WIND RIVER

Wind River
VxWorks Simulator

USER'S GUIDE

6.6

Copyright 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River VxWorks Simulator User’s Guide, 6.6

6 Nov 07
Part #: DOC-16100-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

OVEIVIBW ...ttt s
11 Introduction
1.2 Supported Features and Compatibility
121 VxWorks Feature SUPPOIt ..o
122 Simulated Hardware SUPPOTtcccocouiieiiiiiiiiiiiiiiiccccie,
1.3 Limitations
Getting Started ... ————————
21 Introduction
2.2 System Requirements
2.3 Configuring and Building a VxWorks Image
231 Default Configuration COMpONentscccoeoeueveceriicueicniiiceiinenenns
232 Configuring Optional Componentscccccoeeevueeeuriiceineceiicenienes
2.3.3 Building Your VXWorks Imagec.cccccoevuiiininiiiinnce,
24 Launching the VxWorks Simulator

241 vxsim Configuration Optionsccccoveeiinininiiinicce,

242 Launching a VxWorks Simulator Instance from the Command Line

fii

® NN o

12

Wind River VxWorks Simulator
User's Guide, 6.6

Modifying the Windows Simulator Console Appearance 13

Starting Instances to Run on a Simulated Subnetcccceeenen 13

243 Launching the VxWorks Simulator From Workbench 14

244 Rebooting and Exiting the VxWorks Simulatorcccccceviicnnnes 14

245 Accessing the VxWorks Simulator from a Remote Host 15
Introduction to the VxWorks Simulator Environment 17
3.1 Introduction 17
3.2 Understanding the VxWorks Simulator BSP 18
3.3 Building Applications 19
3.3.1 Defining Compiler Optionsccocoeoviiiiiiiiiiiiiiniciceeeas 19

3.32 Compiling Modules for Debuggingccccccocevviiiiiniiiiiinnn, 21

34 Interface Variations 21
341 Memory Management Unitccooiiviiniiniiicccne, 22
SIMUIATION Lottt 22

Translation Modeloocoiiiriniiiinieeesee e 22

Page SIZe ..o 22

Limitations .cc.oeceeveiiiieieieeeccececre et 23

Running the VxWorks Simulator Without MMU Support 23

342 RTP CONSiderationscccccveueeerieueinieieninieienieieeneeeecseeseseseeseseseesesaenenes 23

3.4.3 File System SUPPOTt ..ot 23
Pass-Through File System (passFS)cccocovriiiiniiiiiiecccce, 23

Virtual Disk SUPPOTT ...c.ovoviiiiiiiiiiicce 24

344 WDBBack ENd ...c.coooiiiiiiiiiiiicicccicccteceeiceeeeee e 24

345 Connection TIMEOULccoeovvieuiririeiririeiieiiireeeeeeeeceeeet et 24

3.5 Architecture Considerations 24
3.5.1 Byte Order ... 25

3.5.2 Hardware Breakpointcccvviviiiiiiiiiiiiiniicccccccnes 25

3.53 Floating-Point SUPPOItccoveevieririiciiceccc s 25

4

Contents

3.5.4 ISR Stack Protection ...
355 INtEITUPES ovvieiii s
Solaris and Linux SyStemscccccevviriniiiiiciiiiiininieccccce
WINAOWS SYSEEMS oocviiiiiciiccc e
3.5.6 Memory Layout ...
Using the VxWorks Simulatorccccccemmmiimennnissnness s snnnes
41 Introduction
42 Configuring the VxWorks Simulator
421 BoOtParameters ...
422 Memory Configuration ..o
Physical Memory Address Spacecooveeviiiiciinicies
Virtual Memory Address Space ...,
Memory Protection Level ...
423 Miscellaneous Configurationcccoceerneccucieennninecceerreeeees
43 Configuring Hardware Simulation
43.1 Pass-Through File System (passFS)ccccocoeviririnirnincicnicciicienes
432 Virtual Disk SUPPOTT ...oeeviriiiiiccc s
433 Non-Volatile RAM SUPPOTT ..c.ooervirieiiiciiiciicccccec s
4.3.4 SEtANAATA I/ O oo
435 TEMEIS oot
43.6 Timestamp Driver ...,
4.3.7 Serial Line SUPPOTTcooviiiiiiiiiiiiiicicc e
43.8 Shared Memory Network ..o
44 Using VxWorks SMP with the VxWorks Simulator
441 Creating an SMP IMagecccccceeiiiiiiiiniiiiiiiiicciiiccccccces
4.5 Migrating Applications to a Hardware-Based System

33

34
34
34

35
35
36

36

36
36
37
38
39
39
39
40
40

43
43

45

Wind River VxWorks Simulator
User's Guide, 6.6

Networking with the VxWorks Simulatorooemmmemeeeeeeeeeeeeeees
51 Introduction
5.2 Building Network Simulations
5.3 Setting Up the Network Daemon
53.1 Starting the Network Daemon ..o,
Starting the Network Daemon as a Serviceccccccoeiivciiininininnnee.
Starting the Network Daemon From the Command Line
532 Removing the Network Daemon Serviceccccoovvvvniicinicinnnnnn
533 Network Daemon Debug Shellccccccovviiiiiniiiice
534 Creating a Network Daemon Configuration Filecccccccoceeneii
Configuring Multiple External Subnetsccccoocvvirininiicininnnn.
54 Installing the Host Connection Driver
541 Managing the WRTAP Driver on Windows Hostscc.ccccevrunnen.
5.5 Configuring a Simulated Subnet
5.5.1 Starting a Simulator Instance With Multiple Network Interfaces
552 Starting a Simulator Instance Without an IPv4 Address
Networking Tutorialscccccmmmiiiiiiins s
6.1 Introduction
6.2 Simple Simulated Network
6.2.1 Set Up the Network Daemon ...
6.22 Starta VxWorks Simulator Instancecccoeoecvvnniiccininnceens
6.2.3 Test the Simulated Networkcccccoviiiiiiiiniiiiiiiis
6.3 Basic Simulated Network with Multiple Simulators

6.3.1 Creating a Static Configurationc.cccoeevereeiciiiccniccces
6.3.2 Creating a Dynamic Configuration Using the vxsimnetd Shell

Vi

47

48

50
51

51
56

57
57
60
65

66
68

73

74
74
76
78

Contents

6.4 Running the VxWorks Simulator on the Local Network
6.41 Default subnet configurationc.cocococcuerrnncncceennccceeeeeeaee
6.42 Configuring a Bridge ...
WINAOWS SELUP ..o
Linux bridge Setupc.ccoevvvrieiiiiceccc s
6.5 IPv6 Tutorial
6.5.1 Configure the Network ..o,
6.5.2 Configuring VxWorks with IPv6 Componentsc.cccccovvererrrnnnnnes
Build YOUur Projectsccoovveueioininiciniicicecceccc s
6.5.3 Testing the IPv6 CoNNeCtionccccoeueveiceniiiciiiicecccc e
Start the VxWorks Simulator Instancesccccccovveiiiiiiinnnnnns
A Accessing Host Resourcesccoccmmmiiiiiniinmmmsnsnnnnnsssss s snssssnnes
A1 Introduction
A.2 Accessing Host OS Routines
A.3 Loading a Host-Based Application
A4 Host Application Interface (vxsimapi)
A41 Defining User Exit HOOKScccooviiiiiiiiiiiiiicccccce
A42 Configuring a Host Device to Generate interrupts (UNIX Only)
A43 Simulating interrupts From a User Application (Windows Only) ...
A.5 Tutorials and Examples
A5.1 Running Tcl on the VxWorks Simulatorcccoveiiiiiiciniincinnnnes
Code SamPIEovuiiiiiiiiiiii s
Running The Code ..o
A.52 Controlling a Host Serial Devicecccccovvviiiiiiniiniie,
INAEX e ——————

vii

107

108

108

109
109
109
110

Wind River VxWorks Simulator
User's Guide, 6.6

viii

Overview

1.1 Introduction 1
1.2 Supported Features and Compatibility 2

1.3 Limitations 3

1.1 Introduction

The Wind River VxWorks Simulator is a simulated hardware target for use as a
prototyping and test-bed environment for VxWorks. The VxWorks simulator
allows you to develop, run, and test VxWorks applications on your host system,
reducing the need for target hardware during development. The VxWorks
simulator also allows you to set up a simulated target network for developing and
testing complex networking applications.

For external applications needing to interact with a VxWorks target, the
capabilities of a VxWorks simulator instance are identical to those of a VxWorks
system running on target hardware. A VxWorks simulator instance supports a
standard set of VxWorks features, such as network applications and target and
host VxWorks shells. Building these features into a VxWorks simulator image is no
different than building them into any VxWorks cross-development environment
using a standard board support package (BSP).

Wind River VxWorks Simulator
User's Guide, 6.6

The goal of this document is to quickly familiarize you with the VxWorks
simulator. The early chapters discuss basic configuration information, instructions
for building a VxWorks image based on the VxWorks simulator BSP, instructions
for launching the VxWorks simulator from Wind River Workbench or the
command line, and information on building applications. Later chapters provide
more detailed usage information as well as instructions and tutorials for setting up
a network of VxWorks simulator instances.

This document provides instructions for all supported VxWorks simulator host
types including Linux, Solaris, and Windows-based simulators.

NOTE: Many examples in this document are provided generically for all hosts.
These examples are typically provided in UNIX syntax. Be sure to modify the
generic examples to suit your host platform. For example, on Windows hosts, be
sure to change forward slashes to back slashes in file paths.

1.2 Supported Features and Compatibility

The VxWorks simulator supports most VxWorks features available on target
hardware and also provides support for a number of simulated hardware devices.
In addition, applications developed for the simulator are fully compatible with
VxWorks.

1.2.1 VxWorks Feature Support
Applications developed using the VxWorks simulator can take advantage of the
following VxWorks features:
= Real-Time Processes (RTPs)
» Error Detection and Reporting
» ISR Stack Protection (Solaris and Linux hosts only)
» Shared Data Regions
» Shared Libraries (Windows and Linux hosts only)
= ROMFS

1 Overview
1.3 Limitations

* VxMP (shared-memory objects)

» VxFusion (distributed message queues)
= Wind River System Viewer

For more information on these features, see the VxWorks Kernel Programmer’s Guide.

1.2.2 Simulated Hardware Support
To support application development, the VxWorks simulator provides simulated
hardware support for the following hardware-related features:
» a VxWorks console
* asystem timer

* amemory management unit (MMU)—MMU support is required to take
advantage of the VxWorks real-time process (RTP) feature.

* non-volatile RAM (NVRAM)

» virtual disk support—Virtual disk support allows you to simulate a disk block
device. The simulated disk block device can then be used with any file system
supported by VxWorks.

* atimestamp driver
= areal-time clock
* symmetric multiprocessing (SMP) environment

For information on including support for these simulated hardware features in
your VxWorks image, see 2.3 Configuring and Building a VxWorks Image, p.6. For
more information on hardware simulation, see 4.3 Configuring Hardware
Simulation, p.36.

1.3 Limitations

The VxWorks simulator is not suitable for all prototyping needs. The VxWorks
simulator executes on the host machine and does not attempt the simulation of
machine-level instructions for a target architecture. For this reason, the VxWorks

Wind River VxWorks Simulator
User's Guide, 6.6

simulator is not a suitable basis on which to develop hardware device drivers.
However, the VxWorks simulator includes MMU support and implements the
architecture-specific part of a memory management unit in order to provide the
same level of feature support as hardware-based targets.

SMP simulation using the VxWorks simulator will be more accurate if the host
machine provides multiple CPU cores.

Getting Started

2.1 Introduction 5

2.2 System Requirements 6

2.3 Configuring and Building a VxWorks Image 6
2.4 Launching the VxWorks Simulator 8

2.1 Introduction

This chapter briefly describes how to set up and configure standard features into a
VxWorks image for use with the VxWorks simulator. It also includes instructions
for launching the VxWorks simulator from your development environment. For
more information on configuring and building VxWorks, see the VxWorks Kernel
Programmer’s Guide and the Wind River Workbench User’s Guide or VxWorks
Command-Line Tools User’s Guide.

Wind River VxWorks Simulator
User's Guide, 6.6

2.2 System Requirements

Host system requirements for the VxWorks simulator are the same as that of a
standard VxWorks installation, no additional resources are required. For
information on VxWorks host system requirements, see your Platform release
notes.

SMP simulations will be more accurate if the host machine provides the same
number of CPU cores as the hardware target.

2.3 Configuring and Building a VxWorks Image

The default configuration file included in the VxWorks simulator BSP produces a
full-featured VxWorks image. Many standard VxWorks features are included in
the image by default. In addition to a list of default configuration components, this
section provides configuration information for supported optional components as
well as basic instructions for building a VxWorks image.

2.3.1 Default Configuration Components

The VxWorks simulator default configuration includes support for many VxWorks
features including:

» the kernel shell (and its C and command interpreters)

= the Wind River System Viewer

= kernel hardening features (such as text segment write protection)

= error detection and reporting features

= the ROM-based file system (ROMFS)

= shared libraries and shared data regions

= POSIX support

* basic memory management support INCLUDE_MMU_BASIC) (See
3.4.1 Memory Management Unit, p.22)

» real time process (RTP) support

» the network stack

» virtual disk support (See 4.3.2 Virtual Disk Support, p.37)

* non-volatile RAM (See 4.3.3 Non-Volatile RAM Support, p.38)

2 Getting Started
2.3 Configuring and Building a VxWorks Image

For more information on these features, see the VxWorks Kernel Programmer’s Guide
and the VxWorks Application Programmer’s Guide. For information on using these
features with the VxWorks simulator, see 4. Using the VxWorks Simulator.

NOTE: Networking for the VxWorks simulator is configured by default. However,
the network is not automatically enabled because no network device is initialized.
To initialize a network device, specify the simnet device using the -d option when
launching the VxWorks simulator or specify a network interface using the -ni
option. For more information on these options, see 2.4.1 vxsim Configuration
Options, p.9.

2.3.2 Configuring Optional Components

VxMP

The VxWorks simulator provides optional support for the following VxWorks
features. To take advantage of these features, you must configure and build a new
VxWorks image for the VxWorks simulator. For more information on building and
configuring a VxWorks image, see 2.3.3 Building Your VxWorks Image, p.8.

The VxWorks simulator optionally supports the multiprocessor capabilities
available using the VxWorks VxMP feature. To include support for this feature,
you must include the INCLUDE_SM_COMMON, INCLUDE_BOOT_LINE_INIT, and
INCLUDE_SM_OBJ components in your VxWorks image.

To tune the shared memory size allocated for VxMP (default: 8 KB), use the
SM_MEM_SIZE parameter. To modify the shared memory pool size assigned to
shared objects, change the SM_OBJ_MEM_SIZE parameter.

Shared Memory END Driver

The VxWorks simulator optionally includes shared memory END driver support
(smEnd). To include smEnd driver support, the macro INCLUDE_SM_NET must be
defined into the BSP configuration. To define the smEnd driver IP address, use the
following VxWorks simulator command line option

% vxsim -b backplaneAddress
or:

% vxsim -backplane backplaneAddress

Wind River VxWorks Simulator
User's Guide, 6.6

2.3.3 Building Your VxWorks Image

Table 2-1

The process for configuring and building a VxWorks image is the same for the
VxWorks simulator as it is for target hardware. The VxWorks simulator BSP is
comparable to a standard VxWorks BSP for a hardware target architecture and uses
a standard VxWorks Makefile. However, the BSP makefile builds only the images
vxWorks and vxWorks.st (standalone VxWorks). Your VxWorks image can be built
using either the Wind River Compiler or the Wind River GNU Compiler.

To build a default VxWorks image, you can create a VxWorks image project using
Wind River Workbench New VxWorks Image Project wizard. To open the wizard,
select File > New > VxWorks Image Project. Base your project on the appropriate
VxWorks simulator BSP for your host type. Table 2-1 lists the available simulator
BSPs.

VxWorks Simulator BSPs

Host Type BSP Name
Windows simpc
Solaris solaris
Linux linux

For more information on building VxWorks image projects, see the Wind River
Workbench User’s Guide: Creating VxWorks Image Projects.

You can also build a VxWorks image project from the command line using the
command line project facility, vxprj. For more information on building a VxWorks
image project using vxprj, see the VxWorks Command-Line Tools User’s Guide:
Building Kernel and Application Projects.

2.4 Launching the VxWorks Simulator

This section provides information on launching the VxWorks simulator from your
development environment.

2 Getting Started
2.4 Launching the VxWorks Simulator

NOTE: On Solaris simulators, your path environment variable must include
/usr/openwin/bin so that your host can locate xterm. If xterm is not in your path,
your VxWorks simulator connection will fail.

2.4.1 vxsim Configuration Options

Table 2-2

The vxsim executable provides the equivalent functionality of a boot load
program. However, you cannot build or customize vxsim as you can other boot
loaders.

You can use vxsim to load an image from the VxWorks simulator BSP directory.
The vxsim utility supports a set of command-line configuration options that you
can use to specify the boot line parameters for the image that will be loaded. The
command-line interface also supports additional convenience options that let you
handle things such as configuring multiple interfaces for the VxWorks simulator
instance. Use vxsim -help to see a complete list of supported options.

NOTE: To preserve boot line parameters after a reboot, you must use the
bootChange() routine. This routine is executed in the kernel shell. For more
information, see 4.2.1 Boot Parameters, p.34.

Command-Line Options for the VxWorks Simulator

VxWorks Simulator Option Description

-backplane inetOnBackplane Backplane address of the target system.
-b inetOnBackplane

-device bootDevice Type of device to boot from, select passDev or

-d bootDevice simnet. Default: passDev®

-ethernet inetOnEthernet Internet address to assign to the target system (the
-e inetOnEthernet boot interface).

-exitOnError Upon error, exit the VxWorks simulator without

prompting for user input.

-file fileName File containing the VxWorks image to load. If no
-f fileName file is specified, the vxWorks file, if any, in the
current directory is loaded.

-flags flags Configuration flags. Default: 0.

Table 2-2

Wind River VxWorks Simulator

User's Guide, 6.6

Command-Line Options for the VxWorks Simulator (cont'd)

VxWorks Simulator Option

Description

-gateway gatewaylnet
-g gatewaylnet

-help

-hostinet hostInet
-h hostInet

-hostname hostName
-hn hostName

-kill processNumber
-k processNumber

-logfile log file
-1 log file

-ncpu cpuNumber

-Nn -nvram

-netif additionallnterface
-ni additionallnterface

-other other
-0 other

-password ftpPassword
-pw ftpPassword

-processor number
-p number

-prot-level protectionLevel
-pl protectionLevel

Internet address of the gateway.

Print a help message listing the command-line
options.

Host Internet address.

Host machine to boot from. The default value for
this option on a Windows system is host. On a
UNIX system, the default value is always the
actual host name.

Kills the VxWorks simulator referenced by
processNumber.

Enables output logging (a Windows-only option).
Default: VxSIMn.log.

Limits the number of CPUs to cpuNumber. Allows
a VxWorks simulator image configured with n
CPUs to run with 1 to n CPUs.

VxWorks simulator non-volatile RAM file.

VxWorks simulator additional network interfaces.

Unused, available for applications.

User password (for FIP only).

Sets the processor number, which is effectively an
identifier for this simulator instance. Default
value: 0.

Sets the VxWorks simulator memory protection
level. Values include min (0), max (1), or integer.
Default value is max (1).

10

Table 2-2

2 Getting Started
2.4 Launching the VxWorks Simulator

Command-Line Options for the VxWorks Simulator (cont'd)

VxWorks Simulator Option Description

-size memorySize VxWorks simulator memory size in bytes. Default:

-memsize memorySize 32 MB.

-startup script Startup script for the kernel shell.

-s script

-targetname targetName Name of the target. Default: VxSim, for the

-tn targetName VxSim0 instance, VxSimCpuNum for all other
instances.

-tmpdir directory Directory for temporary VxWorks simulator files.

Default: TEMP environment variable value, on
Windows system; /tmp on a Solaris or Linux

system.
-unit unitNumber Network device unit number (for the boot
interface).
Default: 0.
-user user User name used to access the host.
-username user
-vaddr address Specifies the VxWorks virtual base address.
-vsize virtualSize Specifies the VxWorks virtual memory size.

Default: 1 GB.

-version Print the VxWorks simulator version.
-V

a. For an actual hardware target, this option is used to specify the device that is used to
access the VxWorks image. Because the VxWorks simulator always accesses the
VxWorks image from the host file system, this field is used to mimic real target
behavior. Specifying simnet for this option indicates that a simulated boot device
should be initialized. In all other cases, passDev is used as the boot device type. For
example, the tutorial in 6.3 Basic Simulated Network with Multiple Simulators, p.78 uses
the passDev option for the simulated router and the simnet option for each of the
simulated network devices.

11

Wind River VxWorks Simulator
User's Guide, 6.6

NOTE: When issuing these command options using the vxsim command from the
command line on a Linux or Solaris host, use double quotes around the option
values. For example, use vxsim -ni "simnet" in place of vxsim -ni simnet. The
double quotes should not be used when passing options in Workbench or from the
command line on a Windows host as the command will fail.

When launching your VxWorks simulator from Workbench (Target >

New Connection > Wind River VxWorks 6.x Simulator Connection), the
command-line options listed in Table 2-2 are configured using the

New Connection wizard. Certain options (for example, the -ni option) are not
available as specific options in the New Connection wizard dialogs. These options
can be passed directly to the VxWorks simulator using the Other VxWorks
Simulator Options field of the VxWorks Simulator Miscellaneous Options
dialog.

2.4.2 Launching a VxWorks Simulator Instance from the Command Line

To start a VxWorks simulator instance from the command line, use the vxsim
command in the VxWorks development shell. Using this command is similar to
using a boot program to load an image. As options, vxsim lets you specify values
for the parameters typically supplied in a boot line (use vxsim -help to list the
option descriptions).

NOTE: You must use the bootChange() routine in order to make boot-parameter
changes that survive a reboot. Even if non-volatile RAM support is included, boot
parameters will be lost once the simulator is exited because boot parameters are
derived from the VxWorks simulator command line.

To start a VxWorks simulator using the default configuration values, type the
following in the VxWorks development shell:

% vxsim -£ pathToVxWorkslmage

If you run vxsim from the directory containing the VxWorks image that you want
to load, you can simply type:

)

% vxsim

If your path does not include vxsim, ensure that your VxWorks environment is
properly set. For more information, see the VxWorks Command-Line Tools User’s
Guide: Creating a Development Shell with wrenv.

12

2 Getting Started
2.4 Launching the VxWorks Simulator

Modifying the Windows Simulator Console Appearance

When you launch a VxWorks simulator instance on a Windows host, the target
server launches a console connected to the target. To change the font used in the

console, right-click the top bar and select Font in the resulting menu. For example,

Figure 2-1 shows the simulator console in Windows with the right-click menu

open.

Figure 2-1 Simulator Console

11111 111 111111111 11
1 111111111 111111 11111111 11 11 Mave
11 1111111 11111111 111111 1 11 11 Size
111 11111 1 111 1 1111 111 111111111 1111 11 11
1111 111 11 1 111 117 11111 111111 11T 1111111 11 2 Minimize
11111 1 1111 11111 117111111 1111 11 1111 11 -
111111 11111 111111 1 11111 1111 11 1111 110 Maximize
1111111 11111 1 111111 1 111 1111 117 1111 11
11111111 11111 111 1111111 1 1111111 1111 11
1711111111111 1111111 1111111111
1711111111111 1111111 111111111 Development System
1111111111011 11111111 11111111 X Close —
1111111111111 1111111111111 VxlWorks 6.6
1711111111111 1111111111111 KERMNEL: WIND wversion 2.11
1111111111111 111111111111 Copyright Wind Riwver Systems, Inc., 1984-2007
CRP: Windows 5.1 Service Pack 2. Processor #0.
Memory Si=me: O0x1E00000. EEP wversion 2.0/73.

Created: fAug 12 2007, 13:48:509
EDs&R Policy Mode: Deployed
WDE Comm Type: WDOB_COMM_FIPE
WDOE: Ready.

Starting Instances to Run on a Simulated Subnet

If you intend to use network services, do not start a VxWorks simulator instance
until you start the VxWorks simulator network daemon is (for more information,
see 5.3 Setting Up the Network Daemon, p.50). For the most part, you need only
concern yourself with those devices related to the network interface, specifically,
the simnet device, and its address information (IP address and network mask). If
a simulator requires only a single interface, you can specify simnet as the boot
device and its IP address using the -e parameter. For example:

% vxsim -d simnet -e 192.168.200.1
% vxsim -4 simnet -e 192.168.200.2 -p 1

Assuming the following default subnet:

SUBNET_START default {
SUBNET_EXTERNAL = yes;

13

Wind River VxWorks Simulator
User's Guide, 6.6

SUBNET_EXTPROMISC = yes;
SUBNET_ADDRESS = "192.168.200.0";
Yi

The two vxsim commands shown above start two VxWorks simulator instances
that attach to the default subnet 192.168.200.0. In the second vxsim command, the
-p parameter assigns the value 1 as a “processor number,” to the second VxWorks
simulator instance. If you do not specify a -p number, the default value of 0 is
applied.

A VxWorks simulator instance can also be configured with multiple network
interfaces (a router configuration) using the -ni option. For more information on
this configuration, see 5.5.1 Starting a Simulator Instance With Multiple Network
Interfaces, p.70.

For more information on setting up a simulated network, see 5. Networking with the
VxWorks Simulator.

2.4.3 Launching the VxWorks Simulator From Workbench

The VxWorks simulator can be launched from Workbench. To do this, you must
create a VxWorks simulator target connection using the Target Manager. This is
accomplished by launching the Workbench New Connection wizard. Select
Target > New Connection... and select Wind River VxWorks 6.x

Simulator Connection as your connection type. You can then use the wizard to
configure your VxWorks simulator.

For more information on creating a VxWorks simulator connection, refer to the
Wind River Workbench User's Guide: New VxWorks Simulator Connections. For
information on establishing a target connection, refer to the Wind River Workbench
User’s Guide: Connecting to Targets. More detailed instructions are also provided as
part of the tutorials in 6. Networking Tutorials.

2.4.4 Rebooting and Exiting the VxWorks Simulator

As with other targets, you can reboot the VxWorks simulator by typing Ctrl+X in
the VxWorks simulator console window. On Windows systems, you can exit the
VxWorks simulator by closing the VxWorks simulator window. On Solaris and
Linux systems, you must type Ctrl+\ in the VxWorks simulator console window
to exit.

14

2 Getting Started
2.4 Launching the VxWorks Simulator

NOTE: Issuing the exit command in the kernel shell terminates the shell session
only and cannot be used to exit the VxWorks simulator. To programmatically exit
the VxWorks simulator (which may be useful for scripting), you can reboot
(BOOT_NO_AUTOBOOT). If you wish to use this option, you must start the
VxWorks simulator with the -exitOnError option.

2.4.5 Accessing the VxWorks Simulator from a Remote Host

You can access a VxWorks simulator target from a remote host (a host other than
the one running the VxWorks simulator instance) using the following process:

1.

Enable IP forwarding on the host that will be running the VxWorks simulator
instance.

* On Windows hosts, start the Routing and Remote Access service.
* On Solaris hosts, run the following with root permissions:
ndd -set /dev/tcp ip_ forwarding 1
= On Linux hosts, run the following with root permissions:
S # echo "1" > /proc/sys/net/ipv4/ip_forward
or, edit /etc/sysconfig/metwork and add the following line:
FORWARD_IPV4=yes
Then, restart the host.
Start a VxWorks simulator instance on an external subnet.

Specify the route to access the remote host on the VxWorks simulator instance.
The gateway is the address of the host running the VxWorks simulator
instance on the simulated subnet (subnetAddress.254).

Note that this can be done using VxWorks simulator boot parameters as
follows (this example assumes the IP address of the host running the VxWorks
simulator instance is 90.0.0.1):

% vxsim -d simnet -e 192.168.200.1 -h 90.0.0.1 -g 192.168.200.254

This sets a route that enables the VxWorks simulator instance to send a packet
to any host reachable from 90.0.0.1.

On the remote host, specify the route to access the VxWorks simulator
instance. The gateway is the address of the host running the VxWorks
simulator instance on the remote host subnet.

15

Wind River VxWorks Simulator
User's Guide, 6.6

You can now connect to the VxWorks simulator instance from the remote host.

16

Introduction to the
VxWorks Simulator
Environment

3.1 Introduction 17

3.2 Understanding the VxWorks Simulator BSP 18
3.3 Building Applications 19

3.4 Interface Variations 21

3.5 Architecture Considerations 24

3.1 Introduction

This chapter discusses the differences between the VxWorks simulator
development environment and the standard VxWorks development environment.
In general, the VxWorks simulator environment differs very little from the
development environment for any other target hardware system. The most notable
differences are the addition of the VxWorks simulator network daemon, which is
discussed in 5.3 Setting Up the Network Daemon, p.50, and variations in the
VxWorks simulator BSP and architecture behavior, which are discussed in the
following sections.

17

Wind River VxWorks Simulator
User's Guide, 6.6

3.2 Understanding the VxWorks Simulator BSP

Aside from the exceptions noted in this section, the VxWorks simulator BSP is
similar to any other VxWorks BSP for a target hardware board and provides similar
functionality.

sysLib.c

The sysLib.c module contains the same essential routines: sysModel(),
sysHwInit(), and sysClkConnect() through sysNvRamSet(). However, because
there is no bus, sysBusToLocalAdrs() and related routines have no effect in the
VxWorks simulator environment.

The BSP file sysLib.c can also be extended to emulate the eventual target hardware
more completely. For more information on sysLib.c, see the VxWorks BSP
Developer’s Guide.

Standard 1/0

The file winSio.c (or unixSio.c for Linux and Solaris systems) ultimately calls the
host OS read() and write() routines on the standard input and output for the
process. Nevertheless, it supports all of the functionality provided by tyLib.c.

config.h
The configuration header file, config.h, is minimal:
» It does not reference a bspname.h file.

= Theboot line has no fixed memory location. Instead, it is stored in the variable
sysBootLine in sysLib.c.

Makefile

The VxWorks simulator Makefile is similar to the standard version used for
VxWorks target hardware BSPs. However, it does not build boot ROM images
(although the makefile rules remain intact); it can only build vxWorks and
vxWorks.st (standalone) images. The final linking does not arrange for the TEXT
segment to be loaded at a fixed area in RAM, but follows the usual loading model.
The makefile macro MACH_EXTRA is provided so that users can easily link their
application modules into the VxWorks image if they are using manual build
methods.

18

3 Introduction to the VxWorks Simulator Environment
3.3 Building Applications

3.3 Building Applications

Wind River highly recommends that you build VxWorks simulator modules using
the vxprj command-line facility or Wind River Workbench. However, if you wish
to customize your build, you may need the information in the following sections.

3.3.1 Defining Compiler Options

Table 3-1

The Workbench build mechanism for the VxWorks simulator uses two
preprocessor constants, CPU and TOOL, to define compiler options for a specific
build target. The CPU variable ensures that VxWorks and your applications are
compiled with the appropriate features enabled. The TOOL variable defines the
toolchain to use for compiling and linking modules.

VxWorks simulator modules can be built with either the Wind River Compiler or
the GNU compiler. To build modules using the Wind River Compiler, define TOOL
as diab. To build modules using the GNU compiler, define TOOL as gnu.

NOTE: Modules built with either gnu or diab can be linked together in any
combination, except for modules that require C++ support. Cross-linking of C++
modules is not supported in this release.

Applications for the VxWorks simulator can be built to run in either the VxWorks
kernel or a VxWorks RTP.

Table 3-1 lists the available CPU and TOOL definitions for the VxWorks simulator.
It also provides sample command line options specific to the VxWorks simulator
architecture. For more information on the available compiler options, see the
compiler documentation for Pentium (Windows and Linux hosts) or SPARC
(Solaris hosts).

VxWorks Simulator Compiler Options

CPU Definition

SIMNT

Host
(Run Type) TOOL Compiler Command-Line Options
Windows diab -tX86LH:vxworks65 -DCPU=SIMNT
(kernel)

gnu -mcpu=i486 -march=i486 -DCPU=SIMNT

19

Wind River VxWorks Simulator
User's Guide, 6.6

Table 3-1 VxWorks Simulator Compiler Options (cont'd)
Host
CPU Definition (Run Type) TOOL Compiler Command-Line Options
SIMLINUX Linux diab -tX86LH:vxworks65 -DCPU=SIMLINUX
(kernel)
gnu -mcpu=i486 -march=i486 -DCPU=SIMLINUX
SIMSPARCSOLARIS Solaris diab -tSPARCFH:vxworks65 -DCPU=SIMSPARCSOLARIS
(kernel)
gnu -DCPU=SIMSPARCSOLARIS
Solaris diab -tSPARCFH:rtpsim -DCPU=SIMSPARCSOLARIS
(RTP)
gnu -mrtp -DCPU=SIMSPARCSOLARIS
SIMPENTIUM Windows diab -tX86LH:rtpsim -DCPU=SIMPENTIUM
and Linux
UQTP) gnu -mcpu=i486 -march=i486 -DCPU=SIMPENTIUM

For example, to specify the CPU value for an application that will run in an RTP on
a Windows (or Linux) host, use the following command line option when you
invoke the compiler:

-DCPU=SIMPENTIUM

On all hosts, the VxWorks simulator uses ELF object module format (OMF). Your
VxWorks installation also includes a VxWorks simulator binary for each supported
host system. You can use this binary as a boot loader for a VxWorks image which
you can configure and build using exactly the same compiler options you use to
build a VxWorks image for a hardware target architecture. Thus, if you are
compiling a VxWorks image for a Linux or Windows VxWorks simulator, you
should use the same compiler as the Intel Architecture. If you are compiling for the
Solaris VxWorks simulator, you must compile for the SPARC architecture.

If you attempt to load an ELF image for another architecture onto a VxWorks
simulator, you will get a load error. For example, if you attempt to load a PPC32
ELF image from the kernel shell:

-> 1d < host:C:/WindRiver/workspace/PPC_ELF.out

1d() : error loading file (errno = 0x610001).

value = 0 = 0x0
For information on available compiler options, see the Wind River Compiler for x86
User’s Guide or the Wind River Compiler for SPARC User’s Guide.

20

3 Introduction to the VxWorks Simulator Environment
3.4 Interface Variations

3.3.2 Compiling Modules for Debugging

To compile C and C++ modules for debugging, you must use the -g flag to generate
debug information. An example command line for the Wind River Compiler is as
follows:

% dcc -tX86LH:vxworks65 -DCPU=SIMNT -IinstallDir/target/h -g test.cpp

In this example, installDir is the location of your VxWorks tree and -DCPU specifies
the CPU type.

An equivalent example for the Wind River GNU Compiler is as follows:

% ccpentium -mcpu=i486 -march=i486 -DCPU=SIMNT -IinstallDir/target/h -g test.cpp

NOTE: Debugging code compiled with optimization is likely to produce
unexpected behavior, such as breakpoints that are never hit or an inability to set
breakpoints at some locations. This is because the compiler may re-order
instructions, expand loops, replace routines with in-line code, and perform other
code modifications during optimization, making it difficult to correlate a given
source line to a particular point in the object code. Users are advised to be aware of
these possibilities when attempting to debug optimized code. Alternatively, users
may choose to debug applications without using compiler optimization. To
compile without optimization using the Wind River Compiler, compile without
the -XO option or use the -Xno-optimized-debug option. To compile without
optimization using the GNU compiler, compile without a -O option or use the -O0
option.

3.4 Interface Variations

This section describes particular functions and tools that are specific to VxWorks
simulator targets in any of the following ways:

» available only for VxWorks simulator targets
» parameters specific to VxWorks simulator targets
» special restrictions on, or characteristics of, VxWorks simulator targets

For complete documentation, see the reference entries for the libraries, routines,
and tools discussed in the following sections.

21

Wind River VxWorks Simulator
User's Guide, 6.6

3.4.1 Memory Management Unit

Simulation

This section describes the memory management unit implementation for the
VxWorks simulator and how it varies from the standard VxWorks MMU
implementation.

The VxWorks simulator provides a simulated hardware memory management
unit. The simulated MMU provides features comparable to those found on typical
hardware MMUs. The simulation uses features provided by the host operating
system to map, unmap, and protect pages in memory. MMU simulation is
provided for all supported host operating systems.

Translation Model

Page Size

All VxWorks simulator implementations share a common programming model for
mapping memory pages. The data structure sysPhysMemDesc[], defined in
sysLib.c describes the physical memory address space. This data structure is made
up of configuration constants for each page or group of pages.

Use of the VM_STATE_CACHEABLE constant for each page or group of pages, sets
the cache to copy-back mode.

In addition to VM_STATE_CACHEABLE, the following additional constants are
supported:

= VM_STATE CACHEABLE_NOT
= VM_STATE _WRITEABLE

= VM_STATE_WRITEABLE_NOT
= VM_STATE_VALID

= VM_STATE_VALID_NOT

For more information on these configuration constants, see the VxWorks Kernel
Programmer’s Guide.

The VxWorks simulator uses a page size that is determined by the memory page
mapping routines in the host operating system. On Solaris and Linux-based
simulators, this page size is 8 KB. On Windows simulators, this page size is 64 KB.

22

3 Introduction to the VxWorks Simulator Environment
3.4 Interface Variations

Limitations

The VxWorks simulator MMU implementation does not provide support for
supervisor/user mode.

Running the VxWorks Simulator Without MMU Support

You can configure the VxWorks simulator to run without an MMU. For more
information on how to configure your VxWorks image for this type of operation,
see the VxWorks Kernel Programmer’s Guide: Memory Management.

To run the VxWorks simulator without an MMU, Wind River recommends that
you change the MMU page size (VM_PAGE_SIZE parameter) in your VxWorks
image to 0x1000 (the default value is 0x2000 on Solaris and Linux simulators and
0x10000 on Windows simulators) in order to limit the amount of physical memory
required to run your applications.

3.4.2 RTP Considerations
Because the VxWorks simulator MMU implementation does not support
supervisor/user mode, it is not possible to prevent a task running in an RTP from
writing in the kernel memory space. Therefore, on the VxWorks simulator
architecture, an RTP task can potentially crash a kernel task.
3.4.3 File System Support
This section discusses the file systems supported by the VxWorks simulator. For
more information on file systems, see the VxWorks Kernel Programmer’s Guide.
Pass-Through File System (passFS)
By default, the VxWorks simulator uses a pass-through file system (passFS) to

access files directly on the host system. For more information on using passFS with
the VxWorks simulator, refer to 4.3.1 Pass-Through File System (passES), p.36.

23

Wind River VxWorks Simulator
User's Guide, 6.6

Virtual Disk Support

The VxWorks simulator provides virtual disk support which allows you to
simulate a disk block device. The simulated disk block device can be used to access
any file system supported by VxWorks. For more information on virtual disk
support for the VxWorks simulator, refer to 4.3.2 Virtual Disk Support, p.37.

3.4.4 WDB Back End

The VxWorks simulator supports the WDB pipe and WDB RPC target agent
communication back ends; the WDB pipe back end is used by default. If network
support is enabled on your VxWorks simulator target, the WDB RPC back end can
also be used.

3.4.5 Connection Timeout

Occasionally, VxWorks simulator sessions lose their target server connections
when the host CPU becomes overwhelmed by too many requests. If you find that
your application is frequently losing its target server connection, you can adjust
the back end request timeout (-Bt) and back end request resend number (-Br)
parameters from Workbench using the Advanced Target Server Options in your
VxWorks Simulator Connection. For more information on resolving connection
timeouts, refer to the Wind River Workbench User’s Guide: New Target Server
Connections.

3.5 Architecture Considerations

This section describes characteristics of the VxWorks simulator architecture that
you should be aware of as you write a VxWorks application. The following topics
are addressed:

= byte order

* hardware breakpoint
» floating-point support
= interrupts

* memory layout

24

3 Introduction to the VxWorks Simulator Environment
3.5 Architecture Considerations

3.5.1 Byte Order

The Solaris simulator uses a big-endian environment. The Windows and Linux

simulators use a little-endian environment.

3.5.2 Hardware Breakpoint

The VxWorks simulator does not support hardware breakpoints.

3.5.3 Floating-Point Support

The VxWorks simulator does not support hardware floating-point instructions.
However, VxWorks provides a floating-point library that emulates the following
mathematical routines. All ANSI floating-point routines have been optimized

using libraries from U. S. Software.

acos() asin() atan() atan2()
cos() cosh() exp() fabs()
floor() fmod() log() log10()
pow() sin() sinh() sqrt()
tan() tanh()

The following floating-point routines are not available on the VxWorks simulator:

cbrt() ciel() infinity() irint()
iround() log2() round() sincos()
trunc() cbrtf() infinityf() irintf()
iroundf() log2£() roundf() sincosf()
truncf()

In addition, the following single-precision routines are not available:

acosf() asinf() atanf() atan2f()
cielf() cosf() expf() fabsf()
floorf() fmodf() logf() log10f£()
powf() sinf() sinhf() sqrtf()
tanf() tanhf()

25

Wind River VxWorks Simulator
User's Guide, 6.6

3.5.4 ISR Stack Protection

ISR stack overflow and underflow protection is supported on Solaris and Linux
simulators. The VxWorks simulator does not require ISR stack overflow and
underflow protection on Windows simulators because the Windows operating
system automatically detects this type of error condition and handles it before
VxWorks can take action.

For more information on ISR stack protection, see the VxWorks Kernel Programmer’s
Guide: Memory Management.

3.5.5 Interrupts

This section discusses interrupt simulation on the VxWorks simulator and how
interrupts are handled in the simulator environment.

Solaris and Linux Systems

On Solaris and Linux simulators, the hardware interrupt simulation is performed
using host signals. For example, the VxWorks simulator uses the SIGALRM signal
to simulate system clock interrupts.

Furthermore, all host file descriptors (such as standard input) can be put in
asynchronous mode, so that the SIGPOLL signal is sent to the VxWorks simulator
when data becomes available. For more information on how to configure a host
device to generate interrupts when data is available, refer to A. Accessing Host
Resources.

For the VxWorks simulator, signal handlers provide the equivalent functionality of
interrupts available on other target architectures. You can install ISRs in the
VxWorks simulator to handle these interrupts.

NOTE: Not all VxWorks routines can be called from ISRs. For more information,
see the VxWorks Kernel Programmer’s Guide.

To run ISR code during a future system clock interrupt, use the watchdog timer
facilities. To run ISR code during auxiliary clock interrupts, use the
sysAuxClkxxx() routines.

26

Table 3-2

3 Introduction to the VxWorks Simulator Environment
3.5 Architecture Considerations

Table 3-2 shows how the Linux and Solaris simulator interrupt vector tables are
assigned.

Interrupt Assignments (Linux and Solaris Simulators)

Interrupt Vectors Description

1 Host signal 1

SIGUSR1 User signal 1

SIGUSR2 User signal 2

32 Host signal 32

33 Interrupt vector for host file descriptor 1 (SIGPOLL)
288 Interrupt vector for host file descriptor 256 (SIGPOLL)

You can create pseudo-drivers to use these interrupts. You must connect your
interrupt code with the standard VxWorks intConnect() mechanism.

For example, to install an ISR that logs a message whenever the host signal
SIGUSR?2 arrives, execute the following commands:

On Solaris:

% intConnect (17, logMsg, "Help!\n")
On Linux:

$ intConnect (12, logMsg, "Help!\n")

Next, send the SIGUSR2 signal to the VxWorks simulator from the host. This can

be done using the kill command. The ISR (logMsg() in this case) runs every time

the signal is received.

NOTE: In your VxWorks applications, avoid using the preprocessor constants
SIGUSRI1 or SIGUSR2. VxWorks defines its own values for these constants and

those values differ from the host definitions. Therefore, you must specify the host

signal numbers explicitly in your VxWorks application code.

Only SIGUSR1 and SIGUSR?2 can be used to represent user-defined interrupts (see

Table 3-3).

27

Table 3-3

Wind River VxWorks Simulator
User's Guide, 6.6

User-Defined Interrupts (Linux and Solaris Simulators)

Signal Solaris Value Linux Value
SIGUSR1 16 10
SIGUSR2 17 12

Windows Systems

Table 3-4

On Windows the VxWorks simulator uses Windows messages to simulate
hardware interrupts. For example, the VxWorks simulator uses messages to
simulate interrupts from the network connections, the pipe back end, and so forth.

For the VxWorks simulator, messages provide the equivalent functionality of
interrupts available on other target architectures. You can install ISRs in the
VxWorks simulator to handle these interrupts.

NOTE: Not all VxWorks routines can be called from ISRs. For more information,
see the VxWorks Kernel Programmer’s Guide.

To run ISR code during a future system clock interrupt, use the watchdog timer
facilities. To run ISR code during auxiliary clock interrupts, use the
sysAuxClkxxx() routines.

Table 3-4 shows how the Windows simulator interrupt vector table is assigned.

Interrupt Assignments (Windows Simulators)

Interrupt Vectors Description

0x0000 system clock interrupt

0x0001 auxiliary clock interrupt
0x0002 timestamp rollover interrupt
0x0003 back end pipe interrupt

0x0004 SIO driver interrupt

0x0005 bus interrupt

0x0006-0x0009 inter-processor interrupts (IPIs)

28

3 Introduction to the VxWorks Simulator Environment
3.5 Architecture Considerations

Table 3-4 Interrupt Assignments (Windows Simulators) (cont'd)

Interrupt Vectors Description

0x0009-0x00ef reserved for internal use
0x00£0-0x00£f Wind River Media Library interrupt range

0x0100-0x017f ULIP interrupt range

0x180-0x01£f simulated network interrupt range

0x0200-0x02£f user interrupt range

You can create pseudo-drivers to use these interrupts. You must connect your
interrupt code using the standard VxWorks intConnect() mechanism.

For example, the following code installs an ISR that logs a message whenever an
auxiliary clock message arrives. In this example, the auxiliary clock rate is
configured to generate two ticks per second using sysAuxClkRateSet() so that the
message is logged every 500 ms.

% sysAuxClkRateSet (2)

value = 0 = 0x0

% sysAuxClkEnable ()

value = 0 = 0x0

% intConnect (0x1l, logMsg, "Aux Clock Int!\n")
The user interrupt range can be used by the host side user application. For more
information on using user interrupts, refer to A. Accessing Host Resources.

3.5.6 Memory Layout
The VxWorks memory layout is the same for all VxWorks simulators. Figure 3-1
shows the memory layout, labeled as follows:

Boot Line
ASCII string of boot parameters.

Exception Message
ASCII string of the fatal exception message.

System Image
The VxWorks system image itself (three sections: text, data, and bss). The entry
point for VxWorks is at the start of this region.

29

Wind River VxWorks Simulator
User's Guide, 6.6

Host Memory Pool
Memory allocated by the host tools. The size depends on the WDB_POOL_SIZE

macro.

System Memory Pool
Size depends on the size of the system image. The sysMemTop() routine
returns the address of the end of the free memory pool.

Interrupt Stack
Size is defined by ISR_STACK_SIZE under INCLUDE_KERNEL. The location

depends on the system image size.

Interrupt Vector Table
Table of interrupt vectors.

Shared Memory Address Space
Address space reserved for shared memory, which includes the shared
memory anchor, the shared memory pool, and the address space for VxMP
shared memory objects (if included) or the shared memory TIPC pool (if
included).

Networking Address Space
Address space for VxWorks simulator networking (if network support is
included).

30

Figure 3-1

3 Introduction to the VxWorks Simulator Environment

Boot Line
(BOOT_LINE_SIZE)

Exception Message

System Image
text

Host Memory Pool
(WDB_POOL_SIZE)

System Memory Pool

" nterruptStack |
(ISR_STACK_SIZE)

User Reserved Memory
(USER_RESERVED_MEM)

ED&R Persistent Memory
(PM_RESERVED_MEM)

Shared Memory Address Space
(SM_TOTAL_SIZE)

Networking Address Space
(SIMNET_MEM_SIZE)

3.5 Architecture Considerations

VxWorks System Memory Layout (VxWorks Simulator)

LOCAL_MEM_LOCAL_ADRS

sysBootLine = BOOT_LINE_ADRS =
LOCAL_MEM_LOCAL_ADRS+BOOT_LINE_OFFSET

sysExcMsg = EXC_MSG_ADRS =
LOCAL_MEM_LOCAL_ADRS+EXC_MSG_OFFSET

RAM_LOW_ADRS = LOCAL_MEM_LOCAL_ADRS+0x10000

KEY
_end
[] Available
_end + WDB_POOL_SIZE
S Reserved

intVecBaseGet()

sysMemTop()=LOCAL_MEM_LOCAL_ADRS+LOCAL_MEM_SIZE-
(USER_RESERVED_MEM+PM_RESERVED_MEM)

sysMemTop()=LOCAL_MEM_LOCAL_ADRS+
LOCAL_MEM_SIZE- PM_RESERVED_MEM

SM_ANCHOR_ADRS=
LOCAL_MEM_LOCAL_ADRS+LOCAL_MEM_SIZE

SIMNET_MEM_ADRS= SM_MEM_ADRS+SM_TOTAL_SIZE

SIMNET_MEM_ADRS + SIMNET_MEM_SIZE

31

Wind River VxWorks Simulator
User's Guide, 6.6

32

Using the VxWorks Simulator

4.1 Introduction 33

4.2 Configuring the VxWorks Simulator 34

4.3 Configuring Hardware Simulation 36

4.4 Using VxWorks SMP with the VxWorks Simulator 43
4.5 Migrating Applications to a Hardware-Based System 45

4.1 Introduction

This chapter discusses how to use the VxWorks simulator for VxWorks
development. It includes information on configuration, hardware simulation, and
basic guidelines and limitations for migrating your application to a target
hardware system.

33

Wind River VxWorks Simulator
User's Guide, 6.6

4.2 Configuring the VxWorks Simulator

This section discusses configuration issues particular to the VxWorks simulator
environment, including boot parameter configuration. For more information on
general VxWorks configuration, see the VxWorks Kernel Programmer’s Guide.

4.2.1 Boot Parameters

Using the command-line interface, you can specify all parameters available in the
standard VxWorks boot line for a VxWorks simulator target. However, you lose
these parameters when you exit the simulator even if you include non-volatile
RAM support. This occurs because, even when the specified boot parameters are
saved in a file (nvram.vxWorkscpuNum) similar to actual hardware target
behavior, they are only used for a target reboot, not when the target is exited or
restarted.

Once the VxWorks simulator starts, you can use the VxWorks bootChange()
routine to modify boot line parameters. The new parameters are preserved and
taken into account on the next reboot.

NOTE: The bootChange() routine can be used to boot another VxWorks image.
However, the new image must be built with the same memory configuration. That
is, the LOCAL_MEM_SIZE and LOCAL_MEM_LOCAL_ADRS macros in the BSP
config.h file must be identical.

4.2.2 Memory Configuration

The VxWorks simulator displays its memory settings at startup, as shown in the
following example:

Virtual Base Address: 0x10000000

Virtual Top Address: 0x50000000 Virtual Size: 0x40000000 (1024Mb)

Physical Base Address: 0x10000000

Physical Top Address: 0x12000000 Physical Size: 0x02000000 (32Mb)
The following sections discuss the VxWorks simulator memory parameters and
describe how the parameters can be modified.

34

4 Using the VxWorks Simulator
4.2 Configuring the VxWorks Simulator

Physical Memory Address Space

The VxWorks simulator physical memory address space is defined by the
LOCAL_MEM_LOCAL_ADRS and LOCAL_MEM_SIZE parameters in the VxWorks
simulator BSP.

The VxWorks simulator physical memory size can be dynamically modified using
the VxWorks simulator command-line interface (using the -size or -memsize
command line options).

NOTE: The LOCAL_MEM_ADRS parameter must be aligned to 1 MB (0x100000)
and the LOCAL_MEM_SIZE parameter must be a multiple of 1 MB.

NOTE: If you modify LOCAL_MEM_ADRS, you may need to use the -vaddr
command line option to set a virtual address value that is coherent with the
physical memory address space.

Virtual Memory Address Space

The VxWorks simulator virtual memory size is limited to 1 GB.

On Windows hosts, the VxWorks simulator virtual base address is 0x10000000 and
the VxWorks simulator virtual top address is 0x4FFFFFFFE.

On Solaris and Linux hosts, the VxWorks simulator virtual base address is
0x60000000 and the VxWorks simulator virtual top address is OxX9FFFFFFF.

NOTE: Depending on your host configuration, you may obtain less than 1 GB of
virtual memory.

The default settings for the virtual memory base address and the virtual memory
size should work for most host configurations. However, you may need to modify
the virtual memory values in order to avoid a conflict between the VxWorks
simulator address space and the host system DLL load addresses. You may also
need to decrease the base address in order to get a larger address space. The default
values for the virtual memory base address and the virtual memory size can be
overridden using the -vaddr and -vsize command line options.

NOTE: If you decide to modify the virtual memory base address or virtual memory
size, you must ensure that the values are coherent with the physical memory
address space.

35

Wind River VxWorks Simulator
User's Guide, 6.6

Memory Protection Level

The VxWorks simulator allows you to specify a memory protection level using the
-prot-level option. This level can be set to min, max, or an intermediate integer
value representing a given protection level. By default, the memory protection is
set to the maximum level (max).

NOTE: Currently, only one protection level is provided. See Table 4-1.

Table 4-1 Available Memory Protection Levels

Protection Level Description
0 (min) No specific protection
1 (max) Enable stack overflow protection

4.2.3 Miscellaneous Configuration
The VxWorks simulator command-line interface also provides a set of

miscellaneous options for scripting, help, version, and so forth. For complete
information on all available options, refer to the API reference entry for vxsim.

4.3 Configuring Hardware Simulation

This section discusses the available hardware simulation options for the VxWorks
simulator.

4.3.1 Pass-Through File System (passFS)
The default file system for the VxWorks simulator is the pass-through file system
(passFS). This file system is unique to the VxWorks simulator. The

INCLUDE_PASSFS component is included by default and mounts this file system
on startup. passFS is a file-oriented device driver that provides easy access to the

36

Table 4-2

4 Using the VxWorks Simulator
4.3 Configuring Hardware Simulation

host file system. To specify the passFS device name (the defaultis your system host
name), use the following command-line option:

% vxsim -hn hostname
or

% vxsim -hostname hostname

On Linux and Solaris hosts, the default value for the passFS device name is the
name of the host on which the simulator is running. On Windows, for backward
compatibility with previous releases, the default value is host.

The VxWorks syntax for accessing a host file system is summarized in Table 4-2.

VxWorks Syntax for Accessing passFS

Host Type passFS Syntax Example

Linux or Solaris passFSDevice:/dir/file Is myhost:/myDir/myFile
(where host name is myHost)

Windows passFSDevice: / disk / dir / file Is host:/c/myDir/myFile

Windows passFSDevice:disk: /dir /file Is host:c:/'myDir/myFile

(deprecated,

syntax preserved

for backward

compatibility)

NOTE: passFS uses UNIX-style path separators (/) even on a Windows-based
simulator.

4.3.2 Virtual Disk Support

To simulate access to file systems, either the file system supplied with VxWorks or
one you have implemented yourself, the VxWorks simulator includes support for
virtual disks. A virtual disk converts all read and write accesses to read and write
accesses to a file on the host file system. However, to an application running in a

VxWorks image, accessing the virtual disk looks no different than any other disk

in a VxWorks I/O system.

37

Wind River VxWorks Simulator
User's Guide, 6.6

NOTE: Virtual disk support replaces the UNIX disk driver library (unixDrv)
included in earlier versions of the VxWorks simulator.

By default, the VxWorks simulator includes support for virtual disks. The relevant
configuration component is INCLUDE_VIRTUAL_DISK. To initialize the virtual
disk system, call virtualDiskInit(). After control returns from a successful call to
virtualDiskInit(), you can create a virtual disk instance by calling
virtualDiskCreate():

BLK_DEV * vitualDiskCreate
(

char * hostFile, /* name of the host file to use */
int bytesPerBlk, /* number of bytes per block */
int blksPerTrack, /* number of blocks per track */
int nBlocks /* number of blocks on this device */

)

Although a successful call to virtualDiskCreate() creates a disk instance, there is
not yet any name or file system associated with the instance. To create this
association, you must call a file system device initialization routine. Consider the
following code fragment:

BLK_DEV * vdBlkDev;

vdBlkDev = virtualDiskCreate (hostFile, 512, 32, 32*200);

fsmNameInstall("/Q:0", "/Q");

xbd = xbdBlkDevCreateSync (vdBlkDev, "/Q");

status = dosFsVolFormat ("/Q", DOS_OPT QUIET | DOS_OPT_BLANK, NULL) ;
This code creates /Q, a 3 MB DOS disk with 512-byte blocks, and 32 tracks. In
support of this virtual disk, the virtualDiskCreate() call creates the file
c:/tmp/filesysl (if the file does not already exist). Do not delete this file while the
virtual disk is open (to close a virtual disk, call the virtualDiskClose() routine). To
check whether this code has successfully created a virtual disk, you can call devs(),
which should return the following;:

drv name
0 /null
1 /tyCo/0
5 host:
6 /vio
3 C:

4.3.3 Non-Volatile RAM Support

By default, a VxWorks image includes support for non-volatile RAM, which has a
default size of 256 bytes. This memory is dedicated to storing boot line
information. To store anything else in NVRAM, use the NV_RAM_SIZE macro to

38

4 Using the VxWorks Simulator
4.3 Configuring Hardware Simulation

increase the size of NVRAM. To access NVRAM, use sysNvRamSet() and
sysNvRamGet().

To simulate NVRAM, the VxWorks simulator uses a file on the host system. By
default, this file resides in the same directory that contains the VxWorks image. To
specify another location, use the -nvram command-line option:

% vxsim -nvram pathToFileForNVRAM

4.3.4 Standard I/O

4.3.5 Timers

VxWorks simulator BSPs provide a standard I/O (SIO) driver to handle standard
input and output. For Windows, Linux, and Solaris simulators, this driver is
target/config/simpc/simSio.c.

NOTE: On Linux and Solaris simulators, UNIX job control characters are enabled
even when the I/O is in raw mode. Trapping of control characters like AZ is
UNIX-shell specific and does not conform to the usual VxWorks tyLib
conventions. Trapping of the AC character is performed by the kernel shell (when
it is included in your image).

Similar to any VxWorks target, the VxWorks simulator provides a system clock and
an auxiliary clock. The macros SYS_CLK_RATE_MIN, SYS_CLK_RATE_MAX,
AUX_CLK_RATE_MIN, and AUX_CLK_RATE_MAX are defined to provide
parameter checking for the sysClkRateSet() and sysAuxClkRateSet() routines.

NOTE: If the VxWorks simulator process is preempted by another process on the
host machine, the VxWorks simulator clock can be impacted. In such cases, the
current activity of each VxWorks task is delayed by an interval of time that
corresponds to the preempted time of the process.

4.3.6 Timestamp Driver

The VxWorks simulator provides a system-defined timestamp driver. In general,
this driver is used to extend the range of information available from VxWorks
kernel instrumentation. For example, when a timestamp driver is available, a
precise time line can be displayed using the Wind River System Viewer.

39

Wind River VxWorks Simulator
User's Guide, 6.6

The timestamp driver is included in the default VxWorks simulator configuration.
The timestamp driver is selected by including the INCLUDE_TIMESTAMP and
INCLUDE_SYS_TIMESTAMP components in your VxWorks image.

NOTE: If the VxWorks simulator process is preempted by another process on the
host system, the System Viewer graph can be impacted. In this situation, the
current activity of each VxWorks task is delayed by an interval of time that
corresponds to the preempted time of the process.

4.3.7 Serial Line Support

The VxWorks simulator provides a sample host serial I/O driver (hostSio) is. This
driver provides access to a host serial device from the VxWorks simulator. This
feature is not included in the default VxWorks simulator. To add host serial device
support, the INCLUDE_HOST_SIO component must be defined in the BSP
configuration. The macro HOST_SIO_PORT_NUMBER can be used to select which
host serial device to use. For more information, see A. Accessing Host Resources.

4.3.8 Shared Memory Network

You can configure a VxWorks system where multiple CPU boards are connected
using a common backplane (for example, a VMEbus configuration). This allows
the target boards to communicate through shared memory. VxWorks provides a
standard network driver to access shared memory such that all higher-level
network protocols are available over the backplane. In a typical configuration, one
of the CPU boards (CPU 0) communicates with the host using Ethernet. The rest of
the CPU boards communicate with each other, and the host, using the shared
memory network. In this configuration, CPU 0 acts as a gateway to the outside
network.

This type of hardware configuration can be emulated using the VxWorks
simulator. In this case, multiple VxWorks simulator instances are configured to use
a host shared-memory region as the basis for the shared-memory network.

40

4 Using the VxWorks Simulator
4.3 Configuring Hardware Simulation

Figure 4-1 VxWorks Simulator Shared-Memory Network

Shared Memory Network

161.27.0.1:ffffff00 161.27.0.2:ffffff00 161.27.0.3:ffffff00
Master Slave 1 Slave 2
(VxSim0) (VxSim1) (VxSim2)
(CPUO) (CPU1) (CPU2)

192.168.200.1

vxsimnetd

Ethernet

Configuring Your VxWorks Simulator for a Shared-Memory Network

In order to configure the VxWorks simulator for use with a shared-memory
network, you must configure your VxWorks image to use the following
components:

INCLUDE_SM_NET
INCLUDE_SM_COMMON
INCLUDE_SM_OB]J

You can reconfigure your image using either the vxprj command-line utility or
using the Workbench kernel configuration tool. For more information, see the
Wind River Workbench User’s Guide or the VxWorks Command-Line Tools User’s Guide.

Starting the Master Simulator

Use the master simulator to communicate with the host through the simnet device.
You can specify the shared-memory network address for the master simulator by
starting the VxWorks simulator instance with the -backplane (or -b) option as
follows:

% vxsim -p 0 -d simnet -e 192.168.200.1 -b 161.27.0.1:££££££00

41

Wind River VxWorks Simulator
User's Guide, 6.6

NOTE: Because it is responsible for initializing the shared memory region, the
master simulator must always be started first. You must also reboot all slave
instances each time the master instance is rebooted.

Starting the Slave Simulators

Once you start the master simulator instance, you can start slave simulator
instances with a gateway set to the master simulator using the -gateway (or -g)
option as follows:

% vksim -p 1 -b 161.27.0.2:££ff£ff00 -g 161.27.0.1
% vxsim -p 2 -b 161.27.0.3:fff£f£ff00 -g 161.27.0.1

An alternative option would be to start the slave simulator as follows:
% vxsim -p 1 -b 161.27.0.2:£E££££00

and then add a network route to specify which gateway should be used for
communication. This is done from the VxWorks simulator kernel shell as follows:

-> routec "add -net 0.0.0.0/24 161.27.0.1"

NOTE: If you choose to use the alternative option described above, you must
include the INCLUDE_ROUTECMD component in your VxWorks image.

Configuring the Host System

Before your host system can communicate with the master simulator, you must
configure your host routing table with the new subnet information. The routing
information can be configured as follows:

For Windows hosts, enter the following command from a Windows command
shell:

C:\> route add 161.27.0.0 MASK 255.255.255.0 192.168.200.1
For Solaris and Linux hosts, enter the following command from your host shell:

route add -net 161.27.0.0 192.168.200.1

NOTE: To configure routing information, you must have administrator or root
privileges on your host.

42

4 Using the VxWorks Simulator
4.4 Using VxWorks SMP with the VxWorks Simulator

4.4 Using VxWorks SMP with the VxWorks Simulator

The VxWorks simulator provides support for VxWorks SMP. This allows you to

test SMP applications before SMP hardware is available. Even if you have not

purchased the VxWorks SMP option, you can use the precompiled SMP image
located in installDir/target/proj/vxsimBSP_smp/default. For example, on Windows

hosts, the precompiled SMP image is
installDir\target\proj\simpc_diab_smp\default\vxWorks.

The host OS simulates each CPU with a process that is scheduled by the host OS
itself. Thus SMP performance can be achieved when the host has more CPUs than
the VxWorks simulator. Otherwise, since simulated CPUs have to share the real
CPU power, performance will not match SMP expectations. You specify the
number of simulated CPUs using the Workbench kernel configurator before
building the VxWorks image.

If you are using the VxWorks simulator to simulate multiple processors in SMP
mode, you should be cautious when calling host routines from the VxWorks
simulator. Review code that uses vxsimHostProcAddrGet() to make sure it is
SMP safe. Note that vxsimHostProcCall() replaces a direct function pointer
dereference that is forbidden in SMP. See A.2 Accessing Host OS Routines, p.108 for
more detailed information. For general background on SMP, see the VxWorks
Kernel Programmer’s Guide:VxWorks SMP.

4.41 Creating an SMP Image

If you have purchased the VxWorks SMP option, you can create a custom
SMP-enabled VxWorks simulator image. To create a new VxWorks simulator
image that includes support for SMP:

1. Create a new VxWorks image project (VIP) in Workbench. In the Options
dialog of the wizard, check the SMP support in kernel option checkbox.

2. If you want to change the number of processor cores (the default is two), use
the Kernel Configuration facility. Go to operating system
components > kernel components > kernel. Double-click on the line labeled
Number of CPUs enabled (which corresponds to the parameter
VX_SMP_NUM_CPUS). Change the highlighted number (2) to the desired
number of CPUs.

3. Build the project.

43

Wind River VxWorks Simulator
User's Guide, 6.6

4. Select Target > New Connection, then select the connection type Wind River
VxWorks 6.x Simulator Connection.

5. Click Next then click on Custom simulator and navigate to the project
directory for the VIP you just built.

When you connect to the SMP-enabled VxWorks simulator instance, the startup
banner should indicate that VxWorks SMP is running. In addition, as shown in
Figure 4-2, the startup sequence reports both the number of CPU cores that the
VxWorks image expects and the actual number of CPU cores present on the host
machine.

Figure 4-2 VxWorks Simulator SMP Startup Screen

& VxSimO
ocading. . . llj
015528 + OxlaZcc + (0x3081473 |
VxlWorks CPU number: 2 / Host CPU number: 2
ocading symbol table from
host: C: /WindRiver / workepace /vxsim _smp_2/default /fvxliWorks.sym .. .done 3
0= e e S e e e)) o e e S]l e]
3 ko S o o e a3 e e s i o i o 1 e i e [
= e o RS e o e)] e e e o] o 2

3l A et | ek qE] = S Sl e S 11 el (R)
1 el s] 111111 11111111 11 1111
11 AF A) 1| il s 2] EE] S5] IR e Il e |
111] s | ST AR 1 IR] El s ol ST s S]]]] G A | e 11 11111
1 ik 111 11 1 111 AbalE apakakala) sl agaia | Al b R s e e o [afal
11111 1 1111 S]] e W S] S o] f =] o] o e]] 1111
il (rals)al il 111111 1 iEakalapal Jadl =] apabe kS| il) il
i =]]] S S] 1 i s 1 111 AP f = A T) o e] N 5 1111
11111111 Gapaal] 111 apalaiakalal 1 1111111 iFa 3] 1111 10 forka | bl)
0=] S e 0 S]
153 e e e e R | st Development System
0= e e S e e SN ST
111111111111111111111111111 Vxblorks 6.6 SMP B
T e o S e s S e SN) KERENEL: WIND wversion 2.11 T
] T T S e] e)]l T S Copyright Wind River Systems, Inc., 1984-2007
CPU: Windows 5.1 Serwvice Pack 2. Processor #0.
Memory Si=ze: Ox1f00000 BSP wersion 2.0/73. \@

At the VxWorks simulator prompt, you should be able to see the idle tasks running
on the two different CPU cores by issuing the i command:

44

tJobTask
tExcTask
tLogTask
tNbioLog
tShellO
tWdbTask
tAioIoTask>
tAioIoTask>
tNetO
ipcom_sysl>
ipnetd
tAioWait
tIdleTask0
tIdleTaskl
value = 0 =
->

4 Using the VxWorks Simulator
4.5 Migrating Applications to a Hardware-Based System

ENTRY TID PRI STATUS PC SP ERRNO CPU #
10055d20 1040adb0o 0 PEND 100e7d3c 1064££98 0 -
10054£30 101a5130 0 PEND 100e7d3c 10lae360 1c0001 -
logTask 1040ed08 0 PEND 100e590f 1068ff2c 0 -
100569f0 1040£f1a0 0 PEND 100e7d3c 106cffd4 0 -
shellTask 10543908 1 READY 100£0d480 108fe394 0 0
wdbTask 104ad8c8 3 PEND 100e7d3c 108aff3c 0 -
aioIoTask 1042e408 50 PEND 100e83d5 1074ff8c 0 -
aioIoTask 1042e828 50 PEND 100e83d5 1078ff8c 0 -
ipcomNetTask 1042f4f8 50 PEND 100e7d3c 107cff64 0 -
10107950 10444318 50 PEND 100e83d5 105efeal 0 -
1010bc50 1044e540 50 PEND 100e7d3c 1086££80 6 -
aloWaitTask 1042aee8 51 PEND 100e7d3c 1070££f0c 0 -
idleTaskEntr 1038ad40 287 READY 1002781c 1038abe8 0 -
idleTaskEntr 103c6000 287 READY 1002781c 103c5ea8 0

0x0

4.5 Migrating Applications to a Hardware-Based System

Kernel and RTP applications developed using the VxWorks simulator are easily
transferred to target hardware systems. However, because the VxWorks simulator
environment is not a suitable basis for developing hardware device drivers, more
work may be required once your application is transferred to the target system.

To migrate your application, change your project build specifications to reflect the
new hardware-based system. This involves recompiling your code using the
appropriate CPU type for your target hardware.

For more information on building applications for your target architecture, see the
VxWorks Architecture Supplement. For general application build instructions, see the
Wind River Workbench User’s Guide.

45

Wind River VxWorks Simulator
User's Guide, 6.6

46

5.1
5.2
5.3
5.4
5.5

Networking with the
VxWorks Simulator

Introduction 47

Building Network Simulations 48
Setting Up the Network Daemon 50
Installing the Host Connection Driver 66

Configuring a Simulated Subnet 70

5.1 Introduction

The VxWorks simulator provides support for setting up a subnet using a network
of VxWorks simulator instances. This chapter discusses how to configure your
system and the required VxWorks simulator instances for use in a simulated
subnet. It includes general network simulation information, instructions for
setting up the VxWorks simulator network daemon (vxsimnetd) and installing the
host connection driver, and information on configuring your simulated network.
Tutorials for setting up a simulated network are provided in 6. Networking
Tutorials.

47

Wind River VxWorks Simulator
User's Guide, 6.6

NOTE: The VxWorks simulator supports IPv6. For IPv6 configuration information,
see the Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 1:
Transport and Network Protocols. For information on using the VxWorks simulator
with IPv6, see 6.5 IPv6 Tutorial, p.95.

5.2 Building Network Simulations

Using the VxWorks simulator network daemon, you can link same-host VxWorks
simulator instances into simulated subnets. By default, these internal subnets do
not communicate with the host. However, included with the VxWorks simulator is
a simulated network drive—a host adapter interface—that you can use to give the
host system an address on the simulated subnet.

Through the host adapter, packet sniffers, such as tcpdump, snoop, or ethereal,
can monitor traffic on an internally simulated subnet. In addition, this adapter on
the simulated subnet lets you use the host to route packets for the subnet and thus
link it with an external network. Figure 5-1 shows two subnets, 192.168.3.0 and
192.168.2.0, simulated on a single host.

48

Figure 5-1

5 Networking with the VxWorks Simulator
5.2 Building Network Simulations

VxWorks Simulator Instances on Simulated Subnets

I
Host Adapter
External Network Host's IP Address p
| Interface

Workstation
192.168.200.254

VxSIM Network Daemon ‘
8 | |
VxSIM 2 192.168.200.3 192.168.200.4
1 = | |
VxSIM VxSIM
% 3 4
N
VXEIM — 8 Virtual Network
w
o 192.168.200.0
Virtual Network
192.168.3.0

Virtual subnet 192.168.3.0 is an entirely internal subnet. It is isolated from the host,
although you can use a kernel shell or the target server (using the WDB pipe back
end) to access a target. After you have access to one target on the subnet, you can
use the subnet to communicate with other targets on the subnet. Virtual subnet
192.168.200.0 is an “external” subnet. It is networked to the host workstation
through the host adapter interface, 192.168.200.254. If you set up the host system
route table correctly, the host system can route packets for the 192.168.200.0 subnet.

As shown in Figure 5-2, it is possible to create a multiple interface VxWorks
simulator instance. Using such a VxWorks simulator instance, it is possible to route
between simulated subnets.

49

Wind River VxWorks Simulator
User's Guide, 6.6

Figure 5-2 VxWorks Simulator Instances Can Support Multiple Network Interfaces

External Network Host's IP Address Host Adapter
| h Interface
Workstation
192.168.200.254
VxSIM Network Daemon ‘
= | |
VxSIM é 192.168.200.3 192.168.200.4
pry ©
]
2 VxSIM VxSIM
= w 3 4
© w
N
VxSIM > ,
5 g Virtual Network
(S 192.168.200.0
Virtual Network
192.168.3.0

In Figure 5-2, the multi-interface VxSIM 3 can route packets from the 192.168.3.0
subnet to the greater external network through the host adapter to the host, which
can then route packets to the external network through its network interface.

5.3 Setting Up the Network Daemon

The VxWorks simulator includes a network daemon that you can use to link
multiple VxWorks simulator instances into one or more subnets. You can also use
this network daemon to link these subnets (or even individual VxWorks simulator
instances) to the larger Internet. The network daemon can support any protocol
over the Ethernet layer (for example, TCP/IP). Thus, you can use the VxWorks
simulator instances to test any broadcasting or multicasting features you may have
built into an application.

50

5 Networking with the VxWorks Simulator
5.3 Setting Up the Network Daemon

NOTE: Although the VxWorks simulator network daemon allows you to set up
complex simulated networks, it is also required for minimal networks—that is, a
connection between the host and a single simulator instance.

The remainder of this section tells you how to set up a VxWorks simulator network
daemon. Using the VxWorks simulator network daemon, you can link same-host
VxWorks simulator instances into simulated subnets. By default, these internal
subnets do not communicate with the host. However, included with the VxWorks
simulator is a simulated network drive—a host adapter interface—that you can
use to give the host system an address on the simulated subnet. For more
information on the VxWorks simulator host connection driver, see 5.4 Installing the
Host Connection Driver, p.66.

NOTE: If you want to use a VxWorks simulator instance(s) on a simulated network,
you must start the VxWorks simulator network daemon before you start the
VxWorks simulator instance. Keep in mind that even a connection between the
host system and a single instance requires the network daemon.

5.3.1 Starting the Network Daemon

The VxWorks simulator network daemon can be started either as a service
(Windows service or root service on Linux and Solaris), which is the recommended
method, or from the command line. The following sections describe each of these
methods.

Starting the Network Daemon as a Service

Wind River recommends starting vxsimnetd as a Windows service (or a root
service on Linux and Solaris) because this method provides full network support
for the VxWorks simulator even if you are not logged in with administrator or root
privileges on the host system.

51

Wind River VxWorks Simulator
User's Guide, 6.6

NOTE: You must remove any previously installed network daemon services before
attempting to install a new service. For example, if you installed a network
daemon service (vxsimnetds) as part of an earlier VxWorks simulator release, you
must remove the old service before attempting to install a service from the latest
release. (This may be the case even if you uninstalled your previous installation
using a Wind River uninstall utility.) For information on removing the network
daemon service, see 5.3.2 Removing the Network Daemon Service, p.57.

Starting vxsimnetd as a Windows Service
To install vxsimnetd as a Windows service:
1. Log in to the Windows host with administrator privileges.

2. Ifyou have an existing vxsimnetd service from a previous VxWorks simulator
installation, you must remove the service. To uninstall the service, select Run...
from the Windows Start menu and execute the following command:

installDir /veworks-6 .x/host /x86-win32/bin/vxsimnetds_inst.exe /u
where installDir is the name of your VxWorks installation directory.

3. Install the new network daemon. From the Windows Start menu, select Run....
Browse to installDir[vxworks-6.x/host/x86-win32/bin/vxsimnetds_inst.exe
(where installDir is the name of your VxWorks installation directory) and click
OK to run the file.

NOTE: You must run vxsimnetds_inst.exe with administrator privileges.

To start the service:
1. Open Control Panel > Administrative Tools.
2. Click Services.

3. Select Wind River Network Daemon for VxWorks Simulator and start the
service by right-clicking and selecting Start. (If the service is set to Disabled,
right-click Wind River Network Daemon for VxWorks Simulator, select
Properties, and set the startup type to Automatic. You can then start the
service by right-clicking and selecting Start.)

By default, the network daemon starts with the default 192.168.200.0 external
subnet configuration and with a shell server (-sv option). To change these options,
right-click Wind River Network Daemon for VxWorks Simulator, select
Properties, and specify the desired options before starting the service.

52

5 Networking with the VxWorks Simulator
5.3 Setting Up the Network Daemon

Once the network daemon service is started, non-administrator users can start
VxWorks simulator instances and attach them to any configured subnet.

Special Considerations when Specifying a Configuration File

When the daemon is started as a service, the configuration parameters are saved in
the registry. This allows you to start and stop the service without entering the
configuration parameters each time. However, if the service is started and a
configuration file is specified using the -f option, that file is used for configuration
indefinitely. (For more information on configuration files, see 5.3.4 Creating a
Network Daemon Configuration File, p.60.)

To specify new parameters, you must stop the service and specify new settings
using one of the following options:

= Specify the -f option without a configuration file when starting the service.
(The start parameters for the network daemon can be specified in the
Properties dialog for the service.)

= Manually edit the registry keys using the Windows registry editor. The
registry settings for the network daemon are located under
HKEY_LOCAL_MACHINE\Software\Wind River Systems\Wind River Vx
Works Simulator Network Daemon.

NOTE: Specifying a non-existent configuration file prevents the vxsimnetd service
from starting.

Starting vxsimnetd as a Root Service on Solaris/Linux

You can create scripts for Solaris and Linux systems that start vxsimnetd
automatically on reboot (use the -sv option if you want the ability to modify
network configuration).

You can install vxsimnetd as a root service using the following steps:
1. Copy vxsimnetd to your /usr/sbin directory.
2. Create a vxsimnetd script as follows in /etc/init.d:

On Solaris, use the following script:

#1/bin/sh

#

description: Starts and stops the vxsimnetd daemon

used to provide external network access to the
VxWorks simulator.

53

Wind River VxWorks Simulator
User's Guide, 6.6

54

case "$1" in

start)
if [-x /usr/sbin/vxsimnetd] ; then
echo "Starting vxsimnetd ..."
/usr/sbin/vxsimnetd -sv
fi
stop)

echo "Stopping vxsimnetd ..."
/usr/bin/pkill -x vxsimnetd
o]
echo "Usage: $0 {start|stop}"
exit 1
esac

exit 0
On Linux, use the following script:

#!/bin/sh

#

chkconfig: 3 91 02

description: Starts and stops the vxsimnetd daemon \

used to provide VxWorks Simulator network services.
#

pidfile: /var/run/vxsimnetd.pid

Source function library.

if [-f /etc/init.d/functions] ; then
/etc/init.d/functions
elif [-f /etc/rc.d/init.d/functions] ; then
/etc/rc.d/init.d/functions
else
exit 0
fi

Check that vxsimnetd exists.
[-x /usr/sbin/vxsimnetd] || exit 0

RETVAL=0

start () {
echo -n $"Starting vxsimnetd service: "
daemon vxsimnetd -sv
RETVAL=S?
echo

[SRETVAL -eq 0] && touch /var/lock/subsys/vxsimnetd || \

RETVAL=1
return $RETVAL

5 Networking with the VxWorks Simulator
5.3 Setting Up the Network Daemon

stop () {
echo -n $"Shutting down vxsimnetd services:
killproc vxsimnetd
RETVAL=S?
echo
[SRETVAL -eq 0] && rm -f /var/lock/subsys/vxsimnetd
echo ""
return $RETVAL

}

restart () {
stop
start

}

rhstatus() {
status vxsimnetd

}

case "$1" in
start)
start
stop)
stop
restart)
restart
status)
rhstatus
condrestart)
[-f /var/lock/subsys/vxsimnetd] && restart ||

*)
echo $"Usage: $0 {start|stop|restart|status|condrestart}"
exit 1
esac

exit $?

Create a link.

On Solaris, create a link in /etc/rc3.d/ as follows:
1ln -s /etc/init.d/vxsimnetd S91vxsimnetd
On Linux, in /etc/init.d/, run:

$ /sbin/chkconfig --add vxsimnetd

This creates two links on /etc/init.d/vxsimnetd, /etc/rc3.d/S91vxsimnetd and
letc/r6.d/K02vxsimnetd.

55

Wind River VxWorks Simulator

User's Guide, 6.6

4.

Start vxsimnetd as follows:
/etc/init.d/vxsimnetd start

or reboot your host.

Starting the Network Daemon From the Command Line

You can use the vxsimnetd command to start the VxWorks simulator network
daemon on your host system. You can configure the daemon using a configuration
file statically at startup time or you can configure it interactively using the
daemon’s debug shell. You can also combine these configuration methods which
allows you to use a configuration file to supply some defaults and read in
additional configuration files as needed.

NOTE: If the daemon must support an externally visible subnet, you must launch
the daemon from a task with the appropriate privileges. On a Solaris or Linux host,
this means starting the daemon with supervisor or root privileges. On a Windows
host, this means starting the daemon with administrator privileges.

The vxsimnetd command supports the following options:

56

-f or -file
This option specifies the configuration file parsed when the network
daemon starts. For more information on the format of this file, see
5.3.4 Creating a Network Daemon Configuration File, p.60.

-s or -shell
This option starts a debug shell that you can use to control network
daemon configuration interactively. For more information on the debug
shell options, see 5.3.3 Network Daemon Debug Shell, p.57.

-sv or -shellserver
This option starts the network daemon in server/background mode.
When in background mode, you can telnet to a debug port to access the
debug shell. The -sv and -s options are mutually exclusive.

-sp or -shellport
This option specifies the debug port used to start a shell on a network
daemon in background mode. If not specified, the default port is 7777.

-force
Forces the deletion of IPC objects left after vxsimnetd dies. (UNIX only)

5 Networking with the VxWorks Simulator
5.3 Setting Up the Network Daemon

To configure the daemon statically, use a command such as the following, where
vxsimnetd.conf is a file supplying configuration parameters:

% vxsimnetd -f vxsimnetd.conf

To start the VxWorks simulator network daemon interactively, use a command
such as the following, where vxsimnetd.conf is a file supplying configuration

parameters:

% vxsimnetd -f vxsimnetd.conf -s

If you use the -sv option instead of the -s option, the debug shell runs in the
background and is accessible using telnet. For example:

% telnet hostname portNumber

The portNumber defaults to 7777, but vxsimnetd supports the -sp parameter, which
you can use to specify a different port number.

vxsimnetd can also be started without any configuration options. In this case, the
network daemon is started with a default external subnet of 192.168.200.0 and with
the host node set in promiscuous mode.

5.3.2 Removing the Network Daemon Service

NOTE: The product uninstaller does not uninstall vxsimnetd. If you plan to
uninstall the product, be sure to uninstall vxsimnetd (as described above) before
running the uninstaller program.

To remove the network daemon service (vxsimnetd), open a VxWorks
development shell and enter the following:

% vxsimnetds_inst.exe /u

This uninstalls the vxsimnetd service.

5.3.3 Network Daemon Debug Shell
You can access the network daemon debug shell by starting vxsimnetd with the -s

(or -shell) or -sv (or -shellserver) option. The shell supports command line
completion as well as history with two editing modes, emacs (default) or vi.

57

Wind River VxWorks Simulator
User's Guide, 6.6

The available shell commands are:

subnet [subnetName]
This command displays subnet information. When no subnet is specified, the
command lists a summary for all configured subnets. A detailed summary is
provided when a subnet name is specified.

node subnetName [nodelp]

node subnetName [nodeNb]
This command displays information about how many nodes are configured
and used. For example:

vxsimnetd> node default

NODE INFORMATION:
CONFIGURED IN-USE MAX TOTAL FAIL
33 1 1 1 0

Current Nodes of the subnet (default):

COMM STATUS IP PROMISC RCVQ PID

0 special (*) UP 192.168.200.254 Yes 0 24076

If you specify a node number (n0deNb) or node IP address (nodelp), the node
command displays specifics about the particular node, such as the number of
packets sent and received. For example:

vxsimnetd> node default 0

COMM STATUS IP PROMISC RCVQ PID

0 special (*) UP 192.168.200.254 Yes 0 24076

MAC ADDRESS:
Mac Address 7a:7a:c0:a8:c8:fe

SEND/RECEIVE STATISTICS:

of receives 0
of sends 6
of send failures 6

RECEIVE QUEUE INFORMATION:
CONFIGURED CURRENT MAX
64 0 0

packet subnetName
This command displays packet information for a subnet. For example:

vxsimnetd> packet default

PACKET INFORMATION:
CONFIGURED IN-USE MAX TOTAL FAIL
100 1 1 7 0

HANGING PACKETS:

PKT-# SEND-NODE RECV-NODE LEN REFCNT PKTPTR
0 192.168.200.254[E] N/A 1514 0 0xff0e2bld

58

5 Networking with the VxWorks Simulator
5.3 Setting Up the Network Daemon

In this example, the default subnet is configured with 100 packets, only one is
currently in use, and seven packets were used over all. The hanging packets
section displays packets that are allocated but not yet sent.

help [command]
This command specifies detailed help for a given command. If no command is
specified, a summary of all available commands is provided.

Displays a one-line summary for all commands.

quit
This command exits the shell. If you started vxsimnetd with the -s option, this
command destroys all subnets and vxsimnetd exits. For more information on
vxsimnetd options, see 5.3.1 Starting the Network Daemon, p.51.

source configFile
This command reads subnet configuration information from a file and adds
the corresponding subnets. If vxsimnetd cannot add all configured subnets,
then this command adds no subnets at all.

delete subnetName
This command deletes a configured subnet. To delete all subnets, use
delete all.

extpromisc subnetName 0

extpromisc subnetName 1
This command sets the promiscuous mode for the host node of an external
subnet. The 0 option sets promiscuous mode to off, 1 sets promiscuous mode
to on. When the external node is in promiscuous mode (1), it receives every
packet sent on the subnet. While this heavily impacts network performance, it
allows you to analyze network traffic by connecting a packet sniffer on the
external host node interface.

erate subnetName
This command sets the error rate for a given subnet. The error rate is the
percentage of packets that will not be sent without giving error notification to
the sender. Thus, if the error rate is set at five percent, five randomly chosen
packets per 100 will be purposely lost. This feature is provided to simulate
packet loss on an actual subnet.

timeout subnetName
This command sets the subnet timeout value. If a node does not read any
packets for the length of time specified as the timeout, the packets are picked
up by garbage collection.

59

Wind River VxWorks Simulator
User's Guide, 6.6

mode vi
mode emacs
This command sets the shell editing mode to vi or emacs.

5.3.4 Creating a Network Daemon Configuration File

As an option, the vxsimnetd command (the command used to start the network
daemon) lets you specify a file containing network daemon configuration
parameter values. To assign a value to a parameter, enter a semicolon (;)
terminated line with the following general format:

PARAMETER = wvalue;

Where PARAMETER is either a parameter name in capital letters or an alias.

For parameters related to a subnet, group those parameters using the following
syntax:

SUBNET_START subnetName {
SUBNET_PARAM = wvalue;
}i

For example, consider the following default configuration file:

SUBNET_START default {
SUBNET_EXTERNAL = yes;
SUBNET_EXTPROMISC = yes;
SUBNET_ADDRESS = "192.168.200.0";

1

This configures the VxWorks simulator network daemon to support a subnet with
external access. The network address for the subnet is 192.168.200.0 and, because

the network mask is not specified, the pre-CIDR! default mask applies. For
192.168.200.0, that would be the mask for a class C address, which is Oxffffff00.

To add another subnet, you could add the lines:

SUBNET_START userl {
SUBNET_UID = 323;
SUBNET_GID = 100;
SUBNET_ACCESSMODE = "0600";
SUBNET_ADDRESS = "192.168.201.0";
}i

The parameters supported in a VxWorks simulator network daemon configuration
file are described in Table 5-1.

1. CIDR refers to classless inter-domain routing. See RFCs 1518 and 1519.

60

Table 5-1

5 Networking with the VxWorks Simulator

5.3 Setting Up the Network Daemon

VxWorks Simulator Network Daemon Configuration Parameters

Parameter

Description

Default Parameters:

DEFAULT_GARBAGE

DEFAULT_MACPREFIX

DEFAULT_UID

DEFAULT_GID

DEFAULT_ACCESSMODE

DEFAULT_EXTERNAL

Alias: dgarbage

Default Value: 30

Specifies the number of seconds in the garbage
collection interval. For each subnet, the garbage

collection thread runs every DEFAULT_GARBAGE
seconds.

Alias: dmacprefix
Default Value: 7a:7a

Specifies the first bytes of simulator Ethernet
addresses.

Alias: duid
Default Value: user ID of the user that started the
network daemon

Defines the user ID (UNIX only).

Alias: dgid
Default Value: group ID of the user that started the
network daemon

Defines the group ID (UNIX only).

Alias: daccessmode
Default Value: "0666"

Defines access mode (UNIX only). You can use the
three parameters (duid, dgid, and daccessmode) to
restrict access to subnets to a given user or group of
users when the network daemon is shared between
users on the same host.

Alias: dexternal
Default Value: no

Defines the default subnet type.

61

Wind River VxWorks Simulator
User's Guide, 6.6

Table 5-1 VxWorks Simulator Network Daemon Configuration Parameters (contd)

Parameter Description

DEFAULT_EXTPROMISC Alias: dextpromisc
Default Value: yes

Defines whether the external subnet host node is
set in promiscuous mode.

DEFAULT_ERATE Alias: derate
Default Value: 0

Defines the default subnet error rate.

DEFAULT_TIMEOUT Alias: dtimeout
Default Value: -1

Defines how long packets queued to a VxWorks
simulator instance are left in the queue. The default
is forever.

Subnet-Specific Default-Override Parameters:

SUBNET_MACPREFIX Alias: macprefix
Default: DEFAULT_MACPREFIX

Specifies the first two bytes of the Ethernet address
on this subnet. Overrides DEFAULT_MACPREFIX.

SUBNET_UID Alias: uid
Default: DEFAULT_UID

Specifies the user IP for this subnet. Overrides
DEFAULT_UID.

SUBNET_GID Alias: gid
Default: DEFAULT_GID

Specifies the group ID for this subnet. Overrides
DEFAULT_GID.

SUBNET_ACCESSMODE Alias: accessmode
Default: DEFAULT_ACCESSMODE

Specifies the access mode for this subnet. Overrides
DEFAULT_ACCESSMODE.

62

Table 5-1

5 Networking with the VxWorks Simulator

5.3 Setting Up the Network Daemon

VxWorks Simulator Network Daemon Configuration Parameters (cont'd)

Parameter

Description

Topology Parameters:

SUBNET_ADDRESS

SUBNET_MASK

SUBNET_EXTERNAL

SUBNET_EXTPROMISC

SUBNET_EXTDEVNUM

Alias: address
Default: "0.0.0.0"

Specifies the network address for this subnet.

Alias: mask
Default: Pre-CIDR mask associated with the
address in SUBNET_ADDRESS.

Specifies the subnet mask for this subnet.

Alias: external
Default: DEFAULT_EXTERNAL

Specifies whether this subnet can communicate
with the host on which it runs. This communication
requires you to create a VxWorks simulator target
with a network interface on the host system’s
network, and to start the VxWorks simulator
network daemon with administrator privileges.

Alias: extpromisc
Default: DEFAULT_EXTPROMISC

Specifies whether the host sees every packet sent
on this subnet. It allows you to attach a sniffer on
the host interface to monitor traffic. However, it has
a dramatically negative impact on network
performance.

Alias: extdevice
Default: 0

Specifies the host device number to use. This
parameter is required when using more than one
external subnet.

63

Table 5-1

Wind River VxWorks Simulator
User's Guide, 6.6

VxWorks Simulator Network Daemon Configuration Parameters (cont'd)

Parameter Description

Resource-Related Parameters:

SUBNET_MAXBUFFERS Alias: maxbuffers
Default: 100

Specifies the maximum number of packet buffers
available.

SUBNET_MAXNODES Alias: maxnodes
Default: 32

Specifies the maximum number of simulators that
can attach to this subnet.

SUBNET_RECQLEN Alias: recvqlen
Default: 64
Specifies how many packets can be queued to a
simulator.

SUBNET_SHMKEY Alias: shmkey

Default: IP address

Specifies the shared memory key.
Option Parameters:

SUBNET_BROADCAST Alias: broadcast
Default: yes

Specifies whether to allow MAC broadcast packets.

SUBNET_MULTICAST Alias: multicast
Default: yes

Specifies whether to allow multicast packets.

SUBNET_ERATE Alias: errorrate
Default Value: DEFAULT_ERATE

Defines the subnet error rate (the percentage of
packet loss on this subnet)

64

5 Networking with the VxWorks Simulator

5.3 Setting Up the Network Daemon

Table 5-1 VxWorks Simulator Network Daemon Configuration Parameters (contd)

Parameter

Description

SUBNET_TIMEOUT

SUBNET_MTU

SUBNET_EXTCONNNAME

Alias: timeout
Default Value: DEFAULT _TIMEOUT

Defines how long packets that are queued are left in
the queue before garbage collection removes them.

Alias: mtu
Default Value: 1500

Defines the MTU value that a VxWorks simulator
instance is configured to use when it attaches to a
subnet.

Alias: extconnname
Default:

Specifies the network interface name to use for this
subnet as set in Control Panel >
Network Connections (Windows only).

Configuring Multiple External Subnets

The VxWorks simulator network daemon can be configured with multiple external
subnets. However, the following caveats should be observed:

On Windows hosts:

You must install a VxWorks simulator host connection driver (WRTAP) for
each external subnet. (For information on installing and configuring the
WRTAP driver, see 5.4 Installing the Host Connection Driver, p.66.) You may also
want to specify a name for the WRTAP device driver used by a given subnet
through the SUBNET_EXTCONNNAME configuration parameter.

On Solaris and Linux hosts:

You must specify the device number of all but the first external subnet using
the SUBNET_EXTDEVNUM parameter.

65

Wind River VxWorks Simulator
User's Guide, 6.6

5.4 Installing the Host Connection Driver

This section provides instructions for installing the optional VxWorks simulator
host connection driver. You need install this driver only if you want to set up an
externally visible subnet (able to communicate with or through the host) of
VxWorks simulator instances. After this host driver is installed, vxsimnetd
automatically configures its IP address and mask according to the configuration
file. Packet sniffers such as tcpdump, snoop, or ethereal can then be attached to the
host interface to monitor traffic on the internal simulated subnet.

NOTE: If you are working on a Windows host, installing the host connection driver
(the WRTAP driver) can have an impact on your host system performance. Before
installing this driver, review the information in 5.4.1 Managing the WRTAP Driver
on Windows Hosts, p.68.

Windows Hosts

Use the following instructions to install the WRTAP driver on Windows XP or
Windows Vista hosts.

To Install the Driver on a Windows XP Host:
1. Open the Control Panel.
Double-click Add Hardware to open the Add Hardware Wizard, click Next.

Answer Yes, I have already connected the hardware, click Next.

=@ N

Select Add a new hardware device (you may need to scroll down to see this
option), click Next.

Select Install the hardware that I manually select from a list (Advanced).
Click Next.

Select Network Adapters, click Next.

Click the Have Disk... button.

© ® N o O

Browse to installDir\vxworks-6.x\host\x86-win32\bin (installDir is the
name of your VxWorks installation directory).

10. Select wrtap.inf and click Open.
11. Click OK to select the directory.
12. Select WindRiver WRTAP, click Next.

66

5 Networking with the VxWorks Simulator
5.4 Installing the Host Connection Driver

13. Click Next to start installing the driver.
14. Click Continue Anyway in the Hardware installation pop-up window.

15. Click Finish to close the wizard.

To Install the Driver on a Windows Vista Host:

Open the Control Panel and select the classic view.
Double-click Add Hardware to open the Add Hardware Wizard, click Next.

Select Install the hardware that I manually select from a list (Advanced).

Click Next.

Select Network Adapters, click Next.

Click the Have Disk... button.

Browse to installDir\vxworks-6.x\host\x86-win32\bin (installDir is the
name of your VxWorks installation directory).

N o gk »d =

*®

Select wrtap.inf and click Open.

9. Click OK to select the directory.
10. Select WindRiver WRTAP, click Next.
11. Click Next to start installing the driver.

12. Click Install this driver software anyway in the Hardware installation
pop-up window.

13. Click Finish to close the wizard.

NOTE: If you intend to use more than one external subnet, repeat the above steps
for each subnet. You must install and configure a WindRiver WRTAP driver
individually for each subnet that is marked as external. (Windows hosts only).

For more information on using the WRTAP driver on Windows hosts, see
5.4.1 Managing the WRTAP Driver on Windows Hosts, p.68.

Solaris Hosts
To install the VxWorks simulator host connection driver on a Solaris host:

1. Copy installDirlvxworks-6.x/host/sun4-solaris2/bin/tap to a directory
accessible by root.

2. Become the administrator.

67

Wind River VxWorks Simulator
User's Guide, 6.6

3. Go to the directory to which you copied the tap package.
4. Install the tap package as follows:
pkgadd -d tap
5. Select the Universal TAP device driver and answer “yes” to run the install
scripts.
Linux Hosts

The tun module required by the TAP driver must be available in your Linux
distribution.

NOTE: The tun driver is available by default as part of the core kernel package for
Red Hat Enterprise Linux Workstation 4.0 and later versions. It is also available as
part of the default distribution for SuSE Linux 9.2. However, the driver is not

available in the core kernel package of Red Hat Workstation 3.0, update 4 or earlier.

If you are using an earlier release of Red Hat (prior to Linux kernel version
2.4.21-20), the tun module is part of the kernel-unsupported RPM package. To use
the tun module with Red Hat Workstation 3.0, update 4 or earlier, you must update
your Linux kernel to version 2.4.21-20 and install the kernel-unsupported RPM
package.

The tun module should be loaded automatically when vxsimnetd is started.
However, some OS versions require you to load the module into the kernel. To do
this, first check that the module is present:

$ modinfo tun

filename: /1lib/modules/2.4.21-20.EL/unsupported/drivers/net/tun.o
description: <none>

author: <none>

license: "GPL"

To load the module into the kernel, type:

S modprobe tun

5.4.1 Managing the WRTAP Driver on Windows Hosts

The following information may be useful when installing and using the host
connection (WRTAP) driver on a Windows host. For instructions on installing the
WRTAP driver, see the 5.4 Installing the Host Connection Driver, p.66.

68

5 Networking with the VxWorks Simulator
5.4 Installing the Host Connection Driver

Migrating from the ULIP Driver
The WRTAP driver replaces the ULIP driver used in earlier VxWorks simulator
releases. You can use the WRTAP driver even if the ULIP driver is installed.
Handling Networking Problems on Your Host System

If you encounter networking problems with the VxWorks simulator or your host
system after installing the WRTAP driver, you may need to make certain changes
to your Windows network connection settings.

NOTE: You will need administrator privileges on the Windows host to make the
following changes.

To access Windows network connection settings, select Start > Control Panel

> Network Connections (on Windows XP hosts) or Start > Control Panel >
Network and Sharing Center > Manage network connections (on Windows Vista
hosts).

Certain communication protocols (particularly those which alter the maximum
transmission unit (MTU) setting of the interface) can cause problems when the
WRTAP driver is in use. In some instances, you may need to remove all protocols
except TCP/IP. To do this, right click on each network connection and select
Properties. Under the General tab, uncheck all items and components except
TCP/IP (Internet Protocol TCP/IP).

NOTE: Removing all protocols except TCP/IP has no impact on the general host
system. The change only applies to the WRTAP interface that is used for
communication between the host system and the VxWorks simulator.

When you install the WRTAP driver, it becomes the primary network connection
type on your host system. This can cause other applications to run slowly and can
cause failures on the host system. To replace WRTAP as your main network
connection, do the following:

* In the Network Connections (or Network and Sharing Center > Manage
network connections) window, select Advanced > Advanced Settings... . (On
Vista hosts, you need to press the Alt key to access the Advanced menu.)

» Under the Adapters and Bindings tab, move your main Ethernet interface to
the top of the Connections list.

69

Wind River VxWorks Simulator
User's Guide, 6.6

Disabling the WRTAP Driver

IP address configuration for the WRTAP network connection is handled
automatically by the VxWorks simulator network daemon. However, by default,
the WRTAP network connection is turned on immediately following installation
and uses DHCP to configure its IP address. To avoid the DHCP configuration, you
can disable the WRTAP network connection after installation and allow it to be
restarted and configured by the VxWorks simulator network daemon when
necessary.

To disable the WRTAP network connection, access the Windows network
connection settings by selecting Start > Control Panel > Network Connections
(on Windows XP hosts) or Start > Control Panel >

Network and Sharing Center (on Windows Vista hosts). In the

Network Connections (or Network and Sharing Center) window, right-click the
WRTAP network interface you want to disable and select Disable. (You can see
that an interface is connected using the WRTAP driver by right-clicking and
selecting Properties. The device the interface is using is listed in the Connect using
field under the General tab.)

5.5 Configuring a Simulated Subnet

This section describes how to configure simulated subnets for use with the
VxWorks simulator.

5.5.1 Starting a Simulator Instance With Multiple Network Interfaces

If you need to configure a VxWorks simulator instance with multiple network
interfaces (a router configuration), vxsim includes the -ni option. The syntax for
this options is as follows:

deviceNameDeviceNumber : subnet=IP_address : IP_netmask

This describes one interface. You can chain these descriptions together using a
semi-colon (;) as a delimiter. For example:

% vxsim -ni simnet2=192.168.2.1:0xfffffff0;simnet3=192.168.3.1:0xf££££££0;
simnet4=192.168.4.1:0x£££EFEFO

70

5 Networking with the VxWorks Simulator
5.5 Configuring a Simulated Subnet

NOTE: When launching the vxsim command from the command line on Linux and
Solaris hosts, you must use double quotes (") around the -ni option parameter
values to prevent the UNIX shell from interpreting the semi-colon (;). For example:
% vxsim -ni "simnet2=192.168.2.1:0xffE£f£F0; simnet3=192.168.3.1: 0xfEEEEEEO;
simnet4=192.168.4.1:0xfEEEEEEO"

Double quotes should not be used when passing this option to the command line
using Workbench or when using the command line on a Windows host.

This command starts a VxWorks simulator instance configured with three
simulated network interfaces that link the target with three very small subnets.

NOTE: When using the Wind River Workbench New Connection wizard to launch
your VxWorks simulator, the -ni option can be passed to the simulator using the
Other VxWorks simulator options field of the

VxWorks Simulator Miscellaneous Options dialog.

5.5.2 Starting a Simulator Instance Without an IPv4 Address

You can start a VxWorks simulator instance and attach to a subnet through its
name. For example, you can use the following commands:

vxsim -d simnet
vxsim -ni simnet

o

oe

These commands start a simulator that attaches to the first configured subnet
(neither IPv4 address is specified). In this example, a MAC address can no longer
be deduced from the IP address so a node number is used instead. The first
attaching simulator instance gets 7a:7a:0:0:0:1, and the second instance gets
7a:7a:0:0:0:2 where 7a:7a is the subnet MAC prefix of the first configured subnet.

NOTE: In this example, the MAC address is no longer fixed and can change if the
simulator instance is rebooted. This may cause a problem with ARP tables.

You can also use the following command:
% vxsim -ni simnet0O:default

Use this command to start a VxWorks simulator instance that attaches to a subnet
named default. The MAC address is determined as described in the earlier
example.

It is also possible to get a fixed MAC address by specifying an IPv4 address that is
not used to configure the simnet interface if the component

71

Wind River VxWorks Simulator
User's Guide, 6.6

INCLUDE_NET_BOOT_CONFIG is not defined. Thus, you can use the following
commands:

% vxsim -d simnet -e 192.168.3.1
% vxsim -ni simnet1=192.168.3.1

This command sequence starts a VxWorks simulator instance with a simulated
subnet interface with a MAC address of 7a:7a:c0:a8:03:01 and an IP address (or
addresses) that can be configured later using the ifconfig() command.

72

Networking Tutorials

6.1 Introduction 73

6.2 Simple Simulated Network 74

6.3 Basic Simulated Network with Multiple Simulators 78
6.4 Running the VxWorks Simulator on the Local Network 90
6.5 IPv6 Tutorial 95

6.1 Introduction

This chapter presents tutorials that provide step-by-step instruction for setting up
a simulated network of VxWorks simulator instances. The network simulation is
demonstrated using the ping function. This chapter also includes an IPv6 tutorial
that describes how to set up your host system and VxWorks simulator instances to
communicate using IPv6 protocol.

73

Wind River VxWorks Simulator
User's Guide, 6.6

NOTE: When launching the vxsim command from the command line on Linux and
Solaris hosts (as instructed in the tutorials throughout this chapter), you must use
double quotes (") around the -ni option parameter values to prevent the UNIX
shell from interpreting the semi-colon (;). For example, the following line:

)

% vxsim -ni simnet2=192.168.200.1;simnet3=192.168.3.1;simnet4=192.168.4.1

should be executed as follows when using the Linux or Solaris command line
interface:

% vxsim -ni "simnet2=192.168.200.1;simnet3=192.168.3.1;simnet4=192.168.4.1"

Double quotes should not be used when passing options to the command line
using Workbench or when using the command line on a Windows host.

6.2 Simple Simulated Network

The most basic (and common) network used by the VxWorks simulator is a
network set up between the host and a single VxWorks simulator instance. You can
set up this simple network using the default VxWorks simulator configuration.
Therefore, the following tutorial does not require you to reconfigure or rebuild the
default VxWorks image provided with the VxWorks simulator BSP.

This tutorial describes how to:
1. Set up and start the VxWorks simulator network daemon (vxsimnetd).
2. Start a single VxWorks simulator instance.

3. Test the simulator network by pinging the VxWorks simulator instance from
the host.

This tutorial can be performed with any supported host using the command-line
utility, vxprj, or Wind River Workbench.

6.2.1 Set Up the Network Daemon
The first step in setting up a VxWorks simulator network is to start the network

daemon. For this tutorial, you start the network daemon is started on the host
before you configure any VxWorks simulator instances.

74

6 Networking Tutorials
6.2 Simple Simulated Network

Installing the VxWorks Simulator Host Connection Driver

Before configuring and starting the VxWorks simulator network daemon, you
must install the VxWorks simulator host connection driver (WRTAP driver). If you
have not already installed the host connection driver, do so now. Instructions for
all supported hosts are provided in 5.4 Installing the Host Connection Driver, p.66.

Configuring the Network Daemon

This tutorial uses the default configuration for the VxWorks simulator network
daemon. Therefore, vxsimnetd can be started without any options and no custom
configuration file is required.

NOTE: The default configuration uses a default subnet of 192.168.200.0. If this
subnet already exists on your host, you must change the VxWorks simulator
network daemon configuration file. For more information on the default
configuration options as well as other network daemon configuration file options,
see 5.3.4 Creating a Network Daemon Configuration File, p.60.

Starting the Network Daemon on the Host System

NOTE: Wind River recommends that you start vxsimnetd as a service, see Starting
the Network Daemon as a Service, p.51 for complete instructions. If you have already
started the default vxsimnetd as a service or choose to do so now, you can skip the
instructions in this section.

To start the VxWorks simulator network daemon in the default configuration:
On Windows hosts:
1. Log in as administrator or be sure you have administrator privileges.
2. Open a Windows command shell (Start > Run..., then type cmd)
3. Inthe command shell, type the following;:
C:\> installDir\vxworks-6.x\host \x86-win32\bin\vxsimnetd

where installDir is the name of your VxWorks installation directory.
On Linux hosts:

1. Open a host shell and log in as root.

75

Wind River VxWorks Simulator

User's Guide, 6.6

2.

In the host shell, type the following:
$ installDir /vxworks-6.x/host /x86-1inux2/bin/vxsimnetd

where installDir is the name of your VxWorks installation directory.

On Solaris hosts:

1.
2.

Open a host shell and log in as root.

In the host shell, type the following;:
installDir/vxworks-6.x/host/sund4-solaris2/bin/vxsimnetd

where installDir is the name of your VxWorks installation directory.

6.2.2 Start a VxWorks Simulator Instance

Next, you need to start a VxWorks simulator instance from the command line in
the VxWorks development shell or from the Workbench New Target Connection
wizard. Again, the default VxWorks configuration is used for this tutorial therefore
you do not need to reconfigure or rebuild the default VxWorks image for the
simulator.

Start the Simulator Instance from the Command Line

To start a VxWorks simulator instance from the command line, do the following:

1.

76

Open the VxWorks development shell.

On Windows hosts, select Start > Wind River > VxWorks 6.x and
General Purpose Technologies > VxWorks Development Shell.

On Solaris and Linux hosts, run the wrenv utility program to open a
development shell as follows:

% wrenv.sh -p vworks-6.x
In the VxWorks development shell, type the following;:
On Windows hosts:

C:\> vxsim -d simnet -e 192.168.200.1 -f
installDir\vxworks-6 . x\target \config\simpc\vxWorks

where installDir is the name of your VxWorks installation directory.

6 Networking Tutorials
6.2 Simple Simulated Network

On Linux or Solaris hosts:

% vxsim -d "simnet" -e "192.168.200.1" -£

"installDir /vxworks-6 .x/target /config/bsp/vxWorks"

where installDir is the name of your VxWorks installation directory and bsp is
the name of the BSP directory for the VxWorks simulator on your host (linux
for Linux hosts or solaris for Solaris hosts).

The above command starts a VxWorks simulator instance and attaches it to the
default subnet. The VxSim0 console windows appears.

Start the Simulator Instance from Workbench

To start the VxWorks simulator instance from Workbench, complete the following

steps:

1. Select Target > New Connection.... This launches the New Connection
wizard.

2. In the Connection Type dialog box, select Wind River VxWorks 6.x
Simulator Connection from the selection list. Click Next.

3. In the Select boot file name field of the VxWorks Boot parameters dialog,
click the Standard simulator (Default) radio button (this option should be
selected by default). This selects the default VxWorks image for the VxWorks
simulator.

4. Enter 0 in the Processor Number field (this is the default value).

5. Click the Advanced Boot Parameters... button. In the boot device field, select
simnet from the drop down list. In the Inet on ethernet (e) field, enter
192.168.200.1 (this is the default value). Leave all other fields with their default
settings. Click OK. This returns you to the VxWorks Boot parameters dialog
of the New Connection wizard, click Next.

6. The VxSim Memory Options dialog appears. Click Next to accept the default
options.

7. The VxWorks Simulator Miscellaneous Options dialog appears. Click Next
to accept the default options (most options are blank by default).

8. The Target Server Options dialog appears. Click Next to accept the default
options.

9. The Object Path Mappings dialog appears. Click Next to accept the default

options.

77

Wind River VxWorks Simulator
User's Guide, 6.6

10. The Target State Refresh dialog appears. Click Next to accept the default
options.

11. The Default Breakpoint Options dialog appears. Click Next to accept the
default options.

12. The Connection Summary dialog appears. Click Finish.

This boots VxWorks on the simulator target and launches the VxSim0 console
window. If your target connection fails or you encounter problems during
configuration, see the Wind River Workbench User’s Guide for more information.

6.2.3 Test the Simulated Network

To test that the simulated network is working, ping the simulator instance from
your host system. From a host command window or shell, type:

% ping 192.168.200.1

6.3 Basic Simulated Network with Multiple Simulators

The following tutorials present the steps required to set up a simulated network
with multiple VxWorks simulator instances. Two configuration options are
described. The first tutorial creates a subnet with a static configuration. The second
tutorial launches the VxWorks simulator network daemon (vxsimnetd) in
interactive mode. The interactive mode starts a vxsimnetd shell that allows you to
dynamically configure and monitor the subnet. (For more information on the
VxWorks simulator network daemon, see 5.3 Setting Up the Network Daemon, p.50.)

The following tutorials require you to configure and build a new VxWorks image
for the VxWorks simulator. The steps required to build and configure the image are
included in this tutorial. However, if you require more information on building
and configuring VxWorks, see the VxWorks Application Programmer’s Guide or the
Wind River Workbench documentation.

78

6 Networking Tutorials
6.3 Basic Simulated Network with Multiple Simulators

6.3.1 Creating a Static Configuration

The following tutorial takes you through the steps of creating a simulated network
with a static configuration. The following steps are performed:

1.
2.

3.
4.

Configure and launch the VxWorks simulator network daemon (vxsimnetd).

Configure and build a VxWorks image for use with the VxWorks simulator
instances.

Launch the required simulator instances.

Run the ping application.

Step 1: Configure and Launch vxsimnetd

1.

3.

The first step in setting up your simulated network is to set up and start
vxsimnetd. Before completing the following steps, be sure that you have:

»= Installed the VxWorks simulator host connection driver (WRTAP driver).
(Instructions for installing the driver are available in 5.4 Installing the Host
Connection Driver, p.66.)

» Stopped any previously started VxWorks simulator network daemons
(including those started as a service, see Starting the Network Daemon as a
Service, p.51).

Now, create a vxsimnetd configuration file. For the purposes of this tutorial,
this file is used to configure the network for use with a simulated router (see
Configure and Start the Simulated Router, p.83).

Create the following file and save it as vxsimTest.conf:

SUBNET_START sub2 {
SUBNET_ADDRESS = "192.168.200.0";
SUBNET_EXTERNAL = yes;
SUBNET_EXTPROMISC = yes;

Y

SUBNET_START sub3 {
SUBNET_ADDRESS = "192.168.3.0";
SUBNET_EXTERNAL = no;

Y

SUBNET_START sub4 {
SUBNET_ADDRESS = "192.168.4.0";
SUBNET_EXTERNAL = no;

Y

Next, launch vxsimnetd using the configuration file you just created.

On Windows hosts:

79

Step 2:

Wind River VxWorks Simulator
User's Guide, 6.6

Log in with administrator privileges and start vxsimnetd from a
command window as follows:

C:\> installDir\veworks-6.x\host \x86-win32\bin\vxsimnetd -f
vxsimTest.conf

Be sure to provide the full path to your vxsimTest.conf file if it is not in
your current directory.

On Linux and Solaris hosts:
Log in as root and start vxsimnetd from a host shell as follows:
installDir/vxworks-6.x/host/myHost/bin/vxsimnetd -f vxsimTest.conf

In this command, myHost is your host type: x86-linux2 for Linux hosts or
sun4-solaris2 for Solaris hosts.

Be sure to provide the full path to your vxsimTest.conf file if it is not in
your current directory.

NOTE: You can also start vxsimnetd as a service. For instructions, see Starting the
Network Daemon as a Service, p.51. If you choose to start vxsimnetd as a service, you
will need to configure the daemon as directed in this section (by passing the -f
option to the service) before proceeding with the tutorial.

NOTE: If you do not start vxsimnetd with administrator (or root) privileges,
vxsimnetd prints a warning. In this case, you will not be able to connect the host
system to the simulated network. However, all other simulated network
functionality is available.

Prepare a VxWorks Image for Use with the Simulated Network

In this tutorial, the VxSim0 simulator instance acts as a router. This tutorial uses
ping to communicate between simulator instances therefore ping functionality
must be enabled. Because this functionality is not included in the default VxWorks
image, you must configure and build a new VxWorks image for use with the
simulated network.

To properly configure the VxWorks image, you must include the
INCLUDE_ROUTECMD and INCLUDE_PING components in your custom
VxWorks image. Once this configuration is in place, you must rebuild the VxWorks
image for the simulator.

80

6 Networking Tutorials
6.3 Basic Simulated Network with Multiple Simulators

Prepare Your VxWorks Image Using the vxprj Command-Line Utility

To reconfigure the VxWorks image with the necessary components using the
command-line project facility, vxprj, complete the following steps:

1.

Generate a project. This can be done from the command line as follows:
In the VxWorks development shell, type the following;:

On Windows hosts:

C:\> vxprj create simpc TOOL network_ demo

where TOOL is your chosen compiler (diab for the Wind River Compiler or
gnu for the GNU compiler).

On Linux hosts:

$ vxprj create linux TOOL network_demo

where TOOL is your chosen compiler (diab for the Wind River Compiler or
gnu for the GNU compiler).

On Solaris hosts:

% vxprj create solaris TOOL network_demo

where TOOL is your chosen compiler (diab for the Wind River Compiler or
gnu for the GNU compiler).

This creates a project directory under installDir with the name, network_demo.

2.

Add the INCLUDE_ROUTECMD and INCLUDE_PING components to the
image:

% cd network demo

[

% vxprj component add INCLUDE_ROUTECMD INCLUDE PING

Now;, rebuild VxWorks. In the project directory (installDir/network_demo),
execute make.

Prepare Your VxWorks Image Using Workbench

1.

Generate a project.

a. In Workbench, select File > New > VxWorks Image Project. This
launches the New VxWorks Image Project wizard.

b. In the Project dialog, enter network_demo in the Project name field.
Select the location for your project in the Location field
(Create Project in Workspace is selected by default). Click Next.

81

Wind River VxWorks Simulator
User's Guide, 6.6

82

In the Project Setup dialog, select the option to set up your project based
on a board support package (this option is selected by default). And select
the appropriate VxWorks simulator BSP for your host (for example, simpc
on Windows hosts) and your desired tool chain (for example, diab). Click
Next.

In the Options dialog, click Next to accept the default options (no options
are selected by default).

In the Configuration Profile dialog, select (no profile) from the Profile
drop-down list (this is the default). Click Finish.

This creates a project directory with the name, network_demo. The new
project appears in the Project Navigator pane on the left.

Configure a custom VxWorks kernel to include the appropriate networking
components.

a.

C.
d.

Expand the new network_demo project and right-click

Kernel Configuration. Select Edit Kernel Configuration. This opens the
component configuration tool in the center pane of the

Application Development window.

Select the Components tab at the bottom of the kernel configuration pane
(if it is not already selected). Right-click in the component configuration
field and select Find. Use the Find tool to locate the
INCLUDE_ROUTECMD and INCLUDE_PING components. To find a
component, type the component name (for example, INCLUDE_PING) in
the Pattern field. When the component appears in the Matching list, select
the component and click the Find button. This returns you to the
component configuration tool. The selected component is highlighted in
the component tree.

Right-click the selected component and select Include (quick include).

Right-click in the component tree and select Save.

Build your project.

a.

Now, right-click on the network_demo project in the Project Navigator
(upper left pane) and select Build Project (this executes the make
command in the project directory). The build output appears in the
Build Console (lower right pane).

6 Networking Tutorials
6.3 Basic Simulated Network with Multiple Simulators

Step 3: Launch the VxWorks Simulator Instances

Now, start the simulator instances to attach to the configured subnets. This results
in a simulated network with the following topology:

Host

192.168.200.254

VXSim0 VxSim1
(router)
192.168.200.1 192.168.200.2
simnet2
VxSim2
192.168. 3.1 192.168.3.2
simnet3
VxSim3
192.168.4.1 192.168.4.2
simnet4

You can launch the simulator instances from the VxWorks development shell using
the command line, or from Workbench.

Start the VxWorks Simulator Instances from the Command Line

If you have not already done so, change to the directory where you built your
VxWorks image (for example, installDir/network_demo/default).

Configure and Start the Simulated Router

To configure the VxWorks simulator instance for the simulated router, type the
following in the VxWorks development shell:

% vxsim -ni simnet2=192.168.200.1;simnet3=192.168.3.1;simnet4=192.168.4.1

83

Wind River VxWorks Simulator
User's Guide, 6.6

This command sets up a network interface for the router on each subnet so that it
can properly forward packets.

Once you execute this command, the VxSim0 console window appears. (The
VxSim0 instance acts as the simulated router.)

Configure and Start the Simulated Network Instances

To configure three VxWorks simulator instances on the simulated network, type
the following in the VxWorks development shell:

% vxsim -d simnet -e 192.168.200.2 -p 1

% vxsim -d simnet -e 192.168.3.2 -p 2

% vxsim -d simnet -e 192.168.4.2 -p 3
This command creates three instances on the simulated network; VxSim1,
VxSim2, and VxSim3. One node is created on each of the three subnets you set up
when you launched vxsimnetd (see Step 1:Configure and Launch vxsimnetd, p.79).

Start the VxWorks Simulator Instances from Workbench
This section provides instructions for launching the simulated router and
networked VxWorks simulator using Workbench.
Configure and Start the Simulated Router

First, start the VxWorks simulator instance that will act as the router in the
simulated network. To start this instance from Workbench, complete the following
steps:

1. Select Target > New Connection.... This launches the New Connection
wizard.

2. Inthe Connection Type dialog box, select Wind River VxWorks 6.x
Simulator Connection from the selection list. Click Next.

3. In the Select boot file name field of the VxWorks Boot parameters dialog,
click the Custom simulator radio button. Browse to your project location and
click Open to select your VxWorks image (for example, installDir/workspace
/network_demo/default/vxWorks).

4. Enter 0 in the Processor Number field. Click Next.

5. The VxSim Memory Options dialog appears. Click Next to accept the default
options.

84

10.

11.

6 Networking Tutorials
6.3 Basic Simulated Network with Multiple Simulators

The VxWorks Simulator Miscellaneous Options dialog appears. In the
Other VxWorks simulator options field, enter:

-ni simnet2=192.168.200.1;simnet3=192.168.3.1;simnet4=192.168.4.1

This option sets up a network interface for the router on each subnet so that it
can properly forward packets.

Click Next.

The Target Server Options dialog appears. Click Next to accept the default
options.

The Object Path Mappings dialog appears. Click Next to accept the default
options.

The Target State Refresh dialog appears. Click Next to accept the default
options.

The Default Breakpoint Options dialog appears. Click Next to accept the
default options.

The Connection Summary dialog appears. Click Finish.

This boots VxWorks on a simulator target and launches the VxSim0 console
window. VxSim0 acts as a router on the simulated network.

Configure and Start the Simulated Network Instances

Now, configure three VxWorks simulator instances, one instance per subnet
(repeat the following process for each of the three instances). To configure each of
the devices, complete the following steps:

1.

Select Target > New Connection.... This launches the New Connection
wizard.

In the Connection Type dialog box, select Wind River VxWorks 6.x
Simulator Connection from the selection list. Click Next.

In the Select boot file name field of the VxWorks Boot parameters dialog,
click the Custom simulator radio button. Browse to your project location and
click Open to select your VxWorks image (for example, installDir/workspace
/network_demo/default/vxWorks).

Enter 1 in the Processor Number field. (Enter 2 for this option when starting
the second instance and 3 when starting the third instance)

Click the Advanced Boot Parameters... button. In the boot device field, select
simnet from the drop down list. In the Inet on ethernet (e) field, enter

85

Step 4:

Wind River VxWorks Simulator
User's Guide, 6.6

10.

11.

12.

192.168.200.2. (Enter 192.168.3.2 when starting the second instance and
192.168.4.2 when starting the third instance). Leave all other fields with their
default settings. Click OK. This returns you to the VxWorks Boot parameters
dialog of the New Connection wizard, click Next.

The VxSim Memory Options dialog appears. Click Next to accept the default
options.

The VxWorks Simulator Miscellaneous Options dialog appears. Click Next
to accept the default options (most options are blank by default).

The Target Server Options dialog appears. Click Next to accept the default
options.

The Object Path Mappings dialog appears. Click Next to accept the default
options.

The Target State Refresh dialog appears. Click Next to accept the default
options.

The Default Breakpoint Options dialog appears. Click Next to accept the
default options.

The Connection Summary dialog appears. Click Finish.

Repeat this process three times to create three VxWorks simulator instances,
VxSim1, VxSim2, and VxSim3. This results in a node being configured on each of
the three subnets you set up when you launched vxsimnetd (see Step 1:Configure
and Launch vxsimnetd, p.79).

Set Up the Routing Table

Before pinging between simulator instances, you must set up the routing table for
the simulated network.

In the VxSim1 shell, type:

-> routec ("add -net 192.168.3.0/24 192.168.200.1");
-> routec ("add -net 192.168.4.0/24 192.168.200.1");

In the VxSim2 shell, type:

-> routec ("add -net 192.168.200.0/24 192.168.3.1");
-> routec ("add -net 192.168.4.0/24 192.168.3.1");

In the VxSim3 shell, type:

86

-> routec ("add -net 192.168.200.0/24 192.168.4.1");
-> routec ("add -net 192.168.3.0/24 192.168.4.1");

Step 5:

6 Networking Tutorials
6.3 Basic Simulated Network with Multiple Simulators

NOTE: These route settings can be saved in files and run automatically. To do this,
specify the saved file as a startup script when invoking vxsim from the command
line as follows:

% vxsim -d simnet -e 192.168.200.2 -p 1 -s filename
where filename is the name of your startup script.

You can also specify the startup script when launching the simulator from
Workbench by adding the startup script to the startup script (s) field in
Advanced Boot Parameter Options.

Run the Ping Application

To verify the network connections, ping VxSim3 and VxSim2 from VxSim1 as
follows:

-> ping "192.168.3.2", 5
-> ping "192.168.4.2", 5

6.3.2 Creating a Dynamic Configuration Using the vxsimnetd Shell

Step 1:

The following steps demonstrate how to dynamically configure the VxWorks
simulator using the network daemon shell.

NOTE: This tutorial is an extension of the static configuration tutorial presented in
6.3.1 Creating a Static Configuration, p.79. You must use the VxWorks image you
created in the earlier tutorial to launch the VxWorks simulator instances in this
tutorial.

Launch the vxsimnetd Shell Server

Before launching a the vxsimnetd shell server, be sure to kill all previously started
VxWorks simulator instances and then kill the previously started network
daemon.

1. Start the vxsimnetd shell server. From the command shell on Windows or the
host shell on Linux or Solaris, start vxsimnetd with the -sv option as follows:

installDir\vxworks-6 .x\host \myHost\bin\vxsimnetd -sv

NOTE: You must start vxsimnetd with administrator (or root) privileges. Once
vxsimnetd is started, administrator privileges are no longer required.

87

Step 2:

Step 3:

Step 4:

Wind River VxWorks Simulator
User's Guide, 6.6

Configure vxsimnetd Dynamically Using the Shell

1. To configure vxsimnetd using the shell, you must create an additional subnet
configuration file. Create and save the following file:

SUBNET_START sub3 {
SUBNET_ADDRESS = "192.168.3.0";
SUBNET_EXTERNAL = no;

}i

SUBNET_START sub4 {
SUBNET_ADDRESS = "192.168.4.0";
SUBNET_EXTERNAL = no;

}i

2. Save this file as sub_3_4.conf.
3. Connect to the vxsimnetd shell. From the host shell, type the following:
% telnet yourHostName 7777
where yourHostName is the name of your host machine.
The vxsimnetd debug shell appears.
4. Source the new configuration file as follows:
vxsimnetd> source /myDir/sub_3_4.conf

Subnet (s) <sub3, sub4> added.

Prepare a VxWorks Image

If you have not already done so, prepare a VxWorks image according to the
instructions in Step 2:Prepare a VxWorks Image for Use with the Simulated Network,
p-80.

NOTE: If you have already completed the tutorial in 6.3.1 Creating a Static
Configuration, p.79, you can use the VxWorks image you prepared in the
network_demo project.

Launch the VxWorks Simulator Instances

Launch the VxWorks simulator instances as described in Step 3:Launch the VxWorks
Simulator Instances, p.83.

Again, this sets up a simulated network with the following topology:

88

Step 5:

6 Networking Tutorials
6.3 Basic Simulated Network with Multiple Simulators

Host

192.168.200.254

VxSim0 VxSim1
(router)
192.168.200.1 192.168.200.2
VxSim2
192.168. 3.1 192.168.3.2
VxSim3
192.168.4.1 192.168.4.2

Set Up the Routing Table

In the current configuration, VxSim2 is configured to be externally available so it
can be pinged from the host. However, before pinging the host, you must add the
appropriate route information.

First, provide the appropriate routing information on your host system.

NOTE: To run the following route commands, you must have administrator
privileges on Windows and supervisor privileges on UNIX.

For Windows hosts:
Type the following from the Windows command shell:

C:\> route add 192.168.3.0 MASK 255.255.255.0 192.168.200.1
C:\> route add 192.168.4.0 MASK 255.255.255.0 192.168.200.1

For Solaris and Linux hosts:

Type the following from the host shell:

89

Wind River VxWorks Simulator
User's Guide, 6.6

% route add -net 192.168.3.0 192.168.200.1
% route add -net 192.168.4.0 192.168.200.1

Next, add the appropriate routing information to the VxSim2 instance. In the
VxSim2 console, type the following:

-> routec ("add -net 192.168.200.0/24 192.168.3.1");

Now, add the appropriate routing information to the VxSim3 instance. In the
VxSim3 console, type the following:

-> routec ("add -net 192.168.200.0/24 192.168.4.1");

Step 6: Run the Ping Application

Now, you can verify the network connection by pinging VxSim2 and VxSim3 from
the host shell as follows:

oe

ing 192.168.3.2

p
ping 192.168.4.2

%

6.4 Running the VxWorks Simulator on the Local Network

This tutorial demonstrates how to plug the VxWorks simulator directly into your
local network through a bridge configured on your host.

6.4.1 Default subnet configuration

By default, vxsimnetd configures the wrtap/tap interface with an IP address of
192.168.200.254. In this configuration, the host machine appears as a gateway
between two subnets: the local one (for example, 10.10.10.0) and the VxSim subnet
(192.168.200.0). See the diagram below for an illustration of the VxWorks simulator
host machine and another host machine on the same local subnetwork.

90

6 Networking Tutorials
6.4 Running the VxWorks Simulator on the Local Network

VxSim host
10.10.10.2

VxSim VxSim
192.168.200.1 192.168.200.2

VxSim subnet 192.168.200.0

IP forwarding

Host Local interface |«g— g Tap/WRTAP
10.10.10.2 interface

10:10.101 192.168.200.254

Local subnet 10.10.10.0

in this case, if you want to access host 10.10.10.1 from the VxWorks simulator you
need to set up routes as follows:

1.

Indicate that you can reach the 10.10.10.0 subnet through the host interface
192.168.200.254:

-> routec "add -net 10.10.10.0/24 192.168.200.254"

on every remote host, indicate that host 10.10.10.2 is the gateway to reach the
192.168.200.0 network:

on linux
route add -net 192.168.200.0 gw 10.10.10.2

on windows
route add 192.168.200.0 mask 255.255.255.0 10.10.10.2

91

Wind River VxWorks Simulator
User's Guide, 6.6

6.4.2 Configuring a Bridge

To simplify route settings, you can connect vxsim directly to your local network
through a bridge configured on your host machine between the local network
interface and the wrtap interface. The goal of setting up such a bridge is to allow a
VxSim started on 10.10.10.2 to ping any host on the local subnet (without having
to set up additional routes) as shown below:

VxSim host
10.10.10.2

VxSim VxSim
10.10.10.30 10.10.10.40

VxSim subnet 10.10.10.0

Bridge
Host Local interface |<q g 12PWRTAP
10.10.10.2 interface
10-10.104 10.10.10.254

Local subnet 10.10.10.0

Windows Setup

NOTE: This feature is supported on Windows XP and Windows Vista.

1. Create a vxsimnetd configuration file for your local subnet (this example
assumes that your local subnet is 10.10.10.0):

92

Linux bridge setup

6 Networking Tutorials
6.4 Running the VxWorks Simulator on the Local Network

subnet_start local_subnet {
subnet_address = "10.10.10.0";
subnet_mask = "255.255.255.0";
subnet_external = yes;
subnet_extpromisc = no;
}i
Start up vxsimnetd using the configuration file you just created. see
5.3.1 Starting the Network Daemon, p.51 for details.

Once you have started vxsimnetd, check the network interfaces in control
panel->network connections: you should be able to see the wrtap interface
configured on the same subnetwork as your local network interface (for
example, local interface of 10.10.10.2, and wrtap interface of 10.10.10.254).

To set up the bridge, control-click to select both interfaces then right click and
select bridge from the popup menu. select the newly created bridge then right
click and select properties. configure the bridge as the local interface is
configured (either dhcp or fixed address and gateway).

Start vxsim:
vxsim -d simnet -e 10.10.10.50

You should now be able to access any other host without modifying routing
tables.

If you started vxsimnetd as a service with your local subnet configuration, the
bridge should be available after a reboot of your host.

To use the VxWorks simulator on a local bridge in Linux, you must ensure that the
bridge module is installed on your Linux host, using the modinfo bridge
command. If necessary, install the package that does contain this module. You also
need the bretl command, available in the bridge-utils package

(http:/ /bridge.sourceforge.net/).

1.

To make sure the bridge module is available and loaded on your linux host,
run the following commands:

modinfo bridge
modprobe bridge

93

http://bridge.sourceforge.net
http://bridge.sourceforge.net

Wind River VxWorks Simulator
User's Guide, 6.6

2. Create a vxsimnetd configuration file for your local subnet (10.10.10.0 in this
example):

subnet_start local_subnet {
subnet_address = "10.10.10.0";
subnet_mask = "255.255.255.0";
subnet_external = yes;
subnet_extpromisc = no;
subnet_extdevnum = 1;

}i

3. Start your vxsimnetd with this configuration file or source it through an
existing vxsimnetd shell.

as root
> vxsimnetd -f local_subnet.conf -sv

or as normal user (if vxsimnetd was previously started as root with a
shell server)

> cp local_subnet.conf /tmp/local_subnet.conf

> telnet localhost 7777

vxsimnet> source /tmp/local_subnet.conf

subnet (s) <local_subnet> added.

4. Set up the bridge (as root):

>brctl addbr bridge0

>brctl addif bridge0 ethO

>brctl addif bridge0 tapl

>ifconfig tapl 0.0.0.0

>ifconfig eth0 0.0.0.0

>ifconfig bridge0 10.10.10.2 netmask 255.255.255.0 up

5. Start the VxWorks simulator:
>vxsim -d simnet -e 10.10.10.50
6. Check your routes and reset if necessary.

Note that when vxsimnetd is stopped, it removes the wrtap interface from the
bridge. When vxsimnetd is restarted, re-run the following commands to install the
tap interface into the bridge:

>brctl addif bridge0 tapl
>ifconfig tapl 0.0.0.0

94

6 Networking Tutorials
6.5 IPv6 Tutorial

6.5 IPv6 Tutorial

This tutorial illustrates how to configure your host system and your target
simulators to communicate using IPv6 protocol. For more information on IPv6, see
the Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 1: Transport
and Network Protocols.

95

Wind River VxWorks Simulator
User's Guide, 6.6

This tutorial describes how to:

* Enable IPv6 support on your host system.

» Configure the VxWorks simulator network daemon.

= Configure a VxWorks image for use as an IPv6-enabled simulator.

= Start your IPv6 VxWorks simulator network and test your connections.

6.5.1 Configure the Network

Step 1:

Step 2:

This section describes how to set up your host system and the VxWorks simulator
network daemon for use with an IPv6 network.

Configure Your Host System
In order to receive IPv6 packets from the VxWorks simulator subnet, you must
configure your host system with IPv6 support.

On Windows hosts, configure IPv6 support by issuing the following command
from a Windows command shell:

C:\> ipv6é install
On Linux hosts, issue the following command in a host shell:
$ modprobe ipvé

On Solaris hosts, IPv6 support is configured during setup. To confirm IPv6 support
on your host, log in with root privileges and issue the following command in the
host shell:

ifconfig -a6

If IPv6 support is present the command will be successful. If the command is
unsuccessful, see your host system documentation for information on enabling
IPv6 support or consult your system administrator.

Configure and Start the Network Daemon

This tutorial uses a network configuration that includes two subnets (default and
sub3) that are configured with IPv4 addresses. The IPv4 addresses are used only
to identify the subnets and to assign MAC addresses (see 5.5.2 Starting a Simulator
Instance Without an IPv4 Address, p.71).

NOTE: Before launching vxsimnetd, be sure to kill all previously started VxWorks
simulator instances and then kill the previously started network daemon.

96

6 Networking Tutorials
6.5 IPv6 Tutorial

You can configure the VxWorks simulator network daemon (vxsimnetd) using one
of the following methods:

Start vxsimnetd Using a Static Configuration File

Follow the instructions as provided in Step 1:Configure and Launch vxsimnetd, p.79
using the following file in place of the vxsimTest.conf file (save the file as
ipv6_tutorial_static.conf):

SUBNET_START default {
SUBNET_ADDRESS = "192.168.200.0";
SUBNET_EXTERNAL = yes;
SUBNET_ EXTPROMISC = yes;

1

SUBNET_START sub3 {
SUBNET_ADDRESS = "192.168.3.0";
SUBNET_ EXTERNAL = no;

Y

Configure vxsimnetd Dynamically Using the Shell

You can also configure the VxWorks simulator network daemon dynamically. First,
launch the vxsimnetd shell server as directed in Step 1:Launch the vxsimnetd Shell
Server, p.87. Then, complete the following steps:
1. Create and save the following file as ipv6_tutorial_dynamic.conf:
SUBNET_START sub3 {
SUBNET_ADDRESS = "192.168.3.0";

SUBNET_EXTERNAL = no;
};

2. Now, connect to the vxsimnetd shell. From your host shell, type the following:
% telnet yourHostName 7777
where yourHostName is the name of your host machine.

3. Inthe vxsimnetd debug shell, source the new configuration file as follows:
vxsimnetd> source /myDir/ipvé_tutorial_ dynamic.conf
Subnet <sub3> added.

4. Quit the vxsimnetd shell.

vxsimnetd> quit

97

Wind River VxWorks Simulator
User's Guide, 6.6

6.5.2 Configuring VxWorks with IPvé Components

NOTE: Before configuring your VxWorks image, make sure that your network
stack is enabled with IPv6 support. For information on building your network
stack with IPv6 support, see the Wind River Network Stack for VxWorks 6
Programmer’s Guide, Volume 1: Transport and Network Protocols.

This tutorial uses a VxWorks simulator configuration to demonstrate router
advertisement and solicitation. The tutorial requires that you configure your
VxWorks with the following components:

INCLUDE_IPD_CMD

INCLUDE_IPCOM_SYSVAR_CMD

INCLUDE_IPRADVD_CMD

INCLUDE_PING6

Set these components using the vxprj command-line utility using the following
steps:

1. Create a project called demo_router. For example:

% vxprj -inet6 create bsp TOOL demo_router

where bsp is the BSP for your host system type (simpc, linux, or solaris) and
TOOL is your desired toolchain (diab or gnu).

NOTE: Wind River VxWorks Platforms users must omit the -inet6 option (or,
when using Workbench, do not to check the Use IPv6 enabled kernel libraries
option in the Options dialog of the New VxWorks Image Project wizard).
Also, be sure that you have built your Platform with IPv6 support. For more
information, see the Wind River Network Stack for VxWorks 6 Programmer’s
Guide, Volume 1: Transport and Network Protocols and your Platform getting
started guide.

2. Change to the demo_router directory:
% cd demo_router

3. Add the INCLUDE_IPD_CMD, INCLUDE_IPCOM_SYSVAR_CMD,
INCLUDE_IPRADVD_CMD, and INCLUDE_PING6 components:

% vxprj component add INCLUDE_IPD_CMD INCLUDE_IPCOM_SYSVAR CMD
INCLUDE_IPRADVD CMD INCLUDE_PING6

98

Build Your Projects

6 Networking Tutorials
6.5 IPv6 Tutorial

NOTE: You can also create your project and configure your VxWorks image from
Workbench using the kernel configuration tool. For more information on
configuring components using Workbench, see Prepare Your VxWorks Image Using
Workbench, p.81 or the Wind River Workbench User’s Guide.

Now, build the demo_router project as follows:

% vxprj build

6.5.3 Testing the IPv6 Connection

This section describes how to test the IPv6 connections in your simulated network.

Start the VxWorks Simulator Instances

Step 1:

Before you can test the IPv6 connection, you must start your VxWorks simulator
instances using the VxWorks images you created.

Start the Simulator Instances on the Default Subnet

1.

Create a startup script (default_startup) that specifies the prefix to advertise:

switch interpreter

cmd

add IPv6 address

ifconfig simnet0 inet6 add 2002:A01:201::787A:COFF:FEA8:C801
configure advertisement

radvdconfig simnet0 add test 2002:0a01:0201::/64 valid 600 preferred 200
L A

radvdconfig simnet0 enable test

start advertising prefix

sysvar set -o ipnet.inet6.radvd.interfaces simnet0

ipd start ipnet_radvd

Start one advertiser VxWorks simulator instance on the default subnet. You
can start the simulator instance from the VxWorks development shell using the
script you just created as follows:

% vxsim -p 0 -4 simnet -e 192.168.200.1 -f
installDir/ demo_router/default/vxworks -s pathloStartupScript/default_startup

Where pathToStartupScript is the full path to your startup script location.

99

Step 2:

Step 3:

Wind River VxWorks Simulator
User's Guide, 6.6

This starts a VxWorks simulator instance (VxSim0) with an advertiser
configuration on the default subnet.

3. Start a solicitor VxWorks simulator instance on the default subnet as follows:

% vxsim -p 1 -4 simnet -e 192.168.200.2 -f
installDir/demo_router/default /viworks

This starts a VxWorks simulator instance (VxSim1) with the solicitor
configuration on the default subnet.

Start the Simulator Instances on Subnet 3

1. Start one advertiser and one solicitor instance on subnet 3. First, create a
startup script (sub3_startup) that specifies the prefix to advertise:
switch interpreter
cmd
add IPv6 address
ifconfig simnet0 inet6 add 2002:A01:202::787A:COFF:FEA8:C801
configure advertisement
radvdconfig simnet0 add test 2002:0a01:0202::/64 valid 600 preferred 200
L A
radvdconfig simnet0 enable test
start advertising prefix
sysvar set -o ipnet.inet6.radvd.interfaces simnet0
ipd start ipnet_radvd
2. Start the advertiser VxWorks simulator instance. You can start the simulator
instance from the VxWorks development shell using the script you just
created:

% vxsim -p 2 -ni simnet0=192.168.3.1;simnet1=192.168.200.3 -f
installDir/ demo_router/default/vxworks -s pathToStartupScript/sub3_startup

Where pathToStartupScript is the full path to your startup script location.

This starts a VxWorks simulator instance (VxSim2) with the advertiser
configuration on subnet 3.

3. Start the solicitor VxWorks simulator instance as follows:

% vxsim -p 3 -4 simnet -e 192.168.3.2 -£
installDir/demo_router/default /vxworks

This starts a VxWorks simulator instance (VxSim3) with the solicitor
configuration on subnet 3.
Check Your Connections

You can now check to see if the VxWorks simulator instances are correctly
configured.

100

6 Networking

Tutorials

6.5 IPv6 Tutorial

NOTE: You may need to wait 10-30 seconds for the network autoconfiguration to

complete.

1.

In the VxSim0 console, type:

-> ifconfig "simnetO"
simnet0 Link type:Ethernet HWaddr 7a:7a:c0:a8:c8:01 Queue:none

inet 192.168.200.1 mask 255.255.255.0

inet 224.0.0.1 mask 240.0.0.0

inet6
inet6
automatic
inet6
inet6
inet6
inet6
inet6
inet6
inet6
inet6
inet6

unicast 2002
unicast FE80

unicast 3FFE:1:2:3::4

unicast FE80:

unicast 2002:A01:201::
unicast 3FFE:1:2:3::

FF02::1:FF00:4%simnet0 pr
FF02::1:FF00:0%simnet0 prefixlen 16

multicast
multicast
multicast
multicast
multicast

FF02::1%simnet0

prefixlen 64

:%$simnet0 prefixlen 64

prefixlen 64
prefixlen 64

broadcast 192.168.200.255

:A01:201::787A:COFF:FEA8:C801 prefixlen 64
::787A:COFF:FEA8:C801%simnet0 prefixlen 64

anycast

anycast
anycast
efixlen 16

prefixlen 16 automatic

FF02::1:FFA8:C801%simnet0 prefixlen 16

FF02::2%simnet0

UP RUNNING SIMPLEX BROADCAST MULTICAST

MTU:1500

metric:1 VR:0

RX packets:0 mcast:0 errors:0 dropped:0
TX packets:11 mcast:10 errors:0
collisions:0 unsupported proto:0

RX bytes:0

value = 0 = 0x0

TX bytes:966

In the VxSim1 console, type:

-> ifconfig "simnetO"
simnet0 Link type:Ethernet HWaddr 7a:7a:c0:a8:c8:02 Queue:none

inet 192.168.200.2 mask 255.255.255.0 broadcast 192.168.200.255

inet 224.0.0.1 mask 240.0.0.0

inet6
autonomous
inet6
automatic
inet6
inet6
inet6
inet6
inet6
inet6
inet6
inet6

MTU:1500

unicast 2002

unicast FE80

unicast 3FFE:1:2:3::4
unicast 2002:A01:201::

unicast FE80:

unicast 3FFE:1:2:3::
multicast FF02::1:FF00:4%simnet0 prefixlen 16

multicast FF02::1:FF00:0%simnet0

multicast

prefixlen 64
prefixlen 64

:%simnet0 prefixlen 64

prefixlen 64

prefixlen 16

:A01:201::787A:COFF:FEA8:C802 prefixlen 64

::787A:COFF:FEA8:C802%simnet0 prefixlen 64

anycast
anycast
anycast

prefixlen 16

FF02::1%simnet0 prefixlen 16 automatic
multicast FF02::1:FFA8:C802%simnet0
UP RUNNING SIMPLEX BROADCAST MULTICAST

metric:1 VR:0

RX packets:3 mcast:2 errors:0 dropped:0
TX packets:9 mcast:8 errors:0
collisions:0 unsupported proto:0

RX bytes:264 TX bytes:730

prefixlen 16

101

Wind River VxWorks Simulator
User's Guide, 6.6

value = 0 = 0x0
3. Inthe VxSim2 console, type:

-> ifconfig
100 Link type:Local loopback Queue:none
inet 127.0.0.1 mask 255.255.255.255
inet 224.0.0.1 mask 240.0.0.0
inet6 unicast FE80::1%10o0 prefixlen 64 automatic
inet6 unicast ::1 prefixlen 128
inet6 multicast FF02::1:FF00:1%100 prefixlen 16
inet6 multicast FF0l::1 prefixlen 16
inet6 multicast FF02::1%100 prefixlen 16 automatic
UP RUNNING LOOPBACK MULTICAST
MTU:1500 metric:1 VR:0
RX packets:9 mcast:0 errors:0 dropped:5
TX packets:9 mcast:3 errors:0
collisions:0 unsupported proto:0
RX bytes:440 TX bytes:440

simnet0 Link type:Ethernet HWaddr 7a:7a:c0:a8:03:01 Queue:none
inet 192.168.3.1 mask 255.255.255.0 broadcast 192.168.3.255
inet 224.0.0.1 mask 240.0.0.0
inet6 unicast 2002:A01:202::787A:COFF:FEA8:C801 prefixlen 64
inet6 unicast FE80::787A:COFF:FEA8:301%simnet0 prefixlen 64

automatic
inet6 unicast FE80::%simnet0 prefixlen 64 anycast
inet6 unicast 2002:A01:202:: prefixlen 64 anycast

inet6 multicast FF02::1%simnet0 prefixlen 16 automatic
inet6 multicast FFO02::1:FFA8:301%simnet0 prefixlen 16
inet6 multicast FF02::1:FFA8:C801%simnet0 prefixlen 16
inet6 multicast FFO02::1:FF00:0%simnet0 prefixlen 16
inet6 multicast FF02::2%simnet0 prefixlen 16

UP RUNNING SIMPLEX BROADCAST MULTICAST

MTU:1500 metric:1 VR:0

RX packets:2 mcast:1 errors:0 dropped:0

TX packets:11 mcast:10 errors:0

collisions:0 unsupported proto:0

RX bytes:130 TX bytes:966

simnetl Link type:Ethernet HWaddr 7a:7a:c0:a8:c8:03 Queue:none
inet 192.168.200.3 mask 255.255.255.0 broadcast 192.168.200.255
inet 224.0.0.1 mask 240.0.0.0
inet6 unicast 2002:A01:201::787A:COFF:FEA8:C803 prefixlen 64

autonomous

inet6 unicast FE80::787A:COFF:FEA8:C803%simnetl prefixlen 64
automatic

inet6 unicast 2002:A01:201:: prefixlen 64 anycast

inet6 unicast FE80::%simnetl prefixlen 64 anycast
inet6 multicast FFO02::1%simnetl prefixlen 16 automatic
inet6 multicast FF02::1:FFA8:C803%simnetl prefixlen 16
inet6 multicast FFO02::1:FF00:0%simnetl prefixlen 16

UP RUNNING SIMPLEX BROADCAST MULTICAST

MTU:1500 metric:1 VR:0

RX packets:1 mcast:1 errors:0 dropped:0

102

Step 4:

6 Networking Tutorials
6.5 IPv6 Tutorial

TX packets:7 mcast:6 errors:0
collisions:0 unsupported proto:0

RX bytes:102

value = 0 = 0x0

TX bytes:550

In the VxSim3 console, type:

-> ifconfig "simnetO"
simnet0 Link type:Ethernet HWaddr 7a:7a:c0:a8:03:02

inet 192.168.3.2

mask 255.255.255.0

inet 224.0.0.1 mask 240.0.0.0
2002:A01:202::787A:COFF:FEA8:302 prefixlen 64

inet6
autonomous
inet6
automatic
inet6
inet6
inet6
inet6
inet6
inet6
inet6
inet6

MTU:1500

unicast

unicast

unicast
unicast
unicast
unicast

multicast FF02::1:FF00:4%simnet0
multicast FF02::1:FF00:0%simnet0

FE80::787A:COFF:FEA8:302%simnet0

3FFE:1:2:3::4 prefixlen 64

Queue:none

broadcast 192.168.3.255

prefixlen 64

2002:A01:202:: prefixlen 64 anycast
FE80::%simnet0 prefixlen 64 anycast
3FFE:1:2:3:: prefixlen 64 anycast

multicast FF02::1%simnet0 prefixlen 16
multicast FF02::1:FFA8:302%simnet0 prefixlen 16
UP RUNNING SIMPLEX BROADCAST MULTICAST

metric:1 VR:0

RX packets:3 mcast:3 errors:0 dropped:0
TX packets:9 mcast:8 errors:0
collisions:0 unsupported proto:0

RX bytes:306 TX bytes:730

value = 0 = 0x0

Ping your VxSim Instances

prefixlen 16
prefixlen 16

automatic

You can now ping the VxWorks simulator instances on the same subnet. The

default subnet (default) includes VxSim0, VxSim1, and the host system. Subnet 3

(sub3) includes VxSim2 and VxSim3.

1.

Ping VxSim1 from VxSim0. In the VxSim0 console, enter the following:

-> cmd

[vxWorks *1# ping6é 2002:A01:201::787A:COFF:FEA8:C802

Pinging 2002:A01:201::787A:COFF:FEA8:C802
:C802) with 64 bytes of data:

(2002:A01:201

Reply from 2002:A01:
Reply from 2002:A01:
Reply from 2002:A01:
Reply from 2002:A01:

::787A:COFF:FEAS8
201::787A
201::787A
201::787A
201::787A

:COFF:FEA8:C802 bytes=64
:COFF:FEA8:C802 bytes=64
:COFF:FEA8:C802 bytes=64
:COFF:FEA8:C802 bytes=64

time=0ms
time=0ms
time=0ms
time=0ms

103

hlim=64
hlim=64
hlim=64
hlim=64

Wind River VxWorks Simulator
User's Guide, 6.6

104

--- 2002:A01:201::787A:COFF:FEA8:C802 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4066 ms
rtt min/avg/max = 0/0/0 ms

In the VxSim1 console, you can ping VxSimO0 with the local address as follows:

-> cmd
[vxWorks *1# ping6é FE80::787A:COFF:FEA8:C801%simnet0

Pinging FE80::787A:COFF:FEA8:C801%simnet0
(FE80::787A:COFF:FEA8:C801%simnet0) with 64 bytes of data:

Reply from FE80::787A:COFF:FEA8:C801%simnet0 bytes=64 time=0ms hlim=64
Reply from FE80::787A:COFF:FEA8:C801%simnet0 bytes=64 time=0ms hlim=64
Reply from FE80::787A:COFF:FEA8:C801%simnet0 bytes=64 time=0ms hlim=64
Reply from FE80::787A:COFF:FEA8:C801%simnet0 bytes=64 time=0ms hlim=64

--— FE80::787A:COFF:FEA8:C801%simnet0 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4066 ms
rtt min/avg/max = 0/0/0 ms

From VxSim1, you can also ping VxSim0 at the automatically configured
address as follows:

-> cmd
[vxWorks *1# ping6é 2002:A01:201::787A:cOFF:FEA8:C801

Pinging 2002:A01:201::787A:COFF:FEA8:C801
(2002:A01:201::787A:COFF:FEA8:C801) with 64 bytes of data:

Reply from 2002:A01:201::787A:COFF:FEA8:C801 bytes=64 time=0ms hlim=64
Reply from 2002:A01:201::787A:COFF:FEA8:C801 bytes=64 time=0ms hlim=64
Reply from 2002:A01:201::787A:COFF:FEA8:C801 bytes=64 time=0ms hlim=64
Reply from 2002:A01:201::787A:COFF:FEA8:C801 bytes=64 time=0ms hlim=64

--- 2002:A01:201::787A:COFF:FEA8:C801 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4066 ms
rtt min/avg/max = 0/0/0 ms

From VxSim0 or VxSim1, you can also ping the host:

-> cmd
[vxWorks *1# ping6é 2002:A01:201::787A:COFF:FEA8:C8FE

Pinging 2002:A01:201::787A:COFF:FEA8:C8FE
(2002:A01:201::787A:COFF:FEA8:C8FE) with 64 bytes of data:

Reply from 2002:A01:201::787A:COFF:FEA8:C8FE bytes=64 time=16ms hlim=64
Reply from 2002:A01:201::787A:COFF:FEA8:C8FE bytes=64 time=0ms hlim=64
Reply from 2002:A01:201::787A:COFF:FEA8:C8FE bytes=64 time=0ms hlim=64
Reply from 2002:A01:201::787A:COFF:FEA8:C8FE bytes=64 time=0ms hlim=64

--- 2002:A01:201::787A:COFF:FEA8:C8FE ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4067 ms
rtt min/avg/max = 0/4/16 ms

6 Networking Tutorials
6.5 IPv6 Tutorial

In addition, you can set the routing such that you can ping between the default
subnet and subnet 3 through VxSim2. For an example of how to set up the routing
information, see the tutorials in 6.3 Basic Simulated Network with Multiple
Simulators, p.78.

105

Wind River VxWorks Simulator
User's Guide, 6.6

106

Accessing Host Resources

A.1 Introduction 107

A.2 Accessing Host OS Routines 108

A.3 Loading a Host-Based Application 108
A.4 Host Application Interface (vxsimapi) 109
A.5 Tutorials and Examples 111

A.1 Introduction

The VxWorks simulator provides support to access the underlying host OS
routines from a VxWorks application and to call host code stored in a dynamic-link
library (DLL). That is, you can write a generic DLL (on any host) to control a
hardware device connected to the host. The DLL can then be loaded by, and
accessed through, the VxWorks simulator.

For information on the available host access routines, see the reference entry for
vxsimHostArchLib. vxsimHostArchLib also provides a host library (vxsimapi)
for VxWorks simulator host application development. For more information, see
the reference entry for vxsimapi.

107

Wind River VxWorks Simulator

User's Guide, 6.6

A.2 Accessing Host OS Routines

The vxsimHostProcAddrGet() routine allows you to retrieve the address of a host
routine. For example, the following code retrieves the address of the underlying
host OS malloc() routine:

/* Get underlying host OS malloc() address */
pHostMalloc = vxsimHostProcAddrGet ("malloc");

/* Allocate a buffer on host side of VxWorks Simulator */

1vl = intLock (); /* lock interrupts */
pHostBuf = (*pHostMalloc) (0x1000);
intUnlock (1vl); /* unlock interrupts */

You should observe the following guidelines when making a call to host code:

When you call a host routine from VxWorks code, you must always lock
interrupts before calling the routine. Failure to do so can result in unexpected
VxWorks simulator behavior.

When you call a host routine and the routine is system blocking, the routines
will not only block the VxWorks task from which it was called, but will also
block the entire VxWorks simulator.

To avoid blocking on a Windows simulator, create a specific thread that is
responsible for calling the potentially blocking host code and set up a simple
communication mechanism between VxWorks and the thread you have
created. For an example of this, see A.5.2 Controlling a Host Serial Device, p.113.

The method described for Windows simulators cannot be used on Linux or
Solaris simulators because these simulators do not support multithreading.
On these hosts, if the blocking system call is a device access, the solution is to
configure the host device to generate an interrupt when data becomes
available. For more information on using this method, refer to

A.4.2 Configuring a Host Device to Generate interrupts (UNIX Only), p.109.

A.3 Loading a Host-Based Application

The vxsimHostDIILoad() routine provides the ability to load a DLL in the
VxWorks simulator process. The exported symbols of the DLL can then be

108

A Accessing Host Resources
A.4 Host Application Interface (vxsimapi)

retrieved using the vxsimHostProcAddrGet() routine described in A.2 Accessing
Host OS Routines, p.108.

A.4 Host Application Interface (vxsimapi)

The vxsimapi library provides the ability to extend VxWorks simulator capabilities
with native OS code to perform operations that cannot be done directly using
VxWorks code. For example, this facility can be used to add code to control
peripherals connected to the host machine, to add code for graphic applications, or
toadd any functionality that requires host-specific code. For more information, see
the reference entry for vxsimapi.

A.4.1 Defining User Exit Hooks

Applications often need to perform specific actions on exit. This includes items
such as releasing resources, re-initializing peripherals, and other cleanup
operations. The VxWorks simulator exit hook facility provides the
vxsimExitHookAdd() routine. This routine gives you the ability to specify a
routine to perform any necessary cleanup when the VxWorks simulator exits or
reboots.

A.4.2 Configuring a Host Device to Generate interrupts (UNIX Only)

You can put he host file descriptors in asynchronous mode, such that VxWorks
sends a SIGPOLL signal is sent to the VxWorks simulator when data becomes
available. If a VxWorks task reads from a host device, the task normally requires a
blocking read. Because Linux and Solaris simulators are mono-threaded, this
action stops the VxWorks simulator process entirely until data is ready. As an
alternative, you can open the file in non-blocking mode and then put the device
into asynchronous mode. This causes a SIGPOLL signal to be sent whenever data
becomes available. In this case, an input ISR reads the data, puts it in a buffer, and
unblocks the waiting task.

To install an ISR that runs whenever data is ready on some underlying host device,
you must first open the host device in non-blocking mode. Then, put the file
descriptor in asynchronous mode using the vxsimFdIntEnable() routine. This

109

Wind River VxWorks Simulator
User's Guide, 6.6

ensures that the host will send a SIGPOLL signal when data is available. On the
target side, an interrupt service routine (ISR) is connected using intConnect().

The following code example shows how to do this on a host serial port.

Host side (DLL code linked with the vxsimapi library):

/* open host device in non-blocking mode */
fd = open ("/dev/ttyb", O_NONBLOCK) ;

/* Enable interrupts on file descriptor */
vxsimFdIntEnable (£f4d);

Target side:

/* connect the interrupt service routine */

intConnect (FD_TO_IVEC (fd), ISRfunc, 0);
Interrupts can also be disabled using vxsimFdIntDisable(), and the ISR can be
disconnected using intDisconnect(). For example:

Host side (DLL code linked with the vxsimapi library):

/* Disable interrupts on file descriptor */
vxsimFdIntDisable (£4);

Target side:

/* disconnect the interrupt service routine from file descriptor */
intDisconnect (FD_TO_IVEC (fd), ISRfunc, 0);

A.4.3 Simulating interrupts From a User Application (Windows Only)

The vxsimIntRaise() routine provides a host side application with the ability to
notify VxWorks of a given event, allowing VxWorks to take the appropriate action.
For example, if you have an application collecting data from a device, you can raise
an interrupt to VxWorks when data has been read from the device. On the target
side of the application, an ISR can be connected to the interrupt vector using
intConnect(). Now, each time vxsimIntRaise() is called, the ISR is called to
handle the read data.

When an interrupt needs to be acknowledged, the vxsimIntAckRtnAdd() routine
can be used to connect an acknowledgement routine for a given interrupt vector.
This routine is called immediately after the interrupt handling.

110

A Accessing Host Resources
A.5 Tutorials and Examples

A range of interrupt vectors are available on Windows simulators. This range is
defined in the config.h file of the simpc BSP:

USER_INT_RANGE_BASE User interrupts range base
USER_INT_RANGE_END User interrupts range end

The routines vxsimIntToMsg() and vxsimMsgTolInt() allow you to convert an
interrupt vector number to a Windows message number, and conversely, allow
you to convert a message number to a vector number.

The vxsimWindowsHandleGet() routine can be used with the VxWorks
simulator to get a windows handle for sending messages.

For more information on Windows simulator interrupt assignments, refer to
Table 3-4 in 3.5.5 Interrupts, p.26.

A.5 Tutorials and Examples

The following sections provide simple tutorials and examples illustrating host
resource accessing.

A.5.1 Running Tcl on the VxWorks Simulator

Code Sample

This section provides a simple tutorial that illustrates how to load a standard Tcl
DLL on the VxWorks simulator, and start a Tcl interpreter.

The following code sample can be built as a downloadable kernel module for all
simulator types.

#include "vxWorks.h"
#include "vxsimHostLib.h"

111

Wind River VxWorks Simulator
User's Guide, 6.6

#1f (CPU==SIMNT)

#define TCL_DLL "tcl84.d1l" /* Windows Tcl D11 name */
#else

#define TCL_DLL "libtcl8.4.s0o" /* Unix Tcl D11 name */
#endif

BOOL tclLoaded = FALSE;

STATUS tclStart (void)
{

/* Function pointers for Tcl D11 routines */

FUNCPTR pTcl_Createlnterp;
FUNCPTR pTcl_Init;

FUNCPTR pTcl_Eval;

FUNCPTR pTcl_GetStringResult;
FUNCPTR pTcl_Deletelnterp;

char tclCommand[400] ; /* buffer for Tcl command */

int evalResult; /* Tcl command evaluation result */
int 1vl; /* interrupt lock level */

void * pInterp; /* Tcl interpreter Id */

/* load Tcl D11 */

if (tclLoaded == FALSE)
{
if (vxsimHostDllLoad (TCL_DLL) != OK)
{
printf ("Error: Failed to load %$s\n", TCL_DLL) ;
return (ERROR) ;
}

tclLoaded = TRUE;
}

/* retrieve some Tcl routine address from the loaded D11 */

pTcl_CreateInterp = vxsimHostProcAddrGet ("Tcl_Createlnterp");
pTcl_Init = vxsimHostProcAddrGet ("Tcl_Init");

pTcl_Eval = vxsimHostProcAddrGet ("Tcl_Eval");
pTcl_GetStringResult = vxsimHostProcAddrGet ("Tcl_GetStringResult");
pTcl_DeleteInterp = vxsimHostProcAddrGet ("Tcl_Deletelnterp");

/* Create and Initialize Tcl interpreter */

1vl = intLock (); /* lock interrupts */
pInterp = (void *) (*pTcl_CreatelInterp) (); /* Create interpreter */
(*pTcl_Init) (pInterp); /* Initialize interpreter */
intUnlock (1vl); /* unlock interrupts */

printf ("Tcl Ready (Type CTRL+D to exit interpreter)\n\ntcl> ");

while (gets (tclCommand) != NULL)
{
1vl = intLock (); /* lock interrupts */

112

A Accessing Host Resources
A.5 Tutorials and Examples

evalResult = (*pTcl_Eval) (pInterp, tclCommand) ;

if (evalResult != 0)
{
printf ("Tcl Error: ");
}

if (strlen ((*pTcl_GetStringResult) (pInterp)) != 0)
printf ("%$s\n", (*pTcl_GetStringResult) (pInterp)) ;
intUnlock (1vl); /* unlock interrupts */

printf ("tcl> ");
}

/* Delete Tcl interpreter */

1vl = intLock (); /* lock interrupts */
(*pTcl_DeletelInterp) (pInterp);
intUnlock (1vl); /* unlock interrupts */

return (OK);
}

Running The Code

The sample code can be executed directly from the VxWorks kernel shell or using
the host shell. A sample host shell session is as follows:

-> 1d < tclInterp.o

value = 1634769168 = 0x61709910

-> tclStart

Loading libtcl8.4.so ... succeeded.

Tcl Ready (Type CTRL+D to exit interpreter)

tcl> glob *

tclInterp.c tclInterp.o hello.tcl
tcl> source hello.tcl

Hello !

tcl> ADvalue = 0 = 0x0

->

A.5.2 Controlling a Host Serial Device
Controlling a host serial device is a more complex application that allows you to

control a host serial device from the VxWorks simulator. For an example of this
application type, see the reference entry for commSio (Windows simulators) or

113

Wind River VxWorks Simulator
User's Guide, 6.6

ttySio (Linux or Solaris simulators). The examples provided for commSio and
ttySio exercise most of the features described in this chapter.

114

Index

A with vxprj 8
with Workbench 8

accessing building applications 19

host OS routines 108 byte order 25
the VxWorks Simulator from a remote host 15
application compatibility 2,45

assigning a processor number 14 C
AUX_CLK_RATE_MAX 39
AUX_CLK_RATE_MIN 39 C++ modules 19
auxiliary clock 39 commSio 113
auxiliary clock interrupts 26, 28 compiler options 19
-g 21
-0 21
B -00 21
-Xno-optimized-debug 21
b 7,9 -XO 21
-backplane 7,9 conf%g.h' 18, 34
boot parameters 9, 34 conflgu.rmg
BOOT NO AUTOBOOT 15 a simulated subnet 70
bootChan gg() 9,12,34 IPv6 support on your host system 96
Br 24 multiple external subnets 65
bspname.h 18 multiple network interfaces 14
BSPs 8,18 connection timeout 24
linux 8 console
Makefile 18 SMP 44
simpc 8 uniprocessor 13
solaris 8 CPU 19
-Bt 24

building a VxWorks image 8, 43, 80

115

User's Guide, 6.6

D

-d 9
debugging 21
DEFAULT_ACCESSMODE 61
DEFAULT_ERATE 62
DEFAULT_EXTERNAL 61
DEFAULT_EXTPROMISC 62
DEFAULT_GARBAGE 61
DEFAULT_GID 61
DEFAULT_MACPREFIX 61
DEFAULT_TIMEOUT 62
DEFAULT_UID 61
development limitations 3, 45
-device 9
devs() 38
diab 19
DLL 107
dynamic-link library

see DLL

E

- 9,13

ELF object module format 20
emacs 57

-ethernet 9

exit hook facility 109

exiting the VxWorks Simulator 14
-exitOnError 9,15

F

-f 9,12,56

-file 9,56

file system support 3,23
pass-through file system 23, 36
virtual disk 24, 37

-flags 9

floating-point
routines 25
support 25

116

Wind River VxWorks Simulator

-force 56

G

-g 10
-gateway 10
gnu 19

H

-h 10
hardware breakpoint support 25
hardware simulation 36
-help 10
-hn 10, 37
host application interface 109
host connection driver 66
Linux 68
Solaris 67
Windows 66
host system requirements 6
HOST_SIO_PORT_NUMBER 40
-hostinet 10
-hostname 10, 37
hostSio 40

ifconfig() 72
INCLUDE_BOOT_LINE_INIT 7
INCLUDE_HOST_SIO 40
INCLUDE_IPCOM_SYSVAR_CMD 98
INCLUDE_IPD_CMD 98
INCLUDE_IPRADVD_CMD 98
INCLUDE_KERNEL 30
INCLUDE_NET_BOOT_CONFIG 72
INCLUDE_PASSFS 36
INCLUDE_PING 80
INCLUDE_PING6 98
INCLUDE_ROUTECMD 80
INCLUDE_SM_COMMON 7,41

INCLUDE_SM_NET 7,41
INCLUDE_SM_OBJ 7,41
INCLUDE_SYS_TIMESTAMP 40
INCLUDE_TIMESTAMP 40
INCLUDE_VIRTUAL_DISK 38
intConnect() 27,29,110
intDisconnect() 110
interrupt assignments

Windows simulator 28
interrupt simulation 26

host signals 26

on Linux and Solaris 26

on Windows 28

Windows messages 28
IPv6

configuring IPv6 support on your host system

96

support 48

tutorial 95
ISR_STACK_SIZE 30

K

-k 10
-kill 10

L

-1 10

linux 8

loading a VxWorks image 9
LOCAL_MEM_LOCAL_ADRS 34, 35
LOCAL_MEM_SIZE 34,35

-logfile 10

M

MACH_EXTRA 18

macros
AUX_CLK_RATE_MAX 39
AUX_CLK_RATE_MIN 39

Index

HOST_SIO_PORT_NUMBER 40
INCLUDE_SM_NET 7
LOCAL_MEM_LOCAL_ADRS 34,35
LOCAL_MEM_SIZE 34, 35
MACH_EXTRA 18
NV_RAM_SIZE 38
SYS_CLK_RATE_MAX 39
SYS_CLK_RATE_MIN 39

Makefile 8,18
memory

configuration 34
layout 29

memory management support

running without MMU 23

memory management unit 3, 22

limitations 23
MMU simulation 22
page size 22
translation Model 22

memory protection level 36
-memsize 11,35

migrating applications 45
MMU

see memory management unit

MMU simulation 22

N

-n-nvram 10
-netif 10
network daemon

configuration file parameters 60
configuration files 60

network simulation 48
networking address space 30

-ni

10, 14

non-volatile RAM support 38
NV_RAM_SIZE 38
-nvram 39

117

User's Guide, 6.6

)

-0 10
-other 10

P

p 10,14
packet loss 59
packet sniffers 48, 59, 66
passDev 9
passFS

see pass-through file system
pass-through file system 23, 36
-password 10
physical memory address space 35
-pl 10
-processor 10
-prot-level 10, 36
-pw 10

R

remote host 15

router configuration 14

routines
bootChange() 9,12,34
devs() 38
ifconfig() 72
intConnect() 110
intDisconnect() 110
sysAuxClkRateSet() 39
sysBusToLocalAdrs() 18
sysClkRateSet() 39
sysMemTop() 30
sysNvRamGet() 39
sysNvRamSet() 39
virtualDiskClose() 38
virtualDiskCreate() 38
virtualDiskInit() 38
vxsimExitHookAdd() 109
vxsimFdIntDisable() 110

118

Wind River VxWorks Simulator

vxsimFdIntEnable() 109
vxsimHostDIlLoad() 108
vxsimHostProcAddrGet() 108, 109
vxsimIntAckRtnAdd() 110
vxsimIntRaise() 110
vxsimIntToMsg() 111
vxsimMsgTolnt() 111
vxsimWindowsHandleGet() 111
RTP support 3,23

S

-s 11,56, 57
serial I/O driver 40
serial line support 40
shared memory
address space 30
END driver 7
poolsize 7
size 7
shared memory network 40
-shell 56,57
-shellport 56
-shellserver 56, 57

SIGALRM 26
SIGPOLL 26,109
SIGUSR1 27
SIGUSR2 27
SIMLINUX 20
SIMNT 19

simpc 8

SIMPENTIUM 20
SIMSPARCSOLARIS 20
simulated hardware support 3
simulating packet loss 59
SIO driver 39
-size 11,35
SM_MEM_SIZE 7
SM_OBJ]_MEM_SIZE 7
smEnd 7
SMP support 4
creating an image 43
system requirements 6
solaris 8

-sp 56

specifying the passFS device name 37
standard I/O 18,39

starting

a standalone VxWorks Simulator instance 12

simulator instances for use with network
services 13
the VxWorks Simulator from Workbench 14
-startup 11
SUBNET_ACCESSMODE 62
SUBNET_ADDRESS 63
SUBNET_BROADCAST 64
SUBNET_ERATE 64
SUBNET_EXTCONNNAME 65
SUBNET_EXTDEVNUM 63, 65
SUBNET_EXTERNAL 63
SUBNET_EXTPROMISC 63
SUBNET_GID 62
SUBNET_MACPREFIX 62
SUBNET_MASK 63
SUBNET_MAXBUFFERS 64
SUBNET_MAXNODES 64
SUBNET_MTU 65
SUBNET_MULTICAST 64
SUBNET_RECQLEN 64
SUBNET_SHMKEY 64
SUBNET_TIMEOUT 65
SUBNET_UID 62
supported VxWorks features 2,6
-sv 56,57
SYS_CLK _RATE_MAX 39
SYS_CLK RATE_MIN 39
sysAuxClkRateSet() 39
sysBootLine 18
sysBusToLocalAdrs() 18
sysClkRateSet() 39
sysLib.c 18
sysMemTop() 30
sysNvRamGet() 39
sysNvRamSet() 39
system clock 39

Index

T

-targetname 11

timers 39

timestamp driver 39

-tmpdir 11

-tn 11

TOOL 19

ttySio 114

tun module 68

tutorial
IPv6 95
running VxSim on the local network 90
simple simulated network 74
simulated network with multiple simulators

78
tyLib.c 18

U

-unit 11

UNIX disk driver library 38
unixDrv 38

unixSio.c 18, 39

-user 11
USER_INT_RANGE_BASE 111
USER_INT_RANGE_END 111
-username 11

Vv

-v 11
-vaddr 11,35
-version 11
vi 57

virtual disk support 3, 24, 37
virtual memory address space 35
virtualDiskClose() 38
virtualDiskCreate() 38
virtualDiskInit() 38
VM_PAGE_SIZE 23
VM_STATE_CACHEABLE 22

119

User's Guide, 6.6

VM_STATE_CACHEABLE_NOT 22
VM_STATE_VALID 22
VM_STATE_VALID_NOT 22
VM_STATE_WRITEABLE 22
VM_STATE_WRITEABLE_NOT 22
VMEbus 40
-vsize 11,35
VxMP 7
vxprj 81
vxsim 9,12
configuration options 9
vxsimapi 107, 109
vxsimExitHookAdd() 109
vxsimFdIntDisable() 110
vxsimFdIntEnable() 109
vxsimHostArchLib 107
vxsimHostDIlLoad() 108
vxsimHostProcAddrGet() 108, 109
vxsimIntAckRtnAdd() 110
vxsimIntRaise() 110
vxsimIntToMsg() 111
vxsimMsgTolnt() 111
vxsimnetd 50
command line options 56
debug shell 57
removing the Windows service 57
shell commands 57
? 59
delete 59
erate 59
extpromisc 59
help 59
mode emacs 60
mode vi 60
node 58
packet 58
quit 59
source 59
subnet 58
timeout 59
starting as a root service 53
starting as a Windows service 52
vxsimnetds_inst.exe 52
vxsimWindowsHandleGet() 111
vxWorks 8

120

Wind River VxWorks Simulator

VxWorks components
INCLUDE_BOOT_LINE_INIT 7
INCLUDE_HOST_SIO 40

INCLUDE_IPCOM_SYSVAR_CMD 98

INCLUDE_IPD_CMD 98
INCLUDE_IPRADVD_CMD 98
INCLUDE_NET_BOOT_CONFIG
INCLUDE_PASSFES 36
INCLUDE_PING 80
INCLUDE_PING6 98
INCLUDE_ROUTECMD 80
INCLUDE_SM_COMMON 7,41
INCLUDE_SM_NET 41
INCLUDE_SM_OBJ 7,41
INCLUDE_SYS_TIMESTAMP 40
INCLUDE_TIMESTAMP 40
INCLUDE_VIRTUAL_DISK 38

VxWorks image
vxWorks 8
vxWorks.st 8

VxWorks image projects 8

VxWorks simulator network daemon
see vxsimnetd

vxWorks.st 8

W

watchdog timer facilities 26, 28
WDB

backend 24
WDB_POOL_SIZE 30
Wind River System Viewer 39
winSio.c 18, 39
WRTAP 65, 66

X

xterm 9

	Wind River VxWorks Simulator User's Guide, 6.6
	Contents
	1 Overview
	1.1 Introduction
	1.2 Supported Features and Compatibility
	1.2.1 VxWorks Feature Support
	1.2.2 Simulated Hardware Support

	1.3 Limitations

	2 Getting Started
	2.1 Introduction
	2.2 System Requirements
	2.3 Configuring and Building a VxWorks Image
	2.3.1 Default Configuration Components
	2.3.2 Configuring Optional Components
	2.3.3 Building Your VxWorks Image

	2.4 Launching the VxWorks Simulator
	2.4.1 vxsim Configuration Options
	2.4.2 Launching a VxWorks Simulator Instance from the Command Line
	Modifying the Windows Simulator Console Appearance
	Starting Instances to Run on a Simulated Subnet

	2.4.3 Launching the VxWorks Simulator From Workbench
	2.4.4 Rebooting and Exiting the VxWorks Simulator
	2.4.5 Accessing the VxWorks Simulator from a Remote Host

	3 Introduction to the VxWorks Simulator Environment
	3.1 Introduction
	3.2 Understanding the VxWorks Simulator BSP
	3.3 Building Applications
	3.3.1 Defining Compiler Options
	3.3.2 Compiling Modules for Debugging

	3.4 Interface Variations
	3.4.1 Memory Management Unit
	Simulation
	Translation Model
	Page Size
	Limitations
	Running the VxWorks Simulator Without MMU Support

	3.4.2 RTP Considerations
	3.4.3 File System Support
	Pass-Through File System (passFS)
	Virtual Disk Support

	3.4.4 WDB Back End
	3.4.5 Connection Timeout

	3.5 Architecture Considerations
	3.5.1 Byte Order
	3.5.2 Hardware Breakpoint
	3.5.3 Floating-Point Support
	3.5.4 ISR Stack Protection
	3.5.5 Interrupts
	Solaris and Linux Systems
	Windows Systems

	3.5.6 Memory Layout

	4 Using the VxWorks Simulator
	4.1 Introduction
	4.2 Configuring the VxWorks Simulator
	4.2.1 Boot Parameters
	4.2.2 Memory Configuration
	Physical Memory Address Space
	Virtual Memory Address Space
	Memory Protection Level

	4.2.3 Miscellaneous Configuration

	4.3 Configuring Hardware Simulation
	4.3.1 Pass-Through File System (passFS)
	4.3.2 Virtual Disk Support
	4.3.3 Non-Volatile RAM Support
	4.3.4 Standard I/O
	4.3.5 Timers
	4.3.6 Timestamp Driver
	4.3.7 Serial Line Support
	4.3.8 Shared Memory Network

	4.4 Using VxWorks SMP with the VxWorks Simulator
	4.4.1 Creating an SMP Image

	4.5 Migrating Applications to a Hardware-Based System

	5 Networking with the VxWorks Simulator
	5.1 Introduction
	5.2 Building Network Simulations
	5.3 Setting Up the Network Daemon
	5.3.1 Starting the Network Daemon
	Starting the Network Daemon as a Service
	Starting the Network Daemon From the Command Line

	5.3.2 Removing the Network Daemon Service
	5.3.3 Network Daemon Debug Shell
	5.3.4 Creating a Network Daemon Configuration File
	Configuring Multiple External Subnets

	5.4 Installing the Host Connection Driver
	5.4.1 Managing the WRTAP Driver on Windows Hosts

	5.5 Configuring a Simulated Subnet
	5.5.1 Starting a Simulator Instance With Multiple Network Interfaces
	5.5.2 Starting a Simulator Instance Without an IPv4 Address

	6 Networking Tutorials
	6.1 Introduction
	6.2 Simple Simulated Network
	6.2.1 Set Up the Network Daemon
	6.2.2 Start a VxWorks Simulator Instance
	6.2.3 Test the Simulated Network

	6.3 Basic Simulated Network with Multiple Simulators
	6.3.1 Creating a Static Configuration
	6.3.2 Creating a Dynamic Configuration Using the vxsimnetd Shell

	6.4 Running the VxWorks Simulator on the Local Network
	6.4.1 Default subnet configuration
	6.4.2 Configuring a Bridge
	Windows Setup
	Linux bridge setup

	6.5 IPv6 Tutorial
	6.5.1 Configure the Network
	6.5.2 Configuring VxWorks with IPv6 Components
	Build Your Projects

	6.5.3 Testing the IPv6 Connection
	Start the VxWorks Simulator Instances

	A Accessing Host Resources
	A.1 Introduction
	A.2 Accessing Host OS Routines
	A.3 Loading a Host-Based Application
	A.4 Host Application Interface (vxsimapi)
	A.4.1 Defining User Exit Hooks
	A.4.2 Configuring a Host Device to Generate interrupts (UNIX Only)
	A.4.3 Simulating interrupts From a User Application (Windows Only)

	A.5 Tutorials and Examples
	A.5.1 Running Tcl on the VxWorks Simulator
	Code Sample
	Running The Code

	A.5.2 Controlling a Host Serial Device

	Index

