WIND RIVER

VxWorks’

ARCHITECTURE SUPPLEMENT

6.6

Edition 4

Copyright © 2008 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Architecture Supplement, 6.6
Edition 4

4 Aug 08

Part #: DOC-16096-ND-03

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Introduction

11

1.2

ARM and XScale

21

2.2

2.3

About This Document

Supported Architectures

Introduction

Supported Processors

Interface Variations

231
232
233
234
2.3.5
2.3.6
237
238

Contents

Processor VAriantscceeeeeeeiveeeeieeiieee et eeecveee ettt e e

Optimized Libraries ...

Restrictions on cret() and th() .o.coceceveerenrernneneeneereecneeeenens

CACNELID oottt

fii

a1

O X NN N NN NN o w»a

VxWorks
Architecture Supplement, 6.6

239 VXALID oo 10

2310 VXLID woiieeee e 10

24 Architecture Considerations 10
241 Processor MOde ... 11

242 Byte Order ..o 11

243 ARM and Thumb State ..o 11

244 Unaligned ACCESSESccovmuevirrieiiieiiicecci e 11

245 Exceptions and INteIruptscccocoevvoeeiiininicieiicceceecceees 12
INterrupt Stackscouoviveiiiic s 13

Fast Interrupt (FIQ) ..o 13

2.4.6 Divide-by-Zero Handlingccccooviiiiiiiiiniiicccccs 13

247 Floating-Point SUPPOTL ..o 13

248 Vector Floating-Point SUPPOTtccccoviiiiiiiiiiiiiiiiie 14

249 CACRES .ot 15

2410 Memory Management ... 18

ARM Architecture Version 4 Memory Management Considerations 18

ARM Architecture Version 6 Memory Management Enhancements 19

XScale Memory Management EXtensionscccccccceveiiccciinncnne. 21

Mapping Address Space as Sections or Supersections 29

Page Size Optimization ... 31

Cache and Memory Management Interactioncccccceeiieiininnnen. 32

BSP Considerations for Cache and MMUccccccooiiiininninnnn. 34

2411 Memory Layout ... 37

2.5 Migrating Your BSP 39
Detecting the VxWorks 6.x Boot ROM Modecccccovviiiniinininnnn. 40

2.6 Reference Material 40
07 o7 [| | - 43
3.1 Introduction 43
3.2 Supported Processors 43

Contents

Interface Variations 44
3.3.1 Optimized Libraries ... 44
332 Floating-Point SUPPOTtccccueuiiiiiiiiiiiicicicccce 44
3.33 Software Breakpoints ..o 44
334 INEATChLID oo 45
335 MAthLib o e 45
3.3.6 VXLID ceiiiiic e 45
3.3.7 ColdFire-Specific Tool OptioNnscccocevrieieiiciniriciniceceiece e 46
Architecture Considerations 46
34.1 Reserved INStIUCHONSocevieieiriiieiricicircce e 47
3.42 Exceptions and INterrupts ..o 47
3.43 Operating Mode, Privilege Protectionccccccocovviiniiiiiininnn, 47
344 Byte Order ... 48
3.4.5 Register USage ..o 48
3.4.6 Multiple INterruptscovviviiiiiiiiiiiiiiic e 48
3.4.7 Interrupt Stack ..o 48
3.4.8 Memory Management ..ot 49

Stack Guard Pages ..o 51

MMU Page LOCKINGovviviriiiiiiicccn s 51
349 Maximum Number of RTPSccocccniiiiniiiniiinceccnecereccneene 51
3.4.10 Null Pointer Reference Detectionccocoeuveeueicciiccninininneneicienenee 51
BA0T CACKES eouiiiiiicee et 52
3.4.12 Floating-Point SUPPOTtccccoviiiiiiiiiiiiii 52

Software Floating Pointccccoooeiiiiiiniiccc 53

Hardware Floating Point ..o 53
3413 MAC SUPPOTL .ottt 54
3.4.14 Power Management ..o 54
3.415 PCIWINAOW Mappingcccccvviviviniiiiiiniiiiiiinininiieicceecccseennes 54
3.416 Memory Layout ... 54

VxWorks

Architecture Supplement, 6.6

3.5 Reference Material

Intel Architecture ...

41 Introduction

4.2 Supported Processors

4.3 Interface Variations
43.1 Optimized LibIaries ...
432 Supported Routines in mathALIbc.c.cccooviiiiiie
433 Architecture-Specific Global Variablesc.cccccoovorniiinnninne.
434 Architecture-Specific ROUtINESccovviriiiciiiiciccce
43.5 a.out/ELF-Specific Tools for Intel Architecturec.ccccoevriinnnnn

44 Architecture Considerations
441 BoOt FIOPPIES ...cooviiiiiiiiiiciciii s
442 Operating Mode and Byte Orderccccooviviiiiiiiinniiiiccce,
443 Celeron ProCESSOIS ...t
444 Pentium M ProcesSors ...
445 CaChES ..o s
446 FPU, MMX, SSE, and SSE2 SUPPOTItccccvuvuiiuciciiiiiiiicccieeccaes
447 Mixing MMX and FPU Instructionsccccoevevvniinninicnnccinicnennns
4.4.8 Segmentation ...
449 Paging with MMUcoooiiic s
4410 Ring Level Protection ...
4411 INEEITUPES oo
4412 EXCEPHONS .ovoviiiiiiieictciccc s
4413 Stack Management ..o
4414 Context SWItChing ...
4.4.15 Machine Check Architecture (MCA)cccouveinireiinnirccirceeeeeen
4416 RegISTOrS ..cvoviiiiiiiiiiiiccc s

Vi

57

58

59

60
60
61
71

4.5

5.1

5.2

5.3

Contents

4407 COUNLETS ittt ettt sb ettt ebe sttt ebestens 85
4418 Advanced Programmable Interrupt Controller (APIC) 85
4419 I/OMapped DeVICES ..o 89
4420 Memory-Mapped Devices ..o 89
4421 Memory Considerations for VME ..o 90
4422 ISA/EISA BUS oottt ettt 90
4423 PCLOA BUS oottt 90
4424 PCIBUS oottt ettt 90
4425 Software Floating-Point Emulation ... 91
4.4.26 Power Managementcccoouiiiiiieiiiiiiiiccee e 91
4.4.27 VxWorks Memory Layout ..o 92
Reference Material 95
.. 97
Introduction 97
Supported Processors 98
Interface Variations 103
53.1 Optimized Libraries ... 103
532 dbGATChLID ..ocoiiiiiiiiiicc e 103
H() ROULINE ..o 104

DR() ROULNE ..ottt 104

53.3 INEATChLID oo 104
534 taskATChLID ..o 105
535 Memory Management Unit (MMU)ccccccoovviiiiinnnnniine, 105
5.3.6 CAChES ..ooiiiiiiiiiii e 106
53.7 AIM Model fOr Cachescceoeirerinirieiiieieieieiecseeee et 106
53.8 Cache LocKINgcccoceiiiiiiiiiiiiiiiiciccc e 107
5.3.9 Building MIPS KeTrnelsccccociuiiiiiiinininiiiiiiicccicciieecccce 107

vii

VxWorks
Architecture Supplement, 6.6

54 Architecture Considerations 111
54.1 Byte OTder ..o 111

542 Debugging and tt() ... 111

543 gp-1el Addressing ..o 112

544 Reserved ReGiSters ... 112

545 Signal SUPPOTt ...covieiiicieiiciiccc s 112

54.6 Floating-Point SUPPOITccovrvieiveiiciiceiccc s 113

547 INTEITUPLES ot 115

548 Memory Management ... 126

549 AIM Model for MMUcccocoiiimiiiniiiinieiinieeetseeeeeseeteeseeieeeee e 126

5.4.10 Virtual Memory Mappingcocooveennininiiiiiinicceeeccnnes 127

5411 Memory Layout ... 129

5412 64-Bit SUPPOIt ..ooviviiiiiiiiiiii e 131
Hardware Breakpoints and the bh() Routinecccoovviinnnnnnne. 132

55 Reference Material 133
=T o O 135
6.1 Introduction 135
6.2 Supported Processors 136
6.3 Interface Variations 137
6.3.1 Optimized Libraries ... 137

6.3.2 ReStrictions 0N th() wo.eccoveerrerinieiiniecre e 137

6.3.3 Stack Frame Alignmentccccooeiiiiiniiiiiiics 137

6.3.4 Small Data ATa ...ccccccevveueirieiiiricinieictctce ettt 138

6.3.5 HI and HIAD] MaCIOS ...c.cooveiiieiieieiestieteeieieete et eeeste s evs e esesaeeneas 138

6.3.6 Memory Management Unit (MMU)cccccoeiiiininiiiiiiic, 139
Instruction and Data MMUccccceivinieininieiiincecnieeeeeeeveseeeeeaens 139

MMU Translation Modelccccoeiviriniiininiininceeneeeeeseeeeene 139

viii

6.4

Contents

PowerPC 60x Memory Mappingccccoeveieeciiininininieneieieneneienes 141
PowerPC 405 Memory Mappingccccocceeveveiviieereenieiicceeeens 144
PowerPC 405 PerfOrmanceo.ooeeeeeeeeeeeeiieeieeeeeeeeeee e eseeesseesaeens 145
PowerPC 440 Memory Mappingcccccocevvvniiiicciciiiineeneenes 145
PowerPC 440 PerfOrmancecccoceeeeeeeieeeereeeeeeeeeeeeeeeeee e eeeeneeneens 147
MPC85XX Memory Mappingccccevvveviviiiniiiinicciiiiieeeeecece 147
MPC8XX Memory Mappingc.ccceeveiimiururieieiciiicisieeeseeie s 149
6.3.7 Coprocessor AbStractionc.cccoeeeeiiciniiniiiece e 150
6.3.8 VXLAD oottt ettt 150
6.3.9 AltiVec and PowerPC 970 SUPPOTItccccovvvviiiiiiiiiiiii, 151
6.3.10 Signal Processing Engine Supportcccocoovviniinniinininn, 161
Architecture Considerations 166
6.4.1 Divide-by-Zero Handlingccccocoviiiiiiiiiiicce, 167
6.4.2 SPE Exceptions Under Likely Overflow/Underflow Conditions 167
6.4.3 SPE Unavailable Exception in Relation to Task Options 168
6.4.4 26-bit Address Offset Branchingcccoccoeeeernnincccennncccnenens 169
645 Byte Order ... 172
6.4.6 Hardware Breakpointsccccoocveiiininiininicniccncccce e 172
6.47 PowerPC Register USageccceceueueiiiccieieieiiccccc 174
sprg4-sprg7 on PowerPC 603 and 604 Processorsc.coccevvevivnnee 175
6.4.8 CACRES ettt ettt naeenaeeas 176
VXWOTKS SIMIP ..ottt 177
POWEIPC 405 ...ttt et eve e et ereereeaeens 178
POWEIPC 440 ..ottt eeve et ettt eveeveeveens 178
POWEIPC 970 oottt ettt eve e et eveereeneens 179
6.4.9 AIM Model fOr CaCheS ...oovvieeiieiieeeeeeeeeeeeeeeeeeeeeee e 180
6.4.10 AIM Model fOr MMUooviouiieeeeeeeeeeeeeeeeeeee e 180
6.4.11 Floating-Point SUPPOTtcccvvviriiiiiiiiiiiiiiiiinccccces 181
6.412 VxMP Support for Motorola PowerPC Boardscccccceeiiicucuennnce. 185
6.4.13 Exceptions and INtEITUPLScccevevrirreriieriiiciiiciecc e 186
6.4.14 Memory Layout ..o 190

VxWorks

Architecture Supplement, 6.6

6.4.15 Power Managementcccoviiiniiiniiiini
6.4.16 Build MeChamniSImc..ooicueiiiiiiicieieeceeeeeeeeeeee ettt eaee e
6.5 Reference Material
Renesas SUPErH ...
71 Introduction
7.2 Supported Processors
7.3 Interface Variations
7.3.1 Optimized Libraries ...
7.3.2 AbGATChLID ..o
Register ROUINESc.coueviiiiiiiicccccc
Stack Trace and the tt() ROUHNE ...ccoovevieeiriinieieiieiecreeeeseeeeene
Software Breakpoints ..o,
Hardware Breakpointsccooviviniiiiiiiiiiiniiccccces
7.3.3 EXCATCILID e
Support for Bus EITOrs ...
Support for Zero-Divide Errors (Target Shell) ..o
7.3.4 ST AN (el o1 I o TR
INECONNECE() cvveveeiieiieieie ettt ettt ettt ettt stenaesseeneensenseeneen
INELEVEISEE() oottt
INELOCK() ceverteririeteisieietete ettt ettt et sttt st st e st eseebesae e seesassensesessenaens
intEnable() and intDisable() ..o
7.3.5 MATNLID Lot
7.3.6 VXLID ettt ettt e re et eraeere e
7.3.7 SuperH-Specific Tool Options ..o,
GNU Compiler (ccsh) Optionscccoveviueiviviicieiecce
GNU Assembler Optionscccccoeviciemiieiniiiiceeeecceee s
GNU Linker Optionsccccceuiiiiiininiiiiiiiciiccninnececcccces
Wind River Compiler Optionscccocovevreciriicniicncncceceenen,
Wind River Compiler Assembler Optionsccccocvvvervniceviccnnicnnn.
Wind River Compiler Linker Optionsc.cccccoevirvinininccniiccnnicnnnn.

Contents

Architecture Considerations 208
74.1 Operating Mode, Privilege Protectioncccovviviiicicncnne, 209
74.2 Byte OTder ..o 209
74.3 Register USageccooeiviiiiiniiiiiiiciccnecc e 209
744 Banked RegiSters ... 210
7.4.5 Exceptions and INteIruptsccccoeueiviviiiiciiiniiiccecccecceeees 211

Multiple INEITUPLES ...ovviiiiiiiciciciccs 211

INterrupt Stackc.oocuevieciiceic 212
74.6 Memory Management ... 212

SH-4A Memory Mapccccovviiiiiiiiiiiiiiiccc s 215

Global Variables for Memory Managementcccooeevveiviininnnennnnns 217

SH-4-Specific MMU Attributescccoovviiiiviiiiiiiice 219

SH-4A-Specific MMU Attributes ..o 219

MMU_ATTR_NO_BLOCK MMU Attributecccocevverrrererercercncne. 220

AIM Model fOr MMUcouiiiieieieieierieieiesieeeeeee e enens 220
747 Maximum Number of RTPScccccevieriinirieiiieieirieeeeeseee e seeeesienens 222
7.4.8 Null Pointer Dereference Detectionc.coceeeveeireenineeneecneenens 222
749 CACNES oottt ettt 222
7.4.10 Floating-Point SUPPOTLc.ccrviviviiiciicccc e 223
7411 Power Management ..o 224
7412 Signal SUPPOTT ...oovieiviiieiicic e 225
7413 SH7751 On-Chip PCI Window Mappingccccccevevvirviceincrinicnnnne. 226
7414 VxWorks Virtual Memory Mappingcccccoeevvvininnincciieinenn, 226
7415 Memory Layout ... 230
Migrating Your BSP 233
751 Memory Protection ... 233
7.5.2 RAM_HIGH_ADRSciiiiiirieieieeieietesteees ettt esenens 233
Reference Material 234

Xi

VxWorks

Architecture Supplement, 6.6

Xii

N = 10T [[T o VY o o1 [o= 1 [0 1 235
A1 Introduction 235
A.2 Supporting RTP Applications 236
A.3 Defining the CPU and TOOL Make Variables 236

Special Considerations for PowerPC Processorscccccoevverecunee 241

A4 Make Variables to Support Additional Compiler Optionscccececrerucucenene 243
A41 Compiling Downloadable Kernel Modulescccccoooovviiinininininnnnns 243

ARM and XScaleccoiiiiiiiiiiiiiiiiic e 243

MIPS s 244

POWETPC ..o 245

A42 Compiling Modules for RTP Applications on PowerPC 246

A.5 Additional Compiler Options and Considerations 247
AS51 Intel Architecture ... 247

GNU Assembler Compatibility ..o, 247

Compiling Modules for Debuggingcccoooevivviviiiniiincne. 248

AD2 MIPS o 248

Small Data Model SUpportccovvviiiiiiiiiiiiiiiccccce, 248

-mips2 Compiler Option ..o 249

AB.3 POWETIPC oottt 249

Signal Processing Engine (SPE) for MPC85XXccccooviiiviininiinnne 249

Compiling Modules for Debuggingccccccovvvvriiiiiiinniiccicne. 250

INAEX e 251

Introduction

1.1 About This Document 1
1.2 Supported Architectures 2

1.1 About This Document

This document provides information specific to VxWorks development on all
supported VxWorks target architectures. The following topics are discussed for
each architecture:

= Interface Variations

Information on changes or additions made to particular VxWorks features in
order to support an architecture or processor.

= Architecture Considerations

Special features and limitations of the target architecture, including a figure
showing the VxWorks memory layout for the architecture.

= Migrating Your BSP

Architecture-specific information on how to migrate your BSP from an earlier
version of VxWorks to VxWorks 6.x.

VxWorks
Architecture Supplement, 6.6

* Reference Material
Sources for current development information on your target architecture.

In addition, this document includes an appendix that details architecture-specific
information related to building VxWorks applications and libraries.

For general information on the Wind River Workbench development
environment’s cross-development tools, see the Wind River Workbench User’s Guide
or the VxWorks Command-Line Tools User’s Guide. For more information on the
VxWorks operating system, see the VxWorks Kernel Programmer’s Guide or the
VxWorks Application Programmer’s Guide.

1.2 Supported Architectures

This document includes information for the following target architectures:

= ARM and XScale

= ColdFire

» Intel Architecture (Pentium)
= MIPS

= PowerPC

* Renesas SuperH

NOTE: The product you have purchased may not include support for all
architectures. For more information, see the release notes for your product.

ARM and XScale

2.1 Introduction 3

2.2 Supported Processors 4

2.3 Interface Variations 5

2.4 Architecture Considerations 10
2.5 Migrating Your BSP 39

2.6 Reference Material 40

2.1 Introduction

VxWorks for ARM provides the Wind River Workbench development tools and
the VxWorks operating system for the Advanced RISC Machines (ARM) family of
architectures. ARM is a compact core that operates at a low power level.

NOTE: This release of VxWorks for ARM and XScale supports the standard 32-bit
instruction set only, in big-endian and little-endian configurations. It does not
support the 16-bit instruction set (the Thumb instruction set).

VxWorks for XScale provides the Wind River Workbench development tools and
the VxWorks operating system for the XScale family of processors. The XScale

VxWorks
Architecture Supplement, 6.6

microarchitecture features an ARM-compatible compact core that operates at a low
power level. The core design supports both big- and little-endian configurations.

2.2 Supported Processors

This section describes the ARM and XScale processor architectures supported by
this release.

VxWorks for ARM is built around ARM processor cores rather than specific
ARM-based chips. This allows VxWorks to support hundreds of ARM derivatives.
If your chip is based on any of the processor cores listed in this section, it is
supported by this release.

Similarly, VxWorks for XScale provides support for the XScale architecture rather
than for specific CPUs. If your chip is based on the XScale architecture, it is
supported by this release.

VxWorks for ARM supports the following ARM architectures:

* ARM Architecture Version 4 CPUs running in ARM state, in big- or
little-endian mode.

* ARM Architecture Version 5 CPUs running in ARM state, in big- or
little-endian mode.

» ARM Architecture Version 6 CPUs running in ARM state, in big- or
little-endian mode.

VxWorks for XScale supports XScale architecture CPUs running in ARM state, in
either big- or little-endian mode (for example, IXDP425 and IXDP465 CPUs).

Table 2-1 lists the ARM and XScale processor cores that are supported in this
release.

2 ARM and XScale
2.3 Interface Variations

Table 2-1 Supported ARM and XScale Processor Cores

Processor Core Description

ARM 920T/922T/ ARM Architecture Version 4 core, big- or little-endian
ARM7TDMI

ARM 926E]J-S ARM Architecture Version 5 core, big- or little-endian
ARM 946ES ARM Architecture Version 5 core, big- or little-endian

ARM 1136](F)-S ARM Architecture Version 6 core, big- or little-endian

XScale XScale architecture core, big- or little-endian

Processor Variants

In addition to the support for standard processor families and configurations
described above, VxWorks for ARM and XScale also provides support for the
following processor variations:

= VxWorks for ARM supports the CPU_VARIANT definition,
CPU_VARIANT=_armarch4mmuless. This variant is used to support ARM
architecture version 4 CPUs that do not include an MMU (such as
ARM7TDMI). For more information, see ARM Architecture Version 4 Memory
Management Considerations, p.18.

= VxWorks for XScale supports the CPU_VARIANT definition,
CPU_VARIANT=_manzano. This variant is used to support supersections and
the ability to map physical addresses that are greater than 32-bits. For more
information, see Mapping Address Space as Sections or Supersections, p.29.

2.3 Interface Variations

This section describes particular features and routines that are specific to ARM and
XScale targets in one of the following ways:

VxWorks
Architecture Supplement, 6.6

= They are available only on ARM and XScale targets.
» They use parameters specific to ARM and XScale targets.
» They have special restrictions or characteristics on ARM and XScale targets.

For more complete documentation on these routines, see the individual reference
entries.

2.3.1 Optimized Libraries

Most VxWorks libraries are compiled from portable C source code, but there are
some libraries that are compiled from assembly language for better performance.
The following libraries are optimized for ARM and XScale targets:

= bLib—buffer manipulation library (including the swab() routine)
= dllLib—doubly-linked list manipulation library
= ffsLib—find first bit set library

2.3.2 Restrictions on cret() and tt()

The cret() and tt() routines make assumptions about the standard prolog for
routines. If routines are written in assembly language, or in another language that
generates a different prolog, the cret() and tt() routines may generate unexpected
results.

The VxWorks kernel is built without a dedicated frame pointer. This is also the
default build option for user application code. As such, cret() and tt() cannot
provide backtrace information.

tt() does not report the parameters to C functions as it cannot determine these from
the code generated by the compiler.

The tt() routine cannot be used for backtracing kernel code.

A CAUTION: The kernel is compiled without backtrace structures. For this reason,
tt() does not work within the kernel routines, and cret() can sometimes work
incorrectly. Breakpoints and single-stepping work, even if the code is compiled
without backtrace structures.

2 ARM and XScale
2.3 Interface Variations

2.3.3 cachelLib

The cacheLock() and cacheUnlock() routines always return ERROR (see
2.4.9 Caches, p.15). Use of the cache and use of the memory management unit

(MMU) are closely linked on ARM and XScale processors. Consequently, if

cacheLib is used, vmmLib is also required. In addition, cacheLib and vmLib calls

must be coordinated. For more information, see 2.4.10 Memory Management, p.18.

The definition of the symbolic constant _CACHE_ALIGN_SIZE is not related to the
defined CPU type (the latter now defines an architecture). Rather, it is related to the
cache type of the specific CPU being used. Therefore, code (such as device drivers)
for which it is necessary to know the cache line size should use the variable
cacheArchAlignSize instead.

2.3.4 dbgLib

In order to maintain compatibility with hardware-assisted debuggers, VxWorks
for ARM and XScale uses only software breakpoints. When you set a software
breakpoint, VxWorks replaces an instruction with a known undefined instruction.
VxWorks restores the original code when the breakpoint is removed; if memory is
examined or disassembled, the original code is shown.

2.3.5 dbgArchLib

If you are using the target shell, the following additional architecture-specific
routines are available:

psrShow()
Displays the symbolic meaning of a specified processor status register (PSR)
value on the standard output.

cpsr()
Returns the contents of the current processor status register (CPSR) of the
specified task.

2.3.6 intALib
intLock() and intUnlock()

The routine intLock() returns the I bit from the CPSR as the lock-out key for
the interrupt level prior to the call to intLock(). The routine intUnlock() takes

VxWorks
Architecture Supplement, 6.6

this value as a parameter. For ARM and XScale processors, these routines
control the CPU interrupt mask directly. They do not manipulate the interrupt
levels in the interrupt controller chip.

intIFLock() and intIFUnLock()
The routine intIFLock() returns the I and F bits from the CPSR as the lock-out
key in an analogous fashion, and the routine intIFUnlock() takes that value as
a parameter. Like intLock() and intUnlock(), these routines control the CPU
interrupt mask directly. The intIFLock() routine is not a replacement for
intLock(); it should only be used by code (such as FIQ setup code) that
requires that both the IRQ and the FIQ be disabled.

2.3.7 intArchLib

ARM and XScale processors generally have no on-chip interrupt controllers to
handle the interrupts multiplexed on the IRQ pin. Control of interrupts is a
BSP-specific matter. All of these routines are connected by function pointers to
routines that must be provided in ARM and XScale BSPs by a standard interrupt
controller driver. For general information on interrupt controller drivers, see
Wind River AppNote46, Standard Interrupt Controller Devices. VxWorks application
notes are available on the Wind River Online Support Web site at:

https://secure.windriver.com/windsurf/knowledgebase.html

For special requirements or limitations, see the appropriate interrupt controller
device driver documents.

intLiblnit()
This routine initializes the interrupt architecture library. It is usually called
from sysHwlInit2() in the BSP code.

STATUS intLibInit (nLevels, nVecs, mode)

The mode argument specifies whether interrupts are handled in preemptive
mode (INT_PREEMPT_MODEL) or non-preemptive mode
(INT_NON_PREEMPT_MODEL). These modes are defined as follows:

INT_PREEMPT_MODEL
This model calls the hardware device to get the level and vector for the
current interrupt request. It then re-enables the interrupt exception so that
a higher level interrupt can preempt the current interrupt. When the
current interrupt is finished, the interrupt exception is turned off before
exiting back to the exception handler level. (For more information, see the
reference entry for intIntRtn).

https://secure.windriver.com/windsurf/knowledgebase.html

2.3.8 vmLib

2 ARM and XScale
2.3 Interface Variations

INT_NON_PREEMPT_MODEL

This is a non-preemptable mode, which can be faster than the preemptable
mode. In this model, one interrupt at a time is processed until the interrupt
controller device indicates that there are no more pending interrupts. This
is done one at a time to minimize priority inversion. (Note that priority
inversion occurs when the CPU is processing a low priority interrupt and
a higher priority interrupt is made to wait until the low priority interrupt
is finished.)

intEnable() and intDisable()
The intEnable() and intDisable() routines affect the masking of interrupts in
the BSP interrupt controller and do not affect the CPU interrupt mask.

intVecSet() and intVecGet()
The intVecSet() and intVecGet() routines are not supported for ARM and
XScale and are not present in this release.

intVecShow()
The intVecShow() routine is not supported for ARM and XScale and is not
present in this release.

intLockLevelSet() and intLockLevelGet()
The intLockLevelSet() and intLockLevelGet() routines are not supported for
ARM and XScale. The routines are present in this release but are not functional.

intVecBaseSet() and intVecBaseGet()
The intVecBaseSet() and intVecBaseGet() routines are not supported for
ARM and XScale. The routines are present in this release but are not functional.

intUninitVecSet()
You can use the intUninitVecSet() routine to install a default interrupt
handler for all uninitialized interrupt vectors. The routine is called with the
vector number as the only argument.

As mentioned for cacheLib, caching and virtual memory are linked on ARM and
XScale processors. Use of vinLib requires that cacheLib be included as well, and
that calls to the two libraries be coordinated. For more information, see

2.4.10 Memory Management, p.18.

VxWorks
Architecture Supplement, 6.6

2.3.9 vxALib

mmuReadId()
The mmuReadId() routine is provided to return the processor ID on
processors with MMUSs that provide such an ID.

A CAUTION: This routine should not be called on CPUs that do not have this type
of MMU; doing so causes an undefined instruction exception.

vxTas()
The test-and-set primitive vxTas() provides a C-callable interface to the ARM
and XScale SWPB (swap byte) instruction.

2.3.10 vxLib

The vxMemProbe() routine, which probes an address for a bus error, is supported
by trapping data aborts. If your BSP hardware does not generate data aborts when
illegal addresses are accessed, vxMemProbe() does not return the expected
results. The BSP can provide an alternative routine by inserting the address of the
alternate routine in the global variable _func_vxMemProbeHook.

2.4 Architecture Considerations

This section describes characteristics of ARM and XScale processor that you
should keep in mind as you write a VxWorks application. The following topics are
addressed:

= processor mode

= byte order

= ARM and Thumb state

= unaligned accesses

= exceptions and interrupts

= divide-by-zero handling

= floating-point support

= vector floating-point support

10

2 ARM and XScale
2.4 Architecture Considerations

= caches
* memory management
* memory layout

For comprehensive documentation on the ARM and XScale architecture and on
specific processors, see the ARM Architecture Reference Manual and the data sheets
for your target processor.

2.4.1 Processor Mode

VxWorks for ARM executes mainly in 32-bit supervisor mode (SVC32). When
exceptions occur that cause the CPU to enter other modes, the kernel generally
switches to SVC32 mode for most of the processing. Tasks running within a
real-time process (RTP) run in user mode.

NOTE: This release does not include support for the 26-bit processor modes, which
are obsolete.

2.4.2 Byte Order

ARM and XScale CPUs include support for both little-endian and big-endian byte
order; libraries for both byte orders are included in this release.

2.4.3 ARM and Thumb State

VxWorks for ARM and XScale supports the 32-bit instruction set (ARM state) only.
The 16-bit instruction set (Thumb state) is not supported.

2.4.4 Unaligned Accesses

ARM Unaligned Accesses

On ARM CPUs, unaligned 32-bit accesses have well-defined behavior and can
often be used to improve performance. Many of the routines in the VxWorks
libraries use such accesses. For this reason, unaligned access faults are not enabled
by default and should not be enabled (on those CPUs with MMUs that support this
functionality).

11

VxWorks
Architecture Supplement, 6.6

The behavior of unaligned accesses is specified in the ARM Architecture Reference
Manual. When unaligned access faults are not enabled:

= Unaligned instruction fetches must be word-aligned when running in ARM
state or an instruction prefetch abort will occur.

» Unaligned data accesses are treated as aligned by the memory system and
transferred data is rotated appropriately.

XScale Unaligned Accesses

Unaligned accesses are not allowed on XScale CPUs and result in a data abort.

2.4.5 Exceptions and Interrupts

When an ARM and XScale interrupt or exception occurs, the CPU switches to one
of several exception modes, each of which has a number of dedicated registers. In
order to make the handlers reentrant, the stub routines that VxWorks installs to
trap interrupts and exceptions switch from exception mode to SVC (supervisor)
mode for further processing. The handler cannot be reentered while executing in
an exception because reentry destroys the link register. When an exception or
base-level interrupt handler is installed by a call to VxWorks, the address of the
handler is stored for use by the stub when the mode switching is complete. The
handler returns to the stub routine to restore the processor state to what it was
before the exception occurred. Exception handlers (excluding interrupt handlers)
can modify the state to be restored by changing the contents of the register set that
is passed to the handler.

ARM and XScale processors do not, in general, have on-chip interrupt controllers.
All interrupts except FIQs are multiplexed on the IRQ pin (see Fast Interrupt (FIQ),
p-13). Therefore, routines must be provided within your BSP to enable and disable
specific device interrupts, to install handlers for specific device interrupts, and to
determine the cause of the interrupt and dispatch the correct handler when an
interrupt occurs. These routines are installed by setting function pointers. (For
examples, see the interrupt control modules in installDir/vxworks-6.x/target/
src/drv/intrCtl.) A device driver then installs an interrupt handler by calling
intConnect(). For more information on interrupt controllers, see Wind River
AppNote46, Standard Interrupt Controller Devices.

Exceptions other than interrupts are handled in a similar fashion: the exception
stub switches to SVC mode and then calls any installed handler. Handlers are
installed through calls to excVecSet(), and the addresses of installed handlers can
be read through calls to excVecGet().

12

Interrupt Stacks

2 ARM and XScale
2.4 Architecture Considerations

VxWorks for ARM and XScale uses a separate interrupt stack in order to avoid
having to make task interrupt stacks big enough to accommodate the needs of

interrupt handlers. The ARM architecture has a dedicated stack pointer for its IRQ

interrupt mode. However, because the low-level interrupt handling code must be

reentrant, IRQ mode is only used on entry to, and exit from, the handler; an

interrupt destroys the IRQ mode link register. The majority of interrupt handling

code runs in SVC mode on a dedicated SVC-mode interrupt stack.

Fast Interrupt (FIQ)

Fast interrupt (FIQ) is not handled by VxWorks. BSPs can use FIQ as they wish, but
VxWorks code should not be called from FIQ handlers. If this functionality is
required, the preferred mechanism is to downgrade the FIQ to an IRQ by software
access to appropriately-designed hardware which generates an IRQ. The IRQ
handler can then make such VxWorks calls as are normally allowed from interrupt
context.

2.4.6 Divide-by-Zero Handling

There is no native divide-by-zero exception on the ARM and XScale architecture.
In keeping with this, neither the GNU compiler nor the Wind River Compiler
toolchain synthesize a software interrupt for this event.

2.4.7 Floating-Point Support

VxWorks for ARM and XScale is built using the assumption that there is no
hardware floating-point support present on the target. To perform floating-point
arithmetic, VxWorks instead relies on highly tuned software modules. These
modules are automatically linked into the VxWorks kernel and are available to any
application that requires floating-point support.

The floating-point library used by VxWorks for ARM and XScale is licensed from
ARM Ltd. For more information on the floating-point library, see:

http://www.arm.com/

13

http://www.arm.com/

VxWorks
Architecture Supplement, 6.6

Return Status

The floating-point math functions supplied with this release do not set errno.
However, return status can be obtained by calling __ieee_status().

The __ieee_status() prototype is as follows:

unsigned int __ieee_status (unsigned int mask, unsigned int flags);
For example:

d = pow(0,0);

status = _ ieee_status(FE_IEEE_ALL_EXCEPT, 0);
printf("pow(0, 0)=%g, ieee_status=%#x\n", d, status);

The use of the __ieee_status() routine is defined in the appropriate ARM
compilation tools documentation, available from the ARM Ltd. Web site.

The return values are defined in installDir/vxworks-6.x/target/h/arch/arm/arm.h as
follows:

FE_IEEE_FLUSHZERO
FE_IEEE_ROUND_TONEAREST
FE_IEEE_ROUND_UPWARD
FE_IEEE_ROUND_DOWNWARD
FE_IEEE_ROUND_TOWARDZERO
FE_IEEE_ROUND_MASK
FE_IEEE_MASK_INVALID
FE_IEEE_MASK_DIVBYZERO
FE_IEEE_MASK_OVERFLOW
FE_IEEE_MASK_UNDERFLOW
FE_IEEE_MASK_INEXACT
FE_IEEE_MASK_ALL_EXCEPT
FE_IEEE_INVALID
FE_IEEE_DIVBYZERO
FE_IEEE_OVERFLOW
FE_IEEE_UNDERFLOW
FE_IEEE_INEXACT

The MASK for all valid exceptions is: FE_IEEE_ALL_EXCEPT.

2.4.8 Vector Floating-Point Support

This release includes support for ARM VFP11 (vector floating-point coprocessor)
on those ARM and XScale processors that provide the necessary hardware

14

2 ARM and XScale
2.4 Architecture Considerations

support. (For more information on ARM VFP11, see the reference documentation
for the ARM1136](F)-S vector floating-point coprocessor, available from ARM Ltd.)

Vector floating-point support is enabled as follows:
* Define INCLUDE_VFP in your BSP.

» Include installDir/vxworks-6.x/target/h/arch/arm/coprocArm.h.

*= Add VX_VFP_TASK to the options field of taskInit() or taskSpawn().

» For the Wind River Compiler (diab), add -Wa,-Xenable-coprocessor-vfp to
the compiler flags.

*= The GNU compiler does not support vector floating point.

NOTE: Currently, VEP errors are not detected or handled.

2.4.9 Caches

ARM and XScale processor cores have a variety of cache configurations. This
section discusses these configurations and their relation to the ARM and XScale
memory management facilities. The following subsections augment the
information in the VxWorks Kernel Programmer’s Guide: Memory Management.

ARM-based CPUs have one of three cache types: no cache, unified instruction and
data caches, or separate instruction and data caches. Caches are also available in a
variety of sizes. An in-depth discussion regarding ARM and XScale caches is
beyond the scope of this document. For more detailed information, see the

ARM Ltd. Web site at:

http://www.arm.com/

In addition to the collection of caches, ARM cores can also have one of three types
of memory management schemes: no memory management, a memory protection
unit (MPU), or a full page-table-based MMU. Detailed information regarding these
memory management schemes can also be found on the ARM Web site.

XScale-based processors implement a full page-table-based MMU. Detailed
information regarding the memory management scheme can also be found on the
Intel Web site:

http://www.intel.com/design/intelxscale/

Table 2-2 summarizes supported ARM cache and MMU/MPU configurations.
Cache size is detected automatically during VxWorks initialization.

15

http://www.arm.com/
http://www.intel.com/design/intelxscale/

Table 2-2

Table 2-3

VxWorks
Architecture Supplement, 6.6

Supported ARM Cache and MMU/MPU Configurations

Core Cache Size Memory Management
ARM920T/922T 8 KB or 16 KB Page-table-based MMU
ARMO926E]J-S 4 KB to 128 KB Page-table-based MMU
ARMO946ES 4 KB to 128 KB MPU

ARM1136](F)-S 4 KB to 64 KB Page-table-based MMU

Table 2-3 summarizes supported XScale cache and MMU configurations.

Supported XScale Cache and MMU Configurations

Core Cache Type Memory Management

XScale 32 KB instruction cache Page-table-based MMU
32 KB data cache/write buffer
2 KB mini data cache

For all ARM and XScale caches, the cache capabilities must be used with the MMU
(or MPU) to resolve cache coherency problems. When the MMU is enabled, the
page descriptor for each page selects the cache mode, which can be cacheable or
non-cacheable. This page descriptor is configured by filling in the
sysPhysMemDesc[] structure defined in the BSP installDir/vxworks-6.x
target/config/bspnamel/sysLib.c file.

For more information on cache coherency, see the cacheLib reference entry. For
information on MMU support in VxWorks, see the VxWorks Kernel Programmer’s
Guide: Memory Management. For MMU information specific to the ARM family, see
2.4.10 Memory Management, p.18.

Not all ARM and XScale caches support cache locking and unlocking. Therefore,
VxWorks for ARM and XScale does not support locking and unlocking of ARM
and XScale caches. The cacheLock() and cacheUnlock() routines have no effect on
ARM and XScale targets and always return ERROR.

The effects of the cacheClear() and cacheInvalidate() routines depend on the
CPU type and on which cache is specified.

16

2 ARM and XScale
2.4 Architecture Considerations

ARM-Specific Cache Information

ARM 920T/922T Cache

The ARM 920T/922T has separate instruction and data caches. Both are enabled by
default. The data cache, if enabled, must be set to copyback mode, as all writes
from the cache are buffered. USER_D_CACHE_MODE must be set to
CACHE_COPYBACK and not changed. The instruction cache is not coherent with
stores to memory. USER_I_CACHE_MODE should be set to
CACHE_WRITETHROUGH and not changed.

ARM 926EJ-S and ARM 946ES Cache

The ARM 926E]-S and ARM 946ES caches are identical. The cache has separate
instruction and data caches. Both are enabled by default. The data cache, if
enabled, must be set to copyback mode, as all writes from the cache are buffered.
USER_D_CACHE_MODE must be set to CACHE_COPYBACK and not changed. The
instruction cache is not coherent with stores to memory. USER_I_CACHE_MODE
should be set to CACHE_WRITETHROUGH and not changed.

On the ARM 926E]-S and ARM 946ES, it is not possible to invalidate one part of the
cache without invalidating others; therefore, with the data cache specified, the
cacheClear() routine pushes dirty data to memory and then invalidates the cache
lines. For the cacheInvalidate() routine, if the ENTIRE_CACHE option is specified,
the entire data cache is invalidated.

ARM 1136J(F)-S Cache

The ARM 1136](F)-S has separate instruction and data caches. Both are enabled by
default. The data cache can be set to copyback or write-through mode on a
per-page basis. The instruction cache is not coherent with stores to memory.

XScale-Specific Cache Information

All XScale processors contain an instruction cache and a data cache. By default,
VxWorks uses both caches; that is, both are enabled. To disable the instruction
cache, highlight the USER_I_CACHE_ENABLE macro in the Params tab under
INCLUDE_CACHE_ENABLE and remove the value TRUE; to disable the data cache,
highlight the USER_D_CACHE_ENABLE macro and remove TRUE.

It is not appropriate to think of the mode of the instruction cache. The instruction
cache is a read cache that is not coherent with stores to memory. Therefore, code
that writes to cacheable instruction locations must ensure instruction cache
validity. Set the USER_I_CACHE_MODE parameter in the Params tab under
INCLUDE_CACHE_MODE to CACHE_WRITETHROUGH, and do not Change it.

17

VxWorks
Architecture Supplement, 6.6

With the data cache specified, the cacheClear() routine first pushes dirty data to
memory and then invalidates the cache lines, while the cacheIlnvalidate() routine
simply invalidates the lines (in which case, any dirty data contained in the lines is
lost). With the instruction cache specified, both routines have the same result: they
invalidate all of the instruction cache. Because the instruction cache is separate
from the data cache, there can be no dirty entries in the instruction cache, so no
dirty data can be lost.

2.4.10 Memory Management

On ARM and XScale CPUs, a specific configuration for each memory page can be
set. The entire physical memory is described by sysPhysMemDescl], which is
defined in installDir/vxworks-6.x/target/config/bspname/sysLib.c. This data
structure is made up of state flags for each page or group of pages. All of the page
states defined in the VxWorks Kernel Programmer’s Guide: Memory Management are
available for virtual memory pages.

In addition, XScale-based processors support the
MMU_STATE_CACHEABLE_MINICACHE (or
VM_STATE_CACHEABLE_MINICACHE) flag, allowing page-level control of the
CPU minicache.

Memory management is generally performed on small pages that are 4 KB in size.
The ARM concept of large pages is not used. Sections and supersections may be used
by target processors that support them.

ARM Architecture Version 4 Memory Management Considerations

BSPs that are intended for use with ARM Version 4 CPUs that do not have an
MMU, must be compiled with the CPU_VARIANT=_armarch4mmuless option.
Note that the ARM7TDMI processor does not include an MMU.

If you require RTP support for a version 4 processor without an MMU, software
MMU emulation is required. To enable MMU emulation, the following options
must be defined in your BSP config.h file:

#define SW_MMU_ENABLE=TRUE

#define INCLUDE_MMU_BASIC
#define INCLUDE_MMU_GLOBAL_MAP

NOTE: Memory protection is not supported on processors without an MMU.

18

2 ARM and XScale
2.4 Architecture Considerations

ARM Architecture Version 6 Memory Management Enhancements

The virtual memory system architecture for ARM architecture version 6, also
known as VMSAv6, introduced significant enhancements. Memory management
support now includes definitions for added access permissions and different
memory types. This section describes VxWorks support for these enhancements
with ARM architecture version 6 CPUs. For more information about VMSAvV6, see
the ARM Architecture Reference Manual (ARM DDI 0100H), available on the

ARM Ltd. Web site.

NOTE: This section supplements the documentation provided with the
vmBaseLib and vmLib reference entries and in the VxWorks Kernel Programmer’s
Guide: Memory Management.

The VMSAV6 extends access permissions with the addition of the XN (execute
never) bit to the page descriptors. When set, this bit causes a permission fault if
execution of an instruction is attempted from the associated region.

As a result, execution permission must be explicitly provided, as with the
following attributes:

* MMU_ATTR_SUP_RWX (or VM_STATE_WRITEABLE)
* MMU_ATTR_PROT_SUP_READ | MMU_ATTR_PROT_SUP_EXE (or
VM_STATE WRITEABLE_NOT)

The VMSAV6 also adds support for new main memory types: strongly ordered,
device, and normal. The new TEX (type extension) field and the C and B bits create
encodings for these new types of memory and, in the case of normal memory, also
describe the region’s cache and write buffer policy.

The ability to set normal memory as shareable (or cache-coherent) among multiple
bus masters is also added with an addition S (shared) bit.

The encoding of these page descriptors is mapped to MMU configuration
attributes. In addition to the existing cache configuration attributes, there are
additional special attributes for the ARM architecture version 6 CPUs as shown in
Table 2-4.

19

VxWorks
Architecture Supplement, 6.6

Table 2-4 Special Memory Type Translation Attributes for ARM Architecture Version 6

Memory Type Translation Attribute Description
MMU_ATTR_STRONGLY_ORDERED Strong-ordered memory

(or MMU_ATTR_CACHE_OFF) type (shared)
MMU_ATTR_DEVICE_NONSHARED Non-shared device memory
(or MMU_ATTR_CACHE_GUARDED | MMU_ATTR_CACHE_OFF) type
MMU_ATTR_DEVICE_SHARED Shared device memory type
(or

MMU_ATTR_CACHE_GUARDED | MMU_ATTR_CACHE_OFF | M
MU_CACHE_COHERENCY)

MMU_ATTR_NORMAL_NONCACHEABLE Normal memory type with
(or MMU_ATTR_SPL 0 | MMU_ATTR_CACHE_OFF) outer/inner non-cacheable
allocate
MMU_ATTR_WRITEALLOCATE Normal memory type with
(or MMU_ATTR_SPL_3 | MMU_ATTR_CACHE_COPYBACK) outer/inner cache
write-back and write allocate
MMU_ATTR_ATTR x_IN_y Normal memory type with
(or MMU_ATTR_SPL_4 | MMU_ATTR_CACHE_OFF | individually specified outer

cache-policy-specific bits), where x is the outer cache policy, y is the and inner cache policies
inner cache policy, and x and y are one of the following:

OFF: non-cacheable, unbuffered

WBWA: write-back cached, write allocate, buffered

WTNA: write-through cached, no allocate on write, buffered
WBNA: write-back cached, no allocate on write, buffered

You can make normal memory type regions shareable among multiple bus masters
by adding _SHARED to the attribute name or by adding the
MMU_ATTR_CACHE_COHERENCY attribute.

20

2 ARM and XScale
2.4 Architecture Considerations

The MMU_ATTR_CACHE_OFF (or VM_STATE_WRITEABLE_NOT) attribute

describes the strongly ordered memory type. The BSP implementation must

determine if this is the appropriate attribute for non-cacheable memory rather than
the non-cacheable normal memory type,

MMU_ATTR_NORMAL_NONCACHEABLE.

MMU_ATTR_CACHE_COHERENCY is not a standalone cache attribute and must
only be used to apply cache coherency to a region of the normal memory type.

MMU_ATTR_CACHE_GUARDED is not a standalone cache attribute and must only
be used to describe a device memory type.

The proper masks must be used when specifying MME attributes. Masks for
devices and normal memory type attributes may be specified by adding _MSK to
the attribute name. Special purpose attributes (MMU_ATTR_SPL_x) require the
proper mask (MMU_ATTR_SPL_MSK | MMU_ATTR_CACHE_MSK) be used with
them.

NOTE: In VxWorks 5.5, memory protection attributes are set using various
VM_STATE_xxx macros. These macros (as listed above) are still supported for this
release. However, these macros may be removed in a future release. Wind River
recommends that you use the MMU_ATTR_xxx macros for new development and
that you update any existing BSP to use the new macros whenever possible. For
more information on the VM_STATE_xxx macros, see the VxWorks Migration Guide.

XScale Memory Management Extensions

The XScale processor core introduces extensions to ARM Architecture Version 5.
Among these extensions are the addition of the X bit and the P bit. This section
describes VxWorks support for these extensions.

NOTE: This section supplements the documentation provided with the
vmBaseLib and viLib reference entries and in the VxWorks Kernel Programmer’s
Guide: Memory Management.

The XScale processor extends the page attributes defined by the C and B bits in the
page descriptors with an additional X bit. This bit allows four more attributes to be
encoded when X=1. These new encodings include allocating data for the mini-data
cache and the write-allocate cache.

21

VxWorks
Architecture Supplement, 6.6

If you are using the MMU, the cache modes are controlled by the cache mode
values set in the sysPhysMemDesc[] table defined in installDir/vxworks-6.x
target/config/bspnamel/sysLib.c within the BSP directory.

The XScale processor retains the ARM definitions of the C and B encoding when
X= 0, which differs from the behavior on the first generation Intel StrongARM
processors. The memory attribute for the mini-data cache has been relocated and
replaced with the write-through caching attribute.

When write-allocate is enabled, a store operation that misses the data cache
(cacheable data only) generates a line fill. If disabled, a line fill only occurs when a
load operation misses the data cache (cacheable data only).

Write-through caching causes all store operations to be written to memory,
whether they are cacheable or not cacheable. This feature is useful for maintaining
data cache coherency.

The type extension (TEX) field is present in several of the descriptor types. In the
XScale processor, only the least significant bit (LSB) of this field is used; this is
called the X bit.

A small page descriptor does not have a TEX field. For this type of descriptor, TEX
is implicitly zero; that is, this descriptor operates as if the X bit has a zero value.

The X bit, when set, modifies the meaning of the C and B bits.

When examining these bits in a descriptor, the instruction cache only utilizes the C
bit. If the C bit is clear, the instruction cache considers a code fetch from that
memory to be non-cacheable, and does not fill a cache entry. If the C bit is set,
fetches from the associated memory region are cached.

If the X bit for a descriptor is zero, the C and B bits operate as mandated by the
ARM architecture. If the X bit for a descriptor is one, the C and B bits meaning is
extended.

If the MMU is disabled, all data accesses are non-cacheable and non-bufferable.
This is the same behavior as when the MMU is enabled, and a data access uses a
descriptor with X, C, and B all set to zero.

The X, C, and B bits determine when the processor should place new data into the
data cache. The cache places data into the cache in lines (also called blocks). Thus,
the basis for making a decision about placing new data into the cache is called a
line allocation policy.

22

2 ARM and XScale
2.4 Architecture Considerations

If the line allocation policy is read-allocate, all load operations that miss the cache

request a 32-byte cache line from external memory and allocate it into either the

data cache or mini-data cache (this assumes the cache is enabled). Store operations
that miss the cache do not cause a line to be allocated.

If a read /write-allocate is in effect, and if cache is enabled, load or store operations
that miss the cache request a 32-byte cache line from external memory.

The other policy determined by the X, C, and B bits is the write policy. A
write-through policy instructs the data cache to keep external memory coherent by
performing stores to both external memory and the cache. A write-back policy
only updates external memory when a line in the cache is cleaned or needs to be
replaced with a new line. Generally, write-back provides higher performance
because it generates less data traffic to external memory.

The write buffer is always enabled which means stores to external memory are
buffered. The K bit in the auxiliary control register (CP15, register 1) is a global
enable/disable for allowing coalescing in the write buffer. When this bit disables
coalescing, no coalescing occurs regardless of the value of the page attributes. If
this bit enables coalescing, the page attributes X, C, and B are examined to see if
coalescing is enabled for each region of memory.

All reads and writes to external memory occur in program order when coalescing
is disabled in the write buffer. If coalescing is enabled in the write buffer, writes
may occur out of program order to external memory. In this case, program
correctness is maintained by comparing all store requests with all valid entries in
the fill buffer.

The write buffer and fill buffer support a drain operation such that before the next
instruction executes, all XScale processor data requests to external memory—
including the write operations in the bus controller—are complete.

Writes to a region marked non-cacheable and non-bufferable (page attributes C, B,
and X set to zero) cause execution to stall until the write completes.

If software is running in a privileged mode, it can explicitly drain all buffered
writes.

Non-cache memory (X=0, C=0, and B=0) should only be used if required (as is
often the case for I/O devices). Accessing non-cacheable memory is likely to cause
the processor to stall frequently due to the long latency of memory reads.

VxWorks includes support for the X bit and there are now three new states
supported in vinLib.h that allow you to set up buffers to use these extended states.

23

VxWorks
Architecture Supplement, 6.6

The following state flags have been added to vmLib.h:
MMU_STATE_CACHEABLE_MINICACHE cache policy is determined by the MD
(VM_STATE_CACHEABLE_MINICACHE) field of the auxiliary control register
VM_STATE_EX_CACHEABLE write-back, read /write allocate
VM_STATE_EX_CACHEABLE_NOT

VM_STATE_MASK_EX_CACHEABLE

VM_STATE_EX_BUFFERABLE writes do not coalesce into buffers
VM_STATE_EX_BUFFERABLE_NOT

VM_STATE_MASK_EX_BUFFERABLE

If MMU_STATE_CACHEABLE_MINICACHE (or
VM_STATE_CACHEABLE_MINICACHE) is set, pages set to this state using
vmStateSet() result in those pages being cached in the minicache, and not in the
main data cache.

Calling cacheInvalidate(DATA_CACHE, ENTIRE_CACHE) also invalidates the
minicache, but in all other aspects, no support is provided for the minicache, and
you are entirely responsible for ensuring cache coherency.

If INCLUDE_MMU_BASIC and INCLUDE_SHOW_ROUTINES are defined, you may
use vmContextShow() to display a virtual memory context on the standard
output device. Extended bit states for vimContextShow() are defined as:

XC- VM_STATE_EX_CACHEABLE_NOT
XC+ VM_STATE_EX_CACHEABLE

XB- VM_STATE_EX_BUFFERABLE_NOT
XB+ VM_STATE_EX_BUFFERABLE

For more information on the extended page table and X bit support, see the Intel
XScale Core Developer's Manual (available from Intel).

Setting the XScale P Bit in VxWorks

The XScale architecture introduces the P bit in the MMU first level page
descriptors, allowing an application specific standard product (ASSP) to identify a
new memory attribute. The bi-endian version of the IXP42x processor implements
the P bit to control address and data byte swapping and requires support for the P
bit in the first level descriptor and in the auxiliary control register (CP15, Rn 1,

24

2 ARM and XScale
2.4 Architecture Considerations

02 1). The setting of the P bit in a first level descriptor enables address or data byte
swapping on a per-section (1 MB) basis. As page table walks are performed with
the MMU disabled, bit 1 in the auxiliary control register enables byte swapping for
the page table walks.

Because VxWorks MMU support operates on a 4 KB page basis rather than on

1 MB regions, support for the P bit on a per region basis is best accomplished with
a new interface that avoids excessive overhead during MMU initialization. An
additional interface to the auxiliary control register is required as well.

The architecture-specific support code for the XScale MMU has been modified to
support the P bit. A byte array of the size NUM_L1_DESCS (the number of first level
descriptors) has been added. Each byte within the array represents the state of the
P bit for the corresponding region; zero if the P bit is not to be set and one if it is.
The default value is zero. For example:

#1f (ARMMMU == ARMMMU_XSCALE)

/*
* The array used to keep XSCALE mmu 'P' bit state for init purposes.
*/

LOCAL UCHAR mmuArmXSCALEPBit [NUM_L1_DESCS] =
{

0,
#endiirf /* ARMMMU == ARMMMU_XSCALE */
Four routines have been implemented that enable the setting, clearing, and
querying of the state of the P bit status on a per-region basis and within the CP15
auxiliary control register. All of the implemented region-specific routines have two
behaviors, one if the MMU is not yet initialized by the current instance of VxWorks,
and another if it is already initialized.

In the case where the MMU is not yet initialized, the routines operate on the
appropriate bytes within the mmuArmXSCALEPBit array only. When the MMU
is initialized, the P bit is set on a per-region basis as determined by the state of the
mmuArmXSCALEPBiIt array.

When the MMU is initialized, the routines operate on the current first level
descriptor, providing interrupt lockout, cache flushing, and TLB cache invalidates
as necessary. Additionally, the mmuArmXSCALEPBit array mirrors the state of
the P bit on a per-region basis.

25

VxWorks
Architecture Supplement, 6.6

26

mmuArmXSCALEPBitSet()
STATUS mmuArmXSCALEPBitSet /* Set the P bit in a region
or regions */
(
void * virtAddr, /* The beginning virtual address */
UINT32 size /* The size in bytes */

)

The virtual address is converted into an index to a 1 MB region within 32 -bit
virtual address space (rounded down).

The size is converted to the number of 1 MB regions to modify.

NOTE: A virtual address near the end of a 1 MB region and a size of less than
or equal to 1 MB sets the P bit for the 1 MB region of the virtual address only.

If the MMU is not yet initialized, modify only the appropriate areas in the
mmuArmXSCALEPBit array.

If the MMU is initialized, do the following:
Lockout IRQs and FIQs.
b. Write-enable the pages containing the first level descriptors.

c. Modify the selected first level descriptors, mirroring each region's state in
the mmuArmXSCALEPBit array, and flush the data cache for each
region’s first level descriptor.

d. When all selected regions have been processed, flush and invalidate the
TLB caches.

e. Write-protect the pages containing the first level descriptors.
f. Re-enable IRQs and FIQs.

ERROR is returned if virtAddr + size overflows the 32-bit virtual address
space. Otherwise, OK is returned.

mmuPArmXSCALEBitClear()

STATUS mmuPArmXSCALEBitClear /* Clear the P bit in a region(s) */
(
void * virtAddr, /* The beginning virtual address */
UINT32 size /* The size in bytes */

)

The virtual address is converted into an index to a 1 MB region within 32-bit
virtual address space (rounded down).

The size is converted to the number of 1 MB regions to modify.

2 ARM and XScale
2.4 Architecture Considerations

NOTE: A virtual address near the end of a 1 MB region and a size of less than
or equal to 1 MB clears the P bit for the 1 MB region of the virtual address only.

If the MMU is not yet initialized, modify only the appropriate bytes in the
mmuArmXSCALEPBit array.

If the MMU is initialized, do the following:
Lockout IRQs and FIQs.
b. Write-enable the pages containing the first level descriptors.

¢. Modify the selected first level descriptors, mirroring each region's state in
the mmuArmXSCALEPBit array, and flush the data cache for each regions
first level descriptor.

d. When all selected regions have been processed, flush and invalidate the
TLB caches.

e. Write-protect the pages containing the first level descriptors
f. Re-enable IRQs and FIQs.

ERROR is returned if virtAddr + size overflows 32-bit virtual address space.
Otherwise, OK is returned.

mmuArmXSCALEPBitGet()

STATUS mmuArmXSCALEPBitGet
(
void * virtAddr /* The beginning virtual address */
)

The virtual address is converted into an index to a 1 MB region within 32-bit
virtual address space (rounded down).

If the MMU is not yet initialized, return the value of the selected byte in the
mmuArmXSCALEPBit array.

If the MMU is initialized:

a. Return the state of the P bit in the selected first level descriptor.
STATUS mmuArmXSCALEAcrGet
(
void

)

27

VxWorks
Architecture Supplement, 6.6

b. Return the contents of the CP15 Auxiliary Control Register, (CP15, 0,10, c1,
c0, 1).
void mmuArmXSCALEAcrSet
(
UINT32 acr /@ value to load into ACR @/
)

c. Write the CP15 auxiliary control register with the contents of ACR.

Setting the P Bit in Virtual Memory Regions

There are two available methods to set the P bit in a region, or regions, of virtual
memory. The first, and preferred method, is to modify the sysHwInit0() routine
within installDir/vxworks-6.x/target/config/bspnamelsysLib.c to call
mmuPBitSet() prior to the initialization of the MMU.

The second is to modify the state through calls to mmuPBitSet() and
mmuPBitClear() during run-time. This method is less desirable due to the impact
that disabling IRQs and FIQs may have on the application.

An example of the preferred method follows (from installDir/vxworks-6.x
target/config/bspnamelsysLib.c).

#ifdef INCLUDE_MMU
/* Install the appropriate MMU library and translation routines */
mmuArmXSCALELibInstall (mmuPhysToVirt, mmuVirtToPhys) ;

#ifdef IXP425_ENABLE_P_BITS
{

int acrValue;

/* Set all DRAM regions with P bit */
mmuArmXSCALEPBitSet ((void *)IXP425_SDRAM BASE, LOCAL_MEM_ SIZE) ;

#ifdef INCLUDE_PCI
/* Set PCI regions with P bit */
mmuArmXSCALEPBitSet ((void *)IXP425_PCI_BASE, IXP425_PCI_SP SIZE);
#endif
/* Make table walks use P bit */
acrValue = mmuArmXSCALEAcrGet () ;
acrValue |= 0x2; /* Set the P bit in the ACR */
mmuArmXSCALEAcrSet (acrValue) ;
}
#endif /* IXP425_ENABLE_P_BITS */

#endif /* INCLUDE_MMU */

28

2 ARM and XScale
2.4 Architecture Considerations

Mapping Address Space as Sections or Supersections

By default, addresses are mapped as coarse page table entries. It is also possible to
map addresses as sections or supersections (if the functionality is supported by

your target processor). These mappings are typically meant to be static, though

they may be de-optimized into smaller mappings if necessary. For more

information about de-optimization, see Page Size Optimization, p.31.

NOTE: XScale processors that support supersections—such as the IXP2350—must
define a CPU variant variable, CPU_VARIANT=_manzano.

A global pointer (PHYS_MEM_DESC * pSysPhysMemDescExt) is initialized to
NULL by mmuLib. If support for sections or supersections is required, the BSP is
responsible for allocating an array of structures and reassigning
pSysPhysMemDescExt to point to the local array. Typically, this is done in
sysHwInit0().

Similar to sysPhysMemDesc, sysPhysMemDescExt uses a count variable to
indicate the size of the array. In sysHwInit0(), you must assign the global variable
sysPhysMemDescExtNumEnt to the number of entries in the
sysPhysMemDescExt array.

Each entry in a sysPhysMemDescExt array is nearly identical to the corresponding
entry in the sysPhysMemDesc array. The following fields are identical and
duplicated: virtual Addr, physicalAddr, and len. The following values are valid for
initialStateMask and initialState:

MMU_DEF_L1_SECTION_PAGE
This value tells the operating system to map the address space as one or more
sections.

MMU_DEF_L1_SUPERSECTION_PAGE
This value tells the operating system to map the address space as one or more
supersections (if the MMU supports this functionality).

The following code is an example of a memory map that maps PCI1/O space as
coarse page table entries (because there is no entry in the sysPhysMemDescExt
array) and maps PCI memory space as a section and PCI configuration space as a
supersection:

/* external variables */

extern PHYS_MEM_DESC * pSysPhysMemDescEXt;
extern int sysPhysMemDescEXtNumEnt;

29

VxWorks
Architecture Supplement, 6.6

/* global variables */
PHYS_MEM_ DESC sysPhysMemDesc [] =

{

{

CPU_PCI_IO_ADRS, /* PCI I/0 space */

CPU_PCI_IO_ADRS,

ROUND_UP (SZ_64K, PAGE_SIZE),

VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT

}

{

CPU_PCI_MEM_ADRS, /* PCI Memory space */

CPU_PCI_MEM ADRS,

ROUND_UP (SZ_8M, PAGE_SIZE),

VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT

}

{

CPU_PCI_CNFG_ADRS, /* PCI Configuration space */

CPU_PCI_CNFG_ADRS,

ROUND_UP (SzZ_16M, PAGE_SIZE),

VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT

}

}

PHYS_MEM DESC sysPhysMemDescExt [] =

{

{

CPU_PCI_MEM_ADRS, /* PCI Memory space */
CPU_PCI_MEM ADRS,

ROUND_UP (SZ_8M, PAGE_SIZE),

/* Map as a section */

MMU_DEF_L1_SECTION_PAGE,

MMU_DEF_L1_SECTION_PAGE

Y,

{

CPU_PCI_CNFG_ADRS, /* PCI Configuration space */
CPU_PCI_CNFG_ADRS,

ROUND_UP (Sz_16M, PAGE_SIZE),

30

2 ARM and XScale
2.4 Architecture Considerations

/* Map as a supersection */
MMU_DEF_L1_SUPERSECTION_PAGE,
MMU_DEF_L1_SUPERSECTION_PAGE
}

}

sysHwInitO ()

{

pSysPhysMemDescExt = sysPhysMemDescEXt;

sysPhysMemDescEXtNumEnt = NELEMENTS (sysPhysMemDescExt) ;

Page Size Optimization

A dynamic method for mapping addresses as sections or supersections (if the
MMU supports this functionality) is available through the VxWorks vimLib API
routine vimPageOptimize(). Page size optimization support for MMUs allows
more efficient management of virtual memory with fewer translation table walks
or translation lookaside buffer (TLB) misses.

The vinPageOptimize() routine allows default sized 4 KB MMU pages to be
coalesced into 1 MB sections or 16 MB supersections (if the MMU supports this
functionality) for contiguous memory blocks having the same attributes.
De-optimization is performed automatically when necessary. For example, if the
attributes are changed for part of a memory block that is mapped to a 1 MB MMU
page, it is broken up into 4 KB pages and the new attributes are applied to the
requested pages only.

NOTE: MMU page sizes other than 4 KB, 1 MB and 16 MB are not supported for
this architecture.

ARM and XScale architecture support for vmPageOptimize() has limitations that
are not described in the entry for the vmPageOptimize() routine:

31

VxWorks
Architecture Supplement, 6.6

* Once a page optimization operation (for example, vmPageOptimize()) is
performed, attempts to change page attributes during an interrupt are limited
in order to prevent MMU table corruption. Calls to vimStateSet() during
interrupt processing fail if the call causes page de-optimization, and return
S_mmuLib_ISR_CALL_BLOCKED. Also, calls to vmStateSet() during interrupt
processing while page optimization or de-optimization is in process always
fail, and return S_mmuLib_ISR_CALL_BLOCKED.

» The Virtual Memory Management special purpose attribute
MMU_ATTR_NO_BLOCK cannot be used, because there is no support for
locking pages in the ARM MMU subsystem.

Optimization of the entire kernel memory space can be done automatically at
startup by adding the INCLUDE_PAGE_SIZE_OPTIMIZATION component to a
VxWorks project. (The INCLUDE_MMU_OPTIMIZE component is also required,
but is automatically included by the project component configuration tool.)

Some blocks of memory used by VxWorks, such as those allocated for MMU page
tables and for error detection and reporting, may prevent optimization of certain
areas. This is because those blocks of memory may have different attributes than
the rest of memory in the same 1 MB-aligned address range.

If software MMU simulation is enabled (that is, the INCLUDE_MMU_BASIC
component parameter SW_MMU_ENABLE is TRUE), page size optimization is not
available. In this case, the INCLUDE_PAGE_SIZE_OPTIMIZATION component
should be removed from your project or resources will be consumed unnecessarily.

Cache and Memory Management Interaction

The caching and memory management functions for ARM and XScale processors
are both provided on-chip and are very closely interlinked. In general, caching
functions on ARM and XScale require the MMU to be enabled. Consequently, if
cache support is configured into VxWorks, MMU support is also included by
default. On some CPUs, the instruction cache can be enabled (in the hardware)
without enabling the MMU; however this is not a recommended configuration.

Only certain combinations of MMU and cache-enabling are valid, and there are no
hardware interlocks to enforce this. In particular, enabling the data cache without
enabling the MMU can lead to undefined results. Consequently, if an attempt is
made to enable the data cache by means of the cacheEnable() routine before the
MMU has been enabled, the data cache is not enabled immediately. Instead, flags
are set internally so that if the MMU is enabled later, the data cache is enabled with

32

2 ARM and XScale
2.4 Architecture Considerations

it. Similarly, if the MMU is disabled, the data cache is also disabled until the MMU
is reenabled.

Support is also included for CPUs that provide a special area in the address space
to be read in order to flush the data cache. ARM and XScale BSPs must provide a
virtual address (sysCacheFlushReadArea) for a readable, cached block of address
space that is used for nothing else. If the BSP has an area of the address space that
does not actually contain memory but is readable, it can set the pointer to point to
that area. If it does not, it should allocate some RAM for this area. In either case,
the area must be marked as readable and cacheable in the page tables.

The declaration can be included in the BSP installDir/vxworks-6.x/target
[config/bspnamel/sysLib.c file. For example:

UINT32 sysCacheFlushReadArea[D_CACHE_SIZE/sizeof (UINT32)1];

Alternatively, the declaration can appear in the BSP romInit.s and sysALib.s files.
For example:

.globl _sysCacheFlushReadArea

.equ _sysCacheFlushReadArea, 0x50000000

A declaration in installDirlvxworks-6.x/target/config/bspname/sysLib.c of the
following form cannot be used:

UINT32 * sysCacheFlushReadArea = (UINT32 *) 0x50000000;

This form cannot be used because it introduces another level of indirection,
causing the wrong address to be used for the cache flush buffer.

Some systems cannot provide an environment where virtual and physical
addresses are the same. This is particularly important for those areas containing
page tables. To support these systems, the BSP must provide mapping functions to
convert between virtual and physical addresses: these mapping functions are
provided as parameters to the routines cachetypeLibInstall() and
mmutypeLibInstall(). For more information, see BSP Considerations for Cache and
MMU, p.34.

All XScale BSPs using CPUs with a minicache must provide a similar virtual
address (sysMinicacheFlushReadArea) of an area used to flush the minicache. It
must be marked as cacheable within the minicache (that is, it must have the
MMU_STATE_CACHEABLE_MINICACHE or
VM_STATE_CACHEABLE_MINICACHE state).

33

VxWorks
Architecture Supplement, 6.6

BSP Considerations for Cache and MMU

When building a BSP, the instruction set is selected by choosing the architecture
(that is, by defining CPU to be ARMARCHXx or XSCALE); the cache and MMU/MPU
types are selected within the BSP by defining appropriate values for the macros
ARMMMU and ARMCACHE and calling the appropriate routines (as shown in
Table 2-5) to support the cache and MMU/MPU. Setting the preprocessor
variables ARMMMU and ARMCACHE ensures that support for the appropriate
cache and MMU type is enabled.

ARM MMU and Cache Values
The values definable for MMU for ARM processors include the following:

ARMMMU_NONE
ARMMMU_920T
ARMMMU_926E
ARMMPU_946E
ARMMMU_1136JF

The values definable for cache for ARM processors include the following:

ARMCACHE_NONE
ARMCACHE_920T
ARMCACHE_926E
ARMCACHE_946E
ARMCACHE_1136]F

XScale MMU and Cache Values
The values definable for MMU for XScale processors include the following:

ARMMMU_NONE
ARMMMU_XSCALE
ARMMMU_MANZANO

The values definable for cache for XScale processors include the following:

ARMCACHE_NONE
ARMCACHE_XSCALE
ARMCACHE_MANZANO

Defined types are in the header file installDir/vxworks-6.x/target/h/arch/arm
/arm.h. (Support for other caches and MMU types may be added from time to
time.)

34

2 ARM and XScale
2.4 Architecture Considerations

For example, to define the MMU type for an ARM 926E]-S on the command line,
specify the following option when you invoke the compiler:

2
-DARMMMU=ARMMMU_926E -

To provide the same information in a header or source file, include the following
line in the file:

#define ARMMMU ARMMMU_926E

MMU and MPU Routines

Table 2-5

Table 2-5 shows the MMU and MPU routines required for each processor type.

Cache and MMU/MPU Routines for Individual Processor Types

Processor Cache Routine MMU/MPU Routine

ARM cacheArm920tLibInstall() mmuArm920tLibInstall()
920T/922T

ARM 926E]J-S cacheArm926eLibInstall() mmuArm926eLibInstall()
ARM 946E cacheArm946eLibInstall() mpuArm946eLibInstall()
ARM cacheArm1136jfLibInstall() mmuArm1136jfLibInstall()
1136J(F)-S

XScale cacheArmXScaleLibInstall() mmuArmXScaleLibInstall()
XScale? cacheArmManzanoLibInstall() mmuArmManzanoLibInstall()

a. These routines are provided for those processors that use the CPU variant,
CPU_VARIANT=_manzano. For more information on this variant, see Processor
Variants, p.5.

Each of the MMU and cache routines takes two parameters: function pointers to
routines to translate between virtual and physical addresses and vice-versa. If the
default address map in the BSP is such that virtual and physical addresses are
identical (this is normally the case), the parameters to this routine can be NULL
pointers. If the virtual-to-physical address mapping is such that the virtual and
physical addresses are not the same, but the mapping is as described in the
sysPhysMemDesc[] structure, the routines mmuPhysToVirt() and
mmuVirtToPhys() can be used. If the mapping is different, translation routines
must be provided within the BSP. For further details, see the reference entries for
these routines.

35

VxWorks
Architecture Supplement, 6.6

MPUs for ARM processors are always mapped so that physical memory addresses
are identical to their associated virtual addresses. Because of this, no
virtual-to-physical translation is required. The MPU initialization routines do not
accept any parameters.

MMU and cache support installation routines must be called as early as possible in
the BSP initialization (before cacheLibInit() and vmLibInit()). This can most
easily be achieved by putting them in a sysHwInit0() routine within sysLib.c and
then defining macros in config.h as follows:

#define INCLUDE_SYS_HW_INIT_O

#define SYS_HW_INIT 0() sysHwInitO ()
MPU initialization routines for ARM processors, on the other hand, must be called
slightly later, typically at the beginning of sysHwInit(). In addition to the routines
in Table 2-5, mpuArm946eShowlInstall() can be called at this time to initialize
MPU debugging. Once mpuArm946eShowInstall() has been called, mpuShow()
can be called at any time to display the current MPU configuration. Neither of
these routines accepts any parameters. You can automatically include the
mpuShow() debug routine by conditionally compiling the call to
mpuArm946eShowlnstall() so that it is called when the component is defined.

In the case of the ARM MPU, one additional function must be called from
sysHwInit() after calling the installation routine: mpuGlobalMaplInit() returns
OK or ERROR, and takes the following four parameters:

* apointer to sysPhysMemDesc

* the number of entries in sysPhysMemDesc

* boolean TRUE to indicate that the MPU should be automatically enabled
= the cache default mode (typically MMU_DEFAULT_CACHE_MODE)

During certain cache and MMU operations (for example, cache flushing),
interrupts must be disabled. You may want your BSP to have control over this
procedure. The contents of the variable cacheArchIntMask determine which
interrupts are disabled. This variable has the value I_BIT | F_BIT, indicating that
both IRQs and FIQs are disabled during these operations. If a BSP requires that
FIQs be left enabled, the contents of cacheArchIntMask should be changed to
I_BIT. Use extreme caution when changing the contents of this variable from its
default.

36

2 ARM and XScale
2.4 Architecture Considerations

2.4.11 Memory Layout

The VxWorks memory layout (real or virtual, as appropriate) is the same for all
ARM and XScale processors. Figure 2-1 shows memory layout, labeled as follows:

Vectors
Table of exception/interrupt vectors.

FIQ Code
Reserved for FIQ handling code.

Shared Memory Anchor
Anchor for the shared memory network and VxMP shared memory objects (if
there is shared memory on the board).

Exception Pointers
Pointers to exception routines, which are used by the vectors.

Boot Line
ASCII string of boot parameters.

Exception Message
ASCII string of fatal exception message.

Initial Stack
Initial stack for usrInit(), until usrRoot() is allocated a stack.

System Image
VxWorks itself (three sections: text, data, and bss). The entry point for
VxWorks is at the start of this region.

WDB Memory Pool
The size of this pool depends on the macro WDB_POOL_SIZE, which defaults
to one-sixteenth of the system memory pool. The target server uses this space
to support host-based tools. Modify WDB_POOL_SIZE under INCLUDE_WDB.

System Memory Pool
Size depends on size of the system image. The sysMemTop() routine returns
the end of the free memory pool.

All addresses shown in Figure 2-1 are relative to the start of memory for a
particular target board. The start of memory (corresponding to 0x0 in the memory
layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under
INCLUDE_MEMORY_CONFIG for each target.

NOTE: The initial stack and system image addresses are configured within the BSP.

37

Figure 2-1

VxWorks
Architecture Supplement, 6.6

VxWorks System Memory Layout (ARM and XScale)

Vectors

Reserved For FIQ Code

Exception Pointers

Shared Memory Anchor

Boot Line

Exception Message

Initial Stack

System Image

text

data

bss

WDB Memory Pool

System Memory Pool

38

Address

+0x0000 LOCAL_MEM_LOCAL_ADRS
+0x0020

+0x0100
+0x0120

+0x0600
+0x1000

+0x1100
+0x1200

RAM_LOW_ADRS

KEY

[1 =Available
[———1 =Reserved

_end

sysMemTop()

2 ARM and XScale
2.5 Migrating Your BSP

2.5 Migrating Your BSP

In order to convert a VxWorks BSP from an earlier VxWorks release to
VxWorks 6.6, you must make certain architecture-independent changes. This
includes making changes to custom BSPs designed to work with a VxWorks 5.5
release and not supported or distributed by Wind River.

This section includes changes and usage caveats specifically related to migrating
ARM BSPs to VxWorks 6.6. For more information on migrating BSPs to this release,
see the VxWorks Migration Guide.

VxWorks 5.5 Compatibility

The memory layout shown in Figure 2-1 differs from that used for VxWorks 5.5.
The position of the boot line and exception message have been moved to allow
memory page zero protection (kernel hardening).

To achieve compatibility with VxWorks 5.5 boot ROMs, define the
T2_BOOTROM_COMPATIBILITY option in config.h. In this configuration, the
following symbols are defined in config.h:

#define SM_ANCHOR_OFFSET 0x600

#define BOOT_LINE OFFSET 0x700

#define EXC_MSG_OFFSET 0x800
However, kernel hardening is not supported in this configuration. In order to
enable kernel hardening, you must undefine T2 BOOTROM_COMPATIBILITY and
use a VxWorks 6.x boot ROM that has been built with
T2 BOOTROM_COMPATIBILITY undefined.

NOTE: ARM BSPs included with VxWorks 6.6 have the
T2_BOOTROM_COMPATIBILITY option disabled by default in config.h.

XScale BSPs included with VxWorks 6.6 have the T2_ BOOTROM_COMPATIBILITY
option enabled by default in config.h

If you create a Workbench project based on a VxWorks 5.5-compatible BSP (that is,
a BSP that has T2 BOOTROM_COMPATIBILITY enabled) and you wish to remove
the compatibility and enable kernel hardening, you must do one of the following:

» Update your BSP. Then, create a new project based on the modified BSP, and
enable INCLUDE_KERNEL _HARDENING.

or:

39

VxWorks
Architecture Supplement, 6.6

» Undefine T2 BOOTROM_COMPATIBILITY. Enable
INCLUDE_KERNEL_HARDENING and update the values of
SM_ANCHOR_OFFSET, BOOT_LINE_OFFSET, and EXC_MSG_OFFSET to
0x1000, 0x1100, and 0x1200 respectively.

NOTE: VxWorks 5.5-compatible BSPs cannot support kernel hardening.
T2_BOOTROM_COMPATIBILITY and INCLUDE_KERNEL_HARDENING are
mutually exclusive. If both of these components are defined in your config.h file,
Workbench issues a warning when you attempt to build your project.

Detecting the VxWorks 6.x Boot ROM Mode
The compatibility mode of a VxWorks 6.x boot ROM can be determined by
examining location 0x700 while in the boot ROM, following a cold boot.

If location 0x700 contains a valid BOOTLINE, the BOOTLINE location is
Tornado 2.0 compatible and the image being booted has been built with
T2_BOOTROM_COMPATIBILITY defined.

If 0x700 is NULL, but 0x1100 contains a valid BOOTLINE, the image being booted
has been built with T2_ BOOTROM_COMPATIBILITY undefined.

T2_BOOTROM_COMPATIBILITY is defined in the BSP config.h file.

2.6 Reference Material

Comprehensive information regarding ARM hardware behavior and
programming is beyond the scope of this document. ARM Ltd. provides several
hardware and programming manuals for the ARM processor on its Web site:

http://www.arm.com/documentation/

Intel provides several hardware and programming manuals for the XScale
processor on its Web site:

http://www.intel.com/design/intelxscale

Wind River recommends that you consult the hardware documentation for your
processor or processor family as necessary during BSP development.

40

http://www.arm.com/documentation/
http://www.intel.com/design/intelxscale

2 ARM and XScale
2.6 Reference Material

ARM Development Reference Documents

The information given in this section is current at the time of writing; should you
decide to use these documents, you may wish to contact the manufacturer for the
most current version.

» Advanced RISC Machines, Architectural Reference Manual, Second Edition,
ARM DDI 0100 E, ISBN 0-201-73719-1.

NOTE: This document describes the architecture in general, including
architectural standards for instruction bit fields. More specific information is
found in the data sheets for individual processors, which conform to different
architecture specification versions.

» ARM System Architecture, by Steve Furber. Addison-Wesley, 1996.
ISBN 0-201-403352-8.

= ARM Procedure Call Standard (APCS), a version of which is available on the
Internet. Contact ARM for information on the latest version.

41

VxWorks
Architecture Supplement, 6.6

42

ColdFire

3.1 Introduction 43

3.2 Supported Processors 43

3.3 Interface Variations 44

3.4 Architecture Considerations 46

3.5 Reference Material 56

3.1 Introduction

This chapter provides information specific to VxWorks development on ColdFire
processors. These processors are produced by Freescale Semiconductor.

3.2 Supported Processors

This release of VxWorks for ColdFire supports the V2, V3, and V4e family of
processors. BSP support is available for m5208, m5329, m5475, and m5485
processors.

43

VxWorks
Architecture Supplement, 6.6

The processor type is specified by defining the CPU type in the BSP Makefile. For
V2/V3 chips, specify CPU=MCF5200. For V4e chips, specify CPU=MCF5400.

3.3 Interface Variations

This section describes particular routines and tools that are specific to ColdFire
targets in any of the following ways:

= They are available only on ColdFire targets.
* They use parameters specific to ColdFire targets.
» They have special restrictions or characteristics on ColdFire targets.

For complete documentation, see the reference entries for the libraries, routines,
and tools discussed in the following sections.

3.3.1 Optimized Libraries

Most VxWorks libraries are compiled from portable C source code, but there are
some libraries that are compiled from assembly language for better performance.
The following library is optimized for ColdFire targets:

= bLib—buffer manipulation library (including the swab() routine)

3.3.2 Floating-Point Support
Both software and hardware floating point are supported in this VxWorks release.
Libraries are shipped for software floating point for V2 and V3 series processors.

Both hardware and software floating-point libraries are shipped for V4e series
processors.

3.3.3 Software Breakpoints

VxWorks for ColdFire provides support for software breakpoints only. When you
set a software breakpoint with the b() command, VxWorks replaces the indexed

44

3 ColdFire
3.3 Interface Variations

instruction with a trap instruction. VxWorks restores the original instruction when
the breakpoint is removed.

3.3.4 intArchLib
VxWorks for ColdFire makes changes to the following standard routines:

intConnect()
The intConnect() routine accepts the following parameters: the interrupt vector
address, the handler routine, and an integer parameter to the handler routine.
intVecShow()

The intVecShow() routine is not supported for ColdFire and is not present in this
release.

3.3.5 mathLib

VxWorks for ColdFire supports the following double-precision math routines:

acos() asin() atan() atan2() ceil() cos() cosh()
exp() fabs() floor() fmod() frexp() Ildexp() log()
log10() modf() pow() sin() sinh() sqrt() tan()
tanh()

The following single-precision math routines are also supported:

acosf() asinf() atanf() atan2f() ceilf() cosf() coshf()
expf() fabsf() floorf() fmodf() frexpf() ldexpf() logf()
log10f() modff() powf() sinf() sinhf() sqrtf() tanf()
tanhf()

3.3.6 vxLib
The following routines include ColdFire-specific implementations for this release:

vxTas()

The vxTas() routine provides a C-callable interface to a test-and-set instruction,
and it is assumed to be equivalent to sysBusTas() in sysLib. The ColdFire version

45

VxWorks
Architecture Supplement, 6.6

of vxTas() executes the tas instruction (if supported by the architecture), returning
the result in the d0 register. The test-and-set (atomic read-modify-write) operation
may require an external bus locking mechanism on some hardware. In this case,
wrap vxTas() with the bus locking and unlocking code in sysBusTas().

vxMemProbe()

The vxMemProbe() routine probes a specified address by capturing a bus error.
The ColdFire version of the vxMemProbe() routine captures address errors (as
defined by the CPU) as well as unhandled MMU exceptions (as defined by the
CPU). If a function pointer, _func_vxMemProbeHook, is set by the BSP, the
vxMemProbe() routine calls the hook routine instead of its default probing code.

3.3.7 ColdFire-Specific Tool Options

This section includes information on the supported compiler, linker, and assembler
options for this release.

NOTE: This release includes Wind River Compiler (diab) support for ColdFire.
The Wind River GNU Compiler does not include support for ColdFire processors
in this release and cannot be used.

The are no ColdFire-specific compiler, linker, or assembler options included for
this release. For more information, see your Wind River Compiler documentation.

3.4 Architecture Considerations

This section describes characteristics of the ColdFire architecture that you should
keep in mind as you write a VxWorks application. The following topics are
addressed:

= reserved instructions

= exceptions and interrupts

= operating mode, privilege protection
= byte order

* register usage

* multiple interrupts

46

3 ColdFire
3.4 Architecture Considerations

* interrupt stack

* memory management
= caches

» floating-point support
* power management

» PCIwindow mapping
* memory layout

3.4.1 Reserved Instructions

The trap-0, trap-1, trap-2, and trap-3 instructions are reserved for use by the
operating system. The remaining trap instructions are available for general use.

3.4.2 Exceptions and Interrupts

The ColdFire architecture specification assigns an exception vector to each defined
hardware exception. VxWorks initializes these vectors to point to an unhandled
interrupt or exception handler.

ColdFire interrupts are a special type of exception. During system initialization,
the intConnect() call registers a device interrupt handler with an interrupt vector.
In this process, the kernel allocates a small interrupt handler for each registered
interrupt. This handler executes a trap-1 instruction to force the current format and
status register values onto the current stack. The hardware then vectors the
instruction stream to the trap-1 handler where it continues processing the
interrupt. The interrupt handler switches to the interrupt stack, finds the registered
handler, and executes the device interrupt handler. After the handler completes
execution, the original stack and task context are restored and processing
continues from where the interrupt occurred.

3.4.3 Operating Mode, Privilege Protection

VxWorks runs in privileged mode on ColdFire processors. RTPs (real-time
processes) normally run in user mode but can be configured to run in supervisor
mode. User stack support can be disabled by calling taskUserStackDisable()
during BSP initialization. Disabling this feature is necessary if the core lacks a
hardware-managed user stack. This option is not available if MMU support is
included.

47

VxWorks
Architecture Supplement, 6.6

RTPs issue a trap-3 instruction when invoking a VxWorks system call and switch
to privileged mode to access resources that are protected from user mode access.
For more information on RTPs, see the VxWorks Application Programmer’s Guide.

3.4.4 Byte Order

ColdFire processors support big-endian byte order only.

3.4.5 Register Usage

Register usage for ColdFire is as follows:

A0 scratch

Al scratch

DO scratch

D1 scratch

A6 link register
A7 stack pointer

NOTE: This release includes support for a user stack pointer. When the user mode
bit in the processor status register is set, this register is accessed as A7.

3.4.6 Multiple Interrupts

ColdFire uses three bits in the status register for the interrupt level field. The
processor supports seven levels of prioritized interrupts. Typically, interrupt level
selection is under software control.

3.4.7 Interrupt Stack

This release provides a separate interrupt stack. A separate stack reduces the
required stack space of each created task because the task is no longer required to
provide its own stack space for interrupt handling. Because ColdFire processors do
not provide hardware support for this feature, this stack is implemented in
software. The interrupt stack size is defined by the ISR_STACK_SIZE macro in
configAlLh. The default size of the interrupt stack is 1000 bytes.

48

3 ColdFire
3.4 Architecture Considerations

3.4.8 Memory Management

Key features of the ColdFire MMU include:

= 32 entry, fully associative data translation lookaside buffer (TLB)

= 32 entry, fully associative instruction TLB

= 4KB, 8KB, 1 MB, and (depending on your hardware) either 1 KB or 16 MB
page sizes

» 8-bit address space identifier (ASID)

= shared global page attribute (data is accessible by all ASIDs)

» user and supervisor access modes, each with a dedicated hardware stack
pointer

= software table-walks, with updates accomplished using:
— combined data and instruction TLB miss exception
— translation table descriptors located in memory

The ColdFire MMU is software managed. MMU support is provided using the
Architecture Independent Manager (AIM) for MMU library. The AIM MMU
library resides beneath the virtual memory (VM) library and above the
architecture-dependent MMU library (AD-MMU). The AIM MMU provides
general routines for creating and managing translation tables. In order to access the
MMU, the AIM MMU makes calls to the AD-MMU primitives.

The AIM MMU manages address translation tables organized as a three level table
hierarchy. The highest-level tables are known as context tables. The context table
entries can be indexed using the current task address space identifier (ASID) or the
base address to the task region table. A region table contains the base address
entries to the page tables. The region and page tables are indexed by masking and
shifting a portion of the virtual address. The relationship between the tables is
depicted in Figure 3-1.

ColdFire facilitates memory access protection using two possible hardware
methods. The architecture supports access control registers (ACRs). These registers
allow you to configure memory regions with cache mode and user/supervisor
access protection. The ColdFire V4e specification adds an MMU. At each memory
access, the hardware first checks to see if the address is described by an ACR. If no
ACR describes the address, the memory management unit is then checked to see if
a TLB entry is loaded that maps the address. Failing these checks, a TLB miss
exception is generated and the event is fielded by the MMU TLB miss handler.
VxWorks uses both ACR and MMU features to support memory management.

5400 series ColdFire processors currently provide four ACRs to configure memory
access. Each ACR can define cache and protection attributes for regions 1 MB or

49

Figure 3-1

VxWorks
Architecture Supplement, 6.6

Relationship Between Region, Context, and Page Tables

Virtual Address

Region Index | Page Index Offset ‘
ASID
Real Address *
‘ Real Page Number Offset ‘

I

I — L

1 - TIB
Context Table }
Region Table
Page Table

greater. Configuration of the memory space is accomplished using four ACRs; two
data and two instruction.

Each ColdFire TLB entry defines read /write/execute permissions and supervisor
access restriction on a memory page. Only 8 KB page sizes are supported in this
release. The ColdFire V4e MMU design includes an 8-bit ASID feature that allows
user mode processes to identify TLB entries as being specific to their protection
domain. This feature effectively increases the 32-bit virtual address to 40 bits.
Individual tasks are still limited to a 4 GB address range. Up to 255 processes can
uniquely map memory. Shared data is configured using the shared global flag.
When this bit is set, the ASID is not used for TLB hit determination and the page is
visible to all user and supervisor tasks.

Unlike other supported architectures, ColdFire hardware does not turn off the
MMU when a TLB miss occurs. If the stack frame cannot be accessed (for example,
if the system stack space is not currently mapped) or, if the exception vector table
or the exception text region is not accessible, the processor halts. Because the MMU
is left on when a TLB miss occurs, there are two possible failure scenarios:

» First, because the MMU is not turned off by the hardware, a TLB miss within
the handler is fatal.

» Second, when a TLB miss exception occurs, ColdFire pushes an exception trap
frame onto the current supervisor stack. If a miss occurs while accessing the
supervisor stack, the hardware is unable to create this exception frame. This
condition is also fatal.

VxWorks is designed to avoid these conditions by using the ACRs to define access
rights to critical memory areas. Memory accesses to addresses that are described
by the ACRs are TLB miss-proof. Physical memory is configured to show up twice

50

3 ColdFire
3.4 Architecture Considerations

in the system physical address space in two adjacent memory windows. The first

window is controlled by the MMU (most memory accesses occur through this

window). The second window is configured by the ACRs and is used for

supervisor stacks, the vector page, and a limited section of text that is related to
fielding TLB misses. Accesses to memory through either page reference the same

physical memory. Cache coherency issues can result if the same memory is

accessed through both windows. VxWorks maintains coherency between these

two windows by aligning stacks in multiples of cache line size and by flushing the

cache where required.

Stack Guard Pages

Because the architecture is unable to field a TLB miss in the supervisor stack,
support for supervisor guard pages is not provided. Stack guard zones are
available for RTP user stacks.

MMU Page Locking

MMU page locking is supported in this release. Page locking consumes space in
the TLB cache. A maximum of eight instruction and data TLB entries are available
for page locking. Reducing the TLB cache space available to the MMU TLB miss
handler has performance impacts and should be avoided. VxWorks does not use
locked pages, you are free to lock pages if desired. For more information on page
locking, see the VxWorks Kernel Programmer’s Guide.

3.4.9 Maximum Number of RTPs
For ColdFire, the maximum number of RTP processes available in a given system
is 255.

3.4.10 Null Pointer Reference Detection
Null pointer reference detection is supported in this release. Normally, the vector

page occupies page zero. When the MMU is enabled, the vector page is relocated
to the second memory window. This places it in TLB miss-proof memory.

51

3.4.11

VxWorks
Architecture Supplement, 6.6

Caches

Cache support is provided for MMU as well as MMU-less configurations
(configurations that do not include MMU support). This release includes support
for unified, Harvard, and split (for example, m5208) caches for the supported
processor chips. Cache support is enabled by defining
INCLUDE_CACHE_SUPPORT in the BSP config.h header file or by selecting the
component using the Workbench kernel configuration tool or the vxprj
command-line facility.

Uncached memory is frequently required by an I/O device. These buffers are
managed using the cacheDmaMalloc() and cacheDmaFree() routines provided
in the cache library. When the configuration includes MMU support, uncached
buffers are allocated in sizes that are multiples of a page size (8 KB). The buffers are
then configured as uncached memory using the MMU page cache attribute. When
MMU support is not included in the kernel configuration, Normal cache memory
is configured at the bottom of the memory address space. A second memory
window is configured as uncached memory using a technique that is similar to the
window aliasing method described in 3.4.8 Memory Management, p.49. Uncached
buffers are allocated from the heap. Pointers to these buffers are offset so that they
are referenced in the uncached window. Note that it is important to allocate and
free these buffers using the cache DMA routines described previously.

3.4.12 Floating-Point Support

ColdFire V2 and V3 processors use software floating-point emulation. ColdFire
V4e processors are optionally equipped with floating-point units (FPUs) that
facilitate hardware floating-point operations. To save and restore the hardware
floating-point registers at context switches, tasks that perform floating-point
instructions should be spawned with the VX_FP_TASK option. Interrupt handlers
that use floating-point operations must explicitly call fppSave() and
fppRestore(). To enable support for hardware floating-point context save, you
must define INCLUDE_COPROCESSOR and INCLUDE_HW_FP.

There are no special compiler flags required for enabling hardware floating point
support. Hardware floating point is enabled by defining TOOL=diab. Selecting
this option allows the generation of hardware floating-point instructions and links
the appropriate math libraries.

There are no component definitions required to enable software floating-point
support. Software floating point is enabled by defining TOOL=sfdiab. Selecting

52

3 ColdFire
3.4 Architecture Considerations

this option prevents the generation of hardware floating-point instructions and
also links the appropriate math libraries for software floating point.

Software Floating Point

VxWorks provides software emulation support for the math routines listed in
3.3.5 mathLib, p.45. These routines do not manipulate the ColdFire floating-point
registers.

On the kernel side, these high-level math routines are provided by the compiler
libraries which are automatically linked into the VxWorks kernel and are available
to any application that requires floating-point support. The routines are
implemented in installDir/vxworks-6.x/target/src/libc/math.

On the user side (for example, from an RTP), these high level math routines are
implemented in installDir/vxworks-6.x/target/usr/src/libc (dinkum). The
generated code calls the software floating-point routines provided by the
Wind River Compiler sources that are built under installDir/vxworks-6.x/target
lust/src/tool/toolchainlibe_internal/cf.

For more information on software floating point, refer to the library reference entry
for mathALib and the individual reference entries for each routine.

Hardware Floating Point

VxWorks provides support for the following double-precision math routines:

acos() asin() atan() atan2() ceil() cos() cosh()
exp() fabs() floor() fmod() log() log10() pow()
round() sin() sinh() sqrt() tan() tanh() trunc()

On the kernel side, these high-level math routines are implemented in installDir
Ivxworks-6.x/target/src/libc/math. The generated code manipulates the
floating-point registers, therefore utilizing the FPU.

On the user side, these high-level math routines are implemented in installDir
Ivxworks-6.x/target/usr/src/libc (dinkum). The generated code also manipulates
the floating-point registers. The default hardware floating-point characteristics
are: double precision (can be switched to single precision) and the rounding mode,
Round to Nearest (RN).

53

VxWorks
Architecture Supplement, 6.6

3.4.13 MAC Support

Multiply-accumulate (MAC) context save/restore support is included in this
release. To save and restore the MAC registers at context switches, tasks that
perform MAC operations should be spawned with the VX_MAC_TASK option.
Interrupt handlers that use MAC operations must explicitly call macSave() and
macRestore(). This release supports only the ColdFire enhanced
multiply-accumulate implementation (EMAC).

To enable this feature, you must define INCLUDE_COPROCESSOR and
INCLUDE_MAC.

3.4.14 Power Management

Power management support is not included in this release.

3.4.15 PCIl Window Mapping

The ColdFire PCI bus is compatible with the PCI 2.2 specification. The bus is a
32-bit implementation only and is supported and implemented within the VxBus
framework. (For more information on VxBus, see the VxWorks Device Driver
Developer’s Guide, Volume 1.)

The PCI component (INCLUDE_PCI_BUS) is not enabled by default. To add
support, include this component in your VxWorks image using Workbench or the
vxprj command-line facility.

Byte Ordering

The ColdFire internal bus is big-endian and the PCI bus is inherently little-endian.
Therefore, byte ordering must be considered when including PCI support.

3.4.16 Memory Layout

The suggested memory layout for ColdFire targets is shown in Figure 3-2. This
simplified figure illustrates a memory configuration that might be used with the
memory management component included. The figure shows physical memory at
the bottom of the diagram containing page 0 (8 KB). This page can be access
protected in order to detect null pointer referencing. Above that, memory space is
used by the VxWorks image. The top of physical memory is used by the boot

54

Figure 3-2

3 ColdFire
3.4 Architecture Considerations

loader image when booting. Physical memory appears in two adjacent windows.
Just above window-0—at the bottom of window-1—is the vector page. The entire
address space in window-1 is TLB miss-proof, cache-safe memory. The remaining
space is used for supervisor stacks. The module area, PCI space, and boot loader

areas are shown above physical memory. The remaining address space is managed
by the virtual memory manager and is used for virtual address space.

There are many possible variations to this layout. Consult the BSP-specific
documentation to see if a particular board deviates from this layout.

VxWorks System Memory Layout (ColdFire)

High Memory
Boot ROM
PCI Space
Module Area (I/0O Space)
Physical
Memory
Shadow Kernel Stacks
(window-1)
TLB miss proof
Vector Table
ROM image
(copied into RAM)
Physical VxWorks image
Memory (loaded into ROM)
(window-0)
PAGE-0
Low Memory

55

VxWorks
Architecture Supplement, 6.6

3.5 Reference Material

Comprehensive information regarding ColdFire hardware behavior and
programming is beyond the scope of this document. Freescale Semiconductor, Inc.
provides several hardware and programming manuals for the ColdFire processor
on its Web site:

http://www.freescale.com/

Wind River recommends that you consult the hardware documentation for your
processor or processor family as necessary during VxWorks development.

56

http://www.freescale.com/

Intel Architecture

4.1 Introduction 57

4.2 Supported Processors 58

4.3 Interface Variations 59

4.4 Architecture Considerations 72

4.5 Reference Material 95

4.1 Introduction

This chapter provides information specific to VxWorks development on Intel
Architecture P5 (Pentium), P6 (PentiumPro, 11, I1I), P7 (Pentium 4), and Pentium M
family processor targets including their Celeron and Xeon series variants.

57

VxWorks
Architecture Supplement, 6.6

4.2 Supported Processors

This release supports Intel P5, P6, P7, and Pentium M family processors. This
section provides information on the characteristics of each of these families,
including their major differences. For more information, see your target hardware
documentation.

The P5 (Pentium) architecture is a third-generation 32-bit CPU. It has a 64-bit data
bus and a 32-bit address bus, separate 8 KB L1 instruction and data caches,
superscalar dispatch/execution units, branch prediction, two execution pipelines,
and a write-back data cache protocol. Some P5 family processors also include
support for MMX technology. This technology uses the single-instruction,
multiple-data (SIMD) execution model to perform parallel computations on
packed integer data contained in the 64-bit MMX registers.

P6 micro-architecture family processors include PentiumPro, Pentium II, Pentium
III, Pentium M, and their variant Xeon/Celeron processors. P6 is a three-way
superscalar architecture that executes up to three instructions per clock cycle. It has
micro-data flow analysis, out-of-order execution, superior branch prediction, and
speculative execution. Three instruction decode units work in parallel to decode
object code into smaller operations called micro-ops. These micro-ops can be
executed out-of-order by the five parallel execution units. The retirement unit
retires completed micro-ops in their original program order, taking into account
any branches. The P6 architecture has separate 8 KB L1 instruction and data caches
and a 256 KB L2 unified cache. The data cache uses the MESI protocol to support a
more efficient write-back mode. The cache consistency is maintained with the
MESI protocol and the bus snooping mechanism. Pentium II adds MMX
technology, new packaging, 16 KB L1 instruction and data caches, and a 256 KB
(512 KB or 1 MB) L2 unified cache. Pentium III introduces the Streaming SIMD
Extensions (SSE) that extend the SIMD model with a new set of 128-bit registers
and the ability to perform SIMD operations on packed single-precision
floating-point values. Pentium M processors utilize a new micro-architecture in
order to provide high performance and low power consumption. These processors
include cache and processor bus power management and large L1 and L2 caches.

The P7 (Pentium 4) processor is based on the NetBurst micro-architecture that
allows processors to operate at significantly higher clock speeds and performance
levels. It has a rapid execution engine, hyper pipelined technology, advanced
dynamic execution, a new cache subsystem, Streaming SIMD Extensions 2 (SSE2),
and a 400 MHz system bus.

The x86 architecture supports three operating modes: protected mode,
real-address mode, and virtual-8086 mode. Protected mode is the native operating

58

4 Intel Architecture
4.3 Interface Variations

mode of the 32-bit processor. All instructions and architectural features are
available in this mode for the highest performance and capability. Real-address
mode provides the programming environment of the Intel 8086 processor.
Virtual-8086 mode lets the processor execute 8086 software in a protected mode,
multitasking environment. VxWorks uses 32-bit protected mode. For more
information, see the VxWorks Kernel Programmer’s Guide.

4.3 Interface Variations

This section describes particular features and routines that are specific to Intel
Architecture targets in any of the following ways:

= They are available only for Intel Architecture targets.
» They use parameters specific to Intel Architecture targets.
» They have special restrictions or characteristics on Intel Architecture targets.

For complete documentation, see the reference entries for the libraries, routines,
and tools discussed in the following sections.

4.3.1 Optimized Libraries

Most VxWorks libraries are compiled from portable C source code, but there are
some libraries that are compiled from assembly language for better performance.
The following libraries are optimized for Intel Architecture targets:

= bLib—buffer manipulation library (including the swab() routine)
= dllLib—doubly-linked list manipulation library

= sllLib—singly-linked list manipulation library

= ffsLib—find first bit set library

» qPriBMapLib—bit-mapped priority queue library

59

VxWorks
Architecture Supplement, 6.6

4.3.2 Supported Routines in mathALib

For Intel Architecture targets, the following double-precision floating-point
routines are supported:

acos() asin() atan() atan2() ceil() cos()
cosh() exp() fabs() floor() fmod() infinity()
irint() iround() log() log10() log2() pow()
round() sin() sincos() sinh() sqrt() tan()

tanh() trunc()

The corresponding single-precision floating-point routines are not supported. In
this release, hyperbolic cosine, sine, and tangent routines are supported. For more
information, see the reference entry for mathALib and the individual reference
entries for each routine.

4.3.3 Architecture-Specific Global Variables
The files sysLib.c and sysALib.s contain the global variables shown in Table 4-1.

Table 4-1 Architecture-Specific Global Variables

Global Variable Value Description
sysCsSuper 0x08 Code selector for the supervisor mode
task.

sysCsExc 0x18 Code selector for exceptions.

sysCsInt 0x20 Code selector for interrupts.

sysIntldtType 0x0000fe00 This variable is used when VxWorks
(default) initializes the interrupt vector table.
= trap gate The choice of trap gate versus

interrupt gate affects all interrupts

0x0000ee00 (vectors 0x20 through Oxff).

= interrupt gate

60

Table 4-1 Architecture-Specific Global Variables (cont'd)

4 Intel Architecture
4.3 Interface Variations

Global Variable Value

Description

sysGdtl[] Oxftff limit (default)
sysProcessor 0=1386
1=1i486

2 = P5/Pentium

4 = P6/PentiumPro, II,
III, Pentium M

5 =P7/Pentium 4

sysCoprocessor (0 =no coprocessor
1 = 387 coprocessor
2 =487 coprocessor

sysCpuld CPUID structure

The global descriptor table begins
with five entries. The first is a null
descriptor. The second and third are
for task-level routines. The fourth is
for exceptions. The fifth is for
interrupt-level routines. If kernel
hardening is enabled, additional
entries are added for task gate
management of the OSM stack.

The processor type (set by the
VxWorks sysCpuProbe() routine).

The type of floating-point coprocessor
(set by the VxWorks fppProbe()
routine).

Dynamically obtained processor
identification and supported features
(set by VxWorks sysCpuProbe()).

4.3.4 Architecture-Specific Routines

Table 4-2 provides information for a number of architecture-specific routines.
Other architecture-specific routines are described throughout this section.

Table 4-2 Architecture-Specific Routines

Routine Function Header

Description

fppArchSwitchHookEnable() STATUS fppArchSwitchHookEnable Enables or disables the

(BOOL enable)

architecture-specific FPU
switch hook routine that
detects illegal FPU/MMX

usage.

61

VxWorks

Architecture Supplement, 6.6

Table 4-2 Architecture-Specific Routines (cont'd)

Routine Function Header Description
fppCtxShow() void fppCtxShow Prints the contents of a task’s
(FE_CONTEXT * £) floating-point register.
fppRegListShow() void fppRegListShow (void) Prints a list of available
registers.
intStackEnable() STATUS intStackEnable Enables or disables the
(BOOL: enable) interrupt stack usage. TRUE to
enable, FALSE to disable
pentiumBts() STATUS pentiumBts Executes an atomic
(char * prlag) compare-and-exchange
instruction to set a bit. (P5, P6,
and P7)
pentiumBtc() STATUS pentiumBtc Executes an atomic

pentiumMcaEnable()

pentiumMcaShow()

pentiumMsrGet()

pentiumMsrInit()

pentiumMsrSet()

(char * pFlag)

void pentiumMcaEnable
(BOOL enable)

void pentiumMcaShow (void)

void pentiumMsrGet
(
int address,
long long int * pData
)

STATUS pentiumMsrInit (void)

void pentiumMsrSet
(
int address,
long long int * pData
)

compare-and-exchange
instruction to clear a bit. (P5, P6,
and P7)

Enables or disables the MCA
(machine check architecture).
(P5, P6, and P7)

Shows machine check global
control registers and error
reporting register banks. (P5,
P6, and P7)

Gets the contents of the
specified model-specific
register (MSR). (P5, P6, and P7)

Initializes all MSRs. (P5, P6, and
P7)

Sets the value of the specified
MSR. (P5, P6, and P7)

62

Table 4-2 Architecture-Specific Routines (cont'd)

4 Intel Architecture
4.3 Interface Variations

Routine Function Header Description
fppCtxShow() void fppCtxShow Prints the contents of a task’s
(FE_CONTEXT * £) floating-point register.
fppRegListShow() void fppRegListShow (void) Prints a list of available
registers.
intStackEnable() STATUS intStackEnable Enables or disables the
(BOOL enable) interrupt stack usage. TRUE to
enable, FALSE to disable
pentiumBts() STATUS pentiumBts Executes an atomic
(char * prlag) compare-and-exchange
instruction to set a bit. (P5, P6,
and P7)
pentiumBtc() STATUS pentiumBtc Executes an atomic

pentiumMcaEnable()

pentiumMcaShow()

pentiumMsrGet()

pentiumMsrInit()

pentiumMsrSet()

(char * pFlag)

void pentiumMcaEnable
(BOOL enable)

void pentiumMcaShow (void)

void pentiumMsrGet
(
int address,
long long int * pData
)

STATUS pentiumMsrInit (void)

void pentiumMsrSet
(
int address,
long long int * pData
)

compare-and-exchange
instruction to clear a bit. (P5, P6,
and P7)

Enables or disables the MCA
(machine check architecture).
(P5, P6, and P7)

Shows machine check global
control registers and error
reporting register banks. (P5,
P6, and P7)

Gets the contents of the
specified model-specific
register (MSR). (P5, P6, and P7)

Initializes all MSRs. (P5, P6, and
P7)

Sets the value of the specified
MSR. (P5, P6, and P7)

63

VxWorks

Architecture Supplement, 6.6

Table 4-2 Architecture-Specific Routines (cont'd)

Routine Function Header Description

pentiumMsrShow() void pentiumMsrShow (void) Shows all MSRs. (P5, P6, and
P7)

pentiumMtrrEnable() void pentiumMtrrEnable (void) Enablesthe memory type range
register (MTRR). (P6 and P7)

pentiumMtrrDisable() void pentiumMtrrDisable (void) Disablesthe MTRR. (P6and P7)

pentiumMtrrGet() void pentiumMtrrGet Gets MTRRs to the MTRR table

(MIRR * pMtrr) specified by the pointer. (P6

and P7)

pentiumMtrrSet() void pentiumMtrrSet Sets MTRRs from the MTRR

pentiumPmcStart()

pentiumPmcStart0()
pentiumPmcStart1()

pentiumPmcStop()

pentiumPmcStop0()
pentiumPmcStop1()

pentiumPmcGet()

pentiumPmcGet0()

pentiumPmcGet1()

(MTRR * pMtrr)

STATUS pentiumPmcStart
(
int pmcEvtSelO;
int pmcEvtSell;
)

STATUS pentiumPmcStart0
(int pmcEvtSel0)

STATUS pentiumPmcStartl
(int pmcEvtSell)

void pentiumPmcStop (void)

void pentiumPmcStop0 (void)
void pentiumPmcStopl (void)

void pentiumPmcGet
(
long long int * pPmcO;
long long int * pPmcl;
)

void pentiumPmcGet0
(long long int * pPmcO0)

void pentiumPmcGetl
(long long int * pPmcl)

table specified by the pointer.
(P6 and P7)

Starts PMCO and PMC1. (P5
and P6)

Starts PMCO only. (P5)
Starts PMC1 only. (P5)

Stops PMCO and PMC1. (P5
and P6)

Stops PMCO only. (P5)
Stops PMC1 only. (P5 and P6)

Gets the contents of PMCO0 and
PMC1. (P5 and P6)

Gets the contents of PMCO. (P5
and P6)

Gets the contents of PMC1. (P5
and P6)

64

4 Intel Architecture

4.3 Interface Variations

Table 4-2 Architecture-Specific Routines (cont'd)

Routine

Function Header

Description

pentiumPmcReset()

pentiumPmcReset0()
pentiumPmcReset1()

pentiumSerialize()

pentiumPmcShow()

pentiumT1bFlush()

pentiumTscReset()

pentiumTscGet32()

pentiumTscGet64()

sysCpuProbe()

sysInByte()

sysInWord()

sysInLong()

sysOutByte()

void pentiumPmcReset (void)

void pentiumPmcReset0 (void)
void pentiumPmcResetl (void)

void pentiumSerialize (void)

void pentiumPmcShow
(BOOL zap)

void pentiumTlbFlush (void)

void pentiumTscReset (void)

UINT32 pentiumTscGet32 (void)

void pentiumTscGet64
(long long int * pTsc)

UINT sysCpuProbe (void)

UCHAR sysInByte
(int port)

USHORT sysInWord
(int port)

ULONG sysInLong
(int port)

void sysOutByte
(int port, char data)

Resets PMCO0 and PMC1. (P5
and P6)

Resets PMCO. (P5 and P6)
Resets PMC1. (P5 and P6)

Serializes by executing the
CPUID instruction. (P5, P6, and
P7)

Shows PMCO0 and PMC1, and
resets them if the parameter
zap is TRUE. (P5 and P6)

Flushes the translation
lookaside buffers (TLBs). (P5,
P6, and P7)

Resets the timestamp counter
(TSC). (P5, P6, and P7)

Gets the lower half of the 64-bit
TSC. (P5, P6, and P7)

Gets the 64-bit TSC. (P5, P6, and
P7)

Gets information about the
CPU with CPUID.

Reads one byte from 1/0.

Reads one word (two bytes)
from 1/0.

Reads one long word (four
bytes) from I/O.

Writes one byte to I/0.

65

VxWorks

Architecture Supplement, 6.6

Table 4-2 Architecture-Specific Routines (cont'd)

Routine Function Header Description
sysOutWord() void sysOutWord Writes one word (two bytes) to
(int port, short data) 1/0
sysOutLong() void sysOutLong Writes one long word (four
(int port, long data) bytes)toI/()
sysInWordString() void sysInWordString Reads a word string from I/0O.
(
int port,
short *address,
int count
)
sysInLongString() void sysInLongString Reads a long string from 1/0O.
(
int port,
short *address,
int count
)
sysOutWordString() void sysOutWordString Writes a word string to 1/0O.
(
int port,
short *address,
int count
)
sysOutLongString() void sysOutLongString Writes a long string to I/O.
(
int port,
short *address,
int count
)
sysDelay() void sysDelay (void) Allows enough recovery time
for port accesses.
sysIntDisablePIC() STATUS sysIntDisablePIC Disables a programmable
(int intLevel) interrupt controller (PIC)
interrupt level.
sysIntEnablePIC() STATUS sysIntEnablePIC Enables a PIC interrupt level.
(int intLevel)
sysOSMTaskGatelnit() STATUS sysOSMtaskGateInit Initializes the OSM stack.

(void)

66

4 Intel Architecture
4.3 Interface Variations

Table 4-2 Architecture-Specific Routines (cont'd)

Routine Function Header Description
vxCpuShow() void vxCpuShow (void) Shows CPU type, family,
model, and supported features.
vxCr[0234]Get() int vxCr[0234]Get (void) Gets respective control register
content.
vxCr[0234]Set() void vxCr(0234]Set (int value) Sets a value to the respective
control register.
vxDrGet() void vxDrGet Gets debug register content.
(
int * pDro0,
int * pDrl,
int * pDr2,
int * pDr3,
int * pDr4,
int * pDr5,
int * pDr6,
int * pDr7
)
vxDrSet() void vxDrSet Sets debug register values.
(
int dro0,
int drl,
int dr2,
int dr3,
int dr4,
int dr5,
int dreé,
int dr7
)
vxDrShow() void vxDrShow (void) Shows the debug registers.
vxEflagsGet() int vxEflagsGet (void) Gets the EFLAGS register
content.
vxEflagsSet() void vxEflagsSet (int value) Sets the value of the EFLAGS
register.
vxPowerModeGet() UINT32 vxPowerModeGet (void) Gets the power management

mode.

This API is deprecated, see
4.4.26 Power Management, p.91.

67

VxWorks
Architecture Supplement, 6.6

Table 4-2 Architecture-Specific Routines (cont'd)
Routine Function Header Description
vxPowerModeSet() STATUS vxPowerModeSet Sets the power management
(UINT32 mode) mode.
This API is deprecated, see
4.4.26 Power Management, p.91.
vxTssGet() int vxTssGet (void) Gets the task register content.
vxTssSet() void vxTssSet (int value) Sets the task register value. This
routine is deprecated and must
not be used.
vx[GIL]dtrGet() void vx[GIL]dtrGet Gets the GDTR, IDTR, and
(long long int * pvalue) |pHTR register content,
respectively.
vxSseShow() void vxSseShow (int taskId) Prints the contents of a task’s

Streaming SIMD Extension
(SSE) register context, if any, to
the standard output device.

Register Routines

The following routines read Intel Architecture register values, and require one
parameter, the task ID:

eax() ebx() ecx() edx() edi()
esi() ebp() esp() eflags()

Breakpoints and the bh() Routine

VxWorks for Intel Architecture supports both software and hardware breakpoints.
When you set a software breakpoint, VxWorks replaces an instruction with an int 3
software interrupt instruction. VxWorks restores the original code when the
breakpoint is removed. The instruction cache is purged each time VxWorks
changes an instruction to a software break instruction.

A hardware breakpoint uses the processor’s debug registers to set the breakpoint.
The Pentium architectures have four breakpoint registers. If you are using the
target shell, you can use the bh() routine to set hardware breakpoints. The routine
is declared as follows:

68

4 Intel Architecture
4.3 Interface Variations

STATUS bh
(
INSTR *addr, /* where to set breakpoint, or */
/* 0 = display all breakpoints */
int type, /* breakpoint type; see below */
int task, /* task to set breakpoint; */
/* 0 = set all tasks */
int count, /* number of passes before hit */
BOOL quiet, /* TRUE = don’t print debug info */
/* FALSE = print debug info */

)
The bh() routine takes the following types in parameter type:

BRK_INST Instruction hardware breakpoint (0x00)
BRK_DATAW1 Data write 1-byte breakpoint (0x01)
BRK_DATAW2 Data write 2-byte breakpoint (0x05)
BRK_DATAW4 Data write 4-byte breakpoint (0x0d)

BRK_DATARW1 Data read-write 1-byte breakpoint (0x03)
BRK_DATARW2 Data read-write 2-byte breakpoint (0x07)
BRK_DATARW4 Data read-write 4-byte breakpoint (0x0f)

A maximum number of hardware breakpoints can be set on the target system. This
is a hardware limit and cannot be changed. For Intel Architecture targets, this limit
is four hardware breakpoints. The address parameter of a hardware breakpoint
command does not need to be 4-bytes aligned for data breakpoints on Intel
Architecture. The address parameter is 1-byte aligned if width access is 1 byte, 2-
bytes aligned if width access is 2 bytes, and 4-bytes aligned if width access is 4
bytes.

For more information, see the reference entry for bh().

Disassembiler: I()

If you are using the target shell, the VxWorks disassembler 1() routine does not
support 16-bit code compiled for earlier generations of 80x86 processors. However,
the disassembler does support 32-bit code for Intel Architecture processors.

Memory Probe: vxMemProbe()

The vxMemProbe() routine, which probes an address for a bus error, is supported
on the Intel Architecture (Pentium) architectures by trapping both general
protection faults and page faults.

69

VxWorks
Architecture Supplement, 6.6

Interrupt Lock Level: intLock() and intUnlock()

The Intel Architecture (Pentium) architecture includes a single interrupt signal for
external interrupts, and is able to enable and disable external interrupts to the
CPU. The Intel Architecture (Pentium) architecture does not have an on-chip
interrupt controller, and therefore does not have the capability of controlling the
interrupt mask/lock level. The global variable intLockMask is set to 1 and is not
used by intLock(). The intLock() routine simply disables the external interrupt,
while the intUnlock() routine restores the previous state of the signal (that is,
enables it if it was previously enabled). Locking the individual external interrupt
line or masking the interrupt level is done by a companion interrupt controller
device driver such as the i8259Intr.c or ioApicIntr.c. These drivers are provided as
source code in installDir/vxworks-6.x/target/src/drv/intrCtl.

IntArchLib: intVecSet2() and intVecGet2()

The routines intVecSet2() and intVecGet2() replace intVecSet() and
intVecGet(), respectively. (intVecSet() and intVecGet() are kept only for
backward compatibility.) The routines intVecSet2() and intVecGet2() include two
additional parameters: gate and selector. intVecSet2() also includes task gate
support. The gate is either IDT_TRAP_GATE, IDT_INT_GATE, or IDT_TASK_GATE;
and the selector is either sysCsExc or sysCsInt.

pentiumLib, pentiumALib, and pentiumShow: pentiumXXX()

Routines that manipulate the memory type range registers (MTRR), performance
monitoring counter (PMC), timestamp counter (TSC), machine check architecture
(MCA), and model specific registers (MSR) are included. The routines are listed in
Table 4-2.

vxLib, vxALib, and vxShow: vxXXX()

The routine vxCpuShow() shows the CPU type, family, model, and supported
features.

The routines vxCr0Get(), vxCr2Get(), vxCr3Get(), and vxCr4Get() get the
current values from the respective control registers, while the routines vxCr0Set(),
vxCr2Set(), vxCr3Set(), and vxCr4Set() assign values to the respective control
registers.

The routines vxEflagsGet() and vxEflagsSet() respectively get and set the
EFLAGS register.

The routines vxDrGet() and vxDrSet() respectively get and set the debug
registers. vxDrShow() shows the content of the debug registers. These routines are

70

4 Intel Architecture
4.3 Interface Variations

intended to be primitive and generate exceptions if they are not claimed by WDB
or the debug library.

The routines vxTssGet() and vxTssSet() respectively get and set the task register.

The routines vxGdtrGet(), vxIdtrGet(), and vxLdtrGet() get the current value of
the respective system registers: GDTR, IDTR, and LDTR.

The routine vxLdtrSet() sets the content of the local descriptor table.

The routines vxPowerModeGet() and vxPowerModeSet() respectively get and
set the power management mode.

NOTE: The vxPowerModeGet() and vxPowerModeSet() routines are deprecated,
see 4.4.26 Power Management, p.91.

The vxCsGet(), vxDsGet(), and vxSsGet() routines get the current value of the
code segment, data segment, and stack segment, respectively.

taskSRSet()

The routine taskSRSet() sets its second parameter to the EFLAGS register of the
specified task.

4.3.5 a.out/ELF-Specific Tools for Intel Architecture

The following tools are specific to the a.out format for x86 and Pentium processors,
as well as the PC simulator that was used in earlier VxWorks releases. In the
current release, the object module format has been changed to ELE. Therefore,
these tools are replaced with objcopypentium and no longer supported. For more
information, see the reference entries for each tool.

hexDec
converts an a.out-format object file into a Motorola hex record.

aoutToBinDec
extracts text and data segments from an a.out file and writes them to standard
output as a simple binary image.

xsymDec
extracts the symbol table from an a.out file.

71

VxWorks
Architecture Supplement, 6.6

4.4 Architecture Considerations

This section describes characteristics of the Intel Architecture that you should keep
in mind as you write a VxWorks application:

* boot disks

= operating mode and byte order

» Celeron processors

= cache issues

» FPU, MMX, SSE, and SSE2 support
= segmentation

* paging with MMU

= ring level protection

= interrupts

= exceptions

» stack management

* context switching

* machine check architecture (MCA)
* registers

* counters

» advanced programmable interrupt controller (APIC)
= I/O mapped devices

* memory-mapped devices

* memory considerations for VME

= JSA/EISA bus

= PC104 bus

= PCIbus

= software floating-point emulation
= VxWorks memory layout

For more information on the Intel Architecture, consult the Intel Architecture
Software Developer’s Manual.

4.4.1 Boot Floppies
Information regarding the creation and use of a boot floppy for booting VxWorks

on Intel Architecture targets is included in the BSP reference documentation (the
BSP target.ref file).

72

4 Intel Architecture
4.4 Architecture Considerations

4.4.2 Operating Mode and Byte Order

VxWorks for Intel Architecture runs in the 32-bit flat protected mode. If real-time
processes (RTPs) are not enabled, no privilege protection is used, thus there are no
call gates. The privilege level is always 0, which is the most privileged level
(supervisor mode). If RTPs are enabled, both level 0 and level 3 (user mode) are
used, with the RTP task(s) running at level 3. A call gate is established and used as
a system call mechanism to allow RTP task(s) to communicate with the kernel.

The Intel Architecture byte order is little-endian, but network applications must
convert some data to a standard network order, which is big-endian. In particular,
in network applications, be sure to convert the port number to network byte order
using htons().

4.4.3 Celeron Processors

If your target is a Celeron processor, you must determine what type of Celeron
processor your are using in order to take advantage of certain features and
optimizations. Celeron processors based on the Pentium II (such as the Celeron
model 5) belong to the pcPentium?2 BSP which is optimized to take advantage of
the Pentium II processor. Celeron processors based on the Pentium III (such as
Celeron model 8) belong to the pcPentium3 BSP which is optimized for the
Pentium III. The Pentium III optimized toolchain supports Streaming SIMD
Extensions (SSE). To detect whether a particular CPU supports SSE, in Application
Note AP-485, Intel recommends using the CPUID instruction (vxCpuShow() in
VxWorks) rather than the CPU family or model, stating as follows:

= Do not assume that a given family or model has any specific feature. For
example, do not assume that family value 5 (that is, a P5 family processor)
implies a floating-point unit on-chip; use the feature flags to make this
determination.

= Do not assume processors with higher family or model numbers have all the
features of a processor with a lower family or model number. For example, a
processor with a family value 6 (that is, a P6 family processor) may not
necessarily have all the features of a processor with a family value of 5.

4.4.4 Pentium M Processors

In general, Pentium M is not considered a new family of processors. The family
code in the CPU signature for a Pentium M processor is Intel Architecture P6.

73

VxWorks
Architecture Supplement, 6.6

However, certain P7 features (such as SSE2) are also supported. Therefore, if your
target is a Pentium M processor, you can use either the pcPentium3 or pcPentium4
BSP.

NOTE: BSPs released with this release of VxWorks for Intel Architecture support
Pentium M processors with the Intel 855 chipset only. Additional BSP support may
be added in the future; see the Wind River Online Support Web site for a complete
list of supported devices.

In Application Note AP-485, Intel recommends using the CPUID instruction
(vxCpuShow() in VxWorks) to determine which features are supported by a given
CPU instead of relying on the CPU family code or model number. The application
note recommends the following:

* Do not assume that a given family or model includes a specific feature. For
example, do not assume that a P5 family processor always includes a
floating-point unit. You can use the feature flags to determine what features
are available on your chip.

* Do not assume that processors with a higher family or model number include
all of the features included in a processor with a lower family number. For
example, a P6 family processor may not include all of the features available for
a P5 family processor.

For more information on Pentium M processors, see the Intel Web site. For
information on identifying your CPU and its features, see the Intel Application Note
AP-485.

4.4.5 Caches

The CD and NW flags in CRO control the overall caching of system memory. The
PCD and PWT flags in CR3 control the caching of the page directory. The PCD and
PWT flags in the page directory or page table entry control page-level caching. In
cacheLib, the WBINVD instruction is used to flush the cache if the CLFLUSH
instruction is not supported by the processor.

P5 (Pentium) family processors have separate L1 instruction and data on-chip
caches. Each cache is 8 KB. The P5 family data cache supports both write-through
and write-back update policies. The PWT flag in the page table entry controls the
write-back policy for that page of memory.

P6 (PentiumPro, II, III) family processors include separate L1 instruction and data
caches, and a unified internal L2 cache. The P6 processor MESI data cache protocol

74

4 Intel Architecture
4.4 Architecture Considerations

maintains consistency with internal L1 and L2 caches, caches of other processors,
and with an external cache in both update policies. The operation of the MESI
protocol is transparent to software.

P7 (Pentium 4) family processors include a trace cache that caches decoded

instructions, as well as an L1 data cache and an L2 unified cache. The CLFLUSH -
. . . 4
instruction allows the selected cache line to be flushed from memory.

4.4.6 FPU, MMX, SSE, and SSE2 Support

The x87 math coprocessor and on-chip FPU are software compatible, and are
supported by VxWorks using the INCLUDE_HW_FP configuration macro.

There are two types of floating-point contexts and a set of routines associated with
each type. The first type is 108 bytes and is used for older FPUs (i80387, 180487,
Pentium) and older MMX technology. The routines fppSave(), fppRestore(),
fppRegsToCtx(),and fppCtxToRegs() are used to save and restore the context and
to convert to or from FPPREG_SET. The second type is 512 bytes and is used for
newer FPUs, newer MMX technology, and SSE technology (Pentium II, III, 4). The
routines fppXsave(), fppXrestore(), fppXregsToCtx(), and fppXctxToRegs() are
used to save and restore the context and to convert to or from FPPREG_SET. The
type of floating-point context used is automatically detected by checking the
CPUID information in fppArchlInit(). The routines coprocTaskRegsSet() and
coprocTaskRegsGet() then access the appropriate floating-point context. The bit
interrogated for the automatic detection is the “Fast Save and Restore” feature flag.

NOTE: The routines fppTaskRegsSet() and fppTaskRegsGet() are obsolete and
should no longer be used. These routines are replaced by coprocTaskRegsSet()
and coprocTaskRegsGet(), respectively.

Saving and restoring floating-point registers adds to the context switch time of a
task. Therefore, floating-point registers are not saved and restored for every task.
Only those tasks spawned with the task option VX_FP_TASK will have
floating-point state, MMX technology state, and streaming SIMD state saved and
restored. If a task executes any floating-point operations, MMX operations, or
streaming SIMD operations, it must be spawned with VX_FP_TASK.

NOTE: The value of VX_FP_TASK changed from 0x0008 (VxWorks 5.5) to
0x01000000 (VxWorks 6.x). However, its meaning and usage remain unchanged.

Executing floating-point operations from a task spawned without the VX_FP_TASK
option results in serious and difficult to find errors. To detect this type of illegal,

75

VxWorks
Architecture Supplement, 6.6

unintentional, or accidental floating-point operation, a new APl and a new
mechanism have been added to this release. The mechanism involves enabling or
disabling the FPU by toggling the TS flag in the CRO register of the new task switch
hook routine, fppArchSwitchHook(), respecting the VX_FP_TASK option. If the
VX_FP_TASK option is not set in the switching-in task, the FPU is disabled. Thus,
the device-not-available exception is raised if the task attempts to execute any
floating-point operations. This mechanism is disabled in the default VxWorks
configuration. To enable the mechanism, call the enabler,
fppArchSwitchHookEnable(), with a parameter TRUE (1). The mechanism is
disabled using the FALSE (0) parameter.

There are six FPU exceptions that can send an exception to the CPU. They are
controlled by the exception mask bits of the control word register. VxWorks
disables these exceptions in the default configuration. The exceptions are:
precision, overflow, underflow, division by zero, denormalized operand, and
invalid operation.

4.4.7 Mixing MMX and FPU Instructions

A task with the VX_FP_TASK option enabled saves and restores the FPU and MMX
state when performing a context switch. Therefore, the application does not need
to save or restore the FPU and MMX state if the FPU and MMX instructions are not
mixed within the task. Because the MMX registers are aliased to the FPU registers,
care must be taken to prevent the loss of data in the FPU and MMX registers, and
to prevent incoherent or unexpected results, when making transitions between
FPU instructions and MMX instructions. When mixing MMX and FPU instructions
within a task, Intel recommends the following guidelines:

» Keep the code in separate modules, procedures, or routines.

* Do not rely on register contents across transitions between FPU and MMX
code modules.

* When transitioning between MMX code and FPU code, save the MMX register
state (if it will be needed in the future) and execute an EMMS instruction to
empty the MMX state.

= When transitioning between FPU and MMX code, save the FPU state if it will
be needed in the future.

76

4 Intel Architecture
4.4 Architecture Considerations

Mixing SSE/SSE2 and FPU/MMX Instructions

The XMM registers and the FPU/MMX registers represent separate execution
environments. This has certain ramifications when executing SSE, SSE2, MMX and
FPU instructions in the same task context:

* Those SSE and SSE2 instructions that operate only on the XMM registers (such
as the packed and scalar floating-point instructions and the 128-bit SIMD
integer instructions) can be executed without any restrictions in the same
instruction stream with 64-bit SIMD integer or FPU instructions. For example,
an application can perform the majority of its floating-point computations in
the XMM registers using the packed and scalar floating-point instructions, and
at the same time use the FPU to perform trigonometric and other
transcendental computations. Likewise, an application can perform packed
64-bit and 128-bit SIMD integer operations simultaneously without
restrictions.

= Those SSE and SSE2 instructions that operate on MMX registers (such as the
CVTPS2PI, CVTTPS2PI, CVTPI2PS, CVTPD2PI, CVITPD2PIL, CVIPI2PD,
MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be
executed in the same instruction stream as 64-bit SIMD integer or FPU
instructions. However, these instructions are subject to the restrictions on the
simultaneous use of MMX and FPU instructions, as mentioned in the previous
section.

4.4.8 Segmentation

In the default configuration—that is, error detection and reporting and RTPs
disabled—three code segments and one data segment are defined in the global
descriptor table (GDT). The GDT is defined as table sysGdt[] in sysALib.s, and is
copied to the destination address at (LOCAL_MEM_LOCAL_ADRS +
GDT_BASE_OFFSET). The defined code and data segments are:

= supervisor code/data segment with privilege level 0 (PL0)
» interrupt/exception code segment with privilege level 0 (PLO)

They are fully overlapped in the 4 GB, 32-bit address space (flat model). These
segments are used when a task changes its execution mode during its lifetime.

When RTPs are enabled, an additional three segments, a call gate, and a TSS
descriptor are added to the GDT. The three segments are level 3 (PL3) for use by
user-mode RTP tasks. The segments include one data, one code, and one stack
segment. The call gate and TSS descriptor are used by the system call mechanism
to allow a mode switch to occur when a system call is made.

77

VxWorks
Architecture Supplement, 6.6

When error detection and reporting is enabled, the IDT gets a task gate entry for
page fault management. The GDT gets two TSS entries (one for OSM save
information and one for OSM restore information) and one task gate entry. An LDT
entry is also established for context switching through TSS.

4.4.9 Paging with MMU

When paging is used, the linear address space is divided into fixed-size pages
(4 KB is the default configuration). Entries in the page directory point to page
tables and entries in the page table point to pages in physical memory. Bits 22
through 31 of the linear address space provide an offset to an entry in the page
directory. Bits 12 through 21 of the linear address space provide an offset to an
entry in the selected page table. Bits 0 through 11 provide an offset to a physical
address in the page.

If INCLUDE_MMU_BASIC component is enabled, VxWorks enables the MMU with
the mmuPhysDesc|] table which includes PCI memory mapping information.
This is the default VxWorks configuration.

If you have other memory-mapped devices, and if INCLUDE_MMU_BASIC is
included (the default), you may need to add your device address space into the
MMU table by manually editing the MMU configuration structure
sysPhysMemDesc[] in sysLib.c. For information on editing this structure, see the
VxWorks Kernel Programmer’s Guide: Memory Management. Do not overlap any
existing MMU entries and be sure all entries are page aligned. Wind River
recommends that you also maintain a 1:1 correlation between virtual and physical
memory because VxWorks and all tasks use a common address space.

Attempts to access areas not mapped as valid in the MMU result in page faults.

P6 (PentiumPro, I, lll, Pentium M) and P7 (Pentium 4) MMU

The enhanced MMU on P6 and P7 family processors supports two additional page
attribute bits.

The global bit (G) indicates a global page when set. When a page is marked global,
and the page global enable (PGE) bit in register CR4 is set, the page-table or
page-directory entry for the page is not invalidated in the TLB when register CR3
is loaded. This bit is provided to prevent frequently used pages (such as pages that
contain kernel or other operating system or executive code) from being flushed
from the TLB.

The page-level write-through/write-back bit (PWT) controls the write-through or
write- back caching policy of individual pages or page tables. When the PWT bit is

78

4 Intel Architecture
4.4 Architecture Considerations

set, write-through caching is enabled for the associated page or page table. When
the bit is clear, write-back caching is enabled for the associated page and page
table.

The following macros describe these attribute bits in the physical memory
descriptor table sysPhysMemDesc[] in sysLib.c.

MMU_ATTR_CACHE_COPYBACK Use write-back cache policy for the page.
(or VM_STATE_WBACK)

MMU_ATTR_CACHE_OFF Use write-through cache policy for the page.
(or VM_STATE_CACHEABLE_NOT)

VM_STATE_GLOBAL Set page global bit.
VM_STATE_GLOBAL_NOT Do not set page global bit.

Support is provided for two page sizes, 4 KB and 4 MB. The linear address for 4 KB
pages is divided into three sections. These sections are as follows:

Page directory entry bits 22 through 31
Page table entry bits 12 through 21
Page offset bits 0 through 11

The linear address for 4 MB pages is divided into two sections. These sections are
as follows:

Page directory entry bits 22 through 31
Page offset bits 0 through 21

Global Descriptor Table (GDT)

The GDT is defined as the table sysGdt[] in sysALib.s. The table begins with five
entries: a null entry, an entry for program code, an entry for program data, an entry
for exceptions, and an entry for interrupts. If error detection and reporting is
enabled, an additional entry is added for task gate management of the OSM stack
as well as two TSS entries (one for OSM save information and one for OSM restore
information). If RTPs are enabled, an entry is provided for level 3 (user-mode)
support. The table is initially set to have an available memory range of
0x0-Oxfttfffff. For boards that support PCI, INCLUDE_PCI is defined in config.h
and VxWorks does not alter the pre-set memory range. This memory range is
available at run-time with the MMU configuration.

If INCLUDE_PCI is not defined (the default for boards that do not support PCI),
VxWorks adjusts the GDT using the sysMemTop() routine to check the actual
memory size during system initialization and set the table to have an available
memory range of 0x0-sysMemTop(). This causes a general protection fault to be
generated for any memory access outside the memory range 0x0-sysMemTop().

79

VxWorks
Architecture Supplement, 6.6

4.4.10 Ring Level Protection

The processor’s segment protection mechanism recognizes four privilege levels
numbered 0 to 3. The greater numbers have fewer privileges. VxWorks uses
privilege level 0 (PL0O) when executing kernel exceptions and interrupt code.
Privilege level 3 (PL3) is used when executing RTP task code.

4.4.11 Interrupts

Interrupt service routines (ISRs) are executed in supervisor mode (PL0) with the
task’s supervisor stack or the dedicated interrupt stack.

The task supervisor stack is the default stack, and its use does not require the OS
to perform any software intervention. Whereas, the dedicated interrupt stack does
require software manipulation. That is, you can control the trade-off between
performance and memory consumption by selecting the stack used with an ISR. If
you want faster interrupt response time, use the task stack; if you want to save on
memory consumption, use the dedicated interrupt stack. To use the dedicated
interrupt stack, perform intStackEnable(TRUE) in the task level.

Interrupt Handling

Exceptions and the NMI interrupt are assigned vectors in the range of 0 through
31. Unassigned vectors in this range are reserved for possible future use. The
vectors in the range 32 to 255 are provided for maskable interrupts.

The Intel Architecture (Pentium) architecture enables or disables all maskable
interrupts with the IF flag in the EFLAGS register. An external interrupt controller
handles multi-level priority interrupts. The most popular interrupt controller is the
Intel 8259 PIC (programmable interrupt controller) which is supported by
VxWorks as an interrupt controller driver.

The Fully Nested Mode and the Special Fully Nested Mode are supported and
configurable in the BSP. In the Special Fully Nested Mode, when an interrupt
request from a slave PIC is in service, the slave is not locked out from the master’s
priority logic and further interrupt requests from higher-priority IRQs within the
slave are recognized by the master and initiate interrupts to the processor.

The PIC (8259A) IRQO is hard-wired to the PIT (8253) channel 0 in a PC
motherboard. IRQO is the highest priority in the 8259A interrupt controller. Thus,
the system clock interrupt handler blocks all lower-level interrupts. This may
cause a delay of the lower-level interrupts in some situations even though the
system clock interrupt handler finishes its job without any delay. This is quite

80

4 Intel Architecture
4.4 Architecture Considerations

natural from the hardware point of view, but may not be ideal from the application
software standpoint. The following modes are supplied to mitigate this situation
by providing the corresponding configuration macros in the BSP. The three
mutually exclusive modes are Early EOI Issue in IRQO ISR, Special Mask Mode in
IRQO ISR, and Automatic EOI Mode. For more information, see your BSP
documentation.

The intLock() and intUnlock() routines control the IF flag in the EFLAGS register.
The sysIntEnablePIC() and sysIntDisablePIC() routines control a specified PIC
interrupt level.

Interrupt Descriptor Table

OSMm

The interrupt descriptor table (IDT) occupies the address range from 0x0 to 0x800,
starting from LOCAL_MEM_LOCAL_ADRS (also called the interrupt vector table,
see Figure 4-1). Vector numbers 0x0 to 0x1f are handled by the default exception
handler. Vector numbers 0x20 to Oxff are handled by the default interrupt handler.

The trap gate is used for exceptions (vector numbers 0x0 - 0x1f). The configurable
global variable sysIntIdtType, which can be set to either trap gate or interrupt gate
in the BSP, is used for interrupts (vector numbers 0x20 - 0xff). The difference
between an interrupt gate and a trap gate is its effect on the IF flag: using an
interrupt gate clears the IF flag, which prevents other interrupts from interfering
with the current interrupt handler.

Each vector entry in the IDT contains the following information:
= offset (offset to the interrupt handler)

» selectors (sysCsExc(0x0018), fourth descriptor (code) in GDT for exceptions; or
sysCsInt(0x0020), fifth descriptor (code) in GDT for interrupts)

» descriptor privilege level (3)

» descriptor present bit (1)

The OSM stack is needed for handling and recovery of stack overflow /underflow
conditions and is triggered immediately following a page fault (stack

overflow /underflow conditions are seen as a page fault). Issues that exist when
possible stack overflow /underflow occurs are passed to the OSM stack. A task
gate is used for the page fault. This allows VxWorks to jump to the OSM task
routine. The task routine then establishes an OSM task, reconfigures both OSM TSS
entries and the segment descriptors to their proper states before the exception
occurs, and then enters the excStub as if handling a standard page fault. By using

81

VxWorks
Architecture Supplement, 6.6

a new “safe” stack, the OSM allows the user to attempt a recovery and to debug
the issue that caused the stack problem.

BOI and EOI

The interrupt handler calls intEnt() and saves the volatile registers (eax, edx, and
ecx). It then calls the ISR, which is usually written in C. Finally, the handler restores
the saved registers and calls intExit().

The beginning-of-interrupt (BOI) and end-of-interrupt (EOI) routines are called
before and after the ISR. The BOI routine ascertains whether or not the interrupt is
stray; if it is stray, the BOI routine jumps to intExit(). If the interrupt is not stray,
the BOI routine returns to the caller. The EOI routine issues an EOI signal to the
interrupt controller, if necessary.

Some device drivers (depending on the manufacturer, the configuration, and so
on) generate a stray interrupt on IRQ7 (which is used by the parallel driver), and
on IRQ15. The global variable sysStrayIntCount is incremented each time such an
interrupt occurs, and a dummy ISR is connected to handle these interrupts. For
more information about sysStrayIntCount, see your BSP documentation.

Interrupt Mode

Three interrupt modes are supported. The PIC Mode is the default interrupt mode.
This mode uses the popular i8259A interrupt controller. The Virtual Wire Mode
uses local APIC and i8259A. The Symmetric I/O Mode uses local APIC and 1/0O
APIC. For more information, see your BSP documentation and 4.4.18 Advanced
Programmable Interrupt Controller (APIC), p.85.

4.4.12 Exceptions

Exception handlers are executed in supervisor mode (PLO) with the task
supervisor stack. All exceptions are expected to use the exception stack.

Exceptions differ from interrupts, with regard to the operating system, because
interrupts are executed at the interrupt level and exceptions are executed at the
task level.

After saving all registers on the supervisor stack, the task prints out the exception
messages and then suspends itself. Execution can be resumed with the information
stored in the supervisor stack.

82

4 Intel Architecture
4.4 Architecture Considerations

The processor generates an exception stack frame in one of two formats,
depending on the exception type. The types are as follows:

(EIP + CS + EFLAGS) or (ERROR + EIP + CS + EFLAGS)

The CS (Code Selector) register is taken from the vector table entry. That entry is
the sysCsExc global variable defined in the BSP.

4.413 Stack Management

The task stack is used for task-level execution. The intEnt() and intExit() routines
are used to switch to and from the interrupt stack. The size of the interrupt stack is
determined by the ISR_STACK_SIZE macro (the default value is 1000).

4.4.14 Context Switching

Context switching is handled in software by the VxWorks kernel. Hardware
multitasking through task gates and TSS descriptors is not used for normal context
switching. The switch is accomplished by building a dummy exception stack
frame and then using the IRET instruction to make the contents of the stack frame
the new processor state.

4.4.15 Machine Check Architecture (MCA)

The P5 (Pentium) family processor introduced a new exception called the machine
check exception (interrupt -18). This exception is used to signal hardware-related
errors, such as a parity error on a read cycle. The P6 (PentiumPro, II, III) and P7
(Pentium 4) family processors extend the type of errors that can be detected and
allowed to generate a machine check exception. These architectures also provide a
new machine check architecture that records information about the machine check
errors and provides the basis for extended error logging capability.

MCA is enabled by default and its status registers are set to zero in
pentiumMcaEnable() in sysHwlInit(). These registers are accessed by
pentiumMsrSet() and pentiumMsrGet().

83

VxWorks
Architecture Supplement, 6.6

4.4.16 Registers

Memory Type Range Register (MTRR)

MTRRs are a feature of P6 (PentiumPro, 11, III) and P7 (Pentium 4) family
processors that allow the processor to optimize memory operations for different
types of memory, such as RAM, ROM, frame buffer memory, and
memory-mapped I/O. MTRRs configure an internal map of how physical address
ranges are mapped to various types of memory. The processor uses this internal
map to determine the cache ability of various physical memory locations and the
optimal method of accessing memory locations.

For example, if a memory location is specified in an MTRR as write-through
memory, the processor handles accesses to this location either by reading data from
that location in lines and caching the read data or by mapping all writes to that
location to the bus and updating the cache to maintain cache coherency. In
mapping the physical address space with MTRRs, the processor recognizes five
types of memory: uncacheable (UC), write-combining (WC), write-through (WT),
write-protected (WP), and write-back (WB).

The MTRR table is defined as follows:

typedef struct mtrr_ fix /* MTRR - fixed range register */

{

char typel8]; /* address range: [0]=0-7 ... [7]1=56-63 */
} MTRR_FIX;

typedef struct mtrr_var /* MTRR - variable range register */

{

long long int base; /* base register */

long long int mask; /* mask register */

} MTRR_VAR;

typedef struct mtrr /* MTRR */

{

int capl2]; /* MTRR cap register */

int deftypel2]; /* MTRR defType register */
MTRR_FIX fix[11]; /* MTRR fixed range registers */
MTRR_VAR var[8]; /* MTRR variable range registers */
} MTRR;

Model-Specific Register (MSR)

The P5 (Pentium), P6 (PentiumPro, II, I1I), and P7 (Pentium 4) families of
processors implement the concept of model specific registers (MSRs) to control
hardware functions in the processor or to monitor processor activity. The new
registers control the debug extensions, the performance counters, the
machine-check exception capability, the machine check architecture, and the

84

4 Intel Architecture
4.4 Architecture Considerations

MTRRs. The MSRs can be read from and written to using the RDMSR and WRMSR
instructions, respectively.

NOTE: Pentium M processors include their own set of MSRs. For more
information, see the Model-Specific Registers appendix of the Intel Architecture
Software Developer’s Manual.

4.4.17 Counters

Performance Monitoring Counters (PMCs)

The P5 (Pentium) and P6 (PentiumPro, 11, III) families of processors have two
performance-monitoring counters for use in monitoring internal hardware
operations. These counters are duration or event counters that can be programmed
to count any of approximately 100 different types of events, such as the number of
instructions decoded, number of interrupts received, or number of cache loads.

PMCs are initialized in sysHwInit().

Timestamp Counter (TSC)

The P5 (Pentium), P6 (PentiumPro, II, I1I), and P7 (Pentium 4) families of
processors provide a 64-bit timestamp counter that is incremented every processor
clock cycle. The counter is incremented even when the processor is halted by the
HLT instruction or the external STPCLK# pin. The timestamp counter is set to 0
following a hardware reset of the processor. The RDTSC instruction reads the
timestamp counter and is guaranteed to return a monotonically increasing unique
value whenever executed, except for 64-bit counter wraparound. Intel guarantees,
architecturally, that the timestamp counter frequency and configuration will be
such that it will not wraparound within 10 years after being reset to 0. The period
for counter wrap is several thousands of years in these processors.

4.4.18 Advanced Programmable Interrupt Controller (APIC)

Local APIC/xAPIC

The local APIC/xAPIC module is a driver for the local advanced programmable
interrupt controller in the P6 (PentiumPro, II, III) and P7 (Pentium 4) families of
processors. The local APIC/xAPIC is included in selected P6 and P7 processors.
On P6 and P7 family processors, the presence or absence of an on-chip local APIC
can be detected using the CPUID instruction. When the CPUID instruction is

85

VxWorks
Architecture Supplement, 6.6

executed, bit 9 of the feature flags returned in the EDX register indicates the
presence (set) or absence (clear) of an on-chip local APIC.

The local APIC performs two main functions for the processor:

» It processes local external interrupts that the processor receives at its interrupt
pins as well as local internal interrupts generated by software.

* In multiple-processor systems, it communicates with an external I/O APIC
chip. The external I/O APIC receives external interrupt events from the system
as well as interprocessor interrupts from the processors on the system bus and
distributes them to the processors on the system bus. The I/O APIC is part of
Intel’s system chip set.

The local APIC controls the dispatching of interrupts (to its associated processor)
that it receives either locally or from the I/O APIC. It provides facilities for
queuing, nesting, and masking interrupts. The local APIC handles the interrupt
delivery protocol with its local processors as well as accesses to APIC registers. In
addition, it manages interprocessor interrupts and remote APIC register reads. A
timer on the local APIC allows local generation of interrupts, and local interrupt
pins permit local reception of processor-specific interrupts.

The local APIC can be disabled and used in conjunction with a standard
8259A-style interrupt controller. Disabling the local APIC can be done in hardware
for Pentium (P5) processors or in software for P6 and P7 family processors.

The local APIC in P7 (Pentium 4) processors (called the xAPIC) is an extension of
the local APIC found in P6 family processors. The primary difference between the
APIC architecture and xAPIC architecture is that with Pentium 4 processors, the
local xAPICs and I/O xAPIC communicate with one another through the
processor’s system bus; whereas, with P6 family processors, communication
between the local APICs and the I/O APIC is handled through a dedicated 3-wire
APIC bus. Also, some of the architectural features of the local APIC have been
extended and/or modified in the local xAPIC.

The base address of the local APIC and I/O APIC is taken from the MP
configuration table (for more information, see Intel MP Specification Version 1.4) or
the IA32_APIC_BASE MSR. If the local APIC driver is unable to find the addresses,
it uses LOAPIC_BASE and IOAPIC_BASE as defined in the BSP. This driver contains
three routines for use. The routines are:

* loApicInit() initializes the local APIC for the interrupt mode chosen.
* loApicShow() shows the local APIC registers.
= loApicMpShow() shows the MP configuration table.

86

4 Intel Architecture
4.4 Architecture Considerations

The MP specification defines three interrupt modes: virtual wire mode, symmetric
I/0O mode, and PIC mode. Local APIC is used in the virtual wire mode (define
VIRTUAL_WIRE_MODE in the BSP) and the symmetric I/O mode (define
SYMMETRIC_IO_MODE in the BSP). However, it is not used in PIC mode (the
default interrupt mode) which uses the 8259A PIC.

In the virtual wire mode, interrupts are generated by the 8259A equivalent PICs,
but delivered to the boot strap processor by the local APIC. The local APIC is
programmed to act as a “virtual wire”; that is, it is logically indistinguishable from
a hardware connection. This is a uniprocessor compatibility mode.

In symmetric I/O mode, the local and I/O APICs are fully functional, and
interrupts are generated and delivered to the processors by the APICs. Any
interrupt can be delivered to any processor. This is the only multiprocessor
interrupt mode.

The local and I/O APICs support interrupts in the range of 32 to 255. Interrupt
priority is implied by its vector, according to the following relationship: priority =
vector / 16. Here the quotient is rounded down to the nearest integer value to
determine the priority, with 1 being the lowest and 15 the highest. Because vectors
0 through 31 are reserved for exclusive use by the processor, the priority of user
defined interrupts range from 2 to 15. A value of 15 in the interrupt class field of
the task priority register (TPR) masks off all interrupts that require interrupt
service. A P6 family processor’s local APIC includes an in-service entry and a
holding entry for each priority level. To avoid losing interrupts, software should
allocate no more than 2 interrupt vectors per priority. P7 (Pentium 4) family
processors expand this support by allowing two interrupts per vector rather than
per priority level.

1/0 APIC/xAPIC

The I/O APIC/xAPIC module is a driver for the I/O advanced programmable
interrupt controller for P6 (PentiumPro, II, III) and P7 (Pentium 4) family
processors. The I/O APIC/xAPIC is included in some Intel system chip sets, such
as ICH2. Software intervention may be required to enable the I/O APIC/xAPIC on
some chip sets.

The 8259A interrupt controller is intended for use in uniprocessor systems; 1/O
APIC can be used in either uniprocessor or multiprocessor systems. The I/O APIC
handles interrupts very differently than the 8259A. Briefly, these differences are:

* Method of Interrupt Transmission. The I/O APIC transmits interrupts through
a 3-wire bus and interrupts are handled without the need for the processor to
run an interrupt acknowledge cycle.

87

VxWorks
Architecture Supplement, 6.6

* Interrupt Priority. The priority of interrupts in the I/O APIC is independent of
the interrupt number. For example, interrupt 10 can be given a higher priority
than interrupt 3.

* More Interrupts. The I/O APIC supports a total of 24 interrupts.

The I/O APIC unit consists of a set of interrupt input signals, a 24-entry by 64-bit
interrupt redirection table, programmable registers, and a message unit for
sending and receiving APIC messages over the APIC bus or the front-side (system)
bus. I/O devices inject interrupts into the system using one of the I/O APIC
interrupt lines. The I/O APIC selects the corresponding entry in the redirection
table and uses the information in that entry to format an interrupt request message.
Each entry in the redirection table can be individually programmed to indicate
edge/level sensitive interrupt signals, the interrupt vector and priority, the
destination processor, and how the processor is selected (statically and
dynamically). The information in the table is used to transmit a message to other
APIC units (via the APIC bus or the front-side (system) bus).

I/O APIC is used in the symmetric I/O mode (define SYMMETRIC_IO_MODE in
the BSP). The base address of the I/O APIC is determined in loApicInit() and
stored in the global variables ioApicBase and ioApicData. The ioApicInit()
routine initializes the I/O APIC with information stored in ioApicRed0_15 and
ioApicRed16_23. ioApicRed0_15 is the default lower 32-bit value of the
redirection table entries for IRQ 0 to IRQ 15 which are edge triggered positive high,
ioApicRed16_23 is the default value for IRQ 16 to IRQ 23 which are level triggered
positive low. TheioApicRedSet() and ioApicRedGet() routines are used to access
the redirection table. The ioApicEnable() routine enables the I/O APIC or xAPIC.
The ioApiclrqSet() routine sets the specific IRQ to be delivered to the specific local
APIC. The ioApicShow() routine shows the I/O APIC registers. This
implementation does not support a multiple I/O APIC configuration.

Local APIC Timer

The local APIC timer library contains routines for the timer in the Intel local
APIC/xAPIC in P6 (PentiumPro, II, III) and P7 (Pentium 4) family processors.

The local APIC contains a 32-bit programmable timer for use by the local processor.
This timer is configured through the timer register in the local vector table. The
time base is derived from the processor’s bus clock, divided by a value specified in
the divide configuration register. After reset, the timer is initialized to zero. The
timer supports one-shot and periodic modes. The timer can be configured to
interrupt the local processor with an arbitrary vector.

The library gets the system clock from the local APIC timer and auxiliary clock
from either RTC or PIT channel 0 (define PITO_FOR_AUX in the BSP). The macro

88

4 Intel Architecture
4.4 Architecture Considerations

APIC_TIMER_CLOCK_HZ must also be defined to indicate the clock frequency of
the local APIC timer. The parameters SYS_CLK_RATE_MIN, SYS_CLK_RATE_MAX,
AUX_CLK_RATE_MIN, and AUX_CLK_RATE_MAX must be defined to provide
parameter checking for the sysClkRateSet() and sysAuxClkRateSet() routines.

The timer driver uses the processor’s on-chip TSC (timestamp counter) for the
timestamp driver. The TSC is a 64-bit timestamp counter that is incremented every
processor clock cycle. The counter is incremented even when the processor is
halted by the HLT instruction or the external STPCLK# pin. The timestamp counter
is set to 0 following a hardware reset of the processor. The RDTSC instruction reads
the timestamp counter and is guaranteed to return a monotonically increasing
unique value whenever executed, except for 64-bit counter wraparound. Intel
guarantees, architecturally, that the timestamp counter frequency and
configuration will be such that it will not wraparound within 10 years after being
reset to 0. The period for counter wrap is several thousands of years in P6
(PentiumPro, II, III) and P7 (Pentium 4) family processors.

4.4.19 1/0 Mapped Devices

For I/O mapped devices, use the following routines from
installDirlvxworks-6.x/target/config/bspName/sysALib.s:

sysInByte() Input one byte from I/O space.
sysOutByte() Output one byte to I/O space.
sysInWord() Input one word from I/0O space.
sysOutWord() Output one word to I/O space.
sysInLong() Input one long word from I/O space.
sysOutLong() Output one long word to I/O space.

sysInWordString() Input a word string from I/O space.
sysOutWordString() Output a word string to I/O space.
sysInLongString() Input a long string from I/0O space.
sysOutLongString() Output a long string to I/O space.

4.4.20 Memory-Mapped Devices

For memory-mapped devices, there are two kinds of memory protection provided
by VxWorks: paging with the MMU and segmentation with the global descriptor
table. Because VxWorks operates at the highest processor privilege level, no
“protection rings” exist.

89

VxWorks
Architecture Supplement, 6.6

Intel Architecture processors allow you to configure memory space into valid and
invalid areas, even under supervisor mode. Thus, you receive a page fault only if
the processor attempts to access addresses mapped as invalid, or addresses that
have not been mapped. Conversely, if the processor attempts to access a
nonexistent address space that has been mapped as valid, no page fault occurs.

4.4.21 Memory Considerations for VME
The global descriptors for Intel Architecture targets are configured for a flat 4 GB
memory space.

If you are running VxWorks for Intel Architecture on a VME board, be aware that
addressing nonexistent memory or peripherals does not generate a bus error or
fault.

4.4.22 ISA/EISA Bus

The optional PC-compatible hardware cards supported in this release (the Ethernet
adapter cards and the Blunk Microsystems ROM card) use the ISA /EISA bus
architecture.

4.4.23 PC104 Bus

The PC104 bus is supported and tested with the NE2000-compatible Ethernet card
(4129: Mesa Electronics). The Ampro Ethernet card (Ethernet-II) is also supported.

4.4.24 PCl Bus

The PCIbus is supported and tested with the Intel EtherExpress PRO100B Ethernet
card (Intel 8255[789]). Several routines to access PCI configuration space are
supported. Functions addressed here include:

= Locate the device by deviceIlD and vendorID.
= Locate the device by classCode.

= Generate the special cycle.

= Access its configuration registers.

For more information, see the reference entry for pciConfigLib.

90

4 Intel Architecture
4.4 Architecture Considerations

4.4.25 Software Floating-Point Emulation

The software floating-point library is supported for Intel Architecture (Pentium)
architectures that do not have on-chip FPUs; select INCLUDE_SW_FP for inclusion
in the project facility VxWorks view to include the library in your system image.
This library emulates each floating-point instruction by using the exception
“Device Not Available.” For other floating-point support information, see

4.3.2 Supported Routines in mathALib, p.60.

4.4.26 Power Management

CPU power management for the Intel Architecture is no longer an
architecture-specific function. As such, kernel applications using the
vxPowerModeGet() and vxPowerModeSet() routines must migrate to the API
provided by the light power manager. (For more information, see the reference
entry for cpuPwrLightMgr.)

To perform this migration, do the following:

» Replace calls to vxPowerModeSet(VX_POWER_MODE_DISABLE) with
cpuPwrMgrEnable(FALSE).

» Replace calls to vxPowerModeSet(VX_POWER_MODE_AUTOHALT) with
cpuPwrMgrEnable(TRUE).

» Replace calls to vxPowerModeGet() with cpuPwrMgrIsEnabled().

NOTE: The return types for the vxPowerModeGet() and
cpuPwrMgrlsEnabled() routines are not the same.

For the cpuPwrLightMgr API to be present in a VxWorks image, the VxWorks
kernel must be configured with the INCLUDE_CPU_LIGHT_PWR_MGR
component. This component is included by default so the APIis present unless the
component is explicitly removed.

For more information on available power management facilities, see the VxWorks
Kernel Programmer’s Guide.

91

VxWorks
Architecture Supplement, 6.6

4.4.27 VxWorks Memory Layout

Two memory layouts for Intel Architecture (Pentium) architectures are described
in this section. The figures contain the following labels:

Interrupt Vector Table (IDT)
Table of exception/interrupt vectors (IDT).

Global Descriptor Table (GDT)

Anchor for the shared memory network (if there is shared memory on the
board).

Boot Line
ASCII string of boot parameters.

Exception Message
ASCII string of the fatal exception message.

FD DMA Area
Diskette (floppy device) direct memory access area.

Initial Stack
Initial stack for usrInit(), until usrRoot() gets allocated stack.

System Image
Entry point for VxWorks.

WDB Memory Pool
Size depends on the macro WDB_POOL_SIZE which defaults to one-sixteenth
of the system memory pool. This space is used by the target server to support
host-based tools. Modify WDB_POOL_SIZE under INCLUDE_WDB.

Interrupt Stack
Size is defined by ISR_STACK_SIZE under INCLUDE_KERNEL. Location
depends on system image size.

System Memory Pool
Size depends on size of system image and interrupt stack. The end of the free
memory pool for this board is returned by sysMemTop().

Figure 4-1 shows a lower memory option.

92

Figure 4-1

VxWorks System Memory Layout (Intel Architecture Lower Memory)

Interrupt Vector Table
(2 KB)

GDT

SM Anchor

Boot Line

Exception Message

FD DMA Area

Initial Stack

System Image

WDB Memory Pool

Interrupt Stack

System Memory Pool

(no memory)

4 Intel Architecture

Address

4.4 Architecture Considerations

+0x0000 + LOCAL_MEM_LOCAL_ADRS

+800

+1100

+1200
+1300

+2000

+5000
+8000

_end

+a0000
+100000

KEY

Figure 4-2 illustrates the typical upper memory configuration.

[1 =Available
[——1] =Reserved

sysMemTop()

93

VxWorks
Architecture Supplement, 6.6

Figure 4-2 VxWorks System Memory Layout (Intel Architecture Upper Memory)

Address
+0x0000 + LOCAL_MEM_LOCAL_ADRS

Interrupt Vector Table

(2 KB)
+800
GDT
+1100
SM Anchor
+1200
Boot Line
+1300
Exception Message
+2000
FD DMA Area
+5000 KEY
1 =Available
[T————1 =Reserved
+a0000
(no memory)
+100000
Initial Stack
+108000
System Image
_end

WDB Memory Pool

Interrupt Stack

System Memory Pool

sysMemTop()

94

4 Intel Architecture
4.5 Reference Material

All addresses shown in Figure 4-2 are relative to the start of memory for a
particular target board. The start of memory (corresponding to 0x0 in the
memory-layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under
INCLUDE_MEMORY_CONFIG for each target.

In general, the boot image is placed in lower memory and the VxWorks image is
placed in upper memory, leaving a gap between lower and upper memory. Some

BSPs have additional configurations which must fit within their hardware

constraints. For details, see the reference entry for each BSP.

4.5 Reference Material

Comprehensive information regarding Intel Architecture hardware behavior and
programming is beyond the scope of this document. Intel Corporation provides
several hardware and programming manuals for the Intel Architecture processor
families on its Web site:

http://developer.intel.com/

Wind River recommends that you consult the hardware documentation for your
processor or processor family as necessary during BSP development.

95

http://developer.intel.com/

VxWorks
Architecture Supplement, 6.6

96

MIPS

5.1 Introduction 97

5.2 Supported Processors 98

5.3 Interface Variations 103

5.4 Architecture Considerations 111

5.5 Reference Material 133

5.1 Introduction

This chapter provides information specific to VxWorks development on MIPS
processors.

97

VxWorks

Architecture Supplement, 6.6

5.2 Supported Processors

This release of VxWorks implements a number of changes to better support MIPS
processors and to address performance issues:

98

In previous releases, code for all 32-bit kernels used the MIPS II Instruction Set
Architecture (ISA), while 64-bit kernels used the MIPS III ISA. This approach
accommodated the largest possible subset of available processors. This release
adds support libraries that enable kernel builds for processors implementing
MIPS32-, MIPS64-, MIPS32 Release 2-, and MIPS64 Release 2-compatible
instruction sets.

In previous releases, thee were only two CPU designations: MIPS 32 and MIPS
64. In this release, the CPU designation indicates not only the processor
bit-width, but also the required ISA level. The new CPU-compatibility
designations MIPSI2 and MIPSI3 correspond to the former behavior of MIPS
ISA II (MIPS 32) and MIPS ISA III (MIPS64), respectively. For processors that
implement the full MIPS32 or MIPS64 ISA (including the Privileged Resource
Architecture specification), the designations are MIPSI32 and MIPSI64. For
processors that implement the MIPS32/MIPS64 Release 2 ISA, the
designations are MIPSI32R2 and MIPSI64R2. For compatibility reasons, the
new designations (MIPSI2 and MIPSI3) appear instead of the old designations
MIPS32 or MIPS64 in BSP makefiles that use Wind River standard makefile
structure. You should update existing BSPs as soon as possible, because the old
CPU designations are deprecated and may not be supported in future releases.

In previous releases, all 32-bit kernels were soft-float only, and all 64-bit
kernels were hard-float only. This is still the case for kernels that use the MIPS
IT (32-bit) and MIPS III (64-bit) ISAs. However, in addition to 32-bit soft-float
and 64-bit hard-float libraries, you can now use the 32-bit hard-float kernel
libraries for processors that implement the MIPS32 Release 2 ISA, and 64-bit
soft-float kernel libraries for processors that implement the MIPS64 and
MIPS64 Release 2 ISAs.

In previous releases, all 64-bit kernels used theo64 application binary interface
(ABI), which is an extension of the 32-bit 032 ABI that extends register sizes to
64 bits. In this release, all 64-bit kernels use the newer n32 ABI, which
implements changes in function calling conventions intended to improve
performance and conserve stack space.

Table 5-1

5 MIPS
5.2 Supported Processors

* In previous releases, each MIPS BSP identifier contains both the name of the
target and a suffix designating bit width, floating point, and endianness. In this
release, the suffix of all BSPs references the new CPU designation, while
retaining the same convention for soft- or hard-float and bit- or
little-endianness.

The VxWorks 6.6 libraries support a wide range of MIPS CPUs, including MIPS32
and MIPS64 implementations. Because of the wide range of MIPS processors
available, it is beyond the scope of this document to provide a complete listing of
supported CPUs. However, Table 5-1 provides information for a representative
group of CPUs supported by VxWorks.

NOTE: Table 5-1 is accurate at the time of this writing. However, support for
additional CPUs and libraries may be added at any time. For a complete and
updated list of supported MIPS devices, libraries, and BSPs, see the Wind River
Online Support Web site.

Each MIPS ISA level contains a superset of the instructions in the preceding level,
meaning that you can build a kernel with any level of ISA support up to and
including the ISA level of the target processor. This release includes the MIPSI2
and MIPSI3 compatibility libraries. For example, it will be possible to use libraries
compiled with the MIPS IIT ISA (MIPSI3) for the Broadcom bcm1250, even though
it supports the MIPS64 ISA.

Summary of Supported MIPS Devices and Libraries

CPU CPU Variant ISA Level Libraries

Broadcom Devices

bem1103 _bcm33xx MIPS32 MIPSI2sfxxx/MIPSI32sfxxxle
MIPSI32sfxxx/MIPSI32sfxxxle
bem1250 _sbl MIPS64 MIPSI3xxx
MIPSI64xxx
becm1480 _sbl MIPS64 MIPSI3xxx
MIPSI64xxx

99

Table 5-1

VxWorks
Architecture Supplement, 6.6

Summary of Supported MIPS Devices and Libraries (cont'd)

CPU CPU Variant ISA Level Libraries

MIPS Technologies, Inc. Devices

4kc _mtidkx MIPS32 MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI32sfxxx/MIPSI32sfxxxle

4kec _mtidkx MIPS32R2 MIPSI2xxx/MIPSI2xxxle
MIPSI32R2xxx/MIPSI32R2xxxle

5kc _mti5Skx MIPS642 MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI64sfxxx/MIPSI64sfxxxle

5kf _mti5kx MIPS64 MIPSI3xxx/MIPSI3xxxle
MIPSI64xxx/MIPS*64xxxle

24kc _mti2dkx MIPS32R2 MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI32R2sfxxx/MIPSI32R2sfxxxle

24kf _mti24kx MIPS32R2° MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI32R2xxx/MIPSI32R2xxxle

74kf _mti24kx MIPS32R2P MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI32R2xxx/MIPSI32R2xxxle

NEC Devices

vr5500 _vrb5xx v MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI3xxx/MIPSI3xxxle

PMC-Sierra Devices

rm9000 _rm9xxx v MIPSI3xxx/MIPSI3xxxle

Raza Corporation Devices

x1r732, 716 xlr MIPSI64 MIPSI64sfxxx /MIPSI64sfxxxle

x1r532,516,508 _xIr MIPSI64 MIPSI64sfxxx /MIPSI64sfxxxle

100

Table 5-1

5 MIPS
5.2 Supported Processors

Summary of Supported MIPS Devices and Libraries (cont'd)

CPU CPU Variant ISA Level Libraries

MIPS Technologies, Inc. Devices

4kc _mtidkx MIPS32 MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI32sfxxx/MIPSI32sfxxxle

4kec _mtidkx MIPS32R2 MIPSI2xxx/MIPSI2xxxle
MIPSI32R2xxx/MIPSI32R2xxxle

5kc _mti5Skx MIPS642 MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI64sfxxx/MIPSI64sfxxxle

5kf _mtibkx MIPS64 MIPSI3xxx/MIPSI3xxxle
MIPSI64xxx/MIPS*64xxxle

24kc _mti24kx MIPS32R2 MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI32R2sfxxx/MIPSI32R2sfxxxle

24kf _mti2dkx MIPS32R2P MIPSI2sfxxx/MIPSI2sfrxxle
MIPSI32R2xxx/MIPSI32R2xxxle

74kf _mti24kx MIPS32R2P MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI32R2xxx/MIPSI32R2xxxle

NEC Devices

vr5500 _vrb5xx v MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI3xxx/MIPSI3xxxle

PMC-Sierra Devices

rm9000 _rm9xxx v MIPSI3xxx/MIPSI3xxxle

Raza Corporation Devices

x1r732, 716 xlr MIPSI64 MIPSI64sfxxx / MIPSI64sfxxxle

x1r532,516,508 _xIr MIPSI64 MIPSI64sfxxx /MIPSI64sfxxxle

101

Table 5-1

VxWorks
Architecture Supplement, 6.6

Summary of Supported MIPS Devices and Libraries (cont'd)

CPU CPU Variant ISA Level Libraries

Toshiba Microelectronics, Inc.

tx4938 _tx49xx III MIPSI2sfxxx/MIPSI2sfxxxle
MIPSI3xxx/MIPSI3xxxle

Cavium Networks, Inc.

cn3850 _cav_cn3xxxMIPSI64R2¢ MIPSI64R2sfxxx/MIPSI642sfxxxle

a. Previous releases supported the 5kc only as a 32-bit device, because it lacks a
hardware floating-point accelerator and could not be supported in full 64-bit mode.
This release supports the Skc as a 64-bit device, but for backward compatibility it
provides the soft-float MIDPSI2sfxxx([le] libraries in case a situation requires 32-bit
operation.

b. Although the 24kf/74kf processor can operate in soft-float mode with the
MIPSI2sfxxx /MISI2sfxxxle library, it also supports hardware floating point
operation using the R3k-compatible floating point coprocessor model: this model
uses thirty-two 32-bit hardware floating point registers, pairable in even/odd pairs
to create a 64-bit double-precision register. This release does not support these
processors in int32 /fp64 mode.

c. The cav_cn3850_mipsi64r2sf BSP must be compiled using the GNU compiler only.
Although the kernel libraries are compiled with the Wind River (diab) compiler,
the BSP itself contains constructs that are not supported by the Wind River
Compiler.

NOTE: The library support examples provided in Table 5-1 represent both

Wind River Compiler- and GNU-compiled libraries. For example, MIPS32sfxxx
represents both MIPS32sfdiab (the Wind River Compiler-compiled library) and
MIPS32sfgnu (the GNU-compiled library). You should substitute the appropriate
option (diab or gnu) based on your chosen compiler.

Keep in mind that MIPS CPUs are organized by CPU variant. This allows the
VxWorks kernel to take advantage of the specific architecture characteristics of one
variant without negatively impacting another variant. As shown in Table 5-1, this
organization leads to certain library-to-CPU variant mappings. For example, the
MIPSI12sfxxx, MIPSI2sfxxxle, MIPSI3xxx, MIPSI3xxxle, MIPSI64sfxxx,
MIPSI64sfxxxle and MIPSI64xxx/MIPSI64xxxle libraries are supplied for all CPUs
with the _mti5kx variant. However, since the 5kc processor, a member of the
_mti5kx variant family, has no floating 5kc processor, it cannot be used with the
MIPSI3xxx/MIPSI3xxxle or MIPSI64xxx/MIPSI64xxxle libraries, because they are
compiled assuming floating-point support. Also, available libraries are sometimes

102

5 MIPS
5.3 Interface Variations

subject to individual processor and board limitations. For example, although both
big- and little-endian libraries are provided for the _bem125x CPU variant, only
the big-endian bcm1250 BSP is provided.

5.3 Interface Variations

This section describes particular routines and tools that are specific to MIPS targets
in any of the following ways:

= They are available only on MIPS targets.
» They use parameters specific to MIPS targets.
» They have special restrictions or characteristics on MIPS targets.

For complete documentation, see the reference entries for the libraries, routines,
and tools discussed in the following sections.

5.3.1 Optimized Libraries

Most VxWorks libraries are compiled from portable C source code, but there are
some libraries that are compiled from assembly language for better performance.
The following libraries are optimized for MIPS targets:

= bLib - buffer manipulation library (including the swab() routine)

= ffsLib - find first bit set library
5.3.2 dbgArchLib

This section discusses routines and interface variations associated with the
MIPS-specific dbgArchLib.

103

tt() Routine

bh() Routine

VxWorks
Architecture Supplement, 6.6

In VxWorks for MIPS, the tt() routine does not currently display parameter
information. A more complete stack trace, including function call parameter
information, may be available through the use of a host-based debugger.

Support for the bh() debugger command is provided for those MIPS processor
cores that are MIPS32 and MIPS64 compliant in VxWorks 6.2 and newer releases.
The MIPS32/MIPS64 specification provides a mechanism to support up to eight
hardware breakpoints (also referred to as watchpoints).

Known issues with Hardware Breakpoints

Watchpoint exceptions can be configured to occur on data read, data write, or
instruction execution. Which mode the watchpoint is configured for is determined
by bits 2:0 of the WatchLo register.

Bit 0 Data write
Bit 1 Data read
Bit 2 Instruction execution

NOTE: This leaves only bits 31:3 implemented for specifying the address (Vaddr)
in the WatchLo register(s) for the breakpoint. This arrangement only allows

watchpoints to be set on doubleword boundaries. This means that because bits 2:0
are ignored, executing an instruction at either 0xc0010000 or 0xc0010004 results in
a watchpoint exception. While the instruction not designated as the watchpoint is
not processed beyond the exception handling, operational speed may be reduced.

Watchpoints set on instructions that reside in branch delay slots are not available
as valid watchpoint addresses. However, nothing prevents you from setting these
addresses as a watchpoint. An indication of this type of set up error is that the
watchpoint address is never hit.

5.3.3 intArchLib

VxWorks for MIPS does not provide the intLevelSet() routine. Although some
processors provide the ability to modify the default location of the exception
(interrupt) vector table, VxWorks does not make use of this capability. However,
the routine intVecBaseSet() must be invoked during the booting of the kernel

104

5 MIPS
5.3 Interface Variations

because it performs other needed functions. For a discussion of the MIPS interrupt
architecture, see 5.4.7 Interrupts, p.115.

5.3.4 taskArchLib

The routine taskSRInit() is specific to the MIPS architecture. This routine allows
you to change the default status register with which a task is spawned. For more
information, see 5.4.7 Interrupts, p.115.

5.3.5 Memory Management Unit (MMU)

This section describes the MMU implementation for MIPS processors.

VxWorks for MIPS includes support for memory management. You can build your
BSP with or without memory management, depending upon the BSP
configuration.

* Toinclude memory management support ina VxWorks Image Project, add the
component INCLUDE_MAPPED_KERNEL to your project.

* Toinclude memory management support in a BSP-built kernel, execute make
MAPPED=yes in the BSP directory. Do not define
INCLUDE_MAPPED_KERNEL in config.h. This definition is intended to be
added by Makefile, not by config.h.

In unmapped VxWorks images:

» The kernel resides in kseg0 and ksegl because these address ranges do not
utilize the MMU.

* RIDPs reside in the kernel heap, which is allocated in kseg0. RTPs run in the
kernel protection state.

When memory management is enabled, the address map of VxWorks is changed:
» The kernel resides in kseg2.
* RIPsreside in kuseg (the lower 2 GB of the 32-bit virtual address space). RTPs
run in the user protection state.
Kernel Text Segment Static Mapping

When the VxWorks kernel includes memory management, the kernel reserves a
portion of the hardware translation lookaside buffer (TLB) registers to create a
persistent memory map for the kernel text segment. This persistent memory map

105

VxWorks
Architecture Supplement, 6.6

eliminates any address translation overhead for instruction references within the
kernel text segment. BSPs provided by Wind River initialize the TLB registers
appropriately for mapped operation. Pre-VxWorks 6.0 BSPs that make use of the
MMU (for example, for accessing memory and peripheral devices at addresses
beyond the top of the 32-bit address space) need to be modified to avoid conflicting
with the new memory management design of this VxWorks release.

Data Segment Alignment

When the VxWorks kernel includes memory management, static TLB entries are
used to provide the address mapping for the kernel text segment. During the build
process, mapped kernels are linked with the load address of the data segment
aligned to a multiple of an MMU page boundary. This has two effects:

* It minimizes the number of TLB entries needed to statically map the kernel
text.

= It allows write protection to be applied to the kernel text section independent
of the kernel data, which must remain read /write.

For all practical purposes, the physical memory between the end of the kernel text
section and the beginning of the kernel data is unallocated and unusable.
However, because the padding is done in the linker, the kernel is not increased in
size by the padding amount.

5.3.6 Caches

For most MIPS devices, the caching characteristics of memory in kseg0 are
determined at startup time by the K0 field of the CONFIG register, and should not
be changed once set. For this reason, the VxWorks cacheEnable() and
cacheDisable() routines are not implemented for MIPS and return ERROR.

For mapped kernels, cache characteristics can be controlled on a page-by-page
basis through the use of the standard VM library API calls.

5.3.7 AIM Model for Caches

The Architecture-Independent Model (AIM) for cache provides an abstraction
layer to interface with the underlying architecture-dependent cache code. This
allows uniform access to the hardware cache features that are usually CPU core
specific. AIM for cache is for VxWorks internal use and does not change the

106

5 MIPS
5.3 Interface Variations

VxWorks API for application development. For more information, see the
reference entry for cacheLib.

Not all CPU families in which MIPS BSPs are provided utilize AIM for cache.
Currently, only the following CPU variants are supported by AIM for cache:

_bem33xx

_mtidkx
_mti5kx

_mti24kx

_vrb55xx
_xlr

Support for other variants will be added in a future release.

5.3.8 Cache Locking

Cache locking is implemented as part of MIPS AIM for cache support. Cache
locking is not supported in SMP kernels. For more information, see the reference
entry for the cache locking routine.

5.3.9 Building MIPS Kernels

As described in 5.4 Architecture Considerations, p.111, VxWorks for MIPS kernels
can be configured with or without MMU support. MIPS kernels that are compiled
with MMU support are referred to as mapped kernels, kernels without MMU
support are considered unmapped. This section describes the new procedures and
considerations for selecting the desired kernel mode.

Default (Unmapped) Build Configuration

Consistent with earlier VxWorks releases, pre-built kernels provided in your
VxWorks for MIPS installation are configured for unmapped operation. Creating a
VxWorks Image Project using the Wind River Workbench results in an unmapped
kernel configuration. As with earlier releases, operation of the default kernel is
limited to accessing memory in the unmapped memory regions kseg0
(0x80000000-0x9ffftfff) and ksegl (0xa0000000-0Oxbfffffff).

Mapped Build Configuration

Although you can configure unmapped kernels with support for real-time
processes (RTPs), they do not have access to some of the more advanced protection

107

VxWorks
Architecture Supplement, 6.6

features in this VxWorks release, such as memory write protection, inter-task
memory protection, exception vector write protection, user-supervisor address
space protection, and stack overflow protection. If you need these protection
features, you must use a mapped kernel.

There are several changes to the build process required to create a mapped kernel.
Provisions are made in Wind River-supplied BSPs to easily make these changes,
but BSPs that are not derived from those on this VxWorks distribution must take
the following items into account:.

* Building a mapped kernel in a Wind River-supplied BSP directory involves
adding the MAPPED=yes option to the make command. For example, if you
previously used the make vxWorks command to build an unmapped kernel,
you must now use the make MAPPED=yes vxWorks command to build a
mapped kernel.

» Tobuild a mapped VxWorks Image Project (kernel) in Workbench, you must
build a VxWorks Image Project with the INCLUDE_MAPPED_KERNEL
component (found under Hardware > Memory > MMU in the kernel
configuration tool).

NOTE: Although the default kernel is unmapped, building a kernel with the
PROFILE_DEVELOPMENT profile will result in a mapped kernel, because the
PROFILE_DEVELOPMENT profile assumes that you want some features that are
only available with a mapped kernel, such as stack overflow protection and other
ED&R features.

For more information on building VxWorks Image Projects, see the Wind River
Workbench User’s Guide or the VxWorks Command-Line Tools User’s Guide.

Mapped Kernel Build Details

In order to support a mapped kernel, the Wind River-supplied MIPS BSPs for this
VxWorks release have been updated in the following ways:

= Changes have been made to the BSP makefiles (Makefile) to assign
appropriate values to the variables LOCAL_MEM_LOCAL_ADRS,
RAM_LOW_ADRS, and RAM_HIGH_ADRS based on whether MAPPED=yes
is specified. These addresses are kseg0 for unmapped kernels and kseg?2 for
mapped kernels.

= The BSP makefiles (Makefile) have been changed to add an EXTRA_DEFINE
for INCLUDE_MAPPED_KERNEL when building mapped kernels.

108

5 MIPS
5.3 Interface Variations

NOTE: Do not define (#define) INCLUDE_MAPPED_KERNEL in config.h. This
could result in an incorrect linkage address, and could prevent the makefile
from correctly selecting between mapped and unmapped kernels.

» The BSP makefiles (Makefile) have been modified to set an appropriate
DATA_SEG_ALIGN value. This value is not critical for unmapped kernels, but
must be an even power of two (for example, 1, 4, 16, and so forth) multiple of
the default virtual memory (VM) library page size of 8 KB. The “usual” value
for DATA_SEG_ALIGN is 0x80000.

*= The BSP makefiles (Makefile) have been modified to define ADJUST_VMA=1
to arrange to post-process the kernel load image. This allows the boot ROM to
load a mapped kernel.

» The BSP config.h files have been modified to include logic to correctly set the
INCLUDE_MMU_BASIC component and SW_MMU_ENABLE parameter
dependent upon whether INCLUDE_MAPPED_KERNEL or INCLUDE_RTP are
defined. If INCLUDE_RTP is added to config.h, it must be done before this
logic. Also, the LOCAL_MEM_LOCAL_ADRS, RAM_LOW_ADRS, and
RAM_HIGH_ADRS definitions in config.h have been removed. For BSP builds,
these values are provided in Makefile and the definitions are passed to the
compiler on the command line. For project builds, these values are determined
by the presence or absence of the INCLUDE_MAPPED_KERNEL component.

* A new structure known as sysPhysMemDesc[] and a global variable
sysPhysMemDescNumEnt have been added to sysLib.c. These variables
describe the physical and virtual addresses and size of the system RAM to the
VM library. This structure is only included if INCLUDE_MAPPED_KERNEL is
defined.

= New startup code has been added to sysALib.s to provide initialization of the
MMU to create static entries in the MMU that allow loading the kernel into
mapped memory space. This avoids the overhead of running the TLB refill
handler when accessing kernel code.

Mapped Kernel BSP Build Precautions

The addition of mapped kernels results in certain build product combinations in
the BSP directories that should be avoided. For example,
INCLUDE_MAPPED_KERNEL should not be defined if the kernel is linked in kseg0.
(Kernels built from the Workbench are immune to these effects, as long as the BSP
directory is not modified, the kernel is configured as unmapped, and
INCLUDE_RTP is not defined in config.h.)

109

VxWorks
Architecture Supplement, 6.6

To avoid many of these interactions, Wind River recommends that you create one
BSP directory in which boot ROMs and unmapped kernels are built, and a separate
BSP directory in which mapped kernels are built.

Other Recommendations

110

Avoid building the bootrom.hex image in a directory where a mapped kernel
was previously built. The boot ROM will appear to compile correctly, but will
contain unused data and code, and may not work. The safest method for
building a bootrom image is to use:

-> make clean bootrom.hex

However, the clean is not necessary if you are certain that a mapped kernel
was never built in the BSP directory.

Conversely, avoid building a mapped kernel in a BSP directory in which a boot
ROM was built. In this case, the link step will fail with undefined symbols for
sysPhysMemDesc|] and sysPhysMemDescNumEnt. If you inadvertently
encounter this situation, clean the BSP directory with make clean and try
again with make MAPPED=yes or make MAPPED=yes vxWorks.

Use caution if you need to modify the logic in config.h that determines the
definitions of INCLUDE_MMU_BASIC and SW_MMU_ENABLE. Specifically, all
combinations of these variables produce unmapped kernels (which must be
linked at appropriate addresses) except if INCLUDE_MMU_BASIC is defined
and SW_MMU_ENABLE is set to FALSE. In this case, you build a kernel that
expects to be mapped but, because the linkage address is determined in
Makefile (which is configured to build an unmapped kernel), the kernel will
not boot.

If you switch between mapped and unmapped kernels in the same BSP
directory, always run make clean before attempting to build the new kernel.

Do not attempt to build a mapped boot ROM (for example,
make MAPPED=yes bootrom.hex).

5 MIPS
5.4 Architecture Considerations

5.4 Architecture Considerations

This section describes characteristics of the MIPS architecture that you should keep
in mind as you write a VxWorks application. The following topics are addressed:

= memory ordering

= debugger

= gp-rel addressing
» reserved registers

» signal support

» floating-point support

= interrupts

* memory management

= AIM model for MMU

= virtual memory mapping
* memory layout

» 64-bit support

* hardware breakpoints

5.4.1 Byte Order

Most MIPS RISC processors are capable of big-endian or little-endian memory
ordering. The libraries are named according to the instruction set architecture (one
of MIPSI2, MIPSI3, MIPSI32, MIPSI32R2, MIPSI64, MIPSI64R2), soft-float support
(sf), the compilers (gnu or diab) and little-endian byte order (le). For example, the
MIPSI32R2sfdiable library supports the MIPS32 Release 2 ISA, soft-float, uses the
diab compiler, and has little-endian byte order. Libraries without the trailing le
designation are big-endian.

5.4.2 Debugging and tt()

On all MIPS targets, the tt() routine displays a stack trace. However, this routine
does not currently display function parameter information. It is not possible to
reliably report parameter information on architectures (such as MIPS) that pass
some or all function parameters in registers (as opposed to placing them on the
run-time stack). A more complete stack trace, including function parameter
information, is obtained by using the host-based debugger available with
VxWorks.

111

VxWorks
Architecture Supplement, 6.6

5.4.3 gp-rel Addressing

User code should not change the GP register, which is used in the implementation
of shared libraries. This is accomplished through the use of the -G 0 command line
option for the GNU compiler, or appropriate use of the -t selection for the

Wind River Compiler.

NOTE: Shared libraries are only implemented for RTPs.

5.4.4 Reserved Registers

Following standard MIPS usage, the k0, k1, and GP registers should be considered
reserved. This is also required to implement shared libraries. The GP register
supports shared libraries for RTPs and is reserved in the kernel for future support
of small data.

5.4.5 Signal Support

Table 5-2

VxWorks provides software signal support for all architectures. However, the
manner in which MIPS maps its own exceptions onto the software signals is
architecture-dependent. Table 5-2 shows this mapping.

Mapping of MIPS Exceptions onto Software Signals

MIPS Exception Name MIPS Exception Description Software Signal
IV_TLBMOD_VEC Translation Lookaside Buffer SIGBUS
Modification

IV_TLBL_VEC Translation Lookaside Buffer Load SIGBUS
IV_TLBS_VEC Translation Lookaside Buffer Store =~ SIGBUS
IV_ADEL_VEC Address Load SIGBUS
IV_ADES_VEC Address Store SIGBUS
IV_IBUS_VEC Instruction Bus Error SIGSEGV
IV_DBUS_VEC Data Bus Error SIGSEGV
IV_SYSCALL_VEC System Call SIGTRAP

112

5 MIPS
5.4 Architecture Considerations

Table 5-2 Mapping of MIPS Exceptions onto Software Signals (cont'd)

MIPS Exception Name MIPS Exception Description Software Signal
IV_BP_VEC Breakpoint SIGTRAP
IV_RESVDINST_VEC Reserved Instruction SIGILL

IV_CPU_VEC Coprocessor Unusable SIGILL
IV_FPA_UNIMP_VEC Unimplemented Instruction SIGFPE

IV_FPA_INV_VEC Invalid Operation SIGFPE
IV_FPA_DIV0_VEC Divide-by-zero SIGFPE

IV_FPA_OVF_VEC Overflow SIGFPE

IV_FPA_UFL_VEC Underflow SIGFPE
IV_FPA_PREC_VEC Inexact SIGFPE

5.4.6 Floating-Point Support

VxWorks supports the same set of math routines for all MIPS targets using either
hardware facilities or software emulation. The following double-precision routines
are supported for MIPS architectures:

acos() asin() atan() atan2() ceil() cos() cosh()
exp() fabs() floor() fmod() logl0() log() pow()
sin() sinh() sqrt() tan() tanh() trunc()

In previous releases of VxWorks, 32-bit MIPS processors operated only in software
floating point mode, even if the processor had a hardware floating point
accelerator. Similarly, only hardware floating point support was available for 64-bit
MIPS processors. A 64-bit processor with no hardware floating point unit had to
operate in 32-bit mode.

This release supports hardware floating point operation for 32-bit processors that
implement the MIPS32 Release 2 Instruction Set Architecture. In addition, this
release supports software floating point operation for 64-bit processors that
implement the MIPS64 and MIPS64 Release 2 ISAs.

For processors that implement hardware floating point accelerators, the mode of
operation of the FPA depends upon the ALU width. In other words, for MIPSI32R2
processors, the FPA operates in 32-bit mode (providing thirty-two 32-bit floating

113

Table 5-3

VxWorks
Architecture Supplement, 6.6

point registers, or sixteen 64-bit registers derived by concatenating even/odd pairs
of 32-bit registers). For MIPSI3, MIPSI64 and MIPSI64R2 processors, the FPA
operates in 64-bit mode (providing thirty-two 64-bit registers, which can be used
as either 32- or 64-bits).

Table 5-3 shows the available MIPS libraries and the level of floating-point support
provided by each for all possible MIPS CPU types.

MIPS Library Compatibility Matrix

Floating-Point Hardware 32-bit Core 64-bit Core
None MIPSI2sfxxx
MIPSI2sfxxxle
MIPSI32sfxxx MIPSI64sfxxx
MIPSI32sfxxxle MIPSI64sfxxxle
MIPSI32R2sfxxx MIPSI164R2sfxxx
MIPSI32R2sfxxxle MIPSI164R2sfxxxle
Single-Precision MIPSI64xxx @
MIPSI64xxxle
MIPSI32R2xxx MIPSI64R2xxx
MIPSI32R2xxxle MIPSI64R2xxxle
Double-Precision MIPSI64xxx
MIPSI64xxxle
MIPSI32R2xxxP MIPSI64R2xxx
MIPSI32R2xxxle MIPSI64R2xxxle

a. Single-precision arithmetic is natively supported on 64-bit FPUs by using half of the
64-bit register. The other half is not usable in this mode.

b. Double-precision arithmetic is supported on 32-bit FPUs by pairing even/odd pairs of
32-bit registers. Necessary housekeeping to ensure proper usage is automatically
provided by the compiler, but is the developer’s responsibility in assembly language.

To utilize MIPS floating-point support in VxWorks, you must spawn a
floating-point task with the VX_FP_TASK option set. Spawning a task with this
option sets the coprocessor usable bit (CU1) in the MIPS SR register on
FPA-equipped processors. For floating-point tasks, all registers are saved and
restored on context switches. Thus, you do not need to be concerned about storing
and restoring floating-point registers on hardware floating-point-equipped
processors. Please note, however, that the use of hardware floating-point registers
during interrupt service routines is explicitly not supported, and can lead to
unexpected errors because floating-point register context is not saved /restored

114

5 MIPS
5.4 Architecture Considerations

during interrupt service, to reduce interrupt latency. If you are developing
floating-point tasks, you need to determine which of the five floating-point
exceptions are significant. (For more information, see IEEE 754 and your processor
documentation.) These exceptions can be enabled on a per-task basis by changing
the floating-point status and control register. However, you must provide the
routine that manipulates the register.

5.4.7 Interrupts

MIPS Interrupts

The MIPS architecture has inputs for six external hardware interrupts and two
software interrupts. In cases where the number of hardware interrupts is
insufficient, board manufacturers can multiplex several interrupts on one or more
interrupt lines.

The MIPS CPU treats exceptions and interrupts in the same way; that is, it branches
to a common vector and provides status and cause registers that let the system
software determine the CPU state. The CPU does not generate an IACK cycle. This
function must be implemented in software or in board-level hardware. (For
example, the VMEbus IACK cycle is a board-level hardware function.)

Because the MIPS CPU does not provide anIACK cycle, the interrupt handler must
acknowledge (or clear) the interrupt condition. If the interrupt handler does not
acknowledge the interrupt, VxWorks hangs while repeatedly trying to process the
interrupt condition. The unacknowledged interrupts can fill the work queue and
cause a workQPanic() event. If this occurs, a warm reset will fail to auto-boot the
target because the VxWorks environment variables have been corrupted by an
interrupt stack that has overflowed. A cold start will copy the variables back into
memory.

VxWorks for MIPS uses a 256-entry table of vectors. Exception or interrupt
handlers can be attached to any given vector with the intConnect() and
intVecSet() routines. Note that for interrupt sources whose lines are shared on a
PCI bus, the pcilntConnect() routine should be used to attach the handler. The
files installDir/vxworks-6.x/target/h/arch/mips/ivMips.h and bspname.h list the
vectors used by VxWorks.

VxWorks for MIPS follows the same stack conventions as all other VxWorks 6.x
architectures. There is a single interrupt stack, per-task exception stacks, and
per-task execution stacks.

115

VxWorks
Architecture Supplement, 6.6

Interrupt Support Routines

Because the MIPS architecture does not provide prioritization of interrupts in
hardware, the intLevelSet() routine is not implemented. The six external
interrupts and two software interrupts can be masked or enabled by manipulating
eight bits in the status register with intDisable() and intEnable(). Be careful to
pass correct arguments to these routines because the MIPS status register controls
much more than interrupt generation.

For interrupt control, the intLock() and intUnlock() routines are recommended.
The intLock() routine prevents interrupts from occurring while the current task is
running. However, if some action is taken that causes another task to run (such as
a call to semTake() or taskDelay()), the intLock() routine is not honored while
the other task is running. For more information, see the reference entry for
intLock().

To change the default status register with which all tasks are spawned, use the
taskSRInit() routine. The taskSRInit() routine is provided in case the BSP must
mask any interrupts from all tasks. This is useful for systems that do not connect
each interrupt line to an appropriate signal or that connect the lines to unwanted
signals. Such lines can cause spurious interrupts. Masking these interrupts can
prevent this from occurring. When using this routine, call it before kernelInit() in
sysHwlInit().

The intConnect() and intVecSet() routines handle attaching interrupt handlers to
any given vector. Any vectors not currently defined in ivMips.h are available for
use. Vector numbers should be defined in the board-specific include file. The
intVecBaseSet() routine has no meaning on MIPS processors; calling it has no
effect.

The data structure intPrioTable, found in sysLib.c, is a board-dependent array that
aids in the processing of the eight MIPS interrupt sources. Each entry in the array
consists of a structure composed of four fields: the interrupt ID, the vector number,
the mask field, and the demultiplex field. A typical structure definition and table
are as follows:

typedef struct
{

ULONG intCause; /* CAUSE IP bit of int source */
ULONG bsrTableOffset; /* index into BSR table */
ULONG intMask; /* interrupt mask */
ULONG demux; /* demultiplex argument */

} PRIO_TABLE;

116

5 MIPS
5.4 Architecture Considerations

PRIO_TABLE intPrioTable[] =
{

{CAUSE_SW1, (ULONG) IV_SWTRAPO_VEC, 0x0100, 0}, /* sw trap 0 */
{CAUSE_SW2, (ULONG) IV_SWTRAP1_VEC, 0x0200, 0}, /* sw trap 1 */
{CAUSE_IP3, (ULONG) sysVmeDeMux, 0x0400,

IV_VME_BASE_VEC}, /* VME muxed */
{CAUSE_IP4, (ULONG) sysIoDeMux, 0x0800,

IV_IO_BASE_VEC}, /* I0 muxed */
{CAUSE_IP5, (ULONG) IV_TIMERO_VEC, 0x1000, 0}, /* timer 0 */
{CAUSE_1IP6, (ULONG) sysFpaDeMux, 0x2000,

IV_FPA_BASE_VEC}, /* FPA muxed */
{CAUSE_IP7, (ULONG) IV_TIMER1_VEC, 0x4000, 0}, /* timer 1 */

{CAUSE_IPS, (ULONG) IV_BUS_ERROR_VEC, 0x8000, 0} /* bus error */

i
When an interrupt is received, the handler maps the highest-priority pending line
toits corresponding table entry. It does so in three steps. First, the demultiplex field
is read. If the field is zero, field two is taken as the vector number for the BSR table.
Otherwise, field two is interpreted as a demultiplex function and called with field
four passed as its parameter. When multiple sources share an interrupt line, the job
of the demultiplex function is to calculate a desired vector number and pass it back
to the handler. Next, the mask field is applied to the IM bits in the status register
and interrupts not currently pending and not masked are re-enabled with the IE
bit in the status register. Finally, the handler uses the vector number as an index
into the BSR table and calls the interrupt service routine previously installed by the
user with intConnect() or intVecSet().

Because tying interrupting sources to the processor’s interrupt lines is
board-dependent and sometimes arbitrary, VxWorks allows the BSP author to set
the prioritization of interrupt lines. The pointer sysHashOrder points to a lookup
table that the interrupt handler uses to perform the actual mapping of pending
interrupt lines to a corresponding table entry in intPrioTable. The operation of the
lookup table is simple; that is, the IP field of the cause register is used as an index
into the lookup table to obtain a value that is then used as an index into
intPrioTable.

In some exceptional situations, you may need to provide a custom sysHashOrder
table to implement custom ordering of servicing interrupt sources if the usual
ffsMsb and ffsLsb tables do not provide the required flexibility.

Acknowledging the Interrupt Condition

Because MIPS processors do not provide an IACK cycle, it is the job of the
user-attached interrupt handler to acknowledge (or clear) the interrupt condition.
The sysAutoAck() routine must be provided as a default handler for any possible
interrupt condition. If a spurious interrupt occurs, it is the job of sysAutoAck() to
acknowledge the interrupt condition. If an interrupt condition is not

117

VxWorks
Architecture Supplement, 6.6

acknowledged, VxWorks tries continuously to process the interrupt condition,
resulting in a workQPanic() event. If this occurs, a warm reset will fail to
auto-boot the target because the VxWorks environment variables have been
corrupted by an interrupt stack that has overflowed. A cold start will copy the
variables back into memory.

Interrupt Inversion

Table 5-4

When a single interrupt is pending in the cause register, the kernel masks out that
interrupt’s bit before dispatching it to the interrupt handler. The kernel performs
this mask operation using the contents of the cause register in combination with
field three of the table intPrioTable. Interrupts not masked and not currently
pending are re-enabled. Often, the field three value only explicitly masks its own
interrupt. As a result, any subsequent interrupt, even if it is of a lower priority, can
interrupt the interrupt service routine (ISR). This is known as interrupt inversion.

To prevent interrupt inversion, modify the interrupt masks listed in intPrioTable.
The new values should mask not only the interrupt in question, but all
lower-priority interrupts as well. For example, the interrupt mask for the
highest-priority interrupt is 0xff00. Similarly, the next-highest priority interrupt
mask is 0x7f00. These values explicitly mask the interrupt and all lower-priority
interrupts.

Keep in mind that the value of the appropriate interrupt mask is also dependent
upon whether the least significant bit (LSB) or the most significant bit (MSB) of the
mask is the highest priority. If the LSB is the highest priority, the masks are as
shown in Table 5-4:

Interrupt Mask Values When LSB Is Highest Priority

Priority of the interrupt Mask value required to prevent an equal- or lower-priority
being serviced interrupt from being acknowledged

0 (software, highest) 0xff00

1 0xfe00
2 0xfc00
3 0x£800
4 0xf000

118

Table 5-4

Table 5-5

5 MIPS
5.4 Architecture Considerations

Interrupt Mask Values When LSB Is Highest Priority (cont'd)

Priority of the interrupt Mask value required to prevent an equal- or lower-priority

being serviced interrupt from being acknowledged
5 0xe000
6 0xc000
7 (lowest) 0x8000

If the MSB is the highest priority, the masks are as shown in Table 5-5:

Interrupt Mask Values When MSB Is Highest Priority

Priority of the interrupt Mask value required to prevent an equal- or lower-priority
being serviced interrupt from being acknowledged

0 (software, lowest) 0x0100
1 0x0300
0x0700
0x0£00
0x1£00
0x3£00
0x7£00

N ks WD

(highest) 0xtf00

Note that due to the processor’s mapping of bits 1 and 0 to software interrupts,
most MIPS BSPs select the MSB as the highest priority. This causes hardware
interrupts to take precedence over software interrupts.

VMEDbus Interrupt Handling

The VMEDbus has seven interrupt levels. On most MIPS VME boards, these
interrupts are bound to a single interrupt line. This requires software to sense the
VMEDbus interrupt and demultiplex the interrupt condition to a single pending
interrupt level. This can be performed using intPrioTable.

It is possible to bind to VMEbus interrupts without vectored interrupts enabled, as
long as the VMEDbus interrupt condition is acknowledged with sysBusIntAck(). In

119

VxWorks
Architecture Supplement, 6.6

this case, there is no longer a direct correlation with the vector number returned
during the VMEbus IACK cycle. The vector number used to attach the interrupt
handler corresponds to one of the seven VMEbus interrupt levels as defined in
bspname.h. Mapping the seven VMEDbus interrupts to a single MIPS interrupt is
board-dependent.

Vectored interrupts do not change the handling of any interrupt condition except
VMEDbus interrupts. All of the necessary interrupt-acknowledgement routines are
provided in either sysLib.c or sysALib.s.

Extended Interrupts on the RM9000

In the original MIPS architecture, provision is made for eight interrupt sources: six
hardware interrupts and two software interrupts. For most MIPS targets, this is
sufficient. With the advent of more complex embedded systems, six hardware
interrupts may not suffice. One common solution is to multiplex multiple interrupt
sources onto a single interrupt pin. This approach requires two levels of processing
to handle each interrupt. First, it must be determined that the interrupt came from
the multiplexed interrupt input. Second, the multiplexed input that caused the
interrupt must be determined.

The PMC Sierra RM9000 family of processors provides an alternative solution.
These processors make provisions for four additional hardware interrupt inputs.
This allows additional expansion without requiring multiple interrupts to be
multiplexed on a single input.

PMC Sierra implemented this change in a manner consistent with the original
design of the status and cause registers. Specifically, the Interrupt Pending (IP)
field of the cause register was extended from 8 to 16 bits, as shown in Figure 5-1.
Six of these bits are now defined; the remaining two are reserved for future use.
This expansion of the IP field was possible because the added bits were not
previously defined.

However, the status register did not have extra bits available for the needed
additional interrupt mask fields. Therefore, the mask bits had to be placed in a new
register, the interrupt control register (Coprocessor 0, Set 1, Register 20), shown in
Figure 5-1. This field is considered to be an extension of the Interrupt Mask (IM)
field, and mask bits for interrupts 15:8 are placed in bits 15:8 of the interrupt
control register.

120

Figure 5-1

RM9000 Register Formats

5 MIPS
5.4 Architecture Considerations

31 23 8 0
BE| 0 CE |0 |W2|W1]|IV Interrupt Pending (IP[15:0]) 0 |ExcCode |0
Cause Register
31 15 0
XX| CU |CO |FR |RE |DS| Interrupt Mask (IM[7:0]) KX |SX| UX |KSU|ERL|EXL | IE
Status Register
31 15 0
0 Interrupt Mask (IM[15:8]) TE 0 VS

Interrupt Control Register

While four additional hardware interrupts have been added, six bits of the
extensions to the IP and IM fields have been used. Bits 11:8 of these fields

correspond to the newly added hardware interrupt inputs. Bit 12 is used to control
the Timer interrupt source that was multiplexed with Interrupt input 5 in the

original design. For backward compatibility, the Timer interrupt may still be

placed on Interrupt 5, but setting the TE bit (bit 7) of the interrupt control register
frees Interrupt 5 for use solely as a hardware input, and moves the Timer interrupt
to Interrupt 12. The second additional interrupt input is used in conjunction with

the Performance Counters implemented in the RM9000 family. This has been
placed on Interrupt 13.

The additional hardware interrupts on the RM9000 family add to the intPrioTable

that is used by the exception and interrupt handling routines in excLib to call a
user-attached interrupt handler. A typical extended interrupt table is as follows:

PRIO_TABLE intPrioTablel]

{

{CAUSE_gw1,
{CAUSE_SW2,
{CAUSE_IP3,
{CAUSE_IP4,
{CAUSE_IP5,
{CAUSE_IP6,
{CAUSE_IP7,
{CAUSE_IPS8,
{CAUSE_IP9,

(
(
(
(
(
(
(
(

ULONG) IV_SWTRAPO_VEC, 0x000100, 0},
ULONG) IV_SWTRAP1_VEC, 0x000200, 0},
ULONG) IV_IORQO_VEC,
ULONG) IV_IORQ1_VEC,
ULONG) IV_IORQ2_VEC,
ULONG) IV_IORQ3_VEC,
ULONG) IV_IORQ4_VEC,
ULONG) IV_TIMER_VEC,
(ULONG) IV_IORQ6_VEC,
{CAUSE_IP10, (ULONG) IV_IORQ7_VEC,
{CAUSE_IP11, (ULONG)IV_IORQ8_VEC,

0x000400, 0},
0x000800, 0},
0x001000, 0},
0x002000, 0},
0x004000, 0},
0x008000, 0},
0x010000, 0},
0x020000, 0},
0x040000, 0},

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

sw trap O

sw trap 1
Reserved

Uart

Expansion Conn
Expansion Conn
Expansion Conn
Timer
Expansion Conn
Expansion Conn
Expansion Conn

121

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

VxWorks
Architecture Supplement, 6.6

{CAUSE_TIP12, (ULONG) IV_IORQ9_VEC, 0x080000, 0}, /* Expansion Conn */
{CAUSE_IP13, (ULONG)IV_IORQ10_VEC, 0x100000, 0}, /* Alternate Tmr */
{CAUSE_TIP14, (ULONG)IV_IORQ11_VEC, 0x200000, 03}, /* Perf Counter */
{CAUSE_IP15, (ULONG)IV_IORQ12_VEC, 0x400000, 0}, /* Reserved */
{CAUSE_IP16, (ULONG)IV_IORQ13_VEC, 0x800000, 0}, /* Reserved */

};

Corresponding to the expansion of intPrioTable for extended interrupts, the
sysHashOrder table lookup also required modification. Due to memory
considerations, the size of the lookup table was not increased from 256 (2/\8) to
16384 entries (2"14). Instead, the lookup table pointed to by sysHashOrder is left
at 256 entries, and the cause register pending bits are checked in two separate
iterations. The first iteration uses the interrupt sources corresponding to IP[7:0]. If
none of those sources is active, a second lookup is performed using the interrupt
sources corresponding to IP[15:8]. The value from the lookup table in the second
iteration is automatically increased by 8 to place the proper offset into
intPrioTable. As a result of this design decision, interrupt sources in the status
register IM[7:0] are always given higher priority than those sources in the interrupt
control register IM[15:8].For implementations in which this trade-off is not
acceptable, it is suggested that vectored interrupts be used.

For more details on register formats on the RM9000, see the PMC Sierra RM9000x2
Integrated Multiprocessor Data Sheet.

Extended Interrupts on the RMI xlrxxx

The RMI xIr family of processors supports extended interrupt sources beyond the
traditional eight in the Cause Register. RMI's implementation adds two new CP0
registers, the Extended Interrupt Mask Register (EIMR) and the Extended
Interrupt Request Register (EIRR). These are 64-bit registers where each bit can be
programmatically set to correspond to a unique source.

NOTE: All changes to EIMR[7:0] are automatically reflected in SR[15:8] and all
changes to SR[15:8] are reflected in EIMR[7:0]. Similarly, all changes to EIRR[7:0]
are automatically reflected in CAUSE[15:8] and all changes in CAUSE[15:8] are
reflected in EIRR[7:0]. This functionality is performed by hardware.

In this VxWorks release, support for the EIMR and EIRR has been added for up to
32 unique interrupt sources. Interrupt sources must be assigned to bits 0-31.
VxWorks does not support the upper word of EIMR or EIRR.

Three new routines have been added to support the 32 interrupt sources:

int intExtendedEnable (int imask)
This routine is similar to the standard VxWorks intEnable() routine, except
that imask is a full 32 bits; imask[7:0] corresponds to SR[15:8].

122

5 MIPS
5.4 Architecture Considerations

int intExtendedDisable (int imask)
This routine is similar to the standard VxWorks intDisable() routine, except
that imask is a full 32 bits; imask[7:0] corresponds to SR[15:8].

ULONG taskExtendedIntInit (ULONG new Value)
This routine is analogous to taskSRInit(), except that all 32 bits of newValue
are used; newValue[7:0] corresponds to SR[15:8].

The interrupt priority table (intPrioTable) has been expanded to 32 rows
corresponding to the 32 bits of the lower word of EIMR/EIRR. The first eight rows
of the table correspond to the legacy MIPS interrupt mask in SR. VxWorks gives
pending interrupts on these rows first precedence. Within these eight rows,
priority is established based on the table that sysHashOrder points to. This is
compatible with the usual handling in VxWorks. If no unmasked interrupts in the
first eight rows are pending, the next 24 rows are checked for unmasked and
pending interrupts. Row eight is always given the highest priority, row 31 the
lowest. Because the xIr processor allows arbitrary assignment of interrupt sources
to bits in the EIMR/EIRR registers, prioritization of the upper 24 interrupts is
accomplished by the programmer when the assignment of interrupting sources to
EIMR/EIRR bits is made.

Assignment of hardware interrupt sources to bits of EIMR/EIRR is made with the
CPU_PIN macros in the BSP xlr.h file. Assignment of handlers to interrupt sources
is made with mipsXIrIntCtlrInputs and mipsXlrIntCtlrXBar in the BSP hwconf.c
file.

Vectored Interrupts on the RM9000

The RM9000 provides an interrupt handling mechanism that alleviates the need
for software to parse interrupt sources and prioritize among them. The RM9000
hardware implements 15 priority levels, each of which has a unique interrupt
handler. Each interrupt source is assigned to a priority level. When the interrupt
occurs, the corresponding handler is automatically executed. Parsing the cause
register, separating exceptions from interrupts, prioritizing among concurrently
active interrupts, checking for masked interrupts, and so forth is no longer
required of the software. This streamlines interrupt processing and enhances
performance.

In support of this functionality, VxWorks has added the data structure
intVecTable. This data structure is an array of structures consisting of two fields:
vector number and interrupt mask. When an interrupt occurs, the RM9000
hardware automatically vectors to the unique handler for that source, based on the
value in its interrupt priority level (IPL) register. The IPL value is used as an index
into the intVecTable array. The interrupt mask field is applied and interrupts are

123

Table 5-6

VxWorks
Architecture Supplement, 6.6

re-enabled. The vector number is then used as an index into the BSR table to call
the appropriate interrupt service routine, which the user previously installed with
intConnect() or intVecSet().

Interrupt priority level 15 is reserved. The handler for this level is implemented to
provide backwards compatibility with intPrioTable. Interrupt sources that are set
to use a priority level of 15 use a handler that parses the cause register and uses
intPrioTable as implemented in previous versions of VxWorks.

The intVecTable is very similar to the intPrioTable. For the benefit of those
familiar with intPrioTable, Table 5-6 provides a summary of the key differences
between this structure and intVecTable.

Key Differences Between intPrioTable and intVecTable

Area of Difference intPrioTable intVecTable

Ordering Ordered according to the IP Ordered according to interrupt
field in the cause register. priority levels.

Prioritization Uses sysHashOrder. Relies on RM9000 hardware.

Mask Field Masks all currently pending Masks only those interrupts

interrupts and any interrupts that have bits set in the mask
that have bits set in the mask field. It has no offset; bit 0 is the
field. Its offset matches the =~ mask for sw trap 0.2

cause register; bit 8 is the

mask for sw trap 0.

Demultiplexing Supported. Not supported. If required, set
the priority level for those
sources that require
demultiplexing to 15 and use
the intPrioTable.

a. Care must be taken in this case. If the hardware calls the highest-priority interrupt, and
no other sources are masked off, a lower-priority pending interrupt will be
immediately called once interrupts are re-enabled.

With the exception of the following data structure, all other aspects of interrupt

processing are unchanged for the BSP author or application developer (in other
words, intConnect() is still used to attach service routines to vectors, and so forth).

124

5 MIPS
5.4 Architecture Considerations

#ifdef INCLUDE_RM7K_VEC_INT

typedef struct
{
ULONG bsrTableOffset; /* index into BSR table */
ULONG intMask; /* interrupt mask */
} INT VEC_TABLE;

INT_VEC_TABLE intVecTable[] =
{

{ (ULONG) IV_TIMER_VEC, Ox3fff}, /* IPL_0 - sysClk */
{ (ULONG) 0, Ox3fff} /* IPL_1 - */
{ (ULONG) 0, 0x3fff} /* IPL_2 - */
{ (ULONG) 0, 0x3fff}, /* IPL_3 - */
{ (ULONG) 0, 0x3fff}, /* IPL_4 - */
{ (ULONG) 0, 0x3fff}, /* IPL_5 - */
{ (ULONG) 0, 0x3fff}, /* IPL_6 - */
{ (ULONG) 0, 0x3fff}, /* IPL_7 - */
{ (ULONG) 0, 0x3fff}, /* IPL_8 - */
{ (ULONG) 0, 0x3fff}, /* IPL_9 - */
{ (ULONG) 0, 0x3fff}, /* IPL_10 - */
{ (ULONG) 0, 0x3fff}, /* IPL_11 - */
{ (ULONG) 0, 0x3fff}, /* IPL_12 - */
{ (ULONG) 0, 0x3fff}, /* IPL_13 - */
{ (ULONG) IV_PERF_VEC, 0x2000}, /* IPL_14 - perf counter */
{ (ULONG) 0, Ox3fff}, /* IPL_15 - intPrioTable */
}i

#endif

The vectored interrupts affect Wind River System Viewer interrupt monitoring.
Wind River System Viewer records interrupt events with a number corresponding
to the interrupt’s location in intPrioTable. For example, int*4 is shown as INT7 on
the Event Graph. Because intVecTable can be used concurrently with
intPrioTable, a different scheme must be used for recording interrupt events that
are handled by intVecTable. Interrupts handled by intVecTable are numbered
according to their row (as with intPrioTable interrupts); however, their numbering
begins with the last row of the intPrioTable. Thus, in the above example, the MIPS
timer interrupts are displayed as INT17 on the Event Graph, and performance
counter interrupts are displayed as INT31. An int*4 interrupt is still displayed as
INT?7 on the Event Graph because, in the example, that source is still being handled
by intPrioTable. This scheme guards against potential ambiguity of interrupt
events when recorded by Wind River System Viewer.

For more details on the vectored interrupt register formats on the RM9000, see the
PMC Sierra RM9000x2 Integrated Multiprocessor Data Sheet.

125

VxWorks
Architecture Supplement, 6.6

5.4.8 Memory Management

MIPS processors include a minimal memory management unit commonly referred
to as the translation lookaside buffer (TLB). This release of VxWorks supports the
TLB in mapped kernels. MIPS processors provide three different modes of
operation: user mode, kernel mode, and supervisor mode. The VxWorks kernel
runs in kernel mode. RTPs run in user mode for mapped kernels and in kernel
mode for unmapped kernels. Supervisor mode, as described in MIPS
documentation, is not used. However, some Wind River documentation refers to
supervisor mode. In this context, the reader should substitute the MIPS-equivalent
term, kernel mode.

5.4.9 AIM Model for MMU

The Architecture-Independent Model (AIM) for MMU provides an abstraction
layer to interface with the underlying architecture-dependent MMU code. This
allows uniform access to the hardware-dictated MMU model that is typically CPU
core specific. AIM for MMU is for VxWorks internal use. However, the new model
adds support for a new routine, vmPageLock() to the VxWorks vmLib API. For
more information on this routine, see the reference entry for vmPageLock(). All
MIPS architecture variants supported in this release implement the AIM for MMU
and the new routine.

vmPageLock() requires the use of static MMU entries. To ensure minimal resource
usage, this routine requires alignment of the lock regions. This routine provides a
mechanism for reducing page misses and should boost performance when used
correctly.

Page locking of a text section will fail if the alignment and size of the text section
is such that the number of resources available is not sufficient to satisfy the
required number of MMU resources. If the BSP uses too many resources, it may not
be possible to enable this feature. Because not all MIPS processors have the same
number of resources, page locking requests that succeed on one processor may fail
on another.

The MIPS architecture uses a basic page size of 4 KB. However, because each MMU
resource controls a pair of 4 KB pages, the minimum (and default) page size for
MIPS is 8 KB, so that the two 4 KB pages can be controlled together.

126

5 MIPS
5.4 Architecture Considerations

5.4.10 Virtual Memory Mapping

Figure 5-2

The MIPS memory map is arranged in segments that have pre-determined modes
of operation. Unlike some processors that can set specific virtual memory
addresses to any mode of operation, MIPS processors pre-assign certain ranges of
virtual memory addresses to kernel mode or user mode.

MIPS Memory Map - Unmapped Kernel
FFFF FFFF
kseg2
C000 0000
kseg1]
A000 0000
kseg0 ®
8000 0000
kuseg 512 MB
-
0000 0000 0
Virtual Memory Physical Memory

As indicated in Figure 5-2, VxWorks operation is limited to kernel mode in the two
unmapped memory segments, kseg0 and ksegl. A physical addressing range of
512 MB is available. The on-chip translation lookaside buffer (TLB) is not
supported in this mode therefore access to kuseg and kseg?2 is not available.

To summarize the kseg0 and ksegl segments:

kseg0
When the most significant three bits of the virtual address are 100, the 2~ -byte
(512 MB) kernel physical space, labeled kseg0, is the virtual address space
selected. The physical address selected is defined by subtracting 0x8000.0000
from the virtual address. The cache mode for these accesses is determined by
the KO field of the configuration register, which is initialized in the BSP
romInit() routine.

229

ksegl
When the most significant three bits of the virtual address are 101, the 22°-byte
(512 MB) kernel physical space, labeled ksegl, is the virtual address space

127

VxWorks
Architecture Supplement, 6.6

selected. The physical address selected is defined by subtracting 0xA000.0000
from the virtual address. Caches are always disabled for accesses to these
addresses; physical memory or memory-mapped I/O device registers are
accessed directly.

Figure 5-3 MIPS Memory Map - Mapped Kernel

FFFF FFFF

minus1 temp
FFFF EO0O
E000 0000
kseg2 kernel
C000 0000
kseg1
A000 0000
kseg0
8000 0000
512 MB
kuse: RTPs —]
’ .
0000 0000
40 KB
—
32 KB
0000 0000 Variaple
mapping
Virtual Memory through vmLib ~ Physical Memory

Figure 5-3 illustrates the memory map used for mapped kernels. In mapped mode,
kernel text and data are located in kseg2, while RTPs operate in kuseg. A region at
the top of the 32-bit address space is used for temporary storage of working
variables during exception processing. The descriptions of the additional segments
kseg2, kuseg, and minusl1 are as follows:

kuseg
When the most significant three bits of the virtual address are 000, the 2°*-byte
user virtual space, labeled kuseg, is selected. Access to kuseg addresses
requires a TLB entry to map that virtual address to a physical address. The
specifics of the translation between virtual and physical addresses are
dynamic and managed by the virtual memory (VM) library. Cache

231

128

5 MIPS
5.4 Architecture Considerations

characteristics and write protection are controlled (through the VM library) by
control bits in the TLB entry, and may be selected on a page-by-page basis.

kseg2
When the most significant three bits of the virtual address are 110, the 2“°-byte
kernel virtual space, labeled kseg?2, is selected. Access to kseg2 addresses
requires a TLB entry to map those virtual addresses to corresponding physical
addresses. There is a fixed relationship between virtual addresses in the kernel
text section and corresponding physical addresses: subtracting 0xc0000000
from the virtual address results in the physical address. This relationship may
not be depended upon for other addresses in kseg2.

229

minusl
The region marked minus1 in the mapped kernel memory map is a statically
mapped virtual region used for temporary storage of variables that are used
during exception and interrupt handling. Entries are permanently locked into
the TLB to provide mappings for the minus1 region and the text section of the
VxWorks kernel. This design improves performance of the kernel by ensuring
that access to these regions never generates a TLB miss exception.

5.4.11 Memory Layout

Unmapped Kernels

The memory layout of an unmapped MIPS kernel occupies memory in segments
kseg0 and ksegl. The value LOCAL_MEM_LOCAL_ADRS, defined in the BSP
config.h file, indicates the start of memory for the system. For single core BSPs, this
value is 0x80000000, the virtual starting address of kseg0. In multi-core BSPs, this
value is normally adjusted for each subsequent core, depending upon the system
requirements.

The boot ROM is responsible for setting up the system and loading the VxWorks
kernel into memory. The memory layout is set up by the boot ROM in a three-step
process, as shown in Figure 5-4. First, the initial boot loading routines located at
ROM_TEXT_ADRS are executed. These routines copy data from ROM_TEXT_ADRS
to RAM_LOW_ADRS and uncompress the data, if necessary. Once in RAM, the boot
process continues by loading the VxWorks kernel. The constants
RAM_LOW_ADRS, RAM_HIGH_ADRS, and ROM_TEXT_ADRS are normally
maintained in the BSP Makefile. Parallel definitions exist in CDF files to control
linkage of Workbench project builds. Some BSPs may still contain copies of some
or all of these values in config.h. If so, they must correspond to the Makefile /CDF
file addresses.

129

VxWorks
Architecture Supplement, 6.6

Mapped Kernels

The memory layout of a mapped MIPS kernel occupies memory in kseg2 for the
kernel text and data sections, kseg0 and kseg1 for vectors and DMA device
buffers, kuseg for RTPs, and minus1 for variable storage while entering and
exiting exception handling code. For single core BSPs, the value of
LOCAL_MEM_LOCAL_ADRS is typically defined as 0xC0000000 (the virtual
starting address of kseg2) for mapped kernels. In multi-core BSPs used in
asynchronous multi-processing (AMP) operation, LOCAL_MEM_LOCAL_ADRS is
normally adjusted for each core, depending upon the system requirements.

Because the MMU is not yet set up when the boot ROM runs, the mapped kernel
is loaded into kseg0, just as it is for unmapped kernels. However, the kseg0
address is an alias of the kseg?2 address at which the kernel is linked. When the
boot ROM loads the mapped kernel and transfers to its entry point, the mapped
kernel sets up the MMU so that the kernel text and data can be accessed at their
mapped addresses in kseg2. Then, the boot process continues by running from
kseg2.

It should be noted that alternate values are required for
LOCAL_MEM_LOCAL_ADRS, RAM_LOW_ADRS, and RAM_HIGH_ADRS for
mapped kernels. The mapped kernel build mechanism takes these differences into
account.

Figure 5-4 MIPS Memory Layout Process

®

@

The initial boot-loading ROM Image
routines are executed. ROM_TEXT_ADRS
ROM Image A
(copied into RAM)
The remainder of ROM RAM_HIGH_ADRS

is copied into RAM and
uncompressed, if necessary.

VxWorks Image LOCAL_MEM_SIZE

(loaded by ROM)

The VxWorks image is
loaded into RAM. RAM_LOW_ADRS

LOCAL_MEM_LOCAL ADRS _Y_

130

5 MIPS
5.4 Architecture Considerations

NOTE: The values for LOCAL_MEM_LOCAL_ADRS, RAM_LOW_ADRS, and
RAM_HIGH_ADRS shown in Figure 5-4 correspond to the boot ROM (or

unmapped kernel) values, which are always located in unmapped memory.
Different values for these variables are used when linking a mapped kernel.

The details of the VxWorks image are shown in Figure 5-5. The figure contains the
following labels:

Exception Vectors
Table of exception and interrupt vectors. It is located at the base of kseg0,
0x80000000 for both mapped and unmapped kernels.

Initial Stack
Initial stack set up by romInit() and used by usrInit() until usrRoot() has
allocated the stack. Its size is determined by STACK_SAVE.

System Image
The VxWorks image entry point. The VxWorks image consists of three
segments: .text, .data, and .bss.

Interrupt Stack
The stack used by interrupt service routines. Its size is determined by
ISR_STACK_SIZE. It is placed at the end of the VxWorks image, before the
kernel heap.

System Memory Pool
The memory allocated for system use. The size of the memory pool is
dependent on the size of the system image and interrupt stack. The end of the
system memory pool is determined by sysMemTop().

5.4.12 64-Bit Support

VxWorks provides real-time applications with access to a 64-bit data type. This
allows applications to perform 64-bit calculations for enhanced performance.

The long long data type is available for both MIPS32 and MIPS64. However, in
MIPS32, two 32-bit registers are paired to represent a 64-bit value. In MIPS64, such
a value is a true 64-bit value represented by a 64-bit register. For better
performance in your MIPS64 applications, use the long long data type when
representing 64-bit values.

131

VxWorks
Architecture Supplement, 6.6

Figure 5-5 VxWorks Image in MIPS Memory Layout

Address
sysMemTop()
System Memory Pool
A
ISR_STACK_SIZE Interrupt Stack
Y end
System Image
bss
data
text RAM_LOW_ADRS
STACK_SAVE 1} Initial Stack -

Exception Vectors | | 5cal MEM_LOCAL_ADRS

VxWorks does not provide support for 64-bit virtual addresses: all pointer data
types are 32-bits in length.

Hardware Breakpoints and the bh() Routine

This release provides support for the bh() debugger command for MIPS32 and
MIPS64 or later ISAs that implement one or more watchpoint register pairs
(WatchLoc/WatchHi). If your CPU is at least MIPS32 or MIPS64 ISA level
(including privileged resource architecture definitions of coprocessor 0 registers),
consult your hardware documentation to determine whether hardware
breakpoints are supported.

For more information on the bh() routine and hardware breakpoints, see bh()
Routine, p.104.

132

5 MIPS
5.5 Reference Material

5.5 Reference Material

Comprehensive information regarding MIPS hardware behavior and
programming is beyond the scope of this document. MIPS Technologies, Inc.
provides several hardware and programming manuals for the MIPS processor on
its Web site:

http://www.mips.com/

Additional information describing implementation details of a given processor is
normally available from the device vendor. Wind River recommends that you
consult the hardware documentation for your processor or processor family as
necessary during BSP development.

MIPS Architecture References

The information given in this section is current at the time of writing; should you
decide to use these documents, you may wish to contact the manufacturer or
publisher for the most current version.

See MIPS Run. Sweetman, Dominic. Morgan Kaufmann Publishers, Inc.,
San Francisco, CA. 1999.

MIPSpro N32 ABI Handbook, Silicon Graphics, inc., document number
07-2816-005, available from the Silicon Graphics Web site:

http://docs.sgi.com/

133

http://www.mips.com/
http://docs.sgi.com/

VxWorks
Architecture Supplement, 6.6

134

PowerPC

6.1 Introduction 135

6.2 Supported Processors 136

6.3 Interface Variations 137

6.4 Architecture Considerations 166

6.5 Reference Material 195

6.1 Introduction

This chapter provides information specific to VxWorks development on supported
PowerPC processors.

135

VxWorks

Architecture Supplement, 6.6

6.2 Supported Processors

Table 6-1

Table 6-1 shows the processor core types supported by this VxWorks for PowerPC

release.

Supported PowerPC Processor Core Types

VxWorks PowerPC

CPU Family Description

PPC403 Includes PowerPC 403 processor cores.
Note that PowerPC 403 is an obsolete core and is not
recommended for use in new development. The core is
still supported for legacy reasons.

PPC405 Includes PowerPC 405 processor cores.

PPC440 Includes PowerPC 440 processor cores.

PPC603 Includes PowerPC 603, MPC82xx, and MPC83xx
processor cores.

PPC604 Includes MPC7xx and MPC74xx processor cores as well as
PowerPC 604, 750CX, 750FX, and 750GX cores.

PPC85XX MPC85xx and MPC55xx

PPC860 Includes MPC8xx processor cores.

PPC32 Includes PowerPC 970 and PowerPC 440EP processor

cores.

Note that PowerPC 970 support is limited to 32-bit mode.

NOTE: Support for additional processor core types may be added periodically. See
the Wind River Online Support Web site for the latest information.

136

6 PowerPC
6.3 Interface Variations

6.3 Interface Variations

This section describes particular functions and tools that are specific to PowerPC
targets in any of the following ways:

= They are available only for PowerPC targets.
* They use parameters specific to PowerPC targets.
» They have special restrictions or characteristics on PowerPC targets.

For complete documentation, see the reference entries for the libraries, routines,
and tools discussed in the following sections.

6.3.1 Optimized Libraries

Most VxWorks libraries are compiled from portable C source code, but there are
some libraries that are compiled from assembly language for better performance.
The following libraries are optimized for PowerPC targets:

= bLib—buffer manipulation library (including the swab() routine)

= ffsLib—find first bit set library

6.3.2 Restrictions on ti()

The tt() routine makes assumptions about the standard prolog for routines. If
routines are written in assembly language, or in another language that generates a
different prolog, the tt() routine may generate unexpected results.

tt() does not report the parameters to C functions as it cannot determine these from
the code generated by the compiler.

6.3.3 Stack Frame Alighment

The stack frame alignment for all PowerPC CPU families is now 16 bytes. In earlier
versions of VxWorks (prior to 6.0), only PowerPC 604 (including the MPC74xx
family) and MPC85xx had 16-byte stack alignment. Other CPU families had 8-byte
stack alignment by default. Therefore, for these CPU families, objects compiled for
earlier versions of VxWorks must be recompiled for this VxWorks release.

137

VxWorks
Architecture Supplement, 6.6

NOTE: In general, Wind River recommends that you recompile your code and that
you do not reuse objects compiled for a different environment, including an older
version of VxWorks.

6.3.4 Small Data Area

Both the GNU compiler and the Wind River Compiler support the small data area
(SDA) feature. This release of VxWorks for PowerPC supports the small data area
feature in the kernel (but not for downloadable kernel modules) as well as in RTPs.
Kernel code must not modify gpr2 or gprl3 other than in connection with context
switching, since those registers are used to point to the active task’s SDA segments
.sda2 and .sda.

NOTE: The SDA_DISABLE makefile variable is supplied for the purposes of
generating a downloadable kernel module (DKM). When generating a DKM, this
variable must be set to TRUE in order to prevent the compiler from using SDA for
object module generation. However, this setting does not disable SDA in the kernel
environment and you must still be sure that your code does not modify the
reserved registers (gpr2 and gprl3).

6.3.5 Hl and HIADJ Macros

The HI and HIADJ macros are used in PowerPC assembly code to facilitate the
loading of immediate operands larger than 16 bits. The macro HI(x) is the simple
high-order 16 bits of the value x. The macro HIAD](x) is the high-order 16 bits
adjusted by the MSB (most significant bit) of the low-order 16 bits of value x. That
is, if the MSB is set, HIAD]J(x) truncates the lower 16 bits and adjusts the resulting
value by adding 1 to the upper 16 bits.

The macro HIADJ(x) must be used whenever the low-order 16 bits are used in an
instruction that interprets them as a signed quantity (for instance, addi or lwz). If
the low-order bits are used in an instruction that interprets them as an unsigned
quantity (for instance, ori), the proper macro HI, not HIADJ, should be used.

For example, addi uses a signed quantity, so HIADJ is the proper macro:

lis rx, HIADJ (VALUE)
addi rx, rx, LO(VALUE)

138

6 PowerPC
6.3 Interface Variations

However, ori uses an unsigned quantity, so HI is the proper macro:

lis rx, HI(VALUE)
ori rx, rx, LO(VALUE)

6.3.6 Memory Management Unit (MMU)

This section describes the memory management unit (MMU) implementation for
PowerPC processors and how its use varies from the standard VxWorks
implementation.

Instruction and Data MMU

The PowerPC MMU introduces a distinction between instruction and data MMU
and allows them to be separately enabled or disabled. Two parameters,
USER_I_MMU_ENABLE and USER_D_MMU_ENABLE, are provided in the Params
tab of the Properties window under SELECT_MMU. The default settings of these
parameters are specified by the BSP. Wind River-supplied BSPs for PowerPC 405
and PowerPC 440 processors specify USER_I_MMU_ENABLE as FALSE because this
setting provides performance benefits in images that do not support RTPs (see
PowerPC 405 Performance, p.145, and PowerPC 440 Performance, p.147).

Wind River-supplied BSPs for other PowerPC processor types specify both
USER_I_MMU_ENABLE and USER_D_MMU_ENABLE as TRUE.

NOTE: When configuring a VxWorks image for use with real-time processes
(RTPs), both the instruction and the data MMU must be enabled.

MMU Translation Model

The VxWorks PowerPC implementations share a common programming model
for mapping 4 KB memory pages. The physical memory address space is described
by the data structure sysPhysMemDesc|], defined in sysLib.c. This data structure
is made up of configuration constants for each page or group of pages. All of the
configuration constants defined in the VxWorks Kernel Programmer’s Guide are
available for PowerPC virtual memory pages.

Use of the MMU_ATTR_CACHE_DEFAULT (or VM_STATE_CACHEABLE) constant
sets the cache to copy-back mode.

139

VxWorks
Architecture Supplement, 6.6

In addition to MMU_ATTR_CACHE_DEFAULT, the following additional constants
are supported:

= MMU_ATTR_CACHE_WRITETHRU
(or VM_STATE_CACHEABLE_WRITETHROUGH)
* MMU_ATTR_CACHE_OFF (or VM_STATE_CACHEABLE_NOT)
* MMU_ATTR_SUP_RWX (or VM_STATE_WRITEABLE)
* MMU_ATTR_PROT_SUP_READ | MMU_ATTR_PROT_SUP_EXE
(or VM_STATE_WRITEABLE_NOT)
* MMU_ATTR_CACHE_COHERENCY (or VM_STATE_MEM_COHERENCY)
* MMU_ATTR_CACHE_GUARDED (or VM_STATE_GUARDED)

NOTE: In VxWorks 5.5, memory protection attributes are set using various
VM_STATE_xxx macros. These macros (as listed above) are still supported for this
release. However, these macros may be removed in a future release. Wind River
recommends that you use the MMU_ATTR_xxx macros for new development and
that you update any existing BSP to use the new macros whenever possible. For
more information on the VM_STATE_xxx macros, see the VxWorks Migration Guide.

NOTE: Memory coherency page state is only supported for PowerPC 603,
PowerPC 604, MPC85xx, and PowerPC 970. On PowerPC 970 processors, the
memory coherency attribute is not supported; PowerPC 970 always enforces
memory coherency, whether the attribute is set or not.

The first constant sets the page descriptor cache mode field in cacheable
write-through mode. Cache coherency and guarded modes are controlled by the
other constants. There is no default configuration, because each memory region
may have specific requirements; see individual BSPs for examples.

NOTE: For VxWorks SMP, USER_D_CACHE_MODE must not be defined as
CACHE_WRITETHROUGH, or CACHE_DISABLED, nor may any of the system
memory be configured with cache as WRITETHROUGH or OFF. However,
WRITETHROUGH or OFF may be specified as needed for addresses corresponding
to I/O device registers.

For more information regarding VxWorks and the PowerPC cache see 6.4.8 Caches,
p-176.

For more information regarding cache modes, see PowerPC Microprocessor Family:
The Programming Environments.

For more information on memory page states, state flags, and state masks, see the
VxWorks Kernel Programmer’s Guide: Memory Management.

140

6 PowerPC
6.3 Interface Variations

PowerPC 60x Memory Mapping

The PowerPC 603 (including MPC82xx and MPC83xx) and PowerPC 604
(including MPC7xx, MPC74xx, PowerPC 750CX, 750FX, and 750GX; collectively,
the PowerPC 604 family) MMU supports two models for memory mapping. The
first, the block address translation (BAT) model, allows mapping of a memory
block ranging in size from 128 KB to 256 MB (or larger, depending on the CPU) into
a BAT register. The second, the segment model, gives the ability to map the
memory in pages of 4 KB. VxWorks for PowerPC supports both memory models.

PowerPC 603/604 Block Address Translation Model

The block address translation (BAT) model takes precedence over the segment
model. However, the BAT model is not supported by the VxWorks viLib or cache
libraries. Therefore, routines provided by those libraries are not effective, and no
errors are reported, in memory spaces mapped by BAT registers. Typically, in
VxWorks, the BATs are only used to map large external regions, or PROM/flash,
where fine grain control is unnecessary; this has the advantage of reducing the size
of the page table entry (PTE) table used by the segment model.

All PowerPC 603 and PowerPC 604 family members include eight BATs: four
instruction BATS (IBAT) and four data BATs (DBAT). The BAT registers are always
active, and must be initialized during boot. Typically, romInit() initializes all
(active) BATs to zero so that they perform no translation. No further work is
required if the BATs are not used for any address translation.

Motorola MPC7x5, MPC74x5, MPC8349, MPC8272, and MPC8280 CPUs have an
additional four IBAT and four DBAT registers. These extra BATs can be enabled or
disabled (HIDO or HID1, depending on the CPU); they are disabled by hardware
reset. Configuring these additional BATs for VxWorks is optional.

The IBM PowerPC 750FX also adds four IBAT and four DBAT registers, but these
are always enabled. In this case, the additional BATs must be configured.

The data structure sysBatDescl], defined in sysLib.c, handles the BAT register
configuration. All of the configuration constants used to fill sysBatDescl] are
defined in installDirlvxworks-6.x/target/h/arch/ppc/mmu603Lib.h for both the
PowerPC 603 and the PowerPC 604. Providing the correct entries in sysBatDesc|]
is sufficient to configure the basic four BATs; no additional software configuration
is required. For information on configuring all eight BAT registers, see the
following section. If sysBatDesc[]is not defined by the BSP, the BATs are left alone
after being configured by romlInit().

141

VxWorks
Architecture Supplement, 6.6

Enabling Additional BATs

If the extra BATs are to be used, the following steps must be performed in the BSP:

1.

Extend the sysBatDesc|[] array to provide initialization values for the
additional BATs.

Select or write a BAT initialization routine. Initialization routines for the
MPC7x5, MPC74x5, and PowerPC 750FX are provided with this release.

Connect the initialization routine to the function pointer provided by the
kernel, so that the BATs are initialized at the proper time during MMU
initialization.

The sysBatDesc|] array essentially doubles in size, and the order of the entries is
fixed. The initial 16 entries are identical in meaning to the original array, so may
remain unchanged. For example (from the sp745x BSP):

UINT32 sysBatDesc [2 * (_MMU_NUM_IBAT + _MMU_NUM_DBAT +

{

142

_MMU_NUM_EXTRA_TIBAT + _MMU_NUM_EXTRA_DBAT)] =

/* I BAT 0 */

((ROM_BASE_ADRS & _MMU_UBAT_BEPI_MASK) | _MMU_UBAT_BL_1M |
_MMU_UBAT_VS ‘ _MMU_UBAT_VP) ,
((ROM_BASE_ADRS & _MMU_LBAT_BRPN_MASK) | _MMU_LBAT_PP_RW

_MMU_LBAT_CACHE_INHIBIT),

0,0, /* I BAT 1 */
0,0, /* I BAT 2 */
0,0, /* I BAT 3 */
/* D BAT 0 */

((ROM_BASE_ADRS & _MMU_UBAT_BEPI_MASK) | _MMU_UBAT_BL_1M |
_MMU_UBAT_VS ‘ _MMU_UBAT_VP) ,
((ROM_BASE_ADRS & _MMU_LBAT_ BRPN_MASK) | _MMU_LBAT_PP_RW |

_MMU_LBAT_CACHE_INHIBIT),

0, /* D BAT 1 */
0, /* D BAT 2 */
0, /* D BAT 3 */

*

These entries are for the I/D BATs (4-7) on the MPC7455/755.
They should be defined in the following order.

IBATAU, IBAT4L, IBAT5U, IBATSL, IBAT6U, IBAT6L, IBAT7U, IBAT7L,
DBAT4U, DBAT4L, DBAT5U, DBATSL, DBAT6U, DBAT6L, DBAT7U, DBAT7L,

~

/*
/*
/*
/*
/*
/*
/*
/*

BAT
BAT
BAT
BAT
BAT
BAT
BAT
BAT

*/
*/
*/
*/
*/
*/
*/
*/

loNoNeoleNeNolNelNol
U0 UUOHHHH
Lo do o

C OO0 O0OO0OOOO % % % % N0 OO

6 PowerPC
6.3 Interface Variations

The BAT initialization routine is declared as follows:
(void) myBatInitFunc (int * &sysBatDesc[0])

This routine reads sysBatDesc[], initializes the BAT registers, and performs any
other required setup; for example, configure HID0 for MPC74X5. For additional
BAT register numbers and configuration information, see the CPU-specific
reference manual. The following example routines initialize the MPC7X5:

/ *

* mmuPpcBatInitMPC74x5 initializes the standard 4 (0-3) I/D BATs &

* the additional 4 (4-7) I/D BATs present on the MPC74[45]5.
*/

IMPORT void mmuPpcBatInitMPC74x5 (UINT32 *pSysBatDesc) ;

Finally, the BAT initialization routine must be connected to the MMU initialization
hook, _pSysBatInitFunc, which is NULL by default:

IMPORT FUNCPTR _pSysBatInitFunc;

_pSysBatInitFunc = mmuPpcBatInitMPC7x5;

The assignment to _pSysBatInitFunc may be made conditional upon the value of
the processor version register (PVR), to allow the same kernel to run on different
CPUs.

PowerPC 603/604 Segment Model

The segment model allows memory to be mapped in 4 KB pages. All mapping
attributes are defined in the individual page descriptors
(write-through/copy-back, cache-inhibited, memory coherent, guarded, execute,
and write permissions).

The application programmer interface for the PowerPC 603 /604 memory mapping
unit is the same as that described previously for the MMU translation model (see
MMU Translation Model, p.139).

For PowerPC 604, the page table size depends on the total memory to be mapped.
The larger the memory to be mapped, the bigger the page table. The VxWorks
implementation of the segment model follows the recommendations given in
PowerPC Microprocessor Family: The Programming Environments. The total size of the
memory to be mapped is computed during MMU library initialization, allowing
dynamic determination of the page table size. Table 6-2 shows the correspondence
between the total amount of memory to map and the page table size for PowerPC
604 processors.

143

VxWorks
Architecture Supplement, 6.6

Table 6-2 Page Table Size (PowerPC 604 only)

Total Memory to Map Page Table Size

8 MB or less 64 KB
16 MB 128 KB
32 MB 256 KB
64 MB 512 KB
128 MB 1 MB
256 MB 2 MB
512 MB 4 MB
1GB 8 MB
2GB 16 MB
4GB 32 MB

PowerPC 405 Memory Mapping

The PowerPC 405 memory mapping model allows memory to be mapped in 4 KB
pages. The translation table is organized into two levels. The top level consists of
an array of 1,024 Level 1 (L1) table descriptors; each of these descriptors can point
to an array of 1,024 Level 2 (L2) table descriptors. All mapping attributes are
defined in L2 descriptors (write-through/copy-back, cache-inhibited, guarded,
execute, and write permissions).

The translation table size depends on the total memory to be mapped. The larger
the memory to be mapped, the bigger the table.

NOTE: VxWorks allocates page-aligned descriptor arrays from the heap at virtual
memory initialization time. This results in a small amount of initial memory
fragmentation.

The application programmer interface for the PowerPC 405 memory mapping unit
is the same as that described previously for the MMU translation model (see MMU
Translation Model, p.139).

144

6 PowerPC
6.3 Interface Variations

PowerPC 405 Performance

For optimal performance, the number of translation lookaside buffer (TLB) entries
for data access should be maximized. To eliminate instruction MMU contention for
TLB entries, leave USER_I_MMU_ENABLE undefined except in cases where the
system will be running RTPs. Because a virtual address is always the same as the
real address in a system that is not running RTPs, enabling the instruction MMU
provides no additional functionality but can result in a performance impact.

NOTE: USER_I_MMU_ENABLE must be defined for systems that require RTP
support.

PowerPC 440 Memory Mapping

The PowerPC 440 core provides a 36-bit physical address space and a 32-bit
program (virtual) address space. The mapping is accomplished with translation
lookaside buffers (TLBs), which are managed by software.

The PowerPC 440 is an implementation of the Book E processor specification. The
MMU is always active and all program addresses are translated by the TLBs. The
MSRg and MSRpg bits are used to extend the virtual address space so that TLB
lookups can happen from two different address spaces for either instruction or
data references. This easily allows for a static map to be used for boot and basic
operation when MSR 1 pg) = (0,0) (VxWorks regards this as MMU “disabled”), and
enables dynamic 4 KB page mapping (MMU “enabled”) when MSRg = 1 or
MSRpg = 1.

Boot Sequencing

After a processor reset, the board support package sets up a temporary static
memory model. The following steps are included in the BSP romInit.s module:

1. The processor receives a reset exception.

2. The processor hardware maps a single 4 KB page of memory at the top of the
32-bit program address space and branches to the reset vector (located in the
last word of the program address space).

3. The reset vector contains a branch instruction to resetEntry() (located within
the last 4 KB of the program address space).

4. The resetEntry() routine initializes the TLB entries to map the entire program
address space to physical address space devices and memory, using large size

145

VxWorks
Architecture Supplement, 6.6

(256 MB) translation blocks. Unused TLBs are marked as invalid. The MSR;g
and MSRpg fields are set to zero, and execution continues with an rfi to the
romlInit() routine.

Run-Time Support

The VxWorks kernel provides support for the PowerPC 440 MMU. To include this
support, configure INCLUDE_MMU_BASIC.

VxWorks supports two cooperating models for memory mapping. The first, the
static model, allows mapping of memory blocks ranging from 1 KB to 256 MB in size
by dedicating an individual processor TLB entry to each block. The second, the
dynamic model, provides the ability to map physical memory in 4 KB pages using
the remaining available TLB entries in a round-robin fashion.

PowerPC 440 Static Model

The data structure sysStaticTlbDesc[], defined in sysLib.c, describes the static
TLB entry configuration. The number of static mappings is variable, depending on
the size of the table, but should be kept to a minimum to allow the remaining TLB
entries on the chip to be used for the dynamic model.

The static TLB entry registers are set by the initialization software in the MMU
library.

Entry descriptions in sysStaticTlbDesc[] that set the _MMU_TLB_TS_0 attribute
are used when VxWorks has the MMU “disabled” (thatis, MSR(IS,DS) =(0,0)). Note
that the VxWorks virtual memory library cannot represent physical addresses
larger than the lowest 4 GB, and several of the PowerPC 440GP devices are located
athigher physical addresses. To provide access to these devices when VxWorks has
the MMU “enabled” (that is, MSR;g = 1 or MSRpg = 1), some entry descriptions in
sysStaticTIbDesc|] set attribute _"MMU_TLB_TS_1.

All of the configuration constants used to fill sysStaticTIbDesc[] are defined in
installDir/vxworks-6.x/target/h/arch/ppc/mmu440Lib.h.

PowerPC 440 Dynamic Model

The PowerPC 440 dynamic mapping model allows memory to be mapped in 4 KB
pages. The translation table is organized into two levels: the top level consists of an
array of 1,024 Level 1 (L1) table descriptors; each of these descriptors can point to
an array of 1,024 Level 2 (L2) table descriptors. All mapping attributes are defined
in L2 descriptors (write-through/copy-back, cache-inhibited, guarded, execute,
and write permissions).

146

6 PowerPC
6.3 Interface Variations

The translation table size depends on the total memory to be mapped. The larger
the memory to be mapped, the bigger the table.

NOTE: VxWorks allocates page-aligned descriptor arrays from the heap at virtual
memory initialization time. This results in a small amount of initial memory
fragmentation.

The application programmer interface for the PowerPC 440 dynamic model is
identical to the MMU translation model described previously (see MMU
Translation Model, p.139).

PowerPC 440 Performance

For optimal performance, the number of TLB entries for data access should be
maximized as follows:

1. Minimize the number of static entries defined in sysStaticTIbDesc[].

2. Leave USER_I_MMU_ENABLE undefined, eliminating instruction MMU
contention for dynamic TLB entries, except in cases where the system will be
running RTPs. (Because a virtual address is always the same as the real address
in a system that is not running RTPs, enabling the instruction MMU provides
no additional functionality but can result in a performance impact.)

NOTE: USER_I_MMU_ENABLE must be defined for systems that require RTP
support.

MPC85XX Memory Mapping

The MPC85XX CPU uses 32-bit virtual and physical addressing similar to that of
the PowerPC 60x processors. For E500v2 processors, CPU variant 36-bit physical
addressing is supported (that is, CPU_VARIANT = _ppc85XX_e500v2).

The MPC85XX is an implementation of the Book E processor specification. The
MMU is always active, and all addresses are translated either by a TLBO (dynamic,
fixed-4 KB-size TLB) or by a TLB1 (static, variable-size TLB) entry. This easily
allows for a static map to be used for boot and basic operations when

MSR 15 ps) = (0,0) (VxWorks regards this as MMU “disabled”), and enables
dynamic 4 KB page mapping when MSRg = 1 or MSRpg = 1 (MMU “enabled”).

147

VxWorks
Architecture Supplement, 6.6

The sysPhysMemDesc|] array in the BSP contains the address mappings for
TLBO. The sysStaticTIbDescl[] array contains the address mappings for TLB1. The
static entries can specify a TS bit value of either O or 1; the dynamic entries do not
allow specification of the TS bit. The MMU initialization code sets the TS bit of all
dynamic entries to 1.

At the very early stage when an exception or interrupt is received, the MSR s pg)
bits are cleared. Code starts executing from the vector offset that is defined for the
corresponding type of exception or interrupt. The MSR ;g pg) bits are restored
before control is transferred to the more specific handler code. Before the
MSR 15 ps) bits are restored, the static memory mapping in TLB1 should provide
the mapping for instruction and data accesses.

Boot Sequencing

After a processor reset, the board support package sets up a temporary static
memory model. The following steps are included in the BSP romlInit.s module:

1. The processor receives a reset exception.

2. The processor hardware maps a single 4 KB page of memory at the top of the
32-bit program address space and branches to the reset vector (located in the
last word of the program address space).

3. The reset vector contains a branch instruction to resetEntry() (located in the
last 4 KB of the program address space).

4. The resetEntry() routine initializes the TLB entries to map the entire program
address space to physical address space devices and memory, using large size
(256 MB) translation blocks. The internally mapped registers are mapped with
a static TLB here also and the base address is changed to another address, for
example 0xFE000000.

Run-Time Support

The VxWorks kernel provides support for the MPC85XX MMU. To include this
support, configure INCLUDE_MMU_BASIC.

VxWorks supports two cooperating models for memory mapping. The first, the
static model, allows mapping of memory blocks ranging from 1 KB to 256 MB in size
by dedicating an individual processor TLB entry to each block. The second, the
dynamic model, provides the ability to map physical memory in 4 KB pages using
the remaining available TLB entries in a round-robin fashion.

148

6 PowerPC
6.3 Interface Variations

MPC85XX Static Model

The data structure sysStaticTlbDesc[], defined in sysLib.c, describes the static
TLB entry configuration. The number of static mappings is variable, depending on
the size of the table, but should be kept to a minimum to allow the remaining TLB
entries on the chip to be used for the dynamic model.

The static TLB entry registers are set by the initialization software in the MMU
library.

Entry descriptions in sysStaticTlbDesc[] that set the _MMU_TLB_TS_0 attribute
are used when VxWorks has the MMU “disabled” (that is, MSR 15 pg) = (0,0)). All
of the configuration constants used to fill sysStaticTIbDesc|] are defined in
installDirlvxworks-6.x/target/h/arch/ppc/mmuE500Lib.h.

MPC85XX Dynamic Model

The MPC85XX dynamic mapping model allows memory to be mapped in 4 KB
pages. The translation table is organized into two levels. The top level consists of
an array of 1,024 Level 1 (L1) table descriptors; each of these descriptors can point
to an array of 1,024 Level 2 (L2) table descriptors. All mapping attributes are
defined in L2 descriptors (write-through/copy-back, cache-inhibited, guarded,
execute, and write permissions).

The translation table size depends on the total memory to be mapped. The larger
the memory to be mapped, the bigger the table.

NOTE: VxWorks allocates page-aligned descriptor arrays from the heap at virtual
memory initialization time. This results in a small amount of initial memory
fragmentation.

The application programmer interface for the MPC85XX dynamic model is
identical to the MMU translation model described previously (see MMU
Translation Model, p.139).

MPC8XX Memory Mapping

The MPC8XX memory mapping model allows you to map memory in 4 KB pages;
requests for larger page sizes are mapped into an appropriate number of 4 KB
pages. The translation table is organized into two levels. The top level consists of
an array of 1,024 Level 1 (L1) table descriptors; each of these descriptors can point
to an array of 1,024 Level 2 (L2) table descriptors. Three mapping attributes are
defined in the L1 descriptors (copy-back, write-through, and guarded cache

149

VxWorks
Architecture Supplement, 6.6

modes), the others (cache off and all access permission attributes) are defined in
the L2 descriptors. This affects granularity. For example, if one 4 KB page is
mapped in copy-back mode, all pages within the corresponding 4 MB block (1,024
x 4 KB pages) are mapped in copy-back mode, except for any pages having cache
off defined. That is, the cache mode setting of a single page can affect the cache
mode setting of all mapped pages in the block.

The application programmer interface for the MPC8XX memory mapping unit is
described previously for the MMU translation model (see MMU Translation Model,
p-139). MPC8XX processors that implement hardware memory coherency
typically do not support the use of the MMU_ATTR_CACHE_COHERENCY (or
VM_STATE_MEM_COHERENCY) attribute; the state MMU_ATTR_CACHE_OFF (or
VM_STATE_CACHEABLE_NOT) identifies a page as memory-coherent.

RTP Limitation

The MPC8XX MMU supports 16 unique address space identifiers (ASIDs).
Therefore, only 15 real-time processes (RTPs) are supported as one ASID is
reserved for kernel use.

6.3.7 Coprocessor Abstraction

Table 6-3

6.3.8 vxLib

Coprocessor abstraction decouples the core OS from the CPU-family-specific
implementation of coprocessor features. Each architecture maps their coprocessors
by logical number into the abstraction layer provided by the core OS. For PowerPC
processors, the coprocessors are listed in Table 6-3.

PowerPC Coprocessors

Coprocessor Number Name Task Option Flag

1 Floating-Point VX_FP_TASK

2 AltiVec VX_ALTIVEC_TASK
3 SPE VX_SPE_TASK
vxTas()

The vxTas() routine provides a C-callable interface to a test-and-set
instruction, and it is assumed to be equivalent to sysBusTas() in sysLib. Due

150

6 PowerPC
6.3 Interface Variations

to hardware limitations, VxWorks for certain PowerPC processors requires the
operand of vxTas() to be a cached address. Currently, this restriction applies
to the MPC7450 family and the PowerPC 970.

6.3.9 AltiVec and PowerPC 970 Support

NOTE: The AltiVec features and requirements described in this section also apply n
to the IBM PowerPC 970 processor family which includes similar functionality. All
documentation in this section applies to both AltiVec-enabled MPC74XX

processors and similarly enabled PowerPC 970 processors unless otherwise noted.

AltiVec is a vector coprocessor and PowerPC instruction set extension introduced
on the MPC74XX family of processors. (The IBM PowerPC 970 processors include
similar functionality and are treated as AltiVec-enabled processors by VxWorks.)
VxWorks treats AltiVec as an extension to the PowerPC 604 core; that is, a
PowerPC 604 binary image can, in certain situations, run without modification on
any AltiVec part, but the image does not provide access to, or control of, the AltiVec
unit itself. This section describes the VxWorks implementation of AltiVec support,
including:

» VxWorks run-time support for AltiVec.
» Enabling AltiVec support.
= Clanguage extensions for vector types and formatted I/O.
= Compiling modules that use the AltiVec unit.
= Debugging extensions for AltiVec.
= Workbench tool support; WI'X and WDB extensions for AltiVec.
= Known problems with C++ mixed linking of AltiVec and non-AltiVec
modules.
VxWorks Run-Time Support for AltiVec
The following features are supported for the AltiVec unit by the VxWorks kernel.

* Run-time detection of the AltiVec unit is possible using the altivecProbe()
routine. This routine is used internally by VxWorks to prevent attempts to
enable AltiVec for a CPU that lacks such a unit. This allows a single build of a
VxWorks kernel to run on boards that support both AltiVec and non-AltiVec
parts, for example, the mv5100 family of boards can be configured with either

151

VxWorks
Architecture Supplement, 6.6

an MPC750/755 or an MPC7400/7410 CPU. For example, the following
sample code can be included in sysLib.c:

#if defined (INCLUDE_ALTIVEC)

VAR R R AR R R LSRR R R R R LR E LR R Rt

*

* gysAltivecProbe - Check if the CPU has ALTIVEC unit.
Returns OK it the CPU has an ALTIVEC unit in it.

RETURNS: OK - for 7400 or 7410 Processor type
ERROR - otherwise.

EE A

/

int sysAltivecProbe (void)
{
ULONG regVal;
int altivecUnitPresent = ERROR;

/* The CPU type is indicated in the Processor Version Register (PVR) */
regVal = CPU_TYPE;

switch (regVal)
{
case CPU_TYPE_7400:
case CPU_TYPE_7410:
altivecUnitPresent = OK;
break;

default:
altivecUnitPresent = ERROR;
break;

}

return (altivecUnitPresent) ;
}
#endif /* INCLUDE_ALTIVEC */

// in sysHwInit2 ()

#ifdef INCLUDE_ALTIVEC
_func_altivecProbeRtn = sysAltivecProbe;

#endif /* INCLUDE_ALTIVEC */

= Tasks that use the AltiVec unit must be spawned with the VX_ALTIVEC_TASK
option flag set.

» Tasks created without the VX_ALTIVEC_TASK option that use AltiVec
instructions incur an AltiVec Unavailable Exception error, and the task is
suspended.

» Tasks cannot be spawned with vector parameters. Only integer-sized
parameters can be passed to taskSpawn().

152

6 PowerPC
6.3 Interface Variations

= The MPC74XX processor’s AltiVec registers are saved and restored as part of
the task context. The VxWorks kernel saves and restores all 32 AltiVec registers
when switching between AltiVec contexts. The value of the VRSAVE register
is preserved, but not used, by the context switch code.

» ThealtivecTaskRegsShow() routine displays values of AltiVec registers in the
shell.

» The altivecSave() and altivecRestore() routines save and restore AltiVec
register contents from memory. These routines can be called from interrupt
handlers. Before calling these routines, the programmer must ensure that
memory has been allocated to store the values, and that the memory is aligned
on a 16-byte boundary.

The AltiVec-specific routines shown in Table 6-4 have been added to VxWorks.

Table 6-4 AltiVec-Specific Routines

Routine Command Syntax Description

altivecInit() Initializes AltiVec coprocessor
support.

altivecTaskRegsShow() [task] Prints the contents of the

AltiVec registers of a task.

altivecTaskRegsSet() [task, ALTIVECREG_SET *] Sets the AltiVec registers of a
task.

altivecTaskRegsGet() [task, ALTIVECREG_SET *] Gets the AltiVec registers from
a task TCB.

altivecProbe() Probes for the presence of an
AltiVec unit.

altivecSave() [ALTIVEC_CONTEXT *] Saves vector registers to
memory.

altivecRestore() [ALTIVEC_CONTEXT *] Restores vector registers from
memory.

153

Table 6-4

VxWorks
Architecture Supplement, 6.6

AltiVec-Specific Routines (cont'd)

Routine Command Syntax Description

vec_malloc() size_t Returns a 16-byte aligned
pointer for an object of a given
size.

vec_calloc() size_t nObj, size_t size Returns a 16-byte aligned

pointer for an array of nObj
objects each of size size,
initialized to 0.

vec_realloc() void *p, size_t nbytes Increases the size of a 16-byte
aligned bulffer to nbytes.

vec_free() void *p Deallocates the memory area
pointed to by p.

NOTE: Memory allocation in VxWorks for PowerPC 604 is always 16-byte aligned;
vec_malloc(), vec_calloc(), and vec_realloc() are aliases for alloc().

Layout of the AltiVec EABI Stack Frame

The stack frame for routines using the AltiVec registers adds the following areas to
the standard EABI frame:

» vector register save area (32 * 128 bytes)

» alignment padding (always zero bytes because the frame is always 16-byte
aligned)

» saved VRSAVE register (4 bytes)

The stack frame layout for routines using the AltiVec registers is shown in
Figure 6-1. Non-AltiVec stack frames are unchanged from prior VxWorks releases.

154

Figure 6-1

Low Address

6 PowerPC
6.3 Interface Variations

Stack Frame Layout for Routines That Use AltiVec Registers

SP —p»

A

direction
of stack
expansion

Back chain to caller (Old SP)

LR save word

Parameter save area (P)

8

Allocation space (A)

8+P

Varargs save area (V)

8+P+A

Local variable space (L)

8+P+A+V

Float/int conversion temporary (X)

8+P+A+V+L

Vector register save area (Z)

8+P+A+V+L+X

Alignment padding (Y)

8+P+A+V+L+X+Z

Saved VRsave (W)

8+P+A+V+L+X+Z+Y

Saved CR (C)

8+P+A+V+L+X+Z+Y+W

Save area for GP registers (G)

8+P+A+V+L+X+Z+Y+W+C

Save area for FP registers (F)

8+P+A+V+L+X+Z+Y+W+C+G

Self-adjustment for 16-byte alignment

8 or 0 bytes padding

Old SP —p»
High Address

Back chain to caller’s caller

C Language Extensions for Vector Types

The AltiVec specification adds a new family of vector data types to the C language.
vector types are 128 bits long, and are used to manipulate values in AltiVec
registers. Under control of a compiler option, vector is now a keyword in the C and
C++ languages. The AltiVec programming model introduces five new keywords as
simple type-specifiers: vector, _ vector, pixel, __pixel, and bool.

CAUTION: vector is used as both a C++ class name and a C variable name in the

VxWorks header files and some BSP source files, and conflicts with the vector
keyword. Where possible, use __vector rather than vector in VxWorks code as a

precaution.

155

VxWorks
Architecture Supplement, 6.6

Formatted Input and Output of Vector Types

The AltiVec Technology Programming Interface Manual also specifies vector
conversions for formatted I/O. VxWorks supports the new formatted input and
output of vector data types using the printf() and scanf() class routines shown in
Table 6-5.

Table 6-5 Vector Format Conversion Specifications

Character Argument Type; Converted To

%vc vector unsigned char
%vd vector signed int

%vhd vector signed short

Y%vf vector float
Y%vu vector unsigned int
Y%vs null-terminated character string

For a comprehensive discussion on the new format specifications, see the AltiVec
Technology Programming Interface Manual. The following example program
illustrates the input and output of sample vector values as well as several
formatting variations.

void testFormattedIO()
{
__vector unsigned char s;
__vector signed int I;
__vector signed short SI;

__vector pixel P;
__vector float F;

s = (__vector unsigned char)
{IO!,/lI,!21,!3!,14!,751,!67,17!,V8I,!9V,IA!,IBII!CI’IDVIIEIIVFI};

I (__vector signed int) {99, 88, -34, 0};

SI = (__vector signed short) {1, 2, -1, -2, 0, 3, 4, 5};

P = (__vector _ pixel) {50, 51, 52, 53, 54, 55, 56, 57};

F = (__vector float) {-3.1415926, 3.1415926, 9.8, 0.000};
printf("s = (%vc), (%,vc)\n\n", s, s);

printf ("I = (%,vd), (%,2v1ld), (%,_31vi)\n\n", I, I, I);

printf ("I = (%,#vd), (%,vlx), (%,_1vX), (%vo)\n\n", I, I, I, I);
printf ("I = (%,#vd), (%,#vlp), (%,_1lvp), (%#vo)\n\n", I, I, I, I);

156

6 PowerPC
6.3 Interface Variations

printf ("SI = (%_vhd), (%:hvd), (%;vhi)\n\n", SI, SI, SI);
printf ("VECTOR STRING: (%vs)\n\n", "GOOD !!");
printf ("VECTOR PIXEL (%+:5hvi)\n\n", P);

printf ("VECTOR FLOAT *e5.6*: (%,5.6ve)\n", F);
printf ("VECTOR FLOAT *E5.6*: (%:5.6VE)\n", F);
printf ("VECTOR FLOAT *g5.6*: (%;5.6vg)\n", F);
printf ("VECTOR FLOAT *G5.6*: (%5.6vG)\n", F);
printf ("VECTOR FLOAT *f.7%* ($_.7vE)\n", F);
printf ("VECTOR FLOAT *e* (%ve)\n", F);

}
This program generates the following output:

-> testFormattedIO
s = (0123456789ABCDEF), (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

I (99,88,-34,0), (99,88,-34, 0), (99_ 88_-34_ 0)

I (99,88,-34,0), (63,58,ffffffde,0), (63_58_FFFFFFDE 0), (143 130 37777777736 0)

I = (99,88,-34,0), (0x63,0x58,0xffffffde,0x0), (0x63_0x58_Oxffffffde_0x0),
(0143 0130 037777777736 0)

ST = (1_.2_-1_-2_0_3_4_5), (1:2:-1:-2:0:3:4:5), (1;2;-1;-2;0;3;4;5)
VECTOR STRING: (GOOD !!)

VECTOR PIXEL (+50: +51: +52: +53: +54: +55: +56: +57)

VECTOR FLOAT *e5.6*: (-3.141593e+00,3.141593e+00,9.800000e+00,0.000000e+00)

VECTOR FLOAT *E5.6%: (-3.141593E+00:3.141593E+00:9.800000E+00:0.000000E+00)

VECTOR FLOAT *g5.6*: (-3.14159;3.14159; 09.8; 0)

VECTOR FLOAT *G5.6*: (-3.14159 3.14159 9.8 0)

VECTOR FLOAT *£.7* : (-3.1415925_3.1415925_9.8000002_0.0000000)

VECTOR FLOAT *e* (-3.141593e+00 3.141593e+00 9.800000e+00 0.000000e+00)
L

value = 76 = Ox4c = '
->

Compiling Modules with the Wind River Compiler to Use the AltiVec Unit

Modules that use the AltiVec registers and instructions must be compiled with the
Wind River Compiler option: -tPPC7400F V:vxworks66 (or

-tPPC970F V:vxworks66 for PowerPC 970). Use of this flag always enables the
AltiVec keywords __vector, __pixel, and __bool.

The Wind River Compiler also enables the AltiVec keywords vector, pixel, bool
(and vec_step) by default if the -tPPC7400FV (or -tPPC970FV for PowerPC 970)
option is used. However, each keyword can be individually enabled or disabled
with the Wind River Compiler (dcc) option -Xkeywords=mask, where mask is a
logical OR of the values in Table 6-6.

157

Table 6-6

VxWorks
Architecture Supplement, 6.6

Wind River Compiler -Xkeywords Mask

Mask Keyword Enabled

0x01 extended
0x02 pascal
0x04 inline
0x08 packed

0x10 interrupt

0x20 vector
0x40 pixel
0x80 bool

0x100 vec_step

NOTE: Many non-AltiVec-specific keywords are also controlled by -Xkeywords.

For example, the following command-line sequence enables bool and vec_step,
but disables vector and pixel (and also all of the non-AltiVec keywords in
Table 6-6). For more information, see your release notes.

% dcc -tPPC7400FV:vxworks66 -Xkeywords=0x180-DCPU=PPC604
-DTOOL_FAMILY=diab -DTOOL=diab -c fioTest.c

CAUTION: vector is used as both a C++ class name and a C variable in the VxWorks
header and source files, and conflicts with the vector keyword.

The version of the Wind River Compiler included with this VxWorks release is
fully compliant with the Motorola AltiVec EABI document.

Compiling Modules with GNU to Use the AltiVec Unit

Modules that use the AltiVec registers and instructions must be compiled with the
-Wa and -maltivec flags (or -mcpu=power4 -Wa and -mppc64bridge for
PowerPC 970). These flags enable the following five keywords as a new family of
types: bool, vector, __vector, pixel, and __pixel.

158

A

A

6 PowerPC
6.3 Interface Variations

CAUTION: vector is used as both a C++ class name and a C variable in the VxWorks
header and source files, and conflicts with the vector keyword enabled by the
-maltivec option.

The version of the GNU compiler included with this VxWorks release is fully
compliant with the Motorola AltiVec EABI specification.

CAUTION: Examples of commonly used AltiVec-enabled routines are the printf()
and scanf() family of routines. Applications calling these routines with more than
eight integer-class or more than eight floating-point arguments may behave
unpredictably.

Extensions to the WTX Protocol for AltiVec Support

Table 6-7

The presence and state of the AltiVec unit must also be communicated to the
Workbench host tools, such as the debugger. Table 6-7 summarizes the WTX API
routines that are available for AltiVec support.

WTX API Routines for AltiVec Support

Routine Command Description
Syntax
wixTargetHasAltivecGet() hWix Returns TRUE if the target has an AltiVec

unit.

C++ Exception Handling and AltiVec Support

Throwing C++ exceptions between modules compiled with different compiler
flags may result in unexpected behavior. C++ exceptions save register state.
Modules compiled with AltiVec support (using -maltivec) save all non-volatile
AltiVec registers, but modules compiled without AltiVec support do not save any
AltiVec registers. If a C++ exception is thrown from an AltiVec-enabled module,
caught by a non-AltiVec enabled handler, and then thrown from there to an
AltiVec-enabled handler that alters the AltiVec registers, it is possible to corrupt the
saved AltiVec state. In particular, the non-volatile vector registers (v20 through
v31) may be corrupted.

The following example illustrates the above scenario. It consists of a program
composed of two files, myAltivecl.cpp and myAltivec2.cpp. Because myAltivec2
is compiled with the -maltivec option, it is considered AltiVec code. myAltivecl is
compiled without the -maltivec option, so it is considered non-AltiVec code.

159

VxWorks
Architecture Supplement, 6.6

The example takes program flow across the two modules. It is also contrived to
make intelligent guesses about the compiler register allocation strategy. The
output is incorrect when one of the files is compiled without the -maltivec option.

Listing For myAltiveci.cpp

#include <vxWorks.h>
#include <stdio.h>
#include <stdlib.h>
#include <altivec.h>

/* using namespace std */

extern "C" int printf (const char *fmp, ...);
extern void bar ();

void foo ()

{

try
{
bar ();
}

catch (...)
{
}

Listing For myAltivec2.cpp

#include <vxWorks.h>
#include <stdio.h>
#include <stdlib.h>
#include <altivec.h>

extern "C" int printf (const char *fmp, ...);
extern void foo ();

void bar ()
{
/* use a non-volatile vector register */
asm ("vspltisw 24,0"); /* v24 <- (0,0,0,0) */
}

void Start ()
{

/* use a non-volatile vector register v24 */
__vector signed long local = {-1, -1, -1, -1};

asm ("vspltisw 24,15"); /* v24 <- (15, 15, 15, 15) */
foo ();

160

6 PowerPC
6.3 Interface Variations

/* continue using the non-volatile vector registers */

asm ("addi 9, 31, 32"); /* local <- v24 */
asm ("stvx 24, 0, 9");
printf ("Finally, local = (%v1d)\n", local);

}

Reproduce the Unexpected Behavior

To produce a partially linked object myAltivec2.0, compile the two files with the
following commands:

% ccppc -mcpu=604 -c myAltivecl.cpp
% ccppc -mcpu=604 -nostdlib -maltivec -r myAltivecl.o myAltivec2.cpp

Download myAltivec2.0 to a target, and execute the Start routine.

-> Start

Finally, local = (0,0,0,0)

->
Routine foo in myAltivecl.cpp is non-AltiVec code. Therefore, the try...catch block
in foo does not save and restore the AltiVec context. Within the try...catch block, the
call to bar alters the value of vector register v24. Because myAltivecl.cpp does not
save AltiVec context, the value 0 in v24 assigned by bar remains unchanged when
the program flow returns to Start. The original value 15, assigned before the call to
bar, is now corrupted. Hence, the incorrect output, local = (0,0,0,0).

Correct the Behavior

Compile both files with the -maltivec option:

% ccppc -mcpu=604 -nostdlib -maltivec -r myAltivecl.cpp myAltivec2.cpp -o
myAltivec2.o

Download myAltivec2.0 to a target and execute the Start routine.

-> Start
Finally, local = (15,15,15,15)
->

Because both modules now have AltiVec code (compiled with the -maltivec
option), the try...catch block in foo now saves and restores the AltiVec context. The
value 15 originally assigned in Start is faithfully restored by foo when it returns.

6.3.10 Signal Processing Engine Support

The signal processing engine (SPE) is a SIMD processing unit with a PowerPC
instruction set extension introduced on the MPC85XX family of processors. This

161

VxWorks

Architecture Supplement, 6.6

section describes the VxWorks implementation of SPE support, including the
following:

VxWorks run-time support for SPE

the SPE EABI stack frame

C language extensions for vector types and formatted I/O
compiling modules that use the SPE unit

Workbench tool support; WTX and WDB extensions for SPE

VxWorks Run-Time Support for the Signal Processing Engine

The following features are supported for the SPE unit by the VxWorks kernel:

162

The SPE unit initialization spelnit() is performed by the usrSpelnit() routine
in installDirlvxworks-6.x/target/src/config/usrSpe.c. Typically, this is called by
the usrRoot() routine if INCLUDE_SPE is defined.

Run-time detection of the SPE unit is possible using the speProbe() routine.
This routine is used internally by VxWorks to prevent attempts to enable SPE
for a CPU that lacks such a unit.

Tasks that use the SPE unit must be spawned with the VX_SPE_TASK option
flag set.

Tasks created without the VX_SPE_TASK option that use SPE instructions incur
an SPE Unavailable Exception error, and the task is suspended.

Tasks cannot be spawned with vector parameters. Only integer-sized
parameters can be passed to taskSpawn().

The MPC85XX processor’s upper 32 bits in the general purpose registers are

saved and restored as part of the task context. The VxWorks kernel saves and
restores all 32 SPE register extensions when switching between SPE contexts.
The SPEFSCR and the accumulator are also saved in the context switch.

The speTaskRegsShow() routine displays values of all 64 bits of the general
purpose registers in the shell.

The speSave() and speRestore() routines save and restore the upper 32 bits of
the general purpose register contents from memory. These routines can be
called from interrupt handlers. Before calling these routines, you must ensure
that memory is allocated to store the values, and that the memory is aligned
on a 32-bit boundary.

6 PowerPC
6.3 Interface Variations

Table 6-8 summarizes the SPE-specific routines supported by VxWorks.

Table 6-8 SPE-Specific Routines

Routine Command Syntax Description

spelnit() Initializes SPE APU support.

speTaskRegsShow() [task] Prints the contents of the SPE
registers of a task.

speTaskRegsSet() [task, SPEREG_SET *] Sets the SPE registers of a task.

aspeTaskRegsGet() [task, SPEREG_SET *] Gets the SPE registers from a
task TCB.

speProbe() Probes for the presence of an
SPE unit.

speSave() [SPE_CONTEXT *] Saves upper GPR registers to
memory.

speRestore() [SPE_CONTEXT *] Restores registers from
memory.

Layout of the SPE EABI Stack Frame

The stack frame for routines using the whole of the 64-bit general purpose registers
adds the following areas to the standard EABI frame:

= 64-bit register save area (32 * 64 bytes)
» alignment padding (always zero bytes because the frame is always 8-byte
aligned)

The stack frame layout for routines using the upper 32 bits of the general purpose
registers is shown in Figure 6-2. Non-SPE stack frames are unchanged from prior
VxWorks releases.

163

VxWorks
Architecture Supplement, 6.6

Figure 6-2 Stack Frame Layout for Routines That Use SPE Registers

Low Address

SP —P»
Back chain to caller (Old SP) 0
A LR save word 4
Parameter save area (P) 8
Allocation space (A) 8+P
Varargs save area (V) 8+P+A
direction -
of stack Local variable space (L) 8+P+A+V
expansion 64-bit register save area (Z) 8+P+A+V+L
Alignment padding (Y) 8+P+A+V+L+Z
Saved CR (C) 8+P+A+V+L+Z+Y
Save area for GP registers (G) 8+P+A+V+L+Z+Y+C
OldSP —p»
Back chain to caller’s caller

High Address

Alignment Constraints for SPE Stack Frames

The required alignment for the SPE EABI specification is 16 bytes. Therefore, it is
compatible to call routines compiled for SPE from certain other PowerPC
EABI-compliant code that assumes an 8-byte alignment for the stack boundary.
However, the converse does not hold true and undefined results can occur.

C Language Extension for Vector Types

The SPE specification adds a new family of vector data types to the C language.
These data types are 64-bit entities which have other data types embedded in them.
The new entities are: __ev64_ul6__, __ev64d_sl6_ , ev6d_u32_ , ev6d_s32
eved u6d, evbd s64_,and _ eve4 fs_ . The type __ev604_opaque__
represents any of the above types.

Formatted Input and Output of Vector Types

The SPE Programming Interface Manual also specifies vector conversions for
formatted I/O. VxWorks supports the new formatted input and output of vector
data types using the printf() and scanf() class routines shown in Table 6-9.

164

Table 6-9

6 PowerPC
6.3 Interface Variations

Vector Format Conversion Specifications

Format String Required Argument Type
Y%hr signed 16-bit fixed point
Yr signed 32-bit fixed point
Yolr signed 64-bit fixed point
%hR unsigned 16-bit fixed point
%R unsigned 32-bit fixed point
%IR unsigned 64-bit fixed point

For a comprehensive discussion on the new format specifications, see the SPE
Programming Interface Manual.

Compiling Modules with the Wind River Compiler to Use the SPE Unit

Modules that use the SPE registers and instructions should be compiled with the
Wind River Compiler option -tPPCE500FS:vxworks66 as follows for e500v1
processors such as MPC8540 and MPC8560:

% dcc -tPPCE500FS:vxworks66 -DCPU=PPC85XX -DTOOL_FAMILY=diab -DTOOL=diab
-c fioTest.c

NOTE: Software floating point is the default for e500v1 processors. Wind River
does not support hardware floating point in the math libraries.

If you wish to compile for a hard float kernel for use with e500v2 processors, use
the following options:

% dcc -tPPCE500V2FH:vxworks66 -DCPU=PPC32 -DCPU_VARIANT=_ppc85XX_e500v2
-DTOOL_FAMILY=diab -DTOOL=e500v2diab -c fioTest.c

NOTE: The version of the Wind River Compiler included with this VxWorks
release is fully compliant with the Motorola SPE EABI document.

165

VxWorks
Architecture Supplement, 6.6

Compiling Modules with the GNU Compiler to Use the SPE Unit

Modules that use the SPE registers and instructions must be compiled with the
GNU compiler option -mcpu=_8540 for e500v1 processors such as MPC8540 and
MPC8560.

[

% ccppc -mcpu=8540 -fno-builtin -Wall -DCPU=PPC85XX -DTOOL_FAMILY=gnu
-DTOOL=sfgnu -c fioTest.c

Modules that use double precision floating point for the e500v2 processor variant
can use the following options:

% ccppc -te500v2 -fno-builtin -Wall -DCPU=PPC32 -DCPU_VARIANT=_ppc85XX e500v2
-DTOOL_FAMILY=gnu -DTOOL=e500v2gnu -c fioTest.c

NOTE: The version of the GNU compiler included with this VxWorks release is
fully compliant with the Motorola SPE EABI specification.

Extensions to the WTX Protocol for SPE Support

The presence and state of the SPE unit must also be communicated to the
Workbench host tools, such as the debugger. Table 6-10 summarizes the WTX API
routines that are available for SPE support.

Table 6-10 WTX API Routines for SPE Support

Routine Command Description
Syntax

wixTargetHasSpeGet() hWix Returns TRUE if the target has an SPE unit.

6.4 Architecture Considerations

This section describes characteristics of the PowerPC architecture that you should

be aware of as you write a VxWorks application. The following topics are
addressed:

= divide-by-zero handling

» SPE exceptions under likely overflow /underflow conditions
= SPE unavailable exception in relation to task options

= 26-bit addressing and extended-call exception vector support
* byte order

166

6 PowerPC
6.4 Architecture Considerations

* hardware breakpoint access types
= PowerPC register usage

* cache information

= AIM model for caches

= AIM model for MMU

» floating-point support

= VxMP support for MPC boards
» exceptions and interrupts

* memory layout

* power management

* build mechanism

» real-time processes (RTPs)

For more information on the PowerPC architectures, see the corresponding
microprocessor user’s manual from Freescale, Inc. or IBM.

6.4.1 Divide-by-Zero Handling

Integer division by zero produces undefined results. Exception generation and
handling are not provided by the compiler or run-time.

Floating-point exceptions are disabled by default during task initialization,
causing zero-divide conditions to be ignored. On processors with hardware
floating point (for example, PowerPC 603 or PowerPC 604), individual tasks may
modify their machine state register (MSR) and the floating-point status and control
register (FPSCR) in order to generate exceptions. Likewise, for the MPC85XX, the
SPEFSCR and MSR must be modified to generate exceptions. On processors
without hardware floating point (for example, PowerPC 405 or MPC860), neither
the software floating-point library nor the compiler provide support for simulating
a floating-point exception.

6.4.2 SPE Exceptions Under Likely Overflow/Underflow Conditions

The signal processing engine (SPE) unit on the MPC85XX processors provides
floating-point support for scalar or vector quantities. Some of these instructions
generate an exception (if SPEFSCR is set accordingly) and return a pre-determined
value if an overflow or underflow is likely, even though the actual result does not
cause an overflow or underflow. The action needed to handle such a condition is
application dependent. Thus, the user must set SPEFSCR accordingly and handle
the erroneous result. The instructions that exhibit this behavior include: efsadd,
efssub, efsmul, efsdiv, evfsadd, evfssub, evfsmul, and evfsdiv.

167

VxWorks
Architecture Supplement, 6.6

6.4.3 SPE Unavailable Exception in Relation to Task Options

The SPE on the MPC85XX processors does not implement the standard PowerPC
floating-point feature. The SPE implements its own floating-point instruction set.
While the hardware supports only single-precision floating-point computation,
there are two kinds of floating-point instructions:

= Scalar floating-point, which uses only the lower 32 bits of a GPR.
» Vector floating-point, which uses all 64 bits of a GPR.

VX_FP_TASK corresponds to the scalar floating-point, while VX_SPE_TASK
corresponds to the vector floating-point. The difference between spawning a task
with VX_FP_TASK and VX_SPE_TASK is that the task that is spawned with
VX_SPE_TASK will save and restore the upper 32 bits in the GPRs during context
switch, by means of task hooks.

Because both kinds of floating-point instructions require the use of the SPE
coprocessor, the MSRgpg bit is enabled when either options is specified for the task.
The following are some of the behaviors that result from this semantic:

» Tasks spawned with VX_FP_TASK but without VX_SPE_TASK do not save and
restore the upper 32 bits of GPRs upon context switch.

» Tasks spawned with either VX_FP_TASK or VX_SPE_TASK are not able to
generate the SPE unavailable exception when executing any SPE vector
instructions.

= Tasks that use both scalar and vector floating-point instructions can only be
spawned with VX_SPE_TASK. However, as a good programming practice, you
should regard scalar floating-point as associated with VX_FP_TASK.

Programmatically, VxWorks makes no distinction between a task spawned with
VX_SPE_TASK, and a task spawned with both VX_SPE_TASK and VX_FP_TASK.
However, any debugging information will show the corresponding options as
specified during task creation.

NOTE: When compiling with the TOOL=e500v2diab or TOOL=e500v2gnu
option, VX_FP_TASK behaves like VX_SPE_TASK. When the task is spawned,
VX_SPE_TASK is set if VX_FP_TASK is already set.

168

6 PowerPC
6.4 Architecture Considerations

6.4.4 26-bit Address Offset Branching

VxWorks uses bl or bla instructions by default for both exception/interrupt
handling, and for dynamically downloaded module relocations. By using bl or
bla, the PowerPC architecture is only capable of branching within the limits
imposed by a signed 26-bit offset. This limits the available branch range to +/-
32 MB.

Branching Across Large Address Ranges

Branches across larger address ranges must be made to an absolute 32-bit address
with the help of the LR or CTR register. Each absolute 32-bit jump is accomplished
with a sequence of at least three instructions (more, if the register state must be
preserved). This is rarely needed and is expensive in terms of execution speed and
code size. Such large branches are typically seen only in very large downloaded
modules and very large (greater than 32 MB) system images.

One way of getting around this restriction for downloadable applications is to use
the -mlongcall compiler option in the GNU compiler. However, this option may
introduce an unacceptable amount of performance penalty and extra code size for
some applications. It is for this reason that the VxWorks kernel is not compiled
using -mlongcall.

Another way to get around this limitation is to increase the size of the WDB
memory pool for host tools. By default, the WDB pool size is set to one-sixteenth
of the amount of free memory. Memory allocations for host-based tools (such as the
shell) are done out of the WDB pool first, and then out of the general system
memory pool. Requests larger than the available amount of WDB pool memory are
done directly out of the system memory pool. If an application is anticipated to be
located outside of the WDB pool—thus potentially crossing the 32 MB threshold—
the size of the WDB memory pool can be increased to ensure the application fits
into the required space.

To change the size of the WDB memory pool, redefine the macro WDB_POOL_SIZE
in your BSP config.h file. This macro is defined in
installDirl[vxworks-6.x/target/config/all/configAll.h as follows:

#define WDB_POOL_SIZE ((sysMemTop () - FREE_RAM ADRS)/16)
Redefining WDB_POOL_SIZE in your BSP local config.h file alters the macro for
that BSP only.

169

VxWorks
Architecture Supplement, 6.6

Branching Across Large Address Ranges Using the Wind River Compiler

The Wind River Compiler handles far branching in a different way than the GNU
compiler. The linker automatically inserts branch islands in the code for far
addresses known at link time. Thus, this slower branch approach is used only
when necessary.

Extended-Call Exception Vector Support

VxWorks for PowerPC adds support for extended-call (32-bit addressable)
exception vectors.

When exceptions and interrupts occur, PowerPC processors transfer control to a
predetermined address, the exception vector, depending on the exception type.
After saving volatile task state, the handler routine installed for that exception
vector is called. This call is made using bl or bla instructions that, as described
previously, require the handler routine to be located within the 32 MB of the vector
table or within the first 32 MB of memory. Most systems are able to satisfy this

32 MB constraint. However, if a given handler routine were to be located outside
of the addressable areas, the target address would be unreachable in some
previous VxWorks releases.

This release provides support for extended-call exception vectors, which can call
handler routines located anywhere in the 4 GB address space. Extended-call
exception vectors make calls to a 32-bit address in the link register (LR) using the
blrl instructions. Extra work is required for an extended-call exception vector to
load a 32-bit address into the LR, and make a call to it. Therefore, using
extended-call exception vectors incurs an additional eleven instruction overhead
in increased interrupt latency. It is therefore not advisable to use this feature unless
absolutely necessary.

This release still maintains the earlier style 26-bit call vectors as the default. Using
a single bl/bla instruction is much more efficient than the multiple-instruction
sequence described previously. It is expected that most targets will continue to use
the original relative branch (default) style exception handling.

A new global boolean, excExtended Vectors, has been added, that allows users to
enable extended-call exception vectors. By default, excExtended Vectors is set to
FALSE. When set to TRUE, extended-call vectors are enabled. excExtended Vectors
must be set to TRUE before the exception vectors are initialized in the VxWorks boot
sequence (that is, before the call to excVeclnit()). Setting excExtended Vectors after
excVeclnit() does not achieve the desired result, and results in unpredictable
system behavior. Selection of extended-call exception vectors is done on a per-BSP
basis in order to minimize the impact on those BSPs that do not require this feature.

170

6 PowerPC
6.4 Architecture Considerations

Enabling Extended-Call Exception Vectors for Command-Line BSP Builds

Because excExtended Vectors must be set to TRUE before the call to excVeclnit(),
users must define the preprocessor define INCLUDE_SYS_HW_INIT_0, and also
supply a sysHwlInit0() routine that sets excExtended Vectors to TRUE.

The following example is taken from the ads860 BSP.
Add the following code to config.h:
#ifdef INCLUDE_SYS_HW_INIT_O

/*

* Perform any BSP-specific initialization that must be done before
* cacheLibInit() is called and/or BSS is cleared.

*/

#ifndef _ASMLANGUAGE

IMPORT BOOL excExtendedVectors;
extern void sysHwInitO();
#endif /*_ASMLANGUAGE */

#define SYS_HW_INIT 0 sysHwInitO
#endif /* INCLUDE_SYS_HW_INIT_ 0O */

Now, add the following code to sysLib.c:
#ifdef INCLUDE_SYS_HW_INIT_O

VAR AR EEEAEEEE R LR R LR LR R LRt E LR E LRy

* sysHwInitO - Used here to enable extended exception vector support.
*

* RETURNS: None.
*/

void sysHwInitO ()
{
excExtendedVectors = TRUE; /* enable extended-call exc. vectors */
}

#endif /* INCLUDE_SYS_HW_INIT 0 */

Enabling Extended-Call Exception Vectors for Project Builds

The INCLUDE_EXC_EXTENDED_VECTORS component must be enabled for your
project. This component sets excExtended Vectors to TRUE before excVecInit() is
called during the boot sequence. INCLUDE_EXC_EXTENDED_VECTORS is found
in the kernel folder.

171

VxWorks
Architecture Supplement, 6.6

6.4.5 Byte Order

The byte order used by VxWorks for the PowerPC family is big-endian.

6.4.6 Hardware Breakpoints

Not all target architectures support hardware breakpoints, and those that do,
accept different values for the access type passed to the bh() routine. The PowerPC
family supports hardware breakpoints, however, the access type of hardware
breakpoints allowed depends upon the specific processor.

For each processor family, the number of hardware breakpoints (a hardware
limitation), address alignment constraints, and access types are detailed in the
following tables. Both instruction and data access must be 4- byte aligned unless
otherwise noted.

For more information, see the reference entry for bh().

PowerPC 405

Table 6-11

PowerPC 405 targets have two data breakpoints and two instruction breakpoints.

Address data parameters are 1-byte aligned if width access is 1 byte, 2-bytes
aligned if width access is 2 bytes, 4-bytes aligned if width access is 4 bytes, and
cache-line-size aligned if access is a data cache line (32 bytes on PowerPC 405).
Instruction accesses are always 4-byte aligned.

Table 6-11 indicates the access types allowed for hardware breakpoints on
PowerPC 405 processors. The byte width means break on all accesses between
(addr) and (addr + x):

PowerPC 405 Access Types

Access Type Breakpoint Type

0 Instruction.

1 Data write byte (one byte width).

2 Data read byte (one byte width).

3 Data read /write byte (one byte width).
4 Data write half-word (two bytes width).

172

6 PowerPC
6.4 Architecture Considerations

Table 6-11 PowerPC 405 Access Types (cont'd)

Access Type Breakpoint Type

5 Data read half-word (two bytes width).

6 Data read /write half-word (two bytes width).

7 Data write word (four bytes width).

8 Data read word (four bytes width).

9 Data read /write word (four bytes width).

Oxa Data write cache line (32 bytes width).

Oxb Data read cache line (32 bytes width).

Oxc Data read /write cache line (32 bytes width).
PowerPC 603

The PowerPC 603 processor has a single instruction breakpoint, and no data
breakpoints. Table 6-12 shows the access types for hardware breakpoints for the
PowerPC 603 processor.

Table 6-12 PowerPC 603 Access Types

Access Type Breakpoint Type

0 Instruction.

NOTE: PowerPC 603 _83xx and _g?2le variants include two instruction and two
data access breakpoints.

PowerPC 604 (including MPC7XX and MPC74XX), PowerPC 440, MPC8XX, and MPC85XX

The PowerPC 604, MPC75X, and MPC74XX CPUs have one data and one
instruction breakpoint. Data and instruction access must be 4-byte aligned.

The MPC8XX and PowerPC 440 have 4 instruction and 2 data breakpoints. Data
access is 1-byte aligned on MPC8XX and PowerPC 440 CPUs.

The MPC85XX has 2 instruction and 2 data breakpoints. Data access is 1-byte
aligned.

173

VxWorks
Architecture Supplement, 6.6

Table 6-13 shows the access types for hardware breakpoints for all these
processors.

Table 6-13 PowerPC 604, PowerPC 440, MPC8XX, and MPC85XX Access Types
Access Type Breakpoint Type
0 Instruction.
1 Data read /write.
2 Data read.
3 Data write.
PowerPC 970

VxWorks for PowerPC does not include support for hardware breakpoints on
PowerPC 970 processors.

6.4.7 PowerPC Register Usage

Table 6-14

The PowerPC conventions regarding register usage, stack frame formats,
parameter passing between routines, and other factors involving code
inter-operability, are defined by the Application Binary Interface (ABI) and the
Embedded Application Binary Interface (EABI) protocols. The VxWorks
implementation for PowerPC follows these protocols. Table 6-14 shows PowerPC
register usage in VxWorks (note that only CPUs with hardware floating-point
support have fpr0-31).

PowerPC Registers

Register Name Usage

gpr0 Volatile register that may be modified during routine linkage.
gprl Stack frame pointer, always valid.

gpr2 Small data area, small const pointer register (SDA2_BASE_).
gpr3 Volatile register used for parameter passing and return values.

gpr4-gprl0 Volatile registers used for parameter passing.

gprll-gprl2 Volatile registers that may be modified during routine linkage.

174

6 PowerPC
6.4 Architecture Considerations

Table 6-14 PowerPC Registers (cont'd)

Register Name Usage

gprl3 Small data area pointer register (SDA_BASE_).
gprl4-gpr30 Non-volatile registers used for local variables.
gpr31 Used for local variables or environment pointers.

sprg4-sprg7 Book E (MPC85XX and PowerPC 4xx) special purpose registers;
used by VxWorks.

These registers are also available on certain PowerPC 603 and 604
processors, For details, see sprg4-sprg7 on PowerPC 603 and 604
Processors, p.175.

usprg0 Book E special purpose register; not used by VxWorks.
fpr0 Volatile floating-point register.
fprl Volatile floating-point register used for parameter passing and

return values.

fpr2-fpr8 Volatile floating-point registers used for parameter and results
passing.

fpr9-fpr13 Volatile floating-point registers.

fpr14-fpr31 Non-volatile floating-point registers used for local variables.

sprg4-sprg7 on PowerPC 603 and 604 Processors

Definitions for sprg4-sprg7 are included by default for those processors and
variants that include these special purpose registers, except for those processors
covered by the _ppc604_745x variant (for PowerPC variant information, see Special
Considerations for PowerPC Processors, p.241). Because this variant covers some
processors where the sprg4-sprg7 registers do not exist, the definitions are not
included in the default build for that variant. (Builds for PowerPC 603 _83xx and
_g2le include definitions in the default build).

If your target architecture is limited to MPC7445/MPC7455 or newer processors
(PVR values of 0x80010000 and higher), you can explicitly include installDir
Ivxworks-6.x/target/h/arch/ppc/sprg4_7.h to access the appropriate definitions.

175

VxWorks
Architecture Supplement, 6.6

NOTE: In this release, the sprg4-sprg7 registers—on those PowerPC 60x processors
that use them—are available for customer use. However, Wind River does not
guarantee that they will continue to be available for customer use in future
releases.

6.4.8 Caches

The following subsections augment the information in the VxWorks Kernel
Programmer’s Guide.

Most PowerPC processors contain an instruction cache and a data cache. In the
default configuration, VxWorks enables both caches, if present. To disable the
instruction cache, highlight the USER_I_CACHE_ENABLE macro in the Params tab
under INCLUDE_CACHE_ENABLE and remove the TRUE; to disable the data cache,
highlight the USER_D_CACHE_ENABLE macro and remove the TRUE.

For most boards, the cache capabilities must be used with the MMU to resolve
cache coherency problems. The page descriptor for each page selects the cache
mode. This page descriptor is configured by filling the data structure
sysPhysMemDesc[] defined in sysLib.c. (For more information about cache
coherency, see the reference entry for cacheLib. For information about the MMU
and VxWorks virtual memory, see the VxWorks Kernel Programmer’s Guide: Memory
Management. For MMU information specific to the PowerPC family, see

6.3.6 Memory Management Unit (MMU), p.139.)

The state of both data and instruction caches is controlled by the WIMG!
information saved either in the BAT (block address translation) registers or in the
segment descriptors. Because a default cache state cannot be supplied, each cache
can be enabled separately after the corresponding MMU is turned on. For more
information on these cache control bits, see PowerPC Microprocessor Family: The
Programming Environments, published jointly by Motorola and IBM.

On PowerPC processors, cache flush at a specific address is usually performed by
the dcbst instruction. Flushing of the entire cache usually involves loading from

main memory over an address range. The starting address of the address range to
load from is determined by the value stored in the variable cachePpcReadOrigin.

1. W: the WRITETHROUGH or COPYBACK attribute.
I: the cache-inhibited attribute.
M: the memory coherency required attribute.
G: the guarded memory attribute.

176

6 PowerPC
6.4 Architecture Considerations

The default value of cachePpcReadOrigin is 0x10000+cache line size; this value
can be changed in the BSP.

During initialization of the MMU library, the MMU code provides the cache code
with a suitably aligned address shortly after the MMU is initialized.
cachePpcReadOrigin is set to a suitably aligned address within the first cacheable
entry of sysPhysMemDesc|] that is of a sufficient size to accommodate the flush
mechanism requirements. The required size is processor-dependent: 4 MB for
PPC970, one and a half times the size of the cache for most other processors. If the
MMU is not configured, or if such a block of memory cannot be found, the default
value of cachePpcReadOrigin is used. If your BSP overrides the default value of
cachePpcReadOrigin, the BSP-supplied value is used in place of the default value.

cachePpcReadOrigin needs to point to cacheable memory in order for the load to
properly displace modified entries in the cache that is flushed. For PowerPC 603
and 604 processors, a cacheable block of at least one and a half times the size of the
cache is required due to the nature of the Pseudo LRU (Pseudo Least Recently
Used) algorithm used by several processors. If this scheme does not work for your
target system for any reason, you must override cachePpcReadOrigin in
sysHwInit() in the BSP.

Early Cache Enablement

VxWorks SMP

In previous releases, the cache and MMU support code for most PowerPC
processor types did not actually enable the cache until after MMU library
initialization. In this release, startup performance is improved by enabling the
cache earlier in the system initialization process.

If you are using VxWorks SMP on a PowerPC platform, the following restriction
applies:

NOTE: For VxWorks SMP, USER_D_CACHE_MODE must not be defined as
CACHE_WRITETHROUGH, or CACHE_DISABLED, nor may any of the system
memory be configured with cache as WRITETHROUGH or OFF. However,
WRITETHROUGH or OFF may be specified as needed for addresses corresponding
to I/O device registers.

177

PowerPC 405

PowerPC 440

VxWorks
Architecture Supplement, 6.6

PowerPC 405 targets, when not using the MMU, control the W, I, and G attributes
using special purpose registers (SPRs). (Because it does not provide any hardware
support for memory coherency, this processor always considers the M attribute to
be off.)

Because PowerPC 405 targets do not provide hardware floating point capabilities,
you should use either the sfdiab or the sfgnu compilers for these targets.

See the processor user’s manual for detailed descriptions of the data cache
cacheability register (DCCR), data cache write-through register (DCWR),
instruction cache cacheability register (ICCR), and storage guarded register (SGR).
Settings for the DCCR, DCWR, and ICCR can be provided by the BSP using the
ppc405DccrVal, ppc405DcwrVal, and ppc405IccrVal globals.

The Book E specification and the PowerPC 440 core implementation do not
provide a means to set a global cache enable/disable state, nor do they permit
independently enabling or disabling the instruction and data caches.

In the default configuration, VxWorks enables both caches. If you disable one
cache, you must disable the other. To disable both caches, highlight the
USER_I_CACHE_ENABLE and USER_D_CACHE_ENABLE macros in the Params tab
under INCLUDE_CACHE_ENABLE and remove the TRUE.

The state of both data and instruction caches is controlled by the WIMG
information saved either in the static TLB entry registers or in the dynamic
memory mapping descriptors. Because a default cache state cannot be supplied,
both caches are enabled when the MMU library is activated.

If an application requires a different cache mode for instruction versus data access
on the same region of memory, #undef USER_I_MMU_ENABLE, #define
USER_D_MMU_ENABLE, then use sysStaticTlbDesc[] to set up the instruction
access mode, and sysPhysMemDesc[] to set up the data access mode. However,
note that such a configuration cannot run RTPs (which require you to define
USER_I_MMU_ENABLE).

The VxWorks cache library interface has changed for the following two calls:

STATUS cacheEnable (CACHE_TYPE cache) ;
STATUS cacheDisable (CACHE_TYPE cache) ;

178

6 PowerPC
6.4 Architecture Considerations

The cache argument is ignored and the instruction and data caches are both enabled
or disabled together. If the MMU library is active (that is, MSRpg = 1),
cacheEnable() returns ERROR.

PowerPC 440 Cache Enablement

PowerPC 970

For the PowerPC 440 only, the early cache enablement logic (see Early Cache
Enablement, p.177) needs a way to determine, without consulting
sysPhysMemDesc[], which parts of the address space should be made cacheable.

The expectation is that one cacheable range—presumably RAM—extends
upwards from address zero, and another cacheable range—presumably ROM or
flash— extends downwards from address Oxffftffff. The upper address of the RAM
area is set by a global UINT32 named cache440MaxPhys, whose default value is
0x80000000; and the lower address of the ROM area is set by another global
UINT32 named cache440RomBase, whose default value is 0OxF0000000.

During the early part of initialization, starting with the call to cacheLiblInit in
usrlnit and continuing until the MMU library is initialized during usrRoot, any
memory accesses within these cacheable ranges are treated as cacheable. (Once the
MMU library is initialized, the settings in sysPhysMemDesc[] become effective
and the values of cache440MaxPhys and cache440RomBase are no longer
relevant.)

It is not required that the entire ranges [0, cache440MaxPhys) and
[cache440RomBase, Oxffffffff] contain actual memory—only that they contain
nothing which should not be made cacheable during early initialization—
therefore, the default settings are satisfactory in most cases. However, if you
require different settings, different values can be assigned to these globals using
the SYS_HW_INIT_0 hook in your BSP.

Because of the cache and MMU properties of PowerPC 970 targets, any memory
region that can potentially contain segment register tables (that is, any space which
may be part of the kernel heap when a task is created) must not be configured as
cache-inhibited in sysPhysMemDesc[].

In addition, PowerPC 970 targets ignore the W and M attribute settings. The M
attribute is considered to always be set and the W attribute is set based on the cache
level. For more information, see the PowerPC 970 reference documentation.

179

VxWorks
Architecture Supplement, 6.6

6.4.9 AIM Model for Caches

The architecture-independent model (AIM) for cache provides an abstraction layer
to interface with the underlying architecture-dependent cache code. This allows
uniform access to the hardware cache features that are typically CPU core specific.
AIM for cache is for VxWorks internal use and does not change the VxWorks API
for application development. For more information on the cache API, see the
reference entry for cacheLib.

On PowerPC processors, the following CPU families use the AIM for cache:

»= PowerPC 603 (for the MPC82xx and MPC83xx family)
» PowerPC 604 (including the MPC74xx family)

= MPC8xx

= MPC85xx

= PowerPC 970

These CPU families now implement the cacheClear() VxWorks API routines. Prior
to VxWorks 6.0, PowerPC processors did not populate the cacheClear() routine
and cacheClear() was equivalent to a no-op. The PowerPCxx family continues to
operate this way.

6.4.10 AIM Model for MMU

The architecture-independent model (AIM) for MMU provides an abstraction
layer to interface with the underlying architecture-dependent MMU code. This
allows uniform access to the hardware-dictated MMU model that is usually CPU
core specific. AIM for MMU is for VxWorks internal use. However, this new model
adds support for two new routines, vimPageLock() and vmPageOptimize(), to
the VxWorks vmLib API. For more information, see the reference entries for these
routines. The PowerPC CPU families that implement AIM for MMU (and support
for the new routines) are:

» PowerPC 405: vimPageLock() and vimPageOptimize()
» PowerPC 440: vimPageLock() and vimPageOptimize()
= MPC85xx: vimPageLock() only

The vmPageLock() routine requires the use of static TLB entries. This routine also
requires alignment of the lock regions to ensure minimal resource usage in general.
The vinPageOptimize() routine requires variable page size support in the
dynamic TLB entries. Both routines provide a mechanism for reducing TLB misses
and should boost system performance when used correctly.

180

6 PowerPC
6.4 Architecture Considerations

The configuration components for AIM for MMU are as follows:

#define INCLUDE_AIM MMU_CONFIG

#ifdef INCLUDE_AIM MMU_CONFIG

#define INCLUDE_AIM MMU_MEM_POOL_CONFIG /* Configure the memory pool
allocation for page tables */

#define INCLUDE_AIM_MMU_PT PROTECTION /* Page Table protection */

#endif

#ifdef INCLUDE_AIM MMU_MEM_ POOL_CONFIG

#define AIM MMU_INIT_PT_NUM 0x40 /* Number of pages pre allocate for
page table */
#define AIM _MMU_INIT_PT_ INCR 0x20 /* Number of pages increment alloc

for page table if previous
allocation is exhausted */

#define AIM MMU_INIT_RT_NUM 0x10 /* Number of pages pre allocate for
region table */
#define AIM _MMU_INIT_RT_ INCR 0x10 /* Number of pages increment alloc

for region table if previous
allocation is exhausted */
#endif

#define INCLUDE_MMU_OPTIMIZE

#ifdef INCLUDE_MMU_OPTIMIZE

#define INCLUDE_LOCK_TEXT_SECTION /* Calls vmPageLock with kernel text
start address and and size of
text section */

#define INCLUDE_PAGE_SIZE_OPTIMIZATION /* Calls vmPageOptimize to optimize
all of mapped virtual kernel
address space */

#endif

Page locking of the text section will fail if the alignment of text and the number of

resources available are not sufficient. For PowerPC 405 and PowerPC 440

processors, the resource is pulled from the general TLB pool which has 64 entries.

The allowance set aside by the architecture for locking is 5 static pages (this may

change). For MPC85xx processors, the resource is pulled from the TLB1 entries

(also known as CAM entries). There are 16 TLB1 entries available. If the BSP uses

too many entries, it may not be possible to enable this feature.

6.4.11 Floating-Point Support

PowerPC 405, 440 (soft-float), and MPC860

The PowerPC 405, 440 (soft-float), and MPC860 processors do not support
hardware floating-point instructions. However, VxWorks provides a

181

VxWorks
Architecture Supplement, 6.6

floating-point library that emulates these mathematical routines. All ANSI
floating-point routines have been optimized using libraries from U. S. Software.

The following double-precision routines are available:

acos() asin() atan() atan2()
ceil() cos() cosh() exp()
fabs() floor() fmod() log()
log10() pow() sin() sinh()
sqrt() tan() tanh()

In addition, the following single-precision routines are also available:
acosf() asinf() atanf() atan2f()
ceilf() cosf() expf() fabsf()
floorf() fmodf() logf() log10£()
powf() sinf() sinhf() sqrtf()
tanf() tanhf()

The following floating-point routines are not available on PowerPC 405, 440
(soft-float), and MPC860 processors:

cbrt() infinity() irint() iround()

log2() round() sincos() trunc()

cbrtf() infinityf() irintf() iroundf()

log2f() roundf() sincosf() truncf()
MPC85xx

MPC85xx processors support single-precision hardware floating-point
instructions. The default compilation rules for CPU=PPC85xx targets use the option
-tPPCE500FS:vxworks66 when using TOOL=diab. The S in E500FS indicates that
only software instructions are used, but the following options are available:

N no floating point

S software floating point only

G both float and double data types are allowed, but actual operands
and results are single-precision only using hardware floating-point
instructions

F both float and double data types are allowed, single-precision uses
hardware floating-point, double-precision uses software integer
instructions

For a list of available math routines, see your compiler documentation.

182

6 PowerPC
6.4 Architecture Considerations

When using the GNU compiler (TOOL=gnu), VxWorks provides a floating-point
library that emulates the following mathematical routines. All ANSI floating-point

routines have been optimized using libraries from U.S. Software.

The following double-precision routines are available:

acos() asin() atan() atan2()
ciel() cos() cosh() exp()
fabs() floor() fmod() log()
log10() pow() sin() sinh()
sqrt() tan() tanh()

The following single-precision routines are also available:
acosf() asinf() atanf() atan2f()
cielf() cosf() expf() fabsf()
floorf() fmodf() logf() log10£()
powf() sinf() sinhf() sqrtf()
tanf() tanhf()

The following floating-point routines are not available on MPC85xx processors:

cbrt() infinity() irint() iround()
log2() round() sincos() trunc()
cbrtf() infinityf() irintf() iroundf()
log2f() roundf() sincosf() truncf()

Double-Precision Floating-Point Support for e500v2

e500v2 processors support double-precision hardware floating-point instructions.
When using the TOOL=e500v2gnu compiler option, VxWorks includes
double-precision hardware floating-point libraries in its math library. The
following routines are available:

acos() asin() atan() atan2()
ceil() cos() cosh() exp()
fabs() floor() fmod() log()
log10() pow() sin() sinh()
sqrt() tan() tanh()

IEEE754 support is not available.

NOTE: Single-precision hardware floating-point support is not available for
e500v2 processors.

183

VxWorks
Architecture Supplement, 6.6

Special Considerations for the MPC8548 and Other e500v2 Processors

The MPC8548 includes additional hardware double-precision floating-point
capabilities. The Wind River Compiler supports this hardware double-precision
capability with the following target option: -tPPCE500V2FH:vxworks66.

The Wind River GNU Compiler also supports the hardware double-precision
hardware capability for e500v2 processors. The required GNU compiler option is
-te500v2. When using double-precision hardware floating point, this option
replaces any specific SPE compiler flags.

NOTE: The default support for this processor is software floating-point using the
same U.S. Software library used by the standard MPC85xx processors. The default
compilation rule is CPU=PPC85xx.

PowerPC 440 (Hard-Float), 60x, and 970

The following floating-point routines are available for PowerPC 440 (hard-float),
60x, and 970 processors:

acos() asin() atan() atan2()

ciel() cos() cosh() exp()

fabs() floor() fmod() log()

log10() pow() sin() sinh()

sqrt() tan() tanh()

The following subset of the ANSI routines is optimized using libraries from
Motorola:

acos() asin() atan() atan2()

cos() exp() log() log10()

pow() sin() sqrt()

The following floating-point routines are not available on PowerPC 440
(hard-float), 60x, and 970 processors:

cbrt() infinity() irint() iround()
log2() round() sincos() trunc()

No single-precision routines are available for these processors.

Handling of floating-point exceptions is supported for PowerPC 440 (hard-float),
60x, and 970 processors. By default, the floating-point exceptions are disabled.

184

6 PowerPC
6.4 Architecture Considerations

To change the default setting for a task spawned with the VX_FP_TASK option,
modify the values of the machine state register (MSR) and the floating-point status
and control register (FPSCR) at the beginning of the task code.

= The MSR FE0 and FE1 bits select the floating-point exception mode.

» The FPSCR VE, OE, UE, ZE, XE, NI, and RN bits enable or disable the
corresponding floating-point exceptions and rounding mode. (See archPpc.h
for the macro PPC_FPSCR_VE and so forth.)

You can access register values using the routines vxMsrGet(), vxMsrSet(),
vxFpscrGet(), and vxFpscrSet().

6.4.12 VxMP Support for Motorola PowerPC Boards

VxMP is an optional VxWorks component that provides shared-memory objects
dedicated to high-speed synchronization and communication between tasks
running on separate CPUs. For complete documentation of the optional
component VXMP, see the VxWorks Kernel Programmer’s Guide: Shared Memory
Objects: VxMP.

Normally, boards that make use of VxMP must support hardware test-and-set
(TAS: atomic read-modify-write cycle). Motorola PowerPC boards do not provide
atomic (indivisible) TAS as a hardware function. VxMP for PowerPC provides
special software routines that allow the Motorola boards to make use of VxMP.

Boards Affected

The current release of VxMP provides a software implementation of a hardware
TAS for PowerPC-based VME boards manufactured by Motorola. No other
PowerPC boards are affected.

NOTE: Some PowerPC board manufacturers, for example Cetia, claim to equip
their boards with hardware support for true atomic operations over the VME bus.
Such boards do not need the special software written for the Motorola boards.

Implementation

The VxMP product for Motorola PowerPC boards has special software routines
that compensate for the lack of atomic TAS operations in the PowerPC and the lack
of atomic instruction propagation to and from these boards. This software consists
of the routines sysBusTas() and sysBusTasClear().

185

VxWorks
Architecture Supplement, 6.6

The software implementation uses ownership of the VMEbus as a semaphore; in
other words, no TAS operation can be performed by a task until that task owns the
VME bus. When the TAS operation completes, the VME bus is released. This
method is similar to the special read-modify-write cycle on the VME bus in which
the bus is owned implicitly by the task issuing a TAS instruction. (This is the
hardware implementation employed, for example, with a 68K processor.)
However, the software implementation comes at a price. Execution is slower
because, unlike true atomic instructions, sysBusTas() and sysBusTasClear()
require many clock cycles to complete.

Configuring VMEbus TAS

To invoke the VMEbus TAS, set SM_TAS_TYPE to SM_TAS_HARD on the Params
tab of the project facility under INCLUDE_SM_OB].

Restrictions for Multi-Board Configurations

Systems using multiple VME boards where at least one board is a Motorola
PowerPC board must have a Motorola PowerPC board set with a processor ID
equal to 0 (the board whose memory is allocated and shared). This is because a TAS
operation on local memory by, for example, a 68K processor does not involve VME
bus ownership and is, therefore, not atomic as seen from a Motorola PowerPC
board.

This restriction does not apply to systems that have globally shared memory
boards that are used for shared memory operations. In this case, specifying
SM_OFF_BOARD as TRUE on the Params tab of the properties window for the
processor with ID of 0 and setting the associated parameters enables you to assign
processor IDs in any configuration.

6.4.13 Exceptions and Interrupts

Interrupt Vector Table

The exception vector table for all PowerPC processors is located at physical
address zero. VxWorks does support a different virtual address for the vector table
on the PowerPC 440 processor.

On most PowerPC processors, except PowerPC 440 and MPC85xx, the MSR|p bit
determines where the interrupt vector table resides. The exception prefix of
0x£ff00000, which corresponds to MSR|p = 1, is not supported. The MSR;p bit must
specify address 0.

186

6 PowerPC
6.4 Architecture Considerations

On PowerPC 440 and MPC85xx, the exception vector prefix register (EVPR) and
the interrupt vector prefix register (IVPR), respectively, determines the base
address of the interrupt vector table. VxWorks supports flexible placement of the
vector table on the PowerPC 440 processor. On the MPC85xx, address 0 only is
supported.

PowerPC 405, 440, and MPC85xx

PowerPC 405, 440, and MPC85xx processors support two classes of exceptions and
interrupts: normal and critical. The PowerPC 440GX and 440EP processors, also
referred to as revision x5 of the PowerPC 440, have an additional class called
machine check interrupt. This release correctly attaches default handlers to the
corresponding vectors. excVecSet(), which internally recognizes whether the
vector being modified is normal or critical, can be used with either class of vector
and is the preferred method for connecting alternative handlers.

The routines excCrtConnect() and excIntCrtConnect() are available in addition to
the basic routines excConnect() and excIntConnect():

STATUS excCrtConnect (VOIDFUNCPTR *vectr, VOIDFUNCPTR routine) ;

STATUS excIntCrtConnect (VOIDFUNCPTR *vectr, VOIDFUNCPTR routine);
The excCrtConnect() routine connects a C routine to a critical exception vector, in
amanner analogous to excConnect(). The excIntCrtConnect() routine performs a
similar function for an interrupt (also see excVecGet() and excVecSet(), p.189).

The excIntConnectTimer() routine, required for PowerPC 405 targets, is not
needed for the PowerPC 440 targets.

In the case of the machine check interrupt class, the VxWorks machine check
exception handler is customized by macros in the BSP config.h file. The following
macros can be defined to enable their respective features:

INCLUDE_440X5_DCACHE_RECOVERY
This macro makes data cache parity errors recoverable. Selecting this option
also selects INCLUDE_440X5_PARITY_RECOVERY, and sets
USER_D_CACHE_MODE to CACHE_WRITETHROUGH.

INCLUDE_440X5_TLB_RECOVERY
This macro makes TLB parity errors recoverable. Selecting this option also
selects INCLUDE_440X5_PARITY_RECOVERY and INCLUDE_MMU_BASIC.
The INCLUDE_MMU_BASIC component is required because TLB recovery
requires setup performed by MMU library initialization. However, you can to
undefine (#undef) both USER_D_MMU_ENABLE and USER_I_MMU_ENABLE
if you do not want the functionality provided by the MMU library.

187

VxWorks
Architecture Supplement, 6.6

INCLUDE_440X5_PARITY_RECOVERY
This macro sets the PRE bit in CCRO0. This macro is required by the 440x5
hardware if either data cache or TLB recovery is enabled. Selecting this option
also selects INCLUDE_EXC_HANDLING.

INCLUDE_440X5_TLB_RECOVERY_MAX
This macro dedicates a TLB entry to the machine check handler, and a separate
TLB entry to the remaining interrupt/exception vectors, in order to maximize
the ability to recover from TLB parity errors. Selecting this option also selects
INCLUDE_440X5_TLB_RECOVERY.

INCLUDE_440X5_MCH_LOGGER
This macro causes the machine check handler to log recovered events which
are otherwise handled transparently by the OS and the application.

MPC85xx

Table 6-15

MPC85xx processors support three classes of exceptions and interrupts: normal,
critical, and machine check. Besides the standard excConnect() and
excIntConnect() routines, excCrtConnect() and excIntCrtConnect() are available
for the critical exception class, and excMchkConnect() is available for the machine
check exception class (see excVecGet() and excVecSet(), p.189). The routine
prototypes are the same for all connect routines.

Table 6-15 shows the interrupt vector offset registers (IVORs).

Interrupt Vector Offset Register Settings for MPC85xxx

IVOR Interrupt Type Offset
IVORO Critical input 0x100
IVOR1 Machine check? 0x200
IVOR2 Data storage 0x300
IVOR3 Instruction storage 0x400
IVOR4 External input 0x500
IVOR5 Alignment 0x600
IVOR6 Program 0x700
IVOR? Floating-point unavailable (not supported on 0x800
MPC85xx)

188

6 PowerPC
6.4 Architecture Considerations

Table 6-15 Interrupt Vector Offset Register Settings for MPC85xx (cont'd)

IVOR Interrupt Type Offset
IVORS System call 0x900
IVOR9 Auxiliary processor unavailable (not supported on 0xa00
MPC85xx)
IVOR10 Decrementer 0xb00
IVOR11 Fixed-interval timer interrupt 0xc00
IVOR12 Watchdog timer interrupt 0xd00
IVOR13 Data TLB error 0Oxe00
IVOR14 Instruction TLB error 0xf00
IVOR15 Debug 0x1000
IVOR32 SPE APU unavailable 0x1100
IVOR33 SPE floating-point data exception 0x1200
IVOR34 SPE floating-point round exception 0x1300
IVOR35 Performance monitor 0x1400

a. If cache parity recovery is enabled in the BSP config.h file, IVOR1 will be
modified to address 0x1500, where the parity recovery code resides. Exception
processing will fall back to address 0x200 after examining the MCSR if the
machine check is not caused by parity error.

excVecGet() and excVecSet()

In a standard VxWorks image, excVeclnit() and excInit() install the default
exception and interrupt handlers, along with the stub for the entry and exit code,
by calling the connect routines described previously. Application code can change
the default handler to an alternate handler by calling excVecSet(). excVecSet()
does not copy the stub for the entry and exit code, and thus, the exception type
(normal, critical, or machine check) need not be specified. The default exception
type for the vector of interest is used. If the application code changes the location
of a vector (for example, using IVOR which is not recommended), the connect
routines are still needed to install the stub as well as the handler. excVecSet() is

189

VxWorks
Architecture Supplement, 6.6

used to install an alternate handler, and excVecGet() returns the address of the
installed handler given a vector:

void excVecSet (FUNCPTR *vectr, FUNCPTR function);
FUNCPTR excVecGet (FUNCPTR *vectr);

Relocated Vectors

On some PowerPC processors, certain exception vectors are located very close to
each other. In order to fit the prologue instructions that prepare the values needed
for excEnt() and intEnt(), it becomes necessary to move these vectors to a different
address. Thus, such vectors are relocated. Table 6-16 lists the relocated vectors. All
standard VxWorks API routines correctly use the relocated addresses when the
original address is supplied. Examples of these routines include excVecSet(),
excVecGet(), and excIntConnectTimer().

Table 6-16 Relocated Exception Vectors for PowerPC Processors

Affected
Name Interrupt Type Processors From To
PIT Periodic interval timer PowerPC 405 0x1000 0x1080
FIT Fixed interval timer 0x1010 0x1180
PERF_MON Performance monitor = PowerPC 604 0xf00 0xf80
(PowerPC 604,
MPC7xx,
MPC74xx, and
PowerPC 970)

Note that the relocated vectors and addresses are not user-changeable. If you
relocate other vectors, or change a relocated vector’s address, VxWorks does not
convert to the new address properly.

6.4.14 Memory Layout

The VxWorks memory layout is the same for all PowerPC processors. Figure 6-3
shows the memory layout with the following labels:

Interrupt Vector Table
Table of exception/interrupt vectors.

190

6 PowerPC
6.4 Architecture Considerations

SM Anchor
Anchor for the shared memory network and VxMP shared memory objects (if
there is shared memory on the board).

Boot Line
ASCII string of boot parameters.

Exception Message
ASCII string of the fatal exception message.

Initial Stack
Initial stack for usrInit(), until usrRoot() is allocated a stack.

System Image
The VxWorks system image itself (three sections: text, data, and bss). The entry
point for VxWorks is at the start of this region, which is BSP dependent (see the
BSP-specific documentation).

Host Memory Pool
Memory allocated by host tools. The size depends on the macro
WDB_POOL_SIZE. Modify WDB_POOL_SIZE under INCLUDE_WDB.

Interrupt Stack
Size is defined by ISR_STACK_SIZE under INCLUDE_KERNEL. Location
depends on the system image size. For VxWorks SMP, this block contains the
idle-task stacks and task control blocks (TCBs) and is replicated for each CPU.

System Memory Pool
Size depends on the size of the system image. The sysMemTop() routine
returns the address of the end of the free memory pool.

Error Detection and Reporting Preserved Memory
Size is defined in PM_RESERVED_MEM. This memory is used when
INCLUDE_EDR_PM is defined.

All addresses shown in Figure 6-3 are relative to the start of memory for a
particular target board. The start of memory (corresponding to 0x0 in the
memory-layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS under
INCLUDE_MEMORY_CONFIG for each target.

Figure 6-3 shows the interrupt vector table starting at address 0; see Interrupt Vector
Table, p.186, for more information on the placement of interrupt/exception vectors.

191

Figure 6-3

VxWorks
Architecture Supplement, 6.6

VxWorks System Memory Layout (PowerPC)

Interrupt Vector Table
(12KB)

SM Anchor

Boot Line

Exception Message

Initial Stack

System Image

text

data

bss

Host Memory Pool

Interrupt Stack

System Memory Pool

ED&R Reserved Memory

192

Address
+0x0000

+0x3000
+0x4100

+0x4200
+0x4300

+0x4c00

LOCAL_MEM_LOCAL_ADRS

BSP dependent value

_end

KEY

[=Available
[——1 =Reserved

sysMemTop()

6 PowerPC
6.4 Architecture Considerations

6.4.15 Power Management

The PowerPC DEC timer is generally used as the system tick timer in VxWorks
applications. Although this timer works well in that role, it has a weakness that
makes it unsuitable for long power management timekeeping: the timer has a
tendency to drift unless the interrupt service routine takes special care to correct
for under-run. This sort of processing adds overhead to the interrupt service
routine; but under normal circumstances this only occurs at a system tick. Long
power management requires that the system time be advanced with each
interrupt. In this case, the extra processing required by the DEC timer is
undesirable. In order to make use of the long sleep mode, an alternate timer device
must be available for use as the system clock. The m8260 timer has been adapted
for use in the MPC8260 BSPs. To determine if this feature is supported for your
target board, see your BSP reference documentation.

It is not possible to disable the DEC timer interrupt without disabling all
peripheral interrupts. In addition, it is not possible to change the timer frequency
of the timer. Therefore, the DEC timer is used as the timestamp timer in the long
power management configuration. If a timestamp component is not included in
your VxWorks image, the DEC interrupt is ignored.

NOTE: VxWorks 5.5 provided short power management support for all PowerPC
cores. This behavior is retained if the power management component is not
included.

6.4.16 Build Mechanism

The general build mechanism for VxWorks uses make along with the macros CPU
and TOOL to determine how to build for a specific target processor. Prior to
VxWorks 6.0, each CPU family needed to link with its own set of library archives.
The updated build mechanism eliminates much of the redundancy associated with
the old build method by building most of the files for a generic 32-bit PowerPC
UISA. This allows the same set of library archives to be used by different CPU
families.

There are two general sets of VxWorks library archives for PowerPC. One set is for
processors with hardware floating-point support (defined by the PowerPC
floating-point model, excluding any core or chip specific floating-point model).
The other set is for processors that lack hardware floating-point support and
require what is commonly known as software floating-point support. The TOOL

193

VxWorks
Architecture Supplement, 6.6

macro is used to differentiate between these two modes of floating-point (FP)
support. This macro now takes the following values:

diab Wind River Compiler with hardware FP support

sfdiab Wind River Compiler with software FP support

e500v2diab Wind River Compiler with double-precision hardware FP support
gnu GNU compiler with hardware FP support

sfgnu GNU compiler with software FP support

e500v2gnu GNU compiler with double-precision hardware FP support

The directory organization of the library archives in installDir/vxworks-6.x/
target/lib/ppc/PPC32 reflects the new build mechanism. There are now two sets of
library archives, one for hard-float and one for soft-float. These libraries reside in
the common and sfcommon directories, respectively. These two common
directories contain files that can be compiled for the generic 32-bit PowerPC UISA
model and contain no processor-specific instructions. (The term common refers to
the compiler, in the sense that these directories are used by both the Wind River
Compiler and the GNU compiler as opposed to those directories that specify the
compiler that their library archives are linked with as part of the directory name).

Under installDir/vxworks-6.x/target/lib/ppc/PPC32, some directories have names
with the CPU variant attached, such as _ppc440_x5, _ppc604, or _ppc85xx. These
directories contain library archives that must be compiled for a specific CPU
variant because they may contain processor-core-specific instructions. For
example, if a BSP uses the PowerPC 405 processor, it can be built with
TOOL=sfdiab which links it with the library archives in sfcommon,
sfcommon_ppc405, and sfdiab. Likewise, a BSP that uses a MPC74xx processor
can be built with TOOL=gnu which links it with the library archives in common,
common_ppc604, and gnu.

The value for the macro CPU is set to the CPU family in the BSP makefile. This
remains unchanged from prior releases. However, outside of the BSP, the macro
CPU takes on a new value when compiling for the generic 32-bit PowerPC UISA.
This new value is PPC32. This value is used when building in
installDirlvxworks-6.x/target/src (kernel) or /target/usr (RTP).

Table 6-17 lists the CPU and TOOL combinations for building RTP applications.
(CPU and TOOL combinations for building kernel applications are listed in
Table A-1.)

194

6 PowerPC
6.5 Reference Material

Table 6-17 CPU and TOOL Values When Building For an RTP

CPU TOOL

PPC32 (hardware FP) diab
gnu

e500v2diab
e500v2gnu?®

PPC32 (software FP) sfdiab
sfgnu

a. The e500v2diab and e500v2gnu compiler tool options are
specific to e500v2 processors such as the MPC8548 or the
MPC8572.

6.5 Reference Material

Comprehensive information regarding PowerPC hardware behavior and
programming is beyond the scope of this document. IBM and Freescale
Semiconductor, Inc. provide several hardware and programming manuals for the
PowerPC processor on their Web sites:

http://www.ibm.com/
http://www.freescale.com/
Wind River recommends that you consult the hardware documentation for your
processor or processor family as necessary during BSP development.
PowerPC Architecture References

The references provided in this section are current at the time of writing; should
you decide to use these documents, you may wish to contact the manufacturer for
the most current version.

» The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Morgan-Kaufmann, 1994, ISBN 1-55860-316-6.

» Programming Environments Manual for 32-bit Implementations of the PowerPC
Architecture, Order #MPCFPE32B/AD, 1/1997.

195

http://www.ibm.com/
http://www.freescale.com/

VxWorks
Architecture Supplement, 6.6

196

Renesas SuperH

7.1 Introduction 197

7.2 Supported Processors 198

7.3 Interface Variations 198

7.4 Architecture Considerations 208
7.5 Migrating Your BSP 233

7.6 Reference Material 234

7.1 Introduction

This chapter provides information specific to VxWorks development on Renesas
SuperH targets.

197

VxWorks
Architecture Supplement, 6.6

7.2 Supported Processors

This release of VxWorks for Renesas SuperH supports the SH-4 and SH-4A family
of processors only.

7.3 Interface Variations

This section describes particular routines and tools that are specific to SuperH
targets in any of the following ways:

* They are available only on SuperH targets.
» They use parameters specific to SuperH targets.
» They have special restrictions on, or characteristics of SuperH targets.

For complete documentation, see the reference entries for the libraries, routines,
and tools discussed in the following sections.

7.3.1 Optimized Libraries

Most VxWorks libraries are compiled from portable C source code, but there are
some libraries that are compiled from assembly language for better performance.
The following libraries are optimized for SuperH targets:

= bLib—buffer manipulation library (including the swab() routine)
= dllLib—doubly-linked list manipulation library

= sllLib—singly-linked list manipulation library

= ffsLib—find first bit set library

7.3.2 dbgArchLib

This section discusses routines and interface variations associated with the
SuperH-specific dbgArchLib.

198

7 Renesas SuperH
7.3 Interface Variations

Register Routines

The SuperH version of dbgArchLib provides the following architecture specific
routines:

r0()-r15()
Returns a task’s register value.

sr()

Returns a task’s Status Register value.

gbr()
Returns a task’s Global Base Register value.

vbr()
Returns a task’s Vector Base Register value.

mach(), macl()
Returns a task’s MACH, MACL register value.

pr()
Returns a task’s Procedure Register value.

NOTE: The Global Base Register and Vector Base Register are system-wide global
registers. Therefore, these registers are not included in the task context. The gbr()
and vbr() routines return the register value only when the task is suspended or

stopped by an exception handler. Otherwise, the routines return the initial value of

Stack Trace and the tt() Routine

The parameters of a routine call cannot be displayed using the tt() routine. For a
complete stack trace, use the Wind River Workbench host tools.

Software Breakpoints

VxWorks for Renesas SuperH supports both software and hardware breakpoints.
When you set a software breakpoint with the b() routine, VxWorks replaces an
instruction with a trapa instruction. VxWorks restores the original instruction
when the breakpoint is removed.

199

VxWorks
Architecture Supplement, 6.6

If you set a breakpoint just after a delayed branch instruction, the b() routine

retu

In addition, you may see an illegal instruction exception when the breakpoint is

rns the following warning message:

-> 1 0x6001376,2

6001376 bla0 bsr +832 (==> 0x060016ba)
6001378 0606 (mov.1 r0,@(r0,r6))

-> b 0x6001378

WARNING: address 0x6001378 might be a branch delay slot
value = 0 = 0x0

->

hit. However, because code located just after a data constant can also match the

pattern of a delayed branch instruction, the b() routine does not prevent setting a

breakpoint in a branch delay slot.

Hardware Breakpoints

The

SuperH architecture uses the User Break Controller (UBC module) to provide

flexible hardware breakpoint support for instruction and data access. The

supported combinations and the number of channels (one to four) vary depending
he SuperH processor type. For more information, see the appropriate SuperH

ont

hardware manual for your processor and board.

bh() Routine

Table 7-1

Hardware breakpoints can be set from the target or host shell using the bh()

routine. When using the target shell, the INCLUDE_DEBUG definition is required
(this includes dbgLib). For more information, see the reference entry for the bh()

routine.

Also, for SuperH processors, the access type qualifier for the bh() routine
represents a bitmap combination. The available combinations are defined in
Table 7-1.

SuperH Bitmap Combinations

Bits Value Breakpoint Type

0-1 00 Instruction fetch and data access
01 Instruction fetch only
10 Data access only

2-3 00 Read and write cycle

200

7 Renesas SuperH
7.3 Interface Variations

Table 7-1 SuperH Bitmap Combinations (cont'd)

Bits Value Breakpoint Type

01 Read cycle only
10 Write cycle only
4-5 00 Operand size byte, word, and long (any)
01 Operand size byte only
10 Operand size word
1 Operand size long
6-7 00 CPU access only
01 DMAC access only
10 CPU and DMAC access
8-9 00 IBUS (regular memory access)
01 XBUS (DSP XRAM only)
10 YBUS (DSP YRAM only)

NOTE: Bit 0 represents the least significant bit (LSB).

Table 7-2 provides some useful access value examples.

Table 7-2 Access Value Examples

Access Value Breakpoint Type

0x0000 Instruction fetch, CPU data read and write of any size.
0x0001 Instruction fetch only.

0x0032 CPU long read and write.

0x0026 CPU word read only.

201

VxWorks
Architecture Supplement, 6.6

BSP Requirements for Hardware Breakpoints

The architecture-specific debug library uses a UBC abstraction layer in order to
cope with differences in the various SuperH processors. To support this
functionality, the BSP must provide a BSP-specific initialization routine that sets up
an appropriate UBC structure. This initialization routine must be registered as
_func_wdbUbcInit and it must set the UBC structure members as follows:

chanCnt
Number of UBC channels (0-4).

brcrSize
UBC identification. The supported values are:

BRCR_NONE - no UBC support

BRCR_0_1 - no BRCR, 1 channel (SH7050, SH7000)
BRCR_16_1 - 16-bit BRCR, 1 channel (SH7055, SH7604)
BRCR_16_2 - 16-bit BRCR, 2 channels (SH7750, SH7709)
BRCR_32_2 - 32-bit BRCR, 2 channels (SH7729, SH7709A)
BRCR_32_4 - 32-bit BRCR, 4 channels (SH7615)
CCMFR_32_2 - 32-bit CCMFR, 2 channels (SH7770)

brerInit
BRCR value (or CCMFR value for SH-4A architectures) to initialize.

pBRCR
Address of the BRCR register (or CCMFR register for SH-4A architectures).

basel[]
Channel base addresses. Up to four channels are supported.

For example, in sysHwlInit(), add the following:

#1f defined(INCLUDE_WDB) || defined (INCLUDE_DEBUG)
_func_wdbUbcInit = sysUbcInit;
#endif

The following example of the sysUbcInit() routine is for SH7750-based BSPs.
SH7750 has a 16-bit BRCR register and two user break channels. For additional
examples appropriate to other CPU types, see the associated Wind River BSP.

VAR A R R AR R R AL E LR R AR EE LRt

sysUbcInit - Initialize the UBC structure

This routine is called when setting the first hardware breakpoint to
initialize the User Break Controller structure and identify the UBC.

L S

/

202

7 Renesas SuperH
7.3 Interface Variations

void sysUbcInit
(
UBC * pUbc
)
{
pUbc->brcrSize
pUbc->brcrInit
pUbc->pBRCR =
pUbc->base[0]
pUbc->base[1]
}

BRCR_16_2;

0;

UINT32) UBC_BRCR;
(UINT32) UBC_BARA;
(UINT32) UBC_BARB;

(

7.3.3 excArchLib

This section discusses routines and interface variations associated with the
SuperH-specific excArchLib.

Support for Bus Errors

SH7750 processors detect various types of access alignment errors as address error

exceptions. However, they do not support access timeout errors for non-existent
memory.

The SuperH exception handling library provides a way to detect this type of bus
error in a board-dependent manner. To implement bus timeout detection, the
target board must be able to detect the timeout and interrupt the CPU. This
requires that you:

Specify a bus error interrupt vector number to excBErrVecInit(vecnium) in your
BSP.

Set the interrupt-acknowledge routine to the function pointer
_func_excBErrIntAck.

203

VxWorks
Architecture Supplement, 6.6

Support for Zero-Divide Errors (Target Shell)

The exception handling library uses a CPU-specific trap number (see ivSh.h) to
detect divide-by-zero errors. For example, the target shell responds to a
zero-divide condition as follows:

-> 1/0

Zero Divide

TRA Register: 0x00000004 (TRAPA #1)

Program Counter: 0x0c008a2a

Status Register: 0x40001001

shell restarted.

->
Other tasks handle the zero-divide trap as any other exception; the task is
suspended unless the trap is caught either as a signal (SIGFPE) or by installing a
user handler with intVecSet().

For application code, this implementation requires support from the compiler used
to build the code. The GNU compiler includes support for this type of exception.
However, the Wind River Compiler does not include this support. Therefore,
application code built with the Wind River Compiler does not generate an
exception for a divide-by-zero operation.

7.3.4 intArchLib

This section discusses routines and interface variations associated with the
SuperH-specific intArchLib.

intConnect()

The intConnect() routine takes the following parameters: the interrupt vector
address, the handler function, and an integer parameter to the handler function.

The intConnect() routine can be extended by setting _func_intConnectHook to
the new routine, for example sysIntConnect(). This routine can be implemented
for a BSP that has an off-chip interrupt controller (for example, VME).

intLevelSet()

The intLevelSet() routine takes an argument from 0 to 15.

204

7 Renesas SuperH
7.3 Interface Variations

intLock()

The return value for the intLock() routine is the old status register value.

intEnable() and intDisable()

The intEnable() and intDisable() routines can invoke BSP-supplied routines
when they are set to the _func_intEnableRtn and _func_intDisableRtn global
pointers, respectively. These routines take one integer parameter. If the function
pointers are not set (NULL), the intEnable() and intDisable() routines do nothing
and return ERROR when called. The following points must be considered when
implementing these routines:

= Aninterrupt level, in general, can be shared by two or more interrupt sources.
In order to implement intEnable() and intDisable(), the BSP must restrict
each level to a single interrupt source; otherwise, the value passed to these
routines cannot be used to identify the source.

= The interrupt controller’s priority registers (IPRA-IPRx) are different for each
SuperH CPU variant. Consult the appropriate SuperH hardware manual for
the bit definitions of these registers.

7.3.5 mathLib
VxWorks for Renesas SuperH supports the following double-precision math
routines:
acos() asin() atan() atan2() ceil() cos() cosh()

exp() fabs() floor() fmod() frexp() Ildexp() log()
log10() modf() pow() sin() sinh() sqrt() tan()
tanh()

The following single-precision math routines are also supported:

acosf() asinf() atanf() atan2f() ceilf() cosf() coshf()
expf() fabsf() floorf() fmodf() frexpf() ldexpf() logf()
log10f() modff() powf() sinf() sinhf() sqrtf() tanf()
tanhf()

205

VxWorks
Architecture Supplement, 6.6

7.3.6 vxLib

The following routines include SuperH-specific implementations for this release:

vxTas()
The vxTas() routine provides a C-callable interface to a test-and-set
instruction, and it is assumed to be equivalent to sysBusTas() in sysLib. The
SuperH version of vxTas() simply executes the tas.b instruction, but the
test-and-set (atomic read-modify-write) operation may require an external bus
locking mechanism on some hardware. In this case, wrap vxTas() with the bus
locking and unlocking code in sysBusTas().

vxMemProbe()
The vxMemProbe() routine probes a specified address by capturing a bus
error. The SuperH version of the vxMemProbe() routine captures the address
error (defined by the CPU), MMU exceptions (defined by the CPU), and the
bus-timeout error (optional, defined by the BSP). If a function pointer
_func_vxMemProbeHook is set by the BSP, the vxMemProbe() routine calls
the hook routine instead of its default probing code.

7.3.7 SuperH-Specific Tool Options
This section includes information on supported compiler, linker, and assembler
options for both the Wind River GNU Compiler (gnu) and the Wind River
Compiler (diab).

GNU Compiler (ccsh) Options

VxWorks for Renesas SuperH supports the following SuperH-specific GNU
compiler (ccsh) options:

-m4 SH-4 instruction set.

-ml Little-endian.

-mb Big-endian (default option).

-mbigtable Use long jump tables.

-mdalign Align doubles on 64-bit boundaries.
-mno-ieee No IEEE handling of floating-point NaNs.
-mieee IEEE handling of FP NaNs (default option).

206

7 Renesas SuperH
7.3 Interface Variations

-misize Dump out instruction size information.
-mrelax Generate pseudo-ops needed by the assembler and linker
to do function call relaxing.
-mspace Generate smaller code rather than faster code.
GNU Assembler Options

VxWorks for Renesas SuperH supports the following SuperH-specific GNU
assembler (assh) options:

-little Generate little-endian code.

-relax Alter jump instructions for long displacements.

-small Align sections to 4-byte boundaries instead of 16-byte
boundaries.

GNU Linker Options

VxWorks for Renesas SuperH supports the following SuperH-specific GNU linker
(Idsh) options:

-EB Enable SuperH ELF big-endian emulation (default).
-EL Enable SuperH ELF little-endian emulation.

Wind River Compiler Options

There are no SuperH-specific Wind River Compiler compiler (dcc) options. The
following SuperH target definitions are supported with the -t compiler option:

-tSH4EH:vxworks66 Big-endian SH-4 targets with hardware floating

point.

-tSH4LH:vxworks66 Little-endian SH-4 targets with hardware floating
point.

-tSH4EH:rtp Big-endian SH-4 RTPs with hardware floating point.

-tSH4LH:rtp Little-endian SH-4 RTPs with hardware floating
point.

207

VxWorks
Architecture Supplement, 6.6

Wind River Compiler Assembler Options

The target definitions listed in the previous section, also apply to the assembler.
The following Wind River Compiler assembler option is useful when building
GNU-compatible modules:

-Xalign-power2 The .align directive specifies power-of-two alignment.

Wind River Compiler Linker Options

There are no SuperH-specific Wind River Compiler linker options. The target
definitions listed in Wind River Compiler Options, p.207, apply to the linker as well.

7.4 Architecture Considerations

This section describes characteristics of the Renesas SuperH architecture that you
should keep in mind as you write a VxWorks application. The following topics are
addressed:

» operating mode, privilege protection
= byte order

» register usage

» banked registers

» exceptions and interrupts

* memory management

* maximum number of RTPs

* null pointer dereference detection

= caches

» floating-point support

* power management

» signal support

= SH7751 on-chip PCI window mapping
= VxWorks virtual memory mapping

* memory map

208

7 Renesas SuperH
7.4 Architecture Considerations

7.4.1 Operating Mode, Privilege Protection

VxWorks runs in privileged mode on SuperH processors. RIPs (real-time
processes) run in user mode. RTPs issue a trapa number 32 instruction when
jumping to a VxWorks system call and switch to privileged mode to access
resources that are protected in user mode. For more information on RTPs, see the
VxWorks Application Programmer’s Guide.

7.4.2 Byte Order

For SH-4 processor families, both big- and little-endian byte orders are supported.
Pre-built VxWorks libraries are provided for both endian byte orders and the
included makefiles can be used to build applications with either byte order. For
big-endian byte order, set the make variable TOOL to gnu or diab. For little-endian
byte order, set the make variable to gnule or diable.

Those SuperH BSPs that support both big- and little-endian byte order are
delivered as two copies: one copy for little-endian support and another copy for
big-endian support. The little-endian version is appended with _le. The BSPs differ
in the makefile only.

Wind River Workbench host tools (such as GDB and the Wind River
System Viewer) automatically detect the byte order of the target system.
Additionally, the byte order for GDB can be forced using the set endian command.

7.4.3 Register Usage

Register usage for SuperH processors is as follows:

r0 return value

rl...r3 scratch registers

r4...x7 function parameters

r8...r13 call saved registers

rl4 frame pointer (call saved)

r15 stack pointer

pr routine return address

fpul FP to integer communication register

209

VxWorks
Architecture Supplement, 6.6

dr0 (fr0) FP return value

dr2 (fr1...fr3) FP scratch registers
dr4...dr10 (fr4...fr11) FP parameters

dr12,dr14 (fr12...fr15) call saved FP registers
xd0...xd14 (xf0...xf15) not used by the compiler

7.4.4 Banked Registers

In the privileged mode of SuperH processors, two sets of general registers 10 - r7
are available. One set is called BANKO, and another set is called BANK1. The
register bank (RB) bit in the status register (SR) defines which banked register set
is accessed as r0 - r7. While RB = 1, BANKI registers (r0_bank1 - r7_bank1) are
accessed as r0 - 17. While RB = 0, BANKO registers (r0_bankO0 - r7_bank0) are
accessed as 10 - r7. When an exception or interrupt happens, VxWorks for Renesas
SuperH automatically sets the RB bit to 1.

VxWorks for Renesas SuperH sets the RB bit as follows:

RB=0
system initialization (romlInit - kernelInit)
RB=0
multi tasking (after usrRoot)
RB=1
TLB mis-hit exception handling
RB=1
common processes for exception/interrupt handling
RB=0

individual exception/interrupt handling

Generally, all VxWorks tasks run with BANKO registers. There are some common
processes for exception and interrupt handling which run with BANK1, but those
processes switch back to BANKO before dispatching to an individual handler. The
switching is done by applying a new SR value from intPrioTable[] in the BSP. One
exception is translation lookaside buffer (TLB) mis-hit exception handling which

runs with BANKT1 to the end.

210

7 Renesas SuperH
7.4 Architecture Considerations

7.4.5 Exceptions and Interrupts

Table 7-3

The SuperH architecture (SH-4) defines four branch addresses for exceptional
events, as shown in Table 7-3.

SuperH Branch Addresses

Event Branch Address Cause Register
Reset, Power-on 0xa0000000 EXPEVT
Exception, Trap VBR + 0x100 EXPEVT/TRA
TLB mis-hit (MMU) VBR + 0x400 EXPEVT
Interrupt VBR + 0x600 INTEVT

To support the standard vectored interrupt handling scheme on SuperH, VxWorks
defines a virtual vector table which starts at (VBR + 0x800). This vector table size
is (4-bytes x 256-entries), and the entry offset is defined as follows:

exception/interrupt
(EXPEVT/INTEVT register value) / 8

trap
(TRA register value)

Specify the entry offset as the first argument (vector) of intConnect (vector, routine,
parameter).

VxWorks for Renesas SuperH uses the trapa instruction to implement system calls,
software breakpoints, and to detect an integer zero-divide.

Multiple Interrupts

The status register of SuperH has 4 bits of interrupt masking field; thus it supports

15-levels of prioritized interrupts. Control of masking field is fully left to software.

To support the prioritized interrupt handling system on SuperH, VxWorks defines
a table of status register values in the BSP. This table is called intPrioTable]], and
is located in sysALib.

When a SuperH CPU accepts an interrupt request, it first blocks any succeeding
exception or interrupt by setting the block bit (BL) to 1 in the status register (SR),
then the processor branches to (VBR + 0x600).

211

Interrupt Stack

VxWorks
Architecture Supplement, 6.6

The common interrupt dispatch code is loaded at (VBR + 0x600), and the processor
instructs the following: (1) save critical registers on interrupt stack, (2) update SR
with a value in intPrioTable[], (3) branch to an individual interrupt handler. Here,
step (2) typically unblocks higher-priority interrupts, thus multiple interrupts can
be processed. Also, the SR is not updated if the corresponding intPrioTablel]
entry is null.

As a specification of the on-chip interrupt controller (INTC), the processor may
branch to (VBR + 0x600) with a NULL value in the INTEVT register. This could
happen if the interrupt status or control flags of the on-chip peripheral modules are
modified while the BL bit of the SR is 0. To safely ignore this spurious interrupt,
the common interrupt dispatch code checks the INTEVT register value and
immediately calls the RTE (return from exception) instruction if the value is NULL.

For VxWorks on all Renesas SuperH architectures, an interrupt stack allows all
interrupt processing to be performed on a separate stack. The interrupt stack is
implemented in software because the SuperH family does not support such a stack
in hardware. The interrupt stack size is defined by the ISR_STACK_SIZE macro in
the configAlLh file. The default size of the interrupt stack is 1000 bytes. The
interrupt stack is initialized by calling kernelInit().

For SuperH, the common interrupt dispatch code pushes some critical registers on
the interrupt stack while the BL bit of SR is 1. As a specification, SuperH
immediately reboots if any exception occurs while the BL bit is 1. Note that if the
MMU is enabled, any access to logical address space may lead to a TLB mis-hit
exception. In other words, no logical address space access is allowed while the BL
bit is 1 if the MMU is enabled. Therefore, the interrupt stack must be located on a
fixed physical address space (P1/P2) if the MMU is enabled. Interrupt stack
underflow /overflow guard pages are not available on SuperH architectures due to
the location of the stack in the P1/P2 area (which is MMU unmappable). The
SuperH version of kernellnit() internally calls intVecBaseGet() and uses the
upper three bits of its returned address as the base address of the interrupt stack,
so that you can specify your choice of P1/P2 to intVecBaseSet() in usrInit(),
typically through a redefined macro VEC_BASE_ADRS in your BSP.

7.4.6 Memory Management

The current version of the MMU library for SuperH processors supports a default
page size of 4 KB. 64 KB and 1 MB pages are supported for static MMU and

212

7 Renesas SuperH
7.4 Architecture Considerations

dynamic page size optimization entries (for more information, see the reference

entries for vmPageLock(), vimPageSizeOptimize(), and 7.4.13 SH7751 On-Chip
PCI Window Mapping, p.226). The default page size VM_PAGE_SIZE is defined as
0x1000 (4 KB) in installDir/vxworks-6.x/target/config/all/configAllLh.

By default, VxWorks and user applications are linked to the PO area (2 GB logical
address space, copyback/write-through cacheable). The ROM initialization code is
also linked to PO, but the code is executed from the P2 area (0.5 GB fixed physical
address space, non-cacheable) at the beginning of the ROM initialization routine,
romlInit(), when the board is powered on or reset.

SH-4 processors include a memory management unit (MMU) commonly referred
to as the translation lookaside buffer (TLB). The TLB holds the most recently used
virtual-to-physical address mappings in the form of TLB entries. The SH-4 TLB is
two-layered; instruction-TLB (ITLB) for program text, and unified-TLB (UTLB) for
program text/data/bss. The ITLB has four full-associative entries, and the UTLB
has 64 full-associative entries. In a sense, the ITLB caches some UTLB entries and
the UTLB caches some page table entries on the physical memory. If an SH-4
processor accesses a virtual address that is not mapped on the UTLB, a TLB mis-hit
exception immediately takes place and control is transferred to the VxWorks TLB
mis-hit exception handler placed at the pre-determined vector address (VBR +
0x400). The TLB mis-hit handler walks through the translation table on physical
memory, and loads the missing virtual-to-physical address mapping to the TLBs,
if any exist. If the handler fails to find a valid page table entry for the accessed
virtual address, a TLB Miss/Invalid exception event is reported in the VxWorks
shell.

SH-4 Memory Map

The SH-4 memory map is depicted in Figure 7-1. Note that the SH-4 memory map
is arranged into segments that have pre-determined modes of operation. Unlike
some processors that can set specific virtual addresses to any mode of operation,
SH-4 pre-assigns certain ranges of virtual addresses as accessible in privileged
mode or user mode.

In Figure 7-1, there are five memory segments: P0/UO, P1, P2, P3, and P4. The
lowest 2 GB segment is accessible in either privileged or user mode; it is called PO
in privileged mode, and U0 in user mode. The other segments are accessible only
in privileged mode—that is, in the VxWorks supervisor mode.

The five SH-4 memory segments are also pre-designated as either TLB-mapped or
hard-mapped, as shown in Figure 7-1. Ranges of addresses designated as
TLB-mapped, P3 and P0/UQ, use the TLB to determine the physical mappings for

213

Figure 7-1

VxWorks
Architecture Supplement, 6.6

SH-4 Processor Memory Map

FFFFFFFF FFFFFFFF
P4 —— Hard-Mapped, Uncached —p» Rg;;i?izs
E0000000 E0000000
P3 —— TLB-Mapped, Cacheable —
C0000000
P2 —— Hard-Mapped, Uncached —
A0000000
P1 —— Hard-Mapped, Cached —
80000000
PO/UO 20000000
2GB —— TLB-Mapped, Cacheable —'pm| 512MB
00000000 00000000
Virtual Memory Physical Memory

the virtual addresses. Ranges of addresses specified as hard-mapped, P1 and P2,
do not use the TLB. Instead, SH-4 directly maps the virtual address starting at
physical address 0x0. Likewise, P4 is directly mapped to various on-chip resources.

To summarize each of the segments:

P0/U0

P1

214

When the most significant bit of the virtual address is 0, the 2 GB user space
labeled PO/UQ is the virtual address space selected. All references to P0/UQ are
mapped through the TLB while the MMU is enabled. This memory segment
can be marked either as cacheable or uncacheable on a page-by-page basis.

When the most significant three bits of the virtual address are 100, the 512 MB
kernel space labeled P1 is the virtual address space selected. References to P1
are not mapped through the TLB; the physical address selected is defined by
subtracting 0x80000000 from the virtual address. The cache mode for these
accesses is determined by the copyback (CB) bit of the cache control register
(CCR) mapped in P4, and the CB bit is set if the CACHE_COPYBACK_P1 option
is specified in the USER_D_CACHE_MODE parameter of the BSP’s config.h
file.

7 Renesas SuperH
7.4 Architecture Considerations

P2
When the most significant three bits of the virtual address are 101, the 512 MB
kernel space labeled P2 is the virtual address space selected. References to P2
are not mapped through the TLB; the physical address selected is defined by
subtracting 0xA0000000 from the virtual address. Caches are always disabled
for accesses to these addresses; physical memory or memory-mapped I/O
device registers are accessed directly.

P3
When the most significant three bits of the virtual address are 110, the 512 MB
kernel space labeled P3 is the virtual address space selected. All references to
P3 are mapped through the TLB while the MMU is enabled. This memory
segment can be marked either as cacheable or uncacheable on a page-by-page
basis.

P4
When the most significant three bits of the virtual address are 111, the 512 MB
kernel space labeled P4 is the virtual address space selected. References to P4
are not mapped through the TLB; this space is mapped to various on-chip
resources. Caches are always disabled for accesses to these addresses; on-chip
registers or PCI bus windows are accessed directly.

While the memory segments P1 and P2 are both hard-mapped kernel segments,
both segments map to the same physical memory in the lowest 512 MB of memory.
As a result, to virtually reference a variable or code in P1 is to virtually reference
the same in P2. However, because P2 is not cacheable, virtually referencing a
variable or code in P2 results in an uncached reference. Note that the SH-4 MMU
manages a 29-bit physical address. In other words, the SH-4 MMU translates a
32-bit virtual address into a 29-bit physical address. Also note that virtual
addresses referenced in hard-mapped space do not cause a TLB mis-hit exception
at any time. These points are important to the implementation of the software side
of the MMU.

SH-4A Memory Map

The SH-4A 32-bit extended mode processor memory map is depicted in Figure 7-2.
Note that the SH-4A memory map is arranged in segments that have
pre-determined modes of operation. Unlike some processors that can set specific
virtual addresses to any mode of operation, SH-4A pre-assigns certain ranges of
virtual addresses as accessible in privileged mode or user mode.

215

Figure 7-2

VxWorks
Architecture Supplement, 6.6

SH-4A Processor Memory Map

FFFFFFFF FFFFFFFF
On-Chip
P4 —— Hard-Mapped, Uncached —p» Resources
E0000000 E0000000
P3 —— TLB-Mapped, Cacheable
C0000000
P1/P2 —— PMB-Mapped, Cacheable —
80000000 > 4GB
Po/UO —— TLB-Mapped, Cacheable —
2GB
00000000 00000000
Virtual Memory Physical Memory

In Figure 7-2, there are four memory segments: P0/UQ, P1/P2, P3, and P4. The
lowest 2 GB segment is accessible in either privileged or user mode; it is called PO
in privileged mode, and U0 in user mode. The other segments are accessible only
in privileged mode—that is, in the VxWorks supervisor mode.

The four SH-4A memory segments are also pre-designated as either TLB-mapped,
PMB-mapped, or hard-mapped (as shown in Figure 7-2). Ranges of addresses
designated as TLB-mapped—P3 and P0/U(0—use the TLB to determine the
physical mappings for the virtual addresses. Ranges of addresses specified as
PMB-mapped—P1 and P2—use the Privileged Space Mapping Buffer (PMB) to
translate the memory mapping.

To summarize each of the segments:

P0o/U0
When the most significant bit of the virtual address is 0, the 2 GB user space
labeled PO/UQ is the virtual address space selected. All references to P0/UQ are
mapped through the TLB while the MMU is enabled. This memory segment
can be marked as either cacheable or uncacheable on a page-by-page basis.

216

7 Renesas SuperH
7.4 Architecture Considerations

P1/P2
When the most significant two bits of the virtual address are 10, the 1 GB
kernel space labeled P1/P2 is the virtual address space selected. References to
P1/P2 are mapped through PMB. This memory segment can be marked as
either cacheable or uncacheable on a buffer-by-buffer basis. Your BSP must
ensure that each accessed P1 or P2 address has a corresponding PMB entry
before the access occurs. When an access is made to an address in the P1 or P2
area that is not recorded in the PMB, the hardware is reset by the TLB.

P3
When the most significant three bits of the virtual address are 110, the 512 MB
kernel space labeled P3 is the virtual address space selected. All references to
P3 are mapped through the TLB while the MMU is enabled. This memory
segment can be marked as either cacheable or uncacheable on a page-by-page
basis.

P4
When the most significant three bits of the virtual address are 111, the 512 MB
kernel space labeled P4 is the virtual address space selected. References to P4
are not mapped through the TLB; this space is mapped to various on-chip
resources. Caches are always disabled for accesses to these addresses; on-chip
registers or PCI bus windows are accessed directly.

The 32-bit physical address extended mode changes the P1 and P2 region address
space—which is used by VxWorks to execute routine or access data that must be
cache and/or MMU free—using the PMB. In VxWorks 6.3 or later, the global
variables in Global Variables for Memory Management, p.217, are used to configure
the base addresses of the cache or MMU free space.

NOTE: Even in 32-bit mode, the terminology P1 and P2 is used to refer to the
address spaces that are cacheable and unmappable (P1) and uncacheable and
unmappable (P2).

The BSP updates the value accordingly before the intVecBaseSet() or
cacheLiblInit() routines are called.

Global Variables for Memory Management

The following tables list the global variables available for memory management.

217

VxWorks
Architecture Supplement, 6.6

Table 7-4 SH-4 29-Bit Compatible Mode

Name Macro Address

vxShPORamBase SH_P0_DATA_BASE 0x00000000
vxShP1TextBase SH_P1_TEXT_BASE 0x80000000
vxShP1DataBase SH_P1_DATA_BASE 0x80000000
vxShP2TextBase SH_P2_TEXT_BASE 0xA0000000
vxShP2DataBase SH_P2_DATA_BASE 0xA0000000

Table 7-5 SH-4A 32-Bit Extended Mode, ROM-Resident

Name Macro Address

vxShPORamBase SH_P0_DATA_BASE 0x40000000
vxShP1TextBase SH_P1_TEXT_BASE 0x80000000
vxShP1DataBase SH_P1_DATA_BASE 0x90000000
vxShP2TextBase SH_P2_TEXT_BASE 0xA0000000
vxShP2DataBase SH_P2_DATA_BASE 0xB0000000

Table 7-6 SH-4A 32-Bit Extended Mode, Non-ROM Resident

Name Macro Address

vxShPORamBase SH_P0_DATA_BASE 0x40000000
vxShP1TextBase SH_P1_TEXT_BASE 0x90000000
vxShP1DataBase SH_P1_DATA_BASE 0x90000000
vxShP2TextBase SH_P2_TEXT_BASE 0xB0000000
vxShP2DataBase SH_P2_DATA_BASE 0xB0000000

With this method, the maximum DRAM size supported as a kernel heap is 256 MB,
assuming the start address is 0x40000000. Because the memory space exceeds
0x50000000, it cannot be converted to the P1 and P2 region. Thus, such space is

218

7 Renesas SuperH
7.4 Architecture Considerations

available only for static memory allocation and is available for use with
user-specific applications and drivers.

SH-4-Specific MMU Attributes

SH-4 processors support certain special MMU attributes (MMU_ATTR_SPL_0
through MMU_ATTR_SPL_3) which allow you to set the PTEA (Page Table Entry
Assistant) register during an MMU TLB mishandling and then load the value to
the UTLB data array 2. The special attributes can be used to set the PTEA register
as follows:

MMU_ATTR_SPL_0 Enables setting of the SA[0] bit on the PTEA register
MMU_ATTR_SPL_1 Enables setting of the SA[1] bit on the PTEA register
MMU_ATTR_SPL_2 Enables setting of the SA[2] bit on the PTEA register

MMU_ATTR_SPL_3 Enables setting of the TC bit on the PTEA register

NOTE: The above register settings are required for PCMCIA use. However, due to
the PTEA register value read /write operation during the TLB mishandle,
exception handling becomes much slower when the special attributes are
implemented. For this reason, Wind River does not recommend using the special
attributes unless they are required for PCMCIA support.

SH-4A-Specific MMU Attributes
SH-4A processors support a certain special MMU attribute, MMU_ATTR_SPL 4,
which allows you to set the UB (Buffered Write) bit in the PTEL register during an
MMU TLB mishandling and then load the value to the UTLB data array. The

special attribute can be used to set the PTEL register as follows:

MMU_ATTR_SPL_4 Enables setting of the UB bit on the PTEL register.

219

VxWorks
Architecture Supplement, 6.6

MMU_ATTR_NO_BLOCK MMU Attribute

The MMU_ATTR_NO_BLOCK attribute (assigned to MMU_ATTR_SPL_7) allows
you to change the page entry in interrupt context on both SH-4 and SH-4A
processors:

MMU_ATTR_NO_BLOCK Enables the page entry to be changed in
interrupt-context. This MMU attribute is assigned to
MMU_ATTR_SPL_7 on both SH-4 and SH-4A processors.

MMU_ATTR_SPL_7 MMU_ATTR_NO_BLOCK

AIM Model for MMU

The Architecture-Independent Model (AIM) for MMU provides an abstraction
layer to interface with the underlying architecture-dependent MMU code. This
allows uniform access to the hardware-dictated MMU model that is typically CPU
core specific. AIM for MMU is for VxWorks internal use. However, the new model
adds support for two new routines, vinPageLock() and vinPageSizeOptimize()
to the VxWorks vimLib API. For more information on this routine, see the reference
entries for these routines.

vmPageLock() requires the use of static MMU entries. To ensure minimal resource
usage, this routine requires alignment of the lock regions. This routine provides a
mechanism for reducing page misses and should boost performance when used
correctly.

The vinPageSizeOptimize() routine allows default sized 4 KB MMU pages to be
coalesced into 64 KB sections or 1 MB sections for contiguous memory blocks
having the same attributes. De-optimization is performed automatically when
necessary. For example, if the attributes are changed for part of a memory block
that is mapped to a 1 MB MMU page, it is broken up into 4 KB pages and the new
attributes are applied to the requested pages only.

220

7 Renesas SuperH
7.4 Architecture Considerations

The configuration components for AIM for MMU are as follows:

#define INCLUDE_AIM MMU_CONFIG

#ifdef INCLUDE_AIM MMU_CONFIG

#define INCLUDE_AIM MMU_MEM_POOL_CONFIG /* Configure the memory pool
allocation for page tables */

#define INCLUDE_AIM_MMU_PT PROTECTION /* Page Table protection */

#endif /* INCLUDE_AIM MMU_CONFIG */

#ifdef INCLUDE_AIM MMU_MEM_ POOL_CONFIG

#define AIM MMU_INIT_PT_NUM 0x40 /* Number of pages pre allocated for
page table */
#define AIM _MMU_INIT_PT_ INCR 0x20 /* Number of pages increment

allocated for page table if
previous allocation is
exhausted */

#define AIM MMU_INIT_RT_NUM 0x10 /* Number of pages pre-allocated for
region table */
#define AIM _MMU_INIT_RT_ INCR 0x10 /* Number of pages increment

allocated for region table if
previous allocation is
exhausted */

#endif /* INCLUDE_AIM MMU_MEM_POOL_CONFIG */

#define INCLUDE_MMU_OPTIMIZE

#ifdef INCLUDE MMU_OPTIMIZE

#define INCLUDE_LOCK_TEXT_ SECTION /* Calls vmPageLock with kernel text
start address and and size of text
section */

#define INCLUDE_PAGE_SIZE_OPTIMIZATION /* Calls vmPageSizeOptimize to
optimize all of mapped virtual
kernel address space */

#endif /* INCLUDE_MMU_OPTIMIZE */

If software MMU simulation is enabled (that is, the INCLUDE_MMU_BASIC

component parameter SW_MMU_ENABLE is TRUE), page lock and size

optimization are not available. In this case, remove the

INCLUDE_PAGE_SIZE_OPTIMIZATION component from your project or resources

will be consumed unnecessarily.

Page locking of a text section will fail if the alignment and size of the text section
is such that the number of resources available is not sufficient to satisfy the
required number of MMU resources. If the BSP uses too many resources when the
“Lock program text into TLBs” (INCLUDE_LOCK_TEXT_SECTION) option is
defined, it may not be possible to enable this feature. SH-4 reference BSPs do not
enable the INCLUDE_LOCK_TEXT_SECTION option by default.

The maximum number of MMU entries that can be used for static memory pages
is seventy-five percent of 64, or the CPU-supported UTLB entry number, which is
48.

221

VxWorks
Architecture Supplement, 6.6

7.4.7 Maximum Number of RTPs

The maximum number of real-time processes available in a given system is limited
for the SH-4 processor family due to the implementation of virtual context support.
The maximum number of RTPs available in a system is 255.

NOTE: The SH-4 ASID (address space identification) provides 256 virtual contexts.
However, one virtual context is always assigned to the system page.

7.4.8 Null Pointer Dereference Detection

In order to implement null pointer dereference detection for the SH-4 processor
family, you must leave the virtual address zero unmapped. Alternatively, you can
add an entry start from 0x0 using the MMU_ATTR_VALID_NOT (or
VM_STATE_VALID_NOT) parameter. MMU_ATTR_VALID_NOT is configured by
sysPhysMemDesc|] which is declared in the sysLib.c file in your BSP.

NOTE: The VM_STATE_xxx macros (listed above) are used in VxWorks 5.5 releases
and are still supported for this release. However, these macros may be removed in
the future. Wind River recommends that you use the MMU_ATTR_xxx macros for
new development and that you update any existing BSP to use the new macros
whenever possible. For more information on the VM_STATE_xxx macros, see the
VxWorks Migration Guide.

7.4.9 Caches

The SuperH cache implementation differs from processor to processor; see your
processor hardware manual for details. The SuperH target libraries include
support for the following processor types, as shown in Table 7-7. The SuperH
cache libraries for this release do not use the processor abstraction layer method
(referred to as cache AIM) used for certain other processors as of VxWorks 6.0.
Instead, the libraries are directly linked to the upper layer of the cache library as in
earlier VxWorks releases.

222

7 Renesas SuperH
7.4 Architecture Considerations

Table 7-7 Cache Libraries and Supported Processors

Cache Library Supported Processors
cacheSh7750Lib SH7750, SH7750R, SH7751, SH7751R, SH7760, SH7770,
SH7780, SH7785

The BSP must assign sysCacheLiblInit to the cache library initialization routine.
For example:

FUNCPTR sysCacheLibInit = (FUNCPTR) cacheSh7750LibInit;

7.4.10 Floating-Point Support

SH-4 processors have an on-chip floating-point unit. The mathHardInit() routine
does the necessary initialization for this library, and is automatically called from
usrRoot() in usrConfig.c if the INCLUDE_HW_FP option is defined. Tasks that
perform floating-point arithmetic must be spawned with the VX_FP_TASK option.

Floating-point exceptions are disabled by default. This can be changed temporarily
on a per-task basis by setting the FPSCR register (using fpscrSet()). Note that the
compiler automatically generates code to change the FPSCR value in order to
switch from double- to single-precision arithmetic and back. The two values are
stored in two 32-bit globals pointed to by __fpscr_values.

The FPSCR register can also be set globally with the help of the global
fpscrInitValue variable (declare this variable as extern UINT32). This value must
be setearly at startup. It is used to initialize __ fpscr_values and each floating-point
task’s initial FPSCR value.

The default fpscrInitValue variable sets the rounding mode to the Round to Nearest
policy and enables denormalized numbers. The SH7750 processor requires
software support for handling denormalized numbers in the form of an exception
handler. This handler is provided with the VxWorks target library. If your
application does not require support for denormalized numbers you may change
the FPSCR setting accordingly. Disabling denormalized numbers causes the FPU
to treat them as zero. For more information, see the SH7750 Hardware Manual.

The floating-point context includes the extended floating-point registers. To save
and restore the extended floating-point registers at context switches, tasks
performing floating-point instructions should be spawned with the VX_FP_TASK
option. Interrupt handlers using floating-point operations must explicitly call

223

VxWorks
Architecture Supplement, 6.6

fppSave() and fppRestore(). These two functions are also used to save and
restore the extended floating-point registers.

There are no special compiler flags required for enabling hardware or software
floating-point. Provided you use the appropriate target CPU option, both the GNU
compiler and the Wind River Compiler default to hardware floating-point for SH-4
processors. For more information, see 7.3.7 SuperH-Specific Tool Options, p.206.

7.4.11 Power Management

SuperH processors provide a simple power management mechanism that allows
them to enter a low power mode during idle periods. To enable processor power
management, the BSP must configure the vxPowerModeRegs|] structure. Power
management registers differ considerably from processor to processor, even within
the same processor family. The vxPowerModeRegs| | structure allows the
architecture support library to abstract these differences.

For SuperH processors that have two power management (standby) control
registers, initialize the structure in sysHwlInit() as follows:

vxPowerModeRegs .pSTBCR1 = STBCR;
vxPowerModeRegs .pSTBCR2 = STBCR2;
vxPowerModeRegs .pSTBCR3 = NULL;

For SuperH processors that have three power management (standby) control
registers, initialize the structure in sysHwlInit() as follows:

vxPowerModeRegs .pSTBCR1 = STBCR;
vxPowerModeRegs .pSTBCR2 = STBCR2;
vxPowerModeRegs .pSTBCR3 = STBCR3;

The vxPowerModeSet() routine can be used to set the power mode. The
supported parameter values for this routine are:

VX_POWER_MODE_DISABLE disable power management
VX_POWER_MODE_SLEEP sleep mode
VX_POWER_MODE_DEEP_SLEEP deep sleep mode
VX_POWER_MODE_USER user-specified mode

The user-specified mode (VX_POWER_MODE_USER) allows you to set the standby
registers to user-specified values (up to three registers). For example:

vxPowerModeSet (VX_POWER _MODE_USER | sbrl<<8 | sbr2<<16 | sbr3<<24);

The DEFAULT_POWER_MGT_MODE configuration parameter can be used to set
the boot-up power management mode.

224

7 Renesas SuperH
7.4 Architecture Considerations

NOTE: Before working with power management, always consult the SuperH
processor hardware manual for your chip for information on supported power
modes and restrictions and requirements for RAM refresh, timers, and other
on-chip devices. Note that some power modes require the SDRAM to be switched
to self-refresh mode. Because SDRAM cannot be read while in self-refresh mode,
the kernel cannot be run from SDRAM.

NOTE: This power management implementation does not support the SH-4A
processor family.

7.4.12 Signal Support

Table 7-8

VxWorks provides software signal support for all architectures. However, the
manner in which SH-4 processors map their own exceptions to software signals is
architecture-dependent. Table 7-8 shows this mapping for SH-4 processors.

Exception-to-Software-Signal Mapping for SH-4 Processors

SH-4 Exception Name Software Signal
INUM_TLB_READ_MISS SIGSEGV
INUM_TLB_WRITE_MISS SIGSEGV
INUM_TLB_WRITE_INITIAL_MISS SIGSEGV
INUM_TLB_READ_PROTECTED SIGSEGV
INUM_TLB_WRITE_PROTECTED SIGSEGV
INUM_READ_ADDRESS_ERROR SIGSEGV
INUM_WRITE_ADDRESS_ERROR SIGSEGV
INUM_FPU_EXCEPTION SIGFPE
INUM_ILLEGAL_INST_GENERAL SIGILL
INUM_ILLEGAL_INST_SLOT SIGILL
INUM_TRAP_1 SIGFPE

225

VxWorks
Architecture Supplement, 6.6

7.4.13 SH7751 On-Chip PCI Window Mapping

Some SH-4 processors (SH7751 and SH7751R) have an on-chip PCI bus controller,
and the PCI windows are memory-mapped to the highest 64 MB address range in
the P4 segment (FC000000 - FFFFFFFF). This type of memory mapping is not
manageable in the page-oriented manner that is used by the VxWorks page
manager library, pgMgrLib. This could be a problem for PCI devices that require
memory-mapped PCI space (for example, a frame buffer on a graphics card). As
mentioned previously, the SH-4 MMU handles a 29-bit physical address. This
29-bit address space is designated as external memory space and is divided into
eight 64 MB areas (Area0 - Area7). The first seven areas (Area0 - Area6) are used
to connect various types of memory. The last segment (Area?7) is reserved.
However, if the MMU is enabled, Area7 becomes a shadow of the highest 64 MB
address range in the P4 segment. Therefore, a PCI frame buffer is TLB-mappable
from Area?7. Figure 7-3 illustrates this memory mapping.

7.4.14 VxWorks Virtual Memory Mapping

The virtual to physical mapping for VxWorks is shown in Figure 7-4. The segments
P1 and P2 are hard-mapped to the lowest 512 MB of memory in SH-4 29-bit mode,
and PBM-mapped to 4 GB of memory in SH-4A 32-bit physical address extended
mode. A small portion of PO, the VxWorks kernel, is also TLB-mapped here. The
remainder is mapped to physical memory through the TLB.

Two address spaces, kernel and RTP, are also shown in Figure 7-4. This space is the
standard VxWorks address space used by the SH-4 processor to differentiate
between kernel code and RTP code. Note that the kernel domain is located in PO
(or P3, depending on your BSP configuration), while RTPs are located in U0. Also
note that RTP address space is overlapped at virtual address 60000000. One virtual
page, the system page, is also shown in Figure 7-4. Shared data is mapped to the
beginning of the kernel’s data segment, and is used to export specific global
variables to the RTPs.

226

Figure 7-3 SH7751 On-Chip PCl Window Memory Mapping

FFFFFFFF

FC000000

E0000000

00000000

PCI
Window

P4

Virtual Memory

Hard-Mapped

7 Renesas SuperH
7.4 Architecture Considerations

—

FFFFFFFF
PCI
Window
_____ FC000000
E0000000
20000000
Area 7
1C000000
Area 6
18000000
Area 5
14000000
Area 4
10000000
Area 3
0C000000
Area 2
08000000
Area 1
04000000
Area 0
00000000

Physical Memory

227

Figure 7-4

VxWorks
Architecture Supplement, 6.6

SH-4 Virtual-to-Physical Memory Map

FFFFFFFF Pa FFFFFFFF
On-Chip
Hard-Mapped > Resources
E0000000 E0000000
P3
(Kernel
Region) ———— TLB-Mapped —
C0000000
P2
— Hard-Mapped —
A0000000
P1
—— Hard-Mapped —;
80000000
PO/UO
Shared Data | —— TLB-Mapped —
60000000 RTP ———— TLB-Mapped —
————— 20000000
- (512 MB)
00000000 Kernel Region| ——— TLB-Mapped — Kernel Region| 00000000
Virtual Memory Physical Memory

Figure 7-5 shows the SH-4A physical address extended mode, which allows a full
4 GB of physical memory to be mapped.

The TLB-mapping model allows you to map memory in 4 KB pages. The
translation table is organized into three levels: the top level consists of an array of
256 level 0 (LO) context table descriptors; in turn, each of the level 0 descriptors can
point to an array of 1024 level 1 (L1) table descriptors; and each of the level 1
descriptors can point to an array of 1024 level 2 (L2) table descriptors. Each L2 table
entry is actually a page table entry value to be applied to the PTEL register by the
TLB mis-hit exception handler; each L2 table entry describes memory attributes in
a4 KB page. Each L2 table describes a 4 MB (1024 entries x 4 KB) virtual space, and
each L1 table describes a 4 GB (1024 entries x 4 MB) virtual space. This 4 GB virtual
space is called a virtual context, and is selected by an 8-bit address space ID (ASID)
in the PTEH register. Therefore, the LO context table has 256 entries which are
indexed by ASID.

228

7 Renesas SuperH
7.4 Architecture Considerations

Figure 7-5 SH-4A Virtual-to-Physical Memory Map

FFFFFFFF FFFFFFFF
X On-Chip
P4 Hard-Mapped, Uncached — Resources
P3 — TLB-Mapped, Cacheable -
P1/P2 — PMB-Mapped, Cacheable -
- 4GB
| __ _Pouo |
| Shared Data |
T n?p] TLB-Mapped, Cacheable -
Kernel Region Kernel Region
00000000 00000000
Virtual Memory Physical Memory

The PMB-mapping model allows you configure P1/P2 regions in BSP through
Privileged Space Mapping Buffer.

VxWorks runs in one of two modes, user or supervisor. Furthermore, addresses
can be specified as read-only, write-only, or read /write. Memory attributes
determine the addresses’ accessibility: that is, whether the address is accessible by
the user or supervisor, and whether it is in read / write or read-only mode. Table 7-9
summarizes the valid MMU attribute combinations for the SH-4 processor family.
Note that the P3 segment can only be assigned supervisor access, and that the
P0/UO segment can be assigned supervisor or user access. Also note that in the
P0/U0 segment, user mode cannot have read /write attributes enabled unless they
are enabled in supervisor mode as well. This means that an address in P0/UO
cannot have a read and write attribute in user mode with a read-only attribute in
supervisor mode.

229

VxWorks

Architecture Supplement, 6.6

Table 7-9 Valid MMU Attribute Combinations for SH-4 Processors

Supervisor Mode User Mode

Segment Virtual Address Range Read Write Read Write
P4 E0000000 - FFFFFFFF X X n/a n/a
P3 C0000000 - DFFFFFFF X n/a n/a

X n/a n/a
P2 and P1 80000000 - BFFFFFFF X n/a n/a
PO/U0 00000000 - 7FFFFFFF X

X X

X

X X X

7.4.15 Memory Layout

The memory layout of the Renesas SuperH is shown in Figure 7-6. The figure
contains the following labels:

Part of Kernel Text and Data

Part of Kernel code which needs to be located in P1 space.

Exception Handling Stub

Stub to handle exception vectoring.

TLB Mis-hit Handler

Handler for translation lookaside buffer (TLB) mis-hit.

Interrupt Handling Stub

Stub to handle interrupt priority control and vectoring.

Interrupt Vector Table

Table of exception/interrupt vectors.

Interrupt Priority Table

Copied image of intPrioTable[].

SM Anchor

230

Anchor for the shared memory network.

7 Renesas SuperH
7.4 Architecture Considerations

Boot Line
ASCII string of boot parameters.

Exception Message
ASCII string of the fatal exception message.

Initial Stack
Initial stack for usrInit(), until usrRoot() is allocated a stack.

System Image
VxWorks itself (four sections: text, rodata, data, and bss). The entry point for
VxWorks (sysInit()) is at the start of this region.

Interrupt Stack
Stack for the interrupt handlers. Size is defined in configAll.h. Location
depends on system image size.

System Memory Pool
Heap for the kernel.

NOTE: Some SuperH BSPs set LOCAL_MEM_SIZE to a value that is smaller than
the actual physical memory. This is done to reduce boot-up time for the default
boot ROM shipped with the BSP or because of variations in physical memory size
on different hardware revisions. If this is the case for your BSP, you can increase
LOCAL_MEM._SIZE up to the physical memory size. This will result in an increase
in the system memory pool size. (If your BSP supports LOCAL_MEM_AUTOSIZE,
the physical memory size is calculated by the BSP automatically.) For more
information, see your BSP config.h or target.ref file.

All addresses shown in Figure 7-6 are relative to the start of memory for a
particular target board. The start of memory (corresponding to +0 in the
memory-layout diagram) is defined as LOCAL_MEM_LOCAL_ADRS in config.h
for each target.

231

Figure 7-6

VxWorks
Architecture Supplement, 6.6

VxWorks Memory Layout for the SH-4 System Module (PO or P3)

ED&R and User Reserved Memory

Initially Unmapped RAM, Pages for RTPs,
SLs and SDs from this region

Heap

System Memory Pool

System Image

Initial Stack

Exception Message

Boot Line

SM Anchor

Interrupt Priority Table (in P1)
(256 x 4 = 1024 bytes)

Interrupt Vector Table (in P1)
(256 x 4 = 1024 bytes)

Interrupt Handling Stub (in P1)

TLB Mis-hit Handler (in P1)

Exception Handling Stub (in P1)

Part of Kernel Text and Data (in P1)

232

sysPhysMemTop()
sysMemTop()

Kernel Mem Top

Kernel Heap Space
Free Mem Start v
VxIntStackBase A

VxIntStackEnd
End Kernel Code

etext

Kernel Region

+2000 RAM_LOW_ADRS

+1800
+1700
+1600

+1000 [=Available

KEY

+c00 [—— =Reserved

+800
+600
+400
+100
+0 LOCAL_MEM_LOCAL_ADRS 7‘

7 Renesas SuperH
7.5 Migrating Your BSP

7.5 Migrating Your BSP

In order to convert a VxWorks BSP from an earlier release to VxWorks 6.3, you
must make certain architecture-independent changes. This includes making
changes to custom BSPs designed to work with a VxWorks 5.5 release and not
supported or distributed by Wind River.

This section includes changes and usage caveats specifically related to migrating
SuperH BSPs to VxWorks 6.3. For more information on migrating BSPs to
VxWorks 6.3, see the VxWorks Migration Guide.

7.5.1 Memory Protection

The SH-4 reference BSPs provided by Wind River disable the MMU by default. If
you require memory protection for your board, you must enable the MMU by
including the INCLUDE_MMU_BASIC component in the BSP config.h file.

7.5.2 RAM_HIGH_ADRS

If you are using a BSP from an earlier VxWorks 6.x release and your downloaded
VxWorks image requires more than 4 MB of space, you must adjust the value of
RAM_HIGH_ADRS. Most SH-4 reference BSPs available prior to this release
configure RAM_HIGH_ADRS as LOCAL_MEM_LOCAL_ADRS + 4 MB. When a
VxWorks image that exceeds 4 MB is downloaded to a target with this
configuration, the stack used by the boot ROM image can be corrupted. If your
board has 8 MB or more DRAM available for the image download, set
RAM_HIGH_ADRS to LOCAL_MEM_LOCAL_ADRS + 8 MB (or more, if you have
enough memory space). In addition, if LOCAL_MEM_SIZE is configured to 8 MB or
less, increase the value (if it is less than the maximum capable memory size on the
hardware). Increasing this value avoids unnecessary memory zero clearing and
reduces the boot up time for the default VxWorks boot ROM. For more
information, see the note in 7.4.15 Memory Layout, p.230.

233

VxWorks
Architecture Supplement, 6.6

7.6 Reference Material

Comprehensive information regarding SuperH hardware behavior and
programming is beyond the scope of this document. Renesas Technology
Corporation provides several hardware and programming manuals for the
SuperH processor on its Web site:

http://www.renesas.com/

Wind River recommends that you consult the hardware documentation for your
processor or processor family as necessary during BSP development.

234

http://www.renesas.com/

Building Applications

A.1 Introduction 235

A.2 Supporting RTP Applications 236

A.3 Defining the CPU and TOOL Make Variables 236

A.4 Make Variables to Support Additional Compiler Options 243
A.5 Additional Compiler Options and Considerations 247

A.1 Introduction

Wind River recommends that you use Workbench or the vxprj command-line
utility whenever possible to build your VxWorks image or application. Workbench
and vxprj are correctly pre-configured to build most types of projects. However,
this appendix provides architecture-specific information that you may need to
build certain types of VxWorks applications and libraries, specifically in situations
where you must invoke the make command directly.

For more information on building applications and libraries, see the Wind River
Workbench for VxWorks User’s Guide or the VxWorks Command-Line Tools User’s
Guide: Building Kernel and Application Projects.

235

VxWorks
Architecture Supplement, 6.6

A.2 Supporting RTP Applications

To build a kernel with RTP support, you need to specify the INCLUDE_RTP
component (or the config.h file must include #define INCLUDE_RTP).

You can examine the various RTP parameters using vxprj. For example:

C:\WindRiver\vxworks-6.6\target\proj\simpc_diab>vxprj parameter value | grep RTP

RTP_FD_NUM_MAX = 20

RTP_HEAP_DEFAULT OPTIONS = (MEM_ALLOC_ERROR_LOG_FLAG | MEM_ALLOC_ERROR_EDR_WARN_FL \
MEM_BLOCK_ERROR_LOG_FLAG | MEM_BLOCK_ERROR_EDR_FATAL_FLAG | MEM_BLOCK_CHECK)

RTP_HEAP_INIT SIZE = 0x10000

RTP_HOOK_TBL_SIZE = 8

RTP_KERNEL_STACK_SIZE

RTP_SIGNAL_QUEUE_SIZE

WDB_RTP_PRIORITY = 200

0x1000
32

You can also use vxprj to change the value of particular parameters, if desired:
% vxprj parameter set [<prjfile>] <parameter> [<value>]

For more details on vxprj, see the VxWorks Command-Line Tools User’s Guide.

A.3 Defining the CPU and TOOL Make Variables

There are several make variables used to control the VxWorks build system,
including the CPU and TOOL variables. The CPU variable is used to describe the
the target instruction-set architecture. The TOOL variable specifies the compiler
and toolkit used (Wind River Compiler or Wind River GNU Compiler) and can
also be used to specify the endianess or floating-point support as necessary.

These options can be specified when invoking the make command directly. For
example:

% make CPU=MIPSI2 TOOL=sfgnule

This command compiles for a 32-bit MIPS target using the GNU compiler, with
software floating-point support and little-endian byte order.

Table A-1 shows the supported values for CPU and TOOL. When referencing this
table, note the following:

» Notevery combination of target processor family, toolkit, floating-point mode,
and endianess is supported.

236

Table A-1

A Building Applications
A.3 Defining the CPU and TOOL Make Variables

»= The CPU value used by the VxWorks build system does not necessarily

correspond to the exact microprocessor model.

= The information in the table may not be up to date. For information regarding
current processor support, see your product release notes or the Online

Support Web site.

NOTE: Modules built with either gnu or diab can be linked together in any
combination, except for modules that require C++ support. Cross-linking of C++
modules is not supported in this release. For more information, see your product

migration guide.

Values for the CPU and TOOL Make Variables

Supported Processor

CPU Value Classes TOOL Value Floating Point Endian
ARMARCH4 ARM Architecture diab software little
Version 4 CPUs (running)
in ARM state) gnu software little
diabbe software big
gnube software big
ARMARCH5 ARM Architecture diab software little
Version 5 CPUs (running)
in ARM state) gnu software little
diabbe software big
gnube software big
ARMARCH6 ARM Architecture diab software little
Version 6 CPUs (running .
in ARM state) gnu software little
diabbe software big
gnube software big

237

Table A-1

VxWorks

Architecture Supplement, 6.6

Values for the CPU and TOOL Make Variables (cont'd)

Supported Processor

CPU Value Classes TOOL Value Floating Point Endian
XSCALE XScale Architecture gnu software little
CPUs (running in ARM . .
state) diab software little
gnube software big
diabbe software big
MCF5200 ColdFire V2, V3 sfdiab software big
MCF5400 ColdFire V4e sfdiab software big
diab hardware big
PENTIUM Pentium diab hardware little
gnu hardware little
PENTIUM2 Pentium Pro, Pentium II diab hardware little
gnu hardware little
PENTIUM3 Pentium III, Pentium M diab hardware little
gnu hardware little
PENTIUMA4 Pentium 4, Pentium M diab hardware little
gnu hardware little
MIPSI2 NEC Vr55xx; Broadcom sfdiab software big
BCM33xx; MIPS 4kx, 5kx,)
24kx; Toshiba TX49xy; ~ sfgnu software big
PMC-Sierra rm7xxx sfdiable software little
sfgnule software little
MIPSI3 Broadcom BCM1xxx, diab hardware big
MIPS 5kx; Toshiba)
TX49xx, PMC-Sierra gnu hardware big
rm7xxx and rm9xxx diable hardware little
gnule hardware little

238

Table A-1

A Building Applications
A.3 Defining the CPU and TOOL Make Variables

Values for the CPU and TOOL Make Variables (cont'd)

Supported Processor

CPU Value Classes TOOL Value Floating Point Endian
MIPSI32 Broadcom BCM33xx, sfdiab software big
MIPS dhor sfgnu software big
sfdiable software little
sfgnule software little
MIPSI32R2 MIPS 24kx diab hardware big
gnu hardware big
diable hardware little
gnule hardware little
MIPS 4kx, 24kx sfdiab software big
sfgnu software big
sfdiable software little
sfgnule software little
MIPSI64 MIPS 5kx diab hardware big
gnu hardware big
diable hardware little
gnule hardware little
MIPS 5kx, Raza XLR sfdiab software big
sfgnu software big
sfdiable software little
sfgnule software little
MIPSI64R2 Cavium CN3xxx sfdiab software big
sfgnu software big

239

VxWorks
Architecture Supplement, 6.6

Table A-1 Values for the CPU and TOOL Make Variables (cont'd)

Supported Processor

CPU Value Classes TOOL Value Floating Point Endian
PPC405 PowerPC 405GP, 405GPr sfdiab software big
sfgnu software big
PPC440 PowerPC 440GP sfdiab software big
sfgnu software big
PowerPC 440GX diab hardware big
gnu hardware big
PPC603 PowerPC 603, MPC824X, diab hardware big
MPC825X, MPC826X,)
MPC8349, MPC8272, ~ 8nu hardware big
MPC8280
PPC604 PowerPC 604, 604e, diab hardware big
MPC745, PowerPC 750, .
750CX, 750CXe, MPC755, 8 hardware big
MPC7400, MPC7410
PPC604 MPC7445, MPC7450, diab hardware big
(AltiVec?) MPC7455)
gnu hardware big
PPC860 MPC821, MPC823, sfdiab software big
MPC823e, MPC850,)
MPC850SAR, MPC855, sfgnu software big
MPC855T, MPC860
PPC85XX MPC8540, MPC8548, sfdiab software big
MPC8560, MPC8572,)
MPC55XX sfgnu software blg
MPC8548, MPC8572 e500v2diab double- big
precision
hardware
e500v2gnu double- big
precision
hardware

240

A Building Applications
A.3 Defining the CPU and TOOL Make Variables

Table A-1 Values for the CPU and TOOL Make Variables (cont'd)

Supported Processor

CPU Value Classes TOOL Value Floating Point Endian
PPC32 PowerPC 440EP, 970 diab hardware big
gnu hardware big
sfdiab software big
sfgnu software big
SH7750 SH-4, SH-4A gnu hardware big
(kernel .
applications gnule hardware little
only) diab hardware big
diable hardware little
SH32 SH-4, SH-4A gnu hardware big
(RTPs only))
gnule hardware little
diab hardware big
diable hardware little

a. Motorola PowerPC MPC74XX CPUs are treated as a variation of the PowerPC 604 CPU
type. AltiVec support in the MPC74XX processors is in addition to the existing
PowerPC 604 functionality. Modules that make use of AltiVec instructions must be
compiled with certain compiler-specific options, but can be linked with modules that
do not use the AltiVec compile options. See 6.3.9 AltiVec and PowerPC 970 Support,
p-151, for details.

Special Considerations for PowerPC Processors

CPU_VARIANT

On PowerPC processors, specifying CPU and TOOL is usually sufficient to build a
module using the pre-defined rules, with the following exceptions:

*= Processors that are based on the x5 version of the PowerPC 440 core (such as
PowerPC 440GX or 440EP) require support for the recoverable machine check
mechanism even if none of the mechanism’s optional capabilities are enabled.
In order to select the proper version of architecture support code, BSPs for

241

VxWorks
Architecture Supplement, 6.6

these processors must specify either CPU=PPC440 CPU_VARIANT=_x5 or
CPU=PPC32 CPU_VARIANT=_ppc440_x5.

» The MPC744X and MPC745X processors require execution of additional
synchronization operations when accessing certain hardware registers. To
select the version of the architecture support code that contains these
additional instructions, BSPs for the MPC744X and MPC745X processors must
specify CPU=PPC604 CPU_VARIANT=_745x or
CPU=PPC32 CPU_VARIANT=_ppc604_745x. This specification is not needed for
the MPC7400 or MPC7410, and must not be used for processors that do not
implement the AltiVec instruction set.

» Freescale Semiconductor, Inc. processors based on the G2_LE core, such as the
MPC827X and the MPC828X, vary from the traditional G2 core that belongs to
the PPC603 family in VxWorks. The G2_LE core provides additional BAT
registers in the MMU, includes additional SPRG registers, and incorporates
the critical interrupt class of exception. To select the proper architecture
support code, the BSP must specify either CPU=PPC603 CPU=VARIANT=_g2le
or CPU=PPC32 CPU_VARIANT=_ppc603_g2le.

» Like the G2_LE core, the e300 core also provides additional BAT registers and
the critical interrupt class of exception. The e300 core is synonymous with the
Freescale PowerQUICC Pro processor family (processors such as the
MPC834X and MPC836X belong to this family). BSPs for this family must
specify either CPU=PPC603 CPU_VARIANT=_83xx or
CPU=PPC32 CPU_VARIANT=_ppc603_83xx to select the proper architecture
support code.

» In VxWorks, Freescale Semiconductor, Inc. processors based on the e500v2
core—for example, the MPC8548—vary from the e500 cores used by the
PPC85XX family. In particular, the e500v2 core provides 36-bit physical
address support within the MMU. To select the proper architecture support
code for this core, the BSP must specify CPU=PPC85XX CPU_VARIANT=_e500v2
or CPU=PPC32 CPU_VARIANT=_ppc85XX_e500v2.

In addition, MPC55XX processors vary from MPC85XX. For MPC85XX, use
the CPU_VARIANT=_ppc85XX_e200 option. e200 is the designation for the
CPU core for MPC55XX processors. The e200 core has no supported dynamic
MMU capability and no hardware cache coherency capability.

Backward Compatibility

In order to maintain backwards compatibility with earlier VxWorks releases,
specifying the values for TOOL (gnu or diab) will continue to work as it did in

242

A Building Applications
A.4 Make Variables to Support Additional Compiler Options

prior releases. The TOOL value will be converted to sfdiab or sfgnu as necessary
based on the specified CPU value.

For example, specifying CPU=PPC440 with any TOOL option (TOOL=diab,
TOOL=sfdiab, TOOL=gnu, or TOOL=sfgnu) will build for software floating point.
(You may also specify software floating point using CPU=PPC32
CPU_VARIANT=_ppc440 TOOL=sfdiab or sfgnu.)

If you want to build for hardware floating point, use CPU=PPC32,
CPU_VARIANT=_ppc440 or _ppc440_x5 (for PowerPC 440EP), and TOOL=diab or
gnu.

A.4 Make Variables to Support Additional Compiler Options

In addition to CPU and TOOL, some architectures utilize the ADDED_C++FLAGS or
the ADDED_CFLAGS make variables to set additional compiler options. The
following sections describe how these variables are used for certain architectures.

A.4.1 Compiling Downloadable Kernel Modules

Certain architectures require special compiler options when compiling
downloadable kernel modules. These options can be passed to the compiler using
the ADDED_C++FLAGS or the ADDED_CFLAGS make variables from the
command line or by adding the appropriate flags to the CC_ARCH_SPEC macro
using Workbench. The following sections describe the requirements for the
affected architectures.

ARM and XScale

On ARM and XScale targets, the -Xcode-absolute-far flag (Wind River Compiler
(diab)) and the -mlong-calls flag (GNU compiler) may be required to compile
VxWorks downloadable kernel modules. These flags are required if the board you
are working with has more memory than can be accessed using relative branches.
The flags are not automatically passed to the build command and if the flags are
not added explicitly, the loader may issue a relocation overflow error (this happens
using both the GNU compiler and the Wind River Compiler).

243

MIPS

VxWorks
Architecture Supplement, 6.6

A macro is already defined for this purpose in the respective compiler definition
(defs) files and can be included by modifying the compiler settings in your project
or specifying the appropriate option on the command line when building your
module. For example:

% make TOOL=tool CPU=cpu ADDED_CFLAGS=$ (LONGCALL)
ADDED_C++FLAGS=$ (LONGCALL)

The MIPS Application Binary Interface (ABI) normally uses the jal instruction to
call functions not accessed through a pointer. Thus, the function call:

func();
causes the compiler to generate the assembly code:
jal func

However, the bit encoding of the jal instruction contains only a 26-bit field to select
the word address of the entry point of the routine. Because MIPS instructions are
all word aligned, it is not necessary to specify the byte address; this implies that a
28-bit byte address can be inferred from a 26-bit word address, because the lower
2 bits of the byte address are always 0. The target address of a function call is
assumed to have the same pattern in the top 4 bits as the jal instruction which
references it.

The result of this limitation is that special consideration is required to reference
functions outside the current 512 MB address segment. For unmapped kernels, this
is rarely an issue because all code typically resides in the 512 MB KSEG0 segment.

However, mapped kernels running in systems with large amounts of memory may
require special precautions to deal with function call accesses not in the current
512 MB memory segment.

Two solutions are possible: Either the routine can be accessed through a pointer
instead of directly, or the compiler can be instructed to modify the routine calling
convention to load the 32-bit address of the routine into a register and then use the
jalr instruction instead of jal.

The first approach requires changing the function call example presented above to
look something like the following:

{
VOIDFUNCPTR pFunc = func;

244

PowerPC

A Building Applications
A.4 Make Variables to Support Additional Compiler Options

(*pFunc) () ;

}

The second solution requires adding an option to the compiler command line. For
the Wind River Compiler (diab), the -Xcode-absolute-far option is used, and for
the GNU compiler (gnu), the option is -mlong-calls. To specify these
command-line options, modify the compiler settings in your project or specify the
appropriate option on the command line when building the module. For example:

For the Wind River Compiler, use:

% make TOOL=diab CPU=cpu ADDED_CFLAGS="-Xcode-absolute-far"
ADDED_C++FLAGS="-Xcode-absolute-far"

For the GNU compiler, use:

% make TOOL=gnu CPU=cpu ADDED CFLAGS="-mlong-calls"
ADDED_C++FLAGS="-mlong-calls"

Either of the above solutions causes the compiler to generate similar code for
calling the routine:

lui $24,%hi (func)
addui $24,%$24,%1o (func)
jalr $24

NOTE: Code compiled with the -Xcode-absolute-far or -mlong-calls
command-line option does not require the use of special libraries or linker
considerations.

On PowerPC targets having more than 32 MB of memory, the -Xcode-absolute-far
flag (Wind River Compiler (diab)) or the -mlongcall flag (GNU compiler) may be
required when compiling VxWorks downloadable kernel modules. The flags are
not automatically passed to the build command and, if the flags are not added
explicitly, the loader may issue a relocation overflow error (this happens using
both GNU and the Wind River Compiler (diab)).

To specify these flags, modify the compiler settings in your project or specify the
appropriate option on the command line when building the module. For example:

For the Wind River Compiler, use:

% make TOOL=diab CPU=cpu ADDED_CFLAGS="-Xcode-absolute-far"
ADDED_C++FLAGS="-Xcode-absolute-far"

245

VxWorks
Architecture Supplement, 6.6

For the GNU Compiler, use:
% make TOOL=gnu CPU=cpu ADDED CFLAGS="-mlongcall" ADDED_C++FLAGS="-mlongcall"

For more information on relative branching, see 6.4.4 26-bit Address Offset
Branching, p.169.

Small Data Area

For PowerPC processors, the SDA_DISABLE makefile variable is supplied for the
purposes of generating a downloadable kernel module (DKM). When generating
a DKM, this variable must be set to TRUE in order to prevent the compiler from
using SDA for object module generation. However, this setting does not disable
SDA in the kernel environment and you must still be sure that your code does not
modify the reserved registers (gpr2 and gpr13).

For more information on SDA, see 6.3.4 Small Data Area, p.138.

A.4.2 Compiling Modules for RTP Applications on PowerPC

The predefined options used to compile modules for an RTP (real-time process)
application on a PowerPC target should suffice in most cases. RTPs are compiled
for the generic 32-bit PowerPC UISA EABI using the CPU=PPC32 macro setting.
Two general options are available using the TOOL macro to select the
floating-point mode. An additional option, TOOL=e500v2diab (or
TOOL=e500v2gnu), is available for the e500v2 CPU. This option is used for the
double-precision hardware floating point build and is specific to e500v2-based
CPUs such as the MPC8572 and MPC8548. When you specify TOOL=diab,
hardware floating-point is selected. When you specify TOOL=sfdiab, software
floating-point is selected. A similar distinction is made between TOOL=gnu and
TOOL=sfgnu.

NOTE: RTPs built with TOOL=sfdiab or sfgnu will run correctly on any PowerPC
processor, including those that provide hardware floating point support. However,
RTPs built with soft float options (sfdiab or sfgnu) will not be able to use the
processor hard float capability.

When extra options are required (for example, when you must compile for AltiVec
or SPE support), the extra options can be specified using the ADDED_CFLAGS
macro in the BSP makefile. For example, enable AltiVec support in the Wind River
Compiler (diab) by appending the following line to the end of Makefile for an RTP
application:

ADDED_CFLAGS += -tPPC7400FV:vxworks66

246

A Building Applications
A.5 Additional Compiler Options and Considerations

NOTE: The make rules to build RTPs are in rules.rtp and compiler-specific options
come from the make fragments in installDir/vxworks-6.x/target/usr/tool/gnu or
diab. If the RTP source is built with a makefile that includes rules.rtp, simply
specifying the appropriate CPU and TOOL options will build the RTP using the
specified compiler. Note that CPU is always defined as PPC32 for RTPs regardless
of the target processor type.

A.5 Additional Compiler Options and Considerations

This section discusses additional special compiler options and requirements for
certain target architectures.

A.5.1 Intel Architecture

In some cases, special compiler options and considerations are required when
compiling applications for the Intel Architecture. The following sections discuss
these instances.

GNU Assembler Compatibility

The -Xemul-gnu-bug option is included in the Wind River Compiler to emulate a
known behavior in the GNU assembler’s encoding of fdivp, fdivrp, fsubp, and
fsubrp instructions. The -Xemul-gnu-bug option should only be used when
assembly code produced by, or written for use with, the GNU toolchain is
assembled using the Wind River Compiler toolchain assembler.

If the Wind River assembler is invoked using the compiler driver (dcc), the
-Xemul-gnu-bug option should be preceded by -Wa so that it is passed to the
assembler. The appropriate makefiles for the Wind River Compiler (diab)
toolchain (installDir/[vxworks-6.x/target/h/tool/$TOOL/make. $CPUSTOOL and
installDirlvxworks-6.x/target/usr/tool/$TOOL/make.$CPU$TOOL) include this
option.

247

VxWorks
Architecture Supplement, 6.6

Compiling Modules for Debugging

A.5.2 MIPS

To compile C and C++ modules for debugging, you must use the -g compiler flag
to generate debug information. An example command line for the GNU compiler
is as follows:
% ccpentium -mcpu=pentium -IinstallDir/vxworks-6.x/target/h -fno-builtin \
-DCPU=PENTIUM -c -g test.cpp
In this example, installDir is the location of your VxWorks tree and -DCPU specifies
the CPU type. An equivalent example for the Wind River Compiler is as follows:

% dcc -tPENTIUMLH:vxworks66 -IinstallDir/vxworks-6.x/target/h \
-DCPU=PENTIUM -c -g test.cpp

NOTE: Debugging code compiled with optimization is likely to produce
unexpected behavior, such as breakpoints that are never hit or an inability to set
breakpoints at some locations. This is because the compiler may re-order
instructions, expand loops, replace routines with in-line code, and perform other
code modifications during optimization, making it difficult to correlate a given
source line to a particular point in the object code. You are advised to be aware of
these possibilities when attempting to debug optimized code. Alternatively, you
may choose to debug applications without using compiler optimization. To
compile without optimization using the GNU compiler, you must compile without
a -O option or use the -00 option. To compile without optimization using the
Wind River Compiler, you must compile without the -XO option or use the
-Xno-optimized-debug option.

In some cases, special compiler options and considerations are required when
compiling applications for MIPS. The following sections discuss these instances.

Small Data Model Support

Small data model is not currently supported by VxWorks for MIPS.

When using the GNU compiler, Wind River recommends using the
-mno-branch-likely switch. This switch suppresses the branch-likely version of
the branch instructions. The -G 0 switch is required. This switch prevents short
data references from being generated by the GNU compiler.

248

A Building Applications
A.5 Additional Compiler Options and Considerations

-mips2 Compiler Option

Processors supported with the MIPS32sfgnu and MIPS32sfgnule CPU and TOOL
combinations use the R4000-compatible cache and eret instructions which are not
supported when using the -mips2 GNU compiler option. This incompatibility
does not generally cause a problem because these instructions are typically found
only in assembly-language kernel library code, not in user-provided code such as
BSPs. If your code needs to use these instructions, you should choose one of the
following recommended options:

» Assemble the file with the Wind River Compiler (diab) toolchain, which
supports these instructions in -tMIPS2xx:vxworks66 (32-bit, soft float) modes.

* Temporarily alter your ISA selection with the .set option as follows:

.set mips3
eret
.set mips0

* Substitute a .word assembler directive in place of the required instruction:

eret /* not supported by GNU compiler */
.word 0x42000018
Wind River does not support modifying the GNU compiler option from -mips2 to
-mips3. This may generate instructions that are not supported on all MIPS
processors, and will cause linkage problems with kernel libraries that are compiled
with the -mips2 option.

A.5.3 PowerPC

In some cases, special compiler options and considerations are required when
compiling applications for PowerPC. The following sections discuss these
instances.

Signal Processing Engine (SPE) for MPC85XX

MPC85XX CPUs have a Signal Processing Engine (SPE). The compiler option
-tPPCE500FG:vxworks66 or -tPPCE500FF:vxworks66 should be used for the
Wind River Compiler (diab) to generate SPE instructions. For the GNU compiler,
SPE instruction generation is already enabled by the -mcpu=8540 option. See your
compiler documentation for more information. For e500v2-based processors such
as the MPC8548, the SPE-specific flag for the Wind River Compiler (diab) is
-tPPCE500V2FH which enables double-precision hardware floating point (in this

249

VxWorks
Architecture Supplement, 6.6

case, the BSP is built with TOOL=e500v2diab). For the GNU compiler, the
SPE-specific flag is -te500v2 which also enables double-precision hardware
floating point (in this case, the BSP is built with TOOL=e500v2gnu).

Compiling Modules for Debugging

To compile C and C++ modules for debugging, you must use the -g flag to generate
debug information. An example command line for the GNU compiler is as follows:

[

% cecppc -mcpu=603 -IinstallDir/vxworks-6.x/target/h -fno-builtin \
-DCPU=PPC603 -c -g test.cpp

In this example, installDir is the location of your VxWorks tree and -DCPU specifies
the CPU type. An equivalent example for the Wind River Compiler is as follows:

% dec -tPPC603FH:vxwork55 -IinstallDir/vxworks-6.x/target/h \
-DCPU=PPC603 -c -g test.cpp

NOTE: Debugging code compiled with optimization is likely to produce
unexpected behavior, such as breakpoints that are never hit or an inability to set
breakpoints at some locations. This occurs because the compiler may re-order
instructions, expand loops, replace routines with in-line code, and perform other
code modifications during optimization, making it difficult to correlate a given
source line to a particular point in the object code. You are advised to be aware of
these possibilities when attempting to debug optimized code. Alternatively, you
can choose to debug applications without using compiler optimization. To compile
without optimization using the GNU compiler (gnu), compile your code without
a -O option or use the -0O0 option. To compile without optimization using the
Wind River Compiler, compile your code without the -XO option or use the
-Xno-optimized-debug option.

250

Symbols

__fpscr_values 223
__ieee_status() 14
_745x 242
_CACHE_ALIGN_SIZE

ARM 7
_func_excBErrIntAck 203
_func_intConnectHook 204
_func_intDisableRtn 205
_func_intEnableRtn 205
_func_vxMemProbeHook 10

ColdFire 46

SuperH 206
_func_wdbUbcInit 202
_MMU_TLB_TS_0 146,149
_ppc440_x5 242
_ppc604_745x 242
_pSysBatInitFunc 143
x5 242

Numerics

16-bit instruction set (Thumb) 11
26-bit address offset branching
PowerPC 169
26-bit processor mode
ARM 11

Index

32-bit supervisor mode (SVC32)
ARM 11

64-bit
MIPS support 131
timestamp counter 85

A

a.out
Intel Architecture 71
ABI 174
access types
MPC85XX 174
MPC8XX 174
PowerPC 405 172
PowerPC 440 174
PowerPC 603 173
PowerPC 604 174
ADDED_C++FLAGS 243
ADDED_CFLAGS 243,246
ADJUST_VMA 109

Advanced Programmable Interrupt Controller

see APIC
Advanced RISC Machines
see ARM

251

VxWorks
Architecture Supplement, 6.6

AIM
ColdFire 49
model for caches
MIPS 106
model for MMU
MIPS 126
SuperH 220
AltiVec 151
AltiVec-specific routines 153
C++ exception handling 159
compiling modules, GNU compiler 158
compiling modules, Wind River Compiler 157
enabling keywords 157
extensions to the WTX protocol 159
feature support 151
layout of the EABI stack frame 154
VxWorks run-time support for 151
WTX API routines 159
altivecInit() 153
altivecProbe() 151,153
altivecRestore() 153
altivecSave() 153
altivecTaskRegsGet() 153
altivecTaskRegsSet() 153
altivecTaskRegsShow() 153
aoutToBinDec 71
APIC 85
APIC_TIMER_CLOCK_HZ 89
Application Binary Interface
see ABI
Application Specific Standard Product
see ASSP
architecture considerations
ARM 10
ColdFire 46
Intel Architecture 72
MIPS 111
PowerPC 166
SuperH 208
Architecture-Independent Model
see AIM
architectures
ARM 3
ColdFire 43
Intel Architecture 57

252

MIPS 97
PowerPC 135
Renesas SuperH 197
archPpc.h 185
ARM 3
see also XScale
architecture considerations 10
BSP considerations for cache and MMU 34
BSP migration 39
VxWorks 5.5 compatibility 39
byte order 11
cache and memory management interaction
32
cache and MMU routines for individual
processor types 35
cache coherency 16
cacheLib 7,9
caches 15
compiling downloadable kernel modules 243
controlling the CPU interrupt mask 7
cret() 6,137
dbgArchLib 7
dbgLib 7
defining cache and MMU types in the BSP 34
detecting the VxWorks 6.x boot ROM mode 40
divide-by-zero handling 13
enabling backtracing 6
enabling vector floating point 15
exceptions and interrupts 12
FIQ 13
floating-point library 13
floating-point support 13
hardware-assisted debugger compatibility 7
initializing the interrupt architecture library 8
intALib 7
intArchLib 8
interface variations 5
interrupt handling 8, 12
non-preemptive mode 8
preemptive mode 8
interrupt stack 13
IRQ 13
memory layout 37
memory management 18
MMU 18

MPU 15,36
processor mode 11

providing an alternate routine for

vxMemProbe() 10
reference material 40

supported ARM architecture versions
supported cache and MMU configurations
supported instruction sets 11

supported processors 4

SWPB (swap byte) instruction 10

tt() 6,137
unaligned accesses 11
vector floating point 14

VFP11 (vector floating-point coprocessor) 14

vmLib 7,9

vxALib 10

vxLib 10
ARM 1136](F)-S 5

cache 17
ARM 920T 5
ARM 920T/922T

cache 17
ARM 922T 5
ARM 926EJ-S 5

cache 17
ARM 946ES 5

cache 17
arm.h 34
ARM7TDMI 5
ARMCACHE 34
ARMCACHE_1136JF 34
ARMCACHE_920T 34
ARMCACHE_926E 34
ARMCACHE_946E 34
ARMCACHE_MANZANO 34
ARMCACHE_NONE 34
ARMCACHE_XSCALE 34
ARMMMU 34
ARMMMU_1136JF 34
ARMMMU_920T 34
ARMMMU_926E 34
ARMMMU_MANZANO 34
ARMMMU_NONE 34
ARMMMU_XSCALE 34
ARMMPU_946E 34

ASSP 24
Automatic EOl Mode 81

Index

AUX_CLK_RATE_MAX 89

AUX_CLK_RATE_MIN 89

b() 44,199
backtracing

enabling on ARM targets 6

banked registers
SuperH 210
BAT

enabling additional, PowerPC 142

PowerPC 141

bh()
Intel Architecture 68
MIPS 104
PowerPC 172
SuperH 200

bitmap combinations
SuperH 200

bl 169,170

bla 169,170

block address translation
see BAT

blrl 170

BOI 82

Book E processor specification 145

boot floppies

VxWorks for Intel Architecture 72

boot ROMs

MIPS 110, 129
boot sequencing

MPC85XX 148

PowerPC 440 145
BOOT_LINE_OFFSET 40
bootrom

MIPS 110
bootrom.hex

MIPS 110
branch addresses

SuperH 211

253

VxWorks

Architecture Supplement, 6.6

branching across large address ranges

PowerPC 169
brerlnit 202
brcrSize 202
breakpoints

Intel Architecture 68

MIPS 104

SuperH 199
BRK_DATARW1 69
BRK_DATARW2 69
BRK_DATARW4 69
BRK_DATAW1 69
BRK_DATAW2 69
BRK_DATAW4 69
BRK_INST 69
BSP considerations for cache and MMU

ARM 34
BSP migration

ARM 39

SuperH 233
bspname.h

MIPS 115,120
BSPs

pcPentium2 73

pcPentium3 73,74

pcPentium4 74
build mechanism

PowerPC 193
building applications 235
building kernels

MIPS 107
bus errors

SuperH support for 203
byte order

ARM 11

ColdFire 48

Intel Architecture 73

MIPS 111

network byte order on Intel Architecture 73

PowerPC 172
SuperH 209

254

C

C language
extensions for vector types
AltiVec 155
SPE 164
C++ modules
cross-linking 237
cache
AIM model for
PowerPC 180
ARM 15
ColdFire 52
configuration
ARM 15
Intel Architecture 74
locking
ARM 7,16
MIPS 107
memory management interaction
ARM 32
MIPS 106
PowerPC 176
SuperH 222
SuperH libraries, supported processors 223
cache coherency
ARM 16
PowerPC 140
CACHE_COPYBACK 17
CACHE_COPYBACK_P1 214
CACHE_WRITETHROUGH 17
ARM 17
PowerPC 187
XScale 17
cache440MaxPhys 179
cache440RomBase 179
cacheArchAlignSize 7
cacheArchIntMask 36
cacheArm1136jfLibInstall() 35
cacheArm920tLibInstall() 35
cacheArm926eLibInstall() 35
cacheArm946eLibInstall() 35
cacheArmManzanoLibInstall() 35
cacheArmXScaleLiblInstall() 35

cacheClear()

ARM 16

PowerPC 180
cacheDisable() 106
cacheDmaFree() 52
cacheDmaMalloc() 52
cacheEnable()

ARM 32

MIPS 106
cachelnvalidate() 16
cacheLib

ARM 7,9

Intel Architecture 74

MIPS 107

PowerPC 176, 180
cacheLibInit()

ARM 36

PowerPC 179
cacheLock()

ARM 7,16
cachePpcReadOrigin 176
cachetypeLibInstall() 33
cacheUnlock()

ARM 7,16
CC_ARCH_SPEC 243
Celeron processors 73
chanCnt 202
ColdFire 43

_func_vxMemProbeHook 46

address translation tables 49

AIM 49

architecture considerations 46

byte order 48

cache 52

compiler support 46

exceptions and interrupts 47

floating-point support 44, 52

FPU 52

intConnect() 45

interface variations 44

interrupt stack 48

intVecShow() 45

mathLib 45

maximum number of RTPs 51

memory layout 54

Index

memory management 49
MMU 49
MMU page locking 51
multiple interrupts 48
null pointer reference detection 51
operating mode 47
PCIbus 54
PCI window mapping 54
power management 54
privilege protection 47
reference material 56
register usage 48
reserved instructions 47
RTPs 47
software breakpoints 44
software floating point 53
specific tool options 46
stack guard pages 51
supported processors 43
tas instruction 46
user stack pointer 48
VxBus 54
vxLib 45
vxMemProbe() 46
vxTas() 45
command-line build
enabling extended-call exception vectors on
PowerPC 171
compiler options
adding using make variables 243
compiler support
ColdFire 46
compiling
downloadable kernel modules 243
modules for debugging
Intel Architecture 248
PowerPC 250
RTP applications
PowerPC 246
config.h
ARM 39
Intel Architecture 79
MIPS 105,109
PowerPC 169, 171, 187
SuperH 214, 231, 233

255

VxWorks
Architecture Supplement, 6.6

configAlLh dbgLib
PowerPC 169 ARM 7
SuperH 212,213, 231 SuperH 200
context switching dcbst 176
Intel Architecture 83 DEC timer 193
converting to network byte order DEFAULT_POWER_MGT_MODE 224
Intel Architecture 73 defining CPU variants for PowerPC 241
coprocessor abstraction defining the CPU and TOOL make variables 236
PowerPC 150 detecting the boot ROM mode
Coprocessors ARM 40
PowerPC 150 diab 237
coprocTaskRegsGet() 75 disassembler
coprocTaskRegsSet() 75 Intel Architecture 69
counters divide-by-zero handling
Intel Architecture 85 ARM 13
cpsr() 7 PowerPC 167
CPU 236 SuperH 204
CPU interrupt mask dynamic model
ARM 7 MPC85XX 149
CPU_VARIANT 241 PowerPC 440 146
manzano 5
XScale 5
cpuPwrLightMgr 91 E

cpuPwrMgrEnable() 91
cpuPwrMgrlsEnabled() 91
cret() 6,137

cross-linking of C++ modules 237

e500v2 183
EABI 174

Motorola AltiVec EABI specification 159
early cache enablement

PowerPC 177

D Early EOl Issue 81
eax() 68

data cache -EB 207
PowerPC 176 ebp() 68
XScale 18 ebx() 68

data MMU ecx() 68
PowerPC 139 edi() 68

data segment alignment edx() 68
MIPS 106 eflags() 68

data types efsadd 167
long long 131 efsdiv 167

dbgArchLib efsmul 167
ARM 7 efssub 167
MIPS 103 -EL 207
SuperH 198 ELF

Intel Architecture 71

256

Embedded Application Binary Interface
see EABI
enabling extended-call exception vectors
command-line builds
PowerPC 171
project builds
PowerPC 171
enabling vector floating point
ARM 15
ENTIRE_CACHE 17
EOI 82
error detection and reporting
Intel Architecture 77
PowerPC 191
esi() 68
esp() 68
evfsadd 167
evisdiv 167
evismul 167
evfssub 167
EVT
see exception vector table
EXC_MSG_OFFSET
ARM 40
excArchLib
SuperH 203
excBErrVecInit() 203
excConnect() 187,188
excCrtConnect() 187,188
excEnt() 190
exception vector table 191
exception vectors
relocated vectors on PowerPC 190
exceptions
ARM 12
C++ handling and AltiVec support 159
ColdFire 47
floating-point on PowerPC 167
FPU on Intel Architecture 76
Intel Architecture 82
machine check architecture (MCA) 83
mapping onto software signals for MIPS = 112
MIPS 112
PowerPC 186
SPE 167

Index

SPE unavailable exception 168

SuperH 211
excExtendedVectors 170,171
exclnit() 189
excIntConnect() 187,188
excIntConnectTimer() 187,190
excIntCrtConnect() 187, 188
excLib 121
excMchkConnect() 188
excVecGet()

ARM 12

PowerPC 189, 190
excVeclnit() 170,171, 189
excVecSet()

ARM 12

PowerPC 187, 189, 190
extended interrupts

MIPS RM9000 processors 120

MIPS RMI xlrxxx processors 122
extended-call exception vector support

PowerPC 170
extensions to the WTX protocol

AltiVec 159

SPE 166
EXTRA_DEFINE 108

F

fast interrupt 13
fast interval timer 190
fdivp 247
fdivrp 247
FIQ
see fast interrupt
FIT
see fast interval timer
floating-point
ARM 13
ColdFire 44,52
library
ARM 13
MIPS 113

257

VxWorks
Architecture Supplement, 6.6

PowerPC 181 G2_LE core 242
e500v2 183 gbr() 199
exceptions 167 GDT 77,79
MPC8548 184 GDT_BASE_OFFSET 77
software floating-point emulation GDTR 71
Intel Architecture 91 global descriptor table
SPE floating-point 168 see GDT
SuperH 223 global variables
floating-point unit _func_vxMemProbeHook 10
see FPU Intel Architecture 60
formatted input and output of vector types intLockMask 70
AltiVec 156 ioApicBase 88
SPE 164 ioApicData 88
fppArchlnit() 75 sysCoprocessor 61
fppArchSwitchHook() 76 sysCpuld 61
fppArchSwitchHookEnable() 61, 76 sysCsExc 60, 83
fppCtxShow() 62,63 sysCsInt 60
fppCtxToRegs() 75 sysCsSuper 60
fppProbe() 61 sysIntldtType 60, 81
FPPREG_SET 75 sysPhysMemDescNumEnt 109, 110
fppRegListShow() 62,63 sysProcessor 61
fppRegsToCtx() 75 sysStrayIntCount 82
fppRestore() 52,75,224 gnu 237
fppSave() 52,75,224 GNU assembler
fppTaskRegsGet() 75 -little 207
fppTaskRegsSet() 75 -relax 207
fppXctxToRegs() 75 -small 207
fppXregsToCtx() 75 SuperH-specific options 207
fppXrestore() 75 GNU compiler 169
fppXsave() 75 compiling modules to use the AltiVec unit 158
fpscrInitValue 223 compiling modules to use the SPE unit 166
fpscrSet() 223 -G0 112,248
FPU -m4 206
ColdFire 52 -maltivec 158, 159
Intel Architecture 76 -mb 206
Freescale Semiconductor 43 -mbigtable 206
see also ColdFire -mcpu=8540 249
fsubp 247 -mcpu=power4 -Wa 158
fsubrp 247 -mdalign 206
Fully Nested Mode 80 -mieee 206
-mips2 249
-misize 207
G -ml 206

-mlongcall 169, 245

GO 112,248 -mlong-calls 243, 245

258

Index

-mno-branch-likely 248 include file
-mno-ieee 206 MIPS board-specific 116
-mppc64bridge 158 INCLUDE_440X5_DCACHE_RECOVERY 187
-mrelax 207 INCLUDE_440X5_MCH_LOGGER 188
-O 248,250 INCLUDE_440X5_PARITY_RECOVERY 187,188
-O0 248,250 INCLUDE_440X5_TLB_RECOVERY 187, 188
small data area INCLUDE_440X5_TLB_RECOVERY_MAX 188
PowerPC 138 INCLUDE_CACHE_ENABLE 17,176,178

SuperH-specific options 206 INCLUDE_CACHE_MODE 17
-Wa 158 INCLUDE_CACHE_SUPPORT 52

GNU linker INCLUDE_COPROCESSOR 52, 54
-EB 207 INCLUDE_CPU_LIGHT_PWR_MGR 91
-EL 207 INCLUDE_DEBUG 200
SuperH-specific options 207 INCLUDE_EDR_PM 191

gp-rel addressing 112 INCLUDE_EXC_EXTENDED_VECTORS 171

INCLUDE_EXC_HANDLING 188
INCLUDE_HW_FP 52,75,223
H INCLUDE_KERNEL 92,191
INCLUDE_KERNEL_HARDENING 39
INCLUDE_LOCK_TEXT_SECTION 221
INCLUDE_MAC 54
INCLUDE_MAPPED_KERNEL 105, 108, 109

hardware breakpoints
Intel Architecture 68

MIPS 104 INCLUDE_MEMORY_CONFIG
SuperH 200 ARM 37
hexD]3751P requirements 202 Intel Architecture 95
HeIX 165?8 PowerPC 191
HIADT 138 INCLUDE_MMU_BASIC
J Intel Architecture 78
htons() 73

MIPS 109,110

hWitx 159, 166 PowerPC 148,187

SuperH 233
XScale 24
| INCLUDE_PCI 79
INCLUDE_PCI_BUS 54
base 202 INCLUDE_RTP 109
1/0 APIC/xAPIC INCLUDE_SHOW_ROUTINES 24
Intel Architecture 87 INCLUDE_SM_OBJ 186
i8259Intr.c 70 INCLUDE_SPE 162
IA32_APIC_BASE 86 INCLUDE_SW_FP 91
IDT INCLUDE_SYS_ HW_INIT 0 171
see interrupt descriptor table INCLUDE_VFP 15
IDT_INT_GATE 70 INCLUDE_WDB
IDT_TASK_GATE 70 ARM 37
IDT_TRAP_GATE 70 Intel Architecture 92
IDTR 71 PowerPC 191

259

VxWorks
Architecture Supplement, 6.6

instruction cache

PowerPC 176

XScale 17
instruction MMU

PowerPC 139
INT_NON_PREEMPT_MODEL 8
INT_PREEMPT_MODEL 8

intALib
ARM 7
intArchLib
ARM 8
Intel Architecture 70
MIPS 104
SuperH 204
intConnect() 45
ARM 12

MIPS 115,116
SuperH 204,211
intDisable()
ARM 9
MIPS 116,123
SuperH 205
Intel 8259 PIC 80
Intel Architecture 57
a.out and ELF-specific tools 71
Advanced Programmable Interrupt Controller
(APIC) 85
architecture considerations 72
architecture-specific global variables 60
architecture-specific routines 61
beginning-of-interrupt and end-of-interrupt
routines (BOI and EOI) 82
breakpoints and the bh() routine 68
cache 74
cacheLib 74
compiling modules for debugging 248
context switching 83
converting to network byte order 73
counters 85
disassembler, 1() 69
error detection and reporting 77
exceptions 82
FPU exceptions 76
FPU support 75
getting and setting control register values 70

260

getting and setting the debug registers 70

getting and setting the EFLAGS register 70

getting and setting the task register 71

getting code, data, and stack segment values
71

getting CPU information 70

GNU assembler compatibility 247

I/0 mapped devices 89

intArchLib 70

interface variations 59

interrupt descriptor table (IDT) 81

interrupt lock level 70

interrupts 80

ISA/EISA bus 90

machine check architecture (MCA) 83

mathALib 60

memory considerations for VME 90

memory layout 92

memory mapped devices 89

memory probe, vxMemProbe() 69

memory type range register (MTRR) 84

mixing MMX and FPU instructions 76

mixing SSE/SSE2 and FPU/MMX
instructions 77

MMX technology support 75

model-specific register (MSR) 84

OSM stack 81

P5 architecture (Pentium) 58, 74

P6 architecture (PentiumPro, Pentium II,
Pentium III, Pentium M) 58, 74, 78

P7 architecture (Pentium 4) 58,75, 78

paging with MMU 78

PC104 bus 90

PCIbus 90

pciConfigLib 90

performance monitoring counters (PMCs) 85

power management 71,91

real-time processes (RTPs) 77

reference material 95

registers 84

ring level protection 80

segmentation 77

setting the local descriptor table 71

software floating-point emulation 91

SSE and SSE2 support 75

stack management 83

supported interrupt modes 82

supported processors 58

timestamp counter (TSC) 85

vxAlib 70

vxLib 70

VxWorks boot floppies 72
Intel StrongARM 22
intEnable()

ARM 9

MIPS 116,122

SuperH 205
intEnt() 82, 83, 190
interface variations

ARM 5

ColdFire 44

Intel Architecture 59

MIPS 103

PowerPC 137

SuperH 198
interrupt conditions

acknowledging on MIPS processors
interrupt control modules 12
interrupt controller

8259A interrupt controller 87
interrupt controller drivers

ARM 8

Intel Architecture 70, 80
interrupt descriptor table 81
interrupt handling

ARM 8

Intel Architecture 80

multiple interrupts

SuperH 211

VMEbus on MIPS processors 119
interrupt inversion

MIPS 118
interrupt lock level

Intel Architecture 70
interrupt mode

Intel Architecture 82
interrupt stack

ARM 13

ColdFire 48

default size for ColdFire 48

Index

Intel Architecture 80
overflow and underflow protection
Intel Architecture 81
SuperH 212
interrupts
ARM 12
ColdFire 47
Intel Architecture 80
machine check interrupt 188
MIPS 115
multiple interrupts on ColdFire 48
NMI interrupt 80
normal and critical 187, 188
PowerPC 186
stack
size
SuperH 212
SuperH 211
intExit() 82,83
intExtendedDisable() 123
intExtendedEnable() 122
intIFLock() 8
intlIFUnLock() 8
intLevelSet()
MIPS 104, 116
SuperH 204
intLibInit() 8
intLock()
ARM 7
Intel Architecture 70, 81
MIPS 116
SuperH 205
intLockLevelGet() 9
intLockLevelSet() 9
intLockMask 70
intPrioTable 123
MIPS 116,118,119, 121
intrCtl
ARM 12
Intel Architecture 70
intStackEnable() 62,63, 80
intUninitVecSet() 9

261

VxWorks

Architecture Supplement, 6.6

intUnlock()

ARM 7

Intel Architecture 70, 81

MIPS 116
intVecBaseGet()

ARM 9

SuperH 212
intVecBaseSet()

ARM 9

MIPS 104, 116
intVecGet()

ARM 9

Intel Architecture 70
intVecGet2() 70
intVecSet()

ARM 9

Intel Architecture 70

MIPS 115,116

SuperH 204
intVecSet2() 70
intVecShow()

ARM 9

ColdFire 45
INUM_FPU_EXCEPTION 225
INUM_ILLEGAL_INST_GENERAL 225
INUM_ILLEGAL_INST_SLOT 225
INUM_READ_ADDRESS_ERROR 225
INUM_TLB_READ_MISS 225
INUM_TLB_READ_PROTECTED 225
INUM_TLB_WRITE_INITIAL_MISS 225
INUM_TLB_WRITE_MISS 225
INUM_TLB_WRITE_PROTECTED 225
INUM_TRAP_1 225
INUM_WRITE_ADDRESS_ERROR 225
IOAPIC_BASE 86
ioApicBase 88
ioApicData 88
ioApicEnable() 88
ioApicIntr.c 70
ioApiclrqSet() 88
ioApicRed0_15 88
ioApicRed16_23 88
ioApicRedGet() 88
ioApicRedSet() 88
ioApicShow() 88

262

IRQ 13
ISA /EISA bus

Intel Architecture 90
ISR_STACK_SIZE

ColdFire 48

Intel Architecture 83,92

PowerPC 191

SuperH 212
IV_ADEL_VEC 112
IV_ADES_VEC 112
IV_BP_VEC 113
IV_CPU_VEC 113
IV_DBUS_VEC 112
IV_FPA_DIVO_VEC 113
IV_FPA_INV_VEC 113
IV_FPA_OVF_VEC 113
IV_FPA_PREC_VEC 113
IV_FPA_UFL_VEC 113
IV_FPA_UNIMP_VEC 113
IV_IBUS_VEC 112
IV_RESVDINST _VEC 113
IV_SYSCALL_VEC 112
IV_TLBL_VEC 112
IV_TLBMOD_VEC 112
IV_TLBS_VEC 112
ivMips.h 115,116
ivSh.h 204

J

jal 244

K

kernel build
configuration

MIPS default (unmapped) 107

MIPS mapped 107
MIPS mapped kernel details 108
MIPS mapped kernel precautions
kernel mode
MIPS 126

109

kernel text segment static mapping
MIPS 105
kernellnit() 116,212

L

1I() 69
LDIR 71
libraries
cacheLib 74,107,176, 180
dbgArchLib 7,103, 198
dbgLib 7,200
excArchLib 203
excLib 121
intALib 7
intArchLib
ARM 8
Intel Architecture 70
MIPS 104
SuperH 204
mathALib 60
mathLib 45, 205
optimized
ARM and XScale 6
Intel Architecture 59
MIPS 103
PowerPC 137
SuperH 198
pciConfigLib 90
pentiumALib 70
pentiumLib 70
pgMgrLib 226
taskArchLib 105
vmLib
ARM 7,9
MIPS 126
PowerPC 141, 180
SuperH 220
vxALib 10,70
vxLib 45
ARM 10
Intel Architecture 70
PowerPC 150
SuperH 206

Index

line allocation policy 22
-little 207
LOAPIC_BASE 86
loApiclnit() 86, 88
loApicMpShow() 86
loApicShow() 86
local APIC timer
Intel Architecture 88
local APIC/xAPIC
Intel Architecture 85
LOCAL_MEM_AUTOSIZE 231
LOCAL_MEM_LOCAL_ADRS
ARM 37
Intel Architecture 77,81,95
MIPS 108,109, 129, 130
PowerPC 191
SuperH 231
LOCAL_MEM_SIZE 231
long long data type 131

M

-m4 206

MAC support (ColdFire) 54

mach() 199

machine check architecture 70, 83

machine check interrupt 187, 188

macl() 199

macRestore() 54

macros
ARMCACHE 34
ARMMMU 34
HI 138
HIADJ 138
INCLUDE_440X5_DCACHE_RECOVERY

187
INCLUDE_440X5_MCH_LOGGER 188
INCLUDE_440X5_PARITY_RECOVERY 188
INCLUDE_440X5_TLB_RECOVERY 187
INCLUDE_440X5_TLB_RECOVERY_MAX
188

INCLUDE_CACHE_SUPPORT 52
INCLUDE_HW_FP 75,223
INCLUDE_PCI_BUS 54

263

VxWorks
Architecture Supplement, 6.6

ISR_STACK SIZE 48
Intel Architecture 83,92
PowerPC 191
SuperH 212
macSave() 54
make variables
CPU and TOOL 236
support for additional compiler options 243
Makefile
MIPS 105, 108, 129
PowerPC 246
-maltivec 158, 159
manzano 5
mapped kernel
build details for MIPS 108
build precautions for MIPS 109
MIPS 107
mapping of MIPS exceptions onto software signals
112
math routines
ColdFire 45
mathALib
Intel Architecture 60
mathHardInit() 223
mathLib 45
SuperH 205
-mb 206
-mbigtable 206
MCA
see machine check architecture
-mcpu=8540 249
-mcpu=power4 -Wa 158
-mdalign 206
memory allocation
PowerPC 604 154
memory coherency page state
PowerPC 140
memory considerations for VME
Intel Architecture 90
memory layout
ARM 37
ColdFire 54
Intel Architecture 92
MIPS 129
MIPS mapped kernel 130

264

MIPS unmapped kernel 129
PowerPC 190
SuperH 230
memory management
ARM 18
ColdFire 49
MIPS 105,126
PowerPC 139
SuperH 212
memory management unit
see MMU
memory map
MIPS mapped kernel 128
MIPS unmapped kernel 127
MPC85XX 147
MPC8XX 149
PowerPC 405 144
PowerPC 440 145
SH-4 213
SH-4A 215,216
memory probe
Intel Architecture 69
memory protection attributes
PowerPC 140
memory protection unit
see MPU
memory type range register 70, 84
-mieee 206
MIPS 97
64-bit support 131
acknowledging the interrupt condition 117
AIM model for caches 106
AIM model for MMU 126
architecture considerations 111
building kernels 107
cache locking 107
cache support 106
cacheLib 107
compiling downloadable kernel modules 244
data segment alignment 106
dbgArchLib 103
debugging MIPS targets 111
default (unmapped) build configuration 107
exceptions 112
extended interrupts on the RM9000 120

Index

floating-point support 113 MMU
gp-rel addressing 112 AIM model
hardware breakpoints and ColdFire 49
the bh() routine 104 MIPS 126
intArchLib 104 PowerPC 180
interface variations 103 SuperH 220
interrupt inversion 118 ARM 18
interrupt support routines (ISRs) 116 ColdFire 49
interrupts 115 configurations
ISA level 99 ARM 15
kernel mode 126 MIPS 105,126
kernel text segment static mapping 105 paging with Intel Architecture 78
mapped build configuration 107 PowerPC 139
mapped kernel build details 108 SH-4 valid MMU attribute combinations 230
mapped kernel build precautions 109 SH-4A-specific attributes 219
mapped kernel memory map 128 SH-4-specific attributes 219
memory layout 129 SuperH 212
mapped kernel 130 default page size 213
unmapped kernel 129 translation model
memory management 105, 126 PowerPC 139
-mips2 compiler option 249 MMU_ATTR_CACHE_COHERENCY 140, 150
MMU 105, 126 MMU_ATTR_CACHE_COPYBACK 79
reference material 133 MMU_ATTR_CACHE_DEFAULT 139
reserved registers 112 MMU_ATTR_CACHE_GUARDED 140
RMI xlrxxx processors 122 MMU_ATTR_CACHE_OFF 79, 140, 150
signal support 112 MMU_ATTR_CACHE_WRITETHRU 140
small data model support 248 MMU_ATTR_PROT_SUP_EXE 140
supervisor mode 126 MMU_ATTR_PROT_SUP_READ 140
supported devices and libraries 99 MMU_ATTR_SPL_0 219
supported processors 98 MMU_ATTR_SPL_1 219
taskArchLib 105 MMU_ATTR_SPL_2 219
tt() 104,111 MMU_ATTR_SPL_3 219
unmapped kernel memory map 127 MMU_ATTR_SPL_4 219
virtual memory mapping 127 MMU_ATTR_SUP_RWX 140
vmLib 126 MMU_ATTR_VALID_NOT 222
MIPS VMEbus interrupt handling 119 MMU_DEFAULT_CACHE_MODE 36
-mips2 249 MMU_STATE_CACHEABLE_MINICACHE
-mips3 249 18,24
MIPS32sf 99 mmu440Lib.h 146
-misize 207 mmu603Lib.h 141
-ml 206 mmuArm1136jfLibInstall() 35
-mlongcall 169, 245 mmuArm920tLibInstall() 35
-mlong-calls 243, 245 mmuArm926eLibInstall() 35

mmuArmManzanoLibInstall() 35
mmuArmXScaleLibInstall() 35

265

VxWorks
Architecture Supplement, 6.6

mmuArmXSCALEPBit 25
mmuArmXSCALEPBitGet() 27
mmuArmXSCALEPBitSet() 26
mmuE500Lib.h 149
mmuPArmXSCALEBitClear() 26
mmuPBitClear() 28
mmuPBitSet() 28
mmuPhysToVirt() 35
mmuReadId() 10
mmutypeLibInstall() 33
mmuVirtToPhys() 35
MMX technology 58
-mno-branch-likely 248
-mno-ieee 206
model specific register 70, 84
MPC744X

CPU variants 242
MPC745X

CPU variants 242
MPC827X

CPU variants 242
MPC828X

CPU variants 242
MPC834X

CPU variants 242
MPC836X

CPU variants 242
MPC8548 184
MPC85XX

access types 174

exceptions and interrupts 187, 188

floating-point support 182

hardware breakpoints 173

interrupt vector offset register settings 188

SPE 249
MPC8XX

access types 174

floating-point support 181

hardware breakpoints 173
-mppc64bridge 158
MPU

ARM 15,36

configurations (ARM) 15
mpuArm946eLiblnstall() 35
-mrelax 207

266

-mspace

GNU compiler

-mspace 207

MSR

see model specific register (Intel Architecture)
MTRR

see memory type range register
multiply-accumulate

see MAC

N

network byte order 73
NMIl interrupt 80
non-preemptive mode
ARM 8
null dereference pointer detection
SuperH 222
NUM_L1_DESCS 25

O

-O 248,250
-O0 248,250
objcopypentium 71
operating mode
ColdFire 47
Intel Architecture 73
SuperH 209
OSM stack 81

P

Pbit 21
setting in virtual memory regions 28
setting in VxWorks 24

P5 architecture 58, 74
model-specific registers (MSRs) 84
performance monitoring counters (PMCs) 85
timestamp counter (TSC) 85

P6 architecture 58,74
I/0 APIC/xAPIC module 87
local APIC/xAPIC module 85
memory type range registers (MTRRs) 84
MMU 78
model-specific registers (MSRs) 84

performance monitoring counters (PMCs) 85

timestamp counter (TSC) 85
P7 architecture 58,75
I/0O APIC/xAPIC module 87
local APIC/xAPIC module 85
memory type range registers (MTRRs) 84
MMU 78
model-specific registers (MSRs) 84
timestamp counter (TSC) 85
pBRCR 202
PC104 bus
Intel Architecture 90
PCI bus
ColdFire 54
Intel Architecture 90
pciConfigLib
Intel Architecture 90
pcilntConnect() 115
Pentium
see Intel Architecture
Pentium II 74
Pentium III 74
Pentium M 73
model-specific registers (MSRs) 85
supported chipset 74
pentiumALib 70
pentiumBtc() 62,63
pentiumBts() 62, 63
pentiumLib 70
pentiumMcaEnable() 62, 63, 83
pentiumMcaShow() 62, 63
pentiumMsrGet() 62, 63, 83
pentiumMsrInit() 62, 63
pentiumMsrSet() 62,63, 83
pentiumMsrShow() 64
pentiumMtrrDisable() 64
pentiumMtrrEnable() 64
pentiumMtrrGet() 64
pentiumMtrrSet() 64

Index

pentiumPmcGet() 64
pentiumPmcGet0() 64
pentiumPmcGetl() 64
pentiumPmcReset() 65
pentiumPmcReset0() 65
pentiumPmcResetl() 65
pentiumPmcShow() 65
pentiumPmcStart() 64
pentiumPmcStart0() 64
pentiumPmcStartl() 64
pentiumPmcStop() 64
pentiumPmcStop0() 64
pentiumPmcStop1() 64
PentiumPro 74
pentiumSerialize() 65
pentiumTIbFlush() 65
pentiumTscGet32() 65
pentiumTscGet64() 65
pentiumTscReset() 65
PERF_MON

see performance monitor
performance

PowerPC 405 145

PowerPC 440 147
performance monitor (PERF_MON) 190
performance monitoring counter 70, 85
periodic interval timer 190
pgMgrLib

SuperH 226
PIT

see periodic interval timer
PITO_FOR_AUX 88
PM_RESERVED_MEM 191
PMC 70

see performance monitoring counter
power management

ColdFire 54

Intel Architecture 71,91

PowerPC 193

SuperH 224

support for SH-4A processors 225
PowerPC 135

26-bit address offset branching 169

AIM Model for caches 180

AIM model for MMU 180

267

VxWorks
Architecture Supplement, 6.6

alignment constraints
for SPE stack frames 164
AltiVec support 151
architecture considerations 166
branching across large address ranges 169
build mechanism 193
building applications
backward compatibility 242
byte order 172
C language extensions for vector types
(AltiVec) 155
C language extensions for vector types
(SPE) 164
C++ exception handling
and AltiVec support 159
cache coherency 140
cache information 176
cacheLib 176,180
compiling downloadable kernel modules 245
compiling modules
for debugging 250
for RTP applications 246
to use the AltiVec unit
(GNU compiler) 158
to use the AltiVec unit
(Wind River Compiler) 157
to use the SPE unit
(GNU compiler) 166
to use the SPE unit
(Wind River Compiler) 165
configuring VMEbus TAS 186
coprocessor abstraction 150
CPU_VARIANT 241
divide-by-zero handling 167
e500v2 183
early cache enablement 177
enabling additional BATs 142
error detection and reporting 191
exception vector table (EVT) 191
exceptions and interrupts 186
excVecGet() and excVecSet() 189
extended-call exception vector support 170
extensions to the WTX protocol
for AltiVec support 159

268

extensions to the WTX protocol
for SPE support 166
floating-point exceptions 167
floating-point support 181
formatted input and output of vector types
(AltiVec) 156
formatted input and output of vector types
(SPE) 164
hardware breakpoints 172
HI and HIADJ macros 138
instruction and data MMU 139
interface variations 137
layout of the AltiVec EABI stack frame 154
layout of the SPE EABI stack frame 163
memory coherency page state 140
memory layout 190
memory management 139
MMU 139
MMU translation model 139
MPC8548 184
MPC85XX
boot sequencing 148
dynamic model 149
memory mapping 147
run-time support 148
static model 149
MPC8XX
memory mapping 149
RTP limitation 150
page table size for PowerPC 604 144
power management 193
PowerPC 405
memory mapping 144
performance 145
PowerPC 440
boot sequencing 145
cache enablement 179
dynamic model 146
memory mapping 145
performance 147
run-time support 146
static model 146
PowerPC 603/604
block address translation model 141
Segment Model 143

Index

PowerPC 604 PowerPC 60x
memory allocation 154 floating-point support 184
PowerPC 60x memory mapping 141
memory mapping 141 segment model 143
PowerPC 970 151 PowerPC 970
reference material 195 see also AltiVec
register usage 174 architecture-specific routines 153
relocated exception vectors 190 cache 179
restrictions on multi-board configurations 186 floating-point support 184
signal processing engine (SPE) support 161 hardware breakpoints 174
small data area (SDA) 138 VxWorks run-time support for 151
SPE exceptions under likely PowerQUICC Pro 242
overflow /underflow conditions 167 PPC_FPSCR_VE 185
SPE for MPC85XX 249 PPC32 194,246
SPE unavailable exception 168 pr() 199
stack frame alignment 137 preemptive mode
supported processors 136 ARM 8
vmLib 141, 180 printf() 156, 159, 164
vxLib 150 privilege protection
VxMP support ColdFire 47
for Motorola PowerPC boards 185 SuperH 209

VxWorks run-time support for AltiVec 151 processor mode
VxWorks run-time support for the SPE 162 ARM 11

PowerPC 405 processors
access types 172 ARM 1136]J(F)-S 5
cache 178 ARM 920T 5
exceptions and interrupts 187 ARM 926E]-S 5
floating-point support 181 ARM 946ES 5
hardware breakpoints 172 ARM7TDMI 5

PowerPC 440 ARM922T 5
access types 174 SH-4 198,213
cache 178 SH-4A 198,215
cache enablement 179 project builds
CPU variants 241 enabling extended-call exception vectors 171
exceptions and interrupts 187 psrShow() 7

floating-point support 181, 184
hardware breakpoints 173

performance 147 R
PowerPC 603
access types 173
. 0() 199
hardware breakpoints 173 RAM_HIGH_ADRS 108, 109, 129, 130
PowerPC 604
SuperH 233

access types 174
hardware breakpoints 173
page table size 144

RAM_LOW_ADRS 108, 109, 129, 130
real-time processes
see RTPs

269

VxWorks

Architecture Supplement, 6.6

reference material
ARM 40
ColdFire 56
Intel Architecture 95
MIPS 133
PowerPC 195
SuperH 234
register routines
Intel Architecture 68
SuperH 199
register usage
ColdFire 48
PowerPC 174
SuperH 209
registers
Intel Architecture 84
PowerPC 174
-relax 207
Renesas SuperH
see SuperH
reserved registers
MIPS 112
resetEntry() 145, 148
ring level protection
Intel Architecture 80
RM9000
extended interrupts 120
RMI xlrxxx processors 122
ROM_TEXT_ADRS 129
romlnit() 141, 146
SuperH 213
romlnit.s
ARM 33
PowerPC 145, 148
routines
altivecInit() 153
altivecProbe() 151,153
altivecRestore() 153
altivecSave() 153
altivecTaskRegsGet() 153
altivecTaskRegsSet() 153
altivecTaskRegsShow() 153
b() 44,199
bh()
Intel Architecture 68

270

MIPS 104

PowerPC 172

SuperH 200
cacheArm1136jfLibInstall() 35
cacheArm920tLibInstall() 35
cacheArm926eLibInstall() 35
cacheArm946eLibInstall() 35
cacheArmManzanoLibInstall() 35
cacheArmXScaleLibInstall() 35
cacheClear() 16,180
cacheDisable() 106
cacheDmaFree() 52
cacheDmaMalloc() 52
cacheEnable() 32,106
cachelnvalidate() 16
cacheLibInit() 36
cacheLock() 7,16
cachetypeLibInstall() 33
cacheUnlock() 7,16
coprocTaskRegsGet() 75
coprocTaskRegsSet() 75
cpsr() 7
cpuPwrMgrEnable() 91
cpuPwrMgrlsEnabled() 91
cret() 6,137
eax() 68
ebp() 68
ebx() 68
ecx() 68
edi() 68
edx() 68
eflags() 68
esi() 68
esp() 68
excBErrVeclnit() 203
excConnect() 187,188
excCrtConnect() 187,188
excEnt() 190
exclnit() 189
excIntConnect() 187,188
excIntConnectTimer() 187,190
excIntCrtConnect() 187,188
excMchkConnect() 188

excVecGet()

ARM 12

PowerPC 189, 190
excVecInit() 170,171,189
excVecSet()

ARM 12

PowerPC 187, 189, 190
fppArchlnit() 75
fppArchSwitchHook() 76
fppArchSwitchHookEnable() 61, 76
fppCtxShow() 62,63
fppCtxToRegs() 75
fppProbe() 61
fppRegListShow() 62,63
fppRegsToCtx() 75
fppRestore() 75,224
fppSave() 75,224
fppTaskRegsGet() 75
fppTaskRegsSet() 75
fppXctxToRegs() 75
fppXregsToCtx() 75
fppXrestore() 75
fppXsave() 75
fpscrSet() 223
gbr() 199
htons() 73
intConnect() 45

ARM 12

MIPS 115,116

SuperH 204,211
intDisable() 123

ARM 9

MIPS 116

SuperH 205
Intel Architecture 61

register routines 68
intEnable()

ARM 9

MIPS 116

SuperH 205
intEnt() 82, 83,190
intExit() 82,83
intExtendedDisable() 123
intExtendedEnable() 122
intFLock() 8

Index

intlIFUnLock() 8
intLevelSet() 104, 116,204
intLibInit() 8
intLock()

ARM 7

Intel Architecture 70, 81

MIPS 116

SuperH 205
intLockLevelGet() 9
intLockLevelSet() 9
intStackEnable() 62, 63, 80
intUninitVecSet() 9
intUnlock()

ARM 7

Intel Architecture 70, 81

MIPS 116
intVecBaseGet() 9,212
intVecBaseSet()

ARM 9

MIPS 104,116
intVecGet() 9,70
intVecGet2() 70
intVecSet()

ARM 9

Intel Architecture 70

MIPS 115,116

SuperH 204
intVecSet2() 70
intVecShow() 9,45
ioApicEnable() 88
ioApiclrqSet() 88
ioApicRedGet() 88
ioApicRedSet() 88
ioApicShow() 88
kernellnit() 116,212
1I() 69
loApicInit() 86, 88
loApicMpShow() 86
loApicShow() 86
mach() 199
macl() 199
macRestore() 54
macSave() 54
mathHardInit() 223

mmuArm1136jfLibInstall() 35

271

VxWorks

Architecture Supplement, 6.6

mmuArm920tLibInstall() 35
mmuArm926eLibInstall() 35

mmuArmManzanoLibInstall() 35

mmuArmXScaleLibInstall() 35
mmuPBitClear() 28
mmuPBitSet() 28
mmuPhysToVirt() 35
mmuReadId() 10
mmutypeLibInstall() 33
mmuVirtToPhys() 35
mpuArm946eLibInstall() 35
mpuArm946eShowlInstall() 36
mpuGlobalMapInit() 36
mpuShow() 36
pcilntConnect() 115
pentiumBte() 62,63
pentiumBts() 62,63
pentiumMcaEnable() 62, 63, 83
pentiumMcaShow() 62, 63
pentiumMsrGet() 62, 63, 83
pentiumMsrInit() 62, 63
pentiumMsrSet() 62, 63, 83
pentiumMsrShow() 64
pentiumMtrrDisable() 64
pentiumMtrrEnable() 64
pentiumMtrrGet() 64
pentiumMtrrSet() 64
pentiumPmcGet() 64
pentiumPmcGet0() 64
pentiumPmcGet1() 64
pentiumPmcReset() 65
pentiumPmcReset0() 65
pentiumPmcResetl() 65
pentiumPmcShow() 65
pentiumPmcStart() 64
pentiumPmcStart0() 64
pentiumPmcStart1() 64
pentiumPmcStop() 64
pentiumPmcStop0() 64
pentiumPmcStopl() 64
pentiumSerialize() 65
pentiumTIlbFlush() 65
pentiumTscGet32() 65
pentiumTscGet64() 65
pentiumTscReset() 65

272

pr() 199
printf() 156,159, 164
processor-specific ARM cache
and MMU routines 35

psrShow() 7
r0() 199
resetEntry() 145, 148
romlInit() 141, 146
scanf() 156,159, 164
semTake() 116
spelnit() 162
speProbe() 162
speRestore() 162
speSave() 162
speTaskRegsShow() 162
sr() 199
sysAutoAck() 117
sysAuxClkRateSet() 89
sysBusIntAck() 119
sysBusTas()

ColdFire 45

PowerPC 150, 185

SuperH 206
sysBusTasClear() 185
sysClkRateSet() 89
sysCpuProbe() 61, 65
sysDelay() 66
sysInByte() 65,89
sysInLong() 65,89
sysInLongString() 66, 89
sysIntConnect() 204
sysIntDisablePIC() 66, 81
sysIntEnablePIC() 66, 81
sysInWord() 65, 89
sysInWordString() 66, 89
sysMemTop()

ARM 37

Intel Architecture 79,92

PowerPC 191
sysOSMTaskGatelnit() 66
sysOutByte() 65,89
sysOutLong() 66, 89
sysOutLongString() 66, 89
sysOutWord() 66, 89
sysOutWordString() 66, 89

sysUbcInit() 202
taskDelay() 116
taskExtendedIntInit() 123
taskSpawn() 152,162
taskSRInit() 105,116,122, 123
taskSRSet() 71
tt() 6,104,137
usrlnit()

ARM 37

Intel Architecture 92

PowerPC 191

SuperH 212,231
usrRoot()

ARM 37

Intel Architecture 92

PowerPC 191

SuperH 223,231
usrSpelnit() 162
vbr() 199
vec_calloc() 154
vec_free() 154
vec_malloc() 154
vec_realloc() 154
vmContextShow() 24
vmLibInit() 36
vmPageLock()

MIPS 126

PowerPC 180

SuperH 213, 220
vmPageOptimize() 180
vmPageSizeOptimize()

SuperH 213, 220
vmStateSet() 24
vxCpuShow() 67,70,73,74
vxCr0Get() 70
vxCr2Get() 70
vxCr3Get() 70
vxCr4Get() 70
vxCrXGet() 67
vxCrXSet() 67
vxCsGet() 71
vxDrGet() 67,70
vxDrSet() 67,70
vxDrShow() 67,70
vxDsGet() 71

Index

vxEflagsGet() 67,70
vxEflagsSet() 67,70
vxFpscrGet() 185
vxFpscrSet() 185
vxGdtrGet() 71
vxIdtrGet() 71
vxLdtrGet() 71
vxLdtrSet() 71
vxMemProbe() 46
ARM 10
Intel Architecture 69
SuperH 206
vxMsrGet() 185
vxMsrSet() 185
vxPowerModeGet() 67,71,91
vxPowerModeSet()
Intel Architecture 68,71, 91
SuperH 224
vxSseShow() 68
vxSsGet() 71
vxTas() 45
ARM 10
PowerPC 150
SuperH 206
vxTssGet() 68,71
vxTssSet() 68,71
vxXdtrGet() 68
workQPanic() 115,118
WTX API routines for AltiVec support 159
WTX API routines for SPE support 166
wixTargetHasAltivecGet() 159
wixTargetHasSpeGet() 166

RTPs

ColdFire 47

CPU and TOOL definitions for PowerPC 195
Intel Architecture 77

limitation on MPC8XX 150

maximum number for ColdFire 51
maximum number for SuperH targets 222
PowerPC 139

SuperH 209

rules.rtp 247

273

VxWorks
Architecture Supplement, 6.6

run-time support
AltiVec 151
MPC85XX 148
PowerPC 440 146
PowerPC 970 151
VxWorks run-time support for the SPE 162

S

scanf() 156, 159, 164
SDA

see small data area
segment model

PowerPC 603/604 143
segmentation

Intel Architecture 77
SELECT_MMU 139
semTake() 116
setting the P bit

in virtual memory regions 28

in VxWorks (XScale) 24
SH7751

on-chip PCI window mapping 226
SIGBUS 112
SIGFPE 113, 225
SIGILL 113,225
signal processing engine

see SPE
signal support

MIPS 112

SuperH 225
SIGSEGV 112, 225
SIGTRAP 112
SIMD processing unit 161
SM_ANCHOR_OFFSET 40
SM_OFF_BOARD 186
SM_TAS_HARD 186
SM_TAS_TYPE 186
-small 207
small data area

PowerPC 138
software breakpoints

ARM 7

ColdFire 44

274

Intel Architecture 68
SuperH 199
software floating point
ColdFire 53
SPE
alignment constraints for stack frames 164
compiling modules
with the GNU compiler 166
compiling modules
with the Wind River Compiler 165
exceptions under likely
overflow /underflow conditions 167
extensions to the WTX protocol 166
layout of the EABI stack frame 163
MPC85XX 249
run-time detection of 162
saving and restoring the general purpose
register contents 162
SPE unavailable exception 162, 168
support 161
unit initialization 162
VxWorks run-time support for 162
WTX API routines 166
Special Fully Nested Mode 80
Special Mask Mode 81
spelnit() 162
speProbe() 162
speRestore() 162
speSave() 162
speTaskRegsShow() 162
sr() 199
SSE 58
see also streaming SIMD extensions (SSE)
SSE2 58
see also streaming SIMD extensions 2 (SSE2)
stack frame
alignment
PowerPC 137
SPE constraints 164
layout for routines that use the AltiVec
registers 155
layout for routines that use the SPE registers
164
stack trace
SuperH 199

static model
MPC85XX 149
PowerPC 440 146
streaming SIMD extensions (SSE) 58
streaming SIMD extensions 2 (SSE2) 58
SuperH 197
AIM model for MMU 220
architecture considerations 208
banked registers 210
bitmap combinations 200
branch addresses 211
BSP migration 233
byte order 209
cache 222
dbgArchLib 198
dbgLib 200
divide-by-zero handling 204
excArchLib 203
exception to software signal mapping 225
exceptions and interrupts 211
floating-point support 223
getting register values 199
handling multiple interrupts 211
hardware breakpoints 200
intArchLib 204
intConnect() parameters 204
intEnable() and intDisable() parameters 205
interface variations 198
interrupt stack 212
intLevelSet() parameters 204
intLock() return values 205
mathLib 205
maximum number of RTPs 222
memory layout 230
memory management 212
memory protection 233
MMU 212
null dereference pointer detection 222
operating mode 209
pgMgrLib 226
power management 224
privilege protection 209
RAM_HIGH_ADRS 233
reference material 234
register routines 199

Index

register usage 209

RTPs 209

saving and restoring extended
floating-point registers 223

setting the power mode 224

SH7751 on-chip PCI window mapping 226

signal support 225

software breakpoints 199

specific tool options 206

support for bus errors 203

supported processors 198

valid MMU attribute combinations for SH-4

230
vmLib 220
vxLib 206

VxWorks virtual memory mapping 226
supervisor mode

MIPS 126
supported processors

ARM 4

ColdFire 43

Intel Architecture 58

MIPS 98

PowerPC 136

SuperH 198
SW_MMU_ENABLE 109, 110
SYMMETRIC_IO_MODE 87, 88
SYS_CLK_RATE_MAX 89
SYS_CLK_RATE_MIN 89
SYS_HW_INIT_0 179
sysALib.s

ARM 33

Intel Architecture 60, 77,79, 89

MIPS 109, 120
sysAutoAck() 117
sysAuxClkRateSet() 89
sysBusIntAck() 119
sysBusTas()

ColdFire 45

PowerPC 185

SuperH 206
sysBusTas()PowerPC 150
sysBusTasClear() 185
sysCacheFlushReadArea 33
sysCacheLibInit 223

275

VxWorks
Architecture Supplement, 6.6

sysClkRateSet() 89
sysCoprocessor 61
sysCpuld 61
sysCpuProbe() 61,65
sysCsExc 60, 70, 83
sysCsInt 60, 70
sysCsSuper 60
sysDelay() 66
sysHashOrder 117,122,123
sysHwInit()

Intel Architecture 83, 85

MIPS 116

PowerPC 177

SuperH 202, 224
sysHwInit0()

ARM 36

PowerPC 171

XScale 28
sysHwlInit2()

ARM 8
sysInByte() 65, 89
sysInLong() 65, 89
sysInLongString() 66, 89
sysIntConnect() 204
sysIntDisablePIC() 66, 81
sysIntEnablePIC() 66, 81
sysIntldtType 60, 81
sysInWord() 65, 89
sysInWordString() 66, 89
sysLib.c

ARM 16, 18,33

Intel Architecture 60, 78,79

MIPS 109, 116, 120

PowerPC 139, 141, 146, 149, 176

SuperH 222

XScale 22,28
sysMemTop()

ARM 37

Intel Architecture 79, 92

PowerPC 191
sysMinicacheFlushReadArea 33
sysOSMTaskGatelnit() 66
sysOutByte() 65,89
sysOutLong() 66, 89
sysOutLongString() 66, 89

276

sysOutWord() 66, 89
sysOutWordString() 66, 89
sysPhysMemDescNumEnt 109, 110
sysProcessor 61
sysStrayIntCount 82

sysUbclnit() 202

T

-t 112
T2_BOOTROM_COMPATIBILITY 39
target.ref
Intel Architecture 72
SuperH 231
TAS 185
tas instruction 46
tas.b 206
taskArchLib
MIPS 105
taskDelay() 116
taskExtendedIntInit() 123
taskSpawn() 152,162
taskSRInit() 105,116,123
taskSRSet() 71
Thumb instruction set 3, 11
timestamp counter 70, 85
TLB 105, 126, 213
see also translation lookaside buffer (TLB)
TOOL 236
-tPPC7400FV 157
-tPPC970FV 157
-tPPCE500FF 249
-tPPCE500FG 249
-tPPCE500FS 182
translation lookaside buffer
see TLB
TSC
see timestamp counter
-tSH4EH 207
-tSH4LH 207
tt()
ARM 6,137
MIPS 104, 111
SuperH 199

type extension (TEX) field 22

U

unaligned accesses

ARM 11
unmapped kernels

MIPS 107
USER_D_CACHE_ENABLE 17,176,178
USER_D_CACHE_MODE 187,214

ARM 926EJ-S and ARM 946ES 17

ARM920T/922T 17
USER_D_MMU_ENABLE 139,178
USER_I_CACHE_ENABLE 17,176,178
USER_I_CACHE_MODE 17

ARM 920T/922T 17
USER_I_MMU_ENABLE

PowerPC 139, 145, 147, 178
usrConfig.c

SuperH 223
usrlnit()

ARM 37

Intel Architecture 92

PowerPC 191

SuperH 212,231
usrRoot()

ARM 37

Intel Architecture 92

PowerPC 162,191

SuperH 223,231
usrSpe.c 162
usrSpelnit() 162

\'

vbr() 199
VEC_BASE_ADRS 212
vec_calloc() 154
vec_free() 154
vec_malloc() 154
vec_realloc() 154

Index

vector data types
AltiVec 155
SPE 164
vector floating point
ARM 14
vector format conversion specifications
AltiVec 156
SPE 165
vector types
C language extensions
AltiVec 155
SPE 164
formatted input and output
AltiVec 156
SPE 164
virtual memory mapping
MIPS 127
SuperH 226
VIRTUAL_WIRE_MODE 87
VM_PAGE_SIZE 213
VM_STATE_CACHEABLE 139
VM_STATE_CACHEABLE_MINICACHE 18,24
VM_STATE_CACHEABLE_NOT 79, 140, 150
VM_STATE_CACHEABLE_WRITETHROUGH
140
VM_STATE_EX_BUFFERABLE 24
VM_STATE_EX_BUFFERABLE_NOT 24
VM_STATE_EX_CACHEABLE 24
VM_STATE_EX_CACHEABLE_NOT 24
VM_STATE_GLOBAL 79
VM_STATE_GLOBAL_NOT 79
VM_STATE_GUARDED 140
VM_STATE_MASK_EX_BUFFERABLE 24
VM_STATE_MASK_EX_CACHEABLE 24
VM_STATE_MEM_COHERENCY 140, 150
VM_STATE_VALID_NOT 222
VM_STATE_WBACK 79
VM_STATE_WRITEABLE 140
VM_STATE_WRITEABLE_NOT 140
vmContextShow() 24
VME
Intel Architecture 90
VMEbus
configuring TAS 186
interrupt handling on MIPS 119

277

VxWorks

Architecture Supplement, 6.6

vmLib

ARM 7,9

MIPS 126

PowerPC 141, 180

SuperH 220
vmLib.h

XScale 23
vmLibInit() 36
vmPageLock()

MIPS 126

PowerPC 180

SuperH 213, 220
vmPageOptimize() 180
vmStateSet() 24
VX_ALTIVEC_TASK 150, 152
VX_FP_TASK

ColdFire 52

Intel Architecture 75,76

MIPS 114

PowerPC 150, 168, 185

SuperH 223
VX_MAC_TASK 54
VX_POWER_MODE_DEEP_SLEEP 224
VX_POWER_MODE_DISABLE 224
VX_POWER_MODE_SLEEP 224
VX_POWER_MODE_USER 224
VX_SPE_TASK 150, 162, 168
VX_VFP_TASK 15
vxALib

ARM 10

Intel Architecture 70
VxBus

ColdFire 54
vxCpuShow() 67,70,73,74
vxCr0Get() 70
vxCr2Get() 70
vxCr3Get() 70
vxCr4Get() 70
vxCsGet() 71
vxDrGet() 67,70
vxDrSet() 67,70
vxDrShow() 67,70
vxDsGet() 71
vxEflagsGet() 67,70
vxEflagsSet() 67,70

278

vxFpscrGet() 185
vxFpscrSet() 185
vxGdtrGet() 71
vxIdtrGet() 71
vxLdtrGet() 71
vxLdtrSet() 71
vxLib 45
ARM 10
Intel Architecture 70
PowerPC 150
SuperH 206
vxMemProbe()
ARM 10
ColdFire 46
Intel Architecture 69
SuperH 206
VxMP 185
support for Motorola PowerPC boards
vxMsrGet() 185
vxMsrSet() 185
vxPowerModeGet() 67,71,91
vxPowerModeSet()
Intel Architecture 68,71,91
SuperH 224
vxprj 235
vxSseShow() 68
vxSsGet() 71
vxTas()
ARM 10
ColdFire 45
PowerPC 150
SuperH 206
vxTssGet() 68,71
vxTssSet() 68,71
vxXdtrGet() 68

W

-Wa 15,158
watchpoints 104
WDB memory pool
increasing the size on PowerPC 169

WDB_POOL_SIZE
ARM 37
Intel Architecture 92
PowerPC 169, 191
Wind River assembler
SuperH-specific options 208
-Xalign-power2 208
Wind River Compiler
branching across large address ranges 170
compiling modules to use the AltiVec unit 157
compiling modules to use the SPE unit 165
small data area, PowerPC 138
SuperH-specific options 207
-t 112
-tPPC7400FV 157
-tPPC970FV 157
-tPPCE500FF 249
-tPPCE500FG 249
-tPPCE500FS 182
-tSH4EH 207
-tSH4LH 207
-Xcode-absolute-far 243, 245
-Xemul-gnu-bug 247
-Xkeywords 157
-Xno-optimized-debug 248, 250
-XO 248,250
Wind River linker
SuperH-specific options 208
workQPanic() 115,118
write policy 23
wixTargetHasAltivecGet() 159
wtxTargetHasSpeGet() 166

X

Xbit 21

-Xalign-power2 208

XB- 24

XB+ 24

XC- 24

XC+ 24
-Xcode-absolute-far 243, 245
-Xemul-gnu-bug 247
-Xkeywords 157

Index

XMM registers 77
-Xno-optimized-debug 248, 250
-XO 248,250
XScale
ARMCACHE_MANZANO 34
ARMCACHE_XSCALE 34
ARMMMU_MANZANO 34
ARMMMU_XSCALE 34
compiling downloadable kernel modules 243
CPU_VARIANT 5
data cache 18
instruction cache 17
memory management extensions and
VxWorks 21
Pbit 21
type extension (TEX) field 22
Xbit 21
xsymDec 71

279

	VxWorks Architecture Supplement, 6.6
	Contents
	1 Introduction
	1.1 About This Document
	1.2 Supported Architectures

	2 ARM and XScale
	2.1 Introduction
	2.2 Supported Processors
	Processor Variants

	2.3 Interface Variations
	2.3.1 Optimized Libraries
	2.3.2 Restrictions on cret() and tt()
	2.3.3 cacheLib
	2.3.4 dbgLib
	2.3.5 dbgArchLib
	2.3.6 intALib
	2.3.7 intArchLib
	2.3.8 vmLib
	2.3.9 vxALib
	2.3.10 vxLib

	2.4 Architecture Considerations
	2.4.1 Processor Mode
	2.4.2 Byte Order
	2.4.3 ARM and Thumb State
	2.4.4 Unaligned Accesses
	2.4.5 Exceptions and Interrupts
	Interrupt Stacks
	Fast Interrupt (FIQ)

	2.4.6 Divide-by-Zero Handling
	2.4.7 Floating-Point Support
	2.4.8 Vector Floating-Point Support
	2.4.9 Caches
	2.4.10 Memory Management
	ARM Architecture Version 4 Memory Management Considerations
	ARM Architecture Version 6 Memory Management Enhancements
	XScale Memory Management Extensions
	Mapping Address Space as Sections or Supersections
	Page Size Optimization
	Cache and Memory Management Interaction
	BSP Considerations for Cache and MMU

	2.4.11 Memory Layout

	2.5 Migrating Your BSP
	Detecting the VxWorks 6.x Boot ROM Mode

	2.6 Reference Material

	3 ColdFire
	3.1 Introduction
	3.2 Supported Processors
	3.3 Interface Variations
	3.3.1 Optimized Libraries
	3.3.2 Floating-Point Support
	3.3.3 Software Breakpoints
	3.3.4 intArchLib
	3.3.5 mathLib
	3.3.6 vxLib
	3.3.7 ColdFire-Specific Tool Options

	3.4 Architecture Considerations
	3.4.1 Reserved Instructions
	3.4.2 Exceptions and Interrupts
	3.4.3 Operating Mode, Privilege Protection
	3.4.4 Byte Order
	3.4.5 Register Usage
	3.4.6 Multiple Interrupts
	3.4.7 Interrupt Stack
	3.4.8 Memory Management
	Stack Guard Pages
	MMU Page Locking

	3.4.9 Maximum Number of RTPs
	3.4.10 Null Pointer Reference Detection
	3.4.11 Caches
	3.4.12 Floating-Point Support
	Software Floating Point
	Hardware Floating Point

	3.4.13 MAC Support
	3.4.14 Power Management
	3.4.15 PCI Window Mapping
	3.4.16 Memory Layout

	3.5 Reference Material

	4 Intel Architecture
	4.1 Introduction
	4.2 Supported Processors
	4.3 Interface Variations
	4.3.1 Optimized Libraries
	4.3.2 Supported Routines in mathALib
	4.3.3 Architecture-Specific Global Variables
	4.3.4 Architecture-Specific Routines
	4.3.5 a.out/ELF-Specific Tools for Intel Architecture

	4.4 Architecture Considerations
	4.4.1 Boot Floppies
	4.4.2 Operating Mode and Byte Order
	4.4.3 Celeron Processors
	4.4.4 Pentium M Processors
	4.4.5 Caches
	4.4.6 FPU, MMX, SSE, and SSE2 Support
	4.4.7 Mixing MMX and FPU Instructions
	4.4.8 Segmentation
	4.4.9 Paging with MMU
	4.4.10 Ring Level Protection
	4.4.11 Interrupts
	4.4.12 Exceptions
	4.4.13 Stack Management
	4.4.14 Context Switching
	4.4.15 Machine Check Architecture (MCA)
	4.4.16 Registers
	4.4.17 Counters
	4.4.18 Advanced Programmable Interrupt Controller (APIC)
	4.4.19 I/O Mapped Devices
	4.4.20 Memory-Mapped Devices
	4.4.21 Memory Considerations for VME
	4.4.22 ISA/EISA Bus
	4.4.23 PC104 Bus
	4.4.24 PCI Bus
	4.4.25 Software Floating-Point Emulation
	4.4.26 Power Management
	4.4.27 VxWorks Memory Layout

	4.5 Reference Material

	5 MIPS
	5.1 Introduction
	5.2 Supported Processors
	5.3 Interface Variations
	5.3.1 Optimized Libraries
	5.3.2 dbgArchLib
	tt() Routine
	bh() Routine

	5.3.3 intArchLib
	5.3.4 taskArchLib
	5.3.5 Memory Management Unit (MMU)
	5.3.6 Caches
	5.3.7 AIM Model for Caches
	5.3.8 Cache Locking
	5.3.9 Building MIPS Kernels

	5.4 Architecture Considerations
	5.4.1 Byte Order
	5.4.2 Debugging and tt()
	5.4.3 gp-rel Addressing
	5.4.4 Reserved Registers
	5.4.5 Signal Support
	5.4.6 Floating-Point Support
	5.4.7 Interrupts
	5.4.8 Memory Management
	5.4.9 AIM Model for MMU
	5.4.10 Virtual Memory Mapping
	5.4.11 Memory Layout
	5.4.12 64-Bit Support
	Hardware Breakpoints and the bh() Routine

	5.5 Reference Material

	6 PowerPC
	6.1 Introduction
	6.2 Supported Processors
	6.3 Interface Variations
	6.3.1 Optimized Libraries
	6.3.2 Restrictions on tt()
	6.3.3 Stack Frame Alignment
	6.3.4 Small Data Area
	6.3.5 HI and HIADJ Macros
	6.3.6 Memory Management Unit (MMU)
	Instruction and Data MMU
	MMU Translation Model
	PowerPC 60x Memory Mapping
	PowerPC 405 Memory Mapping
	PowerPC 405 Performance
	PowerPC 440 Memory Mapping
	PowerPC 440 Performance
	MPC85XX Memory Mapping
	MPC8XX Memory Mapping

	6.3.7 Coprocessor Abstraction
	6.3.8 vxLib
	6.3.9 AltiVec and PowerPC 970 Support
	6.3.10 Signal Processing Engine Support

	6.4 Architecture Considerations
	6.4.1 Divide-by-Zero Handling
	6.4.2 SPE Exceptions Under Likely Overflow/Underflow Conditions
	6.4.3 SPE Unavailable Exception in Relation to Task Options
	6.4.4 26-bit Address Offset Branching
	6.4.5 Byte Order
	6.4.6 Hardware Breakpoints
	6.4.7 PowerPC Register Usage
	sprg4-sprg7 on PowerPC 603 and 604 Processors

	6.4.8 Caches
	VxWorks SMP
	PowerPC 405
	PowerPC 440
	PowerPC 970

	6.4.9 AIM Model for Caches
	6.4.10 AIM Model for MMU
	6.4.11 Floating-Point Support
	6.4.12 VxMP Support for Motorola PowerPC Boards
	6.4.13 Exceptions and Interrupts
	6.4.14 Memory Layout
	6.4.15 Power Management
	6.4.16 Build Mechanism

	6.5 Reference Material

	7 Renesas SuperH
	7.1 Introduction
	7.2 Supported Processors
	7.3 Interface Variations
	7.3.1 Optimized Libraries
	7.3.2 dbgArchLib
	Register Routines
	Stack Trace and the tt() Routine
	Software Breakpoints
	Hardware Breakpoints

	7.3.3 excArchLib
	Support for Bus Errors
	Support for Zero-Divide Errors (Target Shell)

	7.3.4 intArchLib
	intConnect()
	intLevelSet()
	intLock()
	intEnable() and intDisable()

	7.3.5 mathLib
	7.3.6 vxLib
	7.3.7 SuperH-Specific Tool Options
	GNU Compiler (ccsh) Options
	GNU Assembler Options
	GNU Linker Options
	Wind River Compiler Options
	Wind River Compiler Assembler Options
	Wind River Compiler Linker Options

	7.4 Architecture Considerations
	7.4.1 Operating Mode, Privilege Protection
	7.4.2 Byte Order
	7.4.3 Register Usage
	7.4.4 Banked Registers
	7.4.5 Exceptions and Interrupts
	Multiple Interrupts
	Interrupt Stack

	7.4.6 Memory Management
	SH-4A Memory Map
	Global Variables for Memory Management
	SH-4-Specific MMU Attributes
	SH-4A-Specific MMU Attributes
	MMU_ATTR_NO_BLOCK MMU Attribute
	AIM Model for MMU

	7.4.7 Maximum Number of RTPs
	7.4.8 Null Pointer Dereference Detection
	7.4.9 Caches
	7.4.10 Floating-Point Support
	7.4.11 Power Management
	7.4.12 Signal Support
	7.4.13 SH7751 On-Chip PCI Window Mapping
	7.4.14 VxWorks Virtual Memory Mapping
	7.4.15 Memory Layout

	7.5 Migrating Your BSP
	7.5.1 Memory Protection
	7.5.2 RAM_HIGH_ADRS

	7.6 Reference Material

	A Building Applications
	A.1 Introduction
	A.2 Supporting RTP Applications
	A.3 Defining the CPU and TOOL Make Variables
	Special Considerations for PowerPC Processors

	A.4 Make Variables to Support Additional Compiler Options
	A.4.1 Compiling Downloadable Kernel Modules
	ARM and XScale
	MIPS
	PowerPC

	A.4.2 Compiling Modules for RTP Applications on PowerPC

	A.5 Additional Compiler Options and Considerations
	A.5.1 Intel Architecture
	GNU Assembler Compatibility
	Compiling Modules for Debugging

	A.5.2 MIPS
	Small Data Model Support
	-mips2 Compiler Option

	A.5.3 PowerPC
	Signal Processing Engine (SPE) for MPC85XX
	Compiling Modules for Debugging

	Index

