare this routine. (Note that all registration routines return a void value.) 

The following is a sample driver .dc file:

IMPORT void sampleDriverRegister(void);

The .dr file contains a call to the driver registration routine. This call must be 
surrounded by #ifdef and #endif. 

The last line must be terminated with a newline (be sure that your editor does not 
strip it off). 

The following is a sample driver .dr file:

#ifdef DRV_CLASS_NAME 
sampleDriverRegister(); 

#endif /* DRV_CLASS_NAME */

Wind River driver .dc and .dr files are located in installDir/vxworks-6.x/
target/config/comps/src/hwif. Third-party driver .dc and .dr files are located in 
installDir/vxworks-6.x/target/3rdparty/vendor/driver.

Verifying the Infrastructure 

Once you have created your driver, compiled it, added it to a library, and 
configured your BSP, verify that what you have done so far is correct. 

To do this, first build the VxWorks image from the BSP directory. Verify that the 
driver file is included by using the nmarch command and searching for the 
registration routine.

Next, verify that the CDF file is correct by starting Workbench and configuring the 
VxWorks image. If everything is correct, your driver should be available in the 
drivers folder (not greyed out). 

NOTE:  In general, you should build your project files using Workbench or the 
vxprj command-line utility. However, the BSP build method described in this 
section may be useful in certain development scenarios including early BSP and 
driver development. For more information on this build method, see the VxWorks 
Command-Line Tools User’s Guide. 
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Finally, boot the image and run vxBusShow( ). Your driver should show up in the 
list of drivers and the target device should show up in the list of devices.

One common problem—frequently encountered when creating drivers for PLB 
devices—is that the name of the driver does not match the name you provided in 
the hcfDeviceList[ ] table. When this happens, the output of vxBusShow( ) 
displays the entry as an orphan rather than a device. If this happens, you must get 
the driver and device to match up before proceeding. 

VxBus matches a driver to its hardware by using strcmp( ) to compare the driver 
name with the hcfDeviceList[ ] entries. The comparison is case sensitive, and the 
match must be exact. Check that the driver name and the name listed in the 
hcfDeviceList[ ] table in hwconf.c are identical and correct as necessary. 

The second most common problem at this stage is related to the device's register 
base address. For PLB devices, the first register base address must be non-null. You 
can verify this by running vxBusShow( ) with a verbose level argument greater 
than 1. This displays the full set of pRegBase[ ] entries for each device (instance 
and orphan) known by VxBus. If the pRegBase[0] entry for your device is zero, 
correct the problem by supplying the correct base address.

Before moving on to the next step, be sure that your device and driver are 
connected to each other. 

4.2.2  Modifying the BSP (Optional) 

Depending on the bus type, VxBus may be able to discover your device 
automatically. For example, when the device is on a PCI bus or variant of PCI, 
information about the device is available from PCI configuration space. VxBus 
reads this information and compares it against PCI configuration information 
provided by a driver for a PCI device. If the information matches, the driver is 
paired with the device. 

NOTE:  In some cases, you may not want to supply the register base address in 
hwconf.c. In this is the case for your driver, use ERROR or TRUE, both of which are 
non-null. If you choose this option, your driver must not attempt to read or write 
registers using the VxBus register access mechanism. 

NOTE:  Before you start working on your VxBus-enabled driver, you must make 
sure that your BSP is also VxBus compliant. If your BSP is not enabled for use with 
VxBus, see the VxWorks BSP Developer’s Guide. 
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However, with the PLB bus type, devices are not discovered automatically. In this 
case, you must add an entry for your device in the hcfDeviceList[ ] array in the 
BSP hwconf.c file. 

For easier debugging, configure your VxWorks Image Project so that the show 
routines are included. Be sure to include the VxBus show routines in addition to 
the standard show routines. For example, add the following components:

■ INCLUDE_SHOW_ROUTINES 
■ INCLUDE_VXBUS_SHOW 

Also include your own driver component:

■ DRV_CLASS_NAME 

4.2.3  Adding Debug Code 

After the old driver source code is consolidated into a VxBus driver file, you can 
add additional debug code.

For example, adding debug code is often useful when the driver provides a way to 
show contents of the driver-specific data area, often referred to as pDrvCtrl. 

Most drivers benefit by having debug and other diagnostic information available 
based on a compile-time macro. If the macro is defined, and a flag is set to the 
desired debug level, debug code is available at run time.

For most new driver development, you should defer registration of your driver 
with VxBus. You can manually run your driver registration routine after the 
system has booted and you are ready to debug your driver. This allows the system 
to come up without your driver, and you can use the debug facilities from a 
fully-functional VxWorks image for debugging.

The type of debug information that can be added to a driver is discussed in 
4.4 Debugging, p.110. 

NOTE:  When releasing a driver, much of the debug information used during 
development continues to be valuable. Therefore, leaving the code in the source 
file can be beneficial in the future, as long as it can be omitted from the object file. 
For more information on releasing a driver, see 5. Driver Release Procedure. 
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4.2.4  Adding the VxBus Driver Methods 

The next step in your driver development is to find what external interface is used. 
Typically, this involves finding the VxBus driver methods used by the driver class 
and then adding the routines that provide the required functionality.

In the early stages of development, you may not want to publish the driver 
methods. Deferring this step allows you to test the external interface manually 
without having to worry about whether the middleware or other modules are 
going to cause undesirable results when the new driver's empty routines are 
called.

Once the functionality used by the required driver methods is available, add the 
methods to the table of methods in your driver and make sure the table is 
published in the pMethods field of the VXB_DEVICE_ID.

4.2.5  Removing Global Variables 

One of the important goals of a generic driver is that it support multiple devices of 
the same type. Earlier in the development process, you may have chosen to create 
global variables specific to an instance (that is, a given device and driver paired 
together). These global variables should be removed. 

In VxBus, the main identification of a device is the VXB_DEVICE_ID. The structure 
VXB_DEVICE_ID points to has a field for pDrvCtrl. pDrvCtrl is owned by the 
driver and can be used for any purpose. Most drivers define a structure containing 
all instance-specific information.

During initialization, this structure is allocated using hwMemAlloc( ), filled in 
with the data, and a pointer to the structure is saved in the pDrvCtrl field. Later, 
when the driver is called for any reason, the VXB_DEVICE_ID is passed as a 
parameter, from which the driver can extract the pDrvCtrl field to get access to the 
instance-specific data.

In many cases, it is necessary to rewrite the prototype of some routines to pass the 
pDrvCtrl or VXB_DEVICE_ID as a parameter.

NOTE:  In this step, you are expected to create the actual device management code 
which is a time-consuming step in the device driver development process.
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4.3  VxBus Show Routines 

There are a number of show routines available for use with VxBus. This section 
describes some of the show routines, demonstrates how they can be used to assist 
driver development, and explains how to configure them into the system.

4.3.1  Available Show Routines 

This section lists and describes the available VxBus show routines. 

vxBusShow( ) 

The most basic show routine in the VxBus framework is vxBusShow( ). This 
routine provides a list of information related to drivers and devices. 

There are several levels of detail available when using this routine. The level of 
detail is specified by the value of the argument. A value of 0 provides the following 
basic information:

■ bus types that are available on the system 
■ drivers that are registered, and the bus types they use 
■ buses that are present on the system
■ devices that are present on each bus
■ whether each device has been paired with a driver

Example 4-1 shows the output for a typical vxBusShow( ) routine run on a 
Pentium target. 

Example 4-1 Basic vxBusShow( ) Output 

-> vxBusShow() 
Registered Bus Types: 
MII_Bus @ 0x004531d4 
PCI_Bus @ 0x0044fbcc 
Local_Bus @ 0x0044f98c 

 
Registered Device Drivers:
yn at 0x00452ef8 on bus PCI_Bus, funcs @ 0x00452e18
fei at 0x00452d98 on bus PCI_Bus, funcs @ 0x00452c68
geiHEnd at 0x004530c4 on bus PCI_Bus, funcs @ 0x004530a8
genericPhy at 0x0045322c on bus MII_Bus, funcs @ 0x00453220
miiBus at 0x0045318c on bus PCI_Bus, funcs @ 0x0045312c
miiBus at 0x00453148 on bus Local_Bus, funcs @ 0x0045312c
ns16550 at 0x0044f4e4 on bus Local_Bus, funcs @ 0x0044f474
ns16550 at 0x0044f49c on bus PCI_Bus, funcs @ 0x0044f474
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pentiumPci at 0x0044fbf4 on bus Local_Bus, funcs @ 0x0044fbe8
plbCtlr at 0x0044f9b4 on bus Local_Bus, funcs @ 0x0044f9a8

 
Busses and Devices Present:
Local_Bus @ 0x00466790 with bridge @ 0x0044f9f4
Device Instances:

pentiumPci unit 0 on Local_Bus @ 0x00467a50 with busInfo 0x004669d0
ns16550 unit 1 on Local_Bus @ 0x004678d0 with busInfo 0x00000000
ns16550 unit 0 on Local_Bus @ 0x00467750 with busInfo 0x00000000

Orphan Devices:
i8042Mse unit 0 on Local_Bus @ 0x00469350 with busInfo 0x00000000
i8042Kbd unit 0 on Local_Bus @ 0x00469250 with busInfo 0x00000000

PCI_Bus @ 0x004669d0 with bridge @ 0x00467a50
Device Instances:

miiBus unit 1 on PCI_Bus @ 0x004747d0 with busInfo 0x0046be10
miiBus unit 0 on PCI_Bus @ 0x00469450 with busInfo 0x00469cd0
fei unit 0 on PCI_Bus @ 0x00468e50 with busInfo 0x00000000
ns16550 unit 3 on PCI_Bus @ 0x00468c50 with busInfo 0x00000000
yn unit 0 on PCI_Bus @ 0x00468350 with busInfo 0x00000000
geiHEnd unit 0 on PCI_Bus @ 0x00467e50 with busInfo 0x00000000

Orphan Devices:
(null) unit 0 on PCI_Bus @ 0x00469150 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00469050 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468f50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468b50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468a50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468950 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468850 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468750 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468650 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468550 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468450 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468250 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468150 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00468050 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00467f50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00467d50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00467c50 with busInfo 0x00000000
(null) unit 0 on PCI_Bus @ 0x00467b50 with busInfo 0x00000000

MII_Bus @ 0x0046be10 with bridge @ 0x004747d0
Device Instances:

genericPhy unit 0 on MII_Bus @ 0x00474850 with busInfo 0x00000000
Orphan Devices:

MII_Bus @ 0x00469cd0 with bridge @ 0x00469450
Device Instances:

genericPhy unit 0 on MII_Bus @ 0x004694d0 with busInfo 0x00000000
Orphan Devices:

Many VxBus routines require that the VxBus device ID be provided as an 
argument. The most commonly used part of the vxBusShow( ) output is the device 
ID for individual devices. The device ID is the field after the bus type, indicated 
with the @ symbol. For example, the device ID of the mouse device, i8042Mse, is 
0x00469350, as shown in:

i8042Mse unit 0 on Local_Bus @ 0x00469350 with busInfo 0x00000000 
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Higher verbose level values result in the display of additional information. Each 
driver can publish a show routine that is integrated into vxBusShow( ) (see 
4.4.1 Configuring Show Routines, p.110). The amount and format of the information 
that is displayed depends on the driver and the information that the driver chooses 
to display based upon a given verbose level. 

For all devices, vxBusShow(1) displays non-null values of pRegBase[ ], in 
addition to the information displayed at verbose level 0.

When the verbose level is greater than 1000, vxBusShow( ) displays all values of 
pRegBase[ ], even if they are NULL. Because the output with non-zero verbose 
levels is long, the following examples show only an excerpt of the outputs. 

Example 4-2 vxBusShow( ) Verbose Output 

-> vxBusShow(1) 
... 

iaTimestamp unit 0 on Local_Bus @ 0x0042ff48 with busInfo 0x00000000
pDrvCtrl @ 0x00430048

fileNvRam unit 0 on Local_Bus @ 0x00430148 with busInfo 0x00000000
BAR0 @ 0xffffffff (IO space)
pDrvCtrl @ 0x0042cb48

Orphan Devices:
PCI_Bus @ 0x0042bec8 with bridge @ 0x0042d048
Device Instances:

fei unit 0 on PCI_Bus @ 0x0042d848 with busInfo 0x00000000
BAR0 @ 0xfc9bf000 (memory mapped)
BAR1 @ 0x0000bc00 (IO space)
BAR2 @ 0xfc800000 (memory mapped)
pDrvCtrl @ 0x04419284

... 
(null) unit 0 on PCI_Bus @ 0x0042d648 with busInfo 0x00000000

BAR2 @ 0x00030300 (memory mapped)
BAR3 @ 0x200000f0 (memory mapped)
BAR4 @ 0x0000fff0 (memory mapped)
BAR5 @ 0x0001fff0 (IO space)
pDrvCtrl @ 0x00000000

... 

-> vxBusShow(1001) 
...
PCI_Bus @ 0x0042bec8 with bridge @ 0x0042d048
Device Instances:

fei unit 0 on PCI_Bus @ 0x0042d848 with busInfo 0x00000000

NOTE:  The remainder of this section discusses only the generic format used when 
the driver does not publish a show routine.

NOTE:  The following examples are displayed from a different system than shown 
in Example 4-1. 
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BAR0 @ 0xfc9bf000 (memory mapped)
BAR1 @ 0x0000bc00 (IO space)
BAR2 @ 0xfc800000 (memory mapped)
BAR3 @ 0x00000000 (none)
BAR4 @ 0x00000000 (none)
BAR5 @ 0x00000000 (none)
BAR6 @ 0x00000000 (none)
BAR7 @ 0x00000000 (none)
BAR8 @ 0x00000000 (none)
BAR9 @ 0x00000000 (none)
pDrvCtrl @ 0x04419284

...

vxbDevStructShow( ) 

The prototype for vxbDevStructShow( ) is as follows: 

STATUS vxbDevStructShow(VXB_DEVICE_ID devID)

The vxbDevStructShow( ) routine displays the fields of the device structure. 
When developing bus controller and multifunction drivers, this routine is often 
useful to display the information contained in the child devices created by the bus 
controller driver or multifunction driver. For general driver development, this 
routine is used to find the characteristics of a given device, such as pRegBase[ ] 
values. For example: 

-> fei0 = 0x00468350 

-> vxbDevStructShow(fei0) 
vxbDev fei @ 0x00468350

pNext -> 0x00468c50
pParentBus -> 0x004669d0
pMethods @ 0x00000000
pAccess @ 0x0042e0c8
pRegBase[0] @ 0xfc9bf000
pRegBase[1] @ 0x0000bc00
pRegBase[2] @ 0xfc800000
pRegBase[3] @ 0x00000000
pRegBase[4] @ 0x00000000
pRegBase[5] @ 0x00000000
pRegBase[6] @ 0x00000000
pRegBase[7] @ 0x00000000
pRegBase[8] @ 0x00000000
pRegBase[9] @ 0x00000000
pSubordinateBus @ 0x00000000
pBusSpecificDevInfo @ 0x0042c348
busID = PCI_Bus (3)
pIntrInfo @ 0x0042c908
pDriver @ 0x0041f7dc
pDrvCtrl @ 0x04419430
u.pDevPrivate @ 0x00000000
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vxbDevPathShow( )

The prototype for vxbDevPathShow( ) is as follows: 

void vxbDevPathShow(VXB_DEVICE_ID devID)

The vxbDevPathShow( ) routine indicates the bus controllers upstream from the 
specified device to the PLB. For example:

-> sio3 = 0x00468c50 

-> vxbDevPathShow(sio3) 
device ns16550 @ 0x00468c50
device pentiumPci @ 0x00467a50
device plbCtlr @ 0x0044f9f4

4.3.2  PCI Show Routines 

The PCI show routines available in VxWorks prior to the introduction of the VxBus 
driver infrastructure are still available in this release. However, the older PCI show 
routines may not always work exactly as expected. In VxWorks 6.6, the PCI 
configuration has been enhanced to support logically separate PCI buses. That is, 
a single system can have two or more PCI buses that are not related to each other 
in any way. When this occurs, there are two primary implications for the device 
driver developer.

First, there is a default PCI bus, and any given device may not be reachable from 
the default bus. The older PCI show routines use only the default bus, therefore if 
the device you are looking for is not present on the default bus, it is not listed by 
the older show routines.

The next consideration is that the [bus,device,function] triple no longer uniquely 
identifies a single device. This means that older PCI show routines cannot be used. 

Many of the older PCI show routines have corresponding show routines specific 
to VxBus. In general, the first argument to a new routine is the VxBus device ID of 
the bus controller immediately upstream from the device. The VxBus routines are 
discussed in the following sections. 

NOTE:  When pRegBase[0] is NULL on PLB devices, the device is not matched with 
a driver, but instead remains an orphan. 
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pciDevShow( ) 

The prototype for pciDevShow( ) is as follows: 

void pciDevShow(VXB_DEVICE_ID devID) 

The pciDevShow( ) routine displays PCI information about the specified device. 
This includes the [bus,device,function] triple, and the device ID and vendor ID, that 
were read from PCI configuration space when the device was created. For 
example: 

-> yn0 = 0x00468350 

-> pciDevShow(yn0) 
pDev @ 0x00468350 [3,0,0] 

devID = 0x4b00
vendID = 0x1186

The devID and vendID fields shown by pciDevShow( ) are used when matching 
PCI devices and drivers. If the information displayed by pciDevShow( ) does not 
match the values listed in your driver, you may need to modify your driver to get 
an exact match. 

vxbPciDeviceShow( )

The prototype for vxbPciDeviceShow( ) is as follows: 

STATUS vxbPciDeviceShow
(
VXB_DEVICE_ID busCtrlID,
int busNo
)

The vxbPciDeviceShow( ) routine displays information about devices found on 
the PCI bus downstream of the specified PCI bus controller device. Only 
information about the PCI bus numbered busNo is listed. 

-> pentiumPci = 0x0044fbf4 

-> vxbPciDeviceShow(pentiumPci,0) 
Scanning functions of each PCI device on bus 0 Using configuration 
mechanism 1

NOTE:  The following output is displayed from a different system than the 
vxBusShow( ) output in vxBusShow( ), p.96. 
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bus device function vendorID deviceID class/rev
0 0 0 0x8086 0x3590 0x0600000c
0 2 0 0x8086 0x3595 0x0604000c
0 4 0 0x8086 0x3597 0x0604000c
0 6 0 0x8086 0x3599 0x0604000c
0 28 0 0x8086 0x25ae 0x06040002
0 30 0 0x8086 0x244e 0x0604000a
0 31 0 0x8086 0x25a1 0x06010002
0 31 1 0x8086 0x25a2 0x01018a02
0 31 3 0x8086 0x25a4 0x0c050002

vxbPciHeaderShow( )

The prototype for vxbPciHeaderShow( ) is as follows: 

STATUS vxbPciHeaderShow
(
VXB_DEVICE_ID busCtrlID,
int busNo, /* bus number */
int deviceNo, /* device number */
int funcNo /* function number */
)

The vxbPciHeaderShow( ) routine displays the full contents of the PCI header for 
an individual device. Note that the device is specified by four values: the bus 
controller device, and the PCI triple [bus,device,function]. This means that 
vxbPciHeaderShow( ) is usable even when the BSP excludes a particular device 
from being configured. (For information about excluding a particular device 
within the BSP, see the reference entry for vxbPciAutoConfig( ).)

The following sample shows the PCI header for the Yukon II network interface 
device. Notice that the VxBus device ID for the yn0 device is not used as an 
argument to vxbPciHeaderShow( ). Instead, use the [bus,device,function] triple as 
provided in the output of pciDevShow( ).

-> yn0 = 0x00468350 

-> pciDevShow(yn0) 
pDev @ 0x00468350 [3,0,0] 

devID = 0x4b00
vendID = 0x1186

-> pciCtlr = 0x004669d0 

-> vxbPciHeaderShow pciCtlr,3,0,0 
vendor ID = 0x1186
device ID = 0x4b00
command register = 0x0007
status register = 0x4010
revision ID = 0x11
class code = 0x02
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sub class code = 0x00
programming interface = 0x00
cache line = 0x08
latency time = 0x00
header type = 0x00
BIST = 0x00
base address 0 = 0xfe3fc004
base address 1 = 0x00000000
base address 2 = 0x0000b801
base address 3 = 0x00000000
base address 4 = 0x00000000
base address 5 = 0x00000000
cardBus CIS pointer = 0x00000000
sub system vendor ID = 0x1186
sub system ID = 0x4b00
expansion ROM base address = 0xfe3c0000
interrupt line = 0x0b
interrupt pin = 0x01
min Grant = 0x00
max Latency = 0x00
Capabilities - Power Management
Capabilities - Vital Product Data
Capabilities - Message Signaled Interrupts: Disabled, 64-bit, MMC: 0 MME: 1

Address: 0082e0050082e005  Data: 0xe005 Capabilities - PCIe: Legacy 
Endpoint, IRQ 0

Device: Max Payload: 128 bytes, Extended Tag: 5-bit
Acceptable Latency: L0 - >4us, L1 - >64us
Errors Enabled:  AUX Pwr PM
Max Read Request 512 bytes

Link: MAX Speed - 2.5Gb/s, MAX Width - by 1 Port - 0 ASPM - L0s
Latency: L0s - <256ns, L1 - >64us
ASPM - Disabled, RCB - 128bytes
Speed - 2.5Gb/s, Width - by 1

vxbPciFindDeviceShow( )

The prototype for vxbPciFindDeviceShow( ) is as follows: 

STATUS vxbPciFindDeviceShow
(
VXB_DEVICE_ID busCtrlID,
int vendorId, /* vendor ID */
int deviceId, /* device ID */
int index /* desired instance of device */
)

The vxbPciFindDeviceShow( ) routine scans the PCI bus identified by busCtlrID, 
searching for devices on the bus with the requested vendor and device ID. Because 
multiple devices with the same vendor and device ID can be present on a single 
PCI bus, you can provide an index parameter to identify which occurrence of the 
device to display information for. For example, in the following sample output, 
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vxbPciFindDeviceShow( ) searches for the first occurrence of a device with 
vendor ID 0x1186 and device ID 0x4b00:

-> pentiumPci = 0x0044fbf4 

-> vxbPciFindDeviceShow(pentiumPci, 0x1186, 0x4b00, 0) 
deviceId = 0x4b00
vendorId = 0x1186
index = 0
busNo = 3
deviceNo = 0
funcNo = 0

vxbPciFindClassShow( )

The prototype for vxbPciFindClassShow( ) is as follows: 

STATUS vxbPciFindClassShow 
(
VXB_DEVICE_ID busCtrlID,
int classCode, /* 24-bit class code */
int index /* desired instance of device */
)

The vxbPciFindClassShow( ) routines scans the PCI bus identified by busCtlrID, 
searching for devices on the bus with the requested class code. Because multiple 
devices with the same class code can be present on a single PCI bus, you can 
provide an index parameter to identify which occurrence of the device to display 
information for. For example, in the following sample output, 
vxbPciFindClassShow( ) searches for the first occurrence of a device with class 
code 0x002: 

-> pentiumPci = 0x0044fbf4 

-> vxbPciFindClassShow(pentiumPci, 0x02, 0) 
class code = 0x2
index = 0x0
busNo = 0x3
deviceNo = 0x0
funcNo = 0x0

vxbPciConfigTopoShow( )

The prototype for vxbPciConfigTopoShow( ) is as follows: 

void vxbPciConfigTopoShow
(
VXB_DEVICE_ID busCtrlID
)
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The vxbPciConfigTopoShow( ) routine displays information about PCI devices in 
a relatively easy-to-use format. 

-> pentiumPci = 0x0044fbf4 

-> vxbPciConfigTopoShow(pentiumPci) 
[0,2,0] type=P2P BRIDGE to [1,0,0]

base/limit:
mem= 0xfff00000/0x000fffff
preMem=0x00000000fff00000/0x00000000000fffff
I/O= 0xf000/0x0fff

status=0x4018 ( CAP DEVSEL=0 ASSERT_SERR )
command=0x0007 ( IO_ENABLE MEM_ENABLE MASTER_ENABLE ) [0,4,0] 

type=P2P BRIDGE to [2,0,0]
base/limit:
mem= 0xfff00000/0x000fffff
preMem=0x00000000fff00000/0x00000000000fffff
I/O= 0xf000/0x0fff

status=0x4018 ( CAP DEVSEL=0 ASSERT_SERR )
command=0x0007 ( IO_ENABLE MEM_ENABLE MASTER_ENABLE ) [0,6,0] 

type=P2P BRIDGE to [3,0,0]
base/limit:
mem= 0xfff00000/0x000fffff
preMem=0x00000000fff00000/0x00000000000fffff
I/O= 0xf000/0x0fff

status=0x4018 ( CAP DEVSEL=0 ASSERT_SERR )
command=0x0007 ( IO_ENABLE MEM_ENABLE MASTER_ENABLE ) [0,28,0] 

type=P2P BRIDGE to [4,0,0]
base/limit:
mem= 0xfc500000/0xfc9fffff
preMem=0x00000000fff00000/0x00000000000fffff
I/O= 0xb000/0xbfff

status=0x0030 ( CAP 66MHZ DEVSEL=0 )
command=0x0007 ( IO_ENABLE MEM_ENABLE MASTER_ENABLE ) [4,2,0] 

type=NET_CNTLR
status=0x0290 ( CAP FBTB DEVSEL=1 )
command=0x0007 ( IO_ENABLE MEM_ENABLE MASTER_ENABLE )
bar0 in 32-bit mem space @ 0xfc9bf000
bar1 in I/O space @ 0x0000bc00
bar2 in 32-bit mem space @ 0xfc800000 [0,30,0] type=P2P BRIDGE to 

[5,0,0]
base/limit:
mem= 0xfca00000/0xfeafffff
preMem=0xfff00000/0x000fffff
I/O= 0xc000/0xcfff

status=0x0080 ( FBTB DEVSEL=0 )
command=0x0007 ( IO_ENABLE MEM_ENABLE MASTER_ENABLE ) [5,1,0] 

type=DISP_CNTLR
status=0x0290 ( CAP FBTB DEVSEL=1 )
command=0x0087 ( IO_ENABLE MEM_ENABLE MASTER_ENABLE WC_ENABLE )
bar0 in 32-bit mem space @ 0xfd000000

NOTE:  The following output is displayed from a different system than the 
vxBusShow( ) output in vxBusShow( ), p.96. 
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bar1 in I/O space @ 0x0000c800
bar2 in 32-bit mem space @ 0xfeaff000 [0,31,0] type=ISA BRIDGE
status=0x0280 ( FBTB DEVSEL=1 )
command=0x000f ( IO_ENABLE MEM_ENABLE MASTER_ENABLE MON_ENABLE ) 

[0,31,1] type=MASS STORAGE
status=0x0288 ( FBTB DEVSEL=1 )
command=0x0007 ( IO_ENABLE MEM_ENABLE MASTER_ENABLE )
bar0 in I/O space @ 0x000001f0
bar1 in I/O space @ 0x000003f4
bar2 in I/O space @ 0x00000170
bar3 in I/O space @ 0x00000374
bar4 in I/O space @ 0x0000fc00

[0,31,3] type=SERIAL BUS
status=0x0280 ( FBTB DEVSEL=1 )
command=0x0001 ( IO_ENABLE )
bar4 in I/O space @ 0x00000540

4.3.3  Using Show Routines from Software 

This section describes how software can use certain VxBus services, including how 
to find a VxBus device ID given suitable identification information.

One bit of information that is not provided directly by vxBusShow( ) is the 
bus-specific information for orphan devices. For example, the vxBusShow( ) 
output for an orphan PCI device is as follows:

(null) unit 0 on PCI_Bus @ 0x00468a50 with busInfo 0x00000000 

Obviously, this is not enough information to know much about the device. 

Ideally, when debugging a driver for PCI devices, you should know the 
[bus,device,function] triple. You can get this by providing a routine that prints 
information about the devices it sees and then using vxbDevIterate( ) to call the 
routine for every device. For example, you could provide the following routine: 

STATUS pciShowHelper
(
VXB_DEVICE_ID devID,
void * pArg
)
{
struct vxbPciDevice * pPci; 

if ( devID->busID != VXB_BUSID_PCI )
/* wrong bus type, just return */
return(OK);

pPci = (struct vxbPciDevice *)devID->pBusSpecificDevInfo;
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if ( devID->pName == NULL )
printf("PCI device orphan 0x%08x devID 0x%04x vendID 0x%04x at 

[%d,%d,%d]\n",
devID, pPci->pciDevId, pPci->pciVendId,
pPci->pciBus, pPci->pciDev, pPci->pciFunc);

else 
printf("PCI device %s%d devID 0x%04x vendID 0x%04x at 

[%d,%d,%d]\n",
devID->pName, devID->unitNumber,
pPci->pciDevId, pPci->pciVendId,
pPci->pciBus, pPci->pciDev, pPci->pciFunc);

return(OK);
}

Then, use this routine with vxbDevIterate( ). When using vxbDevIterate( ), you 
can indicate that the routine should only be run on orphan devices by specifying 
the value 2 as the third argument. 

-> vxbDevIterate(pciShowHelper,0,2) 
PCI device orphan 0x0042d348 devID 0x3590 vendID 0x8086 at [0,0,0] 
PCI device orphan 0x0042d448 devID 0x3595 vendID 0x8086 at [0,2,0] 
PCI device orphan 0x0042d548 devID 0x3597 vendID 0x8086 at [0,4,0] 
PCI device orphan 0x0042d648 devID 0x3599 vendID 0x8086 at [0,6,0] 
PCI device orphan 0x0042d748 devID 0x25ae vendID 0x8086 at [0,28,0] 
PCI device orphan 0x0042d948 devID 0x244e vendID 0x8086 at [0,30,0] 
PCI device orphan 0x0042da48 devID 0x4c52 vendID 0x1002 at [5,1,0] 
PCI device orphan 0x0042db48 devID 0x25a1 vendID 0x8086 at [0,31,0] 
PCI device orphan 0x0042fc48 devID 0x25a2 vendID 0x8086 at [0,31,1] 
PCI device orphan 0x0042fd48 devID 0x25a4 vendID 0x8086 at [0,31,3] 

It is possible to use the show routines from test code or other software. However, 
to do this, your code needs to find the VxBus device ID of the desired device. This 
can be accomplished by requiring that the user to provide the VxBus device ID. 
However, it may be more convenient to provide the driver name and unit number.

struct devNameAndUnit
{
VXB_DEVICE_ID devID;
char * devName;
int devUnit;
};

STATUS pciDevByNameUnitHelper
(
VXB_DEVICE_ID devID,
struct devNameAndUnit * pDev
)
{
struct vxbPciDevice * pPci; 

NOTE:  The following output is displayed from a different system than other 
output examples in this section. 
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if ( pDev->devID != NULL )
/* already found, just return */
return(OK);

if ( ( strcmp(devID->pName,pDev->devName) == 0 ) &&
( devID->unitNumber == pDev->devUnit ) )
/* found it */
pDev->devID = devID;

return(OK);
}

VXB_DEVICE_ID pciDevByNameUnitFind(char * devName, int devUnit)
{
struct devNameAndUnit nmUnit;

nmUnit.devID = NULL;
nmUnit.devName = devName;
nmUnit.devUnit = devUnit;

vxbDevIterate(pciDevByNameUnitHelper, &nmUnit, 1)

return(nmUnit.devID);
}

The pciDevByNameUnitFind( ) routine can be used within the code to find the 
VxBus device ID of the desired device. 

-> pciDevByNameUnitFind("fei",0) 
value = 4623952 = 0x00468e50 

4.3.4  Configuring Show Routines into VxWorks 

This section describes how to include the necessary components for VxBus show 
routines in your VxWorks image. 

Configuring Generic VxBus Show Routines

To include the generic Vxbus show routines, include the following macros or 
components when building your VxWorks image:

■ INCLUDE_SHOW_ROUTINES 
■ INCLUDE_PCI_BUS_SHOW 
■ INCLUDE_VXBUS_SHOW 

Configuring Interrupt Show Routines 

If you are concerned with interrupt routing information, additional information 
may be available from the interrupt controller driver. This information is more 
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difficult to configure, due to the fact that interrupt controller drivers and the 
interrupt controller driver support library are compiled outside the context of a 
project or BSP. 

Several source files need to be recompiled and archived into the driver library. The 
files are all located in the installDir/vxworks-6.x/target/src/hwif/intCtlr directory.

The interrupt controller driver support library provides show routines when the 
INTCTLR_LIB_SHOW macro is defined. Individual interrupt controller drivers are 
configured with additional show routines by defining driver-specific macros. 

To determine which macros you need to define, you must determine which 
interrupt controller driver is included with your system, and check for 
preprocessor macros containing any of the following strings:

■ _DEBUG_ 
■ _DBG_ 
■ _SHOW 

For example, if the EPIC interrupt controller driver, vxbEpicIntCtlr.c is used, the 
macro VXB_EPICINTCTLR_DBG_ON determines whether debug information is 
included. 

Once you have determined which macros need to be defined, run a make 
command to build the files, specifying ADDED_CFLAGS to define the macros. You 
must also specify the appropriate CPU and TOOL values for your hardware. 

For example:

% make CPU=PPC32 TOOL=diab \
ADDED_CFLAGS="-DVXB_EPICINTCTLR_DBG_ON -DINTCTLR_LIB_SHOW" 

The names and parameters that are required by the interrupt controller driver 
show routines are driver-dependent.

NOTE:  You may need to update the timestamp on the files in order to build the 
object modules. 

NOTE:  Be sure to restore the non-debug versions of these files before creating your 
final release code. 
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4.4  Debugging 

This section provides general information on debugging VxBus device drivers. In 
addition to the information in this section, you should also review any 
class-specific debugging hints which are provided in the class-specific chapters of 
volume 2 of the VxWorks Device Driver Developer’s Guide. (For information on 
debugging legacy device drivers, see volume 3 of the VxWorks Device Driver 
Developer’s Guide.) 

The general debugging hints discussed in this section include: 

■ Configuring the vxBusShow( ) routine. (4.4.1 Configuring Show Routines, 
p.110)

■ Deferring driver registration. (4.4.2 Deferring Driver Registration, p.111) 

■ Including debug code in the driver. (4.4.3 Including Debug Code, p.112) 

■ Confirming register access. (4.4.4 Confirming Register Access, p.112)

■ Adjusting the size of HWMEM_POOL. (4.4.5 Increasing the Size of 
HWMEM_POOL, p.112)

■ Confirming the driver and device names match for PLB devices. 
(4.4.6 Confirming Device and Driver Name Matches, p.113)

4.4.1  Configuring Show Routines 

When debugging, you may want to integrate a show routine into your driver with 
the VxBus show module. This is done by advertising the {busDevShow}( ) driver 
method. The func{busDevShow}( ) routine must have the following prototype:

STATUS sampleDriverpDrvCtrlShow 
(
VXBUS_DEVICE_ID devID,
int verboseLevel
)

When verboseLevel is zero, the func{busDevShow}( ) routine prints the name, 
unit number, and device ID in a manner similar to that displayed for the 
vxBusShow( ) output for other devices.

When verboseLevel is non-zero, additional information is displayed. The 
information displayed varies depending on the specific needs of your driver. 
Larger verboseLevel values produce a wider range of information.

Table 4-1 lists recommended values for verboseLevel. 



4  Development Strategies
4.4  Debugging

111

4

4.4.2  Deferring Driver Registration 

Another simple debug modification is to defer the driver registration with VxBus. 
When registration is deferred, VxBus is unaware of the driver at boot time. For 
debugging purposes, you register the driver from the VxWorks shell (either the 
host shell or the target shell). When VxBus finds that a new driver is available, it 

Table 4-1 Recommended Values for verboseLevel 

Level Description 

0 Print only the driver name and unit, VXB_DEVICE_ID, and 
bus type. 

1 Print level 0 information, plus non-null pRegBase[ ] values. 

2 Print level 1 information, plus all pRegBase[ ] values. 

3 ... 8 Reserved, print only level 0 information. 

9 Print level 1 information, plus the address of the 
instance-specific data area pDrvCtrl. When multiple 
channels are available (such as in a timer driver, DMA 
driver, or serial driver), list which channels are available 
but do not give details about them. 

10 ... 49 Print level 9 information, but expand details about one 
channel. For example, if four timers are available in a 
particular timer device, then:

verboseLevel 10 lists details about timer 0 
verboseLevel 11 lists details about timer 1 
verboseLevel 12 lists details about timer 2 
verboseLevel 13 lists details about timer 3 

and verboseLevel 14 through 49 lists details of all four 
timers. 

50 Print level 9 information, plus the full contents of the 
instance-specific data area pDrvCtrl. 

51 ... 499 Reserved, print only level 0 information. 

500+ Print all information available. 
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searches the list of orphan devices (devices not associated with a driver) for any 
device that matches the new driver. If it finds one, it pairs the driver with the 
device and runs through the normal initialization sequence. 

For some driver classes, additional work may need to be done in order for the 
device to be fully recognized by the available middleware modules. This is 
explained further in the class-specific chapters in volume 2 of the VxWorks Device 
Driver Developer's Guide.

4.4.3  Including Debug Code 

Most VxBus drivers can be configured at compile time to include or exclude status 
and debug code based on a compile-time option.

If the option is specified, a debug output macro is used, which depends on a 
run-time debug level variable. For example:

#ifdef SAMPLE_DRIVER_DEBUG_ENABLE
int sampleDriverDebugLevel = 0;
#define SAMPLE_DRV_DBG_MSG(level,fmt,a,b,c,d,e,f) \

if ( sampleDriverDebugLevel >= level ) \
logMsg(fmt,a,b,c,d,e,f)

#else /* SAMPLE_DRIVER_DEBUG_ENABLE */
#define SAMPLE_DRV_DBG_MSG(level,fmt,a,b,c,d,e,f)
#endif /* SAMPLE_DRIVER_DEBUG_ENABLE */

This allows the driver to include the debug code available if required, but without 
any overhead for a normal configuration. 

4.4.4  Confirming Register Access 

During development, you can choose to write routines that do nothing more than 
read and write device registers. These routines can be called from a shell prompt. 
This allows you to check that register access works correctly and that the contents 
of the registers are as expected. 

4.4.5  Increasing the Size of HWMEM_POOL 

During driver development, the hardware memory pool can get exhausted. When 
this happens, the behavior of the target system is unpredictable. To guard against 
this situation, or to help resolve system crashes during development, increase the 
size of the hardware memory pool, possibly doubling it or more. 
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4.4.6  Confirming Device and Driver Name Matches 

When creating drivers for PLB devices, one frequently encountered problem is that 
the name of the driver does not match the device name. When this happens, the 
output of vxBusShow( ) displays the entry as an orphan rather than a device. If the 
output shows an orphan, you must get the driver and device name to match up 
before proceeding.

For PLB devices, VxBus uses the name to match a driver to the hardware. The 
name is compared using strcmp( ). Therefore, the name must be identical (the 
comparison is case sensitive). When an orphan appears and the driver is available, 
the first thing to check is that the driver name and the name listed in the 
hcfDeviceList[ ] table (in hwconf.c) are identical. 

The second most common problem at this stage is related to the device's register 
base address. For PLB devices, the first register base address must be non-null. You 
can verify this by running vxBusShow( ) with a verbose level argument greater 
than 1. 

This displays the full set of pRegBase[ ] entries for each device (instance and 
orphan) known by VxBus. If the pRegBase[0] entry for your device is zero, fix the 
problem by supplying the correct base address.

NOTE:  In some cases, you may not want to supply the register base address in 
hwconf.c. In this is the case for your driver, use ERROR or TRUE, both of which are 
non-null. If you choose this option, your driver must not attempt to read or write 
registers using the VxBus register access mechanism. 
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5.1  Introduction 

This chapter documents a procedure for releasing VxBus model VxWorks device 
drivers. The information in this chapter applies to developers that are releasing a 
device driver within their organization for use with custom hardware and 
applications as well as developers releasing a VxWorks device driver for general 
distribution. 

Following the release procedure in this chapter allows you to integrate your driver 
with Workbench and the vxprj command-line utility so that it is configurable in a 
manner similar to that of a standard Wind River supplied driver. This procedure 
also allows your driver to be included in a BSP command-line build (using make). 
The only significant difference between this method of packaging and that done 
internally at Wind River is the way the driver files are packaged. 
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If you plan to distribute your driver independently, you can consider the 
instructions in this chapter as suggestions rather than as requirements. However, 
if you plan to provide your driver to Wind River for distribution as a standard 
product, you must follow the guidelines in this chapter as well as the checklist 
provided in B. Checklist for Device Drivers. 

This discussion is presented in conjunction with a sample driver, provided by 
Wind River, which is located in the installDir/vxworks-6.x/target/3rdparty/
windriver/wrsample directory.

5.2  Driver Source Location 

Starting with VxWorks 6.6, a typical VxWorks installation includes the directory 
installDir/vxworks-6.x/target/3rdparty.

When releasing a driver, you must create a unique vendor-specific subdirectory in 
the third-party directory (3rdparty). This directory is typically named for your 
company or organization. For example, the sample driver provided by Wind River 
is located in installDir/vxworks-6.x/target/3rdparty/windriver/wrsample.

The company-specific directory should contain a makefile (Makefile) and one 
subdirectory for each driver released by the organization. Each driver-specific 
subdirectory should also contain a makefile (also named Makefile). The 
driver-specific subdirectory also contains all of the required files for your driver 
(see 3.3.2 Required Files, p.24). 

When creating the driver-specific makefile for your driver releases, copy the file 
from the Wind River sample directory (installDir/vxworks-6.x/target/3rdparty/
windriver/wrsample) to your driver-specific directory (installDir/vxworks-6.x/
target/3rdparty/vendor/driver), and make the modifications suggested in comments 
for the code. The primary modification is to change the LIB_BASE_NAMES from 
windriver to your company name. Do not modify the makefile in installDir/
vxworks-6.x/target/3rdparty/vendor. 
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5.3  Driver-Specific Directories 

Each third-party VxBus model device driver is located in a separate directory. The 
name of the directory should be identical to the name of the driver, except that all 
characters should be lowercase.

There are several required files in each driver specific directory. These include:

■ README 
■ Makefile 
■ driverName.cdf 
■ driverName.dr 
■ driverName.dc 

In addition, one or more source or object files must be present. You may also have 
header files or other supporting files included in this directory. For more 
information on each of the required files, see 3.3.2 Required Files, p.24. 

Without the required files, your driver cannot be correctly integrated with 
Workbench, the vxprj command-line utility, or BSP command-line builds.

You can choose to release your driver as source or as binary only. The driver source 
files (or binary files for a binary-only release) must be located in the driver-specific 
directory.

A source release is the easiest release form. When producing a source release, you 
can copy and rename the files from the Wind River sample driver (installDir/
vxworks-6.x/target/3rdparty/windriver/wrsample) into your driver directory, add 
your source file and any required driver-specific header files, and update the 
makefile and configuration files as necessary.

To make the modifications correctly, use the wrsample driver as a reference. 
Follow the instructions in README, Makefile, and in this chapter, to integrate 
your driver with your installation.

NOTE:  An binary-only driver release is possible. However, the makefile 
modifications needed to release a driver this way are not supported by Wind 
River. In particular, you must be sure that object files are not given a .o extension. 
Otherwise, object files may be removed when a user cleans object files. 
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Modify the driver configuration files, 40driverName.cdf, driverName.dc, and 
driverName.dr as follows: 

■ In all the driver configuration files, change the driver registration routine from 
wrsampleRegister( ) to the registration routine used by your driver. 

■ In all driver configuration files, replace the name DRV_DEMO_WRSAMPLE 
with a component name suitable for your driver. 

■ Modify other fields in the driverName.cdf file as appropriate. 

If you choose to release in binary-only format, the filenames for your driver should 
include the supported architecture and the tool used to build the driver. The driver 
directory should not contain any files ending in a .o extension, as those files can be 
accidentally removed when other drivers are installed. Use driverName.obj format 
instead. For example, for the myDriver object file for the PowerPC architecture 
using the Wind River Compiler toolchain with software floating-point (sfdiab), 
you might name the file myDriver_PPC32_sfdiab.obj. You must modify the 
makefile so that it copies the object files to the correct locations and causes the 
correct object file archive to be updated.

5.4  Driver Installation and the README File 

When releasing your driver, you must include instructions in the README file to 
indicate how the user installs the new driver. The sequence of required commands 
for manual installation—after the driver files are extracted from the ZIP file or 
tarball—is:

For Linux and Solaris hosts:

% cd installDir/vxworks-6.x/target/src/hwif/methods 
% make vxbMethodDecl.h 
% cd installDir/vxworks-6.x/target/config/comps/src/hwif 
% make vxbUsrCmdLine.c 
% cd installDir/vxworks-6.x/target/config/comps/vxWorks 
% rm CxrCat.txt 
% make 

For each processor (CPU) and tool (TOOL) combination used by the installer, run 
the following commands:

% cd installDir/vxworks-6.x/3rdparty/vendor/driver 
% make CPU=cpuName TOOL=tool 
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For Windows hosts:

C:\> cd installDir\vxworks-6.x\target\config\comps\src\hwif 
C:\> make vxbUsrCmdLine.c 
C:\> cd installDir\vxworks-6.x\target\config\comps\vxWorks 
C:\> del CxrCat.txt 
C:\> make 
C:\> cd installDir\vxworks-6.x\target\3rdparty\vendor\driver 

For each processor (CPU) and tool (TOOL) combination used by the installer, run 
the commands:

C:\> make CPU=cpuName TOOL=tool 

5.5  Driver Packaging 

Your driver is considered complete when:

■ all associated driver files are properly located in installDir/
vxworks-6.x/target/3rdparty/vendor/driver 

■ the driver is thoroughly tested 
■ the driver checklist is complete (see B. Checklist for Device Drivers) 
■ the release procedure is described in the driver README file 
■ the driver can be packaged for release 

You can now release your driver in an archive such as a ZIP file or tarball. 

NOTE:  The packaging procedure documented in this section is an alternative to the 
formal practice used within Wind River. The internal driver release procedure 
uses custom tools that are not currently available outside of Wind River. When 
installed with the Wind River packaging, the installation updates the setup.log file 
to indicate that the driver is installed, builds the driver, and causes several files to 
be updated with the contents of the driver configuration files for integration with 
the build process. This packaging is currently available from the Wind River 
Professional Services organization. For more information, see your Wind River 
representative. 
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5.6  Driver Release Procedure 

Once you have satisfied the requirements in this section, you can distribute your 
driver to internal or external customers using your standard release procedure.

As of this writing, Wind River does not include driver release pages as part of the 
Wind River online support Web site. For the latest information, see the online 
support Web site or contact your Wind River representative. 
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   A
Glossary

access routine 

A routine provided by VxBus that a driver calls in order to access or manipulate a 
device register.

advertise 

Make available to VxBus, as with a driver method. 

bus 

A hardware mechanism for communication between the processor and a device, 
or between different devices. This term can also apply to processor-to-processor 
communication, such as with RapidIO or the processor local bus (PLB) on SMP 
and AMP systems. 

bus controller 

The hardware device that controls signals on a bus. The bus controller hardware 
must be associated with a bus controller device driver in order for VxBus to make 
use of the device. The service that a bus controller device driver provides is to 
support the devices downstream from the controller. The bus controller driver is 
also responsible for enumerating devices present on the bus. See also device, driver, 
enumeration, and instance. 

bus discovery 

See enumeration.
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bus match 

A VxBus procedure to create an instance whenever a new device or driver is made 
available. This procedure is used to determine if a given driver and device should 
be paired to form an instance. 

bus type 

A kind of bus, such as PCI or RapidIO. See also bus controller.

child 

A device that is attached to a bus.

cluster 

Buffers used by netBufLib to hold packet data. See also mBlk.

descriptor 

For DMA, a descriptor is a data structure shared by the device and driver, which 
communicates the size, location, and other characteristics of data buffers used to 
hold transmit and receive data. The data format is defined by the design of the 
device.

device 

A hardware module that performs some specific action, usually visible (in some 
way) outside the processor or to the external system. See also bus, driver, and 
instance.

downstream 

From the perspective of a device, downstream refers to a point farther from the CPU 
on the bus hierarchy. See also child.

driver 

A compiled software module along with the infrastructure required to make the 
driver visible to Workbench and BSPs. The software module usually includes a text 
segment containing the executable driver code plus a small, static data segment 
containing information that is required to recognize whether the driver can 
manage a particular device. The infrastructure typically includes a CDF that allows 
integration with Workbench and vxprj, and stub files for integration with a BSP. 
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driver method 

A driver method is a published entry point into a driver made available to an API 
in VxBus. Examples of methods include functionality such as connecting network 
interfaces to the MUX and discovery of interrupt routing. See also method ID. 

enumeration 

Enumeration refers to the discovery of devices present on a bus. For some bus 
types such as PCI, the bus contains information about devices that are present. For 
those bus types, dynamic discovery is performed during the enumeration phase. 
For bus types such as VME, which do not have such functionality, tables that 
describe the devices that may be present on the system are maintained in the BSP. 
See also bus discovery.

instance 

A driver and device that are associated with each other. This is the minimal unit 
that is accessible to higher levels of the operating system. See also bus, device, and 
driver.

mBlk

Structure used to organize data buffers. See also cluster.

method ID 

A method ID is the identification of a specific driver method that may be provided 
by a driver. This must be unique for each method (that is, specific functionality 
module) on the system. See also driver method.

parameter

Information about some aspect of device software configuration. For further 
discussion, see 3.6.1 Configuration, p.53. See also resource. 

parent 

The bus to which a device is attached, or the bus controller of that bus.

probe 

See enumeration and probe routine. 
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probe routine 

An entry point into drivers. After the system has tentatively identified a device as 
being associated with a driver, VxBus gives the driver a chance to verify that the 
driver is suitable to control the device. The driver registers the probe routine to 
perform this comparison. This routine is optional. If specified, it is normally safe 
and acceptable for the routine to simply indicate acceptance. 

processor Local bus (PLB)

The bus connected directly to a processor. This term is used in a processor-agnostic 
way in this documentation. 

resource 

information about some aspect of device hardware configuration. For further 
discussion, see 3.6.1 Configuration, p.53. See also parameter. 

serial bitbang 

Serial bitbang describes a scenario where software writes the individual bits of a 
word out on a serial line, often with a corresponding clock, rather than writing the 
entire value into a register and allowing the underlying hardware to take care of 
the delivery of the word. 

service driver 

A device driver that provides a service to the operating system or to middleware, 
instead of a service for another device driver. Examples of service drivers include 
drivers for serial and network devices. 

stall 

A condition that occurs when a network interface device stops operating due to 
momentary lack of resources.

upstream 

From the perspective of a device, upstream refers to a point closer to the CPU on 
the bus hierarchy. See also parent.
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   B
Checklist for Device Drivers

This appendix includes a checklist to help you determine when your driver is 
ready for deployment or distribution. Successful completion of this checklist can 
help you assess the quality of your driver and make decisions with respect to 
deployment and distribution. 

The checklist assumes you are familiar with VxBus device driver development or 
you have reviewed the information in the VxWorks device driver documentation 
set. (The items included in the checklist are discussed in detail throughout this 
documentation set.) 



VxWorks
Device Driver Developer's Guide, 6.6 

126

Table B-1 VxWorks Device Driver Release Checklist 

Description 
Date

YYYY-MM-DD
Status 

OK | FAIL | N/A

1. Install a clean product installation, including relevant patches. 

2. Install the driver into the new installation. 

3. Verify the README, makefile, .cdf, .dr, and .dc files are 
present in the driver specific directory. 

4. Start Workbench and create a VxWorks Image Project using a 
BSP that is relevant to the driver. 

5. Open the project configuration window and verify that the 
driver shows up in the drivers folder. 

6. If the device is located on a bus that allows device probe, such 
as PCI, plug in the device. If the device is located on a bus that 
does not allow device probe, such as PLB, modify the hwconf.c 
file to add an entry for the device and create a new VxWorks 
Image Project using the modified hwconf.c file. Boot the image 
without the driver. 

7. Configure the VxWorks Image Project to include the driver. 
Verify that the image boots. 

8. Configure the VxWorks Image Project to include show 
routines and VxBus show routines. 

Boot the image and run vxBusShow( ). Verify that the driver is 
registered and the device is present as a device and not an 
orphan. Specifying the VxBus device ID of the device, call 
vxbDevStructShow( ), and verify that the driver field is 
non-null, and matches the driver. 

9. Repeat steps 4 through 7 for a boot ROM image. With the 
device present and the driver configured into the image, verify 
that the boot ROM loads and boots a VxWorks image. 

10. Generate a list of all files installed by the driver product. 

11. Verify that all files in the release are contained in the 
directory installDir/vxworks-6.x/target/3rdparty/vendor/. 
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12. Use the nmarch command to verify that there is only one 
global symbol present. The symbol should be the registration 
routine for the driver. 

12. Verify that the VxBus version in the driver's registration 
structure matches the current VxBus version. 

13. If the VxTest test suite is available, verify that all VxTest tests 
applicable to the driver class of this driver are successful. 

Table B-1 VxWorks Device Driver Release Checklist  (cont’d)

Description 
Date

YYYY-MM-DD
Status 

OK | FAIL | N/A
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Parameter 32
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DEFAULT 33
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writing 28
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INCLUDE_VXBUS_SHOW 108

configuration
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in hwconf.c 54
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configuring
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device parameters in a BSP 82
interrupt show routines 108
parameters 54
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VxBus show routines 110
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creating the VxBus infrastructure 90
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data buffers

address mapping 73
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VXB_DEVICE 60
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device driver model
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VxBus 1
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address mapping 72

devInstanceConnect( ) 43, 46
see also initialization – VxBus phases

devInstanceInit( ) 43, 45
see also initialization – VxBus phases

devInstanceInit2( ) 43, 46, 49
see also initialization – VxBus phases

DEVMETHOD( ) 41
DEVMETHOD_CALL( ) 40
DEVMETHOD_END 41
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direct memory access, see DMA
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dissociating a device from a driver 48
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distributing drivers 115
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DMA tag 70
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advertising 40
calling 39
definition 123
invoking 46
limitations 42
parts of 39

routine prototype 39
syntax 38

driverName.cdf 117
driverName.dc 35, 91, 117
driverName.dr 35, 91, 117
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examples
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files
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driverName.cdf 117
driverName.dc 35, 91, 117
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in a device driver 23
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for third-party drivers 116
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header files 90

hwConf.h 80
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hwMemAlloc( ) 57

see also memory allocation
hwMemFree( ) 58

see also memory allocation
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INCLUDE_HWMEM_ALLOC 44

see also memory allocation
INCLUDE_ISR_DEFER 85
INCLUDE_PCI_BUS_SHOW 108
INCLUDE_SHOW_ROUTINES 94, 108
INCLUDE_VXBUS_SHOW 94, 108
including debug code 112
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early boot process 44
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sysHwInit( ) 44
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interrupt
deferring processing in an SMP system 84
handling 63
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minimizing work in an ISR 65
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in an SMP system 84
vector model 64

interrupt controller drivers 20
interrupt service routine, see ISR
interrupt show routines

configuring 108
interrupt-level synchronization 68

using interrupt locking 68
using spinlocks 69

intrN 81
intrNLevel 81
invoking driver methods 46
irq 81
irqLevel 81
ISR
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minimizing work in 65

ISR_DEFER_MODE 86
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ISR_DEFER_MODE_PER_SOURCE 86
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kernel startup 46

L
late driver registration 48
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legacy device driver model 2
legacy drivers

documentation 3
file location 23

LIB_BASE_NAMES 116
libraries
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isrDeferLib 66, 87
vxAtomicLib 77
vxbDmaBufLib 70
vxbDmaLib 75

loading
an object module 48
drivers after boot time 48

loadModule( ) 48
loadModuleAt( ) 48

M
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see also network interface drivers
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DEVMETHOD( ) 41
DEVMETHOD_CALL( ) 40
DEVMETHOD_END 41
INTCTLR_LIB_SHOW 109
METHOD_DECL( ) 40

makefile 36, 37, 117
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mapping
address space 61
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devices and drivers 50, 92, 93, 113

mBlk 123
media independent interface, see MII
memory allocation 44, 57

during system operation 58
during system startup 57
mixing methods within a driver 58
see also INCLUDE_HWMEM_ALLOC

memory pool 112
method ID 123
METHOD_DECL( ) 40
methods, see driver methods
migrating legacy drivers 3
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minimizing work in an ISR 65
modifying the BSP 93
msgQSend( ) 68
multifunction drivers 20
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network interface drivers 17
non-volatile RAM 18, 59

drivers 18
notifying a driver of system shutdown 48
NVRAM, see non-volatile RAM
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object module
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order of initialization 43
organization

driver 23



 Index

135

Index

P
packaging a driver for release 115, 119
pairing a device with a driver 50, 92, 113
parameter

configuration 54
definition 123

parent 123
PCI 19, 51

PCI triple 100
show routines 100

pciDevByNameUnitFind( ) 108
pciDevShow( ) 101
pDrvCtrl 95
performance testing 14
PHY drivers 17

see also network drivers
PLB 19, 44, 51

BSP configuration 79
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probe 123
probe routine 124
processor local bus, see PLB
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queue sharing 86
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RapidIO 52
reading

hardware registers 62
README 36, 117, 118
regDelay 81
regInterval 81
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debugging 112
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a driver 45
a driver after boot time 48
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regWidth 81
releasing

drivers 115
in binary format 117
in source format 117

providing driver installation instructions 118
third-party drivers 120

remote processing element drivers 21
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removing global variables 95
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intrNLevel 81
irq 81
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resource types
address 54
integer 54
string 54

routines
devInstanceConnect( ) 43, 46
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vxbDmaChanAlloc( ) 75
vxbDmaChanFree( ) 77
vxbDriverUnregister( ) 47
vxbInstParamByNameGet( ) 54
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SATA, see serial ATA
SCSI 17
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serial bitbang 124
serial drivers 17
service driver 124
services 52

atomic operators 77
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DMA
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interrupt handling 63
memory allocation 57
synchronization 66

show routines 96, 110
configuring into VxWorks 108
generic 96
PCI 100
using from software 106
verbose level 98, 110

shutdown notification 48
SMP

see VxWorks SMP
source file 25

example 25
structure 25

stall 124
storage drivers 17
symmetric multiprocessing
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interrupt-level 68
task-level 67
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downstream 122
driver 9, 122
driver method 123
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mBlk 123
method ID 123
parameter 123
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PLB 124
probe 123
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serial bitbang 124
service driver 124
stall 124
upstream 124
VxBus 8

third-party drivers 24, 116
file location 23
packaging for release 119
releasing 120
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txInt 81
txIntLevel 81

U
u.pDevPrivate 48
unloading a driver 47

see also vxbDriverUnregister( )
upstream 124
USB drivers 20
using show routines from software 106
using spinlocks 69
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vendor makefile 37
verbose level 110
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VXB_DEVICE 60
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VXB_REG_MEM 61
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vxbDevMethodGet( ) 10, 40
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vxbDevPathShow( ) 100
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show routines 110

example 96, 98
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